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Management summary 
We conduct this research at the Customer Service (CS) department within a Special Speed Logistics 

Company (SSLC), a freight-forwarding company specialized in urgent deliveries. This department is 

responsible for handling incoming requests for transportation jobs from its customers. The requests come 

in daily, mostly by phone or email. Agents of the customer service handle them by first offering a 

quotation to the customer. This offer contains information about the proposed route to transport the 

parcel, including an estimated time of pickup and arrival at destination, and a price. If the customer agrees 

with the quotation, the agents proceed with the booking. Once the booking is complete, logistic partners 

involved are notified, and thus proceed on executing the transportation job.  

Crucial to the entire process is the route calculation. The latter is done by entering information 

about the shipment’s pickup and delivery locations, availability time, nature of transported goods and 

dimensions into a route calculator, which then returns a set of feasible routes. The current system has 

several limitations, requiring agents to regularly use their expertise and make manual amendments to the 

routes. As SSLC is moving towards more standardized and data-driven operations, they wish to improve 

the route calculation of their express airfreight network. We approach this assignment from a 

mathematical perspective, and thus formulate the main goal of this research: 

Design and validate a mathematical route optimization model that minimizes transit time, expected 

delay and costs, such that it cumulatively improves the current Express Airfreight routes at SSLC  

We start by mapping and analyzing the routing process. By conducting interviews with company 

stakeholders, we learn that the route calculation is actually performed by an external entity, which also 

owns the flight data. SSLC’s system interacts with this entity sending an API1 request each time a new 

route needs to be calculated, upon which the latter returns up to 150 routes. Next, SSLC’s system validates 

those options, filtering out inoperable routes; finally, it displays a selection of the fastest ones to the CS 

agent. Both routing process and system have limitations: 

• Inefficient process setup: since the validation step is only done at the end, an estimated 75% of 

the generated routes is discarded. This waste is computationally demanding and overall 

inefficient. 

• Selection of airports: the system generating the routes selects the departing and arriving airports 

solely based on proximity to the pickup and delivery points. This potentially limits the number of 

flight options, especially when regional airports are selected. 

• Comparison of alternatives: the system can only generate routes for the selected origin-

destination pair and does not compare other alternatives; this again limits the quality of results. 

 
 

1An Application Programming Interface (API) is a software interface that allows two computer programs to communicate with 

each other.  
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• Only time is considered: the routes are solely selected based on the earliest arrival at destination. 

Crucial factors like the risk of incurring delays and the costs of a route are neglected throughout 

the calculation 

By consulting a panel of company experts we define a framework to measure a route’s quality. 

We hence distinguish three primary objectives, consisting of the minimization of a route’s transit time, 

delay and operating costs. By applying the AHP method we translate the stakeholders’ relative 

preferences of these objectives into weights. We use these weights to cumulatively measure and compare 

the performance of Express routes from the years 2020-2022. 

  After consulting literature, we decide to model the problem at hand as a multi-objective 

Multimodal Route Choice Problem, altering the original formulation by Lei et al. (2014). The problem 

consists of finding the optimal combination of airports and carriers to minimize collectively its transit time, 

risk of delay and total costs. To account for the three objectives, we aggregate them linearly using weights. 

To provide SSLC with alternative solutions, we solve the models with five different weights configurations: 

three which consider only either of the objectives (hence greedy), one which attributes them equal 

importance (we call this balanced model) and one which uses the preferences we elicit from the panel of 

experts (we call this weighted model). To solve the problem, we use the tabu search algorithm. Tabu 

search is a metaheuristic which solves complex optimization problems by altering an initial solution; the 

peculiarity of this method is the usage of memory to prevent exploring the same solution spaces 

recursively (Glover and Taillard 1993). To generate the initial solution, we follow the same steps used by 

the current system. We then use two tabu search variants: a classic one (TS), which changes the initial 

solution’s route by swapping airports in the sequence, and a hybrid one (MNTS), which additionally 

removes or adds airports to the existing route. To account for the problem’s stochastic nature, we 

incorporate the tabu search methods into a simheuristic. Simheuristic procedures evaluate solutions 

solved deterministically by means of a simulation (Juan, et al. 2015).  

 

Figure 1: Illustrative example of one simulation scenario on route A 

Figure 1 shows an illustrative example on how we apply simulation to a route. Using probability 

distributions we directly estimate from the data, we start by randomly drawing a time realization for the 

first-mile leg; we then calculate the time difference with the deterministically calculated arrival time at 

the origin airport and eventually store the delay. In our example, this results in a delay of 10 minutes. We 

proceed with randomly drawing time values for each subsequent leg. If, following a delay, we miss our 

next flight, we store the delay value and add a rebooking fee to the original total costs. Ultimately, if we 
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arrive later (or earlier) than 12 hours from the deterministically calculated delivery time, we add penalty 

costs. We start at a 50% penalty of the total (deterministic) costs, with an accumulation up to a 100% 

penalty for 24 hours deviation and beyond. The penalty system is not used in reality by SSLC but is rather 

a model design choice to enforce timeliness. By averaging the simulation outcomes, we evaluate the 

solution’s robustness.  

We test our solution on a single Express Airfreight lane. A lane consists of a group of orders sharing 

the same origin and destination. Using historical data, we estimate parameters for the model and 

probability distributions for the simheuristic. We then proceed with solving 49 problem instances which 

correspond to the lane’s historical orders. Hence, for each order, we calculate routes using each 

combination of model configuration and solution type. Table 1 provides a summary of each solution’s 

average improvement (in green) or deterioration (in red) with respect to the lane’s current performance 

(benchmark) on transit time, delivery delay and costs. We also attach a summary of the routing policy per 

solution type, with their respective advantages and disadvantages. 

Table 1: Solutions’ improvements compared to the test lane’s current performance (left) and general routing policies for each 
solution type (right) with corresponding advantages and disadvantages. 

 

Time-greedy 

The time-greedy solutions improve the transit time KPI and hence yield faster routes. This comes 

however at the cost of significant delay and costs deteriorations. Overall, these routes are sensitive to 

delay and thus instable. Most of them are operated through minor airports. The advantage of doing so is 

that minor airports have generally lower service times as they are less burdened by high cargo volumes; 

moreover they are closer to most pickup points. However, they have also less (frequent) flight options, 

meaning that a parcel missing its flight needs to wait longer until the next one and thus incurs significant 

delays. To mitigate this partly, the solutions choose to use vehicles for transportation. As those are not 

bound to scheduled departure times, it takes generally less time to drive the shipment than to wait for 
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the next flight. Vehicles are however significantly more expensive than aircraft. This, in combination with 

the high number of rebookings and penalties incurred, makes those routes more expensive than others. 

Risk-greedy 

 Risk-greedy solutions perform the worst, showing a significant deterioration in almost all KPIs. 

From a practical point of view, the generated routes do not make sense. The reason for this is that the 

model only accounts for routes having the least risky airports and carriers, neglecting any other aspect. 

Whereas we observe that accounting for those risks helps lowering the average delay KPIs, one third 

source of risk is overlooked in the model design, namely too tightly planned transits. This explains why 

the risk-greedy routes do not yield the lowest delay KPIs of the proposed solutions. 

Cost-greedy 

 The cost-greedy routes yield overall the best improvement on the cost objective. These routes 

predilect the usage of major hubs, as those are overall cheaper. Moreover, the hybrid solution variant 

tends to add transits (at major hubs) to the initial route. Despite being counterintuitive, this move is done 

to catch more reliable flights: by doing so the solution avoids missing transits, which implicitly avoids 

rebookings and penalty fees. For the same reason, this solution predilects routes with more waiting time 

between flights: this partly mitigates the fact we do not consider tight connections as a risk. Both 

developments deteriorate the transit time, making routes on average 35% slower than the original 

historical ones. 

Balanced 

 The balanced solutions tendentially improve the routes’ transit times and costs and deteriorate 

the delivery delays. The routes are similar to the cost-greedy ones, as they predilect the use of major hubs. 

They are, however, faster, as the balanced options show more variation in the destination airports. Where 

the cost-greedy ones prefer major-to-major routes, the balanced routes tendentially fly on major-to-

medium and major-to-minor airports. This ultimately shortens the transit times and slightly increases the 

operating costs. 

Weighted 

 The weighted solutions are the best performing ones, with the MNTS variant showing the best 

results. With respect to the others, these solutions show the most variation in routes utilized and 

consequently carriers as well: we distinguish fourteen different routes and a total of five airlines used. 

Furthermore, different airline groups are used in combination for a single route, which is not permitted in 

the current system. Interestingly, a considerable 26% of routes uses a medium or minor airport as origin. 

In contrast with the time-greedy solutions, direct options are avoided, as those routes operate using one 

transit at a major airport and again a major airport as destination. This solution type finds a good balance 

in the speed/reliability tradeoff. By staring at a minor (or medium) hub the travel time of the first-mile leg 

and the initial service time are reduced. Typically, this hub is better connected to its destination via a 

major hub than directly, as for both flight legs more regular options are available. This means that if the 

parcel misses its original first flight it can still recover the delay by taking the next one.  
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Although we obtain encouraging results, we acknowledge a still notable effect of randomness on 

the average outcomes. In fact, abnormally high generated time values increase the average results, which 

differ largely from the simulation’s most occurring values. This means that the average time and delay 

outcomes are overall pessimistic. If we validate the outcomes using real order data, we see that latter 

measures tend to be overestimated, whereas the costs are underestimated. This is however not 

surprising, since we explicitly avoid using the real costing data, as this is considered sensitive information. 

In conclusion, we provide SSLC with different solution alternatives which overcome most of the 

identified limitations of the current system. Firstly, our solutions select the origin and destination airports 

in a smarter way and can compare multiple combinations, thereby returning the best route. Most 

importantly, we demonstrate that accounting for multiple objectives yields overall better routes, with our 

best-performing solution improving the current routes’ transit time by 29%, delivery delay by 6% and total 

operating cost by 20%. Additionally, we show how shifting their relative importance influences our 

solutions’ routing behavior. Based on the obtained results, we formulate recommendations for the short 

and medium-long term. 

Short term recommendations 

• Usage of minor and medium hubs: using these types of airports can be beneficial to a route’s 

overall speed. We recommend exploring these benefits by trying to use these hubs more 

regularly. 

• Combine different airlines: the current system does not allow to use different airline groups on a 

single route, whereas our solution demonstrates this can be beneficial. Therefore, we recommend 

investigating further whether dropping this constraint could be beneficial. 

• Relax the departure constraint: similarly, the current system generates only routes with flights 

departing from the origin within 24 hours from the pickup time. Our solution relaxes this 

constraint obtaining better results; therefore we recommend dropping it.  

• Explore the possibilities of using trucks: the time-greedy solutions use (fictive) trucks for delay 

recovery, yielding positive outcomes on the delay and transit time objectives. It is questionable 

whether such options are operable in practice; therefore, we recommend to research this. 

Medium-long term recommendations 

• Improve data quality: the overestimations in the simheuristic are the consequence of outliers in 

the used data. These are hard to be filtered out, as the data is not documented sufficiently. 

Therefore, we recommend researching ways to improve the overall data collection process. 

• Acquisition of flight data: by owning the schedule data, SSLC would be able to implement an in-

house routing system, with the benefits of a more efficient process and better routes. It is up to 

the company to examine whether the costs are worth the presented benefits. 

• Test the solution on larger network: if SSLC wishes to implement our solution, we recommend 

first testing it on a larger sample, to verify the computational burden can be sustained as to 

calculate routes for the entire Express network. 
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Abbreviations and Terminology 
Abbreviations 

Table 2: Abbreviations used in this report 

Abbreviation Description 

CC&M Customer Care & Monitoring 

CS Customer Service 

ETA Expected Time of Arrival 

GOP Global Offer Project 

LAT Latest Acceptance Time 

MA Major hub 

ME Medium hub 

MI Minor hub 

NFO Next Flying Option 

NS&P Network Solutions & Procurement 

EA Express Airfreight 

STA Scheduled Time of Arrival 

STD Scheduled Time of Departure 

SSLC Special Speed Logistics Company 

Terminology 
Table 3: Terminology used in this report 

Term Explanation 

Airport2airport Shipment from origin to destination airports 

Compartment five Cargo compartment for smaller sized packages; located at the tail of an aircraft 

Consignee The entity receiving the shipment on behalf of the end customer 

Customer The entity requesting an order 

Destination Ending airport 

Door2door Shipment from shipper’s to consignee’s address  

Lane Unique combination of origin and destination airport, which groups all routes 
sharing that same combination. 

Origin Starting airport 

Route Unique combination of pick-up and delivery points, visited airports and logistic 
partners involved 

Shipper The entity shipping the goods on behalf of the end customer 

Tail-to-tail Direct transit of a shipment from one aircraft to the other 
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Chapter 1 - Introduction 
This chapter introduces the company and the research addressed within this master thesis. Section 1.1 

provides background to SSLC, introducing the company in general and their motivation to initiate this 

research. Section 1.2 details the addressed core problem and motivates its relevance. It introduces the 

stakeholders involved throughout the research and discusses the examined problem and the implications 

of its choice. Finally, Section 1.3 demarcates the research boundaries. First, it  describes the research 

scope and main goal; next, it states the main research question and auxiliary sub questions that we answer 

as to solve the core problem. The chapter concludes with an outline of the remainder of this report, 

specifying the order and method by which we address the research questions. 

1.1 Background 

1.1.1 The company 

Company history 

SSLC  is an international, all-round freight forwarder specialized in urgent transport and complex 

logistics. Spare parts, medical samples, important documentation, and other types of urgently needed 

goods are transported upon daily customer requests, some of them incoming just hours before the next 

available option. Performing a transportation job often includes diverse logistic operations, like picking up 

goods at the shipper’s  location, performing customs clearance and ensuring cargo security, and delivering 

to the consignee. Besides being part of a major European airline, SSLC has six offices worldwide, employs 

over 330 employees and owns a vast logistic network, allowing them to provide their customers with 

highly tailored, express solutions. SSLC Netherlands, at which we conduct this research, is part of the 

Western Europe office, with home base in Amsterdam.    

Operations 

SSLC Netherlands offers a wide range of products to their customers (more detail in Appendix A). 

Requests come in daily at the Customer Service (CS) department, where we conduct this research. This 

department is responsible for handling them: this entails tasks spanning from processing a transport job 

to ensuring the shipment has been delivered and the invoice is complete. The processes executed within 

the department can be broken down to the following: 

• Quoting: this process starts with an incoming request for a transportation job. Typically, the 

request is received via email or phone; information provided includes the type of shipment to be 

transported, its pickup and delivery addresses and the time by which the transportation needs to 

be arranged (which in most of the cases, is as soon as possible). A CS agent enters the data into 

their main operative system to search for viable options and offers an Estimated Time of Arrival 

(ETA), routing (i.e., transit stations and time slots at which each intermediary transport job is 

executed) and price to the customer. 

• Booking: if a customer accepts the offer (i.e., sends a confirmation, either by email or phone), 

then the agent books it in the system and informs partners involved. If the partners do not accept 



2 
 

the job, the agent manually looks for alternatives and rebooks the order. Once the booking is 

complete the shipment gets tracking status.  

• Tracking and monitoring: agents follow shipments throughout their transit and ensure the status 

is regularly updated. This is done with a monitoring system, where all shipments in transit are 

shown together with their status. Shipments with green status do not require action, when these 

turn red an irregularity in the schedule is taking place. This might be a delay, flight cancellation, 

loss of package, or anything that could prevent the shipment from reaching its destination on 

time. When this happens, agents assess the situation and eventually intervene to solve the 

irregularity. This may involve coordinating the involved logistics partners, and eventually cancel 

and rebook the shipment’s route. 

• Billing: when tracking is concluded, agents check the shipment’s tracking info for delays. It might 

be the case that customers cause delays during transport by providing SSLC with incorrect 

information (like wrong contact details or addresses). In this case, additional charges are added 

to the invoice and the order archived. 

Within the department, the operations team oversees the first two processes, while the Customer 

Care & Monitoring (CC&M) oversees the latter two. Besides that, customers might request to either 

change or cancel bookings; in that case, depending on how far the shipment status is, either of the two 

teams takes care of it. Finally, dedicated teams that handle either contracted business or highly 

challenging transport requests (Specials and Industry desks) perform all important processes for their 

customer segments. 

1.1.2 Research motivation 
This section sheds light on recent developments within the company and how these led to 

initiating this research. SSLC originates as a customer-tailored forward freighter. Key selling points are 

high speed, reliability and dedicated logistic experts for the individual customer. In its twenty years of 

existence, SSLC has grown into having a large network that allows them to offer much more standardized 

solutions and requires less effort and knowledge to arrange transports. While the company’s size and 

market share have been growing at high pace, operations remain rather manual and often too customer 

centric2.  

Treacy and Wiersma (1997) distinguish three competitive strategies that define companies: 

• Operational excellence: this is focused on cost leadership, where firms manage to align their 

resources as to optimize their cost/offering ratio. 

• Customer intimacy: tailor-made solutions for customers; resources at hand are dedicated to serve 

customer needs. 

 
 

2 Customers that do not require challenging transportation jobs (e.g., between European hubs) can easily search and book options 

via the SSLC online portal. Most, however, still prefer to have a dedicated agent to take care of the booking for them, since they 

are used to this type of service.  
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• Product leadership: the product offered is either superior or unique in the company’s market.  

Following this definition, the company’s upper management argues SSLC is currently transitioning from 

customer intimacy towards more product leadership, as the assets withing their network allow them to 

offer an increasingly unique value proposition. Therefore, one of the prime challenges the company faces 

is to modernize their current operations, introducing standardization and automation for high-volume, 

low complexity customer requests, while keeping their trademark dedication and high service levels. 

1.2 Problem identification 

1.2.1 Stakeholders 
This section presents the entities or persons that are closely involved within this research and 

briefly describes their contribution to it. Table 4  shows an overview of the individual stakeholders. 

Table 4: Main research stakeholders 

Stakeholder Description 

Dr. ir. E. A. Lalla-Ruiz Lead supervisor from the University of Twente 

Dr. D. R. J. Prak Second supervisor from the University of Twente 

MSc. R. Schoenzetter Company supervisor, Head of Operations at SSLC 
Netherlands 

CS supervisors Supervisors of the Customer Service team at SSLC 
Netherlands 

CS team Agents within the Customer Service team at SSLC 
Netherlands 

NS&P team Members of the Network Solutions & Procurement 
team at SSLC Netherlands 

GOP team Team members of the Global Offer Tool project at SSLC 
Global 

IT team Team members of the IT department at SSLC Global 

 

The University of Twente supervisors are primarily concerned with the research’s academic 

importance. Therefore, their main contribution is to verify the research provides with sufficient innovation 

within the fields of Logistics Management and Operations Research. The lead company supervisor on the 

other hand, wishes to see practical results that are of use for SSLC Netherlands. His role is to validate the 

practicability of the proposed solution, thus ensuring the research’s impact for companies operating in 

high-speed logistics. Throughout the research’s lifetime, we analyze several business processes involving 

different company’s departments. In particular, members of the CS, NS&P, GOP and IT departments play 

an important role in understanding how these processes currently work and how they feel towards the 

improvements proposed within this research.  
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1.2.2 Core problem 
This section presents the problem addressed by our research and discusses its relevance. In order 

to identify the right problem to tackle in a managerial setting, Heerkens and van Winden (2017) propose 

the Managerial Problem-Solving Method. We choose to follow this method, as it helps us distinguishing 

the various types of problems present in the current operational landscape, understand their 

relationships, and prioritize them. Appendix B discusses these steps in more detail.  

Current routing process and limitations 

We choose to focus on improving the route calculation process, which is initiated any time a CS 

agent looks for possible options given a new transportation request by a customer. To handle each 

request, the CS agent enters information about the shipment in SSLC’S operative system, which on its turn 

returns a set of possible routes. A route describes the sequence of visited transit points between origin 

and destination, transit times between them and the responsible partner for each transit job.  The 

calculation needs to be done for all products listed in Appendix A, except for the Spare Parts & Service 

Logistics and SSLC Warehouse products. Routing is part of the quotation process (booking involves 

deploying assets needed to operate the selected route) and is currently done in either three systems: 

systems A, B or C. If a specific product is required, a corresponding system is used to query options. Most 

customer requests, however, do not explicitly require a product. For example, a shipment that needs to 

be transported from Paris to Munich and is within the 300kg weight can be transported via the Express 

Train product, tailored service (direct truck or private flight), or flight express options (air freight). In this 

case, system A is used most of the times. Depending on the selected product, the system calculates the 

route with a different type of logic.   

Given the latter, we make a distinction between tailored, train and air freight routes. The former 

two are rather trivial: there is a limited set of partners to select, tracks are either non-stop or via a fixed 

set of stations and there is minimal variability in terms of transportation schedules. On the other hand, 

air freight implies a lot more variables to deal with. Besides the bigger number of combinations of possible 

partners and flight connections, airport handling and customs operations come into play. Choosing the 

wrong partner or airport can have significant consequences for the success of a transportation job. For 

instance, when customs are involved, most agents will prefer a route using a bigger hub rather than a 

regional airport, as bigger hubs are usually better equipped and have more flexible office hours. Similarly, 

bigger hubs generally have more outbound flight options, which helps mitigating potential travel delays. 

In fact, if a shipment misses its flight, it may still arrive on time at destination if there are good alternative 

options. A drawback of major hubs, however, is that they are burdened by higher cargo volumes, and may 

not be always near the appointed pickup and/or delivery points. As a consequence, choosing to 

depart/arrive at a smaller airport might be beneficial in reducing the overall transportation time. Besides 

that, speed of delivery is not the only relevant metric that determines a route’s quality. Overall, SSLC 

strives to provide the fastest transportation options available to their customers, but also seeks to offer a 

reliable service at a competitive price. Therefore, choosing the right set of airports, airlines and handling 

partners also affects other relevant aspects like the risk of incurring delays, and the costs of operating a 

route.  
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Currently, these considerations are neglected by the routing system. In fact, it is capable of solely 

comparing flight options for one couple of departing and arriving airports at the time, and does not 

consider any aspect other than which combination of flights, given known flight schedules, yields the 

earliest arrival time at the final delivery point. Furthermore, the origin and destination airports are 

currently selected based on geographical proximity to the shipment’s pickup and delivery point, which 

can significantly limit the number and quality of available transportation options. Because of the latter, 

agents mostly force the system to find options between airports they manually input as origin and 

destination. On their turn, the agents base their selection on experience. This leads them to systematically 

overlook potentially better options and makes the process more error prone in general. Ultimately, poor 

routes are more likely to cause irregularities (e.g. delays, missing parcels, miscommunication errors, etc.) 

which add workload to the CC&M department.  

Solution objectives 

Given its upstream position within the quotation business process, the route calculation 

significantly affects the subsequent processes and is therefore of considerable importance to SSLC’s 

operations. By engaging this topic, we seek to achieve multiple objectives: 

• Improvement of the customer service 

Firstly, customers should benefit from improved routes for their shipments. Given the urgency of 

the shipments, the primary objective would be reducing transit time, followed by costs as second 

important factor.  

• Reduction of irregularities 

Besides enhancing speed and reducing costs, choosing better routes would also mean avoiding 

disruptions throughout transportation. These include delays, lost packages and rebookings.  

• Reduction of agents’ workload 

Finally, a smarter way of routing should also free agents from unnecessary work. Ideally, agents 

should spend less time to come up with routes during the quoting process and to solve 

irregularities during the tracking & monitoring process. 

Besides its practical relevance, the problem also poses an academically interesting challenge. Indeed, the 

complexity of the logistic network at hand combined with the fact that multiple objectives must be 

considered when calculating the optimal route, make this a rather unique and complex problem type 

within the field of Operations Research. By studying it we therefore also contribute to brining novel 

insights into this field of study.  

1.3 Research approach 
To improve the route calculation process at SSLC, we approach the topic with an analytical 

mindset. First, we analyze the current situation both qualitatively as quantitatively, as to get a complete 

benchmark. From there, we explore different types of candidate solutions within the field of mathematical 

modelling and optimization, select one and adapt it to our context. Finally, we setup experiments to test 

the solution’s effectiveness, upon which we draw our conclusions. In the coming section we break down 

those steps in detail. 
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1.3.1 Research scope and goal 
We perform this research at the Customer Service department of SSLC Netherlands. Therefore, 

the problem setting is limited to the air transportation routes that are booked by its agents. From this set, 

we make a selection of routes, which serves as sample to design and implement a solution. This is a 

necessary step, as taking all combinations of airports served yearly by SSLC would result in a mathematical 

problem of disproportionate size. Consequently, practical recommendations regarding, for example,  

which transit airports or carriers should be operated are limited solely to those selected routes.  

In general, the mathematical problem and solution approach serve as starting point for SSLC to 

implement a new routing system. A first step in this process would mean extending the model to all lanes 

at SSLC Netherlands, and then eventually to lanes used by other offices. It should be noted however, that 

the model scale-up is not the focus of the research and therefore out of scope. Additionally, the technical 

implementation of the model into the existing information systems at SSLC falls also outside the research 

scope. Overall, we aim to provide the company with a  product- and system-agnostic solution. This design 

choice seeks to ensure the presented results are generalizable and flexible enough to be shaped for future 

developments, given SSLC’S complex and dynamic nature.   

Another scope limitation regards the resources considered in the model formulation. The solution 

approach is designed to provide optimal routes  given the current resources at hand (partners, available 

flights, etc.). Besides providing routes, the model has also the potential of exposing eventual bottlenecks 

within SSLC’S logistic network. We could well observe, for example, a systematic avoidance of certain 

airports or airlines, implying the need to search for alternatives for the provision of better options. 

Although we acknowledge this would be a very interesting extension of the model, we argue this is  not 

directly related to the core problem we define in Section 1.2.2 . Consequently, we leave this outside of 

the scope of this research. 

In terms of goals, the first one is to provide with results that are potentially generalizable for other 

forward freighters operating in high-speed logistics. Although we answer the research questions 

presented in Section 1.3.2 within the context provided by the Customer Service department at SSLC 

Netherlands, we seek to design a mathematical model that can be adjusted to other similar contexts, 

thereby increasing the relevance of this research. Furthermore, this project distinguishes two other types 

of expected contributions. The practical contribution is to provide SSLC Netherlands with concrete 

suggestions to improve their current routes. Besides a practical goal, this research also seeks to pursue an 

academic goal, this being to contribute to the existing body of knowledge in the domain of routing 

optimization and mathematical programming. Having outlined the research boundaries, Figure 2 

summarizes its general assignment, core problem, goal and main deliverable.   
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Figure 2: Summary of the assignment, core problem, goal and main deliverable 

1.3.2 Research questions 
In order to solve the core problem and to achieve the set goals, we formulate and answer the 

main research question: 

How can mathematical programming support route calculation at SSLC as to improve the performance 

of their routes? 

To address it properly, several supportive questions need to be answered first. This section presents them 

in sequence. 

Analysis of the current situation 

 The first step we take is to examine how the airfreight routes are currently calculated by the 

system and how this affects their overall performance. To understand the former, we conduct interviews 

with company stakeholders from the CS, NS&P and IT teams. Here we acquire information on the process’ 

current design, its requirements and supposed limitations. Hence, we answer the question:  

1.1 How does the current system in use calculate a route? 

a) Which input data is required? 

b) How is this data processed? 

c) What makes a route feasible? 

d) What are the limitations to the current approach? 

The next step is to measure the performance of the current routes. To do so, we need to 

determine which KPIs should be used for the measurement and their relative importance. On one hand, 

using knowledge by the company stakeholders involved closely with the routing process helps us in 

understanding why certain KPIs are more important than others and, in general, prevents us from 

potentially misjudging the company’s perspective on routes’ quality. On the other hand, literature 

complements their perspectives, providing us with novel insights that can be potentially become relevant 

to our problem setting. Therefore,  by interviewing stakeholders from the CS, NS&P, GOP and IT 

departments and consulting literature, we answer the following question: 
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1.2 How can we measure routing performance? 

a) What metrics does SSLC use to measure routing performance? 

b) What additional metrics can be found in literature? 

c) Which metrics are relevant to this context? 

d) How can we assign weights to the selected performance metrics? 

Finally, we seek to analyze the current performance of the air freight routes. We use the found 

metrics to conduct a quantitative analysis of SSLC’s historical orders, which answers the question: 

1.3 How do the air freight routes at SSLC Netherlands perform? 

a) What are the most used routes at SSLC Netherlands and how are they performing? 

b) What are the best performing routes at SSLC Netherlands and why? 

c) What are the worst performing routes at SSLC Netherlands and why? 

Literature review 

Once the current situation is analyzed, we need to explore which routing problems and 

corresponding solution approaches potentially fit to our context, and ultimately compare them to find the 

one best-tailored to our needs. By conducting a literature review and analyzing its outcomes, we thus 

provide a solid foundation for the to-be solution approach. In sequence, we answer the following two 

questions: 

2.1 Which routing optimization problem fits best to the context of SSLC? 

a) What are the problem specifics? (Objective, constraints, sets, variables, parameters). 

b) How does the problem setting differ to the one of SSLC? 

c) What changes must be made in order to adapt the found model to the problem context? 

2.2 What is proposed in literature to solve the SSLC routing problem? 

a) What methods are proposed? 

b) How do these methods differ? 

Design of the solution approach 

The third phase is concerned with the design of a solution approach. We design a model and select 

optimization techniques able to solve it in reasonable time, while yielding the best results possible. To 

accomplish the latter, we answer the question: 

3.1 How should the solution approach be designed? 

a) What is the scope of the solution? 

b) What are the requirements of the solution? 

c) What are the assumptions of the solution? 
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Experimentation and evaluation 

Once we designed the solution approach, we proceed on evaluating its performance. The first 

step we take is to prepare the experimental setup, where we define the experiments to execute and their 

intended purpose. Next, we carry on executing them and analyzing the outcomes.  

4.1 How does the proposed solution perform compared to the current routing algorithm? 

a) What experimental setup should be used? 

b) How do the generated routes differ from the routes analyzed in 1.3? 

Conclusions and recommendations 

Based on the observed results, we can make inferences about how the proposed solution 

performs compared to the current situation. Based on that, we make recommendations to the company 

with suggestions for eventual future work: 

5.1 What are the conclusions and recommendations for SSLC? 

a) What can be concluded on the proposed solution in terms of routing performance, 

compared to the status quo? 

b) What recommendations and suggestions for future research can be done as to enable 

SSLC to improve their most used routes? 

1.3.3 Research design and methodology 
Based on the research questions, we divide our research in five phases: 

• Problem context analysis: Qualitative and quantitative analysis of the current situation, 

addressed in Chapter 2. 

• Solution generation and selection: Exploration, comparison and selection of known solution 

approaches in literature, addressed in Chapter 3. 

• Solution design: Adaptation of the selected solution method to the studied context, addressed in 

Chapter 4. 

• Experimentation and results analysis: Analysis of the solution’s effectiveness by means of 

experiments, addressed in Chapter 5. 

• Evaluation: Evaluation of the research’s finding and the implications for SSLC; discussed in 

Chapter 6. 

Altogether, these phases form the research design. Figure 3 gives a schematic representation of 

the research design and methods to address the research questions throughout those phases.  
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Figure 3: Research Design (Grey = input resources, Blue = research questions, Gold = outputs) 
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Chapter 2 - Problem context 
This chapter addresses the routing status quo at SSLC. Section 2.1 answers the question: “How does the 

current system in use calculate a route?”. To do so, we examine which data is required by the system and 

how these data are processed. As explained further in Section 2.1.1 , SSLC’s routing system processes the 

input filled in by an agent and sends an API request to an external flight data provider. This party queries 

a list of possible flight combinations and returns it to SSLC; ultimately, their system validates flight options 

given a set of operational requirements. Section 2.1.2 addresses this validation step in more detail and 

thereby clarifies when a route is deemed feasible. After the validation, agents select either of the filtered 

results for the transportation job. This approach has limitations: we address them in Section 2.1.3 . 

