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General Introduction

1.1 Clinical Problem Statement
Hip fractures are a global health problem [1], mostly affecting older adults around the
age of 80 years [2]. Due to the increasing life expectancy of the world population, an
increasing incidence of hip fractures is anticipated in the upcoming years [3, 4]. Based
on a worldwide estimate of 1.26-1.66 million hip fractures in 1990, epidemiological
projections suggest that 2.6 million individuals will be affected annually by 2025. This
number is expected to increase further to 4.5-6.26 million by 2050 [5, 6]. Hip fractures
are acknowledged to be one of the most severe health problems affecting older adults [7,
8], being one of the most common causes of admission to acute orthopaedic wards [9].
In general, hip fractures have a poor survival prognosis as approximately one-third of
the patients dies within one year following surgery [4]. It is postulated that the cause of
death is attributable to degenerated physiological reserve [10], which is defined as “the
potential capacity of a cell, tissue, or organ system to function beyond its basal level in
response to alterations in physiological demands” [11, p. 492]. The poor physiological
reserve is reflected by the high prevalence of multimorbidity amongst older adults [12],
leading to an increased risk of developing postoperative complications such as pneumonia,
pulmonary embolism, deep venous thrombosis, heart failure, myocardical infarction, and
acute renal failure [13–18]. Therefore, the relatively poor health at baseline amongst
older patients poses challenges for effective management of hip fractures.
Hip fracture management commences with fracture diagnosis through radiography, based
on which adequate treatment procedures are considered. The fractures are classified as
either extracapsular or intracapsular, where the latter is commonly subclassified based on
the presence of displacement of the femoral neck [9]. In most cases, surgical treatment
is recommended for each of these fractures [19]. Extracapsular and undisplaced femoral
neck fractures are mostly managed with internal fixation, while displaced femoral neck
fractures are managed with (hemi)arthroplasty to prevent avascular necrosis [19, 20].



Chapter 1: General Introduction 7

In general, early surgery is advocated [19] since operative management effectively reliefs
pain, allows for early mobilisation, and thereby prevents complications of immobilisation
such as pressure ulcers [21]. Furthermore, a meta-analysis by Moja et al. [22]
demonstrated that surgery within 24-48 hours significantly reduced mortality risk with an
odds ratio of 0.74 (95% confidence interval: 0.67-0.81). Hence, surgery is considered to
be the best treatment choice in worldwide practice for most hip fracture patients, yielding
the highest likelihood of functional recovery and lowest mortality and complication rates
[23].
However, for frail patients with a limited life expectancy, surgeons have begun to question
the superiority of surgery over conservative treatment [24, 25]. Although current clinical
guidelines favour surgical treatment based on prospects for functional recovery [26], these
recovery-oriented objectives might not align with frail patients’ personal preferences.
Affirmatively, according to a systematic review examining patients’ end-of-life care
preferences, frail patients were more likely to decline invasive treatments than their
age-matched controls [27]. Moreover, a recent study by Loggers et al. [28] found that
conservative treatment was not inferior to surgery in terms of health-related quality of
life (HRQoL) amongst frail institutionalised patients with limited life expectancy. Hence,
surgery should not be a foregone conclusion for this patient population. However, the
evidence-base underpinning that conservative treatment could be a satisfactory palliative
care option is lacking [21]. Consequently, there is a paucity of concrete decision support
for electing nonoperative management in current clinical guidelines.
Amongst patients for whom functional recovery is a viable surgical treatment objective,
a substantial decline in health-related quality of life (HRQoL) is generally observed
postoperatively [1, 29]. Gjertsen et al. [30] examined the differences between preoperative
and postoperative HRQoL using the EQ-5D-3L instrument [31]. Amongst patients who
did not report any HRQoL-related problems preoperatively, many experienced HRQoL-
degenerating issues persisting over a one-year postoperative period, which concerned
mobility (69.0%), self-care (40.7%), execution of usual activities (66.9%), pain or
discomfort (65.7%), and anxiety or depression (36.5%). On the long-term, 29% of the
older hip fracture patients experience lifelong functional disabilities [32]. In 10% of
the cases, severe functional impairments even prohibit return to pre-fracture residence
following rehabilitation [9]. Admission to a nursing home is perceived to be a major threat
to the HRQoL, with many patients preferring earlier death over loss of their independence
[33, 34]. Therefore, there is a pressing clinical need to further improve functional recovery
during rehabilitation to enhance patients’ HRQoL.
In current rehabilitation practices, a patient’s functional recovery is assessed through
clinimetric tests which examine patients’ physical function, mobility, and cognition. Even
though these insights play an important role in patient monitoring, clinimetric tests
are conducted infrequently [35]. Consequently, important prognostic information about
patients’ recovery might be missed. As a result, necessary treatment adjustments may
occur too late, potentially leading to a suboptimal recovery [36, 37]. Thus, hip fracture
rehabilitation practices could strongly benefit from continuous monitoring strategies.
Multiple researchers have examined the usefulness of commercially available activity
trackers for continuous ambulatory monitoring of geriatric hip fracture patients during
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rehabilitation [35, 38]. They found that improvements in functional recovery measured
through clinimetric tests, were positively correlated with the number of minutes that
patients were physically active. Affirmatively, various studies have shown that physical
activity during rehabilitation increases the likelihood of patients regaining their mobility and
independence in activities of daily living (ADL) [39–42]. Hence, continuous ambulatory
monitoring provides a promising means to gain more insights into a patient’s restitution of
physical activity [38], and thereby enables the detection of health deteriorations in a more
timely manner. However, challenges persist as commercially available activity trackers do
not reliably distinguish between slow physical activities and sedentary behaviours amongst
rehabilitating hip fracture patients [35].

1.2 Thesis Contribution and Outline
It is evident that the hip fracture patient journey is complex. Along the way, it is pertinent
that clinical decisions are supported by the best-available evidence, and that interventions
are introduced in a timely manner to ensure satisfactory health outcomes. The optimality
of clinical decisions and interventions, strongly depends on the specific needs of different
subgroups in the hip fracture patient population [8, 43, 44]. On the one hand, frail
patients with a limited life expectancy should be well-informed on the risks and benefits of
palliative treatment alternatives to support decision-making. On the other hand, patients
with sufficient physiological reserve should be supported to attain optimal functional
recovery. Despite the focus areas being different, the overall objective of safeguarding
patients’ HRQoL remains the same. The contributions of this thesis are twofold.
The first part of this thesis focuses on decision support for frail geriatric hip fracture
patients with a limited life expectancy. Chapter 2 provides a systematic review and
meta-analysis of preoperative predictors for early mortality following hip fracture surgery.
The results of this meta-analysis can help clinicians identify patients who are unfit for
surgery. These patients in particular could benefit from conservative treatment. Chapter
3 reports on a clinical vignette study examining surgeons’ treatment preferences for
frail older adults with a hip fracture. In particular, it examines how individual patient
attributes influence surgeons’ risk perceptions and preferences for conservative treatment.
Using a bottom-up expert-informed approach, the objective of the vignette study is to
synthesise recommendations for the national guidelines on electing conservative treatment
as a palliative care option.
The second part of this thesis focuses on continuous ambulatory monitoring systems to
support hip fracture rehabilitation. Chapter 4 provides a literature review on common and
best practices in the development of human activity recognition algorithms. The results of
this literature review can be used by practitioners to make well-informed algorithmic design
choices. Chapter 5 reports on the development of a human activity recognition algorithm
for older adults, which can be applied to raw data obtained from wearable activity trackers.
The results of this study yield a proof-of-concept of a continuous ambulatory monitoring
system which could be utilised in geriatric hip fracture rehabilitation.
Finally, the main findings of this thesis are summarised in Chapter 6, accompanied by
future perspectives.
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Systematic Review and Meta-Analysis
of Preoperative Predictors for Early
Mortality After Hip Fracture Surgery1

Abstract

Background: Hip fractures are a global health problem with a high postoperative mortality rate.
Preoperative predictors for early mortality could be used to optimise and personalise healthcare
strategies.
Objective: This study aimed to identify predictors for early mortality following hip fracture surgery.
Method: Cohort studies examining independent preoperative predictors for mortality following hip
fracture surgery were identified through a systematic search on Scopus and PubMed. Predictors for
30-day mortality were the primary outcome, and predictors for mortality within one year were secondary
outcomes. Primary outcomes were analysed with random-effects meta-analyses. Confidence in the
cumulative evidence was assessed using the GRADE criteria. Secondary outcomes were synthesised
narratively.
Results: 32 cohort studies involving 461,705 patients were included. Five high-quality evidence
predictors for 30-day mortality were identified: age per year (OR: 1.06, 95% CI: 1.04-1.07), ASA score
≥ 3 (OR: 2.69, 95% CI: 2.12-3.42), male gender (OR: 2.00, 95% CI: 1.85-2.18), institutional residence
(OR: 1.81, 95% CI: 1.31-2.49), and metastatic cancer (OR: 2.83, 95% CI: 2.58-3.10). Additionally,
six moderate-quality evidence predictors were identified: chronic renal failure, dementia, diabetes,
low haemoglobin, heart failures, and a history of any malignancy. Weak evidence was found for
non-metastatic cancer.
Conclusion: This review found relevant preoperative predictors which could be used to identify patients
who are at high risk of 30-day mortality following hip fracture surgery. For some predictors, the
prognostic value could be increased by further subcategorising the conditions by severity.

