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Abstract

To prevent avalanches one requires their reliable prediction. For this purpose one has to study the avalanche
dynamics and conditions under which such dynamics occurs. In this thesis the avalanche of granular materials is
studied from an experimental and data-driven perspective. The data are collected by taking images of the rotating
drum filled by a granular material with the help of the high speed camera. Initially, the individual particles in images
are detected by use of circular Hough transform and the existing expert knowledge. Furthermore, the particles are
tracked by use of the nearest neighbor method in combination with the unscented Kalman filter. This approach has
shown to have good performance as one may easily account for missing particle detections and uncertainties about
particles exact position. Thus, the initial particle position is modelled as uncertain, and its evolution is further
predicted using the coordinated turn model. With the help of the proposed tracking method the particle position
is further updated by assimilating the measurement data with the prior knowledge. The method is evaluated on
unseen data set, and is able to predict the global avalanche dynamics such as angle of repose, and movement of
particles that is not too stochastic. On the other hand, prediction of the individual movement of particles in the
middle of the avalanche is shown to be more challenging.
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1 Introduction

Granular flows and avalanches are currently subject of extensive studies in various research disciplines and are
discussed in physics, geophysical, powder technology and other academic works due to their practical importance[1,
2, 3, 4]. The physical behavior of granular materials and the corresponding avalanches is extremely complex, which
makes generation of their physics-based mathematical models difficult. Due to the non-linear particle movement,
avalanches are a challenge that is difficult to predict and manage. In addition to being affected by gravity, the
movement is also affected by interactions between the particles and other influencing external factors[5]. The fea-
tures of granular material set it apart from other ”regular” solids, fluids, and gases. These materials actually behave
somewhat like solids, fluids, or gases depending on the external influencing factors[6, 7, 8, 4]. Even if the external
driving mechanisms are constant, the processes themselves can be either continuous or intermittent.

Avalanche is a rapid flow of material (snow, ice, rocks, debris) that falls down the side of a slope. On a sloop,
an avalanche is triggered by loose material breaking from the surrounding materials, and swiftly gathers, carrying
more material down the slope[5]. A granular avalanche happens when a particle accumulation’s slope exceeds its
maximum angle of stability; after that, the angle starts to fall until it reaches the angle of repose. When particles
are at rest, their velocity is almost zero. However, when an avalanche happens, their speed reaches a peak, and
then it progressively drops as the avalanche continues. An avalanche keeps sliding down the mountain until it
accumulates where the mountainous terrain flattens. The time evolution of a slope angle and particle velocity thus
define the dynamics of avalanches. All avalanches have a starting zone, which is their highest point, an avalanche
track, which is their natural path downhill, and a run-out zone, which is where they halt by piling up granular
debris. The speed of the descending mass, made of dry particles can reach of 130 km an hour, whereas a liquid
substance can reach a speed of 15 to 60 km an hour[9]. This is why avalanches cause human mortality in addition
to material losses; 150 persons per year die in Europe and North America as their direct consequence[10]. Granular
flows can impact geophysical formations, such as the formation of landscapes by landslides.

A granular avalanche is a gravity-driven free surface flow of continuously granulated media down a steep slope
that is typically caused by the instability of a granular layer. Avalanche are characterized as “a transient, three-
dimensional gravity-driven free surface motion of a mass system made up of an assemblage of granular fragments
initiated by an instability of granular layer and flowing down to the run-out zone on an arbitrary steep topography
with varied surface resistance”[11]. The main characteristic of an avalanche is that its surface moves faster than its
base, functioning as a kinetic sieve, thus sorting the granular particles. Rapidly, an inverse grading of the particles
occurs in which the larger particles overlie the smaller ones, generating a two-layered shear band.

Granular avalanches have a number of applications in technology and engineering. A better understanding of
the flow of granular materials can lead to development of new technologies and improved design practices that
benefit society and the environment, the improvement of industrial processes, and better methods for detecting and
monitoring granular avalanches. Typical application examples are: disaster risk assessment, infrastructure design,
agriculture practices, and geotechnical engineering. As can be seen avalanches can be classified as destructive or
productive. The first type occurs during industrial processes and can have a detrimental impact on output because
granular materials are involved in uncontrolled, swiftly moving flows that may harm infrastructure or interrupt
human operations. A few examples can be seen in the agriculture and food processing industries, pharmaceutical
plants, mining caves, and construction industries which require proper measures to prevent destructive granular
avalanches. On the other hand, constructive avalanches are used for the production purpose where the flowing
properties of granular material are utilized to achieve specific goals. Application of granular avalanches can improve
productivity in industries by mixing and blending granulars to achieve homogenous products, and thus improve the
process quality and efficiency while reducing costs. Productive industrial utilization of granular avalanches is used
in highly lucrative pharmaceutical and metallurgic industries (coating, granulation etc)[12].

Granular systems, despite their everyday familiarity, have become paradigmatic systems of complexity. There-
fore an understanding of the possible causes and dynamics of avalanches and development of technology for their
prediction and prevention are needed. Tracking particles in an avalanche helps to understand and predict the
behavior of the flow, including its speed, direction, and impact force. This can provide insights into the behavior
of granular materials under different conditions, which can inform the design and engineering of structures and
equipment in industries such as construction and transportation. By tracking granular avalanches, industries can
gather data to develop models for predicting and preventing future avalanches. This can help to reduce the risks
associated with avalanches and improves the overall safety and efficiency of operations.
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State of the art

A common numerical method used to predict avalanche is the Discrete Element Method (DEM)[13, 14] in
combination with physics based equations[15, 16]. DEM is a numerical simulation technique[17] used to model
and analyze the behavior of granular materials and particles. It has become a valuable tool for researchers and
engineers in the fields of particle mechanics and granular materials. The main advantage of DEM is its ability to
handle complex geometries, material properties, and boundary conditions, which makes it well suited for simulating
real-world systems. Additionally, DEM can be used to model the behavior of a wide range of particle sizes and
can account for various types of particle interactions, such as friction, adhesion, and breakage[14, 18, 19, 13]. By
considering each particle as an individual element, DEM can provide particle-level resolution, which is important in
understanding the behavior of granular materials. However, approach based on DEM is limited in its use, because
it is challenging to validate the dynamic behaviour of the particles, as there is often a lack of experimental data
available for comparison. One way used to validate DEM model is by the angle of response. However, this validation
technique cannot guarantee good mathematical model when it comes to particles interactions. Despite DEM ability
to handle complex geometries and boundary conditions, the accuracy of its results is not fully known. Further, the
method is computationally intensive and requires large amounts of computing resources, especially when simulating
large-scale systems or systems with many particles[20, 21]. Other studies approach the matter from an experimental
perspective. The revolving drum or slanted bed is a straightforward and useful tool that has been widely utilized in
research to analyze the flow of granular materials[22, 23, 24]. In such a case dynamic properties are extracted from
high speed camera images. Thus, this approach is purely relying on the computer vision, and does not take into
account the experts knowledge. In other words, the avalanche dynamics can be described in a purely data driven
way, i.e. by using machine learning[25] .

When the data-driven approach is used to track the particles it is necessary to detect the particles first. This task
is usually achieved by using one of the computer vision algorithms. In this aspect the image quality has to be good
as well as visibility of the particles. The results of the detection are better the more clearly the particles are visible.
Particle detection can be done in a variety of ways, one of which is the superresolution[26]. The concept behind
super-resolution is that a high-resolution image or image sequence can be created by combining a series of low res-
olution (noisy) photos of a scene. As a result, given a collection of observed photos with lesser resolution, it tries to
rebuild the high-quality original scene image. Although this seems to be a viable alternative for enhancing the image
quality, superresolution methods can be computationally demanding and demand significant processing resources.
Further the quality of the resulting superresolved image is limited by the quality of the original image. If the orig-
inal image is noisy, blurry, or has other issues, these problems amplified in the superresolved image. In some cases,
increasing the resolution of an image can result in a loss of information or a degradation in image quality. Machine
learning techniques, such as Convolutional Neural Networks (CNN) and its numerous variants[27, 28, 29, 30, 31],
are the most widely used method for object, i.e. particle detection[25]. As these techniques rely on unsupervised
learning approach, one requires large amount of data. Here under unsupervised learning it is meant that the particle
positions are not manually labeled and fed to the algorithm for further learning. Instead, the algorithm has to find
positions by itself and learn the appropriate model for their prediction. However, due to their transparency and
dense packing, the glass particles’ characteristics, such as their contour and color, are rarely visible, and thus the
poor image quality makes unsupervised learning difficult. Thus, unsupervised machine learning is not a viable
option to detect the particles. The methodologies that have been previously discussed center on the detection of
particles using simply pictures. However, one could enhance particle detection if a depth sensor was utilized in
addition to an RGBB camera[32]. In the absence of the depth sensor, one may use the so-called gradient grids. In
order to detect whether the object(s) of interest are present in the test image, one first creates a template using
only the gradients of the object on a background with no texture. The approach makes no assumptions on the
type of the background, or the shape of the transparent object. Due to the absence of a depth sensor and the fact
that the background of the particles is made up entirely of transparent particles, neither approach can be utilized
to detect particles in the drum. In literature one may also find a special algorithm for detecting circular-shaped
objects in low resolution images[33]. This method is used for detecting tanks in satellite images, and does not
work for detecting particles in a drum. The primary cause of this, alike with satellite photographs, is once again
a translucent background that does not provide enough contrast to the transparent objects. One solution to this
problem is to train a machine learning model using a fictitious data set. Random packing[34] is one method of
carrying this out. Examples are jammed disk packing, voronoi packing, Torquato-Jiao, and Lubachevsky-Stillinger
type of packing[35, 36, 37]. If the initial conditions, i.e. a few particle placements, are known, then the drum can
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be mathematically filled with particles using one of previously described methods. Thus, one has to start with
identification of initial conditions. For this purpose,, one may manually identify the drum boundary and a few
particles in an image, and then fill the empty area using random packing. The problem of the detecting contours
of an object in an image can be solved by using the Hough transform algorithm[38]. Since the particle geometry is
known a priori, the contour of a particle is a circle, so a variant of the Hough transform can be used. This variant
is the Circle Hough Transform (CHT)[39, 40], and is specialized in detecting circle shaped contours. An advantage
of the CHT is the capacity to accurately detect the particles even when they are partially obscured or distorted. It
can also handle multiple particles and overlapping particles. Also the CHT is relatively robust to images noise and
is tolerant to missing pieces in the feature boundary. So if not the full contour of the particle, a circle is visible.
Further the CHT can handle particles of different sizes, orientations, and brightness, making it suitable for a wide
range of granular avalanche experiments. Finally the CHT is a simple and intuitive technique which makes it easy
to implement and understand. A disadvantage of the CHT is the sensitivity to the choice of parameters used in the
algorithm, such as the threshold for detecting local maxima in the parameter space. This can result in missing some
circles or detecting non-existing circles. The CHT can be computationally expensive for large images or images
with many circles. The CHT’s usefulness may be constrained for images with weak edges or poor contrast because
it depends on an edge detection technique used to pre-process the image.