Section 2.2 presents the metrics we use to evaluate the quality of the actual flight routes, and 

thereby answers the question: “How can we measure routing performance?”. Section 2.2.1 introduces 

the main objectives of interest when it comes to route selection and how these can be measured by means 

of Key Performance Indicators (KPIs). Section 2.2.2 shows how we assigned weights to the selected KPIs 

and thereby their relative importance. 

Section 2.3 concludes the context analysis by showing how air freight routes perform according 

to the framework defined in Section 2.2 . We thus answer the research question: “How do the air freight 

routes at SSLC Netherlands perform?”. First, Section 2.3.1 presents which data are used for the analysis 

and roughly how it is (pre-) processed; Section 2.3.2 proceeds by displaying the main analysis results. 

Section 2.3.3 looks further at select group of routes, their performance and reflects on the implications of 

those findings. 

2.1 Routing system 

2.1.1 Route selection process 

Input and output 

Section 1.2.2 globally describes the process of offering a transportation route upon incoming 

customer requests. Here we provide a helicopter view of the steps in sequence and interactions between 

systems that ultimately generate flight options, which form a route that can be selected by an agent. 

Please note that technical details regarding the algorithms in use, like detailed algorithm steps, are 

omitted due to data sensitivity.  

The first step in the process involves an agent entering information from a customer request in 

their operating system. Table 5 lists the data required by the system to calculate a route. 
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Table 5: Entry data for the current routing system. This is the information SSLC booking agents input to the system to generate 
a route. 

Data Type Description 

Pick-up point Location Starting point of the shipment, can be 
either a postal code or an airport code. 

Delivery point Location Ending point of the shipment, can be 
either a postal code or an airport code. 

Transport date Date Date at which the shipment leaves the 
pickup point. 

Available time Time Time at which the shipment is ready for 
pickup. 

Package dimensions Long Package length, width, height, weight 
and number.  

Good description Category/text Type of product being shipped.  

Origin (optional) Location Origin airport code. 

Overnight (optional) Location Mandatory transit airport code. 

Destination (optional) Location Destination airport code. 

Lithium batteries (optional) Category Only relevant when shipment contains 
either type of lithium battery. 

  

As shown in Table 5, entering origin and destination airports is not required. In fact, when the 

fields are empty, the system uses the pickup and delivery coordinates to find their nearest airports and 

flight connections between them. Whenever agents manually amend them, the system automatically 

calculates the distance and travel time from/to the indicated airports. Agents also have the option to enter 

an overnight station: in this case, the system checks combinations of flight options that transit at this 

airport. This can be done for several reasons: for example, one of them would be to reduce risk of missing 

a transit flight. To do so, an agent might choose to manually enter a major hub as transit point, since those 

hubs generally provide more frequent flight options than regular airports. Finally, if the shipment contains 

certain types of lithium batteries, the number of flight options are limited, since transportation can be 

done only by cargo aircraft, following SSLC’s airline policy. For more detail on this, we refer to the 

documentation provided by the IATA (2021).  

When all required data is entered, the system provides at most seven, already validated, flight 

options. Each route has a number of legs, depending on how many transits are included. Table 6 shows a 

possible route for a fictive door2door shipment from the Netherlands to Germany. In this case, we have 

a direct flight plus the first- and last- leg miles, hence three legs. Each leg has a set of times: the Latest 

Acceptance Time (LAT) is the latest by which the shipment needs to be at the origin location, ready for 

transport. The Scheduled Time of Departure (STD) is the time at which the transport between leg origin 

and destination starts; the Scheduled Time of Arrival (STA) is the time at which the shipment is scheduled 
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to arrive at the leg destination point. There is a distinction between the latter and the Time Of Arrival 

(TOA). Whereas the STA marks the scheduled time of arrival of the shipment at a location, the TOA is an 

indication of the scheduled time at which the shipment is ready for the next leg. For example, an STA may 

indicate the time of arrival of a flight at the airport, while the TOA indicates the time by which the 

shipment is offloaded and ready for collection. This distinction is made to account for handling time at 

stations. Furthermore, each leg contains information regarding the operating partner and the travelled 

distance. The partner selection per leg is also an output from the routing system, as choosing the right 

courier, handler or airline has a significant impact on the shipment’s transit times. Finally, both the costs 

per leg as the total costs for the route are displayed. 

Table 6: Fictive door2door route from the Netherlands to Germany. The route consists of transportation legs, each having a 
start and end point, planned cut-off and transportation times, the partner responsible for the leg and the travelled distance. 

Leg Start End LAT STD STA TOA Partner Distance 
(km) 

Cost 

1 Pickup AMS 13:45 13:45 15:00 15:00 Courier X 47 X € 

2 AMS FRA 16:20 18:35 19:40 20:40 Airline Y - Y € 

3 FRA Delivery 20:40 20:40 22:00 22:00 Courier Z 17 Z € 

 

The routes are sorted by earliest TOA at delivery point. This ordering does therefore not consider 

risk (for example, a route through major hubs or with less transits generally implies less delay risk) or 

costs. There are, however, some warnings the routing system displays to the agent. For example, if either 

transportation leg is outside office hours of the involved stations, the system warns the agent to check 

this since there might be complications. Also, capacity warnings are displayed (if there is no capacity 

guarantee onboard, the agent needs to double-check this). If equipment is needed for loading/offloading 

of heavy shipments, this is indicated as well. Finally, flights that historical data show to be systematically 

late are marked. Ultimately, the agent still has the possibility to manually amend some fields; this includes 

choosing a different handling partner if available and changing the pickup times of driving legs. Depending 

on the manual changes, the system automatically adjusts dependent time and cost estimates. 

System interaction overview 

As anticipated at the start of the chapter, an external party is involved in the process of providing 

SSLC agents with potential routes. Specifically, this entity queries flight schedules based on the parameters 

sent by SSLC, combines the schedules, and returns them. Figure 4 gives an overview of the steps. The 

process starts with the location of an origin and destination airport, given either the pickup and delivery 

locations or manual agent specifications. Next, a courier partner is selected for the pickup and delivery 

legs. This is done by choosing the closest partner to either pickup/origin airport and delivery/destination 

airport. Based on the transportation date and availability time of the shipment, a pickup leg time is 

calculated, hence the TOA of the shipment at the origin airport is computed. By adding 30 minutes to this 

time (which is a fixed buffer SSLC wields), the LAT for the first flying leg is obtained. With this, all 

information is in place to send an API request to the flight scheduling entity. Section 2.1.2 explains in more 

details the contents of such request. The entity then responds by sending up to 150 flight options to SSLC’s 
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operative system. This is a predefined number, as SSLC observed that returning more options would 

further increase the system’s response time without providing significantly better options. If an 

insufficient number of options is received, SSLC sends another request with less tight requirements as to 

broaden the flight search (see Section 2.1.2 ). If three requests do not yield enough options, the system 

returns an error to the agent. This might be a suggestion to insert a different combination of 

origin/destination airports or different time slots as to generate flight options. When however, the flight 

scheduler provides sufficient results, SSLC’s system uses operational data to validate them (i.e., filter out 

infeasible options). After the validation, up to seven fastest flight options are displayed containing 

information about the transportation legs and the costs. The agent finally decides whether to re-query for 

options with different settings (e.g., airports, dates and times) or to select either option. 

 

Figure 4: System interaction in route calculation. The main steps to generate a route consist of calculating the specifics to send 
within the API request, receiving the results and validating them against internal operating parameters. 

2.1.2 Validation 
This section explains the validation step in detail. The reason this is a necessary step in the process 

is that the flight data is owned and maintained by a separate company, which is not aware of the 

(constantly changing) business specifications SSLC enforces upon its routes. In fact, when combining the 

flight schedules, this external party does not take into consideration limitations imposed by, for example, 

contractual agreements between SSLC and its logistic partners. Therefore, the validation step is necessary 
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as to ensure the presented options match internal commercial requirements. Following the process 

depicted in Figure 4, those requirements are used during two phases: a first set of requirements is sent 

within the API call to the scheduling entity when requesting flights; the remaining ones are used after 

receiving the flight options to filter out the infeasible ones.  

API call parameters 

Together with the information listed in Table 5, the following constraints are sent when 

requesting flight options (not all parameters are included in this overview, as some are not particularly 

relevant). 

• Earliest departure time: this is the time at which the shipment is available at the origin airport’s 

export station plus a time buffer of 30 minutes. 

• Include/exclude airlines: this parameter specifies which airlines to include/exclude in the query, 

as to limit results only to SSLC partners. 

• Number of hours: here the time window for departing options from the origin station is specified. 

This is set to 24 hours, which means options departing later than a day from the availability time 

of the package at the origin airport are excluded. In the proposed solution, we show this 

constraint can be relaxed, with beneficial effects on the quality of presented options. 

• Max connections: specifies the maximum number of allowed transits. SSLC does not allow more 

than three connections, as each extra connection is associated with risk of transporting 

disruption. Also here we show that relaxing this constraint can be beneficial. 

• Truck deployment: this parameter specifies that only aircraft can be used to transport goods 

between airports. In other words: either goods are transported between the pickup and delivery 

points directly by truck, or by transiting at airports, between which only flights are used. In our 

proposed solution we relax this constraint, as we are interested in observing whether using driving 

options between airports can be beneficial in any way to a route’s quality.  

• Payload type: this specifies the type of flight to be used (passenger or freighter). In almost all cases 

SSLC uses both options, except from when particular good types (e.g. lithium batteries) are being 

shipped. 

• Include multiple carriers: this parameter specifies whether different airlines (i.e. belonging to 

different groups) can be used to operate on the same route, given there are more than one flight 

leg. This Boolean is set to false, as SSLC believes switching carrier increases the risk of 

irregularities. In our solution approach, we relax this constraint and show the benefits of 

combining multiple airline carriers on one route.   

• Minimum connecting time: this is a static indication of the minimal time required for tail2tail 

transits. This value depends on the transiting station: for example, Frankfurt airport yields the 

shortest possible tail2tail transit (45 minutes), whereas at other airports, this value is significantly 

higher. This is a static parameter, meaning that based on its values, options with flight transits 

exceeding the threshold are not returned to agents. To avoid throwing away potential good 

routes, SSLC always sets it to the known minimum (i.e., 45 minutes). After receiving the flight 

options, SSLC’S system validates the results, as it needs to double-check whether the transit times 
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per leg are operable in practice, based on the known service times of each hub. This is a rather 

inefficient way of working, as we address in the next section. 

Validation of results 

After the request is sent, the external party fetches and matches its known flight schedules and 

returns up to 150 options. SSLC uses its own systems as to check the individual options’ feasibility. On a 

high level, the following aspects are considered (actions that do not contribute to the overall 

understanding of the validation process are omitted): 

• Check product airline: the carrier airlines are retrieved, and an internal check is performed to 

ensure the selected airlines can actually perform the transport. SSLC has different types of 

contracts with their partners, which grossly specify the type of shipments that can be transported, 

the route operated, etc. Please note that this is different from the preliminary selection of partner 

airlines, as a particular partner may still not be able to operate a route given contractual 

agreements. Flight options containing airlines that do not meet the contractual requirements are 

discarded. 

• Check customs capabilities: based on shipment specifications and the origin/destination country, 

the system checks if customs clearance is needed. If affirmative, then another check is performed 

to see if the airports involved in the flight route have the capability to perform customs (i.e., it 

checks whether SSLC has a customs broker at the airport of interest). 

• Check overall stations capabilities: this step ensures the stations involved in each transportation 

leg can sustain the route; in other words, whether there is at least one partner which can oversee 

the transportation leg given contractual agreements. 

• Check for daily closed flights: additionally, a route cannot be utilized when it contains so-called 

closed flight numbers. The NS&P team has daily contact with the airline partners and can decide 

based on recent information (for example about capacity or delays) to exclude several flight 

options for a particular day. They do so by entering these flights in the system, which then takes 

them into account for this validation step. 

• Check involved goods: this step ensures the goods can be transported by the carriers within each 

option, taking again contractual agreements between SSLC and partner airlines into account. 

• Check aircraft capacity: given the shipment dimensions weight, the system checks whether it can 

be loaded on board of the selected aircraft type. 

• Check stations opening times: per option, for each transit leg, this step ensures the leg takes place 

within the opening times of involved stations. 

• Check transit times: this step checks whether a route’s transits all have sufficient time, which 

depends on the airport visited for the transit. The system checks this using its internal database, 

where a list of required times per hub is kept. 

2.1.3 Limitations of the routing system 
While collecting the information described in Sections 2.1.1 and 2.1.2 we were able to identify 

and discuss, together with the involved stakeholders, several limitations to the way the current routing 

system works. This section briefly reflects upon these limitations and potential solutions. 
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Origin and destination airports 

The first limitation is bound to the selection of the origin and destination airports, in case of 

door2door shipments. The system is currently able to compare just one single combination of airports at 

the time. Moreover, if the input fields are left blank, the airports are selected based on geographical 

distance from the pickup and delivery points. This can be problematic when for example, two minor 

(regional) airports are the closest to the designated pickup and delivery points. Minor airports present 

several disadvantages, like fewer flight connections, less facilities (e.g., customs brokers), etc. To 

overcome this, most agents rely on experience and manually amend the combination of airports to search 

for better (faster, more reliable) options. Although bigger hubs generally yield better results, the risk here 

is to overlook potentially superior flight connections from minor airports by holding this rule of thumb for 

truth. A way to overcome this issue would be to try out different combinations of origin and destination 

airports manually; this, however, can be time consuming and is therefore far from optimal. Hence, the 

problem is twofold: the algorithm only compares one single airport combination at the time and 

automatic airport selection is unaware of relevant aspects like hub size and required facilities.  

To overcome these issues, an intuitive solution would be to send multiple API requests with 

different origin/destination combinations to the flight scheduling entity and to base airport selection on 

a set of logical rules rather than solely geographical distance. There are however still several issues that 

would need to be addressed within this approach; for example, how many separate airport combinations 

would be needed to provide with a better set of flight options, while keeping the computational burden 

within sustainable boundaries. Another one would be which aspects to consider when selecting airports 

to assign to pickup and delivery points and how to prioritize them in order to yield the best combinations. 

Therefore, we identify this as a deliverable for a new solution: a supporting system which selects an origin 

and destination airport using relevant criteria rather than solely distance from pickup/delivery. 

Excessive waste  

Another major drawback identified by the SSLC IT team is that flight route validation cannot be 

done entirely upfront. The consequence is that when checking flight options returned by the scheduler, 

the majority of them is discarded because of infeasibility. As an estimate, about 75% of the received 

schedules from the external planner are thrown away after the validation. This is problematic for two 

reasons: firstly, this is inefficient from a computational point of view. Secondly, this limits the number of 

potential options presented to the agent and thereby lowers the quality of transport solutions offered. If 

instead the validation could be performed upfront, hence by specifying all aspects listed in Section 2.1.2 

into an API request, there would be potential of receiving back 150 valid flight solutions instead of, say, 

40. Figure 5 illustrates this concept, where the upper diagram illustrates the process As-Is while the lower 

one suggests an improving To-Be scenario, where less data is wasted and computational effort is saved. 

This consideration brings us to the final point of discussion of this section.  
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Figure 5: Current (As-Is) versus ideal (To-Be) validation process. As can be seen, validating data upstream would potentially save 
computational effort (repeating the request several times) and reduce the amount of data being discarded. 

Data and algorithm ownership 

The above-mentioned problem is bound to the fact that SSLC does not own neither of the flight 

schedules nor the algorithm combining the schedules. Therefore, it has only partial control on how to 

steer the routing process towards a more efficient workflow. For example, SSLC could ask their partner to 

change their technical implementation as to be able to send all their parameters listed in Section 2.1.2 

upfront. However, there is no guarantee the partner will agree to it. On top of that, we know the 

scheduling partner combines flights as to find the fastest option. Nevertheless, this research argues that 

transit speed is not the only important criterion for selecting a flight route. At this point, the tradeoff SSLC 

would then need to make is between the cost of building an inhouse scheduling algorithm, acquiring and 

owning the necessary flight data, and the benefits this insourcing would yield for their business overall. 

Although the former aspect is not in scope for this research, we can partly enlighten the company on the 

latter by showing the degree by which they can improve their flight routes.  

2.2 Route performance metrics 

2.2.1 KPI selection 
To design a measurement framework to analyze the quality of current routes, we first consult 

company experts on the matter. We do so to identify what objectives are important when it comes to 

route selection and, secondly, learn how these are measured currently at the company. First, we outline 

the panel of experts. As discussed in Chapter 1, this topic affects multiple teams within the organization. 

Among the ones discussed, we identify the Customer Service, NS&P and IT teams as being the ones most 
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directly involved. We choose to pick at least two stakeholders for each of these groups, as to distinguish 

further team-bound perspectives from individual judgement. Within the CS team, we differentiate further 

between regular operations, CC&M and supervising agents, therefore we select at least one expert per 

subgroup. In total, we invite eight employees to contribute to this part of the research.  

Participants are asked to fill in an online form; here, we ask them to state what metrics are used 

or they think should be adopted at SSLC as to measure a route’s quality. From the respondents’ answers, 

we learn three main objectives should be considered: speed, defined as how quickly a shipment can be 

transported from origin to destination; delay, defined as the likelihood to incur delays by operating a 

certain route; and finally operating costs. Although being mentioned in a few responses, we choose to 

exclude the environmental objective from the analysis as we understand that it is still not considered as 

determinant for a route selection as the previous three objectives. 

After collection of the results, we perform a complementary literature research to ensure relevant 

KPIs are not overlooked. Appendix C lists the complete selection of KPIs gathered from the panel of 

experts and found literature. After careful analysis, we select five KPIs: 

• Transit time: difference between actual arrival time at delivery and actual departure time at the 

pickup. 

• Transit time quotient: ratio between route’s transit time and longest transit time registered on 

that particular route. 

• Delivery delay: difference between actual and planned times of final delivery. 

• Total transit delay: sum of all occurred delays throughout the route. 

• Total operating costs: total actual costs incurred to operate the route. 

Before moving on, we need to make two clarifications. Firstly, there is a distinction in what transit 

time and transit time quotient measure. The first measures purely how long it takes to operate a particular 

route, from pickup to delivery points. The other one expresses the variability of a flight route, as it is a 

way to compare the registered transit time of a particular shipment with the worst transit time ever 

registered on that same route. In other words, a route with values closer to zero implies less variable (and 

thus supposedly stabler) flight transits than routes with values closer to one. The second distinction 

concerns the delay metrics. Whereas the delivery delay measures only the difference between planned 

and actual times of delivery (hence for the last leg), the total transit delay takes into consideration all 

delays occurred throughout the route, meaning it consists of the sum of delays of all transportation legs 

throughout the shipment’s route. The reason to use the two metrics is that they also provide different 

perspectives on the stability of a route. In fact, the delivery delay mainly affects the end customer, and 

thereby is indicative for the quality of service provided. Nevertheless, a route which does not have 

(significant) delivery delays could still be problematic if it shows a notably high total delay value. In fact, a 

shipment might experience delay during transit and still arrive on time at the end customer. This affects 

the Customer Service: intermediate delays can require action by the monitoring agents, who need to 

ensure the delay is minimized and sometimes might need to intervene, by re-routing the shipment as to 

get it on time to the customer. The latter implicates additional operational costs for SSLC and workforce 

deployment; it is therefore relevant to account for when wanting to improve operations in general. 
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2.2.2 KPI prioritization 
After having selected the KPIs, we prioritize them to understand their relative importance. This 

way, we seek ultimately to get an all-round measurement of a route’s perceived quality. The Analytical 

Hierarchy Process (AHP) is a decision-making method for prioritizing alternatives when multiple criteria 

must be considered, and arguably one of the most widely adopted in the field of logistics (Nydick and Hill 

1992). Generally, decision-makers compare criteria pairwise, and assign each couple a relative preference 

score (judgement) within a matrix. The judgements are then normalized and used to calculate priority 

scores, which are ultimately used as weights for the criteria. Figure 6 shows the scale we applied for 

assigning judgements to the criteria. 

 

Figure 6: AHP judgement scale (Nydick and Hill 1992) 

In this setting, the KPIs are the criteria and the experts panel consulted in Section 2.2.1 are the 

decision makers. For incorporating multiple perspectives within the AHP, Forman & Peniwati (1997) 

propose two distinguished methods, namely the aggregation of individual judgements (AIJ) and the 

aggregation of individual priorities (AIP). As the names suggest, the former aggregates the judgements 

filled within the matrices, whereas the latter aggregates the obtained priorities from the normalized 

matrices. The discriminator for using either of the two is the heterogeneity of the consulted decision-

making group. When the decision-makers act in a shared interest, it is preferable to use the AIJ; this is 

suited for when the group consists of people of the same organization or with a shared goal. The AIP is 

applied in the opposite case, hence when it presumable the decision-makers might have significantly 

different perspectives and it consequently becomes important to stress the differences. Although we 

acknowledge there would be good arguments to use either method, we choose to apply the AIJ, as at the 

end of the day, all stakeholders involved look at the situation from the perspective of a SSLC employee, 

which arguably surpasses any individual view on the KPIs’ relative importance. 

After collecting the panel’s responses, we build an aggregated matrix by taking the geometric 

mean of the individual judgements. Then, we normalize the matrix and obtain the priority values. Finally, 

following the steps described by Lalla (2020), we check whether the obtained results are consistent. We 

do so by calculating the Consistency Ratio (C.R.). We obtain a C.R. of 0.04, which confirms the weights 

obtained are consistent (CR < 0.10). Appendix D shows the values and calculations in detail (please note 

that five matrices are used, as we register a dropout of three participants at this point). Table 7 shows the 

KPIs with their weights in descending order. Interestingly, there is uniformity in the order of importance 

of the KPIs and their objectives. In fact, following the weights, we observe delay being the most important 

objective, followed by speed and costs. 
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Table 7: Weighted KPIs 

KPI Weight 

Delivery delay 0.259 

Total transit delay 0.246 

Transit time 0.236 

Transit time quotient 0.178 

Total operating costs 0.081 

2.3 Current routes performance 

2.3.1 Data preparation  

Selection of historical order data 

For the route performance analysis, we combine two datasets: the sales and tracking data of 

orders booked by SSLC Netherlands. Each row in the sales data table represents an order and contains an 

all-round overview of the route, including origin and destination, route transit airports, flight carriers and 

operational costs. The tracking data table contains multiple rows per order: each row consists of a 

transport leg for that order. Here we find information like timestamps for planned and actual transit times, 

and the responsible partner for the leg. Figure 7 displays the two tables with their attributes. 
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Figure 7: Initial datasets 

 The tracking dataset contains orders from the years 2021-2022 (up to July 7th, the last date we 

refreshed the data before analyzing it). The sales dataset contains data from 2017 onwards. Combining 

the two datasets means we would either need to drop the excessive datapoints from the sales table or 

extrapolate data from the tracking table. We choose for the former approach, as we deem extrapolation 

of such diverse data to be too complex. By matching the two tables by order number we obtain a new 

combined table containing 11032 unique order entries. Figure 8 displays the end table obtained with its 

attributes. In this new dataset, we introduce several calculated columns: the transit time, delivery delay, 

total transit delay, total operational costs and the number of airport transits. The latter measure is 

introduced as each transit implies additional risk of a disruptive event (e.g., missed connection) and 

therefore might be interesting while assessing risk. The original time values from the sales and tracking 

datasets are all set to local times. Therefore, calculating a time difference for a leg with two different time 

zones would yield incorrect values. To prevent this, we priorly convert all times to Central European Time. 

Next, we transform all calculated time values to minutes. Finally, we change the negative delay values 

(including both delivery and leg delays) to zero. These values are caused by shipments arriving earlier than 

scheduled at destination. Whereas taking negative values into account would distort the calculations of 

the weighted performance score of a route, we still do account for those shipments arriving early in our 

analysis. Section 2.3.3 provides more detail on these routes. 
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Figure 8: Datasets combined 

Grouping order routes by lane 

Before proceeding with our analysis, we inspect the shipment data using the Map visualizer tool 

in Microsoft Power BI. We do so to get a first impression of the geographical collocation of the shipments’ 

origins and destinations and see if we can spot interesting patters. Figure 9 displays a global view of the 

map graph we utilized. Here, a partial sample of randomly shuffled orders are plotted, with their 

corresponding pick-up and delivery points. We omit the type of location from the map as we consider it 

potentially sensitive information. 

 

Figure 9: Pick-up and delivery points, global overview. The scarcity of extra-European points is motivated by missing datapoints 
in the tracking table.  

 By examining the map, two main considerations pop-out. Firstly, most orders are concentrated in 

Europe. We know by fact that Figure 9 is not representative for the complete routing spectrum offered 

by SSLC Netherlands. The scarcity of intercontinental orders in the available data is partly caused by a 

mismatch between the two databases we use. Whereas the sales table includes enough historical 

intercontinental orders, these are not present in the tracking table. This mismatch is caused by the lack of 

a data pipeline between the system where those orders are booked and the tracking database. Therefore, 
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the analysis we carry in this section is unfortunately not exhaustive, considering the number of routes 

that are ignored due to this data mismatch. 

 

Figure 10: Locations sample of pick-up and delivery points, European view. The sparsity of locations makes it hard to sample 
them geographically and thereby to cluster routes. 

The second and most important observation consists of the geographical sparsity of pick-up and 

delivery locations. We can observe this especially if we zoom in the European part of the map, as in Figure 

10. When looking at a route singularly and without further reference points, we can make limited 

inferences on its optimality. Following this observation, it is far more interesting to cluster routes that 

share similar characteristics, like start and end points near to each other, and look at their 

differences/similarities in chosen transiting airports, flights and consequent KPI performances. To clarify 

this, let us take a fictive example. Suppose one route entails a shipment being picked up somewhere near 

the Amsterdam area and being delivered somewhere near Milan. The shipment is picked up, flies from 

Amsterdam to Frankfurt, then from Frankfurt to Milan and is delivered. By looking at this order solely, we 

would not be able to judge whether it is a good route or not. On the other hand, suppose we looked at 

three different orders with similar pick-up and delivery points: two of them stop in Munich instead of 

Frankfurt and display both shorter transit times, less delays but slightly higher costs. This is far more 

informative, as it might suggest flying over Munich would be preferrable than over Frankfurt. Similarly, 

grouping routes in this fashion facilitates comparison between different route clusters. Returning to what 

we observe in Figure 10, we can see that it becomes difficult to see a clear concentration of either pick-

up or delivery points around a specific area. Therefore, we choose not to cluster routes based on 

proximity. Instead, we choose to group all routes that share the same combination of origin and 

destination airport. This approach has two advantages: it is simple to apply and non-arbitrary. 

Furthermore, we can assume most of the routes having the same origin-destination combination will have 

pick-up and destination points in comparable geographical areas. 

Having defined our clustering method, we can calculate each route’s transit time quotient: we do 

so by dividing each route’s transit time by the highest transit time of that routing cluster. Finally, we 

introduce the concept of lane, to distinguish clusters from induvial routes. A route is a unique combination 

of pick-up and delivery points, visited airports and logistic partners involved; a lane is a unique 
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combination of origin and destination airport, which groups all routes sharing that same combination. 

Following this definition, we group the 11032 routes into 1083 different lanes. We notice that 503 lanes 

are composed by single-order routes; following the reasoning discussed in the previous paragraph, we 

decide to exclude them from the analysis, leaving us with 580 lanes. For the remainder of this report, we 

omit the origin and destination airports of each lane, given it is considered sensitive information. 

2.3.2 General performance analysis 

Volume 

Having defined the lanes, we first analyze which ones yield the most volume, hence number of 

orders. To do so, we use the ABC classification method. ABC classification is a widely adopted method 

within the domain of inventory management. Its primary objective is to classify Stock Keeping Units (SKUs) 

as to steer managerial attention; thereby, it channels the effort that should be put in inventory control 

strategies based on each SKU class. SKUs are generally ordered by decreasing turnover value and divided 

in three classes, each class encompassing items that cumulatively yield a percentage of the total turnover. 

A-class items, yielding together most of the turnover, should generally be monitored most closely, 

whereas C-class items should receive the least attention (Teunter, Babai and Syntetos 2009). In this case, 

the SKUs are represented by the flight lanes, and the classification parameter is the number of orders of 

each lane. Hence, we rank the lanes by decreasing number of orders, and classify them as follows: lanes 

yielding a cumulative volume value of 40% of all orders belong to A-class routes, lanes falling between the 

40% and 80% are labelled as B-class routes, and the remainder as C-class. Figure 11 shows graphically the 

results of the analysis: the x-axis displays the percentage of lanes whereas the y-axis shows their 

cumulative order volume. As a result, 14 of the 580 lanes (approximately 2%) yield together 40% of the 

total order volume of the past two years. Interestingly, we observe that lanes behave following the famous 

Pareto principle, which states that within a population, 80% of the consequences (in this case the 

cumulative volume) comes from 20% of the causes (here the number of lanes), asserting an unequal 

relationship between inputs and outputs (Brock 2022).  
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Figure 11: ABC classification of lanes according to cumulative volume. A-lanes yield together 40% of the number of orders and 
are the most frequently used ones, B-lanes an additional 40% and C-lanes the remaining 20%.  

Performance 

We use the same ABC principle to distinguish lanes based on their performance. For each lane, 

we calculate the average KPI values as described in Section 2.2 , then normalize them and obtain a 

weighted score using the weights presented in section 2.2.2 . By observing the lanes’ weighted score 

values, we detect an anomaly in one of the KPIs’ behaviors. In fact, we see that lanes performing relatively 

worse than others have a lower transit time quotient, whereas better performing lanes present a higher 

value for this metric. This is the opposite of what we predict would happen. When selecting this KPI, we 

expected that instable routes would present a higher transit time quotient, as their transit time would 

approach the highest (and therefore worst) transit time possible. We acknowledge, however, that the 

opposite is true. When a lane is stable there is low variation in flying transit times, as generally there is a 

direct connection between origin and destination airport. This low transit time variance naturally yields 

transit time quotient values closer to 1, as the “worst” registered transit time is close to the average value 

for that route. Needless to say, the opposite becomes true for unstable routes. Given that in this case, 

higher values for each KPI imply negative performance on a given lane, using the transit time quotient 

would distort the weighted score values. We overcome this issue by replacing it with another metric. We 

choose to use the transit time coefficient of variation: this is calculated as ratio between standard 

deviation and average of the routes’ transit times within a lane. In this case, instable lanes present more 

variation in transit time, and hence a higher value for this chosen metric. The latter ensures our overall 

performance measurement remains consistent. To ensure the assigned weight for this KPI is still valid, we 

verify this change with the panel of experts. As the panel members do not wish to alter their registered 
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judgments, we keep the same weight as for the transit time quotient. Having adjusted the metrics and 

recomputed the weighted scores, we further inspect our data for eventual outliers. Figure 12 displays a 

box plot containing the lanes’ weighted scores. Of the     data points, we observe  2 outliers, labelled as 

blue dots in the graph.  

 

Figure 12: Identification of outliers using a box plot. The plotted data consists of the aggregated score per lane, lanes with an 
extremely negative score compared to the average are plotted as single points (above the box plot). 

For some lanes we know that the abnormal values are caused by exceptional situations in the 

past, like major strikes or impeditive weather conditions. However, it is hard to distinguish for all outliers 

whether these are caused by such exceptional cases or additionally by incorrectly registered data values. 

In the latter case, it would be good practice to drop the outliers from the analysis. Since this is however 

not clearly the case, we choose to keep them for the data analysis. Even though some values might not 

be fully representative for a lane’s general performance, these outliers still highlight a fact that holds for 

all logistic operations in general: sometimes, things can just go oddly wrong.  