Keywords: older adults, hip fracture, mortality, risk factors, systematic review, meta-analysis

1Submitted (Bui M, Nijmeijer WS, Hegeman JH, Witteveen A, Groothuis-Oudshoorn CGM, 2022)
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2.1 Introduction
Hip fractures are a global health problem [1] with an increasing incidence due to the
ageing population [3, 4]. According to epidemiological projections, 6.26 million individuals
will be affected by hip fractures per year by 2050 [6]. Hip fractures are associated with
an increased risk of mortality amongst older adults, with a cumulative 30-day mortality
between 5-10% [20]. Over a 1-year postoperative period, it could accumulate up until
approximately 30% [4].
Preoperative predictors for mortality following hip fracture surgery have been studied
extensively [45–47]. Predictors for early mortality are particularly important, as they
lie at the core of preoperative decision-making in clinical guidelines [26]. Preoperative
prognostics could be used to better inform patients and family on the consequences of
the different treatment alternatives, leading to better shared decision-making. This is
particularly relevant for frail patients with a limited life expectancy who may experience a
better quality of life if they do not undergo surgery [28]. Hence, shared decision-making
could be leveraged to select a treatment that is optimal in terms of both clinical outcomes,
and patients’ personal values [48, 49]. This process ought to be supported by the best
available evidence [50]. Meta-analyses can substantiate shared decision-making as they
are one of the strongest resources in evidence-based medicine [51].
However, limitations in existing meta-analyses [45–47] impede effective support in shared
decision-making. Firstly, evidence for early mortality predictors is scarce. Secondly, the
relatively low number of included studies [52, 53] causes between-study heterogeneity
underestimation [54], which makes significance testing more prone to false positives
[55]. Although Bayesian meta-analyses could address this issue more adequately [52,
56–58], they have not been conducted in this field so far. Finally, to the best of our
knowledge, none of the existing meta-analyses in this field have incorporated the Grades
of Recommendation, Assessment, Development and Evaluation (GRADE) [59, 60] criteria
to systematically assess the confidence in the cumulative evidence per predictor.
To support and improve evidence-based medicine for hip fracture patients, it is important
to adequately reflect uncertainty in cumulative evidence. This will allow clinicians to
assess the risk of early mortality more confidently, helping them to adequately inform
their patients. The aim of this study is to conduct a meta-analysis, accompanied by
GRADE assessments and (Bayesian) sensitivity analyses with respect to heterogeneity
underestimation, to detect valid predictors for early postoperative mortality.

2.2 Method
This review was reported according to the PRISMA 2020 statement [61].

2.2.1 Search Strategy and Selection Criteria
The electronic databases Scopus and PubMed were searched from inception to 3 November
2021, using the search query as shown in Appendix A.1, Table A.1. Additionally, the
Dutch Hip Fracture Audit (DHFA) was contacted for internal research reports.
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2.2.2 Data Collection and Extraction
The title, abstract, and full-text screenings were performed by M.B., according to the
exclusion criteria as described in Appendix A.1, Table A.2. The abstract and full-text
screenings were independently verified by W.S.N. on a sample basis (70%). Disagreements
were resolved through discussion. Study characteristics were extracted onto standardised
tables containing author, year, country, study design, sample size, gender distribution,
mean/median age, fracture types, treatment types, and mortality rates.

2.2.3 Outcome Measures
Adjusted odds ratios (ORs) and adjusted hazard ratios (HRs) of preoperative predictors
for 30-day mortality following hip fracture surgery were primary outcomes. Independent
predictors for mortality within one year were secondary outcomes.

2.2.4 Risk of Bias Assessment
The risk of bias of each included article was assessed by M.B. using the Quality In Prognosis
Studies (QUIPS) tool [62]. A quarter of the articles were assessed independently by two
reviewers (M.B, W.S.N.), who collectively refined the protocol to resolve ambiguities in
the assessment criteria. Subsequently, the remaining articles were assessed by M.B. using
the refined assessment criteria. The protocol can be found in Appendix A.2.

2.2.5 Data Synthesis
All predictors that were reported at least twice were synthesised in narrative summary
tables [63], independent of whether they were reported as ORs or HRs. A minimum of
three studies was set for quantitative synthesis and eligibility for pooling was based on
consistency in variable definitions. ORs and HRs were meta-analysed separately for each
of the predictors, using DerSimonian-Laird random-effects models [64] to accommodate
for population and intervention heterogeneity [57, 65, 66]. Heterogeneity was quantified
with the I2 statistic and results were summarised with forest plots.
Sensitivity analyses were conducted with respect to publication bias, and between-study
heterogeneity underestimation. The former was inspected with the trim-and-fill method
[67] using the R+

0 and L+
0 algorithms [68], and the latter was inspected with the modified

Knapp-Hartung method [69] and a Bayesian hierarchical model [70] (Appendix A.5). All
analyses were performed with R version 4.1.2, using the metafor [71], brms [72], and
robvis [73] packages.

2.2.6 Certainty of Evidence Assessment
Each pooled estimate was appraised using the GRADE criteria [59, 60] (Appendix A.4).
When the quality of evidence was inconsistent across multiple pooled estimates of the
same predictor, the quality of the pooled estimate based on most studies and patients
was chosen for the final appraisal.
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2.3 Results

2.3.1 Search and Included Studies
From the initial database yield of 1,869 articles, 139 were reviewed in full-text after
assessing the eligibility based on titles and abstracts. Subsequently, an internal research
report published by the DHFA was included and analysed. Reapplication of the exclusion
criteria to the full texts yielded 100 articles for narrative synthesis, and 32 articles for
meta-analysis. The selection process is shown in Figure 2.1.

Identification of new studies via databases and registers

Articles identified from:  
Databases (n = 2)

Articles removed before screening:
Duplicate articles (n = 770)

Articles screened  
(n = 1,869)

Articles excluded 
(n = 1,727)

Articles sought for retrieval  
(n = 143)

Articles sought for eligibility  
(n = 139)

Articles not retrieved 
(n = 4)

Articles excluded: 
Unrepresentative population (n = 2) 
No preoperative predictors (n = 7) 
No independent risk factors (n = 9) 

No odds or hazard ratios (n = 9) 
No mortality as predictive outcome (n = 2) 
Death not recorded within one year (n = 9) 
Insufficient data for narrative review (n = 2)

New articles included in narrative review  
(n = 100)

New articles included in meta-analysis 
(n = 32)

Id
en

tifi
ca

tio
n

Sc
re

en
in

g
In

cl
ud

ed

Articles identified from:  
Organisations (n = 1)

Articles sought for retrieval  
(n = 1)

Articles sought for eligibility  
(n = 1)

Articles not retrieved  
(n = 0)

Articles excluded:
(n = 0)

Identification of new studies via other methods

Figure 2.1: PRISMA flow diagram describing the identification, screening, and selection of articles.

A summary of the characteristics of the included studies is presented in Table A.3. Overall,
early mortality was studied less frequently than late mortality. Predictors for inpatient,
30-day, and 1-year mortality were reported in 15, 35, and 62 studies respectively. Amongst
the 32 studies reporting 30-day mortality predictors which were eligible for meta-analysis,
involving 461,705 patients, one study did not report the 30-day mortality rate [74]. The
median 30-day mortality rate and interquartile range across the remaining studies were
8.0% (6.5-9.6%).

2.3.2 Predictors for 30-day Mortality
An overview of all meta-analysed predictors for 30-day mortality is shown in Table 2.1,
and forest plots of all high-quality evidence predictors are shown in Figure 2.2. The
remaining forest plots are shown in Appendix A.6. None of the pooled evidence was
downgraded for publication bias.



Table 2.1: Summary of findings table for the predictors of 30-day mortality following hip fracture surgery. The degree to which the studies included in the pooling
procedures supported the association between the predictor and the increased risk of 30-day mortality is denoted by the direction of the association per study, where +
denotes a significant result in favour of the association, 0 denotes a non-significant result in favour of the association, and - denotes a significant result refuting the
association. Cases where any of the three directions are not applicable are denoted by N/A.

Predictor (measure) N Association Direction of association per study Effect (95% CI) GRADE

Patients Studies + 0 -

Age per year (OR) 154,353 10 Greater 30-day mortality risk with
advanced age.

[75–83] [84] N/A 1.06 (1.04-1.07) High

ASA ≥ 3 (OR) 12,994 6 Greater 30-day mortality risk with
increased ASA score.

[75, 80, 81, 85, 86] [87] N/A 2.69 (2.12-3.42) High

ASA per point (OR) 5,394 3 [79, 82] [88] N/A 2.62 (2.21-3.12) Moderatea
Chronic renal failure (OR) 248,872 3 Greater 30-day mortality risk with

chronic renal failures.
[89, 90] [76] N/A 1.61 (1.11-2.34) Moderateb

Dementia (OR) 389,185 6 Greater 30-day mortality risk of
mortality with dementia.