Once the particles are detected in an image, one has to track them in time, i.e. detect them in subsequent images
in time. This can be achieved by using commercial software such as FIJI Image or particle image velocimetry[41, 42].
However, these algorithms work with denoised images. Therefore, the focus in this thesis is on the probabilistic
type of trackers that are based on Bayes rule[43]. One example of simplified Bayes rule is the Kalman filter[44] that
is based on the assumption that the particle dynamics is linear, and that the observation noise is of Gaussian type.
The precision, efficiency, suitability for linear systems, and capacity to handle noisy observations and unknown
linear dynamics are the benefits of utilizing the Kalman filter. The Kalman filter’s drawbacks include its inability
to handle non-linear systems, sensitivity to initialization, and potential sensitivity to outliers. To overcome these
drawbacks, one may utilize particle filter[45, 46]. This is a non-parametric method for tracking particles by describ-
ing their position initially as uncertain over the probability distribution that is further sampled. This algorithm
can handle non-linear systems, does not require knowledge of the system model, is robust against initialization
errors, and can model the uncertainty in the measurements. The drawbacks of this filter are its high computing
cost, the potential for sample degeneracy if improperly initialized, and its sensitivity to the proposal distribution
selection. Similarly to particle detection, the object tracking can be also done by use of Convolutional Neural Net-
works (CNNs)[47, 48, 49, 50, 51] to track objects in real-time. The method can handle complex object appearances
and occlusions, can learn from data, is fast, and accurate which are all advantages. However, this approach has
drawbacks such as the need for a substantial amount of training data and sensitivity to changes in object scale,
viewpoint, and illumination. The possible lag in training data makes this strategy ineffective. Finally, one may
also utilize the optical flow approach[52, 53]. This is a motion estimation technique that tracks the movement of
pixels between consecutive frames. The advantages are that it is computationally efficient, robust to illumination
changes, and can handle small object motions. Disadvantages of this technique are that it may fail in cases where
objects are occluded or there are significant background motions. Because the particles are closely packed and the
background is not constant this method is therefore not an option.

Based on the previous discussion one may conclude that the particle detection and tracking in avalanches can be
challenging. This thesis continues from a previous study[54], by making a new approach for the particle detection
and tracking. Namely, in this work the data (images) are not labeled and have not clearly visible features. As a
result, the most of previously described supervised and unsupervised machine learning techniques cannot be used
for detection and prediction. For the detection of the particles a classic computer vision technique, the CHT is
used, because with this method it is possible to search for the a priori known features of the particles; the shape and
size of the particle. For the tracking of the particles the Kalman Filter (KF) is most suitable since the KF includes
uncertainties in the model, so that this method is not dependent on the accuracy of the assumed particle dynamics
model nor measurement noise. The way the KF represents the underlying system and deals with uncertainty sets
it apart from other tracking techniques. The KF predicts the state of the particle in the following time step by
using a mathematical model of the particle motion. Then, taking into consideration the uncertainty in both the
model and the observations, it revises this forecast using the most recent measurements. This results in a more
accurate estimate of the state of the particle compared to other tracking methods that do not take into account the
uncertainty in the measurements. Since the particle movement is non-linear, the straightforward KF is no longer
applicable. Therefore, the nonlinear-version of Kalman filter, also known as Unscented Kalman filter[55], is further
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utilized. This method is based on the Unsented Transform[56] and offers higher performance at an equal computing
cost to the extended Kalman filter[57] that linearzies the system dynamics.

Research objectives and outline

In this study, the potential for using machine learning[25] to analyze and track individual avalanche particles
is explored. This study’s goal is to look at how it is possible to track and detect (glass) particles in an avalanche
simulation experiment. The behavior of granular material in avalanches is studied using data (pictures) from a
rotating drum experiment. Then, different techniques for detecting and tracking specific particles are contrasted to
see which one is the most effective. The ultimate goal of this project is to assess the methods for detecting, track-
ing, and forecasting individual particles in granular avalanches and to provide a framework for related future studies.

This study is divided in the following chapters: chapter 1 coveres the motivation and goal of the research,
in chapter 2 are described the detection and tracking of particles with machine learning are described, chapter 3
presents the numerical results. Chapter 4 concludes the work, whereas Chapter 5 contains further recommendations.
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2 Detect and track particles with machine learning

In this study the data are collected by observing the avalanches of dry particles in the half filled rotating drum.
Dry partciles have a low viscosity and the highest particle velocity and thus are chosen for this experiment. Images
of the rotating drum are recorded with a Canon Legria HFG40 camera, operating at 450 FPS. The experimental
design used in this research is demonstrated in a schematic view in Figure 1 below. The drum consists out of a
cylinder with a radius of R = 60.5mm and a depth of w = 22mm. The drum side surfaces are made of plexiglass
plates (PMMA) of a 5mm thickness. This ensures further observations of particle dynamics. To prevent sticking
of particles at the plates these were coated with fluorinated ethylene propylene (FEP). The cylinder of the drum
is made of poplar wood. The drum is partially filled (filling level 35 percent of its volume) with monodisperse
borosillicate glass particles with a density of ρ = 2500 kg

m3 . The radius of the particles is r = 2.00mm. Tests are
conducted with a constant rotation speed in various sets ranging in the interval 0.5 − 45rpm. When utilizing dry
particles of low viscosity, intermittent avalanches start to happen at a rotating speed of 0.5rpm. Avalanches occur
periodically at a low rotational speed and when a high rotational speed is used a continuous flow is created.

Figure 1: Schematic representation of granular avalanches in a rotating drum

Rotating drum experiments, in which a cylinder partially filled with granular material is rotated, are an ideal
laboratory setup for observing the distinct facets that a granular moving system may possess. Particles in rotary
drums are used to mimic granular avalanches with a continuous flow. Avalanches occur periodically at a low
rotational speed and when a high rotational speed is used a continuous flow is created. Images of a rotary drum
filled with dry granular materials flowing continuously, to study the flow of the individual particles are used. Using
computer vision to predict an avalanche, one has to analyze images as shown in Figure2 that are collected during
an experiment as described above.

Figure 2: Image of granular avalanches in a rotating drum

The previously described experiment can be made by using only one layer of particles, and the light source in
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the back of the drum as described in[58]. In such a case, the detection of the particles is quite straightforward.
However, such experimental setup does not correspond to the real avalanches. Therefore, in this experiment several
layers of particles are used, and the light source in front of the drum. Thus, the data that are collected by a high
speed camera are similar to the one shown in Figure2. As the images are taken by a high-speed camera, one can
not manually analyze images as such an analysis has to run in a real-time in industrial applications. On the other
hand, if the analysis is to be done offline after the images have been collected, then manual inspection would be
time consuming due to their large number. Therefore, the goal of this thesis is to build the computer-based method
that would prevent any manual work. For this purpose, one has to design an algorithm that can detect and track
individual particles in the granular media in the drum. Next to this, the aim is to also track the angle of response
as global avalanche feature.

2.1 Particle detection

The detection of particles in images is often a cumbersome task, and its difficulty strongly depends on the shape
of particles and the type of their movement. The geometrical shape, if known a priori, can help significantly in
detecting particles or objects, as such a learning problem is supervised. In such a case one has to find the ob-
ject with the prescribed geometrical features in the image. This can be difficult if several objects with the same
geometry are present in the image especially if they have different dimensions, or if the edges of objects are not
smooth. The motion of particles on the other hand can make the detection problem complex. If particle movement
is deterministic and smooth then the detection of particles on the subsequent images is relatively easy and can be
extrapolated from the previous images. In such a case, the particle on the next image will be in close vicinity of
its position in the previous image. However, if the particle movement is stochastic and noisy, this problem becomes
more difficult as the particle may suddenly jump and change its direction of motion. In such a case the position of
the particle cannot be easily found.

In the problem considered in this thesis the particle shape is known a priori: all particles have identical size and
are circles. The particle geometry is thus characterized by two features: the position of its center, and the radius
of the particle. For the particle detection only the position of its center needs to be known, as the radius is known
a priori. On the other hand, the tracking of particle movement is challenging. Most of the granular particles in the
drum move according to the circular path as observed in [54]. However, the particles that are part of the avalanche
are not smoothly moving, and are characterized by a stochastic movement as later described in the text.

The center position of the particles in the drum is found using the particle contours, and the known radius.
As a result, the center detection largely depends on the particle contour being detected. However, in 3D packing
problems as the one considered in this thesis, this can be difficult. The contours of the particles in the front 2D
portion of a 3D packing problem may be challenging to distinguish from the contours of the particles in the adjacent
2D section. Next to this, the fact that the particles are composed of glass and reflect the light from the camera
lamp makes it much harder to view the particles properly. Because the reflection is more prominent, it is harder
to see the right particle outlines. Therefore, to partially compensate for this problem a few of green particles, also
known as tracer particles, have been added to the drum. Both type of particles then allow use of color features
next to the geometrical features for the particle detection. An image is represented by its height and width, which
are determined by the number of pixels. A pixel represents a specific value of a point in an image. This value
represents the intensity within a given range. Grayscale and RGB are the two most common image representations.
Each pixel in Grayscale has one integer with a value between 0 and 255, where 0 is black and 255 is white. Each
Red, Green, and Blue (RGB) pixel is made up of three integers with values ranging from 0 to 255. The intensity of
the colors Red, Green, and Blue is represented by the values [59]. Thus, to find a particle contour one may use the
pixel intensity. A contour is a curve that connects all pixels with the same intensity along a particle boundary. An
algorithm that can achieve this is the edge detection algorithm. The Canny edge detection method has been chosen
as the best performance edge detection method for creating the edge map of the particles in the drum for several
reasons. First the method uses a multi-stage algorithm that is able to remove noise from the image, which results
in fewer false edges being detected. Next to this, the method uses gradient information to detect edges, which
further allows detection of edges that are not necessarily the brightest or darkest pixels in the image. By hysteresis
thresholding one may also preserve edges that are connected to strong edges and suppress the remaining weak
edges. Canny edge algorithm also gives the possibility of tunning this threshold, and is computationally efficient.
All these factors contribute to the Canny edge detection method being considered one of the best edge detection
methods available. An edge map, is a representation of an image that highlights the contours of the particles within
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the image. It is created by applying the Canny edge algorithm[60] as further described in the text, which analyzes
the image and detects areas where there are sudden changes in pixel intensity. These areas of sudden change are
considered edges, and are typically represented in the edge map as white pixels on a black background. The Canny
edge detection algorithm consists of several steps, including image smoothing, gradient calculation, non-maximum
suppression, and hysteresis thresholding. The first step, image smoothing, is used to reduce noise in the image.
This is done by convolving the image with a Gaussian filter, which helps to smooth out small variations in pixel
intensity and reduce noise in the image. This improves the accuracy of edge detection by reducing the chance of
detecting false edges caused by noise. The next step is the calculation of the gradient of the image in each pixel,
which is used to highlight regions of intensity change, including the contours of the particles. This is done using the
Sobel operator[61], which calculates the gradient at each pixel of the image in the x and y directions separately. The
magnitude of the gradient is then calculated as the square root of the sum of the squares of the x and y gradients:

G =
√
G2

x +G2
y. (1)

And the direction of the gradient is calculated as the arctangent of the y gradient divided by the x gradient:

Θ = tan−1(
Gy

Gx
). (2)

After gradient calculation, non-maximum suppression [62] is applied to thin the edges. Once the gradient’s mag-
nitude and direction have been determined, the entire image is scanned to remove out any extraneous pixels that
might not be the edge. For this, it is determined whether each pixel is a local maximum in its vicinity in the
gradient’s direction. Pixels with a gradient magnitude less than the pixels in the direction of the gradient are
removed. Figure 3 shows an example where pixel A is on the edge and where pixel C and B are in the gradient
direction.