  By examining the lanes in general, we already observe some interesting figures. Of all orders, 

grossly 68% are delivered on time (all routes with a delivery delay greater than zero minutes are 

considered late). More specifically, 17.5% of all orders have a delay greater than 30 minutes and only 

11.6% higher than 1 hour. Another interesting observation is that of all routes that incur a delay during 

transit, about 71% are recovered and delivered on time at the customer. The explanation for this number 

is twofold. Firstly, this is because the routing system adds (apparently sufficient) buffer times between 

transportation legs, as to ensure that intermediate delays do not lead to severe consequences, like missing 

a flight. Secondly, this is also indicative of the amount of effort the CC&M team puts in ensuring shipments 

are recovered and delivered on time. Whereas this number can be seen as positive from a customer 

service perspective, punctuality is arguably not the only important thing in logistics. In Section 2.3.3 we 

analyze these on-time orders in more detail and observe that they can indeed be improved on other KPIs. 
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 Using the same ABC method as illustrated earlier, we make a classification based on the lanes’ 

weighted scores. The C routes include all routes which, cumulatively, take up to 40% of the total weighted 

score sum; these are hence the worst performing routes. Similarly, B lanes lie between the 40% and 80%, 

and A lanes are the remaining and hence best ones. Figure 13 shows the obtained classification. We 

observe that 83 lanes (approximately 14% of the total) are classified as worst performing; 237 (41%) 

perform medium-well and 260 (45%) belong to the best-performing tier. 

 

Figure 13: ABC lane classification from worst to best weighted performance 

 Following this analysis, we intersect the results showed in Figure 11 and Figure 13 to observe the 

distribution of lanes in terms of both volume and performance. Table 8 shows how each volume-based 

group (rows) is distributed among the performance-based groups (columns) of lanes. For example, within 

the A-volume routes, we observe 14% belong to the C performance class (worst), 36% to B (medium) and 

50% to A (best).  

Table 8: Volume-performance comparison. 

 

This table helps us in localizing where SSLC should focus when improving their routing. For 

example, we can argue that the lanes in the AC class need improvement most urgently, as they are the 

most used and also worst performing lanes at the moment. A large majority of medium-busy lanes belongs 

to B-performance class: this also suggests there is room to shift them towards the A-performance group. 
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Interestingly, most of the least intensively used lanes perform relatively well: therefore, we argue these 

are the ones that need least attention right now.  

2.3.3 In-depth analysis 
This section zooms into a selection of best and worst performing lanes. First, we examine the 

routes that are delivered on-time (or earlier). The majority of these routes belongs to the A-performance 

class, which is not a surprise: these routes perform best on delay-related metrics, which are on turn the 

ones with the highest weights on overall performance. We are interested in observing whether other KPIs 

suggest room for improvement. Next, we take the A- and C-performance lanes and compare their KPI 

values, in order to understand the magnitude of the gap between them. Finally, we look at the worst-

performers, and make some considerations. 

Early deliveries 

 As described in the previous section, about 68% of the analyzed routes is delivered (at least) on-

time at the customer. Among these routes, we observe that about 46% is delivered from zero to half hour 

earlier than agreed. Of the remaining orders, 27% are delivered between 30 and 60 minutes earlier, and 

the remaining 27% arrives over one hour earlier at destination. We point out that SSLC does not face any 

directly measurable consequence for deviating from the agreed delivery time. In fact, although 

punctuality and speed of service are essential selling points of the company, a delay in parcel delivery 

does not directly imply cost penalties; nevertheless, delivering systematically late can naturally lead to 

the termination of a business relation. In the same way, SSLC does not gain any type of direct benefit by 

delivering earlier than agreed. Given the overwhelming number of early deliveries, we are interested in 

discovering whether this has consequences for the performance on the other measured KPIs. We 

subdivide these orders into the three groups mentioned based on earliness. Table 9 shows the three 

groups and their KPI performance. The first column shows the average deviation from the agreed time 

per group: please note that the negative sign indicates the delay is negative, hence the orders are 

delivered early. When examining the total transit delay values, we learn that over 94% of the orders incurs 

a delay during transit of at least    minutes. By dividing each route’s transit delay by their number of 

transit legs we obtain their average transit delay per leg. Overall, the average delay per leg is 1 hour and 

45 minutes. Thus, on average, using this value as buffer in between transit legs can prevent a shipment 

from arriving late at the end destination. If we look at the category of lanes represented in this group, we 

see the overwhelming majority belongs to the A-performance class. This does not come as a surprise, 

since these routes perform best on delay-related metrics, which are on turn the ones with the highest 

weights on overall performance. Nevertheless, if we compare them with the orders that are not delivered 

on time, we see that the former group performs better on all KPIs in just 41% of the cases. In particular, 

transit time seems to be the most penalized KPI. This fact yet underlines the tradeoff that needs to be 

made between delivering shipments fast and incurring risks of delay. Finally, if we look again at the on-

time group of routes and divide them according to how early they are delivered (one group consisting of 

orders delivered up to 30 minutes earlier, the second between 30 and 60 minutes earlier and the third 

with more than one hour earlier) we see that the middle group performs best in general. Table 9 displays 

the average KPI values for each group. Interestingly, if we normalize and add them using the weights, 

these suggest that shipments arriving between 30 to 60 minutes early perform better than the other 
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groups. All-in-all, these observations confirm that even for this group of routes, there is room for 

improving KPIs.  

Table 9: Performance of the on-time orders. Orders are divided in three groups based on earliness: 30 to 0 minutes early, more 
than 30 minutes up to 1 hour early and over 1 hour early delivery. Their KPI performance is evaluated and compared. All times 

are shown in minutes; negative values imply earliness w.r.t. the agreed time. 

 

Best-worst gap 

 Table 10 provides a summary of the difference per KPI between A- and C- performance lanes 

(please note all time-related metrics are expressed in minutes, costs in euros). 

Table 10: Comparison current best/worst lanes per KPI. 

 

 The most striking difference resides in the delay-related metrics, which are also being identified 

as most relevant to describe a lane’s quality. Another metric popping up is the difference in flight stability: 

whereas the best lanes have a variance relative to the mean closer to zero, the worst one’s approach one 

on this metric. On the other hand, operational costs incurred do not seem to be significantly different: 

this observation partially dismisses our initial hypothesis that delays might be directly correlated with 

costs. As a next step, we further investigate on factors that can potentially explain the differences in time-

related performance.  

 Surprisingly, the only factor which shows a significant difference is the involvement of customs 

clearance during transit. Whereas only 7% of the best-performing lanes involves customs operations, an 

overwhelming 60% of the worst lanes must deal with them. This is not by chance: when looking further in 

the timestamps data of the C-worst routes, we observe the most frequent delays occur within the customs 

legs. When looking at the involvement of major European hubs, we observe that 19% of the worst lanes 

either depart or arrive at those, whereas for the best lanes this number is just about 29%. Finally, the 

average number of transit airports are similar, with 0.7 transits for the worst lanes and 0.5 for the best 

ones.  

C-performance routes examination 

 To conclude this analysis, we look closer at the worst lanes, to see if more patterns can be 

discovered. The first thing we notice, is that almost half of them (46%) consist of lanes with origin and/or 

destination station in the UK. This might indicate the negative impact of Brexit on SSLC’S operations in 

general. Having identified delay as the worst performing KPI type, we look at each lane to see on which 
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transit leg the most delays occur, where these initiate and what is the scale of the biggest registered 

delays. In general, we observe that the first delays occur quite early in the process, as almost 50% of the 

lanes experience their first delay during pickup, whereas the remainder occurs at export clearance (which 

is usually performed at the airport prior to flight). The average value of the lanes’ initial delay is about   

hours, which is significant: such a delay may easily lead to a parcel missing its departing flight. If we look 

closer to the irregularities registered in the data, it becomes however difficult to distinguish a clear cause 

of the delays.  Delay causers within pickup can be several: it might just be as likely the courier’s fault as 

the customer’s (for example, some customers provide wrong shipping addresses which cause delay). 

Being this not specified in the data at hand, we cannot make any inferences on a specific cause. 

Nevertheless, it is no surprise that the worst delays occur overall during the delivery leg (UK shipments 

represent an exception, here the leg with most delays is the import clearance). As delay initiates early 

during transport, it accumulates creating a snowball effect; this leads ultimately to an average worst delay 

value of approximately 28 hours, considering all worst lanes.  

2.4 Conclusion 
In this chapter, we first answer the question: “How does the current system in use calculate a 

route?”. The process of calculating an air freight route starts with an incoming customer request for a 

transportation job, which includes information about the pickup and delivery locations, goods to be 

transported and the shipment’s availability time. An operations agent enters this information in the 

system, which on its turn interacts with an external data provider and returns a set of possible routes, all 

using the same origin/destination combination and sorted by final arrival time at delivery. There are 

several bottlenecks within this process, including the fact that flight schedules are combined to provide 

only  with the fastest option, disregarding other important aspects such as disruption risk and costs. 

Furthermore, the system limits the variety of options as it is only capable of comparing one combination 

of origin/destination at the time; this affects the quality of the returned options in general.  

Next, we define a set of metrics to measure the routes’ quality and prioritize them, answering the 

research question: “How can we measure routing performance?”. By consulting related works and a panel 

of experts, we define transit time, transit time coefficient of variation, delivery delay, total transit delay 

and operational costs being measures of interest. By applying the AHP we assign weights and combine 

them in a linear weighted function, which integrally measures route performance.  

As a final step, we proceed answering the question: “How do the air freight routes at SSLC 

Netherlands perform?”. In general, we observe that the majority (68%) of orders arrives on time at the 

end customer. Of those orders, a significant number is delivered earlier than agreed. From further 

inspection we learn that these early arrivers do not perform better than other routes on remaining KPIs, 

meaning there is room for improvement. Of all lanes, 14% are being used intensively by SSLC and at the 

same time score the worst KPI values. Given their strategic importance, those are the lanes on which SSLC 

should focus for a performance improvement. Finally, by comparing worst and best lanes, we learn the 

overall gap is significant. In particular, we see the biggest differences in the delay-related metrics: a 

possible explicator of such difference might be related to the involvement of customs, and the choice of 

origin and destination airports in general.    
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Chapter 3 - Literature review 
This chapter collects and summarizes existing literature on two main topics. In Section 3.1 we gather 

information about existing routing problems that resemble the context at SSLC and explain their 

similarities and differences. After this comparison, we select the problem formulation closest to the one 

we are dealing with. As a final point, we state the changes that need to be applied to the formulation 

found in literature as to adapt it to our real-world problem. Thus, in this chapter, we answer the research 

question: “Which routing optimization problem fits best to the context of SSLC?”. Next, having selected a 

base problem, we look further for mathematical approaches to solve it in Section 3.2 . By comparing and 

selecting a solution method, we answer the research question: “What is proposed in literature to solve 

the SSLC routing problem?”. 

3.1 Problem identification 

3.1.1 Multimodal transportation  
We first explore existing areas of study within the field of multimodal transportation. Multimodal 

freight transportation is defined as the transportation of goods carried out by at least two different 

modalities (SteadieSeifi, et al. 2014) and is thus essential to the core business for freight forwarders like 

SSLC. Archetti, Peirano and Speranza (2021) categorize problems based on their decisions:  

• Location problems focus on optimizing the location of facilities within the transportation network. 

• Network design problems optimize the definition of networks in general (location problems can 

be viewed as a specific case of network design problems). 

• Scheduling problems are concerned with the optimization of service, transshipment, yard 

operations and transport schedules. 

• Transportation problems entail deciding on the best set of services used to transport commodities 

from one location to another. 

• Resource allocation problems deal with deciding how resources should be allocated to different 

locations/operations. 

• Routing problems encompass identifying the route taken by either a single transportation unit or 

a set of multiple transportation units (this can be viewed as a specific subgroup of transportation 

problems). 

Additionally, both Archetti, Peirano and Speranza (2021) and SteadieSeifi et al. (2014) distinguish 

planning problems by their decision time horizon. Here we discriminate between strategic, tactical and 

operational problems 

Strategic planning problems 

Strategic planning problems are concerned with long-term decisions, mostly related to 

infrastructures, such as to modifying an existing transportation network or designing a new one (Archetti, 

Peirano and Speranza 2021). (Hub) location and network design problems are the most common types of 

multimodal strategic problems (SteadieSeifi, et al. 2014), followed by scheduling and resource allocation 

problems (Archetti, Peirano and Speranza 2021).  
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Tactical planning problems 

Tactical planning is oriented towards medium-term decisions and is mostly concerned with using 

existing assets optimally. SteadieSeifi et al. (2014) identify two main categories of tactical planning 

problems: network flow planning problems and service network design problems. Archetti, Peirano and 

Speranza (2021) mention network design, scheduling and resource allocation problems of tactical nature 

for air, rail, maritime and multiple modality networks. Macharis and Bontekoning (2004) add a new 

category of tactical problems, which addresses the pricing strategies for the transportation of goods.  

Operational problems 

Operational problems deal with short-term decisions, and are mainly concerned with deploying 

already assigned assets, incorporating real-time requirements. These planning problems are affected by 

dynamicity and stochasticity that are not explicitly addressed at strategic and tactical level, making them 

therefore generally more complex. SteadieSeifi et al. (2014) distinguish operational problems in fleet 

management and resource allocation and itinerary planning problems. The former type is concerned with 

distribution of resources throughout the network, whereas the latter is focused on real-time optimization 

of schedules and/or routes in general. Archetti, Peirano and Speranza (2021) identify operational 

problems of either transportation, scheduling or routing nature. They also mention an overall increasing 

interest in recovery problems, which are concerned with the re-optimization of operations following an 

unexpected planning disruption. 

3.1.2 Operational routing problems in graph representations 
This section focuses on the existing literature regarding operational routing and transportation 

problems. Within the problem context at SSLC, decision-making is on a short-term (routes need to be 

calculated with ad-hoc information), making it an operational problem. Furthermore, a decision on both 

services (which partners to select for a shipment) and route (which airports to be visited) must be taken, 

making it eligible for belonging to both the transportation and routing problem types, following the 

definition provided by Archetti, Peirano and Speranza (2021). 

Eldrandaly, Ahmed and AbdAllah (2008) classify routing problems into two main categories, 

namely path finding and tour construction problems. The first category includes problems whose main 

objective is to find the shortest path between given locations, while minimizing a prespecified cost 

function. These are relatively simpler than the other family of routing problems, which aims at building a 

complete tour in an existing network under a set of constraints. Among these, the Travelling Salesman 

Problem, Vehicle Routing Problem and Bus Routing Problem are well-known subgroups with a rich 

research history. Since our focus is to find a route from a specific starting point to a distinct destination 

(hence, not a tour), this family of problems is disregarded. Both problem categories typically use graph 

modelling techniques to represent their transportation network. Therefore, before proceeding to discuss 

the problem type relevant to our research context, we introduce some concepts of graph modelling. A 

logistic network can be represented by a set of nodes (or vertices) connected by edges (or arcs), which 

altogether form a graph. Conventionally, nodes are used to represent locations; these can be either 

starting, transit or destination points within the transportation network. Edges represent corridors from 

one location to another and are often assigned with a weight. This weight can represent the time, cost or 

any other measure incurred by traversing that edge. A route is then defined as a sequence of visited nodes 
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and thereby traversed edges. Given this definition, we can represent SSLC’S network by a set of nodes, 

which represent either pickup or delivery locations and airports, and edges, which represent connections 

(either by vehicle or plane) between them. In the following paragraphs we discuss how graphs can be 

modelled based on the real-life setting of the problem under examination. We do so to define the type of 

graph we can use to model SSLC’S network, as this helps us in narrowing the search towards the best 

fitting type of path finding problem.  

There are several variants in graph modelling. The first and most significant characteristic is how 

the edges behave: here we distinguish between static or dynamic, and deterministic or stochastic 

networks (Chabini 1997). When the graph is static, the edge weights (hence the cost incurred by traversing 

a particular edge) do not change over time. Alternatively, edge weights can be represented by a function 

of time; in this case the graph is called dynamic or time-dependent (Wellman, Ford and Larson 1995). The 

latter scenario arises, for example, when transportation is performed by means of scheduled services 

(e.g., public transportation). In this case, depending on the arrival time at the starting node, the total 

traversal time is equal to the predefined edge weight plus some waiting time. A network is said to be 

deterministic when the edge weights are known with certainty. When randomness comes into play, they 

are represented by random variables following some probability distribution (Gendreau, Ghiani and 

Guerriero 2015). In most real-life settings edges tend to be rather stochastic: transportation networks are 

generally subject to random factors, like traffic and weather conditions, which hence influence travel 

times and costs (Chabini 1997). Although transportation networks generally behave in a dynamic, 

stochastic fashion, it can be beneficial to simplify them by modelling either static and/or deterministic 

edge weights, as these variants are easier to solve. Dynamic deterministic methods can be reduced to 

their static counterpart by applying time-expansion. The latter means that each time-dependent edge is 

modelled by multiple distinct edges, each one containing the weight value corresponding to a discrete 

time interval. This way, the graph is indeed expanded into a static, deterministic version (Chabini 1997). 

Similarly, stochastic graphs can be simplified to a deterministic variant by taking the estimates of the 

probability distributions for each edge (Miller-Hooks and Mahmassani 1998b) or alternatively the 

lowest/highest value (Miller-Hooks and Mahmassani 1998a).  

In addition to edge behavior, Chabini (1997) distinguishes graph-based path finding problems 

based on their time representation (continuous vs. discrete), whether the First-In-First-Out (FIFO) 

property holds (this implies that departing at a later time from a given node cannot result in an earlier 

arrival time at its successor), whether waiting at nodes is allowed, the time horizon (finite or infinite), how 

many routes are generated (one, all possible, k-routes), the sign of link travel times (integer or real valued) 

and the type of objective (minimum cost, fastest path, most reliable paths, bi- or multi-criteria). A final 

distinction can be made based on the type of routing strategy used. The most classical approach to path-

finding problems dictates calculating a route a priori. This means that the sequence of nodes and edges is 

determined based on known information beforehand; this sequence remains fixed and ignores potentially 

evolving information on the edge weights. Fu (2000) calls this strategy Non-Adaptive Routing (NAR). The 

opposite strategy is to decide at each visited node on which one to visit next. With this Closed-Loop 

Adaptive Routing (CAR), the outcome of a solution approach is a set of rules that dictate which edge to 

traverse next (called policy) based on the information at hand, rather than a fixed sequence of nodes and 

edges to visit. This information regards changing edge weights in dynamic graphs and enables the decision 
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maker to generally make more robust routing choices. A hybrid approach is represented by Open-Loop 

Adaptive Routing (OAR), where an initial route is generated and at each node, the route is re-evaluated 

with real-time information collected during traversal (Fu 2000). 

Starting with the desired output for our path-finding problem, we seek to find a complete route 

a priori. Agents need to be able to offer the route to their customer and then to book all required services 

to operate it beforehand, for which a closed-loop adaptive routing strategy would not be fit. Although we 

acknowledge accounting for real-time information can significantly improve a route’s robustness, we 

choose not to take open-loop adaptive strategies into account, as this would significantly complicate our 

solution approach, besides being out of scope for this research. Instead, to incorporate variation into our 

model we use simulation-based techniques, more detail in Section 3.2.2 . Like in most real-life settings, 

SSLC’S transportation network shows both stochasticity and time-dependency. The former is caused by 

the uncertainty in transport times due to disruptions and delays, whereas the latter is a consequence of 

the use of scheduled flights for transport. However, we point out that modelling such network behavior 

would immediately imply a high degree of complexity. To avoid this, we simplify its stochastic nature by 

using estimations of travel times, costs and delays based on historical data. Hence, we assume edge 

weights are deterministic. On the other hand, we cannot disregard time-dependency, as we need to 

account for the flight schedules. To do so, several approaches (in addition to graph-expansion) exist: we 

discuss them in more detail in the next section. In addition, we assume a FIFO network: this is reasonable 

since, to the best of our knowledge, there is no way a flight can depart later than a previous flight from 

the same starting airport and arrive earlier at the same destination airport. Finally, we allow waiting at 

nodes and assume a finite planning time horizon.  

3.1.3 The Multimodal Route Choice Problem 
In this section we discuss publications found on the Multimodal Route Choice Problem (MRCP). 

The MRCP is a path-finding problem, most commonly formulated as a mixed-integer problem (MIP), 

where the shortest path is sought in a multimodal network, possibly by following either one or multiple 

objectives. The decision variable consists not only in selecting the sequence of edges to traverse in the 

network, but also the mode of transport used at each edge. This aspect is key to our problem setting, 

where we must not only choose which sequence of airports to visit, but also the partner for each 

transportation leg. To scope our research, we focus on a select group of publications. We review only 

MRCP-related works that account for the time component of transportation services within their models. 

Furthermore, we are only interested in problems related to freight transportation, where the route is 

found a priori and that employ quantitative solution methods. Finally, since we are dealing with multiple 

objectives (time, cost and delay risk), we review publications which at least optimize two of the three 

objectives. Some of the reviewed publications seemingly only optimize costs of transportation: however, 

in those cost functions time-bound aspects are included (like extra costs incurred by longer travel times 

or penalties for deviating from the agreed delivery time). Therefore, we take them into account as they 

indirectly minimize travel time as well.  

In the previous section we introduce the need to account for time-dependency in the model as 

we are dealing with scheduled transportation services. The analyzed publications present various 

alternatives for dealing with this aspect, therefore we group them by similarity of approach. Ayed et al 
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(2010), Dong, Li and Zheng (2013), Song and Chen (2007) and Li, Negenborg and De Schutter (2013) use 

graph-expansion. To solve their MIPs, respectively, they use an Ant Colony Optimization (ACO) heuristic, 

(again) ACO, a backward label-correcting algorithm and a sequential Linear Programming approach. There 

is one major drawback in using graph-expansion when modelling time-dependency. With a large planning 

time horizon, this method can lead to a significant increase in the solution space, with consequent 

elevation of the computational effort to find an optimal solution (Nielsen, Andersen and Pertolani 2013). 

This makes this approach effective only to small-sized problem instances. Given the large number of 

departing flights per day per airport and the elevated number of airports within SSLC’S network, using 

graph-expansion would lead to an explosion in the number of modelled edges, thereby increasing the 

model’s complexity. Therefore, we disregard this approach. 

Most reviewed works use time-window constraints instead. Soft time-windows entail that 

traversing edges outside the indicated time intervals is still permitted but yields some kind of penalty, 

whereas in hard time-windows, traversal is rigidly constrained to the set boundaries (Sun and Li 2019). 

Ayar and Yaman (2012) model scheduled services explicitly using hard time-windows constraints. The 

authors’ main contribution is proving that the general MRCP belongs to the class of NP-hard problems, 

for which, especially in large problem instances, heuristic algorithms are often more suited than exact 

solution methods. Their claim is supported by the overwhelming majority of MRCP publications that use 

approximation methods. Of the twenty-three reviewed works, only eight use exact solution methods. Also 

Xiong and Wang (2014) implement hard time-windows to model scheduled services; additionally, they 

also assign a delivery timeslot chosen by the decision maker. They solve the problem with the objective 

of minimizing cost and travel time by using a bi-level multi-objective Taguchi genetic algorithm. Peng, 

Yang and Luo (2020) use hard time-window constraints at nodes; they minimize transportation costs and 

travel time and prove the NSGA II algorithm to be a very suited solution method. Kumar et al. (2014) solve 

a similar problem instance with a two-staged method: first, they apply a nested partition method to obtain 

feasible solutions for both objectives. Second, they propose a Technique for Order Preference by Similarity 

to the Ideal Solution (TOPSIS), a multi-attribute decision making tool, to choose among the feasible 

solutions. Hrusovsky et al. (2016) similarly minimize costs, travel time and emissions, and combine the 

exact solution of the deterministic problem formulation and simulation to improve their solution’s 

robustness. Domuta et al. (2012) formulate a MRCP using hard time-windows to minimize travel time and 

costs. In their proposed algorithm, they take time-dependency into account, and show it is effective for 

solving the problem. Sun and Lang (2015), propose a MIP formulation to minimize costs and carbon 

emissions, and use hard constraints to model the scheduled services’ departure times. Chang (2008) 

proposes an alternative use of hard time-window constraints: he models edge traversal  costs as a 

piecewise linear function with values dependent on the time-window selected at each node. He solves 

the problem by applying a Lagrangian relaxation and reoptimization approach. Finally, Mnif and 

Bouamama (2017a) also use hard time-windows to formulate their MRCP. They minimize costs and travel 

time for a real transportation case in the fertilizers industry in China and use linear programming as 

solution method. 

The same authors formulate an alternative MRCP using soft time-window constraints for 

scheduled services. To ensure timeliness, they propose moving the minimization of penalties incurred by 

delivering either too early or too late within the objective cost function, rather than enforcing timeliness 
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by constraints. They argue this provides more flexibility in the solution-finding process; they solve the 

problem again with linear programming (Mnif and Bouamama 2017b). A similar approach is used by 

Zografos and Androutsopoulos (2008), who minimize the travel time, the number of transits (visited 

nodes) and waiting time at the nodes, the latter being penalized in the cost function. Unlike most similar 

works, they propose a dynamic programming-based label setting algorithm to solve the problem. Chen 

and Lai (2015) use a similar time modelling for their problem based on a Taiwanese transportation 

network.  They choose a multi-objective MIP-formulation, but reduce the problem to a single-objective 

problem using a weighting method and a normalization process and solve it exactly using CPLEX. Archetti 

and Peirano (2019) formulate a type of MRCP tailored to the context of air freight forwarding, making it 

particularly interesting to the research context. In their subsequent publication, they propose a swarm 

intelligence-based metaheuristic to solve it (Angelelli, Archetti and Peirano 2020). Like in the previous two 

works, the authors use soft time-windows and penalty parameters in the cost function to incorporate the 

time-dependency in the transportation networks. Unlike most works, they promote arriving earlier than 

an agreed delivery time with a benefit parameter. Lei at al. (2014) minimize three objectives: costs 

(including penalties for either early or late arrival, like in Mnif and Bouamama (2017a), Chen and Lai (2015) 

and Zografos and Androutsopoulos (2008)), travel time and risk. The latter is modelled by two distinct 

parameters associated with the risk of traversing a particular edge, using a transportation mode, and risk 

of visiting a certain node. The authors formulate the problem as an MIP and propose a swarm intelligence 

heuristic to solve it. Li et al. (2011) propse a genetic algorithm for solving a very similar problem. Given its 

explicit modelling of three objectives which are relevant to our own setting, these papers are of particular 

interest. Finally, Sun and Li (2019) propose an alternative way of including time-windows and time 

dependence, namely by introducing concepts from fuzzy programming to model soft time-windows at 

nodes and fuzzy edge costs. Fuzzy programming is yet another way of dealing with parameter uncertainty; 

parameters can be represented by a triangular set of estimations, taking either the most negative, positive 

and likely variable value. This method is often used when it becomes hard to estimate probability 

distributions for such variables directly, and estimations are ought to be done by means of rather 

qualitative data Sun and Li (2019).  

Unlike the publications mentioned so far, Kaewfak, Ammarapala and Huynh (2021), Kengpol and 

Tuammee (2014), and Koohathongsumrit and Meethom (2020) do not explicitly consider time-

dependency into their models as to represent scheduled services. Instead, they consider methods that 

form and rank possible solutions based on pre-set goal levels for relevant objectives. These goal levels are 

however also formulated in terms of timeliness of transportation. Arguably, this can also be considered 

as an alternative to account for time-dependency within the network. Furthermore, all works provide with 

interesting frameworks that allow to model qualitative risk factors converting them to goals to be 

evaluated quantitatively; therefore, we include them into our review. To solve the problem, Kaewfak, 

Ammarapala and Huynh (2021) and Kengpol and Tuammee (2014) use Zero-One Goal Programming 

(ZOGP) whereas Koohathongsumrit and Meethom (2020) employ TOPSIS.  

So far, we described MRCP formulations differing in optimization objectives, modelling time 

components and solution approaches. Needless to say, there are other ways to discriminate between 

modeling variations, depending on the nature of the network being studied. Sun, Lang and Wang (2015) 

and Sun and Li (2019) both propose interesting schemes for classifying the Multimodal Choice Route 
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Problem. By combining their works with aspects we consider in Section 3.1.2 , we derive the classification 

scheme displayed by Figure 14. The MRCP attributes this scheme presents are: 

• Optimization criteria: can be either a single or multiple cost functions. 

• Transportation service: transport services for travelling on arcs can be flexible (i.e. not time-

bound), scheduled or mixed. 

• Network resources: the network can be subject to capacity constraints or be uncapacitated 

• Network behavior: this describes whether the network presents some form of uncertainty 

(stochastic) or not (deterministic). 

• Commodity integrity: this is whether the transported commodities are splitable at nodes or not 

• Planning strategy:  this aspect is related to whether routes are planned a-priori, dynamically or in 

a hybrid way. 

• Commodity type: whether the transportation problem is about a single or multiple commodities. 

• Consolidation: whether consolidating the commodities is allowed or not. 

 

Figure 14: Classification scheme for the Multimodal Route Choice Problem based on network attributes. The scheme is inspired 
by the works of Sun, Lang and Wang (2015), Sun and Lin (2019), Fu (2000) and Chabini (1997). The checks indicate which 

attribute value is selected to model the SSLC routing problem. 

 

In Section 3.1.4 we make modelling choices to describe our operational problem; these are 

marked  by a check in Figure 14. Using this scheme, we summarize the studied MRCP publications by some 

relevant attributes in Table 11. Please note that all publications transport an unsplittable type of 

commodity and all assume a deterministic network.
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Table 11: MRCP literature summary. Problems are classified according to their objective functions, the transportation services used, network resources, commodity type, 

whether consolidation is allowed, the type of approach to model time-dependency and the utilized solution methods. More detail about this classification in Figure 14. 

Publication Objectives Transportation 
service 

Network 
resources 

Optimization 
object 

Consolidation Time-
dependency 

Solution methods Case study 

(Kaewfak, 
Ammarapala and 
Huynh 2021) 

C, T, R Mixed Uncapacitated Multiple  N Zero-one goal 
programming 

Thai coal transportation 
network (rail, sea, road) 

(Koohathongsumrit 
and Meethom 
2020) 

C, T, R Flexible Uncapacitated Multiple  N TOPSIS Vietnamese distribution 
network (rail, sea, road) 

(Peng, Yong and 
Luo 2020) 

C, T Scheduled Uncapacitated Multiple  H NSGA II Fictive transportation 
network (rail, sea, road) 

(Archetti and 
Peirano 2019) 

C Mixed Capacitated Single ✓ S Swarm based 
intelligence 

Italian air freight 
forwarder (air, road) 

(Sun and Li 2019) C, T Mixed Capacitated Multiple ✓ N Linear programming Road-rail 
transportation of 
hazardous materials 

(Mnif and 
Bouamama 2017a) 

C, T Scheduled Capacitated Multiple  H Linear programming Chinese fertilizer 
transportation network 
(road, rail, sea) 

(Mnif and 
Bouamama 2017b) 

C, T Mixed Capacitated Single  S Linear programming Chinese fertilizer 
transportation network 
(road, rail, sea) 

(Hrusovsky, et al. 
2016) 

C, T, E Scheduled Capacitated Multiple  H Hybrid (exact and 
simulation) 

European distribution 
network (rail, road, sea) 

(Chen and Lai 2015) C, T Mixed Capacitated Multiple  S CPLEX Taiwanese freight 
forwarders (road, rail) 

(Sun and Lang 
2015) 

C, E Mixed Capacitated Single  H Linear programming Chinese export business 
(rail, road) 

(Kengpol and 
Tuammee 2014) 

T, R, E Flexible Uncapacitated Multiple  N Zero-one goal 
programming 

Distribution network 
between Thailand and 
Vietnam (road, rail, sea 
and air) 

(Kumar, et al. 2014) C, T Scheduled Capacitated Multiple  H Nested partition and 
TOPSIS 

International air-based 
transportation network 
(air, road) 

Objectives: Costs (C), Travel time (T), Number of transiting nodes (N), Waiting time at nodes (W), Risk (R), CO2 emissions (E). All objectives are minimized.            

Consolidation: allowed (✓), not allowed ().                       