[76, 89, 91–93] [75, 94] N/A 1.57 (1.30-1.90) Moderatec

Dementia (HR) 29,929 3 [74, 95, 96] N/A N/A 1.47 (1.31-1.64) High
Diabetes (OR) 378,573 4 Greater 30-day mortality risk with

diabetes.
[89] [76, 83, 91] N/A 1.10 (1.01-1.21) Moderateb

Gender (OR) 411,554 15 Greater 30-day mortality risk
amongst males

[75, 76, 78, 79, 81,
82, 85, 88, 89, 91,
93, 97, 98]

[84, 99] N/A 2.00 (1.85-2.18) High

Gender (HR) 23,988 6 [95, 96, 100–102] [103] N/A 2.13 (1.94-2.34) High
Hb per mmol/L (OR) 5,838 3 Greater 30-day mortality risk with

lower Hb levels.
[75, 83] [88] N/A 1.37 (1.17-1.61) Moderateb

Heart failure (OR) 384,312 5 Greater 30-day mortality risk with
heart failures.

[76, 89–91, 104] N/A N/A 2.18 (1.25-3.82) Moderatec

Institutional residence (OR) 6,638 3 Greater 30-day mortality risk with
institutional residence.

[83, 105] [75, 88, 92, 93] N/A 1.81 (1.31-2.49) High

Malignancy history 136,160 4 Greater 30-day mortality risk with a
history of any malignancy.

[90, 91, 93] [83] N/A 2.39 (1.69-3.38) Moderatec

Metastatic cancer (OR) 254,044 3 Greater 30-day mortality risk with
metastatic cancer.

[76, 89, 104] N/A N/A 2.83 (2.58-3.10) High

Non-metastatic cancer (OR) 249,192 3 Greater 30-day mortality risk with
non-metastatic cancer.

[76, 89] [92] N/A 1.31 (1.11-1.56) Lowbc

GRADE Grading of Recommendations Assessment, Development and Evaluation, CI confidence interval, OR odds ratio, HR hazard ratio, ASA American Society of Anaesthesiologists physical
status classification, Hb haemoglobin
a Downgraded by one level for risk of bias
b Downgraded by one level for imprecision
c Downgraded by one level for inconsistency
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Figure 2.2: Forest plots of high-quality evidence predictors for 30-day mortality following hip fracture
surgery. The right panel depicts the risk of bias assessments according to the bias domains of the
Quality in Prognosis Studies tool i.e., study participation (D1), study attrition (D2), prognostic factor
measurement (D3), outcome measurement (D4), study confounding (D5), and statistical analysis and
reporting (D6). The risk of bias levels of low, moderate, and high, were colour-coded in green, yellow,
and red respectively.
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Age

Age was reported as both categorical and continuous variables. However, due to
inconsistencies in the cut-off levels of age strata [85, 90, 93, 95, 96, 99–101], pooling was
limited to studies reporting the influence of age per year increase. Analysis of 10 studies
[75–84] including 154,353 patients provided high-quality evidence that a year increase
in age increased the risk of 30-day mortality, with an OR of 1.06, 95% CI: 1.04-1.07.
The forest plot in Figure 3 indicated that the pooled estimate overlapped with all 95%
CIs, except for those reported by Cao et al. 1.07-1.08 and Würdemann et al. 1.01-1.05.
Since the margin by which the CIs did not overlap was small, the interpretation of I2

was deemed misleading. Therefore, it was decided against downgrading the quality of
evidence for inconsistency, despite substantial heterogeneity (I2 = 69%).

American Society of Anaesthesiologists Score

American Society of Anaesthesiologists (ASA) scores were reported as both categorical
and continuous variables across the studies. Amongst the reports of categorically treated
ASA scores, two studies were excluded from pooling as there were insufficient data for
the respective cut-off levels [76, 84]. Analysis of six studies [75, 80, 81, 85–87] including
12,994 patients provided high-quality evidence that individuals in ASA stratum III-V were
at a greater risk of 30-day mortality than individuals in ASA stratum I-II, with an OR of
2.69, 95% CI: 2.12-3.42, I2 = 0%.
Similarly, analysis of three studies [79, 82, 88] including 5,394 patients provided moderate
quality evidence that each unit increase in ASA score increased the risk of 30-day mortality
with an OR of 2.62, 95% CI: 2.21-3.12, I2 = 0%. The quality of evidence was downgraded
by one level for risk of bias as the cumulative weight of studies at high risk of bias was
71.6%.

Chronic Renal Failure

Renal failure was defined as end-stage renal failure (ESRF) [90], unspecified chronic
renal failure (CRF) [76], moderate to severe CRF [89], and a joint stratum of acute
renal failure (ARF) and early to end-stage CRF [91]. To keep the analysis homogeneous,
instances of ARF were excluded from pooling.
Analysis of three studies [76, 89, 90] including 248,872 patients provided moderate-quality
evidence that CRF increased the risk of 30-day mortality, with an OR of 1.61, 95%
CI: 1.11-2.34, I2 = 50%. The quality of evidence was downgraded by one level for
imprecision as both the Knapp-Hartung CI 0.52-5.23 and the Bayesian CrI 0.73-3.09
contained the null effect.

Dementia

Three studies did not report their dementia diagnoses [75, 76, 89], three studies reported
on dementia in Alzheimer’s disease [74, 91, 96], and one study reported on memory
loss, (pre)senile and vascular dementias [95]. Two studies diagnosed dementia using
an Abbreviated Mental Test Score ≤ 6 [92, 93], and one study diagnosed it with a
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Hodkinson’s abbreviated mental test score ≤ 6 [94]. Pooled estimates were not stratified
by dementia diagnosis.
Analysis of three studies [74, 95, 96] including 29,929 patients provided high-quality
evidence that dementia increased the risk of 30-day mortality, with a HR of 1.47, 95%
CI: 1.31-1.64, I2 = 0%.
Similarly, analysis of seven studies [75, 76, 89, 91–94] including 389,185 patients provided
moderate-quality evidence that dementia increased the risk of 30-day mortality, with an
OR of 1.57, 95% CI: 1.30-1.90. The quality of evidence was downgraded for inconsistency
due to substantial heterogeneity (I2 = 94%).

Diabetes

Analysis of four studies [76, 83, 89, 91] including 378,573 patients provided moderate-
quality evidence that diabetes increased the risk of 30-day mortality, with an OR of 1.09,
95% CI: 1.01-1.18, I2 = 28%. The quality of evidence was downgraded for imprecision
as both the Knapp-Hartung CI 0.96-1.25 and Bayesian CrI 0.84-1.43 contained the null
effect.

Gender

Analysis of 15 studies [75, 76, 78, 79, 81–85, 88, 89, 91, 93, 97, 99] including 411,554
patients provided high-quality evidence that males were at a greater risk of 30-day
mortality than females, with an OR of 1.99, 95% CI: 1.87-2.13, I2 = 58%.
Concordantly, analysis of six studies [95, 96, 100–103] including 23,988 patients provided
high-quality evidence that males were at a greater risk of 30-day mortality than females,
with a HR of 2.13, 95% CI: 1.94-2.34, I2 = 0%.

Haemoglobin

The influence of haemoglobin (Hb) was tested for anaemia (Hb ≤ 10 g/dL) [92, 93,
102], and per mmol/L decrease [75, 83, 88]. The former three studies comprised both
ORs and HRs, causing an insufficiency in consistent data for pooling.
Analysis of three studies [75, 83, 88] including 5,838 patients provided moderate-quality
evidence that a mmol/L decrease in Hb increased the risk of 30-day mortality, with an
OR of 1.37, 95% CI: [1.17, 1.61], I2 = 40%. The quality of evidence was downgraded
for imprecision as both the Knapp-Hartung CI 0.96-1.96 and Bayesian CrI 0.95-1.94
contained the null effect.

Heart Failure

Four studies did not report their HF diagnoses [76, 90, 100, 104], two studies diagnosed
HFs using ICD-10 code I50 [89, 91], and one study included multiple hypertensive heart
diseases in addition to ICD-10 code I50 [74]. Pooling was limited to studies reporting
ORs since there were only two studies reporting HRs [74, 100].
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Analysis of five studies [76, 89–91, 104] including 384,312 patients provided moderate-
quality evidence that HF increased the risk of 30-day mortality, with an OR of 2.20,
95% CI: 1.28-3.78. The quality of evidence was downgraded for inconsistency due to
substantial heterogeneity (I2 = 99%).

Malignancy

Four definitions of malignancies were found: history of any malignancy [83, 90, 91]
excluding non-invasive skin cancer [93], non-metastatic cancer [76, 89, 92], and metastatic
cancer [76, 89, 104]. Separate pooled estimates were computed for a history of any
malignancy (excluding non-invasive skin cancer), non-metastatic cancer, and metastatic
cancer.
Analysis of four studies [83, 90, 91, 93] including 136,160 patients provided moderate-
quality evidence that a history of malignancy increased the risk of 30-day mortality, with
an OR of 2.39, 95% CI: 1.69-3.38. The quality of evidence was downgraded by one level
for inconsistency due to substantial heterogeneity (I2 = 61%).
Analysis of three studies [76, 89, 92] including 136,906 patients provided low-quality
evidence that non-metastatic cancer increased the risk of 30-day mortality, with an OR
of 1.17, 95% CI: 1.08-1.27. The quality of evidence was downgraded by one level for
imprecision as both the Knapp-Hartung CI 0.99-1.73 and Bayesian CrI 0.95-1.86 contained
the null effect, and by another level for inconsistency due to substantial heterogeneity
(I2 = 80%).
Analysis of three studies [76, 89, 104] including 270,355 patients provided high-quality
evidence that metastatic cancer increased the risk of 30-day mortality, with an OR of
2.83, 95% CI: 2.58-3.10, I2 = 0%.