Figure 3: Illustration of Non maximum supression

The final step of the Canny edge detection algorithm is hysteresis thresholding. This step is used to remove
weak edges and leave only the strongest edges in the image. Hysteresis thresholding is performed by applying two
threshold values to the gradient magnitude, a high threshold and a low threshold. Pixels with a gradient magnitude
greater than the high threshold are considered to be strong edges, pixels with a gradient magnitude less than the
low threshold are considered to be non-edges, and pixels with a gradient magnitude between the two thresholds are
considered to be weak edges. The weak edges that are connected to strong edges are considered to be edges, while
the remaining weak edges are removed. For illustration an example in Figure4, point A is a strong edge and point
C is a weak edge but is linked to point A and is therefore seen as an edge. Point B is a weak edge and not linked
to a strong edge and is therefore removed. An example of an edge map of an image of the particles in the drum is
shown in Figure5.

10



Figure 4: Illustration of hysteresis thresholding

Figure 5: Canny Edge, edge map

Once the edge detection is performed, one may continue with the detection of circular objects by Circular Hough
transform[39, 40] as described further. Mathematically, the 2D circle can be described by:

(x− a)2 + (y − b)2 = r2 (3)

in which a and b represent the center coordinates of a circle and r is the radius. Therefore, three parameters are
required to fully describe a circle. Since the radius of the particles is known a priori the parameter space is reduced
to two dimensions, respectively a and b. Following this, each coordinate of the circle with the center (a,b) in the
image can be expressed as:

x = a+ rcosθ

y = b+ rsinθ
(4)

with θ being the full angle of circle. From previous equations one can express the parameters of the circle:

a = x− rcosθ

b = y − rsinθ.
(5)

As sinus and cosinus are periodic functions with the switching signs one can actually say that the second pair of
equations also represent the circle with the center in (x, y). Thus, the circle with the center in (a,b) in image is
same as circle with the center (x, y) in the parameter space. In other words, to each coordinate (x∗, y∗) in the image
one can assign the circle with a radius in the parameter space (a, b), see Figure 6.
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(a) Image space (b) Parameter space

Figure 6: Edge point Circle Hough Transform

A circle with a radius of r can therefore be drawn in the (a, b) space for each edge pixel discovered by the edge
detection algorithm. If the edge was a particle boundary, all sketched circles in (a, b) space would then intersect in
one point, representing the center of the particle, see Figure 7.

(a) Edge map in image space (b) Parameter space

Figure 7: Illustration Circle Houhg Transform

The CHT then transforms each circle to one point in a parameter coordinate system described by two coor-
dinates (a, b), i.e. reduced space. CHT uses a vote process to determine the intersection’s point. For this the
parameter space (a,b) is first descretized into bins as shown in Figure 8, known as an accumulator matrix. It is a
matrix where each cell represents a point in the the parametric space, and the value stored in that cell represents
the number of times a circle passed through that point. As circles pass the most through coordinates of the original
particles they will thus get most votes. By taking the point with the local maximum, one can then find the particle
center.

Another possible way to detect the particles in the drum is by using the light reflection. The reflection of the
light creates dominant light spots in the particles. With this method the noise (light reflection) in the image is
used as a feature of the particles. Since the particles are spherical in shape, the maximum light reflection from the
lamp to the camera lens is at the top of the particles. To identify and locate the light regions one may use the
blob detection technique. These methods detect regions in a digital image whose intensity properties differ from
those of neighbouring regions, these connected pixels are a blob. The first step for blob detection algorithm is to
convert the image to a binary form (black-white) by thresholding the source image, starting at a minimal value.
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Figure 8: Accumulator matrix

Then increase it until the light reflecting becomes visible. So in this manner the light reflection points are isolated
from the rest of the image. Then scanning the image for connected regions that meet a size of white pixels between
one and twenty pixels, which groups these pixels into blobs. This value is chosen because there is only interest in
the small light reflections that can represent the centers of the particles.

To improve the detection of the particles for both methods, the knowledge of the boundaries of the drum is
used. Next to this, the particle detection is constrained such that no particle can be outside of the drum. Similarly,
as particles are not compressible, they cannot overlap. However, some ”overlapping” of particles can occurs due to
projection of a 3D problem onto a 2D front drum plane. Thus, one may also detect particles in the layer behind
the front layer. Therefore it is important to categorize the particles into particles of layer one (front layer) and
layer two (layer behind front layer). To prevent detection of particles outside the boundaries of the drum, a filter
is implemented that removes false detected particles outside the drum. For this purpose each particle is checked
whether the distance from the centre of the drum to the particle cannot be bigger than the radius of the drum
minus the radius of a particle, i.e.:

if (xdrum − xparticlei)
2 + (ydrum − yparticlei)

2 > r2drum − r2particle then the particle is outside the drum. (6)

The overlapping of the particles is tested with the pair correlation, that represents the squared distance between
the centres of the detected particles

Pair correlation = (xi − xj)
2 + (yi − yj)

2. (7)

To determine the close neighbours, the pair correlation is normalized, and the particles in the range of 0.1 to 1.4
particles are seen as close neighbours. The value 0.1 particles is chosen to prevent pair correlation with the particle
itself and the value 1.4 particles is chosen to only detect the closest neighbouring particles. Following this, each
overlapping particle receives a score by using Equation7 related with the average distance to the nearest neighbour
particles. In the next step all the particles are checked to see which of the neighbouring particles has the largest
average overlap. A particle is overlapping if the distance between the centers between the two comparative parti-
cles is less than twice the radius of the particles. Each particle is tested with the neighbour particles for overlap.
The distance of overlap is summed from all overlapping neighbouring particles, this is done for each particle. The
particles with more than two times the highest score are considered as a particle of layer 2. If the particle center
distance to another center of the particle is less than two times of the particle radius then this particle is a non-
overlapping one. The remaining particles are tested and categorized in the same manner as described previously.
Each remaining particle is individually tested with the direct neighbour particles categorized in layer 1 whereby
the left over remaining particles are not included in the test. The particle in question is given a score with the
average pair correlation value of the surrounding particles within a range of 0.1 and 1.4 particles. If the score is
less than 1.0, the particle is classified as layer 2 because it overlaps with most of the other particles or has a strong
relationship with one particular particle, which suggests that it is a layer 2 particle. The particles with a score
higher or equal to 1.0 automatically belong to layer 1.
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The previously described method for particle detection is iteratively applied to an image. The reason for this is
that not all of particles are detected at the first instance. In order to detect the remaining particles that have not
yet been identified, the search area is narrowed. This is accomplished by masking all identified particles. In this
manner the search area is minimized and all unnecessary objects are removed from the image. This is realized by
colouring these particles black and make them confluent.

2.2 Particle connecting

Once the particles are detected in the initial observed image of a rotating drum, the next challenge is to affiliate
these with the particles detected in the next image, i.e. the image shot in the next time step. To achieve so, one
may calculate the distance of all detected particles in the current image to the one detected particle in the next
image, and find the particle with the shortest distance. Then it is assumed that the particles in the subsequent
images that have the shortest distance are embodying the same physical particle. This process is called the Nearest
neighbour[63] and is based on calculating the Euclidean distance:

Distance(i, j) =
√
(xi − xj)2 + (yi − yj)2 (8)

in which i represents the coordinate center of specific particle in the current image and j represents the center of
one specific particle of the succeeding image. Based on Equation 8 one may form a so called distance matrix D, the
elements of which are inspected for minimal distance. The issue is, however, that multiple particles of the current
image may have a closest distance to a particle of the next image. Thus as shown in Figure 9, a specific particle can
be a nearest neighbour more than once. In this example, particle 1 and 2 are two particles in the previous images,
and particles A and B are the same physical two particles but in the current images, respectively.

Figure 9: Multiple particles with same particle as nearest neighbour

In the example of Figure 9 the distance of particle A and B is calculated relative to 1 and 2. Particle A has the
shortest distance to position 1, similarly to particle B. Thus, both A and B have a particle 1 for a nearest neighbour.
The problem of multiple closest neighbour is solved by taking only one neighbour as closest, and assigning the other
one to the next closest observed particle. In the assignment process, one has to make sure that the distance between
particles in the current and next images does not exceed 2/3 radius of the radius of the particles[54]. This value has
been chosen to prevent the wrong assignment process. Once the corresponding particle in the next image is found,
the center position of the particle in the current image is recorded and rewritten by the next value. In this manner
one obtains the time evolution of the particles center position recorded at the discrete time steps, also known as the
particle track. Due to possible particle disappearance or reappearance, it may happen that the observed particle in
the next image has no closest neighbour in the previous image or vise versa that the particle in the current image
has no closest neighbour in the next image. In case of appearance of the new particle, the former case scenario
holds. Then one has to introduce the new particle track in the dictionary. In case of disappearance of the current
particle the later scenario happens. Then, the track of that particle is being ended irrespectively if the particle
reappears later. Hence, the method is sensitive to misdetection as the particle track also stops in such a case.
Therefore, the nearest neighbour detection has to be improved. For this purpose, one may introduce the so-called
tracking algorithm. The main purpose of this algorithm is to predict the position of the particle in the time, and to
introduce the confidence in the estimation of its position. However, as the detection as well as the nearest neighbour
algorithms are not perfectly accurate, the process of tracking as well as approximation has to take into account
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these errors. To achieve this, one has to model these errors as uncertain, and further approximate the path by some
analytical functional, or a dynamical model including uncertainties. Therefore, this thesis considers probabilistic
methods for tracking such as Kalman filter type of algorithms.

2.3 Particle tracking and predicting

The Kalman Filter (KF) and its variants are particularly suitable for tracking and predicting of the maneuver-
ing particles. The KF is a highly efficient filter which is widely used in the field of state estimation for moving
objects[64, 65]. The KF is probabilistic method that can account for the position uncertainty as well as measurement
noise. It provides the optimal estimate of the system state based on the set of noisy measurements (the detections).
The filter can be used for real-time, online processing of data as it operates recursively, updating the estimate of
the particle position at each time step. The KF can handle systems with multiple variables, making it useful for
particle tracking in two or three dimensions. The particle tracking is in this approach seen as a two-step process
consisting of, state prediction and its correction given the measurement data. The prediction of the state is done by
using a probabilistic approach to models the uncertainty in the particle state using probability distributions, and
combines these estimates with the measurement data to produce an updated estimate. The filter is a approximation
of Bayesian inference[43] in which the updated estimate is represented by the mean and covariance of the probability
distribution. Due to presence of uncertainty, this method then allows prediction of the missing data. Namely, if
a particle detection in the image is missed, the Kalman filter can still predict its position up to some confidence
level. Thus, the tracking of the particle is still possible irrespectively of its appearance and re-appearance. The
main issue in tracking particles by Kalman filter is that the prediction model has to be a priori known. In other
words, one has to model the dynamics of moving particles and then use probabilistic approach to predict all possible
particles states. However, particle’s dynamics is not known unless obtained from DEM simulations. Similarly to
the system identification, one may assume linear dynamics model and use Kalman filter to track the time evolution
of the particle center position. However, the particle dynamics is not necessary linear, and thus advanced versions
of Kalman Filter have to considered as further described in the text.