Time-dependency: Hard time-windows (H), Soft time-windows (S), Graph-expansion (G), Not used (N). 
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Table 11 (continued) 

Publication Objectives Transportation 
service 

Network 
resources 

Optimization 
object 

Consolidation Time-
dependency 

Solution methods Case study 

(Lei, et al. 2014) C, T, R Mixed Capacitated Single  S Swarm intelligence 
algorithm 

Fictive transportation 
network (road, rail, sea 
and air) 

(Xiong and Wang 
2014) 

C, T Mixed Uncapacitated Multiple  H Taguchi genetic 
algorithm 

Fictive transportation 
network (road, rail, 
sea) 

(Dong, Li and 
Zheng 2013) 

C, T Mixed Capacitated Single  G ACO heuristic Simulated scenarios 
(road, rail, sea and air) 

(Li, Negenborn 
and De Schutter 
2013) 

C, T Flexible Capacitated Multiple  G Linear programming Fictive transportation 
network (road, rail, 
sea) 

(Ayar and Yaman 
2012) 

C Mixed Capacitated Multiple ✓ H Linear programming Third partly logistics 
distribution network 
(sea, road) 

(Domuta, et al. 
2012) 

C, T Scheduled Capacitated Multiple ✓ H Martin’s algorithm Fictive transportation 
network (unspecified 
transportation modes) 

(Li, et al. 2011) C Flexible Capacitated Single  S Genetic algorithm Intercity transportation 
network (unspecified 
modes) 

(Ayed, et al. 
2010) 

C Scheduled Uncapacitated Single  G ACO, Dijkstra  - 

(Zhang and Peng 
2009) 

C, T Mixed Capacitated Single  H NA - 

(Chang 2008) C, T Scheduled Capacitated Multiple  H Lagrangian relaxation 
and reoptimization 

Fictive transportation 
network (unspecified 
modes) 

(Zografos and 
Androutsopoulos 
2008) 

T, N, W Scheduled Uncapacitated Single  S Label correcting 
algorithm 

Athens urban transport 
network (road, rail) 

(Song and Chen 
2007) 

C Scheduled Uncapacitated Single  G Label-correcting 
algorithm 

Fictive transportation 
network (sea, air) 

 

Objectives: Costs (C), Travel time (T), Number of transiting nodes (N), Waiting time at nodes (W), Risk (R). All objectives are minimized.               

Consolidation: allowed (✓), not allowed ().                       

Time windows: Hard (H), Soft (S), Graph-expansion (G), Not used (N). 
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3.1.4 Problem selection and adaptation 
This section explains which problem formulation we take as basis to model SSLC’S routing 

problem, as well as the adaptations we make to fit it to our context. Within literature, the Multimodal 

Route Choice Problem seems to best resemble what is required at the company. In particular, we choose 

to take the publication by Lei et al. (2014) as benchmark. The authors propose a multi-objective MIP, with 

the objectives of minimizing transit time, operating costs and risk of transportation disruptions. Some 

model characteristics by Lei et al. (2014) are not applicable to our case, for which we modify or discard 

them. Above all, the authors’ model assumes a capacitated network. Although in reality flights do indeed 

have capacity restrictions, most of the Express shipments handled by SSLC can be loaded on board due to 

their limited size. Furthermore, we use historical flight data to construct flight schedules as input to our 

model: from this data alone, it becomes hard to make realistic estimations of the capacity limitations. 

Therefore, we assume the network is uncapacitated. Additionally, the authors do not provide with a flow 

constraint to generate a path between origin and destination; we correct this mistake and add the 

constraint to our model. Figure 14 summarizes our modelling choices for the MRCP: we optimize multiple 

(three) functions, model mixed transportation services, assume an uncapacitated network, with time-

windows and deterministic arc weights, the transported commodities are single, cannot be consolidated 

nor split and with an a-priori routing strategy.  

3.2 Solution approach 

3.2.1 Solution approaches for multi-objective optimization problems 
This section discusses possible approaches to solve the selected problem type. As anticipated, our 

MRCP deals with multiple objectives, making it a multi-objective problem (MOP). When dealing with such 

problems, it is very uncommon that a solution exists such that it is optimal for all objectives, as these 

might be conflicting. To deal with this, two approaches can be taken: either to reduce the MOP to a single-

objective problem, hence with a single solution, or to consider all objectives simultaneously, leading to 

multiple possible solutions. In the former case, we use scalarization or criterion-based methods to 

aggregate the optimization objectives; in the latter case, we either use indicator-based methods or Pareto 

optimization. A solution is Pareto optimal when it cannot be improved on any objective function value 

without deteriorating either of the remaining ones. Furthermore, we say a solution Pareto dominates 

another when it improves the other solution on at least one objective (Talbi 2009). Hence, multiple Pareto 

optimal solutions may coexist; which one is preferred depends on the decision maker’s (DM) preference. 

The Pareto front consists of a graphical representation of all non-dominated (thus optimal) Pareto 

solutions. Indicator-based methods differ from Pareto optimization in the fact they use key performance 

indicator values to rank solutions rather than using the concept of dominance (Talbi 2009). When applying 

scalarization, several methods exist. Here we briefly explain the most common ones according to Talbi 

(2009): 
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• Weighted sum: objectives are assigned a weight (the weights add up to one, and reflect 

the relative preference on the objectives by the DM). To avoid disproportionalities, 

objectives with different units of measurement are normalized by their upper bound 

values. Then, a single objective is obtained as weighted sum of the original objectives and 

the problem is solved by either exact methods or approximations, with one optimal 

solution. 

• ε-constraint: this method solves the problem by optimizing one objective while keeping 

the others as constraint (using a threshold value ε). The ε-value reflects the DM’s 

preferences; the major advantage of this approach is that its value is not necessarily 

needed upfront to solve the problem.  

• Goal programming: in this approach, the decision maker pre-sets target goals for each 

objective; the solving program then finds a solution that minimizes the deviation from 

such goals. This deviation can be weighted to model the relative importance of the 

objectives (Kengpol and Tuammee 2014). 

Finally, we have criterion-based methods. Within this category, the lexicographic method reduces 

a MOP with n objectives into a n-staged single-objective problem. It does so by solving the problem for 

each separate objective sequentially, following a decreasing priority order. The most important objective 

is treated first; then, the problem is solved for the following one by adding an additional constraint which 

ensures the new solution does not deteriorate the obtained value of the previously treated objective. The 

advantages of this method are its simplicity and the fact that objectives do not need to be normalized; 

the major disadvantage is that n problems need to be solved, requiring additional computational time 

(Isermann 1982).  

Which method should be selected depends on the DM’s preferences with regards to the functions 

being optimized. According to Talbi (2009) there are three possible moments when a DM can express its 

preference relative to the optimization objectives. A priori methods assume the DM’s priorities are known 

beforehand, hence there is enough knowledge in place to rank the problem’s objectives following some 

utility function and then solve it. When this is the case, it is preferrable to reduce the problem to a single 

objective with either scalarization or criterion-based methods, as optimizing for just one objective is 

simpler (Censor 1977). Generally, it is unlikely the DM knows beforehand which option is preferred. In the 

latter case, a posteriori methods can be employed in order to approximate3 the Pareto front. The DM can 

then examine it and select either solution. Scalar methods like weighted sum and ε-constraint can still be 

used to approximate the Pareto front: by altering the weights or ε-constraint values one generates 

multiple solutions, approximating the Pareto front. The downsize is that typically, scalar methods only 

provide with limited regions of the front (Amine 2019). Typically, Pareto optimization is then used. 

Interactive approaches are a way-in-between where the DM progressively expresses its preferences as 

the front is approximated (Talbi 2009).  

 
 

3 Due to the complex nature of most MOPs, it is difficult to obtain the complete Pareto set, for which the obtained 
front is an approximation (Amine 2019). 
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To select the most appropriate method, we discuss the solution requirements with the company. 

Starting with the number of solutions, we observe that booking agents would require having multiple 

alternatives. This is motivated by the fact that distinct customers have differing priorities. Agents should, 

for example, be able to offer routes minimizing risk for the risk-averse customer, while offering the fastest 

route to the one valuing speed of delivery. At the same time, other customers have no specific priorities 

and rather prefer having a balanced option, for which solving the MRCP for the three objectives separately 

would not be exhaustive enough. We argue that presenting too many options would not be beneficial 

either. As discussed with several stakeholders, presenting the complete Pareto front to agents (or to the 

customer) to select a solution would only cause confusion. This evaluation is supported by the work of 

Votov and Mettien (2008), who describe the latter as being the major pitfall of a posteriori decision 

making. Following a goal-programming approach in this context is rather difficult, as each transportation 

order may vary on multiple routing components, making it therefore hard for agents to estimate target 

levels for each objective. Furthermore, agents are required to offer a route in short time upon receiving 

the order, meaning the process should take the least effort possible by the decision maker. This 

consideration is valid enough to rule out interactive and a posteriori approaches. In fact, the company’s 

management stressed the necessity of providing some guidance to the agents, by indicating which 

solutions would be the most preferred. Given we have already obtained such preference information 

using the AHP in Chapter 2, we argue it is appropriate to use it. In short, multiple solutions are required 

(but not too many), at least one leaning more towards either objective, and one balancing alternative; 

furthermore, the route computation must be done quickly, thereby should require the least possible input 

from the decision maker. With these considerations, we choose to use the linear weighted method, by 

which we reduce our MOP to a single-objective problem and solve it for four weight combinations: one 

purely risk-, travel time- or cost-centric and one balanced, using the obtained AHP weights.  

3.2.2 Metaheuristics and hyperheuristics 
To solve our problem we can choose between exact and approximate solution types. Exact 

methods enable us to obtain an optimal solution with certainty or at least to return the so-called 

optimality gap, which is a measure of distance between the obtained solution and the global optimum. 

Exact methods have the disadvantage of being computationally more demanding, meaning they run 

slower on complex or big-sized problem instances. As the word suggests, approximation methods yield 

solutions that only approximate the optimal value: however, their main advantage is the increased 

computational efficiency which makes them suited for bigger and more complex problem instances (Talbi 

2009). The MRCP belongs to the NP-hard class of problems (Ayar and Yaman 2012). Moreover, ours has a 

considerable size already if one considers the European hubs and flights only. Given the latter two 

considerations and the fact the solution needs to run fast and often on a daily basis, we argue 

computational efficiency is more important in this case than the solution’s quality. Therefore, we 

disregard exact solution methods and discuss only approximations. 

Approximate methods can be divided into approximation algorithms and heuristics. The former 

provide solutions whose quality and computational time are provable, in contrast to the latter category. 

A shortcoming, however, of approximation algorithms is that they are often ineffective in realistic-sized 

problems (Talbi 2009); for this reason we disregard them. Within the heuristics group, we are particularly 
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interested in metaheuristics: these are problem-agnostic solving methods that, due to their effectiveness 

and ease of adaptation to the problem at hand, are particularly suited for solving complex problems. Talbi 

(2009) classifies them in single-solution (S-) and population (P-) metaheuristics. S-metaheuristics start 

with one initial solution and then try to explore neighbor solutions to improve it. A neighbor is defined as 

a solution that can be generated by altering a decision variable value contained within a starting solution, 

typically with a move or swap operation. P-metaheuristics start with a set of solutions and develop them 

to reach a point as near to the global optimum as possible. In all types of metaheuristics, a central aspect 

is the tradeoff between intensification (hence directed search towards the best performing solutions) and 

diversification (the exploration of unknown, potentially promising regions of the Pareto set). When too 

much emphasis is put on the former, one may end up in a local optimum; this is a solution which seems 

of good quality but could be potentially dominated by an unexplored solution. On the other hand, when 

too much diversification is performed, the heuristic might spend too much time in solution areas which 

are not promising. Generally, P-metaheuristics lean more towards diversification strategies, whereas S-

metaheuristics are more of intensification nature (Talbi 2009).  

P-metaheuristics 

The most widely adopted P-metaheuristics are either evolutionary or swarm intelligence 

algorithms (Talbi 2009). Of the former group, Non-dominated Sorted Genetic Algorithm (NSGA II), 

Strength Pareto Evolutionary Algorithm (SPEA2) and Indicator-Based Evolutionary Algorithm (IBEA) are 

the most popular, whereas Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are the 

most represented for the latter group. Lei et al. (2014) use a hybrid approach of the latter two algorithms 

to solve the MRCP. Generally PSO is a simple approach, which requires less parameters compared to the 

remainder of P-heuristics. Its drawbacks are that it gets stuck easily in local optima and is not particularly 

suited for complex combinatorial problems (Lei, et al. 2014). On the other hand, ACO is more suited for 

combinatorial MOPs as it displays robust solutions due to its positive feedback mechanism. However, it 

generally suffers from a low running time (Lei, et al. 2014). NSGA II is arguably the most widely adopted 

MOP genetic algorithm. Genetic algorithms are inspired from the evolutionary theory (survival of the 

fittest): by combining two good performing “parent” solutions, it is assumed better “offspring” is 

generated; mutation operations are then performed on the offspring to enforce diversification (Talbi 

2009). NSGA II, SPEA2 and IBEA all operate using these crossover and mutation operations. For 

conciseness, we do not describe their logic in detail; to the interested reader we recommend the works 

of Deb (2011) for the NSGA II, Hong et al. (2018) and Zitzler and Künzuli (2004) for IBEA, and Potti and 

Chinnasamy (2011) and Liu and Zhang (2019) for SPEA2.  

Talbi (2009) points out that generally, S-metaheuristics are more suited for single-objective 

optimization, whereas P-metaheuristics are a better fit to Pareto optimization. In fact, P-based heuristics 

tend to run slower, as they delay convergence to a solution because they are focused on finding 

unexplored regions of the Pareto front within their initial iterations. This results in a more complete 

solution spectrum, however too much diversification at the start may lead to worse solutions than the 

ones found by S-heuristics. Jiang et al. (2021) illustrate this concept by comparing the performance of 

NSGA II with a Multi Objective Tabu Search (MOTS) on a Vehicle Routing Problem, showing favorable 

results for the latter, as it converges earlier and proves to be more efficient in exploring the solutions 
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neighborhood. Given we reduce our problem to a single-objective variant and thereby do not require 

approximating the entire the Pareto set, we shift our attention to S-metaheuristics.  

S-metaheuristics 

Here we discuss the three most widely adopted S-metaheuristics: local search, simulated 

annealing and tabu search (Talbi 2009). Local search starts with an initial solution; at each iteration, a 

heuristic replaces the current solution by a neighbor that improves the objective function. The algorithm 

stops once all candidate neighbors are worse than the current solution. The main problem with basic local 

search is that it easily gets stuck at local optima. The Greedy Randomized Adaptive Search Procedure 

(GRASP) overcomes this issue by introducing a casual component. Greedy heuristics build solutions by 

adding elements that contribute best to the objective function. In GRASP, the next element is chosen 

randomly from a list of candidates, thereby introducing diversification. Although being simple and easily 

adaptable to any problem, GRASP has the major disadvantage of cycling: the same solution may be 

revisited several times, which is consequently computationally inefficient (Talbi 2009). Tabu search (TS) 

improves this by keeping a (tabu) list of already explored solutions: this way, it avoids accepting a solution 

that is kept on the list and forces the algorithm to explore further. At each iteration, the list is updated 

with a newly utilized move and the oldest one in the list is removed. The algorithm therefore accepts 

worse solutions to explore new solution spaces; the absolute best solution is stored for when the 

algorithm terminates (Talbi 2009). Overall, tabu search has proven to be very effective in diverse 

optimization problems (Marett and Wright 1996). However, its performance heavily depends on 

parameter settings (e.g., the length of tabu list, whether it should be static or dynamic, the stopping 

criterion, etc.) (Xia and Fu 2018). Simulated annealing (SA) also allows the degradation of a solution; this 

is done with decreasing probability. At the start of the algorithm, almost all solutions are accepted, 

including worsening ones; as it moves towards the maximum iterations this worse-acceptance probability 

decreases until only strictly improving solutions are accepted. SA differs from TS as it is a memoryless 

algorithm: information gathered during the search is not used (Talbi 2009).  

Hyperheuristics 

Besides metaheuristics, we may also consider the use of hyperheuristics. This class of solution 

methods chooses between several given heuristics at various decision points in an optimization problem. 

Well-known hyperheuristics are Large Neighborhood Search (LNS) and Adaptive Large Neighborhood 

Search (ALNS), which combine the use of destroy and repair heuristics to explore different neighborhoods 

starting from an initial solution. Destroy heuristics alter a given solution’s attributes, making it infeasible. 

Repair heuristics then alter the solution making it feasible again, thereby repairing it (Pisinger and Ropke 

2010). Another well-known method is Variable Neighborhood Search (VNS). Instead of initially destroying 

solutions, it alternates different heuristic operators to switch between neighborhood structures. A 

common denominator of these methods is randomness: for all three, the evaluation and selection of 

neighbor solutions happens stochastically (Hansen, N. and Brimberg 2010). The main advantage of 

hyperheuristics over metaheuristics is their capability of exploring even larger solution spaces, making 

them particularly suited for both large and complex mathematical problems. A downsize, however, is their 

increased complexity (Pirim, Bayraktar and Eksioglu 2008). 
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3.2.3 Solution approach 

Tabu search 

Given the considerations made above, we argue that both TS and SA are valid metaheuristics to 

solve our problem. We choose to use the former; here we describe the method in more detail and 

motivate the reason for our choice.  

Like local search algorithms, tabu search requires an initial solution at the start; the solution is 

then first altered using a neighborhood operator. The latter can be defined as an operation which changes 

a solution’s attribute, such that a new solution results from it. Common operator moves are swap (which 

swaps a solution’s attribute with another one), add (which adds a new attribute to the solution) or delete 

(which deletes an existing attribute) (Glover and Taillard 1993). Within tabu search, the neighborhood is 

explored in a deterministic way. From the generated neighborhood, the solution yielding the best 

objective value is selected and compared to the current best one found so far. If it improves the current 

best, the found solution is registered as new best. Next, the same heuristic operation is applied to it and 

a new neighborhood is generated. This is done until a certain stopping criterion is met. A potential danger 

of deterministic neighborhood exploration is cycling, which entails keeping searching for a better 

candidate using the same search direction. To avoid the latter, a tabu list is kept. This list keeps track of 

moves (Glover and Taillard 1993) or entire solutions (Talbi 2009) of past selected neighbors. Solutions or 

moves in the list are tabu, meaning that a neighbor solution in the list cannot be selected as new candidate 

best solution. Whenever storing moves, an exception to this rule is the so-called aspiration criterion: for 

example, if a move is on the tabu list but it improves the best-found value so far, then this solution can 

still be selected. At each iteration, the tabu list is updated: the newly selected neighbor (or move) is added 

to the list and, generally, the oldest registered one is removed. Different rules to regulate the list’s length 

can be found in literature. For example, a list may have a static, maximal length or a dynamic length; the 

latter one is then dependent on the occurrence of improving solutions found (Talbi 2009). 

From the works examined in Table 11 we infer that this method has not been used yet to solve 

the MRCP. Nevertheless, tabu search has proven to be one of the best performing solution methods on a 

large scale of combinatorial optimization problems. Pirim et al. (2008) mention, among others, it has been 

successfully implemented to solve notorious NP-hard problems like job-scheduling, vehicle routing and 

capacitated arc routing problems. Teng et al. (2003) compare TS and SA on the vehicle routing problem 

with stochastic demands, with results in favor of the former. Particularly, their results show that the 

superiority of TS increases with the problem size. Arostegui et al. (2006) confirm this observation when 

comparing the performance of tabu search, simulated annealing and genetic algorithm on the facility 

location problem.  

Overall, TS tends to be faster than SA as it proceeds more aggressively towards an optimum. 

Indeed, TS spends less time in regions with unpromising solutions than SA, on the premise that at each 

iteration it makes the best move available (Glover 1990). Furthermore, SA may not be stopped at any 

desired moment (Michiels, Aarts and Korst 2007) whereas TS can. This allows eventually to stop the 

algorithm once a feasible solution is found, which might turn advantageous for problems of very large size 

and with a solving time limit. In our problem setting, we argue that finding a good solution in reasonable 

time is preferred over finding an excellent one in more time; to this end, TS appears to be more suited. 
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Besides the running time, SA poses more challenges in terms of parameter tuning, as the number and 

variations of settings are greater than for TS and proper tuning would require some prior knowledge of 

the Pareto curve (Amine 2019), which we do not have. Finally, TS explores the solution’s neighborhood 

deterministically: this makes the algorithm feasible to reproduce results on a particular problem instance 

(Brandão and Eglese 2008). In our case, we solve the same problem instances using different weights 

configurations for the considered objective functions (more detail in Chapter 4). We are therefore also 

interested in analyzing how the relative importance of speed, reliability and cost influences the model’s 

routing choices. Therefore, to make better informed inferences, it is important to limit the effect of 

randomness on the obtained outcomes.  

 Finally, we acknowledge that hyperheuristics methods also present valid alternatives to solve the 

problem formulation. Nevertheless, the usage of a metaheuristic does not necessarily exclude the other. 

Indeed, several works exist showing effective implementations of hybrid methods. Particularly interesting 

are the works of Belhaiza et al. (2013) and Archetti et al. (2005), which both combine TS with VNS into a 

multiple neighborhoods tabu search (MNTS) for solving respectively a capacitated arc routing problem 

and team orienteering problem. Combining different neighborhood operators can be advantageous for 

our problem setting, as we discuss in Section 4.3 in detail. Therefore, we additionally use a MNTS method. 

Simheuristics 

The chosen model and solution method assume a deterministic problem setting. As we discuss in 

Section 3.1.2 , the real-life routing problem is subject to uncertainty. Due to this uncertainty, solutions 

generated may be sensitive to slight changes in the model parameters, diminishing their overall 

robustness. Simheuristics comprise a combination of metaheuristics and simulation approaches, to 

include stochasticity in the solution generation without overcomplicating the model formulation (Juan, et 

al. 2015). Within the simheuristics framework, stochastic problems are reduced to their deterministic 

counterpart, by taking the estimates of parameters subject to uncertainty. Next, a metaheuristic is run to 

find a set of solutions. For each solution, a reduced number of simulation iterations is run to evaluate its 

robustness. Parameters are sampled by their known probability distributions and used to evaluate the 

objective cost function of the solution. Based on the results, the solutions are re-ranked, and a reliability 

analysis is carried out to show the stability of each instance given parameter variability. One major 

advantage of this approach is that not only the quality of a solution is evaluated, but also the risk it poses 

when subject to variation. Furthermore, due to its relative simplicity, simheuristics provides an interesting 

alternative to more complex methods like dynamic or fuzzy programming, as it is capable to provide 

solutions of good quality to real-sized problems in reasonable computing times (Juan, et al. 2015). Since 

we choose to solve the problem with a metaheuristic, using a simheuristics approach is a natural step to 

account for its stochastic nature; hence we choose to adopt a tabu search – simheuristics solution 

approach.  

3.3 Conclusion 
In this chapter, we first answer the question: “Which routing optimization problem fits best to the 

context of SSLC?”. To formulate the problem, we choose to model it as a Multimodal Route Choice 

Problem following the formulation presented by Lei et al. (2014). Its objective consists of finding an 
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optimal sequence of edges to traverse within a graph, which represents the transportation network at 

hand, and selecting the modality at each edge traversal, as to minimize the travel time, costs and risk of 

disruption. Furthermore, we choose to use time-windows to model scheduled services and assume a 

deterministic, static arc behavior.  

Next, we answer the question: “What is proposed in literature to solve the SSLC routing 

problem?”. First, to deal with the different objectives, we use a scalar weighted method; we hence weigh 

the objectives and combine them into one according to different utility functions. To solve the problem, 

we choose to implement a tabu search metaheuristic. In addition, given the stochastic nature of the 

problem, we incorporate simulation to increase the robustness of the generated solutions. Our chosen 

approach yields two major academic contributions to the field of Operations Research. First, Lei et al. 

(2014) use parameters to actively model risk of visiting node sequences by either transportation mode; 

yet they do not provide with a method to estimate such risk factors. To the best of our knowledge, there 

is no literature providing with such a framework applied to this routing context. Therefore, we contribute 

to the knowledge status quo by researching how such risk parameters can be properly elicited. Secondly, 

we were not able to find tabu search-based solutions to the MRCP. Our second contribution is to assess 

the effectiveness of this solution method to this class of problems.  
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Chapter 4 – Solution design 
This chapter answers the research question: “How should the solution approach be designed?”. As 

discussed in Section 3.1.4 , we alter the MRCP formulation by Lei et al. (2014) as to adapt it to our own 

context. Section 4.1 starts this process by describing the problem and its scope, then proceeds on stating 

the solution requirements and its assumptions. Based on this information, Section 4.2 presents the 

model’s mathematical formulation. Section 4.3 discusses the tabu search metaheuristic used to solve our 

MRCP. Section 4.4 formulates our setup to test the model. This entails describing which lanes of the ones 

analyzed in Section 2.3.2 we select as test sample and how relevant model parameters are estimated from 

the available data. Finally, Section 4.5 describes the simheuristic procedure we use to include stochasticity 

into the solution approach. 

4.1 Problem formulation 

4.1.1 Problem description 
The problem at hand consists of finding a route between a given pickup and delivery point, 

starting at an indicated time of shipment’s availability. This process implicates making two decisions: 

choosing the sequence of airports visited between the pickup and delivery, and which carrier is used for 

each transportation leg. These two decisions should minimize the total transportation time, total 

transportation costs and overall risk of incurring delays. The network consists of 𝑛 ∈ 𝑁 nodes; we 

distinguish here between the first- and last- mile locations (pickup and delivery points, 𝑝, 𝑑 ∈ 𝑁) and 

airports (𝑎 ∈ 𝐴 ⊂ 𝑁). Moreover, we also indicate the first and last airports visited, respectively the origin 

and ending airports (𝑜, 𝑒 ∈ 𝐴). As discussed in Chapter 2, the choice of these two influences the number 

and types of available flight options and therefore the overall quality of a route; furthermore, choosing 

the best start- and end-airports is crucial as additional operations like export/import preparation and 

customs clearance are performed here. Carriers for transportations between nodes (𝑘 ∈ 𝐾) are 

subdivided in vehicles (𝑣 ∈ 𝑉 ⊂ 𝐾) and flights (𝑓 ∈ 𝐹 ⊂ 𝐾). The former can be deployed both for 

transportation between pickup/delivery and airports and inter-airport transportation, the latter only 

between airports. Indeed, we include the possibility of using vehicles for transportation between airports, 

as to observe whether this could be interesting for SSLC to deploy on certain routes. To model time, we 

use hours over a predefined time horizon (𝑡 ∈ 𝑇).  

The travel time, cost and risk incurred on a route come from three sources: the transportation 

legs between nodes, the service times at airports and, eventually, customs clearance operations. 

Therefore, we use one objective-specific parameter for each of these three components. For 

transportation legs, we indicate 𝑡𝑖𝑗
𝑘 , 𝑐𝑖𝑗

𝑘  and 𝑟𝑖𝑗
𝑘 as travel time, cost and risk incurred by travelling between 

nodes 𝑖 and 𝑗 with carrier 𝑘. Similarly, parameters 𝑠𝑖, 𝑐𝑖, and 𝑟𝑖 indicate the service time, cost and risk of 

transiting at node 𝑖. Besides these three parameters, we also account for the time needed for performing 

export operations at the origin airport 𝑜 and import operations at the ending airport 𝑒. These include all 

activities necessary to ensure a shipment is ready to leave and enter a country (including packing, cross-

examining documentation, and securing the shipment), and thereby require longer than transit 

operations, which are mainly focused with tail2tail transportation. We indicate the time needed for either 
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export/import operations at airport 𝑖 with parameter 𝑒𝑥𝑖𝑚𝑖. Finally, 𝑐𝑠𝑎, 𝑐𝑐𝑎 and 𝑐𝑟𝑎 indicate the time, 

cost and risk of performing customs clearance at airport 𝑎. Please note the latter is relevant only at the 

origin and destination airports, as we assume customs clearance can only be performed there, and 

whenever a shipment needs clearance (which we indicate using the Boolean parameter 𝑐𝑢). By export we 

indicate clearance performed at the origin airport, while import is done at the ending one.  

When selecting nodes and edges, we need to account for time constraints. In their formulation, 

Lei et al. (2014) do not account specifically for scheduled transportation between nodes; here we choose 

to model this aspect using cut-off times, following the work by Sun and Lang (2015). With 𝑑𝑒𝑝𝑖𝑗
𝑘we indicate 

the cut-off time by which the shipment needs to be ready for loading at the gate. If the shipment arrives 

past that time, it cannot board its flight. Vehicle transportation is flexible, therefore we set their cut-off 

times always equal to the value the shipment is ready for departure. Besides transportation, we also need 

to account for office hours for airport operations and customs clearance. We model them using time 

windows: [𝑜𝑝𝑠𝑜𝑝𝑒𝑛𝑎; 𝑜𝑝𝑠𝑐𝑙𝑜𝑠𝑒𝑑𝑎] model the opening and closing time of general airport services at 

airport 𝑎. Similarly, [𝑐𝑢𝑠𝑡𝑜𝑚𝑠𝑜𝑝𝑒𝑛𝑎; 𝑐𝑢𝑠𝑡𝑜𝑚𝑠𝑐𝑙𝑜𝑠𝑒𝑑𝑎] model the opening and closing time of the 

customs office at airport 𝑎. If a shipment arrives outside these time-windows, it must wait until the next 

day to be serviced. We notice that some airports like major hubs operate 24/7 and thus can always service 

a shipment; in this case, we do not model time windows. The choice of which carrier to operate on a 

certain leg influences two variables. The first one is the arrival time at each node, calculated as the sum 

of the cut-off time for departure from its starting node (or shipment’s availability time in case of flexible 

transportation) and the travel time to the destination node: 𝑡𝑎𝑟𝑟𝑗
𝑘 =  𝑑𝑒𝑝𝑖𝑗

𝑘 + 𝑡𝑖𝑗𝑘. On its turn, the arrival 

time determines which transportation options are available for the following transportation leg. 

Additionally, if the shipment arrives at the gate for loading before the scheduled cut-off time, it also incurs 

waiting time 𝑤𝑖
𝑘.  

Figure 15 graphically summarizes how we choose to model the time component of our problem. 

At the origin and ending airports, the export/import service time 𝑒𝑥𝑖𝑚𝑖  is incurred, which involve checking 

the shipment’s packaging, documentation and security status. If needed, shipments need also to be 

customs cleared, incurring service time 𝑐𝑠𝑖. Finally, if all these operations are finished before the 

scheduled cut-off time 𝑑𝑒𝑝𝑖𝑗
𝑘 , the shipment incurs waiting time 𝑤𝑖

𝑘. When arrived and offloaded at its 

transiting airport(s), the shipment needs to be transported to its next flight/vehicle, incurring transit time 

𝑠𝑖. Again, if the shipment is ready ahead of its scheduled departure time, it incurs waiting time. For 

transportation legs, 𝑡𝑖𝑗
𝑘  models the time between the shipment’s departure cut-off time (or availability 

time in case of vehicle transportation) and includes operations like on- and off- board loading and flight 

(or driving) time.  
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Figure 15: Schematic representation of time in the proposed model. Operations at the airport generally include tail2tail 
transportation, security scanning and eventually customs. The flight’s travel time includes loading on and off board, and flight 

time.  

As described in Chapter 1, when an agent selects a route, it provides the customer with an 

estimated delivery time. Chapter 2 discusses that most shipments deviates from the agreed delivery time: 

orders arrive either too early, or too late. In the same chapter we illustrate that this affects (negatively) 

performance on other KPIs, and although it does not yield any direct consequence like a penalty cost, such 

development may deteriorate a business relation on the long run. Following the model by Lei et al. (2014), 

we propose to model a soft time-window ([𝑡𝑒𝑎𝑟𝑙𝑦; 𝑡𝑙𝑎𝑡𝑒]) for delivery at the final node 𝑑: we allow 

delivering outside this time boundaries, but at a cost of penalty 𝑡𝑝𝑒𝑎𝑟𝑙𝑦 for early or 𝑡𝑝𝑙𝑎𝑡𝑒 for late delivery. 

In Section 4.4 we describe in more detail how we set the boundaries and penalties.  

We conclude this section by introducing the decision variables. The main decision variable 𝑥𝑖𝑗
𝑘  

indicates whether carrier 𝑘 is selected for transportation between node 𝑖 and node 𝑗. Variable 𝑦𝑖  indicates 

whether node 𝑖 is visited and variable 𝑧𝑖  whether airport 𝑖 is selected either as origin or destination airport. 