2.3.3 Narrative Review Findings
The narrative review findings of predictors for postoperative mortality within one year,
including 30-day mortality, are summarised in Table 2.2. Overall, the results were
congruent with the meta-analysis. For institutional residence, however, the rate at
which significant associations with mortality were found differed between short-term and
long-term follow-ups. Table 2.1 showed that two-thirds of the studies contributing to the
pooled estimate for institutional residence were insignificant. Upon including 4-month
and 1-year follow-ups, two-thirds of the associations tested between institutional residence
and mortality were significant.
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Table 2.2: Summary of narrative review findings of adjusted odds and hazard ratios for the association
between predictors and postoperative mortality within one year. + denotes a significant result in favour
of the association, 0 denotes a non-significant result, and - denotes a significant result refuting the
association. The final column depicts the relative frequency of significant associations per predictor.

Predictor Association Direction of association per study Rel. freq. +

+ 0 -

Age Greater risk of mortality with
advanced age.

[75–79, 81–83, 85, 86, 88–91, 93, 95–97, 99–102,
104, 106–144]

[84, 145–152] N/A 61/70

Gender Greater risk of mortality
amongst males.

[14, 75, 76, 78, 79, 81–83, 85, 88, 89, 91, 93, 95–
97, 100–102, 106, 108, 110, 112–115, 117, 118,
122–124, 128, 130, 131, 133–135, 137, 140, 141,
144, 147, 151, 153–156]

[84, 99, 103, 116, 120, 126,
127, 132, 138, 145, 149, 150,
152, 157–159]

N/A 48/64

ASA Greater risk of mortality with
increased ASA scores.

[75, 76, 79, 81, 82, 85–87, 104, 107, 108, 110,
112, 114–117, 131, 134, 136, 139, 141, 154, 160,
161]

[88, 109, 145, 147, 157, 158,
162]

N/A 25/32

Cognitive impairment Greater risk of mortality with
cognitive impairment.

[74, 76, 83, 89, 91–93, 95, 96, 114, 125, 127, 135,
139, 150, 151, 154, 157, 163]

[94, 109, 126, 149, 158, 159,
164, 165]

N/A 19/27

CCI Greater risk of mortality with
increased Charlson scores.

[74, 76, 94, 95, 97, 99, 102, 109, 117, 118, 122,
124, 140, 143, 147, 149, 158, 166, 167]

[126, 150, 153] N/A 19/22

Malignancy Greater risk of mortality with a
history of malignancy.

[74, 76, 89–91, 93, 100, 107, 123, 125, 126, 128,
160, 164, 167, 168]

[83, 92] N/A 18/20

Functional status in ADL Greater risk of mortality with
poorer functional status.

[78, 104, 107, 108, 113, 114, 126, 127, 134, 159] [75, 94, 117, 121, 147, 158,
165]

N/A 10/17

Renal failure Greater risk of mortality with
of renal failures.

[14, 89–91, 100, 101, 122, 123, 133, 140, 169,
170]

[76, 155, 157, 168] N/A 12/16

Congestive heart failure Greater risk of mortality with
congestive heart failures.

[74, 76, 89–91, 100, 113, 120, 123, 130, 133, 138,
164]

[76, 164] N/A 13/15

Fracture type Greater risk of mortality with
extracapsular fractures vs.
intracapsular fractures.

[76, 96, 122] [79, 85, 103, 120, 124, 125,
132, 139, 145, 155, 158]

N/A 3/15

Institutional residence Greater risk of mortality with
pre-fracture institutional
residence.

[83, 93, 100, 102, 105, 118, 123, 131, 153] [75, 88, 92, 132, 158] N/A 9/14

Haemoglobin Greater risk of mortality with
decreased haemoglobin levels
(anaemia).

[75, 83, 93, 102, 127, 144, 171] [88, 92, 147, 149, 157, 164] N/A 7/13

Diabetes Greater risk of mortality with
diabetes.

[89, 91, 101, 128, 167] [76, 83, 106, 120, 136, 155,
164]

N/A 5/12

BMI Greater risk of mortality with
lower BMI.

[88, 99, 104, 116, 127, 142, 160] [147, 152] N/A 7/9

Albumin Greater risk of mortality with
decreased albumin levels.

[94, 128, 132, 149, 159, 160, 169, 172] N/A N/A 8/8

Ischaemic heart disease Greater risk of mortality with
ischaemic heart disease.

[89, 91, 100, 119, 123, 130, 164] [136] N/A 7/8

COPD Greater risk of mortality with
COPD.

[74, 76, 120, 123, 133, 167, 169] N/A N/A 7/7

Number of comorbidities Greater risk of mortality with
an increased number of
comorbidities.

[92, 93, 96, 137, 139, 162] [115] N/A 6/7

Mobility Greater risk of mortality with
poorer mobility.

[75, 86, 87, 131, 149, 158] [152] N/A 6/7

Myocardial infarction Greater risk of mortality with
myocardial infarction.

[90, 102, 123, 169] [74, 76, 164] N/A 4/7

Malnutrition Greater risk of mortality with
malnutrition.

[90, 117, 123, 131, 153, 165] N/A N/A 6/6

Cardiac arrhythmia Greater risk of mortality with
cardiac arrhythmia.

[78, 106, 123, 130, 133] N/A N/A 5/5

Electrolyte disorder Greater risk of mortality with
electrolyte disorder.

[78, 94, 123, 133, 173] N/A N/A 5/5

Bone mineral density Greater risk of mortality with
lower bone mineral density.

[112, 145, 152] [75, 147] N/A 3/5

Creatinine Greater risk of mortality with
higher creatinine levels.

[103, 120, 145, 147] N/A N/A 4/4

Hypertension Greater risk of mortality with
hypertension.

[168] [106, 136] [91] 1/4

Nottingham hip fracture
score

Greater risk with higher
Nottingham hip fracture
scores.

[80, 87, 163] N/A N/A 3/4

Chronic liver disease Greater risk of mortality with
chronic liver disease.

[76, 102, 133] N/A N/A 3/3

Pneumonia Greater risk of mortality with
pneumonia.

[90, 123, 130] N/A N/A 3/3

Peripheral vascular disease Greater risk of mortality with
peripheral vascular disease.

[76, 133] [74] N/A 2/3

White blood cell count Greater risk of mortality with
lower white blood cell count.

[128] [132, 174] N/A 1/3

Hand grip strength Greater risk of mortality with
lower hand grip strength.

[127, 147] N/A N/A 2/2

Warfarin therapy Greater risk of mortality with
warfarin therapy.