2.3.1 Modeling of particle dynamics:

Uncertainty in the particle motion is one of the major challenges of particle tracking. This uncertainty is due to the
fact that the tracker does not have access to an accurate dynamic representation of the particle being tracked[66, 67].
When tracing the particles, only the observation of the location of the particles is known, whereas their movement
is either caused by drums rotation or its direct consequence, avalanche. Thus, in general words, the motion of the
particles can be described as a stochastic process. Namely, particles move but also collide with other particles in
the same layer or in other layers. As a result, the full dynamic process is not known and an uncertainty must be
added to the process. A probabilistic description of the movement of the particles is formulated in order to create a
stochastic model. Instead of discretizing random processes, one applies a direct discrete-time approach. This means
the input signals are considered to be piecewise constant random variables (depending on the model, this can be
the speed, acceleration, etc) with zero mean and Gaussian distribution between sampling instants[68]. The states
of the model (X) that describe the states of the particle are described in discrete form as:

Xk+1 = f(Xk) + g(Xk)wk (9)

in which f represents the dynamics model, g describes the relation between the model and the input signal w. At
which the particle movement noise covariance is computed according to

Qk = g(Xk)diag(σ
2
noise)g(Xk)

T . (10)

Hereby diag σ2 is the diagonal matrix with σ being the input standard deviation. In order to describe particle
dynamics, i.e. function f(Xk) here are considered three types of models:

• Constant Velocity (CV),

• Constant Acceleration (CA),

• and Coordinated Turn model (CT) .
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The previous models are inspired by the modelling applied in control theory for vehicles or robots [66, 69, 68, 70, 71].
The CV model is a linear model and has been used in the previous study [54]. The CA and CT models are non-linear
models and can therefore better approximate the motion of the particle since the particles maneuver non linearly.
Most of the particles in the drum move in a circular path and therefore their dynamics is non linear. In contrast
with the bulk, the top layer of the particles moves extremely randomly due to presence of avalanches. For this
research, the priority is to trace and predict the majority of the particles, thus the ones in the bulk. As the top
particles have different type of random walk, they are not the main focus of this study.

Constant Velocity model

The Constant Velocity (CV) model is used to describe the motion of a particle in a linear way. This model
assumes that the speed of the particle is constant between the time steps, so there is no acceleration. According to
this model the state transition of a moving object, in our case a particle, can be described as:

xk = xk−1 + T ẋk−1 + wk−1. (11)

Here T is the time sampling interval, whereas the position and velocity tensors are denoted by xkand ẋk, respec-
tively and wk represent the noise.

The state of the particle center is described as Xk := [xk, yk, ẋk, ẏk]
T . Accordingly, the state transition model

in Equation 11 rewrites to:

Xk =


xk−1 + ẋk−1T
yk−1 + ẏk−1T

ẋk−1

ẏk−1

+ wk−1 · g(Xk). (12)

The process noise wk = [ẍ, ÿ]T is described as the acceleration in the x and y direction here assumed to be unknown
and thus modelled as a zero mean Gaussian distribution wk ∼ (0, σa). For the CV model, g(Xk) is given by:

g(Xk) =


T 2

2 0

0 T 2

2
T 0
0 T

 . (13)

Thus the covariance matrix describing the particle state X is defined by a matrix Qk as:

Qk =


T 4σ2

ax

4 0
T 3σ2

ax

2 0

0
T 4σ2

ay

4 0
T 3σ2

ay

2
T 3σ2

ax

2 0 T 2σ2
ax 0

0
T 3σ2

ay

2 0 T 2σ2
ay

 . (14)

As it is assumed that standard deviations describing accelerations σax and σay are equal in the x and y directions
the noise covariance matrix can be further be simplified as follows:

Qk =


T 4

4 0 T 3

2 0

0 T 4

4 0 T 3

2
T 3

2 0 T 2 0

0 T 3

2 0 T 2

 · σ2. (15)

The disadvantage of this model is that it is a linear model that tries to describe the non-linear motion of the
particles. This only works for very small intervals and is therefore not desirable. For this reason, further research
is done on non-linear variants.
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Constant Acceleration model

Similarly to the CV model, for a Constant Acceleration (CA) model the state transition of a moving object is
described as:

xk = xk−1 + T ẋk−1 +
1

2
T 2ẍk−1

ẋk = ẋk−1 + T ẍk−1.
(16)

The difference between the CV and CA model is that with the CA model the acceleration ẍ is also described
as a state, and is assumed constant between the time steps. The state of the particle center is described as
Xk = [xk, yk, ẋk, ẏk, ẍk, ÿk]

T . The CA model state transition matrix Xk is:

Xk =


xk−1 + ẋk−1T + ẍk−1

1
2T

2

yk−1 + ẏk−1T + ÿk−1
1
2T

2

ẋk−1 + ẍk−1T
ẏk−1 + ÿk−1T

ẍk−1

ÿk−1

+ wk−1 · g(Xk). (17)

The process noise wk = [
...
x ,

...
y ]T , i.e. it consist of the jerk

...
x and

...
y in the x and y direction, respectively. Both

are assumed to be unknown and hence described by a zero mean Gaussian distribution σ ∼ (0, σȧ). Furthermore,
g(Xk) is given by:

g(Xk) =



T 2

2 0

0 T 2

2
T 0
0 T
1 0
0 1

 . (18)

Including all these terms, the covariance matrix Qk for the particle at the next time moment is:

Qk =



T 4σ2
ȧx

4 0
T 3σ2

ȧx

2 0
T 2σ2

ȧx

2

0
T 4σ2

ȧy

4 0
T 3σ2

ȧy

2 0
T 2σ2

ẏx

2
T 3σ2

ȧx

2 0 T 2σ2
ȧx 0 Tσ2

ȧx 0

0
T 3σ2

ȧy

2 0 T 2σ2
ȧy 0 Tσ2

ȧy
T 2σ2

ȧx

2 0 Tσ2
ȧx 0 σ2

ȧx 0

0 T 2σȧy2

2 0 Tσ2
ȧy 0 σ2

ȧy


. (19)

Same as for the CV model in the CA model, one also assumes that the model error is equal in both directions,
because of this the noise covariance matrix can be written as follows:

Qk =



T 4

4 0 T 3

2 0 T 2

2

0 T 4

4 0 T 3

2 0 T 2

2
T 3

2 0 T 2 0 T 0

0 T 3

2 0 T 2 0 T
T 2

2 0 T 0 1 0

0 T 2

2 0 T 0 1


· σ2

ȧ. (20)

In the situation of the top layer particles in the drum, the particles move extremely stochastic. So a constant
acceleration between time steps does not give a good approximation.

Coordinated Turn model

For tracing the maneuvering particle, a coordinated turn (CT) target motion is applied. This makes it possible
to track the particle when it makes a maneuver. The particles in the drum continuously make a maneuver because
they move in a circular trajectory and change their motion due to the collisions between the other particles. The
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standard CT model describes the particle with a constant known turn rate, a two dimensional motion and a nearly
constant speed around the center of the drum. For particles in the drum, one assumes that the particle position
is known, whereas the turn rate is not. Namely, the particle does not have the same turn rate as the drum due to
possible slipping. So the particle turn rate is not constant and the particle speed is varying. This can be further ex-
tended to a non-linear variant of the CT in which one may have a varying turn rate and a varying particle speed[68].

The state of the particle for a CT model in polar coordinates is described as Xk = [xk, yk, vk, hk, ωk]
T where xk

and yk both [m] are the particle position, vk [m/s] is the magnitude of the particle velocity vector, hk [rad] denotes
the heading angle of the particle and ωk [rad/s] is the turn rate of the particle. For clarification purpose, this is
shown in Figure 10.

Figure 10: Explanation of the particle states in the Coordinated Turn model

The CT particle dynamics model is described by [68]

Xk =


xk−1 +

2vk−1

ωk−1
sin(ωk−1T

2 )cos(hk−1 +
ωk−1T

2 )

yk−1 +
2vk−1

ωk−1
sin(ωk−1T

2 )sin(hk−1 +
ωk−1T

2 )

vk−1

hk−1 + ωk−1T
ωk−1

+ wk−1 · g(Xk). (21)

Due to the complexity of the time varying heading angle the value is set as a constant between sampling instants. In
the previous equation the modeling noise is wk := [a, α]T is described as the acceleration magnitude a [m/s2] and the
angular acceleration α [rad/s2]. These values are considered as an impulse just before the sampling instant. Both
are assumed to be unknown and hence described by a zero mean Gaussian distribution a ∼ (0, σa) and α ∼ (0, σα).
The resulting g(Xk) of the CT model is given by:

g(Xk) =


0 0
0 0
T 0
0 0
0 T

 . (22)

All of these terms together, give the covariance matrix Qk of the particle state in the next time moment as:
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Qk =


0 0 0 0 0
0 0 0 0 0
0 0 T 2σ2

a 0 0
0 0 0 0 0
0 0 0 0 T 2σ2

α

 . (23)

2.3.2 Kalman Filter

The Kalman filter (KF) [44] is a tracking algorithm that uses one of the models as described above and Bayesian
estimation to estimate the state of the particle dynamic from the noisy particle center position measurements
achieved with the CHT. The strength of the KF is that despite the exact nature of the particle movement is not
known, it supports estimations of past, present, and even future states. At each time step, the KF estimates the
state of the particle using the following steps:

• Predict: the state of the particle is estimated at the current time step based on the previous state. This
estimate is known as the a priori estimate.

• Update: the a priori estimate is updated using the current particle measurement to produce the a posteriori
estimate, which takes into account the latest information.

These steps are repeated at each measurement increment to produce an updated estimate of the state of the particle.
If there is no available particle measurement, the update phase is skipped.

For the update step the measurement (the detection of the particle) is used. This is described with the mea-
surement matrix

zk = HkXk + vk (24)

in which the H matrix described the measurement operator, and vk is the noise of the measurement. The standard
deviation of the measurement is normally known. However, for observing the location of the particles, nothing
is known about the measurement accuracy. The location of the particles is determined on the basis of an image
in which the particles are detected by means of a number of operations on the images. Then the location of the
individual particle is detected with the Circular Hough transform. The precision of the camera is unknown, but it
is assumed that the accuracy of the camera is so high that it has no influence on the measurement accuracy. The
measurement accuracy is determined by the accuracy of detecting the particles by means of the Circular Hough
transform. For this study it is assumed that the measurement standard deviation is one pixel in both x and y
directions. This value is small compared to the radius of a particle being fourteen pixels. One pixel is assumed
because the large misdetections are filtered out with pair correlation between the particles as explained earlier.
Thus measurement noise vt is a zero mean, uncorrelated (white) noise vt ∼ N(0, Rt) in which Rt represents the
error in pixels of the accuracy of the CHT.

To track the particle position, one first has to assume its initial position in the first image. This is known as a
prior or experts information. For example, one can use Gaussian distribution to describe the particle position as
one is uncertain about it. For a linear dynamics model:

xk = Ak−1xk−1 +Qk (25)

one may then predict the position of the particle in the next image as:

x̄−
k = Ak−1x̄

−
k−1 +Qk. (26)

In which x̄−
k denotes the mean of the predicted state. The minus sign in the upper index is used to denote prediction.

On the other hand, the covariance of the next state can be computed as:

P−
k = Ak−1Pk−1A

T
k−1 +Qk (27)

in which P−
k is the a priori estimated covariance and Pk−1 is the a posteriori estimated covariance at the time

moment k-1, and Qk is the covariance of the model error.
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After predicting the states of the particle, one observes and hence update prior knowledge with the measurement.
This is called data assimilation. To do this, one may use the KF update equations:

x̄k = x̄−
k +K(zk −Hkx̄

−
k ) (28)

Pk = (I −KkHk)P
−
k (29)

In Equation 28 the prediction of the mean particle position x̄−
k via measurement operator Hk is compared to the real

measurement zk. By scaling the discrepancy between the real measurement and the prediction with the Kalman
gain K, one can update the mean position. Here Kalman gain is defined as:

Kk = P−
k HT

k (HkP
−
k HT

k +Rk)
−1 (30)

Similarly, in Equation 30 one may update the covariance of the particle position by using the measurement data.
By using Equation 28 and 29 one gains more knowledge about the particle position, meaning that the covari-
ance in Equation 29 is smaller than covariance in equation 27. In other words, one is becoming more confident
about the position of the particle. The previously described process is repeated for each new measurement. To
support the formulas, a visual representation of a piece of particle track is shown in Figure 11. The figure rep-
resents the movement of a particle from bottom right to top left. Each step represents the position of a particle
in the subsequent time step. The actual particle location is shown in red and the detected particle location is
shown in green, this is the initial step. In the subsequent steps, blue indicates where the KF predicts the particle
to be. The location of the particle after the correction of the Kalman gain in the correcting step is depicted in
black. In the final step, it can be seen that the KF predicts the location of the particle when no detection is available.