These two depend on the values of 𝑥𝑖𝑗
𝑘  and are thereby not strictly necessary for the model formulation; 

however, they ease the readability of its mathematical formulation and overall understandability. For the 

same reason, we also use other dependent variables: 𝑡𝑎𝑟𝑟𝑖
𝑘 indicates the arrival time at node 𝑖 using 

carrier 𝑘, 𝑤𝑖
𝑘 stands for the waiting time at node 𝑖 before transportation by carrier 𝑘, and finally variables 

𝑒𝑎𝑟𝑙𝑦 and 𝑙𝑎𝑡𝑒 indicate the eventual deviation of final delivery from the earliest and latest agreed times 

[𝑡𝑒𝑎𝑟𝑙𝑦; 𝑡𝑙𝑎𝑡𝑒].  

4.1.2 Problem scope 
This section outlines the scope of the model. The problem formulation focuses on airfreight 

transportation, whereas SSLC also offers rail- and truck-based solutions. As discussed throughout the 

introduction to this research, the reason for this is that air route calculation is by far the most complex; 

furthermore, smoothing this process is important as it is the best sold transportation product by the 

company. Nevertheless, we argue the chosen model has the potential of being easily extendible to further 

types of transportation modality. The route calculation we propose includes the choice of carriers 

operating each transportation leg, as these are of major influence for the route’s performance overall. 

However, we could also choose among multiple partners for the same type of ground operations at the 
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airport. Despite this, we opt to avoid this level of granularity in our model and assume one general partner 

performs ground operations at each airport, and one broker for customs clearance. One key consideration 

backs this modelling choice: the context analysis in Chapter 2 shows that the routes performance at 

transiting airports does not vary significantly when comparing different operating partners. Therefore, 

including this aspect would add unnecessary complexity to the model and thus be of limited benefit. 

Finally, the model itself should be able to sustain calculations for the entire logistic network of the 

company. Implementing such solution would however exceed the time and workload available for this 

research: instead, we test it on a reduced instance of the original problem, taking a selection of routes as 

pilot. We address this in more detail in Section 4.4 .  

4.1.3 Model requirements 
This section lists the model requirements. Since we build a solution based on the existing routing 

system, most are overlapping with the validation requirements stated in Section 2.1.2 , although we make 

a few exceptions.  

• Outbound flights from the chosen origin airport should have scheduled departure time within 

2  hours from the shipment’s availability time at the pickup location. This requirement 

originates from the API request described in Section 2.1.2 . Nevertheless, we acknowledge 

that, mathematically, this requirement might affect results negatively, as it narrows the 

solution space considerably. In Chapter 5 we investigate the difference between the solution’s 

quality when enforcing and relaxing this constraint. 

• Only contracted partners can be selected for operating a route. Given we generate options to 

input to the model based on historical data, this requirement is implicitly already satisfied.  

• If a shipment needs to be customs cleared, then it must be cleared for export and for import, 

meaning the chosen airports of origin and destination should have the capability to process 

it.  

• The office hours at airports, customs brokers as well as scheduled departure times of flights 

are hard time constraints. This means that a shipment cannot be serviced outside office hours, 

nor in case it arrives at a station on time but the total time to service it exceeds the preset 

time boundaries.  

Additionally, we choose to relax the below requirements, which originally belong to the validation 

steps described in Section 2.1.2 : 

• The first hard requirement we drop is the maximum number of connections allowed. 

Originally, this was set to three. The reason behind this is that the company considers routes 

with more than three air transits too susceptible to disruptions. However, since we actively 

take risk factors into account into our model, we are interested in seeing whether such 

assumption is true. It might be that routes with four transits would still yield an acceptable 

risk component, offering more options.  

• As anticipated in the previous section, we model fictive vehicle options to see whether they 

could be an interesting option for inter-airport transportation.  
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• We drop the requirement which prohibits combining different airlines on the same route, as 

we are interested in verifying whether this could benefit a route’s performance. 

• Finally, as mentioned in Section 3.1.4 , mostly there is sufficient capacity on board to transport 

Express shipments. Therefore, we do not take capacity aspects into account into our model. 

This would not be possible anyway, since we use historical bookings data to construct flight 

schedules, and it is not possible to attain any information on on-board capacity from it.  

4.1.4 Assumptions 
Before proceeding to the formal, mathematical formulation of the problem, we discuss our 

modelling assumptions. Some have overlap with topics discussed in Chapter 3. 

• For the reasons already stated in the previous section, we assume unlimited capacity for 

shipments on-board of each carrier. 

• The model calculates routes per individual shipment (i.e., single commodity); within this 

calculation, we do not consider aggregation. 

• We do not discriminate for commodity type, and hence assume goods can be transported on 

both freighter and passenger flights. For the same reason, we do not consider partner-specific 

agreements which restrict which airlines are allowed to transport certain good types. 

• The NS&P team can close flights based on daily information on capacity or other aspects, like 

strikes. Since we do not have this type of information, nor an indication of how often flights 

are closed and on which lanes, we assume all flights provided are open.  

• We assume only one airport handler and one customs broker can be selected for airport 

handling operations and customs clearance at airports; more detail in Section 4.1.2 . 

• Similarly, station capabilities are guaranteed: we assume at each node at least one partner is 

in place and can service the shipment. Please note that this is not true for customs operations, 

as not all airports have the facilities to clear shipments.  

• Customs clearance is only performed in the most standard way, namely export being done at 

the origin airport, and import and the destination airport. Special customs operations like T14 

are excluded. Also, we neglect customer-specific agreements, which specify in which 

countries SSLC is allowed to clear goods for each individual customer. Although we 

acknowledge it would be interesting to integrate this aspect into our model, we choose to 

assume clearance is possible at the available airports regardless of the country, for the sake 

of simplicity. 

• In the model, we do not differentiate between the service times for export and import at the 

airports, and model them by one general parameter 𝑒𝑥𝑖𝑚𝑖. In reality, SSLC makes a distinction 

between them, mainly because of agreements they have with their operating partners (which 

offer different times based on the type of operation performed). From the parameter 

 
 

4 T1 customs implicate that a shipment can be cleared at the consignee instead of at the destination airport. T1 
status shipments can enter a country of destination under condition and are cleared prior to being the delivered at 
their final destination.  
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estimation analysis (Section 4.4 ), however, we observe the time values for performing 

export/import do not differ significantly, allowing us to simplify them into a single parameter. 

• Similarly, we do not distinguish between export and import clearance times and generalize 

them as customs clearance at airport 𝑎. 

• When customs clearance needs to be performed, we assume the shipment is prepared for 

export first and then cleared at the origin airport 𝑜, and is first cleared and then prepared for 

import at the ending airport 𝑒. This has implications for the order in which the shipment is 

serviced. For example, if the shipment arrives at its origin 𝑜 outside office hours for 

export/import, we assume it cannot be customs cleared, even if the arrival time is within the 

office hours of the customs office.  

• Pickup and delivery can be performed at any time; hence we do not consider office hours. In 

reality, most of the pickup and delivery points are either offices or warehouses, which do have 

opening hours. However, we do not have access to this type of information for most of the 

customers. Normally, prior to booking a route, agents discuss pickup and delivery times with 

the customer and then amend the input in the system to find matching routes.  

• We assume a static deterministic model, although we know its parameters behave 

stochastically and dynamically. To account for stochasticity, we later use a simheuristics 

approach, as discussed in Section 3.2.2 . 

• We assume a pickup and delivery points are always given. There are cases with airport2door, 

door2airport or airport2airport shipments, which simplify the problem as the required origin 

and/or destination airports are already given. However, we are more interested in keeping 

that decision into our experimental setup.  

4.2 Mathematical model 
The information discussed in Section 4.1 is summarized here in the mathematical formulation of 

the model. In this order, we describe its indices and sets, parameters, variables, objective functions and 

constraints. 

Sets and indices 
Table 12: Description of the sets and indices used in the mathematical model. 

Set name Related indices Description 

𝑵 𝑖, 𝑗: node 

𝑝: pickup node 

𝑑: delivery node 

Set of all locations within the network, including customer locations 
(pickup and delivery) and airports. 

𝑨(⊂ 𝑵) 𝑎: general airport 

𝑜: origin airport 

𝑒: ending airport 

Set of all airports within the network, including the selected origin 
and ending ones. 

𝑲 𝑘, 𝑙: carrier Set of all carriers within the network, including vehicles and 
scheduled flights. 
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𝑭(⊂ 𝑲) 𝑓: flight carrier Set of all scheduled flights between airports. 

𝑽(⊂ 𝑲) 𝑣: vehicle carrier Set of all available vehicles, including first- and last-mile transports 
and road feeders. 

𝑻 𝑡: hour Time horizon in hours. 

 

 Parameters 
Table 13: Description of the parameters used in the mathematical model. Units of measurement are hours (time), euros (costs), 

normalized risk scale (risk). 

Parameter name Description 

𝒕𝒊𝒋
𝒌 , 𝒄𝒊𝒋

𝒌 , 𝒓𝒊𝒋
𝒌  Time, cost and risk of traversing arc 𝑖, 𝑗 using carrier 𝑘 respectively. 

𝒔𝒊, 𝒄𝒊, 𝒓𝒊 (Transit) service time, cost and risk of transit at node 𝑖, respectively. 

𝒄𝒔𝒂, 𝒄𝒄𝒂, 𝒄𝒓𝒂 Service time, cost and risk of doing customs clearance at airport 𝑎, 
respectively.  

𝒕𝒂𝒓𝒓𝒑 Availability time of shipment at pickup point 𝑝 (in hours) 

𝒆𝒙𝒊𝒎𝒂 Export/import service time at airport 𝑎. 

𝒄𝒖 Boolean parameter: 1 if the shipment needs customs clearance, 0 
otherwise. 

𝒅𝒆𝒑𝒊𝒋
𝒌  Scheduled cut-off/departing time of carrier 𝑘 from node 𝑖 to 𝑗 

[𝒐𝒑𝒔𝒐𝒑𝒆𝒏𝒂; 𝒐𝒑𝒔𝒄𝒍𝒐𝒔𝒆𝒅𝒂] Time window for general airport handling at airport 𝑎. 

[𝒄𝒖𝒔𝒕𝒐𝒎𝒔𝒐𝒑𝒆𝒏𝒂; 𝒄𝒖𝒔𝒕𝒐𝒎𝒔𝒄𝒍𝒐𝒔𝒆𝒅𝒂] Time window for customs clearance at airport 𝑎. 

[𝒕𝒆𝒂𝒓𝒍𝒚; 𝒕𝒍𝒂𝒕𝒆] (Soft) time-window for delivery at delivery point 𝑑. 

𝒕𝒑𝒆𝒂𝒓𝒍𝒚, 𝒕𝒑𝒍𝒂𝒕𝒆 Penalties for respectively early and late delivery. 

𝒕𝒎𝒂𝒙, 𝒄max, 𝒓max Maximum parameter values of respectively time, cost and risk. 

𝜶, 𝜷, 𝜸 Weight factors for respectively objective functions 𝑍1, 𝑍2, 𝑍3 

𝑴 Large number used to enforce constraints. 

 

Variables 
Table 14: Model variables, distinguished between decision and auxiliary variables. 

Variable name Description 

𝒙𝒊𝒋
𝒌  1 if arc 𝑖, 𝑗 is traversed with carrier 𝑘, 0 otherwise. 

𝒚𝒊 1 if node 𝑖 is visited, 0 otherwise. 

𝒛𝒊 1 if node 𝑖 is chosen either as origin airport 𝑜 or ending 
airport 𝑒. 
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𝒕𝒂𝒓𝒓𝒊
𝒌 Arrival time at node 𝑖 using carrier 𝑘. 

𝒘𝒊
𝒌 Waiting time at node 𝑖 prior transportation with carrier 𝑘. 

𝒆𝒂𝒓𝒍𝒚 Nonnegative time difference of delivery with earliest 
allowed time 𝑡𝑒𝑎𝑟𝑙𝑦 . 

𝒍𝒂𝒕𝒆  Nonnegative time difference of delivery with latest 
allowed time 𝑡𝑙𝑎𝑡𝑒. 

𝒓𝟏 Value is 1 if the shipment arrives after the earliest allowed 
time 𝑡𝑒𝑎𝑟𝑙𝑦 , 0 otherwise. 

𝒓𝟐 Value is 1 if the shipment arrives before the latest allowed 
time 𝑡𝑙𝑎𝑡𝑒, 0 otherwise. 

𝒖𝟏 Positive integer indicating the day number in constraint 11.  

𝒖𝟐 Positive integer indicating the day number in constraint 12. 

 

Objective functions 

min𝑍1 = ∑ ∑ ∑ 𝑥𝑖𝑗
𝑘 𝑡𝑖𝑗

𝑘

𝑗∈𝑁𝑖∈𝑁𝑘∈𝐾
+∑ ∑ 𝑦𝑖(𝑠𝑖 +𝑤𝑖

𝑘)
𝑘∈𝐾𝑖∈𝑁−{𝑜,𝑒}

+ 𝑐𝑢∑ 𝑧𝑖𝑐𝑠𝑖+
𝑖∈𝑁

 ∑∑ 𝑧𝑖 (𝑒𝑥𝑖𝑚𝑖 + 𝑤𝑖
𝑘)

𝑘∈𝐾
𝑖∈𝑁

 

𝑍1: Minimize the total sum of transit time incurred at each transportation leg, airport transit, 

export/import and customs clearance. 

min𝑍2 =∑ ∑ ∑ 𝑥𝑖𝑗
𝑘 𝑟𝑖𝑗

𝑘 +∑ 𝑦𝑖𝑟𝑖 + 𝑐𝑢∑ 𝑧𝑖𝑐𝑟𝑖
𝑖∈𝑁𝑖∈𝑁𝑗∈𝑁𝑖∈𝑁𝑘∈𝐾

 

𝑍2: Minimize the total sum of risk incurred at each transportation leg, airport transit and customs 

clearance. 

min𝑍3 = ∑ ∑ ∑ 𝑥𝑖𝑗
𝑘 𝑐𝑖𝑗

𝑘 +∑ 𝑦𝑖𝑐𝑖 + 𝑐𝑢∑ 𝑧𝑖𝑐𝑐𝑖
𝑖∈𝑁

+ 𝑒𝑎𝑟𝑙𝑦 ∗ 𝑡𝑝𝑒𝑎𝑟𝑙𝑦 + 𝑙𝑎𝑡𝑒 ∗ 𝑡𝑝𝑙𝑎𝑡𝑒
𝑖∈𝑁𝑗∈𝑁𝑖∈𝑁𝑘∈𝐾

 

𝑍3: Minimize the total sum of costs incurred during transportation legs, airport transit, customs clearance 

and penalties by either early or late delivery. 

min𝑍4 = 𝛼 ∗
1

𝑡max
𝑍1 + 𝛽 ∗

1

𝑟max
𝑍2 + 𝛾 ∗

1

𝑐max
𝑍3 

𝑍4: Minimize the normalized linear weighted sum of travel time, cost and risk incurred.  

Constraints 

Formula 

(1)∑ ∑ 𝑥𝑖𝑗
𝑘 −∑ ∑ 𝑥𝑗𝑖

𝑘 = {
1 𝑓𝑜𝑟 𝑖 = 𝑝
−1 𝑓𝑜𝑟 𝑖 = 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑗∈𝑁\{𝑖}𝑘∈𝐾𝑗∈𝑁𝑘∈𝐾
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(2)∑ ∑ 𝑥𝑖𝑗
𝑘 ≤ 1

𝑗∈𝑁𝑘∈𝐾
, ∀𝑖 ∈ 𝑁\{𝑑} 

(3)∑ ∑ 𝑥𝑖𝑗
𝑘 ≤ 𝑦𝑗 , ∀𝑗 ∈ 𝑁

𝑖∈𝑁𝑘∈𝐾
 

(4) 

{
 
 

 
 𝑧𝑖 ≥ ∑𝑥𝑝𝑖

𝑘

𝑘∈𝐾

𝑧𝑗 ≥ ∑ 𝑥𝑗𝑑
𝑘

𝑘∈𝐾

 , 𝑖 ≠ 𝑗; ∀𝑖, 𝑗, 𝑝, 𝑑 ∈ 𝑁 

(5) 𝑡𝑎𝑟𝑟𝑝 + 𝑡𝑝𝑜
𝑣 − 𝑡𝑎𝑟𝑟𝑜

𝑣 ≤ 𝑀(1 − 𝑥𝑝𝑜
𝑣 ), ∀𝑣 ∈ 𝑉; 𝑝, 𝑜 ∈ 𝑁  

(6)  𝑑𝑒𝑝𝑖𝑗
𝑓
+ 𝑡𝑖𝑗

𝑓
− 𝑡𝑎𝑟𝑟𝑗

𝑓
≤ 𝑀(1 − 𝑥𝑖𝑗

𝑓
), ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁 − {𝑖}, ∀𝑓 ∈ 𝐹 

(7) 𝑡𝑎𝑟𝑟𝑖
𝑘 + (1 − 𝑧𝑖)𝑠𝑖 + 𝑧𝑖𝑒𝑥𝑖𝑚𝑖 + 𝑐𝑢 𝑧𝑖𝑐𝑠𝑖 + 𝑡𝑖𝑗

𝑣 − 𝑡𝑎𝑟𝑟𝑗
𝑣 ≤ 𝑀(1 − 𝑥𝑖𝑗

𝑣 ),

∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁 − {𝑖 }, ∀𝑣 ∈ 𝑉, ∀𝑘 ∈ 𝐾 

(8)  𝑡𝑎𝑟𝑟𝑖
𝑘 ≤ 𝑑𝑒𝑝𝑖𝑗

𝑓
− (1 − 𝑧𝑖)𝑠𝑖 − 𝑧𝑖𝑒𝑥𝑖𝑚𝑖 − 𝑐𝑢 𝑧𝑖𝑐𝑠𝑖 +𝑀(1 − 𝑥𝑖𝑗

𝑓
),

∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁 − {𝑖, 𝑑}, ∀𝑓 ∈ 𝐹, ∀𝑘 ∈ 𝐾 

(9) 𝑤𝑖
𝑘 ≥ 𝑀(𝑥𝑖𝑗

𝑘 − 1) + 𝑑𝑒𝑝𝑖𝑗
𝑘 − 𝑡𝑎𝑟𝑟𝑖

𝑙 − (1 − 𝑧𝑖)𝑠𝑖 − 𝑧𝑖𝑒𝑥𝑖𝑚𝑖 − 𝑐𝑢 𝑧𝑖𝑐𝑠𝑖 ,

∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁 − {𝑖}, ∀𝑘, 𝑙 ∈ 𝐾 

(10𝑎) 𝑒𝑎𝑟𝑙𝑦 ≥ 𝑡𝑒𝑎𝑟𝑙𝑦 − 𝑡𝑎𝑟𝑟𝑑
𝑘 , ∀𝑑 ∈ 𝑁, ∀𝑘 ∈ 𝐾  

(10𝑏) 𝑙𝑎𝑡𝑒 ≥ 𝑡𝑎𝑟𝑟𝑑
𝑘 − 𝑡𝑙𝑎𝑡𝑒 , ∀𝑑 ∈ 𝑁, ∀𝑘 ∈ 𝐾 

(11) 𝑥𝑜𝑗
𝑘 𝑑𝑒𝑝𝑜𝑗

𝑘 − 𝑡𝑎𝑟𝑟𝑝 ≤ 24, ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾  

(12)  {
𝑡𝑎𝑟𝑟𝑎

𝑘 ≥ 24𝑢1 + 𝑜𝑝𝑠𝑜𝑝𝑒𝑛𝑎
𝑡𝑎𝑟𝑟𝑎

𝑘 ≤ 24𝑢1 + 𝑜𝑝𝑠𝑐𝑙𝑜𝑠𝑒𝑑𝑎 − (1 − 𝑧𝑎)𝑠𝑎 − 𝑧𝑎𝑒𝑥𝑖𝑚𝑎

, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝐾 

(13)  {
𝑡𝑎𝑟𝑟𝑎

𝑘 ≥ 24𝑢2 + 𝑐𝑢 ∗ 𝑐𝑢𝑠𝑡𝑜𝑚𝑠𝑜𝑝𝑒𝑛𝑎 − 𝑒𝑥𝑖𝑚𝑎 −  𝑀(1 − 𝑧𝑎)

𝑡𝑎𝑟𝑟𝑎
𝑘 ≤ 24𝑢2 + 𝑐𝑢 ∗ 𝑐𝑢𝑠𝑡𝑜𝑚𝑠𝑐𝑙𝑜𝑠𝑒𝑑𝑎 − 𝑒𝑥𝑖𝑚𝑎 − 𝑐𝑠𝑎 +  𝑀(1 − 𝑧𝑎)

, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝐾  

(14) 𝑥𝑖𝑗
𝑘 ∈ {0, 1}, ∀ 𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾 

(15) 𝑦𝑖 ∈ {0,1}, ∀ 𝑖 ∈ 𝑁 

(16) 𝑧𝑖 ∈ {0,1}, ∀ 𝑖 ∈ 𝑁 

(17) 𝑡𝑎𝑟𝑟𝑖
𝑘 , 𝑤𝑖

𝑘, 𝑒𝑎𝑟𝑙𝑦, 𝑙𝑎𝑡𝑒 ∈ ℚ+, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾 

(18) 𝑟1, 𝑟2 ∈ {0,1} 

(19) 𝑢1, 𝑢2 ∈ ℕ 
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Description 

1) This is the flow constraint, ensuring a path between the starting node 𝑝 and ending node 𝑑 is 

constructed. 

2) At most one outgoing carrier (edge) can be selected to traverse arc 𝑖, 𝑗. 

3) If arc 𝑖, 𝑗 is traversed, then node 𝑗 is visited. 

4) If node 𝑖 is visited after the pickup node 𝑝, then it is the origin airport. If node 𝑗 precedes the 

delivery node 𝑑 on the route, then it is the ending airport. 

5) For the first-mile leg, the arrival time at the origin 𝑜 using vehicle 𝑣 is equal to the shipment’s 

availability time 𝑡𝑎𝑟𝑟𝑝 plus the drive time 𝑡𝑝𝑜
𝑣 . 

6) For scheduled carriers (flights), the time of arrival at a node is equal to the departure time from 

the preceding node plus the travel time, if that arc is traversed and 0 otherwise. 

7) For flexible carriers (vehicles), the time of arrival at a node is equal to the time the shipment is 

ready for transportation (hence the arrival time at the previous node, summed with the transit 

time or export/import time, and customs clearance, if performed), plus the transportation time 

to that node.  

8) If a shipment arrives past the scheduled departure cut-off time of flight 𝑓, then the shipment 

cannot be transported on this flight.  

9) The waiting time at a node is equal to the difference between the scheduled departure time from 

that node, minus the time at which the shipment is ready for transportation, if the node is visited. 

It is 0 otherwise. 

10) If a shipment is delivered at destination 𝑑 earlier than the allowed time 𝑡𝑒𝑎𝑟𝑙𝑦, the 𝑒𝑎𝑟𝑙𝑦 time is 

equal to the difference between the boundary and the time of arrival, it is 0 otherwise. Similarly, 

the 𝑙𝑎𝑡𝑒 time is equal to the difference between time of arrival and the maximum allowed 𝑡𝑙𝑎𝑡𝑒 if 

it is delivered past that boundary, 0 otherwise.  

11) The carrier 𝑘 selected to depart from origin airport 𝑜 should depart within 24 hours from the  

shipment’s availability time at 𝑝 (𝑡 = 0). 

12) If the shipment arrives past the (daily) scheduled closing time of airport services or it needs 

servicing that falls outside office hours, it is serviced at opening time the next day.  

13) If the shipment arrives past the (daily) scheduled closing time of the customs office, or it needs 

clearance that falls outside office hours, it is cleared at opening time the next day. 

14-19) Sign constraints for the corresponding variables.  

4.3 Tabu search 
This section describes the tabu search metaheuristic. We first cover the heuristic employed to 

generate an initial solution in Section 4.3.1 . From this initial solution, the tabu search procedure generates 

a set of alternative solutions (called neighborhood) and selects the best non-tabu neighbor, which is 

compared with the best solution found so far. This procedure is repeated over several iterations, ending 

with the best-found solution as result. We address these steps in detail in Section 4.3.2 . Finally, we 

propose a hybrid metaheuristic which incorporates randomness and multiple heuristic operators together 

with tabu search, described in detail in Section 4.3.3 . 
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4.3.1 Initial solution 
To come up with a solution, the tabu search algorithm needs an initial solution as input. From 

there, a heuristic operator is used to alter the initial solution, thereby generating a number of alternative 

(neighboring) solutions. The set of generated solutions is called neighborhood. From there, the best 

neighboring solution is iteratively selected to generate a new neighborhood (Talbi 2009). To generate an 

initial route, we choose to use the same logic as the current system’s (described in Section 2.1.1 ). This 

approach enables us to ultimately check how often the best-found solution differs from the original one, 

and hence gives us an indication of whether our proposed approach is indeed superior to the current 

routing logic.  

The algorithm steps are described by the pseudocode in Figure 16. The first step consists of finding 

the nearest airports to the pickup and delivery points (lines 2-3), hence the origin and destination 𝑜, 𝑒. 

Next, the shipment’s arrival time at the origin airport is calculated as the sum of the shipment’s availability 

time and the driving time 𝑡𝑝𝑜
𝑘  (lines 4-5). Given the arrival time at 𝑜, the shipment’s ready time is then 

calculated using the service time 𝑒𝑥𝑖𝑚 and, if needed, customs service time 𝑐𝑠 (line 5). This is done 

accounting for the airport’s office hours. If the shipments arrives prior to opening, it must wait until the 

opening time and is then serviced. If it arrives past closing time or cannot be serviced on-time, it waits 

until the next day. This logic is summarized by the procedure OfficeHoursOrigin, which we describe in 

more detail in Appendix E. We use a similar logic for calculating the service times at transit airports and 

at the ending airport within the procedures OfficeHoursTransit and OfficeHoursEnding. Once the ready 

time at the origin is known, the algorithm iterates over all possible airport combinations, with a maximum 

of three transits, and selects the option which arrives the earliest at the ending airport 𝑒 (lines 9-31). 

Finally, the arrival time at the delivery point is calculated as the sum of the shipment’s ready time at 𝑒 and 

the last-mile leg 𝑡𝑒𝑑
𝑘  (line 33), then the relevant objectives are calculated, and the solution is returned 

(lines 33-34).  
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Figure 16: Pseudocode of the initial solution generation. The algorithm follows the same steps as the ones of SSLC’S current 
routing system. 

4.3.2 Main heuristic 
This section describes the main tabu search procedure. In our implementation, we use two 

different memory storage methods: one keeping track of utilized moves as proposed by Glover and 

Taillard  (1993) and one keeping track of entire visited solutions as proposed by Talbi (2009). We call these 

versions tabu search M1 and M2, respectively. For the former, we use an aspiration criterion, meaning 

tabu moves can still be accepted if the obtained solution improves the current best one. Furthermore, we 

use static tabu lists and stop the algorithm after a maximum number of iterations is reached.  
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Figure 17: Pseudocode of the utilized tabu search algorithm. 

Figure 17 illustrates the pseudocode of the chosen tabu search algorithm. The algorithm follows 

the general logic we describe in Section 3.2.3 , therefore we omit a detailed description here. Figure 18 

shows how we generate the neighborhood.  

 

Figure 18: Pseudocode for generating the neighborhood in the classic tabu search.  

Of an existing route, we choose to alter the sequence of visited airports rather than the carriers 

employed in the transportation legs. The airports sequence has more impact on the overall performance 

of a flight route, as it affects factors like service times, and the number and types of available 

transportation options. Given an existing sequence of airports, we select airport 𝑎 and swap it with all 

other airports that are not in the existing route (line 9). The airport to be swapped is selected 

progressively, meaning we advance a position in the route sequence each time a new neighborhood needs 

to be generated. For example, with an initial solution containing three airports, we first generate a 
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neighborhood by swapping the first one in the sequence; next, when the best neighbor solution is used 

as new starting point to generate the neighborhood, we swap the second airport in sequence. When the 

last airport in the original sequence is swapped, we reset the counter and start swapping again starting at 

the origin (lines 5-7). For each new airport combination, we find the optimal combination of carriers with 

ReoptimizeRoute (line 11); the procedure is described in detail in Appendix E). In this procedure, we select 

the best carrier available per transportation leg. This selection depends on the relative weights assigned 

to each objective: for example, if we solve the problem instance with 𝛼 = 1 then the fastest carrier per 

leg will be selected. Once the carriers are selected, we calculate the route’s objective values for time, risk 

and cost. Using the relative weights, we calculate the aggregated objective value, which is then used to 

sort the neighborhood by ascending value (line 12). Hence, we return the neighborhood (line 16). 

Procedure ChooseBestNeighbor (Appendix E) selects the best non-tabu neighboring solution (line 6 in 

Figure 17). Once the algorithm terminates, we end up with the best-found route, consisting of the 

sequence of airports visited and carriers chosen, travel time, risk and costs.  

4.3.3 Multiple neighborhoods tabu search 
In Chapter 3, we compare different solution approaches to solve the MO-MRCP at hand. As 

emerged from the context analysis, a major factor influencing the quality of an airfreight route is the 

chosen combination of origin and destination airport. The principal pitfall of the current route calculation 

procedure is that the system does not compare different combinations of airports. The tabu search 

algorithm tackles this problem, as it explores the entirety of a solution’s neighborhood in a systematic 

way, thus comparing all possible origin-ending airport combination, while using a relatively simple 

procedure. Therefore, we expect it to yield better routes than the current system. However, one limitation 

of tabu search is that, originally, only one heuristic operation can be performed to generate 

neighborhoods. The consequence of this aspect is that the number of airports visited still depends on the 

original outcome of the initial solution. In fact, by swapping airports we do not alter the number of transits 

employed. This reduces the explored solution space, meaning potentially superior routes with either less 

or more transits are overlooked. Following this observation, we propose a MNTS algorithm, in which we 

randomly choose between a swap, add or remove operator when generating a new solutions 

neighborhood.  

Algorithm 3 (Figure 19) shows schematically how we switch between neighborhood structures. 

At each new iteration, we draw a random (0 to 1) number (line 5). Next, we check how many airports are 

in the input solution. If we have only two, then we may either choose between a swap move or a add 

move, with equal probability. The swap procedure is the same as described in Figure 18, except for the 

fact that we randomly choose which airport we swap. For the add move, we evaluate the neighborhood 

deterministically by adding all possible non-utilized airports as transit to the current route; then we 

reoptimize the carriers and calculate the objective values of each solution as usual (lines 13-14). We 

always add a transit, hence not at the first or last position in the current route; the position at which we 

add the airport for initial routes with more than two airports is chosen randomly. If we have an initial 

route with more than two airports, we have one-third chance of using either operator. If we choose the 

remove one, we obtain new routes by removing alternately each airport in the original sequence. Figure 

20 shows graphically how each operator works.  
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Figure 19: Neighborhood generation for the MNTS. At each iteration, we randomly choose a swap, add, or remove operator. 

  

 

Figure 20: Schematical representation of neighborhood operators used in the hybrid tabu search. 
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4.4 Pilot study setup 
This section addresses the selection of the problem instances on which we test our solution and 

how the relative parameters to input into the model are estimated. In Section 2.3.2 we classify lanes based 

on their volume (i.e. number of orders per lane) and aggregated performance. By comparing the two 

classifications, we acknowledge that lanes being used intensively (A, B volume) and with a relative worse 

performance (C, B) present with both more room and urgence for improvement. Among these lanes, we 

seek to find the ones which allow us to test the model entirely. Therefore, we do not consider lanes which 

do not involve customs clearance. Furthermore, we are particularly interested in lanes with a relatively 

higher variation in the number of transits, especially when multiple airports seem to be eligible as transit. 

Finally, we are particularly interested in lanes that present with the opportunity to improve their 

performance based on decisions that are within the model’s intended scope. In other words, lanes in 

which we observe systematic delay within either the first- and last-mile leg are not suited candidates for 

experimentation. Indeed, the causing issue of delay is likely bound to miscommunication with the shipper 

and/or consignee, or low performance by the courier partner, both outside the focus of this research.  