[140, 175] N/A N/A 2/2

2.4 Discussion
This paper reports on the results of the first GRADE-compliant meta-analysis focusing
on predictors of 30-day mortality following hip fracture surgery. In total, six high-
quality evidence predictors were identified: age, gender, ASA classification, institutional
residence, a history of malignancy, and metastatic cancer. Additionally, five moderate-
quality evidence predictors were identified: CRF, dementia, diabetes, Hb, and HF. Finally,
low-quality evidence was found for the influence of non-metastatic cancer.
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To optimally use these findings in clinical practice, a few considerations must be made.
Firstly, although a history of any malignancy is predictive of 30-day mortality, substantial
heterogeneity exists in its prognostic value across studies (I2 = 61%). Better mortality
risk predictions could be made if a distinction is made between non-metastatic and
metastatic cancer, as the respective 95% CIs of 1.11-1.56 and 2.58-3.10 were distinct and
showcased little variability. Although the necessity to make this distinction might seem
straightforward, various 30-day mortality risk scores have not done this yet [83, 87, 176].
In accordance with the Charlson Comorbidity Index (CCI) [177], risk predictions should
distinguish between non-metastatic and metastatic cancer to provide more accurate and
personalised prognoses.
Secondly, CRF could manifest itself in different degrees of severity. Amongst the pooled
studies, only one exclusively reported on the effect of ESRF [90]. Due to the low ESRF
prevalence in 29/746 patients, the respective 95% CI was wide (1.05-10.01). Consequently,
the meta-analysis did not reveal a need to stratify the risk estimate by severity of CRF
as the individual 95% CIs overlapped by a sufficient margin to keep the between-study
heterogeneity within acceptable bounds at I2 = 50%. However, larger studies with
ESRF prevalences of 113/3,981 [123] and 886/44,419 patients [14] consistently reported
larger risks of inpatient mortality with ORs of 6.70, 95% CI: 4.20-10.69 and 6.70, 95%
CI: 3.57-12.58 respectively. Therefore, the pooled OR of 1.61 reported in this review
is unlikely to be representative for patients with ESRF. Especially since CRF is highly
prevalent amongst older adults [178], it becomes increasingly important to personalise
prognoses based on the severity of CRF, rather than merely its presence or absence.
Thirdly, HFs might require a more careful operationalisation to be of better prognostic
value. The pooled estimate reported in this review exhibited substantial unexplained
heterogeneity (I2 = 99%). Even across studies which both resorted to ICD-10 code I50
for HF diagnosis [89, 91], the ORs differed substantially (95% CI: 1.54-1.73 vs 95% CI:
3.68-4.13). A disadvantage of ICD-10 code I50 is that it includes both HF with preserved
ejection fraction and HF with reduced ejection fraction. Decreases in the left ventricular
ejection fraction (LVEF) generally increase the risk of mortality [179]. It is postulated
that the LVEF is an unobserved variable which could explain the high I2 value. Therefore,
future studies should acknowledge the varying degrees of severity in HFs and report the
diagnoses in terms of the LVEF.
Several important limitations are noted. Some studies might have been overlooked since
only two databases were searched for this review. Furthermore, the number of studies
focusing on independent predictors of 30-day mortality is relatively limited, since most
focus on more long-term prognoses. Consequently, the limited number of available studies
restricted the use of additional methods to assess risk of publication bias more reliably,
since funnel plots and Egger’s test have very low power [180]. Hence, the conclusions
drawn with respect to publication bias should be interpreted with caution.
Furthermore, the list of predictors is incomplete due to restrictions in pooling. Ischaemic
heart disease was repeatedly associated with 30-day mortality, but could not be pooled
as the results were a mix of ORs and HRs [89, 91, 100]. Additionally, inconsistency in
reporting was identified as a systemic cause for incompleteness in the list of predictors.
The CCI [76, 97, 99] and the number of comorbidities [92, 93, 137] were also repeatedly
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found to be significant predictors of 30-day mortality. However, they could not be pooled
since the cut-off levels by which patients were categorised were inconsistent.
Another issue induced by inconsistency in reporting manifested itself in the quality of
pooled evidence. The pooled OR of Hb per mmol/L decrease was based on three studies
instead of five due to inconsistent definitions for the influence of Hb. The respective
quality of evidence was now downgraded for imprecision, which is postulated to have
arisen due to a lack of power. Had all five studies been eligible for pooling, then sufficient
power might have been attained to circumvent downgrading. Hence, future studies should
establish which variable definitions and cut-off levels are most clinically relevant to the
field of geriatric trauma surgery, e.g. by using the methods reported by Ogawa et al.
[181], to improve consistency in reporting.

2.5 Conclusion
This study identified five high-quality, six moderate-quality, and one low-quality evidence
predictors for 30-day mortality following hip fracture surgery based on preoperative
data. Many of the published studies and widely used risk scores define predictors as the
mere presence or absence of diseases. To provide better risk predictions, future studies
should step away from such coarse definitions. According to the findings in this study,
malignancies, CRFs, and HFs should be further subcategorised by severity to increase
their prognostic value in prediction models. Hopefully, the results of this meta-analysis
will enable clinicians to better identify patients who are at high risk of 30-day mortality.
This information can be used to better inform patients on their prognosis, as one of the
contributing factors which may lead to better shared decision-making in the preoperative
phase.
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Surgeons’ Treatment Preferences for
Frail Geriatric Hip Fracture Patients:
A Clinical Vignette Study

3.1 Introduction
In worldwide practice, operative treatment is considered to be superior over conservative
treatment in terms of clinical outcomes for the majority of hip fracture patients [9, 23]. It
is well-established that the mortality rate is significantly higher in conservatively treated
patients than in operatively treated patients [98, 182, 183]. However, in case of frail older
adults with a limited life expectancy, surgeons have started to question the superiority of
surgery [24, 25]. Clinical guidelines often focus on functional recovery to pre-fracture
levels [26], while patients with a limited life expectancy might prioritise their quality of
life (QoL) instead [28]. In these cases, surgical overtreatment should be avoided due
to its negative repercussions to patients and families, which include iatrogenesis and
anxiety [184, 185]. There is increasing awareness that conservative treatments should be
considered as a valid palliative care option more frequently amongst frail older adults [23,
25, 28, 186, 187].
Particularly amongst patients of advanced age with multiple physical and cognitive
comorbidities, there is a pressing need for “counseling regarding prognosis for survival and
recovery, and explicit discussions of goals of care” [188, p. 1279]. By properly informing
frail patients on the available treatment options and examining how these align with
their goals of care through shared decision-making (SDM) [49], patients and clinicians
might come to the conclusion that conservative treatment is preferred. Affirmatively, a
single-centre retrospective cohort study found that the percentage of patients electing
nonoperative treatment increased significantly over the years (2.7% vs 9.1%) after
implementing comprehensive geriatric assessments with SDM [189]. Still, uncertainties
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regarding the optimal treatment choice might persist during SDM for complex patient
cases [25]. Although surgeons increasingly acknowledge the added value of conservative
treatment for frail patients, a paucity of decision support for palliative management in
current clinical guidelines poses challenges for the preoperative decision-making process.
Therefore, more decision support regarding the choice between operative and conservative
treatment is required to optimise treatment plans for frail older adults.
Only a few studies have thus far investigated the motives behind electing conservative
treatment. In most cases, conservative treatment was preferred when poor prognoses were
anticipated for operative treatment, e.g. due to (chronic) comorbidities, poor functional
status, and degenerating cognitive functioning [189, 190]. While these attributes could
be used to identify patients who would not benefit from operative treatment, it remains
a challenging task. Various prediction models for 30-day mortality following hip fracture
surgery have been developed to identify patients who are unfit for operative treatment
[83, 87, 176, 191, 192]. However, these models showcased moderate discriminative
ability, making them premature for clinical practice. When data-driven approaches are
not sufficiently reliable, domain experts should be consulted [193, 194]. Synthesis of
clinicians’ treatment preferences for various patient cases aids the understanding about
which specific patients would benefit from which treatments [195].
The study presented here proposes a clinical vignette methodology to systematically elicit
and analyse surgeons’ treatment preferences for frail older hip fracture patients with
limited life expectancy. This is a type of conjoint analysis (CA) [196, 197] in which the
decision-making behaviours of medical experts are studied in various scenarios – so-called
vignettes [198]. A vignette is defined as “a short, carefully constructed description of
a person, object, or situation, representing a systematic combination of characteristics”
[199, p. 128]. Given that clinicians’ judgements of vignettes and their responses to
real-life cases are sufficiently congruent [200], clinical vignette studies provide a means
to reliably simulate and analyse complex decision-making processes in healthcare. The
gained insights facilitate the understanding on which factors are influential in decision-
making, to help inform clinical practices and policy development to support professional
decision-making [201].
Stated differently, the clinical vignette methodology allows surgeons’ treatment preferences
to be studied in terms of the relative importance of individual patient attributes [196].
However, individual patient attributes also shape surgeons’ overall perception of patients’
early mortality risks. Capturing early mortality risk assessments is pertinent, since they
could influence surgeons’ perceptions of the benefit of operative treatment [24–26].
Therefore, the current study proposes to additionally elicit and synthesise surgeons’
subjective probabilities of 30-day mortality following hip fracture surgery. This will be
done using a structured expert judgement (SEJ) protocol [202].
To support preoperative decision-making for frail hip fracture patients with limited life
expectancy, it is imperative to understand how patient characteristics and mortality risk
perceptions affect surgeons’ treatment preferences. Hence, this study aims to conduct a
clinical vignette study and SEJ to systematically capture the expertise of trauma surgeons
to synthesise recommendations for the national guidelines. To the best of our knowledge,
this is the first ever clinical vignette study with an integrated SEJ.
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3.2 Materials and Methods

3.2.1 Selection of Patient Attributes and Attribute Levels
Predictors for early mortality were chosen as primary attributes for the design of the
vignettes, since conservative treatments are mostly reserved for patients with a limited life
expectancy [26, 28]. Following the recommendations of [201], attributes were identified
through a systematic review and meta-analysis (Chapter 2). To analyse surgeons’ decision-
making behaviours as comprehensively as possible, the vignettes were designed using the
maximum number of attributes recommended in practice, i.e. 10 attributes [201].
All high-quality evidence predictors for 30-day mortality were extracted from the meta-
analysis as attributes for the vignettes (age, gender, ASA score, institutional residence,
and metastatic cancer). Amongst the five identified moderate-quality evidence predictors
(see Table 2.1), only those for which confidence in the existence of a true significant
association with mortality was expressed were selected (dementia, end-stage renal failure,
and heart failure). To increase ecological validity, functional status in activities of daily
living was included, as guidelines for preoperative decision-making are centred around
functional recovery [28]. Finally, to enforce applicability to the study population of
interest, fracture type was selected as an attribute.
A complete overview of the selected attributes and their dependencies is shown in Figure
3.1. The comorbidities and ASA scores showcased a direct dependency: ASA scores
increase with the severity of diseases. Consequently, not all pairs of disease severity and
ASA scores are logical to present in vignettes. Hence, attribute levels of comorbidities were
defined such that they were maximally compatible with all ASA attribute levels chosen in
this study. To keep the total number of vignettes low, the number of attribute levels was
mostly restricted to two. Since it was anticipated that a dichotomy of health conditions
and functional statuses could potentially be too coarse to inform decision-making, the
vignettes were pilot tested with a surgical resident and medical specialist. Both clinicians
agreed that it was not necessary to introduce additional attribute levels. An overview of
the attribute levels along with the rationale behind the chosen definitions is depicted in
Table 3.1.