Figure 11: Visualisation of the KF for a particle track

The KF is made for linear estimation, however the movement of a particle in the drum is a non-linear movement.
As a result, the KF is only suitable if the time steps are sufficiently small, so that the motion of the particle can be
approximated as linear. However, the goal of this thesis is to improve the tracks by estimating where the particle
is over a longer period of time. As a result, it is not possible to consider the motion of the particle as linear. To
approach the motion of the particle realistically it is necessary to include non-linear terms. For this reason it is
necessary to use a non-linear variant of the KF, here assumed to be the Unscented Kalman Filter.
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2.3.3 Unscented Kalman Filter

In contrast to KF, the unscented version[55] is not representing the prior state over the mean and covariance as
shown in Equations 9 and 24, but is defined by a small number of carefully selected sample points known as Sigma
points χ . To track the particle position, one must first assume its initial position in the first image, just like the
KF. This is referred to as prior or expert information. For predicting the states of the particle with the UKF all
the Sigma vectors are propagated through the nonlinear function described by:

χk|k−1 = f(χk−1) (31)

in which f(χ) can denote one of the previously presented models, i.e. CV, CA or CT. This new state is then having
the prior mean:

x̄−
k =

2L∑
i=0

W
(m)
i χi,k|k−1 (32)

in which Wi are the weights as further explained in the text. The covariance of the current state can be computed
as:

P−
k =

2L∑
i=0

W
(c)
i

[
χi,k|k−1 − x̄−

k

] [
χi,k|k−1 − x̄−

k

]T
+Qk. (33)

The sigma points are chosen to capture the mean and covariance of the estimate, and are transformed through the
non-linear function to produce an updated estimate of the state according to:

xk = f(χk) +Qk (34)

zk = h(χk) + vk. (35)

As can be seen in Equation 34, the previous particle position is non-linearly transformed to the next particle
position. Assuming that the prior knowledge on xk is a Gaussian distribution, then one has to find a way of
computing statistics of the particle position in the next image. However, due to non-linearity of the mapping this
is not straightforward as in Kalman filter case. Namely, the distribution of χk is non-Gaussian. The technique that
the UKF used for computing the statistics of a random variable that has undergone a non-linear transformation is
known as the unscented transformation (UT) [56]. A random variable x (dimension L, the number of states) with
a mean x̄ and a covariance Px is propagated by the nonlinear function 34 . The unscented transform is graphically
visualized in Figure 12 and shows that the true transformation is approached with only a few sigma points. The
sigma points are passed through the non-linear function and approximate the true mean and covariance.

Figure 12: Visualisation of the Unscented Transform
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In order to compute the statistics of f(Xk), first one creates a matrix χ consisting of 2L+ 1 Sigma points χi that
are calculated as:

χ0 = x̄

χi = x̄+ (
√
(L+ λ)Px)i i = 1, .., L

χi = x̄− (
√
(L+ λ)Px)i i = L+ 1, .., L

(36)

in which x̄ is the mean value and Px is the covariance. The scaling parameter λ = β2(L+ κ)−L is used to control
the spread of the sigma points used to approximate the posterior distribution. The scaling parameter called κ is
a constant that is typically set to 0[72]. β controls the spread of the sigma points based on the prior belief of the
distribution shape of x, with β = 2 being the ideal value for Gaussian distributions[73]. The ith column of the
matrix’s square root, (

√
(L+ λ)Px)i, is computed using the lower triangular Cholesky factorization.

Weighting the mean and covariance in UKF is an important aspect of the estimation process, as it helps to
balance the trade-off between accuracy and robustness. The weighting of the mean and covariance determines how
much importance is given to the mean and covariance of the estimate, and affects the accuracy and robustness of
the estimate. The weights Wi given by:

W
(m)
0 = λ/(L+ λ)

W
(c)
0 = λ/(L+ λ) + (1− α2 + β)

W
(m)
i = W

(c)
i = 1/(2(L+ λ)) i = 1, .., 2L

(37)

The constant α in combination with constant κ , controls how far the sigma points are spaced around the variable
x̄[56]. The constant α is set between 10−4 and 1, to avoid non-local effects in non-linear systems α is set to a small
value and thus is set to value 1e−3 [56]. It’s important that the sum of the weights assigned to the sigma points
must equal 1:

2L−1∑
i=0

Wi = 1 (38)

as the sigma points represent a probability distribution. This ensures that the mean and covariance of the esti-
mate are computed correctly and accurately reflect the state of the particle. The mean is computed based on the
transformed sigma points 36 and their associated weights 37, and it represents the most likely value of the state
estimate. The covariance is computed based on the transformed sigma points and their associated weights, and it
represents the amount of uncertainty in the estimate.

After the states of the particle are predicted, the prior knowledge is updated if a measurement is available. The
estimated output of the particle, the location is found with all the Sigma vectors propagated through the output
function 35 described by:

γk|k−1 = h
(
χk|k−1

)
. (39)

This gives the estimated output:

ȳ−
k =

2L∑
i=0

W
(m)
i γi,k|k−1 (40)

The covariance P ykyk
is described as:

P ykyk
=

2L∑
i=0

W
(c)
i

[
γi,k|k−1 − ȳk

] [
γi,k|k−1 − ȳk

]T
+ vk. (41)

The Kalman gain Kk is calculated with the covariances 33 and 41 as

Kk = P−
k P

−1
ykyk

. (42)

Weighting with the Kalman gain, the differences between the estimated output and the measured output, the a
posteriori estimated state is determined as:

x̄k = x−
k +Kk

(
yk − ȳ−

k

)
. (43)
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The covariance is calculated with the covariances and the Kalman gain

P k = P−
k −KkP ykyk

KT
k . (44)

This process is repeated for each time the new measurement is made.

23



3 Numerical results

In this chapter the particle detection and particle tracking results of the research are presented. The results of
the various stages of the particle detections based on the images from avalanche experiment simulated by the
rotating drum are shown. The chapter presents and compares results of multiple particle tracking methods. The
following particle tracking methods are discussed; The nearest neighbour, the Kalman Filter in combination with
the constant velocity model, and the Unscented Kalman filter in combination with the constant acceleration model
and the coordinated turn model.

3.1 Particle detection

The software/program Matlab R2020b has been used to construct the computer simulations. The dataset of the
research is taken from [13, 54] and is used as input for the analysis of the images. In this previous experiment
transparent particles with a 2mm diameter and tracer particles with a 2mm diameter and green colour are used.
The material consists of borosilicate glass and is incompressible. The data set of the consecutive image is filmed
with a frame rate of 450 frames per second, with a total number of 8780 frames. The image resolution is 1024x1280
pixels. The drum has an angular velocity of 5 rotations per minute.

Before starting the experiment, a white colored circle has been drawn on the inside contours of the drum by
hand as shown in Figure 15. The camera and drum setup are fixed, so the center of the drum is at the same location
in each frame. For this reason, the drum’s boundary only needs to be detected once, and its coordinates are used
for the subsequent image processing steps. The space outside the white boundaries of the drum is colored black to
narrow the scope in the image to only the area of interest. The canny edge method is used to detect the contours,
and the drum boundary is detected by using CHT method. After detection of the boundary only the content of the
drum is made visible as shown in Figure 14.

(a) Original image (b) Drum boundary drawn

Figure 13: Drum boundary preparation

Since there is only interest in the particles inside the drum and the drum is partially filled with particles, the
part without particles is also blacked out by removing the unnecessary objects and colors in this part of the image.
To achieve this, the image with only the drum visible is used for this (as shown in the right bottom in Figure14.
As first step the colour channels are reduced from three color channel to one color channel by displaying the image
in gray scale as shown in Figure 15a . Afterwards the image is filtered through an entropy filter as shown in
Figure 15b. The local entropy of an image is proportional to the neighbourhood complexity. The entropy filter
may detect minor fluctuations in the local distribution of gray levels. This separation is required to distinguish
between particles and background in the image. The image is converted to black and white,this is necessary for
segmentation, and a threshold value of 0,79 for the color gray intensity is chosen; this value is found by trail and
error and gave the best results. The bright parts (such as the contours of the drum) shown in Figure 16 that do
not belong to the particles are filtered out by removing narrow pixel groups in a binary image. Because the tracer
particles are green in color, they become clearly visible when the image is made black and white as shown in Figure
16. The detection of the tracer particles is done in a subsequent step. To segment the particles in the drum, the
segment of the particles is made as one, after which all pixels outside this segment were blackened in the original
image as shown in Figure 16. The image with only the particles visible is shown in Figure17.
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Figure 14: Drum boundary

(a) Gray scale image

(b) Entrophy filtered gray scale image

Figure 15: Drum boundary preparation
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Figure 16: a)Black white particle segment b) close small object c) close small segments d) close holes

Figure 17: Particle segment

After processing the images, the detection of the particles is performed with the CHT. To use this method the
images are converted to a grey scale. Because the radius of the particles is known, as previously explained the
method only searches for circular objects with this radius in the image, thereby improving the precision of particle
detection. The number of pixels representing the radius of the particles is calculated as:

radius particle in number of pixels = radius drum in number of pixels · 1
2
· diameter particle

diameter drum
. (45)

The number of pixels representing the diameter of the drum are known, this is found by detecting the drum radius
and location as described in the beginning of this section. The calculated radius of the particles represented in
pixels is in the range of 13 and 15 pixels.

Before detecting other particles, first the the tracer particles are detected using the CHT by using the number
of pixels per particle radius as input. For this purpose the segmentation image shown in Figure 18a is used and
the sensitivity of the pixel color intensity dark is chosen with a value of 0,981. This value is found by trail and
error and gives the best results. The detected particles can be seen in Figure 18b. For the remaining particles the
CHT particle detection the sensitivity of CHT for brightness is set with the threshold value 0,985. This value is
found with trail and error and gives the best results for finding the contours of the particles. As shown in Figure
19a during the first particle detection round there are still many false detected and overlapping particles. These
particles have to be labeled into two categories: particles in the first layer (front layer) and second layer ( the layer
behind the front layer). This is required to distinguish between overlapping and falsely detected particles. As all
particles are known to have the same radius, the radius of all particles is set equal to the average radius of all
detected particles. The pair correlation is used to test whether a particle is overlapping or non-overlapping. In
Figure 19b the non-overlapping particles are shown in blue, the overlapping particles in red and the tracer particles
in green colour. The results of the non-overlapping particles shown in blue and the tracer particles shown in green
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are good, and thus accurately detected. To validate that the detection is accurate, it is necessary to distinguish the
particles of the first layer, which are fully visible and therefore simple to validate. The overlapping particles shown
in red are not yet good and need further processing. In Figure 20 the particles belonging to layer 2 are shown in
red and the particles in white are the remaining not categorized particles. The remaining particles are tested again
for non-overlapping particles now that the dominant overlapping particles have been removed.