Based on these criteria, we select lane A (the airports involved are omitted due to information’s 

sensitivity). To keep the problem instance within reasonable boundaries, we do not include the entire 

Express network; instead, we only consider those airports which, either directly or indirectly (within a 

fixed number of stops), offer flight connections between A’s origin and destination airports. This results 

in a network with twelve airports, seven possible pickups and twenty-four possible delivery points, 

yielding a total of 226 flights and 132 driving options.  

4.4.1 Parameter estimations 
To estimate the values for the required model parameters, we use the same historical data 

employed throughout the context analysis. We classify the parameters into three main categories: 

airports, flights and driving. 

Airport parameters 

Service and transit times 

 In terms of time, two types of airport parameters are distinguished: the service time needed for 

the export or import preparation 𝑒𝑥𝑖𝑚 and the transit time 𝑠. For both parameters we collect timestamps 

in the sales and monitoring datasets and group them by airport. For each parameter type, we seek to find 

the estimate, which is used to solve the model in the deterministic part of the solution approach, and the 

probability distribution that best models the time distributions at each airport. From the latter, we 

randomly draw time values, which are used within the stochastic part of the solution. Chapter 5 elaborates 

in more detail on their utilization while solving the problem instance.  

To find the time estimates and distributions, we use the fitdistrplus analysis package in R. This 

package allows to easily plot data against candidate probability distributions and compare values of well-

known goodness-of-fit tests all at once. For simulation purposes, service times can be represented by 

various distributions. We choose among the most common ones: Weibull, exponential, Gamma and 

lognormal (Walck 2007).  We first plot the time distributions against the density plots of these 
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distributions and visually inspect them. Figure 21 shows an example for 𝑒𝑥𝑖𝑚 times (in minutes) at airport 

a. 

 

Figure 21: Example plot of the probability density function for service times at airport a. The plot visually compares the 
goodness-of-fit of the time distribution with the Weibull, Gamma, exponential and lognormal density functions. 

By plotting all service time types for each airport, we observe that most shapes resemble what is 

illustrated in Figure 21. Hence, time-distributions tend overall to be right-skewed. For this reason, we 

choose to use the data’s mode instead of average value as a parameter estimate, as it is more 

representative of the most common service times (Bhandari 2020). Besides the density functions, we 

additionally compare the candidate distributions by plotting the cumulative distributions, P-P and Q-Q 

plots; examples of such plots are attached to Appendix F. As a final step, we compare the outcome of 

several goodness-of-fit tests5, following the fitdistrplus documentation (Delignette-Muller 2014) and work 

by Stephens (1974), and select a probability distribution for each parameter. For a few (minor) airports, 

insufficient data is available to accurately estimate a probability distribution: to overcome this, we assume 

they follow the same distribution as a comparable airport (i.e. an airport of comparable size an in the 

same region, where the time distribution could be estimated with enough confidence). 

Risk factors 

 To estimate the risk 𝑟𝑎 (of incurring delay) when visiting a certain airport, we again use timestamps 

form the sales and monitoring datasets. One of the simplest ways to quantify is risk is to multiply the 

probability of an event times the size of its consequence (Ragheb 2020). In this case, we calculate the 

probability of delay at an airport as the number of delay occurrences divided by the total number of 

timestamps, and the consequence as the average delay. We then multiply them to get the estimated delay 

per airport and normalize them to get a uniform risk scale.  

Costs 

 
 

5 Chi-squared, Kolmogorov-Smirnov, Cramer-von-Mises and Anderson-Darling tests, together with the Akaike’s and 
Bayesian Information criteria. 
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 For the estimation of costs of airports services 𝑐𝑎, we use costing data of the Express network. As 

described in Section 4.1 , several ground handling operations like security scans, transportation and 

packing are generalized as airport service within the proposed model. Therefore, we sum the fees of all 

these operations and take the average of those sums, taking into consideration different handling 

partners, and thus obtain a cost estimate per shipment. Given the sensitivity of costing data, we do not 

use accurate cost estimates on purpose, but choose rather old fares taken from an unspecified year in the 

costs sheet.  

Customs service time, risk and cost 

 The proposed model additionally differentiates regular airport operations from customs 

clearance, as the latter is not always required and is usually bound by stricter requirements, like additional 

documentation and tighter office hours. To estimate customs-specific parameters (𝑐𝑠, 𝑐𝑟, 𝑐𝑐), we group 

customs-related datapoints per airport and estimate parameters and time distributions like for the regular 

airport operations. 

Flight parameters 

Flight times 

 To estimate the distributions of travel times per flight carrier, we use SSLC’S historical flight data, 

and follow a similar approach as for the airports service times. To ensure that the statistical tests can be 

performed at the required level of significance, we group the available datapoints by combination of origin 

and destination airport, rather than by individual flight number. From there, we estimate the flying time 

distributions using again the fitdistrplus package and assign that distribution to all flights sharing that 

same origin-destination combination. Again, we choose to use the mode rather than the mean as 

statistical measure for the estimate of 𝑡𝑖𝑗
𝑓
, given the data’s skewness. 

Airline risk factors 

 To estimate the risk factors (𝑟𝑖𝑗
𝑓

), we use historical flight data and follow the same method used 

for the airport’s parameters. For each flight number, we calculate the probability of delay and multiply it 

by the average delay; the obtained expected delays are then again normalized into a uniform risk scale. 

Airline costs 

 To estimate the flying costs (𝑐𝑖𝑗
𝑓

), we use costing data of the Express network. The costs are 

calculated based on airline-specific fees per shipment. Again, we use non-actual data given the sensibility 

of information on partners’ contracted fees. 
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Driving parameters 

Driving times 

 For the estimation of driving times, we use the Google Maps Distance Matrix API as data source, 

given SSLC does not have (sufficient) driving data for all modelled transportation legs (e.g. the fictive 

transports between airports). The API allows to request three types of estimates: a pessimistic, neutral 

and optimistic driving estimation. The first one gives an indication of the travel time given high traffic 

conditions, the second one is the average driving time in normal conditions and the third one represents 

the expected travel time with minimal traffic on the road. For parameter 𝑡𝑖𝑗
𝑣 , we use the middle one as 

estimate. To include variability for the stochastic evaluation of the solution, we use the optimistic and 

pessimistic time estimates as boundaries for a uniform distribution. 

Driving risk factors 

 While the Google API is useful for the estimation of driving times, it cannot be used to 

estimate/predict delays on a certain route, nor the probability of such delay occurring. To overcome this 

issue, we use the historical monitoring data at hand containing first- and last-mile legs to estimate the 

expected delay (in minutes) per km. We observe that, overall, both the frequency and magnitude of delays 

diminishes with longer driving distances. Based on empirical analysis, we estimate the expected delay per 

km as shown in Table 15, where a certain factor is applied within a predefined km range. For example, for 

a driving leg of 200 km, the expected delay is then calculated as 0.11 * 200 = 22 minutes. After calculating 

all expected delays, we normalize the values on a scale 0-1, and thus obtain the risk factors 𝑟𝑖𝑗
𝑣  for each 

driving leg. 

Table 15: Expected delay per km. For each driving leg, the factor belonging to the respective distance in km is taken and 
multiplied by the leg’s distance to obtain the expected delay. 

 

Driving costs 

 Finally, to estimate the driving costs 𝑐𝑖𝑗
𝑣 , we derive an average cost per km over the available 

courier partners using the Express costing dataset. The amount and type of partners available for each leg 

depends on the country at which the leg starts: in case of multiple possible couriers, we take the average 

of their fees per km as estimate. Again, we use different values than in reality due to data compliance.  

4.5 Simheuristics procedure 
Having estimated distributions of all (variable) modelling parameters, we use them to 

stochastically evaluate the solutions generated by either tabu search algorithm. Hence, we implement a 

simheuristic. Simheuristic algorithms use information about the stochastic nature of the problem being 
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solved to simulate scenarios. For each scenario, the algorithm evaluates the deterministic solution: by 

simulating multiple scenarios we can thus get an estimate of the solution’s overall performance in realistic 

settings (Juan, et al. 2015).  

The main source of stochasticity in the routing problem is time. Various events can either cause 

longer or shorter service and/or transportation times. This can eventually lead to delays and potentially 

additional costs. For example, a parcel missing its flight due to a longer drive time to the airport will 

probably be delayed with respect to the expected delivery time; furthermore, the rebooking of a new 

flight brings additional costs. Lastly, if the parcel’s delay falls outside the maximum allowed late time, an 

additional penalty cost will be charged. Figure 22 shows schematically how the simheuristic algorithm 

works. We start by generating the initial solution following the steps described in Section 4.3.1 . Next, we 

evaluate the generated solution against a simulation scenario. First, we randomly draw a time realization 

for the first-mile leg. Based on this time value, we calculate the new arrival time at the origin airport. If 

the time differs (positively) with the arrival time calculated by the deterministic solution, we register a 

delay. Next, we randomly draw a value for the export time and customs clearance, and thus calculate at 

what time the shipment is ready for its next transport. If the shipment misses its flight, we check for the 

next best option leaving for the following airport on the route; this may either be a flight or a vehicle. 

Delay and extra costs for rebooking are eventually registered. Similarly, we carry on drawing randomly 

transportation and service times, while keeping track of time, costs and delays, until we calculate the final 

delivery time realization.  

 

Figure 22: Simheuristic solving process. The initial solution is generated and evaluated with a short simulation. The 
deterministic solution is then used by the tabu search to generate and solve new neighbors deterministically. Each neighbor is 

first evaluated stochastically and then compared to the current best solution. The final solution is then evaluated stochastically.  

By comparing the realized delivery time with the original one given by the deterministic solution, we 

calculate the deviation from the agreed delivery time. If the deviation exceeds either the earliest or latest 

allowed delivery time, we add an extra penalty to the total costs. As mentioned, SSLC currently does not 

have a defined system by which such penalties are enforced, as this differs for each customer and the 

corresponding agreements. Normally, customers try to get a discount on the shipment’s price, depending 

on the magnitude of delay. In concordance with SSLC, we decide to initially penalize shipments deviating 

12 hours from the agreed delivery time (either too early or too late), with a starting discount of 50% of 

the shipment’s price. The discounted price can accumulate up until 24 hours of deviation: from there we 

enforce a penalty of 100% of the total price. Naturally, the penalty system has a significant influence on 
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the model outcomes; in Chapter 5 we perform a sensitivity analysis to highlight the effect of the penalties 

on route calculation. 

We repeat the steps described above for several iterations and take the average time, delay and 

cost. With these values we ultimately calculate the aggregated objective and store these values as current 

best. We then proceed with the tabu search metaheuristic. For each new neighbor, we evaluate its quality 

by running the same number of simulation iterations and comparing the outcomes with the current best 

ones. Once the algorithm has solved, we end up with the best-found solution so far. This solution is 

ultimately evaluated by running an additional number of simulation iterations. This enables us to assess 

the route’s robustness in terms of the three objectives. By running the solution for different modelling 

configurations, we are ultimately able to compare their relative robustness. Section 5.2.4 shows the 

results of this stochastic evaluation. 

4.6 Conclusion 
In this Chapter, we answer the research question: “How should the solution approach be 

designed?”. Section 4.1 outlines the assumptions, requirements and scope upon which we base the 

mathematical formulation of the problem. The solution’s focus is bound to the optimization of transit 

time, risk of delay and operationg costs of SSLC’s air freight routes within the Express network. The 

model’s focus is shifted towards providing an optimal route given the best sequence of airports to visit 

and combination of carriers to operate. In the decision making process, constraints bound to the airports’ 

available facilities, office hours and flights’ departure times are taken into account. Furthermore, the 

model seeks to enforce the timely arrival at delivery by penalizing arrival times outside of predefined 

boundaries. To keep the model’s complexity within reasonable margins, we make several assumptions. 

For example, we do not account for special customs cases, nor do we consider capacity or goods-related 

constraints that would restrict the number of flight options for certain shipments. The choice of which 

partner for airport handling operations or courier partner for the first- and last-mile legs are also left out 

for simplicity. Based on these modelling decisions, we formulate the formal mathematical model to be 

solved in Section 4.2 . Section 4.3 presents the algorithm to solve our problem instances: first, we generate 

an initial route using the same logic as currently employed by SSLC’s operating system. This solution is 

then altered and evaluated iteratively in the tabu search algorithm, which seeks to find better route 

alternatives by swapping airports in the route seqeunce, and keeping track of visited solution areas by 

keeping a tabu list. Here we test two variants: one stores moves and one entire solutions in the tabu list. 

Furthermore, due to the limited reach of the classic tabu search, we formulate a hybrid version of the 

algorithm, which adds to possibility to either add or remove airports in seqeunce. In Chapter 5 we run all 

three versions and choose the best performing one. To test our solution, we select one lane with a 

sufficient number of possible problem instances. Using historical data, we estimate the required 

modelling parameters directly for both the deterministic as the stochastic parts of the solution. Finally, in 

Section 4.5 we design the simheuristic. To evaluate a deterministic solution, we randomly draw time 

estimates for each leg within the input solution. By doing so sequentially, we calculate the eventual delays 

and additional costs. We repeat this procedure for a predefined number of iterations and thereby obtain 

an average solution performance under uncertainty.  
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Chapter 5 – Solution results 
This chapter answers the research question: “How does the proposed solution perform compared to the 

current routing algorithm?”. The first step is to determine the experimental design to test the solution. 

Section 5.1 tackles this part. Once the design is defined, we proceed on executing the experiments 

sequentially. Section 5.2 presents their outcomes. In Section 5.2.1 , we report the outcomes of the tuning 

experiments, and hence the settings we use to run each solution. In Section  5.2.2 , we solve the problem 

deterministically. First, we check the quality of the two tabu search algorithms (M1 and M2) and the multi 

neighborhood tabu search against an exact solution; next we analyze the algorithm outcomes in more 

detail. In Section 5.2.3 we evaluate the stochastic solution outcomes and make inferences about the best 

performing one, compared to the current situation at SSLC. In Section 5.2.4 we analyze the robustness of 

the proposed solutions and compare the stochastic evaluation with historical data outcomes. Finally, in 

Section 5.2.5 , we perform a sensitivity analysis to evaluate the change in routing decisions given a chosen 

delay penalization policy. 

5.1 Experimental design 
In this section, we define the experiments we execute to comprehensively test our proposed 

solution. We define their setup, intended purpose and order of execution. In total, we distinguish five 

categories of experiments, summarized in Table 16. We execute all experiments using a Python 3.9.13 

engine on the Spyder IDE, on a computer with Intel Core i5 10310U processor of 2.21 GHz with 16 GB 

RAM.  

Table 16: Overview of experiments with explanation of the goal of each experiment 

Number Experiment General goal Practical goal 

1 Model Tuning Finding model- and algorithm- 
specific settings for optimal solving 
performance. 

Having the model ready for executing 
the main experiments (2-5). 

2 Deterministic 
solution 
evaluation 

Comparison of the proposed 
solution algorithms without 
considering uncertainty. 

Establishing how good the proposed 
solutions are compared to an exact 
method and finding the one with the 
best improvement to the initial 
solution (and hence the current 
routing system). 

3 Simheuristic 
solution 
evaluation 

Analysis of the solutions’ general 
performance under uncertainty 
and comparison of the best 
solution with the current situation. 

Selecting the best-performing 
solution and providing SSLC with 
insights into how it improves their 
current routes. 

4 Stochastic 
evaluation 

Robustness analysis of the 
proposed solution.  

Providing insights into how 
randomness affects the results from 
experiment 4. 
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5 Sensitivity 
analysis 

Analysis of the solution’s routing 
behavior under differing penalty 
cost settings. 

Providing alternatives for SSLC on how 
to penalize delivery deviations in a 
potential future routing system. 

 

Throughout experiments 1- , we use five different combinations of the model’s objective 

function, each one representing a particular preference towards the optimized objectives. Table 17 

summarizes them.  

Table 17: Objective weights configurations of the five tested models. 

Model name Objective weights configuration 

𝜶 (time) 𝜷 (risk) 𝜸 (cost) 

Time – greedy 1 0 0 

Risk-greedy 0 1 0 

Cost – greedy 0 0 1 

Balanced 0.33 0.33 0.33 

Weighted 0.41 0.51 0.08 

5.1.1 Model tuning 
The first category of experiments is concerned with finding the settings for each combination of 

model setup and solving algorithm yielding optimal results against reasonable computational time. Within 

our solution approach, we distinguish two parameter categories, namely simulation-specific and 

metaheuristic-specific. The number of iterations for the intermediate (𝑖𝑡𝑒𝑟𝑖) and final (𝑖𝑡𝑒𝑟𝑓) solution 

evaluations within the simheuristic procedure belong to the former class. These parameters mainly 

influence the variability of results. To evaluate the simulation outcomes with accuracy, we therefore seek 

the configuration that minimizes the variation of simulation outcomes. Metaheuristic-specific parameters 

affect the tabu search’s performance, and therefore, the quality of the obtained solution. Hence, we 

execute experiments to find the combination of tabu list length (𝑇𝑙𝑒𝑛𝑔𝑡ℎ) and number of tabu iterations 

(𝑇𝑖𝑡𝑒𝑟) which returns the best results for all objectives combined. Finally, we investigate the impact of the 

constraint of departing within 24 hours from the origin (we refer here to it as 𝑑𝑒𝑝𝑤𝑖𝑡ℎ𝑖𝑛) on the solutions 

quality, and ultimately decide whether we should relax it or not. 

We start by finding the best configuration for the simulation-related parameters, as the variability 

of results directly influences the quality of solutions found. To measure the variation of results, we use 

the coefficient of variation6 of each objective. Additionally, we also measure the run time needed to solve 

the problem instance, as the model should solve within reasonable time. Next, we perform tuning 

 
 

6 
𝜎

𝜇
 (Introduced in Chapter 2). 
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experiments to find the optimal values for 𝑇𝑙𝑒𝑛𝑔𝑡ℎ and 𝑇𝑖𝑡𝑒𝑟. To measure the quality of results, we observe 

the average outcomes for all three (time, delay and cost) objectives and the run time. Finally, we use the 

same latter metrics to compare the solution’s quality either with or without the usage of the 𝑑𝑒𝑝𝑤𝑖𝑡ℎ𝑖𝑛 

constraint.  

As mentioned in the previous section, we need to tune five model configurations. We solve each 

model using three solution methods: tabu search M1 and M2 and MNTS. This yields a total of fifteen 

solutions: for each solution we perform separate tuning experiments, as the optimality of settings varies 

depending on the type of model being solved and the method used. We make an exception for the 

simulation-related parameters: since the simheuristic procedure is the same regardless of the model and 

algorithm used, we execute tuning experiments only on one combination (classic tabu search with moves 

storage, on the balanced model) and extend these settings to the remaining solutions.  

 To find promising ranges to perform the tuning experiments, we execute preliminary tests. Per 

parameter, we compare the outcomes from largely differing settings (e.g. with 𝑖𝑡𝑒𝑟𝑓 = 10 and 𝑖𝑡𝑒𝑟𝑓 =

1000, 𝑖𝑡𝑒𝑟𝑓 = 1000 and 𝑖𝑡𝑒𝑟𝑓 = 10000, etc.) and thus identify the range yielding the most promising 

outcomes, at a reasonable computational burden. Having identified those ranges, we can narrow the 

search. We start by setting a parameter to the range’s lowest value, while keeping all others fixed. We 

then increment the parameter gradually until reaching the maximum value in the range, select its best 

performing value and proceed with tuning the next parameter (Crainic, et al. 1993). Table 18 summarizes 

the tuning experiments. 

Table 18: Overview of the tuning experiments, with the respective parameter, the experimental range, the value by which we 
increment the parameter and the measured metrics. 

Parameter Experiment range Increment Measurement metrics 

𝒊𝒕𝒆𝒓𝒊 100-5000 100 Coefficient of variation per objective (time, delay, 
cost), average running time.  

𝒊𝒕𝒆𝒓𝒇 1000-30000 1000 Coefficient of variation per objective (time, delay, 
cost), average running time. 

𝑻𝒍𝒆𝒏𝒈𝒕𝒉 1-9 1 Average objective value (time, delay, cost), average 
running time. 

𝑻𝒊𝒕𝒆𝒓 50-1500 50 Average objective value (time, delay, cost), average 
running time. 

𝒅𝒆𝒑𝒘𝒊𝒕𝒉𝒊𝒏 24 or ∞ N.A. Average objective value (time, delay, cost), average 
running time. 

 

 Within the experiments, we increment parameters differently. For 𝑖𝑡𝑒𝑟𝑖, we advance the value  by 

100 units; for 𝑖𝑡𝑒𝑟𝑓 by 1000, for 𝑇𝑙𝑒𝑛𝑔𝑡ℎ by 1 and for 𝑇𝑖𝑡𝑒𝑟 by 50. Finally, the tuning of 𝑑𝑒𝑝𝑤𝑖𝑡ℎ𝑖𝑛 consists 

of two experiments, with value set either to 24 or to a very large number (meaning in practice the 

constraint is relaxed). Section 5.2.1 reports the outcomes of the tuning experiments. 
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5.1.2 Deterministic solution evaluation 
The next step is to compare the generated solutions by solving the problem deterministically. This 

experiment consists of two parts. First, we implement the model formulation described in Section 4.2 into 

Gurobi, which is a Python library that allows us to solve the problem exactly. For each solved problem 

instance, we hence obtain either its optimal solution or the optimality gap from the returned objective 

value. Next, we solve the problem using the proposed metaheuristics and compare the outcomes with 

the exact results. This allows us to get an impression of how close to optimality the metaheuristic solutions 

get. Next, we take a closer look at the results obtained with the metaheuristics. The goal of this analysis 

is twofold. First, we examine routing decisions of the three proposed solution algorithms and check 

whether they make sense. Secondly, we seek to find the solution approach that yields the most 

improvement compared to the generated initial solution. As discussed in Section 4.3.1  the algorithm 

generating the initial solution follows the same logic as SSLC’S current routing system. By comparing its 

outcomes with the other solutions’, we can make inferences on which approach could represent an 

improvement in the current route calculation process and hypothesize which one is likely to perform best 

in the stochastic evaluation.  

To obtain exact solutions within a reasonable time boundary, we set a time limit of five minutes 

for the MIP, as this is the maximum time allowed by the current system to find a route. If no optimal 

solution is found within that limit, the model returns a suboptimal solution with the corresponding 

optimality gap. Using historical data from the test batch selected in Section 4.4 , we generate 49 test 

instances. Each instance is generated by using the respective order’s pickup and delivery location, pickup 

time and day of the week. We solve all instances using the five combinations of objective weights reported 

in Table 17, store relevant KPIs and compare the average outcomes for each solution. Section 5.2.2 

elaborates on the results. 

5.1.3 Simheuristic solution evaluation 
In this experiment, we consider the stochastic behavior of travel and service times, incorporate it 

into our routing decisions and analyze its effect on the overall performance of a route. Here we generate 

the same 49 instances as described previously and solve them using the approach displayed by Figure 22.  

First, we are interested in observing the degree to which considering uncertainty affects the solutions’ 

routing decisions. Therefore, we compare the generated routes with the ones calculated deterministically 

in the previous experiment. Secondly, we are interested in observing whether the best-performing 

solution improves the current situation as analyzed in Chapter 2, given the average results of the 

simulated scenarios. We thereby compare the average outcomes of the 49 solved problems with the KPI 

values measured during the context analysis. Finally, we are interested in observing whether the solution’s 

(eventual) improvements are significant. To check this, we substitute the test lane’s actual KPI values with 

the ones obtained by this experiment and re-classify the lane using the same ABC method applied during 

the context analysis. Section 5.2.3 presents the outcomes. 

5.1.4 Stochastic evaluation 
Having incorporated randomness in our solution, we are not only interested in the outcomes in 

general, but also in their variability. Hence, we examine their robustness given a stochastic setting. To 
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illustrate the stochastic effect on each solution, we select and analyze two of the 49 previously solved 

problem instances (we call them instance 1 and 2). In particular, we pick the two having the most 

commonly used pickup and delivery points, in order to get a representative picture of how the simulation 

affects the deterministically calculated solutions. First, we examine box plots showing the spread of 

datapoints per relevant KPI resulting from the 15000 final simulation iterations for each solution type. 

Next, we seek to validate the simheuristic outcomes. To this end, we take the original (historical) routes 

corresponding to the two test instances and compare their outcomes with the ones we obtain with the 

simheuristic. This way, we verify whether the simulated scenarios are realistic compared to real orders. 

5.1.5 Sensitivity analysis 
Finally, we analyze the impact of the designed penalty system used to prevent large deviations 

from the preset delivery time. As explained in Section 4.5 , we start at a deviation of 12 hours and a penalty 

of 50% of the total costs and accumulate this amount up until a maximum deviation of 24 hours, after 

which we add a penalty corresponding to 100% of the costs. Following this formulation, we can summarize 

the calculation of penalty costs with the formula: 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 ∗ (1 −
𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 − 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
) | 𝑡𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

Here, the 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 represents the maximum deviation allowed after which we enforce a 

100% cost penalty; the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the minimal time difference at which we start penalizing the route. 

For our experiments, we distinguish three alternative settings for the 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 and the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. 

The earliest at which SSLC accepts claims is for deviating 6 hours from the agreed delivery time. On the 

other hand, parcels delivered later (or earlier) than 48 hours from the agreed time imply almost certainly 

a 100% restitution of the agreed fee. Given these two boundaries, we distinguish a “strict” penalizing 

policy (we penalize deviations from 6 hours up until a maximum of 12), a “relaxed” policy (starting at 2  

hours with a maximum of   ) and a “moderate” policy (starting at 6 up until    hours, thus with a slower 

percentage increase of penalty costs).  

Since the penalizing policy only affects routing decisions within the models which optimize the 

cost objective, we test the above variants on the cost-greedy, balanced and weighted model variants. 

Furthermore, we do not use all 49 problem instances for the test, as it would be too time-consuming and 

not very relevant either. Instead, we only select problem instances whose outcomes of delivery delay fall 

within the range of 6-48 hours. We thereby select three problem instances as test sample. 

5.2 Experimental results 

5.2.1 Tuning experiments 
This section presents the results of the tuning experiments and hence the settings we use to run 

our solutions. Given the large number of performed experiments, we omit the detailed outcomes; instead, 

we summarize the results in Table 19 and attach their performance metrics in Appendix G. In the 

summary, we refer to the tabu search storing moves as tabu search M1 and to the one storing entire 

solutions as tabu search M2.  
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By first testing the simulation-bound parameters, we find the optimal combination for 𝑖𝑡𝑒𝑟𝑖 and 

𝑖𝑡𝑒𝑟𝑓. As mentioned in Section 5.1 , we keep these same settings on all solution approaches. For the 

metaheuristic parameters, the most striking observation is the similarity between the settings for the tabu 

search variants. During the preliminary experiments we observe that the latter two yield identical 

solutions for all optimized model types. This is unusual, since we would expect to see differences in the 

output, given their differing use of memory in the search process. In Section 5.2.2 we elaborate on this 

finding in more detail. Assuming the two variants have indeed the same routing behavior, it then becomes 

trivial that they have almost identical settings for the tabu list and tabu iterations. Another observation is 

that the MNTS performs best with lists slightly longer than the normal version. Similarly, when using an 

aggregated objective function, better solutions are found using an increased tabu list length. The most 

apparent difference lies within the number of tabu search iterations, with the multiple neighborhood 

model returning increasingly better results up to 1000 iterations. The latter explores a bigger solution 

space than the classic ones, since it utilizes more heuristic operators simultaneously. Consequently, to 

explore this space with better results, more diversification is generally needed at the start of the solution 

procedure (achieved by keeping longer tabu lists), and, at the same time, more iterations are needed to 

converge towards the optimal solution. Finally, we notice that all solution types perform better (or at least 

as good) whenever the 𝑑𝑒𝑝𝑤𝑖𝑡ℎ𝑖𝑛 constraint is relaxed. Since it limits the explorable solution space, this 

outcome is expected; we thus relax the constraint for all remaining experiments. 

Table 19: Summary of the experimental settings per solution type, found after the tuning experiments. 

 

5.2.2 Deterministic solution performance 
In this section we present and discuss the results of solving the problem deterministically. First, 

we compare the results of the MIP model and the metaheuristics; next, we discuss the latter results and 

corresponding routing decisions in more detail. Before proceeding, we make some general considerations. 

We first notice that the two tabu search variants (M1 and M2) provide with identical results, confirming 

the behavior already observed during the tuning experiments. This is unexpected, as the algorithm’s way 

of using memory throughout the search process influences its outcomes, meaning the two variants should 

thus yield different routes. A possible explanation for this could be related to the size of the problem 
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instance we study: since it is not real-sized and thus with less options, it might well be the case that both 

variants end up finding the same solution, which becomes also more plausible if we consider that both 

still use the same swapping procedure and thus search in similar directions. In the remainder of this 

section, we report the TS-M1 and TS-M2 outcomes as one.  

MIP model vs TS and MNTS 

Table 20 shows the average performance comparison of solving the 49 generated problem 

instances with each model configuration, using exact and metaheuristic solutions. For the MIP model, we 

report the average objective value, optimality gap and running time. Please note that for the greedy 

models, we only report the average value of the optimized objective, whereas for the balanced and 

weighted models we report all three (in order time, risk, cost). For the TS and MNTS metaheuristics, we 

show the average percentual difference with the MIP objectives and the average run time in seconds.  

If we compare the MIP run times and optimality gaps from the greedy models, we observe a 

notable difference between the time-greedy one and the remainder. Whereas the MIP model is almost 

always able to solve the problem optimally considering either risk or costs, the opposite is true when the 

transit time is optimized. This is explainable considering that the number of possible combinations of 

decision variables influencing the time objective is significantly bigger than for the other two. In fact, in 

our problem setup, the price or risk of operating a specific carrier or station does not vary based on the 

day of the week. On the other hand, selecting a carrier on a particular day of the week has impact on the 

final delivery time. Additionally, flight carriers belonging to the same airline all have the same (fixed) cost 

regardless of the operated route, while we also do not discriminate between flights operating on the same 

origin/destination combination in terms of carrier-bound risk. Naturally, flights from either different (or 

the same airlines) have several departure schedules for the same origin/destination combination; hence, 

for the same route we have more options affecting the time objective than for the other two. 

Consequently, the solution space of the time objective is significantly bigger than the others, explaining 

why it is harder to obtain an optimal solution within the same time limit. Because of this, we observe that 

the metaheuristics yield the closest performance for the time-greedy configuration, with the MNTS even 

slightly outperforming the MIP model. Interestingly, we find confirmation to these considerations if we 

compare the MIP’s performance on the balanced and weighted models. In comparison to the former, the 

latter model attributes more importance to the time objective. Consequently, the average optimality gap 

increases as the average run time. If we increase the MIP’s solving time limit to    minutes, we observe 

that the percentual objective difference between the TS and MNTS and the MIP increases (hence, the MIP 

outperforms the algorithms). However, the optimality gap reduces by just 11% on average. In general, we 

observe that the MIP model cannot solve all 49 instances optimally for neither model type. Additionally, 

both TS and MNTS algorithms obtain solutions fairly close to the MIP model and in considerably less time, 

justifying our decision of opting for these methods to solve the problem.  
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Table 20: Comparison of results for the MIP model and the TS and MNTS metaheuristics. For the greedy model, we present the 
average value for the optimized objective; for the balanced and weighted model we present in order, the average transit time, 

risk and costs obtained. 

 

Algorithm performance and routing decisions 

Table 21 shows the solutions’ average performance compared to the initial solution, given the 

respectively solved model configuration. A complete overview of the results is furthermore attached in 

Appendix H. Besides comparing the average KPI values (transit time in hours, costs in euros and risk using 

a scale 0-1) and running times (in seconds), we also attach the percentage of problem instances where 

the final route differs from the one yielded by the initial solution. The green-marked numbers represent 

a decrease (hence improvement) in the objective values, the red ones an increase. 

Table 21: Overview of the average performance comparison per solved model type. We compare the initial solution’s average 
KPI performance with the three proposed solution algorithms. Furthermore, we attach the percentage of scenarios for which a 

different route than the initial solution’s is returned and the average run time (s) per solution. 