Geriatric assessment

variables

Dementia

Functional status
Injury and

comorbidities

Physical status  

(ASA classification)

Severe heart failure End-stage renal failureMetastatic carcinomaPatient demographics

Gender

Age

Preoperative residence

Fracture type

Figure 3.1: Overview of selected attributes, grouped into three overarching categories: patient
demographics, geriatric assessment variables, and injury and comorbidities. Associations between
attributes are depicted by dashed arrows.
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Table 3.1: Overview of attributes and their levels, accompanied by the rationale for the level definitions.

Attribute Levels Rationale

Age 80-89 years old OR
≥ 90 years old

80 years was chosen as a lower bound,
based on the average age of hip fracture
patients. The cut-off between the two
levels was based on the observation that
complication risks and mortality rates
differed significantly between
octogenarians and nonagenarians [203].

Gender Female OR
male

-

Fracture type Undisplaced femoral neck OR
displaced femoral neck OR
extracapsular

The invasiveness of the required surgical
intervention differs between displaced and
undisplaced femoral neck fractures. Most
extracapsular fractures are treated with
intramedullary nails in The Netherlands,
omitting the need for more granular
fracture type descriptions.

Physical status ASA III OR
ASA IV

It was anticipated that ASA I, II and V
would not require decision support: all
ASA I and II patients would be treated
operatively [26], and all ASA V patients
would be treated conservatively.

Severe heart failure No severe heart failures
(LVEF ≥ 30%) OR
severe heart failure
(LVEF < 30%)

A moderate-to-severe reduction in LVEF
is congruent with both ASA III and IV
[204, 205]. The corresponding cut-off
level of ≤ 30% was based on [179].

Metastatic carcinoma No metastatic carcinoma OR
metastatic carcinoma

The meta-analysis in Chapter 2 revealed a
relatively weak association between
non-metastatic cancer and 30-day
mortality. Hence, no distinction was made
between being free of cancer and having
non-metastatic cancer.

End-stage renal failure Not requiring dialysis OR
requiring dialysis

Dialysis requirement complies with both
ASA III and ASA IV classifications [204,
205]. Due to high renal failure prevalence
amongst adults aged ≥ 80 years [178], no
distinction was made between mild renal
failures and absence of renal failures.

Preoperative residence Home residence OR
institutional residence

The meta-analysis in Chapter 2 did not
reveal a need to further specify the type
of care institutions. The reported
prognostic values across different study
settings were relatively homogeneous.

Functional status No severe functional handicaps
(Katz score 3-6) OR
severe functional handicaps
(Katz score 0-2)

Low pre-fracture functioning was a
common cause for choosing conservative
treatment [23, 189]. Hence, the extreme
end of the Katz scale was chosen.

Dementia No dementia OR
dementia

Cognitive function declines with age [206],
and the rate of decline even increases with
age for vascular dementias [207]. A single
level for dementia was thus thought to be
sufficient to influence clinicians’ decisions.
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3.2.2 Experimental Design
The 10 attributes yielded a full factorial design comprising 293 = 1,536 vignettes.
However, one attribute level combination was deemed implausible: ASA III paired
with metastatic cancer [208]. Hence, all vignettes containing this combination were
removed from the full factorial design to reduce measurement errors [209], leaving a total
of 1,152 vignettes. A D-optimal design [210] was generated from this subset with R
version 4.0.2 using the skpr package [211]. The number of vignettes was minimised by
inspecting the relative gain in D-efficiency upon increasing the number of vignettes over a
range of 12 to 24. Based on these trials (Appendix B.1), a design comprising 16 vignettes
was chosen (see Table 3.5) with a D-efficiency of 94.4% which implied near-orthogonality.
The design’s aliasing matrix showed a moderate correlation of 0.44 between ASA IV and
metastatic cancer. The remaining correlations were weak (≤ 0.17) and mostly zero.

3.2.3 Questionnaire Design
The questionnaire comprised six sections. Firstly, surgeons were asked whether they were
medical specialists or surgical residents, and how many years of working experience they
had. Secondly, an explanation of all attribute levels was provided to prepare surgeons
for the vignette study. Thirdly, surgeons were asked to recommend either operative or
conservative treatments to each vignette, along with a statement on how certain they
were about the optimality of their recommendation. Whenever surgeons recommended
operative treatment, they were also asked whether they would perform surgery with
curative or palliative intentions. Additionally, surgeons were asked to estimate the
probability of 30-day mortality following hip fracture surgery for each vignette. Fourthly,
an explanation on uncertainty specification was provided to prepare surgeons for quantile
elicitation as part of the SEJ. Fifthly, surgeons were presented with the calibration
questions of the SEJ, which are explained in more detail later. Finally, surgeons were
asked what additional information in the vignette descriptions could have helped them to
recommend treatments more confidently.

3.2.4 Data Collection
Surgical residents and medical specialists from the trauma surgery departments of three
Dutch hospitals were surveyed between June and August 2022. The study was exempt
from the Medical Research Involving Human Subjects Act, and it was approved by the
ethical committee of Computer & Information Science of the University of Twente. All
participants gave informed consent prior to participation.

3.2.5 Elicitation and Analysis of Treatment Preferences
The aim of the vignette study was to quantify the average impact of patient attributes
on surgeons’ treatment preferences. Most studies use a hierarchical logit with maximum
likelihood (ML) estimation to accomplish this [212]. However, it was anticipated that
the number of level-2 units (surgeons) would be too small for a hierarchical logit to
unbiasedly estimate random- and fixed-effects [213, 214]. In case of few level-2 units, the
assumption that ML estimates possess the property of asymptotic normality is violated
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[215–217]. Consequently, the standard errors obtained from the Fisher information matrix
are often underestimated, leading to an inflation of type I errors [214]. Although methods
such as restricted maximum likelihood [218] and Kenward-Roger correction [219] have
been proposed to address the aformentioned issues [214], these remedies are premature
for hierarchical models with discrete outcomes [215]. Bayesian model adaptations, on the
other hand, can overcome the small sample limitations of the hierarchical logit through a
careful choice of (weakly) informative priors [213, 215, 217, 220, 221]. Hence, the data
were analysed with a hierarchical Bayesian logit model with random-effects intercepts.
Analyses were performed and reported according to the WAMBS-checklist [222]. For a
surgeon si who judged N vignettes, the model is described by equation (3.1),



φ(psi
) = Xβ + usi

1 + εsi

β ∼ N (µ,Σ)
usi
∼ N (0, σ2

u)
σ2
u ∼ IW(ψ, ν)
εsi
∼ N (0, σ2IN)

(3.1)

where φ(psi
) is an N × 1 latent utility vector describing the perceived benefit of

conservative treatment, with φ being the logit link function and psi
being a probability

vector, X is the N × K design matrix, β is the K × 1 vector of part-worth utilities
approximated by log odds ratios, 1 is an N×1 vector of ones, usi

is the random intercept
of surgeon si, σ2

u is the variance of usi
, and εsi

is the N × 1 random error vector.
β was modelled with a Gaussian prior since log odds ratios follow an approximate normal
distribution [223]. Since early mortality risk is the primary reason for electing conservative
treatment [26], the effect sizes of the meta-analysis in Chapter 2 were used to estimate
β (see Table 3.2). The subject-specific residual usi

was modelled using a Gaussian
prior with a mean of zero and variance σ2

u. The latter was specified with an inverse
Wishart hyperprior, which is common choice due to its conjugacy with the Gaussian
distribution [224–226]. Since no prior information was available on random-effects, the
most conservative prior was chosen with a 1× 1 scale matrix ψ = 1 and ν = 1 degrees
of freedom [225]. Finally, εsi

was modelled using a Gaussian prior with a mean vector
equal to the zero vector and a covariance matrix equal to the identity matrix IN [227].
The posterior distributions for each part-worth utility were estimated via Markov Chain
Monte Carlo (MCMC) sampling [228] using a blocked Gibbs sampler [229]. For each
part-worth utility, 15,000 posterior samples were drawn after a burn-in phase of 1,000
samples. Point estimates were obtained by computing the posterior means [230]. The
model was implemented in R version 4.0.2, using the MCMCpack [231] package. Finally,
the relative importance of each attribute was computed using the coefficient range
method [232]. Let Vq denote the importance of an attribute q, defined as the maximum
range of part-worths across all attribute levels of q. Then, the relative importance of q is
computed by normalising Vq over the sum of all Q importance values (3.2).

Iq = Vq∑Q
i=1 Vi

× 100% (3.2)
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Table 3.2: Overview of prior specifications expressed on a logarithmic scale. Unless stated differently,
all odds ratios (ORs) serving as secondary evidence for prior specifications were obtained from the
meta-analysis described in Chapter 2.