First the tracer particles are detected using the CHT by using the number of pixels per particle radius as input.
The segmentation image wherein the holes are still visible (as shown in Figure 18a) are used for this calculation.
However in this calculation the sensitivity of the pixel color intensity dark is chosen with a value of 0,981. This
value is found by trail and error and gives the best results. The detected particles can be seen in Figure 18b.

(a) Tracer particles segmentation

(b) Detected tracer particles

Figure 18: Tracer particles shown in green
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(a) Particle detection shown in blue

(b) Categorized particles, non overlapping shown in blue, overlapping shown in red, and tracer in green

Figure 19: First round particle detection
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(a) Particles layer 2 shown in red

(b) remaining overlapping particles shown in white

Figure 20: Categorizing of overlapping particles

Once the particles are detected, they are removed from the image by same segmentation approach as described
previously, see Figure 21. The remaining image is then processed again for the new round of detection’s. After
the scope of the search area is minimized a new CHT is performed. Now the bright threshold value is increased
to 0.986 and the same radii range of 13-15 pixels is used. Hence, the previously undetectable particles are found.
The disadvantage of changing the bright threshold value to a higher value is a higher false detection of particles
and therefore this value is not used at the start of the experiment. After detecting new particles, one has to check
for the overlap with previously detected particles. Those that have an overlap are removed and assigned to layer 2.
The overlap is tested with a margin of c = 0, 85 used in:

if
√
(Xi −Xj)2 + (Yi − Yj)2 < 2 · rparticle · c then the particle is overlapping. (46)
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Here, Xi and Yi are the centre of the particle and Xj and Yj are the centre of the particle being tested and
rparticle is the radius of the particles.

(a) black detected particles

(b) Smooth black out

Figure 21: Black out detected particles

In Figure 22a the detected particles of the segmented part can be seen. Figure 22b shows all detected particles
of layer 1. The red particles are those found in the segmented part. The accuracy of the particle detection is good
for the particles shown in blue, white, and green. As the search for the other particles continues, it can be seen that
this is becoming increasingly difficult and that this is at the expense of accuracy. This can be seen for the particles
shown in red and yellow.
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(a) Detected particles segmented part shown in blue

(b) All particles layer 1

Figure 22: Detected particles

In contrast to CHT method, one may also use the so-called blob detection as described in Chapter 2. Based
on this detection method, the particle centers are detected on the basis of the light reflection. For this purpose
the image of the particles is reduced to black and white as shown in Figure 23a. The particles found with blob
detection are shown in Figure 23b. Here one may see the centers of the particles marked with a red marker, and
the contours with red color.
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(a) Particles in black and white

(b) Detected particles found with blob detection shown in red

Figure 23: Detected particles

In Figure 23b one can see that the detection of the particles with the blob detection does not give good results.
This is because the light reflection is too strong on the transparent particles. As a result, too large surfaces reflect
the light and the centers cannot be found correctly. For the particles from other experimental data in the color
green and red, the light reflections are very well visible as small white light dots. However, the quality of these
images is too poor to validate the particles and no tracer particles are used in this data set. To be able to use the
blob detection method, a new experiment should be done with the green particles at a higher resolution and tracer
particles should be used.

Detection of an avalanche slope angle

The slope angle provides valuable information about the development process of avalanches. To calculate the
slope angle, one has to be able to trace the top line of the particles bulk. Thus, to find this contour the canny edge
detection algorithm is used, and the drum contour is filtered out, because the drum outline is irregular. Now only
the contour line of the slope is visible. This contour line is converted into point coordinates after which the trend
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line of the slope is found with linear regression. With this trend line the angle is calculated as:

slope angle = tan−1 maxY −minY

maxX −minX
(47)

The steps are shown in Figure 24.

(a) canny edge detection (b) Slope line

(c) Trend line

Figure 24: Slope angle detection
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3.2 Tracing particles in subsequent images

In order to produce the trajectories of the particles, the nearest neighbour algorithm is utilized. In the subsequent
images, the particles are paired by locating the particle with the shortest distance between them. A matrix is used
to store the associated particles of a track, with each track being written in a row of the matrix. Thus, the matrix
gives the coordinates of the particle, the IDs of the associated frames, the number of frames that are observed,
and the track number. Only the tracks that are currently being observed are stored in this matrix so that the
highest possible level of matrix efficiency can be maintained. If there is no possibility of linking a new particle to
the track, then this particular row will be eliminated from the matrix in order to maintain its compact nature.
During the process of storing a check is done to determine whether or not the minimum required number of frames
are observed. A minimum of one hundred frames must be observed in order to generate a visible track; this is the
minimum number of frames that is acceptable with a frame rate of 450. In the event that this is the scenario, the
track will be saved on its own.

For the purpose of illustration, the tracks that have a continuous observation for a minimum of one hundred
frames are plotted as shown in Figure 25. In this image one can see tracks depicted with different colors. The
particles within the bulk are obviously moving according to the circular path, whereas the particles in the upper
layer follow a more noisy path. This method and this data set allow for the creation of 2115 tracks. As the length of
the track increases, more information is available about the behaviour of the specific particle track, which improves
the ability to predict the tracks. For example when the arbitrary cut off point of continuous observation of at least
300 frames is chosen, the total number of created tracks is drastically reduced to 496. The reason is that with
reduced number of frames more misdetections happen, and thus the track is stopped immediately. This makes
Nearest Neighbour extremely sensitive to the number of observations as shown in Figure 26.

Figure 25: Tracks with an observation of at least 100 frames continuously
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Figure 26: Tracks with an observation of at least 300 frames continuously

The accuracy of the nearest neighbour seems to be quite high, but this can only be verified by plotting the
detected tracks in the corresponding frames and then visually validating the results. This is done for tracks with
at least 300 frames of continuous observation. To validate the tracks, each track is displayed individually in a video
with the specific particle circled. In each of these tracks, both the tracer particles and the transparent particles are
detected accurately. The tracks of the tracer particles, which are denoted by the color green, are the ones that are
the least difficult to validate. This is because the different color (transparent) of the surrounding particles makes
it simple to determine whether or not the correct particle has been traced. As an illustration, a number of tracer
tracks are shown below. The trajectory of a tracer particle is shown in Figure 27. This particular track is part of
the avalanche’s base layer. The red line represents the track, and the red circle represents the detected particle in
the corresponding frame.

(a) frame 1 (b) frame 101
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(c) frame 201 (d) frame 301

(e) frame 401 (f) frame 501

(g) frame 601

Figure 27: Tracer particle track over 601 frames, frame interval of 100, red line indicate the track and red circle
show the corresponded detected particle
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The top layer of particles moves more rapidly and more chaotically due to particles collision. This makes it
more difficult to trace the top layer’s particles. Due to the high frame rate of 450 frames per second, a part of the
top layer of particles can be traced. Figure 28 illustrates the trajectory of a top layer particle spanning 331 frames
with a frame interval of 30 frames. The red line represents the entire path of the particle, and the circled red dot
indicates the particle detected in the particular frame. Initial observation reveals that the particle moves slowly and
covers a small distance. As soon as the particle reaches the top layer and thus becomes a part of the avalanche, it
accelerates to a greater speed, which is reflected in the distance it travels during the frame interval, as depicted in
the final images of Figure 28. This track also demonstrates that the detection of transparent particles is effective.

(a) frame 1 (b) frame 31

(c) frame 61 (d) frame 91
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(e) frame 121 (f) frame 151

(g) frame 181 (h) frame 211

(i) frame 241 (j) frame 271
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(k) frame 301 (l) frame 331

Figure 28: Particle track top layer spanning 331 frames, frame interval of 30, red line indicate the track and red
circle show the corresponded detected particle

The other and final region where the particle’s trajectory can be determined is the bottom of the drum. Due to the
geometry and angular velocity of the drum, the particle’s trajectory in this section consists of a circular upward
motion. Figure 29 shows the circular trajectory of a particle that is located in this region. Similar to previous
images, the trajectory and the specific particle are displayed in red colour. In the images below a frame interval of
250 is chosen to show that the specific particle is correctly detected during its track.

(a) frame 1 (b) frame 251
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(c) frame 501 (d) frame 751

(e) frame 1001 (f) frame 1251

(g) frame 1501 (h) frame 1751
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(i) frame 2001

Figure 29: Particle track circular spanning 2001 frames, frame interval of 250, red line indicate the track and red
circle show the corresponded detected particle

Zooming in on a single track as shown in Figure 30 demonstrates that the track fluctuates significantly. This
fluctuation in the trajectory is due to the inaccuracy of the particle’s detection. Using the unscented Kalman filter,
the track is made more stable. Before it is used for multiple object tracking, which is discussed in the following
section, the improvement of the various versions of the Kalman filter is compared using individual tracks..

(a) Single track avalanche base (b) Single track avalanche base zoomed in
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(c) Single track circular (d) Single track circular zoomed in

Figure 30: single tracks

3.3 Particle tracking and predicting

To improve the track, the Kalman Filter (KF) and its variants are also applied. For the purpose of this study, the
Unscented Kalman Filter (UKF) is compared to the standard linear KF. Research is also done into the Unscented
Kalman Filter on Manifolds (UKF-M)[74], however in comparison with the UKF it has no benefits and therefore
this method is excluded from the study. The theory of the KF and the UKF is described in the section 2.3.3. The
objective is to improve the predictability and performance of the tracks. It is also investigated whether it is possible
to reduce the frame rate (fps) of the video using the KF and its variants without sacrificing the quality or length
of the particle tracks. Reducing the frame rate reduces the amount of data needed.

The goal is to predict for all particles, immediately after the particles are detected in a frame, where they will
be in the next frame(s) so that the tracks can be created. If a particle is not detected in a subsequent frame, the
prediction where the particle should have been is used until the particle is detected again within the number of
allowed missing detection. The multiple tracking with the best KF variant must also ensure that there are no more
mismatches so that there are no more unwanted outlier errors. Before the multiple tracking can be applied, it has
first to be investigated which KF variant in combination with which model gives the best results to achieve the
best results with the multiple object tracking. To evaluate the performance of the KF and the UKF, individual
tracks are utilized. It is investigated how the performances are affected by missing data simulated by changing
the measurement update interval. The performance of the KF and its variants are compared with a measurement
update interval of the following interval sizes: one update per one frame, one update per ten frames and one update
per twenty frames. It is also investigated how the tracks are predicted if there are no further measurement updates
given. Different models are used to describe the motion of an object, in this case the motion of the particle, these
models are described in section 2. For the linear KF, the linear model CV is used to describe the motion of a particle.
The non-linear models CA and CT are used in combination with the UKF. In this chapter, the KF and the UKF
with the associated models are tested for their performance, after which the method with the best performance is
used for multiple tracking.

To test the performance of the different methods, they are tested on the basis of singular tracks. The singular
tracks are generated with the Nearest Neighbour (NN). The disadvantage of the tracks created by the NN is that
there are sometimes mismatches, resulting in relatively larger error spikes in the track. Another disadvantage is
that there is not an infinite number of tracks available. The advantage of using the tracks created by the NN is that
the stochastic process of the avalanche, such as the collisions between particles and the shifting of an entire layer
of particles, is contained in the singular tracks. These disturbances are difficult to properly process in a simulation
because they are random. For this reason it is decided to use the tracks created with the NN for testing the per-
formance of the KF and the UKF with the corresponding models. As an illustration, three singular tracks are used

42



to demonstrate the performance of the KF’s variants and models. The tracks are validated tracer particle tracks,
so in the images below an individual particle during its track is shown (the red circle is the particle at the start of
its track and the red line is the track of the particle). The three tracks indicate the different important locations:
at the top, at the avalanche base and at the circular bottom. The first image shows the circular trajectory part,
where the most particles are located. The second image shows the avalanche base part, this is the top layer of the
particles where the particles slide down with very stochastic , this is the core of the avalanche. The third image
shows the rapid change, which is when the particle moves from the circular path to the core of the avalanche. The
tracks used to illustrate the performance are shown in Figure 31.