 

If we run by each model setting, we observe that for each respective weights combination, all 

three methods mostly alter the initial solution. Exception to this is whenever the initial solution generates 
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a route with a direct flight, which in most cases is still the best option. In general, all three solutions 

improve the initial one considerably. With this we can infer that all three could represent a valid candidate 

to improve the logic beneath the current routing system at SSLC. In particular, the MNTS appears to 

improve the initial solution the most, in all settings. This is expected, as the algorithm is capable of 

exploring a considerably larger solution space than the remaining methods, as it utilizes more heuristic 

operators and includes randomness in its search. The latter aspect has, however, implications for the run 

time: in fact, this solution is considerably slower than the others. In the remainder of the section, we 

analyze the routing choices made by either solution and how they affect the performance. Table 22 

provides an overview of the most significant figures. Starting with the chosen origins and destinations, we 

categorize airports as either major (MA), medium (ME) or minor (MI) hubs, depending on their yearly 

passenger volume7. We thus show the percentage of airports from either category chosen as 

origin/destination for a route. Furthermore, we also indicate the solution’s preferred carrier type, being 

either flight, vehicle or mixed (the latter means a combination of flights and driving options are used for 

transportation between origin and destination airports). Finally, we show the number of routes with at 

least one transiting airport. We group the results of the two classic solutions together, as they are 

identical.  

Table 22: Overview of the solutions' routing policies for solving the problem deterministically. For each solution, we indicate the 
percentage of major (MA), medium (ME) or minor (MI) hubs chosen either as origin or destination. Additionally, we indicate the 

solution’s preferred carrier type and the number of generated routes with at least one transit. 

 

 
 

7 MA > 1    ,      < ME ≤ 1    , MI < 5000 passengers yearly, the values used are the averages of the years 2020-
2022, source: IATA. 
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Time-greedy model 

Within the time-greedy setting, all three solutions improve the transit time KPI considerably. This 

is done at the expenses of the route’s total costs, which increases by approximately 50% in all three cases. 

If we look at the solutions’ routing policies, we observe that all three tend to increasingly use minor hubs 

as their starting airport. Indeed, most minor hubs in the network have some very interesting direct flight 

options, but they are also more expensive to operate. The main advantage of using minor hubs is that 

they are not as burdened by high cargo volumes as major hubs and so have potentially faster service 

times. Furthermore, they can be additionally beneficial to a route’s speed whenever they are closer to the 

pickup point than other airports. The major downsize of using them is that there are less frequent flights, 

meaning that they can be used on limited days of the week and moments of the day. When this is not 

possible, the model then prefers operating through major hubs. The use of minor hubs also implicates 

more risk, as a parcel missing a flight from a minor hub needs to wait considerably longer for the next 

option than at a bigger hub. This is reflected by the results of the simheuristic in Section 5.2.3 . In the 

results in Table 21 we also observe a reduction in total risk factors. Both models predilect using direct 

flights, as they are usually faster and less risky. We observe this fact clearly in the MNTS solution’s 

decisions, as it predilects eliminating the initial route’s transit (please recall that the classic tabu search 

cannot alter the number of transits) and take a direct option from another hub. The preferred carrier of 

all solutions is the aircraft, as it is faster than driving. However, when stochasticity affects the service times 

at the airports, we observe this is not always the case. More detail in Section 5.2.3 . Finally, the time-

greedy setting has the most variation of carriers used: at least five distinguished airlines are booked, which 

is significantly more than in other models. This is because, cumulatively, they provide more ad-hoc 

options, which is beneficial for the transit time.  

Risk-greedy 

The first figure that pops out from the results of the risk-greedy model is that all three solutions 

always yield a different route than the initial one. If we look at the total risk KPI, we observe a substantial 

improvement by all three solutions, with the multiple neighborhood one performing slightly better. 

However, by analyzing the remainder KPIs, we can argue this is not per se beneficial. The risk reduction 

comes at the expense of both transit time and costs, which increase respectively by about a factor 3 and 

10. By looking at the routes we quickly learn why: they are almost identical for all solutions, regardless of 

the solved problem instance. In particular, the most frequently used origin is often the farthest airport for 

almost all generated pickup points, explaining the exaggerated transit times and costs. This exposes a 

major blind spot of the model’s design. Indeed, the model accounts only for the individual risk of delay 

attached to airports or carriers. Therefore, a purely risk-aversive model will always choose the 

combination of airports and carriers with the lowest risk factor, regardless of any other factor, that would 

otherwise be trivial to consider when planning a route. This leads to routes that do not make sense in 

practice and are therefore, inoperable. Furthermore, a third source of risk is overlooked in this setting, 

namely the risk of delay given a route with too tightly planned connections. This becomes clearer when 

including randomness in the simheuristic procedure. The hybrid model tends to eliminate transits, as each 

additional transit adds up in risk. Moreover, all solutions prefer the use of vehicles. As mentioned, the 

airports with less risk in this particular network are generally also the farthest from most pickup and 

deliveries. As shown by Table 15 in Section 4.4.1  risk reduces significantly for driving options as the driving 
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distance increases, making it therefore a “better” option. In general, we can conclude that the routes 

provided by the risk-greedy configuration are not practical and therefore not useful to SSLC. 

Cost-greedy 

 Within the cost-greedy model, we see all three solutions improve both costs and risk, affecting 

the transit time negatively. Again, the MNTS solution yields the best improvement overall. With respect 

to the initial solution, we observe a significant increase in the use of major hubs at the origin. Major hubs 

are in fact cheaper, especially those associated with the SSLC group. All three solutions predilect the use 

of flights, as those are cheaper options than vehicles. We also observe a significant drop in variation of 

airlines used: only two (the most cost-efficient) are chosen. The MNTS solution shows a significant 

reduction of transits: this is trivial, since more transits imply additional costs. When introducing 

stochasticity, however, this rule of thumb does not always apply: we discuss this in the next section.  

Balanced  

In the balanced setting, we observe an improvement for the risk and costs and a deterioration in 

the transit time, for all three solution methods. This is not surprising, since all three alter an initial, transit-

time efficient solution by putting more emphasis on other, contrasting objectives. Again, all three 

solutions show preference for using bigger hubs. Major hubs are cheaper and thus favor the cost 

objective; at the same time they have more (direct) flight options, thereby reducing the cumulative risk. 

The MNTS solutions yet again reduces the number of transits, for the same reasons as aforementioned. 

Overall, this is the setting where the three solutions score most similarly. 

Weighted 

For the weighted model, we observe a similar trend as in the balanced one when it comes to the 

objective values. The MNTS solution outperforms the others, as it deteriorates the transit time slightly 

less and has better improvements on the other objectives. If we compare the routes to the balanced ones, 

we see an increased usage of minor hubs. This discerns from the fact that more emphasis is put on the 

time objective and that minor hubs can speed up shipments because of their proximity and lower service 

times. An interesting observation regards the different use of those hubs compared to the time-greedy 

model. The latter uses minor hubs for direct flights; in this setting, most minor hubs are used in 

combination with a transit at a major hub. This sounds counterintuitive, but it can be a beneficial move. 

On one hand, the export procedure at the origin yields less time, as the first-mile leg. On the other hand, 

flying with a transit at certain major hubs can be cumulatively less or at least as risky than flying between 

a minor and a medium/minor hub directly. Additionally, direct flights between minor and medium hubs 

for this particular lane are more expensive, as they are not operated by SSLC’S usually contracted airline 

(which we omit), making it more cost-efficient to use it with an extra flight and transit. This is clearly 

showed by the MNTS solution’s transits figure: this solution type tendentially adds transits to the initial 

route, which is the contrary of what we observe in other settings.  

5.2.3 Simheuristic solution performance 
In this section, we present the results of the simheuristic, hence the effect of stochasticity on the 

proposed solutions. For the evaluation, we use the same three tabu search variants as in the deterministic 

analysis. Since the observed results of the M1 and M2 tabu search procedures are yet again alike, we only 
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compare one of the two versions with the multiple neighborhood tabu search, for sake of conciseness.  

Henceforth, we refer to the former as  tabu search.  

Introducing stochasticity 

We first compare the average outcomes of the deterministic and stochastic solutions per model 

type. To do so, we first convert the deterministic risk objective, as this only represents a summation of 

risk factors, whereas the stochastic objective measures the realized average total delay, making them not 

directly comparable. For this conversion, we simply take the deterministic solution’s routes and sum the  

expected delays of all respective carriers and nodes used. Table 23 presents the comparison summary. In 

it, we show the percentage of instances for which the deterministic and stochastic solutions yield different 

routes. Furthermore, we attach the average KPI values (time and delay in hours, cost in euros) of the 

deterministic solutions and the relative change of the stochastic ones.  

Table 23: Performance comparison between the deterministic and stochastic solutions. Time and delay are expressed in hours, 
cost in euros. The route change metric indicates the percentage of stochastic routes differing from the deterministic ones. 

 

 The most evident figure is that, in all models, both solution types increase the average total delay 

substantially, compared to the deterministic solution. In general, we would expect to observe an increase 

in the delay, since every solution’s average value includes a few extreme delay cases, which consequently 

lift its value. However, this increase is bigger than originally thought of. This is attributable to a major 

shortcoming of our model design, which we already notice in Section 5.2.2 .  When taking risk of delay 

into account, we only consider individual carriers or airports, neglecting the risk coming from too tightly 

planned transits. When examining all solutions, we see that this aspect has a bigger impact on the route’s 

timeliness than the other risk sources. Especially for the time-greedy model, where transits are planned 

as tight as possible as to minimize waiting time, major delays are incurred because of the limited slack. 

Another figure confirming this finding is the 100% change of routes for the risk-greedy models. This tells 

us that avoiding risky airports or carriers has limited impact on reducing the route’s expected delay. 

To analyze the reasons behind the differences showed in Table 23 we inspect the routing decisions 

taken with and without stochasticity. In Table 24 we show a comparison between the deterministic TS (D-

TS), stochastic TS (S-TS), deterministic MNTS (D-MNTS) and stochastic MNTS (S-MNTS) solutions. Again, 

we indicate the percentage of routes using either major, medium or minor airports as origin and/or 
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destination and the preferred carrier. To further put these observations into perspective, we also include 

the summary of the historical routes analyzed during the context analysis, which we refer to as current in 

the first row in Table 24. Finally, in its last column, we show the percentage of generated routes per 

solution type which uses the same combination of origin and destination airports compared to the current 

ones, and hence would be grouped under the same lane.  

An interesting observation from Table 23 is that the cost-greedy solutions show the lowest delay 

deteriorations, whereas the models which do not consider costs at all have the highest. This is no 

coincidence. In fact, we learn that in the current design minimizing the total costs indirectly reduces delay 

between transits. The reason is that whenever a transit is missed, additional costs are incurred to re-book 

the next available option. Additionally, there is an increased chance of incurring delivery penalties if the 

shipment ultimately arrives late at destination. To avoid the latter two, solutions which optimize the cost 

objective tend unconsciously to prefer routes with more time between transits, hence less likely to miss 

a connection. Related to this observation is another interesting model behavior introduced by 

randomness, namely the tendence of the MNTS, cost-optimizing solutions to add transits to the initial 

route. This is opposite to what we observe in a deterministic setting: the solution eliminates transits from 

the original route and takes direct flight instead. In this case however, there is a chance to miss a flight 

and thereby incur re-booking and penalty costs. For some options which have direct but riskier flights, it 

is then overall cheaper to choose a more reliable route, for example with transit at a major hub. Major 

hubs turn out to be advantageous for both a route’s reliability as costs: first of all, they are cheaper than 

medium or minor hubs. But most importantly, they provide with more flight options, thus mitigating the 

effect of a parcel missing its flight. 

An increase in delay paired with a decrease in transit time seems counterintuitive at first: we 

observe this especially in the time-greedy solutions. This can be explained by looking at the number and 

type of routes changed relative to their deterministic counterpart. In almost all of them, both solutions 

replace two major hubs with a direct flight with two minor or medium hubs with either a direct flight or a 

driving option. As  explained in Section 5.2.2 , minor and medium hubs generally have shorter service 

times and can be favorable due to fast flying options, making them more time efficient. The number of 

outgoing options is, however, both limited as less frequent and thus overall riskier; therefore, relatively 

short transit times are compensated by more frequent delays. As a consequence, the simheuristic tends 

to predilect riskier routes, thus with more delay, but with significant potential gains in transit time. This 

fact also motivates the increased usage of vehicles. The shipments operated on these routes are more 

likely to miss a connection, due to the tightly planned transits. At smaller hubs this becomes problematic, 

as they have to wait longer for the next flight. Vehicles are not bound to scheduled departure times, and 

can therefore mitigate the delays, becoming thus faster options than aircraft. Altogether, these routing 

decisions also have a significant impact on the total costs, which have the most significant increase relative 

to the other presented solutions. 

Interestingly, also the MNTS weighted solution shows improvement in transit time and 

deterioration of delay. The latter is less significant than in the time-greedy ones, because this solution 

finds a smart speed-reliability balance. For some routes, it uses minor or medium hubs as origins, reducing 

the shipment’s initial service time, and flies to two subsequent major hubs. The transiting one is a well-



83 
 

connected hub, meaning that missing the first flight can mostly still be recovered by taking the second 

one of the day, therefore alleviating the effect on the route’s overall delay. This is also reflected in the 

total costs, which deteriorate less notably than in the time-greedy model. 

Table 24: Comparison of the routing decisions of the deterministic and stochastic solutions and historical routes (benchmark). 
D-TS = deterministic tabu search; S-TS = stochastic tabu search; D-MNTS = deterministic multiple neighborhood tabu search; S-

MNTS = stochastic deterministic multiple neighborhood tabu search. 

 

Best-performing solution and relative improvement  

Having included randomness in the solutions’ evaluation, we can make inferences on which one 

has the best potential to improve SSLC’S current situation. In Appendix I, we show the detailed results of 

all simheuristic experiments; here we provide a summary in Table 25. We show the benchmark’s original 

KPI performance and the relative change per solution type.  
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Table 25: KPI comparison between the simheuristic solutions and the benchmark. The average transit time, total delay and 
delivery delay are expressed in hours, costs in euros and the run time in seconds. The benchmark’s run time is an estimate. 

 

 In comparison with the results presented in Table 21, we see that the improvements brought by 

the two solution approaches are more similar for all models. In most cases the MNTS model is slightly 

better, but the difference when introducing stochasticity becomes less evident. In order to compare the 

relative magnitude of the solutions’ improvements, we normalize the respective KPIs, and aggregate them 

using the same weights as elicited with the AHP method in the context analysis (Table 7). Figure 23 shows 

this comparison graphically. From this figure, we can see two solutions which overall improve the current 

situation, namely the two tabu search variants solving the problem with the weighted objectives 

configuration. The MNTS solution performs slightly better, which is in line with what we expect. 

Furthermore, we observe that both time-greedy and balanced solutions approach the current situation. 

They both improve the overall transit time metrics, but worsen the delay and costs, making them non-

improving. The remaining solutions perform worse than the current situation. 

 If we compare the MNTS weighted solution with the benchmark, we observe that for only 37% of 

the corresponding instances the airport choice coincides. In fact, the solution displays significant more 

variation in the types of chosen hubs. It also shows a notable increase in the number of transits (49% of 

the orders compared to the benchmark’s   ). This is attributable to the speed-reliability balance the 

solution seeks by combining the usage of minor/medium and major hubs on a route, as previously 

discussed. Interestingly, this variation also translates to the different usage of airlines. In fact, the solution 

uses five distinguished airlines almost evenly, whereas 92% of the benchmark routes predilect one of 

those five. But most interestingly, the solution combines different airlines on almost half of its routes with 

transits. This is remarkable, as the current system imposes to use only associated airlines (e.g. all 

belonging to the SSLC group) on a single route and not mix different groups, as SSLC believes that 

combining them increases the likelihood of miscommunication and, consequently, of delay. 
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Figure 23: Comparison of the solutions' aggregated scores per model type. The current lane’s performance (dark blue) is 
improved by the TS (light blue) and MNTS (yellow) solutions applied on the weighted model. The hybrid solution has the lowest 

and thereby best score. 

 To conclude the analysis, we check the relative improvement compared to the other lanes’ 

aggregated score. We substitute the benchmark’s original KPI values with the ones of the MNTS weighted 

solution and recategorize the lane with the ABC method introduced in Chapter 2. Figure 24 graphically 

shows the results. We see that the solution’s improvement is not sufficient to lift the examined lane to 

the best performing category; nevertheless, we acknowledge it still represents a significant advance in the 

right direction. 

 

Figure 24: Performance gap between the current situation and the proposed solution. The blue dot indicates the performance 
of the proposed solution compared to other lanes from the years 2020-2022, the yellow dot indicates the actual performance 

of the analyzed test lane. The red-dotted lines delimit the three performance classes. 

5.2.4 Stochastic evaluation 
Having examined the solution’s average performance, we proceed on analyzing its robustness, 

given the problem’s stochastic nature. For conciseness, we examine only two problem instances: they 

represent orders with the most common pickup and delivery points and are thereby grossly 

representative of the 49 instances solved in the previous section. We call them instance 1 and instance 2. 
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Below we present the results of their final evaluation, where we measure the cumulative impact of the 

generated simulation scenarios on each solution. In each boxplot, we indicate the results yielded by the 

time-greedy model with Sol1, risk-greedy with Sol2, cost-greedy with Sol3, balanced with Sol4 and 

weighted with Sol5. 

 

 

Figure 25: Boxplots of the solutions' stochastic evaluation for instance 1. The four plots display the spread of objective values 
for the time-greedy (Sol1), risk-greedy (Sol 2), cost-greedy (Sol 3), balanced (Sol 4) and weighted (Sol 5) solutions. The green line 

represents the median value, circle points are outliers. 

Figure 25 shows the results per KPI of the sim-evaluation of each of the five solutions to problem instance 

1. In terms of generated routes, all solutions yield a different result except for the cost-greedy and 

balanced, which have the same one. From the results we learn that the time- and risk-greedy solution 

types are more sensitive to randomness, and thus relatively unstable. This is reflected both in the larger 

spread of the transit times, as in the delivery delays and total transit delays. Furthermore, the time-greedy 

solution is more likely to incur penalty costs (this happens in 49% of the generated scenarios), which can 

be noted by observing the cost figure. On the contrary, the cost-greedy, balanced and weighted solutions 

are far more risk-aversive, therefore stabler. Due to the less tightly planned transits, the delays are overall 

lower as is the variance in total costs. Mostly, the observations we make for Figure 25 are valid for most 

of the problem instances solved with the simheuristic.  
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Figure 26: Boxplots of the solutions' stochastic evaluation for instance 2. The four plots display the spread of objective values 
for the time-greedy (Sol1), risk-greedy (Sol 2), cost-greedy (Sol 3), balanced (Sol 4) and weighted (Sol 5) solutions. The green line 

represents the median value, circle points are outliers. 

Figure 26 presents the evaluation of the results for instance 2. Like in instance 1, the cost-greedy 

and balanced solutions present the same route, while the remaining solutions have different routes. In 

contrast with what we observe above, we see that the weighted solution presents with a faster option 

than the time-greedy one. We also see that the risk-aversive yields a fairly reliable option, whereas the 

opposite is true in most cases. Overall, in comparison with instance 1, we observe more variability in all 

solutions results, with larger differences between the first and third quartiles and more outliers.  

In general, both solved problem instances show numerous outliers; furthermore, most results are 

not distributed uniformly, but form rather asymmetric box plots. If we analyze this further and compare 

the results’ average values with their mode, we see observe a clear skewness. In Table 26 we show that, 

for each model type, the percentual difference between the results mean and mode is significant. This 

means that rather extreme scenarios are generated by the simulation, which deteriorate the solutions’ 

average performance significantly, whereas the most common KPI values are far lower. This has 

implications for the outcomes of Section 5.2.3 . Given that in our design we select solutions over others 

based on their averages, this means that we potentially predilect solutions with less (extreme) outliers 

over solutions that, most of the times, yield better values but are affected by more extreme scenarios. 

Finally, if we compare the solutions average KPIs with historical data, we find confirmation to the 

considerations made above. For both instances, the time-greedy and balanced models yield the same 

route as the original orders. By comparing their average and mode values with the actual order metrics, 

we learn that the former overestimates time values by 76.9% on average, whereas the latter has a smaller 



88 
 

gap, with an average difference of 29.3% from the original values. This figure tells us, hence, that the delay 

distributions used in the simulation are tendentially pessimistic. If we look at the cost gap, the solutions 

average is about 30.4% lower than the actual values, whereas the mode lies on a gap of 32.4%. This is 

however not surprising, as the cost estimations used in the model are entirely realistic on purpose.  

Table 26: For instance 1 (left) and 2 (right), we compare the percentual difference between each KPI’s average value and mode. 
On the bottom part of the table, we report the average gap per KPI type. Instance 2 shows the highest gap and thus the most 

skewness of results. 

 

5.2.5 Sensitivity analysis 
This section concludes our experiments with a sensitivity analysis. We solve three problem 

instances using the cost-greedy, balanced and weighted model configurations and with the three penalty 

systems defined in Section 5.1 . Table 27 shows the results. For each model configuration, we compare 

the average KPI values of the three instances solved with the benchmark (hence the penalty policy we 

define in Section 4.5 ) and the strict, relaxed and moderate policies. We also show the percentage of 

routes differing from the original ones, the percentage of simulation instances incurring penalties and the 

type of change applied per policy type.  
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Table 27: Experimental results of the sensitivity analysis. For each model type, we compare the average KPIs of the three 
instances solved with the benchmark penalty system and the alternatives presented in Section 5.1. Additionally, we show the 

percentage of changed routes, the percentage of simulation scenarios incurring penalties and the route’s change. 

 

From the experimental results, we observe a fundamental difference in routing behavior between 

the cost-greedy and the remaining two solutions. Firstly, the former tends to keep the routes unaltered, 

regardless of the policy. Indeed, it shows the lowest change percentage of the three. This is because the 

generated routes are already the ones yielding the lowest costs: we can see this if we look at the 

benchmark’s cost figure, which is relatively low considered its elevated percentage of instances incurring 

penalties. This means that in most cases, altering the routes to avoid penalties from stricter policies (strict 

and moderate) does not outweigh the additional costs incurred by the  route change. We observe only 

one instance in which, for all three policies, the solution finds a superior route, explaining the average 

improvement of almost all KPI values. This is however rather an exception and thereby not representative 

of how the different penalty systems influence this model’s behavior. 

The remaining two models appear to be more reactive to the change of policy. For both, 2 out of 

3 problem instances are solved with a new route. Furthermore, both show a similar way of reacting to 

either policy. For example, both tendentially add a major hub transit to the benchmark route with the 

strict and moderate policies. In the latter two, we start penalizing earlier (from 6 hours time difference) 

than in the benchmark (here we start at 12). This is reflected in the increase of percentage of simulation 

instances incurring penalties. Since the costs deteriorate anyway, both models appear to look for a way 

of compensating by improving the other objectives. In the balanced model, the major hub is added 

because it has flights that are better connected with the destination airport, and thus foster the overall 

transit time. The weighted model, on the contrary, improves the delivery delay metrics, as it finds slower, 

yet more reliable flight connections.  

When we solve the instances with the relaxed policy (start penalizing at 24 hours deviation, up 

until 48), for both models a transit at a major hub is removed, leading to a slight deterioration in the cost 

metric and total transit delay. Since less penalties are incurred, this initially sounds counterintuitive. If we 

look at the instances where the route is changed, we learn that the departing and arriving airports are 

major hubs as well, with a direct flight between them. The direct flight is however more expensive than 

the options with a transit, as it operated by a carrier seldomly used  by SSLC. By reducing the frequency 

of incurred penalties, the model apparently prefers taking the direct option, which is cumulatively more 
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expensive, but also faster. Overall, we can conclude that the changes in penalty systems have more impact 

on the routing decisions on the balanced and weighed models than the cost-greedy. In both cases where 

more or less penalties are incurred, the former models try to adapt the compensate by improving the 

transit time and delay metrics, respectively. 

5.3 Conclusion 
In this chapter we answer the question: “How does the proposed solution perform compared to 

the current routing algorithm?”. We do so by first setting up and executing five types of experiments. 

First, we tune the proposed solutions to find their optimal settings. Next, we solve the problem 

deterministically. We do so by generating 49 instances using historical order data. By comparing the 

results, we observe that the two tabu search algorithms used yield identical solutions, whereas the MNTS 

generates different routes. Compared to the MIP model, all three algorithms yield similar results. 

Furthermore, all three show significant improvement compared to the initial solution, demonstrating they 

can be valid candidates to improve the current routing system. For the following experiments, we 

incorporate the three solution methods in the simheuristic procedure described in Section 4.5 .  

By introducing randomness we observe an overall deterioration of the deterministic KPIs, most 

notably observable in the delay and cost metrics. Whereas we expect to observe such development, the 

delay deterioration is most significant, given the current model’s design does not account for the risk of 

delay discerning from too tightly planned transits. This is particularly observable in the time-greedy 

solutions, where transits are reduced to minimize the waiting time. To our surprise, the models accounting 

for the cost objective partially mitigate this effect, as routes with tight transits are avoided as to reduce 

the frequency of re-booking and penalty costs. The risk-aversive solutions yield the worst results, as they 

deteriorate almost all KPIs and generate routes which do not make sense from a practical point of view. 

We observe that the time-greedy solutions improve the transit time but deteriorate the delay and costs 

KPIs as they generally yield riskier routes. The balanced and weighted solutions provide the best results. 

The former solutions are more cost-oriented and prefer therefore the usage of major hubs and two 

specific cost-efficient airlines; the latter combine the use of minor and medium hubs with transit at majors 

and use five different airlines in combination. This fosters the routes’ speed, although it is more expensive 

than the balanced ones.  

By using the KPI weights obtained in Chapter 2 we compare the results with SSLC’s current routes. 

We conclude that the MNTS weighted solution yields the best results, improving them by 17.7% on the 

aggregated KPI score. Having analyzed the solutions’ performance, we examine their robustness. By 

inspecting box plots of the simulated scenarios, we observe that the time- and risk-greedy solutions 

present generally the most variability, whereas the remainder solutions are more stable. Overall, the 

generated time values present high outliers, which influence the average outcomes. Finally, we analyze 

how the penalization system for deviating from the delivery time affects routing decisions in the models 

optimizing the cost objective. Whereas the change of policy yields little change in the cost-greedy model, 

it affects the balanced and weighted ones. In general, both solutions tend to compensate the 

deterioration in the costs objectives by improving either transit time or delay metrics, regardless of the 

type of policy used. To this end, they either add or remove a transit at a major airport to their initial route.   
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Chapter 6 – Conclusions and 

recommendations 
This final chapter concludes the research. Section 6.1 summarizes the research findings, presents our 

conclusions and contributions to practice and science. In Section 6.2 we provide recommendations and in 

Section 6.3 we discuss this research’s limitations and give suggestions for potential future work. 

6.1 Conclusions 
In this research, we explore approaches within the domain of mathematical programming to 

improve the current calculation of Express airfreight routes at SSLC. We thereby formulate and answer 

the main research question: “How can mathematical programming support route calculation at SSLC as 

to improve the performance of their routes?”.  

Following the context analysis, we identified several limitations to the current routing process, 

some related specifically to the logic behind the routing system. In fact, the latter significantly limits the 

number and quality of its routes, as it selects the origin and destination airports solely based on 

geographical proximity to the shipment’s pickup and delivery points and is incapable of comparing routes 

having different combinations of starting and ending airports. Most importantly, the current system only 

considers routes which arrive the earliest at delivery, neglecting other relevant aspects like likelihood of 

incurring delays, operating costs and the network’s stochastic nature in general. Our solution overcomes 

these issues, as it can compare multiple combinations of origins and destinations, returning routes with 

the best options. It calculates routes accounting for the transit time, expected delay and total operating 

costs, returning cumulatively better options than the current ones. Finally, our method also accounts for 

stochasticity, which enables CS agents to be more aware of the robustness of its generated options. 

However, the fact that SSLC does not own the flight data necessary for the route calculation remains an 

issue, as it prevents the company from being able to redesign the process in a more efficient way. Whereas 

we cannot comment on whether the costs of eventual data ownership would be outweighed by the 

benefits of such process redesign, we demonstrate that our solution yields clear benefits from an 

operational point of view. 

To improve the current situation, we modelled the problem at hand as a Multi-Objective 

Multimodal Route Choice Problem, where we minimize the total transit time, risk of delay and cost. We 

modelled the scheduled flights’ departures with hard-time windows and penalized both late and early 

arrival at the delivery point with soft time-windows. To account for all three objectives, we aggregated 

them linearly in a single objective function, using weights to specify their relative importance. To learn 

how favoring either objective influences routing decisions, we solved the model with five different weight 

settings. To solve the problem, we used three variants of the tabu search algorithm: one storing moves 

(TS-M1), one storing entire solutions (TS-M2) and a hybrid one using multiple neighborhood operators 

(MNTS). To initiate the algorithms, we input an initial route, which we generated following the logic used 

by the current system. 
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We executed five types of experiments. With the tuning experiments we obtained the optimal 

settings to run our solutions on each model. Next, by solving the problem deterministically, we proved 

the quality of each algorithm compared to an exact solution to the MIP and obtained an indication of the 

degree to which the three solution methods improve their input initial solution. Hence, we investigated 

their potential to improve the current routing system’s algorithm. By solving the problem with the 

simheuristic, we obtained the main research results. We learned which solution approach performs best, 

to what degree it cumulatively improves the actual Express routes and what routing decisions yield such 

improvement. By analyzing the spread of results obtained within the final simulation step of our 

simheuristic, we evaluated the role of randomness within the obtained outcomes. Finally, with the 

sensitivity analysis we explored how a change in penalizing policies affects the routing behavior of 

solutions accounting for the cost objective. The main outcomes of our experiments are summarized in 

Table 28. 

Table 28: Summary of the main experimental outcomes. 

 

From the tuning experiments, we obtained the model settings for the subsequent experiments. 

We learned that enforcing routes to have options departing from the origin within 24 hours from the 

shipment’s availability time is not beneficial, therefore we relaxed this model constraint. Using 49 

historical orders, we estimated model parameters directly from the data and generated problem instances 

to test our model. By solving the problem deterministically, we first observed that, for all model 

configurations, solving all instances optimally is not possible within a time limit of five minutes. 

Furthermore, all three algorithms perform similarly to the MIP model and require less solving time, 

thereby justifying our choice to prefer them to exact methods. Additionally, both TS and MNTS methods  

improve the initial solution significantly. From this we can conclude that the proposed tabu search variants 

are suited candidates to improve SSLC’s current routing algorithm. Next, we incorporated stochasticity in 

the simheuristics and solved the same 49 instances. Table 29 summarizes our findings. 
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Table 29: Summary of the routing policies for each of the five solved model types. 

 

Overall, we learned that time-greedy models tend to favor the usage of minor hubs as starting 

airports. Those hubs are generally less burdened by high cargo volumes and therefore have the main 

advantage of having shorter service times for the shipment’s export preparation. Furthermore, they are 

closer to most generated pickup points and have fast direct flight options, making them interesting for 

transit time minimization. Those airports are however riskier: flights are less frequent, meaning that 

delays can quickly escalate. To mitigate this, most routes make use of driving options. As trucks are not 

constrained by a scheduled departure time, they can be used to mitigate the delay of a shipment which 

misses its flight. Therefore, the use of driving options between airports as a mean of delay recovery can 

have positive effects on a shipment’s transit time. Those options are, however, notably expensive. In 

short, the usage of direct options between minor hubs and including vehicles as a mean for transportation 

overall results in the fastest routes. This comes however at the expense of high average delay and 

operating costs (respectively +105% and +132% w.r.t the current routes) making them less interesting for 

regular shipments. 