Parameter Distribution Specification Prior type Background knowledge

β0 Normal N (−2.75, 1) Weakly
informative

3% of the Dutch patients is treated conservatively
[75]. As the vignettes exclude ASA I-II, β0 was
expected to be slightly higher. The prior yields a
mean probability of 6.0% (95% CrI: 0.9-31.2%) in
favour of conservative treatment for the null model.

βgender Normal N (0.09, 1) Weakly
informative

Male gender is a high-quality evidence predictor for
30-day mortality. However, it was deemed unlikely
that this would be reflected in surgeons’ treatment
preferences. Hence, the informativeness of the prior
was decreased, yielding a mean OR of 1.1 (95% CrI:
0.15-7.80) in favour of conservative treatment.

βextracapsular Normal N (0.09, 1) Weakly
informative

Compared to undisplaced femoral neck fractures,
extracapsular fractures have a higher postoperative
anaemia incidence [233]. Due to the lack of strong
evidence for increased mortality risk [47], a small
mean OR of 1.1 (95% CrI: 0.15-7.80) in favour of
conservative treatment was assumed.

βDFN Normal N (0.18, 1) Weakly
informative

Displaced femoral neck fractures require more
invasive surgical intervention than their undisplaced
counterparts. As quantitative evidence was lacking,
a small mean OR of 1.2 (95% CrI: 0.17-8.51) in
favour of conservative treatment was assumed.

βASA Normal N (0.69, 1) Informative ASA scores increase 30-day mortality risk with an
OR of 2.62 (95% CI: 2.21-3.12) per point increase.
During the vignette study pilot test, a surgical
resident expressed indifference towards ASA scores,
due to subjectivity of the scoring system [234]. A
relatively wide prior was chosen to reflect
uncertainty in the influence of ASA scores, with a
mean OR of 2.0 (95% CrI: 0.5-7.99) in favour of
conservative treatment.

βheart Normal N (0.69, 0.5) Informative Heart failure increases the risk of 30-day mortality
with an OR of 2.18 (95% CI: 1.25-3.82). The prior
yields a mean OR of 2.0 (95% CrI: 0.50-7.98) in
favour of conservative treatment.

βmetastasis Normal N (0.92, 0.3) Informative Metastasis increases 30-day mortality risk with an
OR of 2.83 (95% CI: 2.58-3.10). Informativeness of
the prior was increased due to high quality of the
evidence and the narrow CI width. The prior yields
a mean OR of 2.5 (95% CrI: 0.85-7.32) in favour of
conservative treatment.

βESRF Normal N (0.79, 0.5) Informative Chronic renal failure increases the risk of 30-day
mortality with an OR of 1.61 (95% CI: 1.11-2.34).
Cohort studies have shown that inpatient mortality
risk is even higher for ESRF (95% CI: 3.57-12.58)
[14]. The prior yields a mean OR of 2.2 (95% CrI:
0.55-8.81) in favour of conservative treatment.

βinstitution Normal N (0.47, 0.5) Informative Institutional residence increases the risk of 30-day
mortality with an OR of 1.81 (95% CI: 1.31-2.49).
The prior yields a mean OR of 1.6 (95% CrI:
0.40-6.42) in favour of conservative treatment.

βfunctional Normal N (0.47, 0.7) Informative It was assumed the effect size of severe functional
handicaps was similar to that of institutional
residence. However, due to the lack of quantitative
evidence, a slightly wider prior was specified with a
mean OR of 1.6 (95% CrI: 0.31-8.26).

βdementia Normal N (0.34, 0.5) Informative Dementia increases the risk of 30-day mortality
with an OR of 1.57 (95% CI: 1.30-1.90). The prior
yields a mean OR of 1.4 (95% CrI: 0.35-5.60).

usi Normal N (0, σ2
u) Uninformative N/A

σ2
u Inverse

Wishart
IW(1, 1) Uninformative N/A

εsi Normal N (0, IN ) Uninformative N/A
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3.2.6 Convergence Diagnostics and Sensitivity Analysis
Trace and autocorrelation plots were inspected for MCMC convergence. Signs of good
convergence were trendless traces and rapid decays of the autocorrelation functions.
To test whether the Markov chains had truly converged or only converged locally, the
number of posterior samples was doubled to 30,000 samples. Subsequently, Geweke’s
convergence test [235] was conducted to assess whether stationarity between the first
15,000 samples and the last 15,000 samples could be assumed. P-values above 0.05 were
indicative of healthy convergence. To determine whether the resulting posteriors were
sufficiently smooth, histograms of the posterior draws were inspected.
Finally, to assess the extent to which subjectivity in the prior specifications affected the
odds ratios (ORs), the hierarchical Bayesian logit model was re-evaluated with flattened
Gaussian priors, i.e. N (0, 2), for each β (see Figure 3.2). The influence of priors was
considered (1) small if the relative deviation ∆ (3.3) was at most 10% and the substantive
results remained the same, (2) moderate if 10% < ∆ ≤ 20% and the substantive results
remained the same, and (3) large otherwise.

∆ = |ORinformative − ORnoninformative|
ORinformative

× 100% (3.3)

Figure 3.2: Overview of prior distributions. The probability density functions plotted in blue represent
the priors which were proposed for the primary regression analysis. The probability density functions
plotted in black depict more diffuse prior configurations which were used in sensitivity analyses.
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3.2.7 A Priori Power Analysis and Sample Size Calculations
Health policy recommendations based on non-significant outcomes should not be made
without considering whether the study had sufficient power to detect small yet meaningful
effects [236]. Hence, an a priori power analysis was conducted using Monte Carlo
simulations [237], as described in Algorithm 1.

Algorithm 1: Power Analysis Through Monte Carlo Simulations
Result: Matrix Π , where element πi,k is the power estimate of the k-th logit

model coefficient, for the i-th surgeon cohort size
1 Initialise empty vector of binary treatment choices y
2 Initialise logit model coefficients β0, β1, ..., βK to the expected effect sizes
3 Initialise design matrix X ∈ RM×K to the D-optimal design
4 Initialise vector of surgeon cohort sizes s
5 Initialise number of simulations n
6 Initialise empty matrix of p-values P
7

8 for each si ∈ s do
9 repeat
10 repeat
11 for each row in X do

12 yj ← Bernoulli
(

exp (β0 + β1x1 + β2x2 + ...+ βKxK)
1 + exp (β0 + β1x1 + β2x2 + ...+ βKxK)

)
13 Append yj to y
14 end
15 until si response sets have been generated for X
16 Compute logit model f̂(X,y)
17 y ← {∅}
18 Compute p-value vector p corresponding to β̂1, β̂2, ..., β̂K in f̂(X,y)
19 Append p to the columns of P
20 until n simulations have been performed
21 πi,k ←

1
n

n∑
q=1

1{pq,k<0.05}, ∀k ∈ {1, 2, ..., K}

22 end

Contrary to rules of thumb which are commonly used for CA in healthcare [238],
simulations provide estimates which capture both the analytic outcome model and
the study design [239]. For simplicity, random-effects were omitted from the simulations
to obtain a rough estimate for the required sample size. Hence, a logit model was used
as analytic outcome model in the power simulations. The prior beliefs of the effect
sizes were kept consistent with the prior distribution means assumed in the Bayesian
hierarchical model, as outlined in Table 3.2. The resulting power curves shown in Figure
3.3 indicated that approximately 55 respondents were required to attain a power above
60% for 8/11 attribute levels. Significant results for the remaining attribute levels
(extracapsular fracture, displaced femoral neck fracture, and male gender) were expected
to be unattainable due to low power.
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Figure 3.3: Power curves for the attribute levels used in the vignettes. The respective odds ratios
(ORs) which were assumed during the power calculations, are listed behind each attribute level.

3.2.8 Elicitation and Analysis of Risk Perceptions
The goal of the SEJ was to elicit and aggregate surgeons’ 30-day mortality risk perceptions
of frail older adults undergoing hip fracture surgery. Risk perceptions were elicited by
asking surgeons to estimate the probabilities that the patients described in the vignettes
would die within 30 days following surgery. Expert elicitation was performed using Cooke’s
Classical Model (CM) [202], which is exemplar in the field of SEJs [240] as it is the
only elicitation procedure with objective empirical control on expert scoring [241]. The
CM enforces empirical control by first scoring how statistically accurate and informative
surgeons are in the estimation of verifiable variables, prior to aggregating their judgements
on unknown variables. Surgeons with higher scores are assigned higher performance-based
weights in the aggregation, to obtain the best estimate of the unknown target variable.
Calibration questions (CQs) were used as instruments to measure surgeons’ performances.
CQs involve the estimation of so-called seed variables, which refer to quantities with a
close relation to the target variable. In this case, 30-day mortality prevalence percentages
amongst subpopulations of hip fracture patients were chosen as seed variables. Surgeons
are not expected to know the exact percentages, but they should be able to capture the
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seed variables’ true realisations reliably based on their expertise by defining adequate
credible intervals (CrIs). The 5%, 50%, and 95% quantiles, i.e. q5, q50 and q95, were
chosen for CrI elicitation as this is most common practice in SEJs [242, 243].