(a) Circulair track (b) Avalanche base track

(c) Rapid change track

Figure 31: Three singular particle tracks for performance illustration, the red circle is the particle at the start of
its track and the red line is the track of the particle

The methods are tested with the same singular tracks. To create images with a clear visible particle track and
to depict the performance of the different KF variants the tracks are reduced to 350 observations. The effectiveness
of reducing the measurement updates is explored. The goal is to test tracking accuracy when the frame rate is
reduced, and to test the capacity of the performance of the KF and its variants when detection of particles is missing.
Therefore several observation frequencies are tested: a measurement update for each frame, per ten frames and per
twenty frames. The last fifty observations have no measurement update, so the performance of the predicting is
tested. The prediction is shown with the confidence band that indicates the probability that the track is within the
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predicted track. For this purpose a 95% confidence bounds is used.

3.3.1 Kalman Filter single track

The performance of the KF in combination with the CV model is described in this section. It is investigated whether
the relatively simple linear KF is capable of tracing a non-linear model (the track of a particle) and correctly pre-
dicting the track.

Constant Velocity model

For the CV model there is an unknown parameter, the standard deviation of the process, the acceleration of the
particle. Using trail and error it is found that a standard deviation of the acceleration with a value of σa = 2000
gives good results for particle tracking. First the performance of the circular trajectory is presented. Figure 32
shows the position of the particle against the KF-CV position. Here one may see the linear behavior of the KF-CV,
in other words when steps are small, the filter is able to capture the particle track. When the observation increment
becomes larger, the linear prediction starts deviating from the true one. This is clearly visible in the end part where
a prediction of 50 observations is made.

Figure 32: Performance Kalman Filter in combination with the Constant Velocity model for the circular track

Figure 33 shows the confidence band of two sigma for the X coordinates and the Y coordinates of the particle
track for the KF-CV. Here it can be seen that the KF-CV has problems with keeping accurate track of nonlinear
behavior, and its performance degrades as the measurement update steps become larger.
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Figure 33: Confidence band X and Y position Kalman Filter in combination with the Constant Velocity model for
the circular track

The relative error shows the distance between the observed position of the particle and the particle position
found with the KF-CV. The distance is expressed in units of particle diameter and is shown in Figure 34
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Figure 34: Relative error Kalman Filter in combination with the Constant Velocity model for the circular track

Second, the performance of the tracking and predicting for a particle in the top layer, the avalanche part, is
presented. In the avalanche part, the particle moves more randomly. Figure 35 shows that the KF-CV is having
trouble following the track. When the particle changes direction quickly, KF-CV loses the particle. If the KF-CV
gets a measurement update every observation, it can be seen that this makes the track more stable. When predicting
the last fifty observations, the KF-CV underperforms as this gives a linear prediction.
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Figure 35: Performance Kalman Filter in combination with the Constant Velocity model for the avalanche track

Figure 36 shows the confidence band of two sigma for the X coordinates and the Y coordinates of the particle
track for the KF-CV. It is clearly presented here that with a small step size without predictions the KF-CV has a
good performance. As soon as the step size increases, the performance decreases dramatically.
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Figure 36: Confidence band X and Y position Kalman Filter in combination with the Constant Velocity model for
the avalanche track

The relative error shows the distance between the observed position of the particle and the particle position
found with the KF-CV. In Figure 37 it is clearly seen that as the measurement update increased the position error
increases considerably which is not desirable.
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Figure 37: Relative error Kalman Filter in combination with the Constant Velocity model for the avalanche track

Finally, the results of the KF-CV for a rapid change in a track are shown. Figure 38 shows that in the initial
part where the motion of the particle is quite constant, the KF tracks the particle well. When the rapid change in
the track of the particle comes, the KF-CV has more difficulty keeping up with the track as the step size increases.
When the model has to predict the last fifty observations, it can be seen that the KF-CV performs very poorly. This
is because the particle accelerates rapidly here and makes another deflection of the track after the last measurement
update.
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Figure 38: Performance Kalman Filter in combination with the Constant Velocity model for the rapid change track

Figure 39 shows, with the confidence band of two sigma for the X coordinates and the Y coordinates of the
particle track, that the KF-CV underperforms. Especially at the end of the track where the KF-CV has to predict,
the performance is very poor.
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Figure 39: Confidence band X and Y position Kalman Filter in combination with the Constant Velocity model for
the rapid change track

In Figure 40 the distance of the observed particle position is compared with the particle position compute with
the KF-CV. The relative error is expressed in the ratio of the particle size. Figure 40 that the position error
increases sharply and that the performance of the KF-CV is poor for rapid changes in the dynamics of the particle
track.
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Figure 40: Relative error Kalman Filter in combination with the Constant Velocity model for the circular track

Following previous results, the KF is capable of enhancing the robustness of particle tracking. Nevertheless,
the KF performs poorly when a part of the data is excluded. In addition, the linear filter does not cope well
with missing data. Since the Kalman filter only makes linear predictions, there is a significant deviation when the
track follows a circular path. Due to the linear behavior of the KF, it is not possible to have large distance steps
between successive images, as the particle’s trajectory cannot be determined just as found in [54]. Therefore, a
linear approach does not adequately represent the tracks in the context of this study.

3.3.2 Unscented Kalman Filter single track:

This section describes how the UKF performed in combination with the CA and CT model.

Constant Acceleration model

For the CA model there is an unknown parameter; the standard deviation of the process, the jerk of the particle.
Using trial and error it is found that a standard deviation of the jerk with a value of σj = 5 gives good results for
particle tracking. First the performance of the UKF-CA of the circular trajectory is presented. In Figure 41 it is
shown that the direction of the track is predicted correctly with the UKF-CA. It can be seen that from the point
where the UKF-CA has to predict the track, the location is not correct. In the model with a measurement update
of one on ten frames, it can be observed that the predicted end location is lagging behind, while in the measurement
of one on one frame the end locations surpasses.
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Figure 41: Performance Unscented Kalman Filter in combination with the Constant Acceleration model for the
circular track

Figure 42 shows the confidence band of two sigma for the X coordinates and the Y coordinates of the particle
track for the UKF-CA. It can be clearly seen that the prediction in the Y-direction performs well while the predic-
tion in the X-direction deviates.

Figure 42: Confidence band X and Y position Unscented Kalman Filter in combination with the Constant Accel-
eration model for the circular track
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The relative error shows the distance between the observed position of the particle and the particle position
found with the UKF-CA. Figure 43 shows that especially in the beginning the UKF-CA thinks it is certain of the
predicted position while the predicted position falls outside the confidence of 95% .

Figure 43: Relative error Unscented Kalman Filter in combination with the Constant Acceleration model for the
circular track

Secondly, the performance of the tracking and predicting for a particle in the top layer, the avalanche part, is
presented. Figure 44 shows that UKF-CA also has difficulties with tracking and predicting a particle that suddenly
changes rapidly.
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Figure 44: Performance Unscented Kalman Filter in combination with the Constant Acceleration model for the
avalanche track

Figure 45 shows, with the confidence band for the X coordinates and Y coordinates of the particle track, that
the performance of the UKF-CA is inadequate for a rapidly changing particle.
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Figure 45: Confidence band X and Y position Unscented Kalman Filter in combination with the Constant Accel-
eration model for the avalanche track

The relative particle position error of the predicted particle position with the UKF-CA is shown in Figure 46
and confirms that the performance is poor.
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Figure 46: Relative error Unscented Kalman Filter in combination with the Constant Acceleration model for the
avalanche track

Finally, the results of the UKF-CA for a rapid change in a track is shown. Figure 47 shows that the UKF-CA
is capable of keeping up with the rapid track change as long as updates remain. When there are no measurement
updates, while the particle changes a lot in acceleration and direction, it is not possible to continue to trace the
particle with the previous knowledge.
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Figure 47: Performance Unscented Kalman Filter in combination with the Constant Acceleration model for the
rapid change track

In Figure 48 it can be seen that the performance of the UKF-CA, when there are no more measurement updates,
is poor for the rapidly changing track.
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Figure 48: Confidence band X and Y position Unscented Kalman Filter in combination with the Constant Accel-
eration model for the rapid change track

The relative particle position error of the predicted particle position with the UKF-CA is shown in Figure 49.
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Figure 49: Relative error Unscented Kalman Filter in combination with the Constant Acceleration model for the
circular track

Although the UKF-CA is capable of predicting non-linear tracks, its performance is not entirely satisfactory.
The UKF-CA has difficulty predicting rapid track changes. Additionally, it has trouble with determining the correct
speed of the particle, causing the predicted position to be either ahead or behind the actual position.

Coordinated Turn model

For the CT model, there are two unknown parameters, the standard deviation of the process, the acceleration
of the particle and the angular acceleration. Using trail and error it is found that a standard deviation of the
acceleration and the angular acceleration with a value of σa = 2000, σθ = 5 gives good results for particle tracking.

Figure 50 presents the performance of the UKF-CT of the circular trajectory. The overall performance of the
UKF-CT is good. This is clearly reflected in the predictive part of the last fifty observations. This shows that the
deviation is minimal and that the UKF-CT model is also capable of predicting in a circular trajectory, which is
highly desirable.
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Figure 50: Performance Unscented Kalman Filter in combination with the Coordinated Turn model for the circular
track

Figure 51 shows the confidence band of two sigma for the X coordinates and the Y coordinates of the particle
position predicted with the UKF-CT. It can be seen clearly that the predicted track performed well.

Figure 51: Confidence band X and Y position Unscented Kalman Filter in combination with the Coordinated Turn
model for the circular track

61



The relative position error of the with the UKF-CT predicted particle position compared to the observed position
is shown in Figure 52. It can be seen that the performance of the UKF-CT is very good even when measurement
updates are not available for every frame. The relative position error also remains within 95% confidence. The few
outliers in the position error are due to misdetections which are well filtered out by the UKF-CT.

Figure 52: Relative error Unscented Kalman Filter in combination with the Coordinated Turn model for the circular
track

The performance of the tracking and predicting for a particle in the top layer, the avalanche part, is presented
for the UKF-CT in Figure 53. The performance is quite good, it can be seen that when the measurement update
interval increases, the performance is less good in the beginning. This has to do with the fact that the mismatch
of the track created with the NN is included in the measurement update, which has an adverse effect. When
measurement updates are no longer available, it can be seen that the track of the particle is not predictable if there
are rapid changes of track direction.
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Figure 53: Performance Unscented Kalman Filter in combination with the Coordinated Turn model for the avalanche
track

Figure 54 shows the confidence band of two sigma for the X coordinates and the Y coordinates of the particle
track position for the UKF-CT.
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Figure 54: Confidence band X and Y position Unscented Kalman Filter in combination with the Coordinated Turn
model for the avalanche track

The relative particle position error with the UKF-CT predicted position versus the observed particle position is
shown in Figure 55. It can also be seen that for the UKF-CT it is difficult to trace rapidly changing dynamics of a
particle, especially when fewer measurement updates are available.
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Figure 55: Relative error Unscented Kalman Filter in combination with the Coordinated Turn model for the
avalanche track

Finally, the results of the UKF-CT for a rapid change in a track are shown in Figure 56. Here too it can be
seen that a rapid change in the track is difficult to predict.
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Figure 56: Performance Unscented Kalman Filter in combination with the Coordinated Turn model for the rapid
change track

Figure 57 shows the confidence band of two sigma for the X coordinates and the Y coordinates of the particle
track for the UKF-CT.
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Figure 57: Confidence band X and Y position Unscented Kalman Filter in combination with the Coordinated Turn
model for the rapid change track

The relative particle position error of the UKF-CT is shown in Figure 58. It is shown that in the first part
the performance of particle tracking is good. However, for the last part where for 50 frames no measurement is
available and therefore predictions have to be made which are not good. This has to do with the fact that the
particle changes track direction here. This shows that when there is a rapid change in the particle dynamics it is
important that a measurement update is available frequently.
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Figure 58: Relative error Unscented Kalman Filter in combination with the Coordinated Turn model for the circular
track

The UKF-CT has a good performance for tracing and predicting the circular track. When rapid changes of the
particle take place at a track, the UKF-CT can continue to track the particle reasonably well, but it is desirable
that the measurement updates are frequent.