The risk-greedy models turned out to perform worst. Most generated routes are inoperable in 

practice, showing significant deterioration on the transit time and cost metrics. Delays are minimized to 

a limited extent, showing that accounting for carrier- and airport-bound risks is an effective yet not 

exhaustive method to prevent delay. All in all, this model is not usable by SSLC. For cost-greedy options, 

the solutions predilected the use of major hubs and flying options, as they are overall cheaper. The model 

also showed a low variation in the utilized airlines, as it predilects employing cheaper airlines with a flight 

extra than more expensive ones with direct options. Paradoxically, these solutions tend to choose routes 

with an additional transit, mostly at a major hub. This is motivated by the fact that these routes are more 

reliable and thus help preventing missing flights (which result in rebooking fees) and arriving late at the 

consignee (resulting in penalty costs). Additionally, we learned that cost-greedy routes have more time 

between transits, as a way of preventing missing a connection. As a consequence, the cost-greedy model 

indirectly covers a third source of risk which we originally overlook in our design, namely the tightness of 
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planned transits. Therefore, in this model setup, optimizing costs can be beneficial to improve the 

reliability of a flight route. The major disadvantage, however, of using a cost-centered model is that the 

chosen options are overall slower (+36% transit time w.r.t. the current routes). Eventually, this kind of 

routes can become useful for SSLC whenever order requests are received far ahead of the requested 

delivery moment, as this would enable the company to plan on a longer term and thereby operate slower 

but cheaper (and more reliable) routes without deviating from the requested transportation moment.  

Within the balanced and weighted models we recognized routing decisions discerning from the 

greedy models: the balanced model predilects the usage of major hubs as origins and destinations as it 

puts more emphasis on the cost objective, whereas the weighted model uses more minor and medium 

hubs, to foster speed of delivery. Overall, both solution types provide with good options; given that SSLC 

generally prefers speed over cost, the weighted solutions are better suited to the company’s needs. By 

comparing the latter’s KPIs with the ones of the current routes, and weighing them using the importance 

weights we elicited from the context analysis, we saw that the weighted solution yields significant 

improvements on all metrics, thereby outperforming all other solution types. Indeed, it improves the 

transit time by 29.2%, its coefficient of variation by 13.7%, the delivery and total delays by 5.6% and 18.8% 

respectively, and the total costs by 20.4%. 

If we compare the routes obtained by the weighted solution with their corresponding historical 

orders, we observe that only 37% of the routes match. In general, the weighted solution shows 

significantly more variation in its generated routes, as it uses more different hubs and airlines. Although 

most of the chosen origins are major hubs, this solution showed an increased use of medium and minor 

hubs (26% of all routes). In contrast with what we observed in the time-greedy solutions, a direct option 

is never chosen when using these types of airports; instead, a transit at a major one is preferred, from 

which then a flight to another major hub is taken. In this way the solution finds a balance between speed 

and reliability. The first airport choice favors the transit time. Since the chosen transit hubs are well-

connected to the origins, eventual delays are easily mitigated. This has also a positive impact on the costs, 

which are higher than in the balanced and cost-greedy solutions but lower than the time- and risk-greedy 

ones. Additionally, we observed an increased variability of airlines used. The solution uses five different 

airlines almost evenly, whereas the original routes choose one distinguished airline 92% of the times. In 

addition, different airlines are used in combination for single routes: this shows that using a more diverse 

portfolio of air carriers in combination can be advantageous for a route’s general performance.  

Although we obtained encouraging results, we must acknowledge that the reported KPI values 

suffer from variability, which results mainly from pessimistic simulation outcomes. As emerges from the 

stochastic analysis, the distributions of the transit times and delays are mostly skewed, showing significant 

disparity between the average and mode values. Furthermore, we observe an elevated number of 

outliers. Having performed simulations of 15000 iterations we feel confident in concluding that this is a 

consequence of the (too) pessimistic nature of  the utilized probability distributions rather than the result 

of randomness in general. By comparing the simulation results with real data, we find confirmation to this 

affirmation. Whereas the time values tend to be overestimated, costs seem to be underestimated. Since 

the costing data used in the model are not accurate, the latter observation is trivial. Therefore, 
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comparisons in terms of cost-efficiency can only be made with fair confidence between the generated 

solutions, rather than with the current situation.  

In conclusion, this research yields multiple contributions. Starting with an academical viewpoint, 

we contribute to existing literature by providing a comprehensive classification scheme for the MRCP 

(summarized in Figure 14), which includes all features extracted from related works collected during our 

literature review. This scheme can be used by researchers as framework to translate a real-life problem 

to a MRCP model. Furthermore, we enrich the MRCP formulation by Lei et al. (2014) with several 

additions. First, we incorporate the use of hard time-windows to model departures of scheduled 

transportations services. Secondly, we provide with a simple, yet effective method to estimate the risk 

factors used in authors’ model, as they do not provide with one. This allows future researchers wanting 

to use their model for practical research to empirically quantify risk. Third, we correct a mistake by the 

authors as they do not include (explicit) flow constraints in their model formulation. Additionally, we 

demonstrate that tabu search can effectively solve the MRCP, which to the best of our knowledge, has 

not been done before. On top of that, we provide with two equally good methods for using memory. 

Finally, we add onto the literature on hybrid heuristics, as we demonstrate that our MNTS can effectively 

solve a MRCP. Our major practical contribution is to provide SSLC with insights into how certain routing 

choices influence relevant objectives of time, risk and cost. With these insights, the company can improve 

their operations and provide an even more tailored service to their customers. For example, if a customer 

requires a faster route, agents can consider offering direct options between two minor hubs, bearing in 

mind this brings additional risk and significant costs. On the other hand, routes for regular shipments can 

be steered more towards routing choices from the weighted model, hence departing from minor/medium 

hubs with transit and arrival at a major one. On a higher level, this research serves as a blueprint for freight 

forwarders specialized in express logistics who wish to optimize their routes, as it effectively demonstrates 

a method to do so.  

6.2 Recommendations 
In this section we provide SSLC with practical recommendations based on the research’s results. 

We start off with the operational ones.  One of the most interesting findings of this research is related to 

the usage of smaller hubs as starting airport to reduce the shipment’s drive time and export service time. 

Whereas we consider this plausible, we also acknowledge that the available timestamps for those airports 

are significantly less than those for bigger hubs, as the former are operated seldomly in the network. 

Therefore, the estimated service times might be too optimistic compared to reality. It would be therefore 

interesting to investigate whether the performance of those minor hubs coincides with what we input to 

the model in this research. In a similar way, our solution uses different (unrelated) airlines in combination 

for a single route. SSLC currently avoids this, as it allegedly exposes a route to an increased risk of 

irregularities. Because of this, we have no data to prove with certainty whether combining airlines can be 

better or worse. Therefore, we recommend investigating this further by using test shipments with 

different operating airlines. In the time-greedy solutions, we propose the use of vehicles for mitigating 

delays caused by shipments missing their fight from a minor (and thus limitedly connected) hub. It is 

questionable whether the costs of such options would be worth the benefit, besides the fact that SSLC 

might not have sufficient partner capacity to use this option. Nevertheless, it could be an interesting 
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option to explore for short-haul routes like the one examined within our research. Finally, we recommend 

trying to relax the 𝑑𝑒𝑝𝑤𝑖𝑡ℎ𝑖𝑛 constrain in the API request the system currently sends to the flights 

scheduler and see whether this indeed benefits the overall quality of results.  

Besides providing recommendations for the short term, we also have suggestions for the medium-

to-long term on how to improve the process in general. The first one concerns improving the current data 

quality, as it has a considerable influence on the presented results. Indeed, we recommend to research 

ways to improve the data collection process, for both sales and tracking datasets. As we show in the 

stochastic analysis, the estimated probability distributions generate too many outliers, making the 

average simheuristic results yield overall pessimistic estimations for the service and travel times. These 

rather extreme values are the result of outliers present in the collected data. To get a more realistic 

solution, a fraction of those outliers needs to be removed. This is however not possible in the current 

setup, as we cannot distinguish which ones are caused by exceptional circumstances (e.g. adverse weather 

conditions, strikes), miscommunication accidents with the customer or measurement errors (caused by 

either partners or CS agents). Additionally, potentially useful data is not being collected in the current 

setup. For example, the number of capacity warnings displayed to agents for fully loaded flights is not 

being stored. This type of data would have been very useful, as it would have allowed us to consider 

capacity limitations in our model design and hence make it more realistic.  

Furthermore, SSLC should also consider acquiring flight schedules data. The carriers used as input 

to our model all belong to the set of flights which have been used by SSLC in the past. This restricts our 

results significantly, as there might be more options offering better routes. Most importantly, acquiring 

the data would enable SSLC to implement its own routing algorithm, following the approach proposed in 

our research. Besides the benefits demonstrated by our solution, doing so would enable the company to 

redesign the process we describe in Chapter 2. The validation of results could be done upstream, thus 

reducing the system’s computational inefficiency. Naturally, it is up to the company to investigate whether 

the costs of such investment would be paid-off by the mentioned benefits. 

If SSLC wishes to implement our proposed solution, we recommend to regularly estimate and 

update the model parameters, using a direct pipeline to the sales and tracking datasets. One of the 

strengths of the proposed solution is that it uses parameters estimated from actual data, making its 

outcomes more realistic. To keep this advantage, data must be regularly collected, and datasets updated, 

ensuring parameters estimations can be kept up to date. Another important step would be to test the 

hybrid tabu search on a larger problem instance first, and next using the entire Express network. If the 

algorithm proves to be too computationally demanding, the classic tabu search variant can be considered 

alternatively, as it still provides with good results in significantly less time. Before implementing the 

solution, we also recommend observing how the results differ if solutions are compared and selected 

based on their mode instead of average. A potential outcome could be obtaining better routes at the price 

of more sensitivity to randomness. It is again up to SSLC to evaluate which approach is preferred. 

6.3 Limitations and further research 
We conclude by addressing the limitations of our research and giving suggestions for future work. 

First, our model design is incomplete concerning the minimization of the risk objective. As we explain in 
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Chapter 5, the likelihood of incurring a delay is not only influenced by the individual carriers or visited 

airports, but also by the tightness of scheduled transits. Therefore, a first suggestion to improve our work 

would be to include it in the model design.  

We also make several assumptions to simplify the mathematical formulation of the studied 

problem. For example, we assume an uncapacitated network, whereas both vehicles as flights are subject 

to capacity restrictions. We also do not distinguish the shipments’ goods nature, thereby assuming all 

goods can be transported without restrictions. In reality, the nature of goods can limit the number of 

available options: for example, products containing specific lithium batteries can only be transported with 

freighter aircraft. Moreover, some shipments might need additional assets in place, like cool boxes for 

transportation, which also need to be arranged beforehand and have influence on the route in general. 

In our model, we account only for the simplest customs clearance scenario, namely performing the export 

clearance at the origin airport and the import clearance at destination. This is rather simplistic, as customs 

can be performed in many other ways. For example, for shipments with a T1 status, the import clearance 

can be postponed until delivery. Another possibility would be to do the export clearance at a transit 

airport. This is not uncommon, as certain airports have convenient clearance procedures for certain 

goods. Furthermore, we specify that customs clearance needs to be done after export preparation at the 

origin and prior to import preparation at destination. Although this is the most used order of operations, 

it is not mandatory. For example, a shipment arriving past closing time at the airport handler at the origin 

could still be cleared for customs, then wait until the handler opens again and be serviced for departure. 

Our approach dictates it must wait until reopening of the handler office, prepared for export and only 

then customs cleared, taking more time than necessary in practice. Altogether, incorporating these 

considerations in the current model would make it more realistic. 

Finally, there are aspects that are yet not considered by SSLC in their operations but would be 

interesting to study. As discussed in Chapter 2, environmental metrics are not considered actively for the 

route calculation. Nevertheless, we must acknowledge the increased relevance of sustainability in the 

field of logistics. Therefore, it would be interesting to observe how routing decisions are influenced when 

taking green KPIs into account. For the same reason, it would also be interesting to explore the possibilities 

of consolidation within this context. The benefit of consolidating shipments on one route could be 

potentially twofold: first, it would reduce the transportation costs per shipment; secondly, it would also 

reduce the carbon footprint per shipment. Lastly, we would recommend exploring the possibilities of 

route re-optimization, following disruptions like major delays. In the current design, if a shipment misses 

a flight, it waits until the best next option to the subsequent airport. This is however not optimal, as agents 

would normally look for alternative routes in the system. Therefore, we argue that designing a solution 

capable of optimally recalculating a route following such disruptive event would yield better results, thus 

making this an interesting topic for future work.  
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Appendices 

A. Product portfolio 
SSLC offers a wide range of products. This appendix paragraph describes them in short: 

• Express Air: this is one of the most popular products offered. Shipments have higher loading 

priority than express cargo and can be almost always loaded on board in either compartment five 

or the aircraft’s belly. This is the product that can be (and usually is) booked with the shortest 

preadvice, with an average LAT of 45 minutes before the flight. It is also usually the fastest type 

of shipment. Figure 27 shows which hubs globally can be served with this product. 

• Express train: transportation jobs are executed by train. Train options are restricted to the 

European market, more specifically to Germany, Paris, Vienna, Basel and Amsterdam. 

• Global Express Air Freight: this is also a form of prioritized air cargo product. Key differences with 

Express Air are the package dimensions and weight; global express has no restrictions, and 

destination type (global express covers almost all possible destinations globally, whereas express 

air covers only specific hubs). 

• Spare Parts & Service Logistics: as the name suggests, this product focuses on the flow of spare 

parts within a company-operated (European-based) network. Flight schedules are fixed, therefore 

only volumes of transported parts vary within this product. 

• SSLC Warehouse: this service grants direct access to apron areas at the airport to ensure the 

lowest handling times possible. Within the warehouse shipments are prepared for transport, 

customs cleared, and brought directly to the aircraft (either from the warehouse or tail-to-tail). 

• On-board Courier: with this type of shipment, transport is executed and monitored by a traveling 

courier. Customers often choose this type of solution for temperature-controlled goods, e.g. 

medical products. 

• Tailor-made solutions: this includes booking designated flights (charters) or dedicated truck 

transports (Direct Deliveries) to guarantee nonstop, high-speed solutions. This is often the most 

expensive option. 

On top of the above options, each transportation job can vary in the combination of origin and destination 

points. Shipments can be door2door, airport2airport, door2airport, door2station, etc. 
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Figure 27: Global overview of express flight hubs 
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B. Problem cluster  
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Figure 28: Problem cluster. Action problems are displayed on the right and highlighted in purple. Core problems are depicted on 
the left, we distinguish between solvable (blue) and non-solvable (red). 

Table 30: Solvable core problems (Blue= already being solved, Green = yet to be solved)  

Number Problem Explanation 

1 Training is mostly done on learn-by-
doing.  

Agents are currently trained with basic 
online materials; the real learning takes 
place when they are put on operations. 
Agents learn therefore slowly and 
overall make more mistakes within the 
first year. 

2 Current process workflows are 
outdated/not used by agents. 

Agents approach the same processes 
each with their own workflow, thus 
causing human errors. 

3 Operational systems display options per 
product category separately.  

Shipment requests can be potentially 
served by multiple product options: the 
lack of a cross-product comparison 
slows down the quotation process.  

4 Underlying route calculator often does 
not display the best option 

Route calculation does not explicitly 
account for relevant objectives like 
minimalization of transit time, delays, 
costs, etc. Customers therefore do not 
always get the fastest option and 
rebooking/delays add work for the CS 
team. 

5 Systems are not/poorly integrated The operational systems are not well 
connected, leading to manual work and 
human errors. 

6 Monitoring process is reactive The CC&M team intervenes only when 
an irregularity takes place. Hence, they 
are by default too late when a 
disruption takes place.  

7 CC&M information systems are not 
integrated  

Besides causing unnecessary manual 
work, the system disaggregation makes 
it challenging for the CC&M team to 
retrieve information when disruptions 
take place. 

8 Operational performance is measured 
only for partner management 

Only irregularities during tracking are 
used for post-hoc analysis; this leads to 
an incomplete overview of operations 
performance 

 

This Appendix discusses the identification of problems within the company which lead to selecting 

the core problem introduced in Section 1.2.2 . In their method, Heerkens and van Winden (2017) 
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distinguish two types of managerial problems: action problems and core problems. The former represent 

an evident discrepancy between a desired and actual situation, whereas the latter are their root causes. 

Action problems are usually noticed first; root-cause analysis leads consequently to core problems. In 

order to solve an action problem, researchers should focus on solving core problems. Figure 28 shows, by 

means of a problem cluster, the existing relations between observed action problems and core problems 

within the Customer Service. During our preliminary research, we identified fourteen core problems in 

total, of which we deemed eight to be solvable. Table 30 shows these eight problems in more detail 

together with their description. Of the eight problems, four are currently being solved. SSLC Netherlands 

is focusing on setting up a novel training program (addressing 1 and 2) and the GOP is in an advanced 

stage of solving 3 and 5. This leaves us with 4, 6, 7 and 8 as candidate core problems to tackle. Ultimately, 

we choose to solve problem 4. 
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C. KPI selection list 
Table 31 Displays the list of KPIs considered to measure the routing quality. The KPIs are either derived from the answers of the panel of 

experts (PoE) or literature. 

Table 31: KPI selection on route quality 

 

KPI Objective Description Source Selected 
(Y/N) 

Comment 

Transit time  Speed Difference between arrival and 
departure time.  

PoE, (Lenze and Niessen 2021), (Solien, 
Nicholson and Peterson 2017) 

Yes  - 

Transit time 
quotient 

Speed Ratio between actual transit time 
and longest possible transit time 
on a route. 

PoE, (Lenze and Niessen 2021) Yes - 

Occupancy 
rate 

Speed Compressed time (i.e., frequency 
of departing flights/hour)  divided 
by the transportation time 
window. 

(Lenze and Niessen 2021), (Solien, 
Nicholson and Peterson 2017) 

No Impossible to retrieve 
information from historical 
data; overall complex to 
measure. 

Delivery delay Risk Time difference between actual 
and scheduled delivery at 
destination. 

PoE, (Dua and Sinha 2019), (Lenze and 
Niessen 2021), (Solien, Nicholson and 
Peterson 2017), (Ghiani, Laporte and 
Musmanno 2013), (Gozacan and Lafci 
2020), (SteadieSeifi, et al. 2014) 

Yes - 

On-time 
deliveries 

Risk Percentage of on-time deliveries. PoE, (Dua and Sinha 2019), (Ghiani, 
Laporte and Musmanno 2013), (Gozacan 
and Lafci 2020) 

No Less informative than delivery 
delay; a delay of 5 minutes is 
not as bad as a delay of 2 hours. 

(Average) 
number of 
missed transits 

Risk Average number of missed 
transits. 

PoE No Not retrievable from data. 
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Reroute 
probability 

Risk Probability of missing flight 
connection. 

PoE No See number of missed transits. 

Partner 
reliability 

Risk Combined metric of delays 
caused by partner, partner 
timeliness of communication, 
accuracy of information provided. 

PoE No The indicators composing this 
metric are mutually dependent, 
making it tricky to interpret it 
objectively. 

Total transit 
delay 

Risk Sum of delays per leg throughout 
the entire route. 

PoE, (Lenze and Niessen 2021), (Solien, 
Nicholson and Peterson 2017) 

Yes This type of delay doesn’t affect 
the customer but has influence 
on workload for SSLC agents 
and costs, and is therefore 
relevant. 

Resilience Risk Ratio of differences between 
recovered and disrupted state, 
and disrupted and initial state. 

(SteadieSeifi, et al. 2014) No Not retrievable in the data. 

Total operating 
costs 

Costs Total operating costs. PoE, (Ghiani, Laporte and Musmanno 
2013), (Gozacan and Lafci 2020), (Mutlu, 
Kayikci and Catay 2017) 

Yes - 

CO2 emissions Other CO2 emissions. PoE, (Dua and Sinha 2019), (Gozacan and 
Lafci 2020), (Mutlu, Kayikci and Catay 
2017) 

No - 
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D. AIJ method calculations 
This appendix section explains how we performed the AIJ method in order to obtain weights for 

the KPIs used to assess route performance. Figure 29 shows the judgments filled by the respondents. The 

first step in the AIJ is to aggregate the judgements by taking the geometric mean of each distinct criteria 

combination. The geometric mean can be described by the formula: 

(∏𝑥𝑖)

𝑛

𝑖=1 

1
𝑛

= √𝑥1𝑥2…𝑥𝑛
𝑛   𝑤𝑖𝑡ℎ 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠; 𝑥𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

Figure 30 shows the geometric means within the aggregated (first) matrix. The next step consists 

of normalizing the judgment values by the column sums. These values are visible in the normalized matrix. 

By averaging the rows, we obtain the priorities (weights). The last step consists of checking the latter 

values for consistency. First, we build a new matrix, inserting the weights in row 0 and the aggregated 

judgements below (see the first consistency check matrix). Next, we multiply each judgment value in a 

column by its corresponding column weight. We sum the obtained values by each row and calculate alpha 

by dividing each sum by the corresponding weight values. These calculations are applied to the second 

consistency check matrix in Figure 30. With the alpha values, we calculate:  

𝜆𝑚𝑎𝑥 = ∑𝛼𝑛

𝑛

𝑖=1 

 

With 𝜆𝑚𝑎𝑥 we then calculate the consistency index (C.I.), defined as: 

𝐶. 𝐼. =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 𝑤𝑖𝑡ℎ 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

Finally, we calculate the consistency ratio (C.R.). For the obtained weights to be consistent, the 

C.R. should be less than 0.10. The C.R. is calculated with: 

𝐶. 𝑅.=
𝐶. 𝐼.

𝑅. 𝐼.
 𝑤𝑖𝑡ℎ 𝑅. 𝐼. = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑑𝑒𝑥 

For a value of n = 5 (as we compare five KPIs), the R.I. has value 1.12 (Lalla-Ruiz 2020). We thus 

obtain a value for the C.R. of 0.04 confirming our weights are consistent.  
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Figure 29: Individual expert judgments 

 

Figure 30: Aggregated matrix and consistency check 

Matrix 1 Transit time Transit time quotient Delivery delay Total transit delay Total operating costs

Transit time 1 7 0.25 0.2 8

Transit time quotient 0.14285714 1 0.142857143 0.142857143 0.5

Delivery delay 4 7 1 0.2 7

Total transit delay 5 7 5 1 8

Total operating costs 0.125 2 0.142857143 0.125 1

Matrix 2 Transit time Transit time quotient Delivery delay Total transit delay Total operating costs

Transit time 1 5 1 1 5

Transit time quotient 0.2 1 0.2 0.333333333 0.2

Delivery delay 1 5 1 7 3

Total transit delay 1 3 0.142857143 1 1

Total operating costs 0.2 5 0.333333333 1 1

Matrix 3 Transit time Transit time quotient Delivery delay Total transit delay Total operating costs

Transit time 1 0.166666667 8 6 3

Transit time quotient 6 1 1 1 4

Delivery delay 0.125 1 1 1 5

Total transit delay 0.16666667 1 1 1 5

Total operating costs 0.33333333 0.25 0.2 0.2 1

Matrix 4 Transit time Transit time quotient Delivery delay Total transit delay Total operating costs

Transit time 1 0.142857143 0.2 0.125 5

Transit time quotient 7 1 0.2 0.166666667 6

Delivery delay 5 5 1 5 6

Total transit delay 8 6 0.2 1 4

Total operating costs 0.2 0.166666667 0.166666667 0.25 1

Matrix 5 Transit time Transit time quotient Delivery delay Total transit delay Total operating costs

Transit time 1 0.166666667 7 7 1

Transit time quotient 6 1 7 7 4

Delivery delay 0.14285714 0.142857143 1 0.166666667 1

Total transit delay 0.14285714 0.142857143 6 1 1

Total operating costs 1 0.25 1 1 1

Aggregated  matrix Transit time Transit time quotient Delivery delay Total transit delay Total operating costs

Transit time 1.000 0.674 1.229 1.010 3.594

Transit time quotient 1.484 1.000 0.525 0.561 1.572

Delivery delay 0.814 1.904 1.000 1.031 3.630

Total transit delay 0.990 1.783 0.970 1.000 2.759

Total operating costs 0.278 0.636 0.276 0.362 1.000

Column total 4.567 5.996 3.999 3.964 12.556

Normalized matrix Transit time Transit time quotient Delivery delay Total transit delay Total operating costs Priorities

Transit time 0.219 0.112 0.307 0.255 0.286 0.236

Transit time quotient 0.325 0.167 0.131 0.142 0.125 0.178

Delivery delay 0.178 0.317 0.250 0.260 0.289 0.259

Total transit delay 0.217 0.297 0.242 0.252 0.220 0.246

Total operating costs 0.061 0.106 0.069 0.091 0.080 0.081

1.000 1.000 1.000 1.000 1.000

Consistency check Transit time Transit time quotient Delivery delay Total transit delay Total operating costs

Weights 0.236 0.178 0.259 0.246 0.081

Transit time 1.000 0.674 1.229 1.010 3.594

Transit time quotient 1.484 1.000 0.525 0.561 1.572

Delivery delay 0.814 1.904 1.000 1.031 3.630

Total transit delay 0.990 1.783 0.970 1.000 2.759

Total operating costs 0.278 0.636 0.276 0.362 1.000

Consistency check Transit time Transit time quotient Delivery delay Total transit delay Total operating costs Sum Alpha

Transit time 0.236 0.120 0.318 0.248 0.293 1.215 5.149

Transit time quotient 0.350 0.178 0.136 0.138 0.128 0.930 5.225

Delivery delay 0.192 0.339 0.259 0.253 0.295 1.339 5.169

Total transit delay 0.234 0.317 0.251 0.246 0.225 1.272 5.178

Total operating costs 0.066 0.113 0.071 0.089 0.081 0.421 5.168

Lambda max 5.177774035

C.I 0.044443509

R.I 1.12

C.R. 0.039681704
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E. Auxiliary procedures pseudocode 

 

Figure 31: Pseudocode for calculating the ready time at the origin airport o. 

 

Figure 32: Pseudocode for calculating the ready time at a transiting airport a. 

 

Figure 33: Pseudocode for calculating the ready time at the ending airport e. 
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Figure 34: Pseudocode for finding the optimal carrier combination given a sequence of input airports 

 

Figure 35: Pseudocode for selecting the best neighbor solution from a generated neighborhood. The neighbor solution is 
chosen if no match in the tabu list is found or if it satisfies the aspiration criterion. Otherwise, the next best neighbor is chosen.  
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F. Example plots of visual goodness-of-fit tests 

 

Figure 36: Example plot of the service times distributions at airport a. The plot compares the observed data with the cumulative 
distributions of the Weibull, Gamma, exponential and lognormal distributions. 

 

  

Figure 37: P-P (left) and Q-Q plot for visually inspecting the goodness-of-fit of the Weibull, Gamma exponential and lognormal distributions on service times 
data. 
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G.  Experimental outcomes of the tuning experiments 
This appendix section presents the measured model performance with the selected settings as 

presented in Section 5.2.1 . All experiments are performed on the same problem instance. 

In Table 32 we present the results of tuning the simheuristic parameters. We tune them using the 

balanced model configuration and TS-M1 and extend the found settings to the remaining models. 

Table 32:Tuning outcomes for the simheuristic parameters 𝑖𝑡𝑒𝑟𝑖 and 𝑖𝑡𝑒𝑟𝑓. The highlighted rows indicate the best results 

obtained for either parameter. 

Simulation param. Tabu search param. Results coefficients of variation  Computational 
performance  

𝒊𝒕𝒆𝒓𝒊 𝑖𝑡𝑒𝑟𝑓  𝑇𝑙𝑒𝑛𝑔𝑡ℎ 𝑇𝑖𝑡𝑒𝑟 Time Risk Cost Run time (s) 

100 1000 5 100 0.08 0.08 0.04 81 

500 1000 5 100 0.01 0.08 0.02 258 

1000 1000 5 100 0.003 0.02 0.006 480.5 

1500 1000 5 100 0.003 0.02 0.005 788 

5000 1000 5 100 0.015 0.07 0.001 1082.3 

1500 5000 5 100 0.002 0.015 0.002 426.5 

1500 10000 5 100 0.002 0.010 0.003 425 

1500 15000 5 100 0.002 0.009 0.002 503.8 

1500 30000 5 100 0.002 0.013 0.003 1056.5 

 

Following the first batch of experiments, we find 𝑖𝑡𝑒𝑟𝑖 = 1500 and 𝑖𝑡𝑒𝑟𝑓 = 15000 yield good results in 

acceptable time. We use these values for the remainder of the experiments. Below we present the 

performance of each solution, using the found optimal parameter configuration. A comprehensive 

overview of the tuning experiments is omitted for conciseness. 
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Table 33: Outcomes of the tuning experiments for the Tabu search M1.  

TS – M1 

Model  𝑇𝑙𝑒𝑛𝑔𝑡ℎ 𝑇𝑖𝑡𝑒𝑟 𝑑𝑒𝑝𝑤𝑖𝑡ℎ𝑖𝑛 Transit time (h) Total risk Total cost (euro) Run time (s) 

1 5 100 ∞ 30.9 7.9 1888 419.6 

2 5 100 ∞ 47.6 8.1 2632.5 525.7 

3 5 100 ∞ 47.6 6.6 1052.4 513.5 

4 7 100 ∞ 47.7 6.4 1044.5 479.1 

5 7 100 ∞ 47.6 6.6 1052.6 565.6 

 

Table 34: Outcomes of the tuning experiments for the Tabu search M2. 

TS – M1 

Model  𝑇𝑙𝑒𝑛𝑔𝑡ℎ 𝑇𝑖𝑡𝑒𝑟 𝑑𝑒𝑝𝑤𝑖𝑡ℎ𝑖𝑛 Transit time (h) Total risk Total cost (euro) Run time (s) 

1 5 100 ∞ 31.2 8.4 1895 442.7 

2 5 100 ∞ 47.7 8 2629.8 554.6 

3 5 100 ∞ 47.6 6.6 1048.6 541.7 

4 7 100 ∞ 47.6 6.6 1047.4 481.5 

5 6 100 ∞ 47.6 6.6 1046.6 596.7 

 

Table 35: Outcomes of the tuning experiments for the Hybrid Tabu search. 

MNTS  

Model  𝑇𝑙𝑒𝑛𝑔𝑡ℎ 𝑇𝑖𝑡𝑒𝑟 𝑑𝑒𝑝𝑤𝑖𝑡ℎ𝑖𝑛 Transit time (h) Total risk Total cost (euro) Run time (s) 

1 6 1000 ∞ 31.2 8.4 1896 1792.9 

2 6 1000 ∞ 47.7 8 2629 1941.1 

3 6 1000 ∞ 70.8 5 893.1 1896 

4 7 1000 ∞ 47.6 6.5 1046.9 1927.3 

5 7 1000 ∞ 47.6 6.6 1047.9 2386.8 
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H. Experimental outcomes of the deterministic analysis 
This appendix section presents all outcomes of the experiments used to evaluate the proposed 

solutions deterministically. Each table below presents the integral results of solving 49 scenarios 

generated with historical order data, given a particular model setup. Within each table we compare the 

solutions’ performance with the generated initial solution8, their run time and indicate whether they 

change the route of the initial solution.  

 
 

8 TT = percentual difference in transit time; TR = percentual difference in risk, TC = percentual difference in cost   

Table 36: Experimental results of deterministically solving the test instances with the time-greedy (𝛼 = 1) model. 
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Table 37:Experimental results of deterministically solving the test instances with the risk-greedy (𝛽 = 1) model. 
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Table 38: Experimental results of deterministically solving the test instances with the cost-greedy (𝛾 = 1) model. 
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Table 39: Experimental results of deterministically solving the test instances with the balanced model.
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Table 40: Experimental results of deterministically solving the test instances with the weighted model. 
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I. Experimental outcomes of the simheuristic 
This appendix presents all outcomes of the experiments carried out to evaluate the simheuristic, 

using both normal and multiple neighborhoods tabu search variants. Each table presents a comparison in 

performance between the two solutions for each problem instance. We thereby show the airports used 

by each route, being either major (MA), medium (ME) or minor (MI) hubs, the preferred carrier type, the 

average KPI values and run time. 
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Table 41: Simheuristic results for the time-greedy (𝛼 = 1) model. 
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Table 42: Simheuristic results for the risk-greedy (𝛽 = 1) model. 
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Table 43: Simheuristic results for the cost-greedy (𝛾 = 1) model. 
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Table 44: Simheuristic results for the balanced model. 
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Table 45: Simheuristic results for the weighted model. 

 