3.3.3 Comparison of the performance of the methods

In this section, the results of the KF-CV, UKF-CA, and UKF-CT are compared to determine which method should
be utilized for multiple particle tracking. The performance of the methods is compared per track type, with the
average error ratio expressing the performance. The singular track is produced using the NN as a reference. The
performance is displayed in three tables, one for each measurement update interval size. The average error rate is
an excellent indicator of performance as a whole. Nevertheless, mismatches in the singular tracks created by the
NN have an effect on this. While performing multiple tracking, these mismatches should not occur, as the detected
particle’s position does not match the predicted position. This information is considered when selecting the method
for tracking multiple particles.

With a measurement update for each observation and a frame rate of 450 (the highest available frame rate in
the data set), the UKF-CA has the poorest performance. The KF-CV performs optimally on all tracks. When the
time-steps are sufficiently small, with a frame rate of 450, the particle moves almost linearly between the observation
steps. The UKF-CT performs marginally worse than the KF-CV, with the difference being particularly negligible
in circular trajectory. Taking into account the section above, it is clear that the KF-CV performs better for the
circular trajectory, but the UKF-CT performs significantly better for the predictive part. Therefore, the UKF-CT
performed better than the KF-CV when no particle could be detected in the circular track for an extended period
of time. In Table 1, the results of the average error rate can be found.
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Table 1: Average particle relative position error, measurement update 1:1

Circulair track Avalanche top Rapid change
KF-CV 0.0234 0.0854 0.4088
UKF-CT 0.0218 0.1281 0.4114
UKF-CA 0.0383 0.2825 0.4345

When the measurement update steps are increased to every tenth frame with a frame rate of 450, a shift in
performance can be seen. Still the UKF-CA has the poorest performance for tracking the particle. Whereas the
UKF-CT now outperforms the KF-CV, for all the track types. The results are listed in Table 2.

Table 2: Average particle relative position error, measurement update 1:10

Circulair track Avalanche top Rapid change
KF-CV 0.0451 0.4158 0.5824
UKF-CT 0.0267 0.1865 0.5311
UKF-CA 0.0669 0.4475 0.5705

Finally, the results of the average error ratio when the measurement is updated once every twenty observations
with a frame rate of 450 are shown in Table3. Also now the performance of the UKF-CT is considerably the best.

Table 3: Average particle relative position error, measurement update 1:20

Circulair track Avalanche top Rapid change
KF-CV 0.0745 0.6627 0.7437
UKF-CT 0.0345 0.2979 0.6278
UKF-CA 0.0955 0.4939 0.6369

For a track with a rapid change, a prediction of fifty observations with a frame rate of 450 is too much be-
cause the track of the particle changes a lot in terms of acceleration. To better compare the methods, the results of
the rapidly changing track are presented without the prediction part at the end. The results are shown in Figure 59.
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(a) Rapid change track KF-CV

(b) Rapid change track UKF-CA

(c) Rapid change track UKF-CT

Figure 59: Performance rapid change track
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Now that the rapid change track no longer has a separate prediction part, but is purely compared to only the
step size of the measurement update, it shows that the KF-CV performs best when a measurement update is avail-
able for every observation. As the step size of the available measurement updates increases, it can be seen that the
UKF-CT model is the only one still performing well. The goal is to be able to observe the tracks longer even when
no detection is available in some frames. For this reason, the UKF-CT variant is used in combination with the NN
for multiple particle tracking. Since the performance of the KF variant must be good for when no measurement
updates are available, it is decided to use the UKF-CT for multiple particle tracking.

3.4 Multiple particle tracking

To improve the tracking of the particles compared to the NN, the tracks are now created with the NN in combi-
nation with the UKF-CT. This makes it possible to trace specific tracks when there is no detection of particles in
some of the observation images. The advantage of this is that one is less dependent on the accuracy of the particle
detection because the UKF-CT can predict the track of the particles. The multiple particle tracking algorithm is
a combination of the NN and the UKF-CT. For every observation, the NN checks which particles of observation k
versus k − 1 have the smallest distance to each other. If a particle does not have a nearest neighbour, it is seen as
a new track. Subsequently, for each track of k − 1, a prediction is made with the UKF-CT as to what the position
of the track will be in observation k. The location of the UKF-CT prediction and the nearest neighbour particle
position found with the NN are compared. When these two positions per track fall within the allowed maximum
distance, the position of the NN is considered the new location of the track. This location is then used to give
the UKF-CT a measurement update. For this research, the maximum allowable distance between the location of
the NN and the UKF-CT is set to a threshold of ten pixels, which corresponds to two-thirds of a particle’s radius.
If no particle within the threshold value can be linked to the UKF-CT predicted location, then the location of
the UKF-CT is used as the new particle location of that track. However, this track will receive a penalty. The
maximum allowable penalties per track are set to ten for this research. If a particle can be coupled within this
value during an observation, the penalties are reset to zero. If the number of penalties exceeds the threshold value
of ten, the track is removed. The tracks that have an observation length that meets the minimum desired length
are saved. As the last position predicted with the UKF-CT is not saved, the last updated observed position ends
the track.

For a good overview, first the tracks of the tracers are analyzed. The complete data set of 8741 frames is used
for this with a frame rate of 450. In Figure60a the tracer tracks created by the NN are shown and in Figure 60b the
tracer tracks are created with the NN in combination with the UKF-CT. As can be seen, the tracks of the NN in
combination with the UKF-CT are improving. The tracks are improved for the bottom part of the particles where
they follow a circular trajectory. However the largest improvement is in the part where the particles move from
circular trajectory to the avalanche part, which is very desirable.

(a) Multiple tracer particle tracking NN (b) Multiple tracer particle tracking NN UKF-CT

Figure 60: Multiple tracer particle tracking
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In Figure 61a the track created with the NN for all particles are shown. Figure 61b shows the tracks for all
particles created with the NN in combination with the UKF-CT. There is a clear improvement in the number of
tracks and the length of the tracks.

(a) Multiple particle tracking NN (b) Multiple particle tracking NN UKF-CT

Figure 61: Multiple particle tracking

For comparison, the tracks are ordered by length. The tracks of the NN are placed next to the tracks of the NN
in combination with the UKF-CT for the comparison. The performance of the tracer tracks are shown in Figure 62.
The number of tracer tracks has increased minimally for a track length of at least 100 observations. Creating tracer
tracks with the NN yields 145 tracks, and the NN UKF-CT has 149 tracks. However, the tracer tracks lengths
has improved considerably with the implementation of the UKF-CT. As an indication, the performance of the NN
versus the NN UKF-CT is compared, the number of tracks compared is determined by the method with the fewest
tracks. The average tracer track length of the NN is 480 observations and the average tracer track length of the NN
UKF-CT is 738 observations. This is a performance increase with a factor of over 1.53. Mainly the longer tracer
tracks have become even better, the tracer track length increases.

Figure 62: Performance comparison tracking tracer particle tracks NN versus NN-UKF-CT

The performance of all tracks can be seen in Figure 63. With the NN 2115 tracks were created with a minimum
observation length of 100 observations while with the implementation of the UKF-CT 4429 tracks were created.
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This is an improvement of more than 2.0. Furthermore, the length of the tracks are significantly increased. The
NN has an average track length of 265 and the average track length of the NN UKF-CT is 885 observations. This
is an 3.3 factor improvement.

Figure 63: Performance comparison tracking all particle tracks NN versus NN-UKF-CT

The results presented show that the addition of the UKF-CT is advantageous to significantly improve the tracks
length.
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4 Conclusion

During particle detection a method is found to detect the particles in the video frames. This method is specially
designed to detect the transparent dry particles and to distinguish the tracer particles. In the first step the image
background is blacked out to prevent noise witch could interfere with the particle detection. In the next step the
particles are detected with circular Hough transform, hereafter the particles are categorized. Pair correlation is used
to place the particles in the front layer or the layer behind the front layer. To realize a higher accuracy of particle
detection the described steps mentioned above are repeated, whereby previous categorized particles are blacked
out. This method has some limitations that should be noted, such as the difficulty to determine false detected
particles, particles belonging to the second layer and correctly detected particles. During the process of detection
the remaining particles are more difficult to detect or categorize due to a loss of strong correlation between the
particle and it’s neighbour particles when the distance between them increases. When an individual particle is
detected without other nearby particles it is very difficult to validate the detection because of the absence of direct
correlations. Another limitation is validation, which is currently not possible as one only has unlabeled data set.
The single method to validate the results is comparing the selected data by computer with the selection made by
human eye. A mathematical validation score is thus lacking.

This research reveals it is possible to track the individual particles of an avalanche and predict the subsequent
position. It is investigated whether the tracking of the particles can be improved in combination with a tracking
algorithm. The research compared the performance of the KF-CV, the UKF-CA and the UKF-CT. The UKF-CT
model gives the best results for tracking and predicting the track of a particle, because this model can predict
circular movements and has the highest accuracy also when particles are not detected or frames are missing. This
method makes it possible to trace the particles located in the circular trajectory. For this part it is also possible to
reduce the frame rate and thus the required data because the UKF-CT is found to be very effective at predicting
the circular trajectories. For the particles that enter the avalanche part, a high frame rate is necessary and it is
not recommended to reduce the frame rate of 450. The reason for this is that the particle here behaves extremely
stochastic and the speed is much higher than in the rest of the drum. The UKF-CT is able to track the particles
in the avalanche part and make predictions for short periods. This is because the augmented Coordinated Turn
model is applied in which the turn rate and velocity vector are not constant and therefore respond well when the
particle changes direction and or acceleration.

The Nearest Neighbour in combination with the UKF-CT is shown to provide improved particle tracking perfor-
mance. With the help of this method one may trace the particles for a long period of time (the particle track of the
tracer became more than 1.5 as large and the particle tracks for the transparent particles become 3.3 as large) and
trace more particles (there are more then double the number of tracks found). It is also possible to keep following
the particles when they end up in the avalanche.

5 Recommendations

This research on detecting particles and predicting tracks of granular avalanches, lays the foundation for future
research as the method used is unique and thus it was not possible to compare the results or method with other
studies. To reduce the computational time of tracking, one may further train convolutional neural network as now
data are labeled with the help of the proposed method in this thesis. So that in the future the particles can be
detected with convolutional neural network.

The performance of the UKF for particle tracking can be improved by switching between different models. This
makes it possible to use a different model and or different parameters when the particle moves to a different kind of
maneuver such as from the circular track to the avalanche part. Further step is also to better tune the parameters
of chaning models such as unknown process noise. This can be also achieved in KF setting by adding parameterized
hierarchical prior on the noise, and learning its parameters.
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