Structured Expert Judgement Instruments

For each vignette, the following target question was posed: “According to you, what is
the probability that a patient with these characteristics would die within 30 days after hip
fracture surgery?”. Surgeons were asked to choose a probability bin from the set {[0,0.1),
[0.1,0.2), ..., [0.9,1.0]} which reflected their beliefs best, which is the most common
response format for discrete event probabilities in SEJs [194, 202]. The middle value of
each bin functioned as a point estimate for pooling later in the analysis.
CQs were based on 30-day mortality data from the Dutch Hip Fracture Audit Taskforce
Indicators (DHFA-TFI) group [75], which described a total of 7,506 patients. The CQs
involved the estimation of 30-day mortality prevalence following hip fracture surgery, based
on preoperative characteristics. To ensure similarity with the target questions, prevalences
were extracted from patient subgroups which were age-matched with those described in
the vignettes (≥ 80 years). In addition to age matching, overlapping attributes between
the vignettes and the DHFA-TFI data were incorporated in the patient descriptions
for the CQs as well. These included gender, fracture type, dementia, functional status
in ADL, ASA scores, and institutional residence. Since these characteristics were not
sufficient to construct 14 diverse CQs, mobility, malnutrition, and anaemia were included
as additional attributes. An example of a CQ is: “How many percent of the hip fracture
patients aged 90 years or older, who were mobile without walking aids and did not
have dementia, died within 30 days following hip fracture surgery between 2017-2019,
according to the DHFA-TFI group?” An overview of all CQs is shown in Appendix B.2.
The true realisations of the seed variables could not be obtained directly since there
were missing data. Information on 30-day mortality was missing for 19.5% of the 7,506
patients. Missing entries were imputed with Multiple Imputation by Chained Equations
(MICE) [244]. Preoperative and perioperative risk factors for mortality were chosen as
variables for imputation. Imputations of numerical variables and categorical variables
with an ordinal scale were configured with predictive mean matching. Imputations of
the remaining categorical variables were configured with binary and multinomial logistic
regression. MICE was used to create 20 imputed data sets [244], from which the 30-day
mortality percentages were extracted and pooled using Rubin’s rules [245]. With the true
realisations of the seed variables available, surgeons’ performances could be measured
using two scoring metrics: the calibration score and the information score.

Calibration Score

The calibration score evaluated how statistically accurate surgeons’ CrIs captured the true
realisations of seed variables. Calibration was measured by examining the interquantile
ranges [0, 0.05], (0.05, 0.50], (0.50, 0.95], (0.95, 1.0] of surgeons’ elicited quantiles across
all CQs. Specifically, an empirical distribution e(si) = (e1(si), e2(si), e3(si), e4(si)) of a
surgeon si’s interquantile ranges was constructed by computing the proportions of true
realisations falling within each interquantile range. By definition of quantiles, a surgeon
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si is said to be well-calibrated if the empirical distribution e(si) resembles the theoretical
distribution p = (0.05, 0.45, 0.45, 0.05). The test statistic 2MI(e(si),p) (3.4) was
used to test the null hypothesis of H0 : e(si) = p, where M is the number of CQs
and I(e(si),p) is the Kullback-Leibler divergence. I(e(si),p) measures the discrepancy
between e(si) and p and yields a value of zero if they are identical.

2MI(e(si),p) = 2M
4∑
l=1

el(si)ln
el(si)
pl

(3.4)

The calibration score is defined as the p-value of the hypothesis test examining whether
surgeons are well-calibrated. The test statistic 2MI(e(si),p) ∼ χ2 with three degrees of
freedom as M →∞. Under these distributional assumptions, the p-value corresponding
to this test statistic is given by equation (3.5), where F (.) is the cumulative distribution
function (CDF) of the Chi-squared random variable. The closer Cal(si) is to 1, the
better a surgeon is calibrated and the more likely it is that H0 : e(si) = p is true.

Cal(si) = 1− F (2MI(e(si),p)) (3.5)

Information Score

Information in surgeons’ judgements referred to the degree to which their subjective
probability distributions were concentrated. This partially reflects how certain surgeons are
about their assessments, but it mostly indicates whether surgeons deem some values more
likely to be true than others. Based on the elicited quantiles, CDFs were constructed
per CQ for each surgeon. However, since surgeons only specified their distribution
partially through 90% CrIs, the CDFs could not be constructed directly as their supports
were unknown. Hence, the support was defined manually using the intrinsic range
[L∗, U∗] = [0, 100], which is suitable for seed variables expressed in percentages [246].
Subsequently, informativeness was quantified by comparing surgeons’ CDFs (3.6) to a
uniform background measure (3.7) across the four interquantile ranges. The motivation
behind choosing a uniform background measure was that the presence of any information
should be quantified relative to the least informative background [202].

F (x) =


0.05, for x ∈ [L∗, q5]
0.45, for x ∈ (q5, q50]
0.45, for x ∈ (q50, q95]
0.05, for x ∈ (q95, U

∗]

(3.6)

B(x) =



q5 − L∗

U∗ − L∗
, for x ∈ [L∗, q5]

q50 − q5

U∗ − L∗
, for x ∈ (q5, q50]

q95 − q50

U∗ − L∗
, for x ∈ (q50, q95]

U∗ − q95

U∗ − L∗
, for x ∈ (q95, U

∗]

(3.7)
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The information score was then determined by computing the Kullback-Leibler divergence
between a surgeon’s CDF and the uniform CDF applied to the intrinsic range. From
equations (3.6) and (3.7) then followed that the information score of a surgeon si for CQ
j was given by equation (3.8). The total information score of a surgeon si was obtained
by averaging the information scores across all M CQs (3.9).

Ij(ei) = 0.05 ln
(

0.05
q5 − L∗

)
+ 0.45 ln

(
0.45

q50 − q5

)
+ 0.45 ln

(
0.45

q95 − q50

)

+ 0.05 ln
(

0.05
U∗ − q95

)
+ ln(U∗ − L∗)

(3.8)

I(si) = 1
M

M∑
j=1

Ij(si) (3.9)

Performance-based Weighting

The calibration scores and information scores were combined into performance-based
weights, normalised across all K surgeons, using equation (3.10).

w(si) = Cal(si)I(si)∑K
k=1 Cal(sk)I(sk)

(3.10)

For each vignette, the target variables, i.e. the probabilities of 30-day mortality, were
aggregated using linear opinion pooling with performance-based weights. It should be
noted that the target variables described the occurrence of a binary discrete random
variable (DRV), while the calibration and information scores were configured for CQs
involving continuous random variables (CRVs). Traditionally, target variables and seed
variables should either both be CRVs, or both concern DRVs [246]. However, a large
number of CQs is required to satisfy the asymptotic distributional assumptions for Cal(si)
in case of DRVs [194] – more than in case of CRVs. Since surgeons were asked to
complete the SEJ in addition to the vignette study, a high risk of response fatigue was
anticipated. Hence, in consultation with an expert in the field of SEJs, it was decided
to elicit CRVs in the CQs, despite the target variables being discrete event probabilities.
Based on a rule of thumb, the number of required CQs would then reduce from 25 to 14.
A summary of all methodological steps pursued during the SEJ, from preparing the
instruments to obtaining the pooled estimates, is shown in Figure 3.4.

3.2.9 Statistical Analysis of Surgeon Characteristics
Pearson’s correlation test was conducted to examine whether surgeons with more years of
experience gave more informative 30-day mortality risk estimates during the SEJ. Potential
differences in conservative treatment choice proportions between medical specialists and
surgical residents were tested with Wilcoxon’s rank sum test. For both tests, p-values
below 0.05 were considered statistically significant. Finally, to examine the degree to
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which treatment recommendations could be explained by surgeons’ personal preferences,
rather than changes in attribute levels, the intraclass correlation coefficient (ICC) was
computed using the approximation described by Sommet and Morselli [247].

Performance weights

Select suitable seed

variables for calibration 

Impute missing values

with MICE 

True seed 

realisations 

Pool seed realisations

using Rubin's rules 

Point estimates 

of target variables 

Collect responses to

target questions 

5%, 50%, and 95% 

quantiles of seed variables 

Collect responses to

calibration questions 

Compute calibration

scores 

Compute information

scores 

Pool target variables 

Pre-elicitation Elicitation
Expert performance

measurement
Linear opinion pooling

Construct target

questions 

Figure 3.4: Overview of the pursued methodological steps to conduct the structured expert judgement.
The steps have been categorised into four phases: pre-elicitation, elicitation, expert performance
measurement, and linear opinion pooling.

3.3 Results

3.3.1 Respondents
In total, 21 surgeons were recruited to participate in the vignette study and the SEJ. This
resulted in 14 (6 medical specialists and 8 surgical residents) and 9 (4 medical specialists
and 5 surgical residents) complete responses respectively. The medians and interquantile
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ranges of years of experience for medical specialists and surgical residents were 11.25
(8.50-18.13) and 4.00 (2.75-5.00) respectively.

3.3.2 Power Analysis
Based on the sample of 14 surgeons in the vignette study, the power curves depicted
in Figure 3.3 showed that significance tests for gender, fracture type, dementia, age,
functional status in ADL, and institutional residence, and ASA classifications attained
a power below 60%. Hence, detection of significant effects was only anticipated for
end-stage renal failure, metastatic carcinoma, and severe heart failure.

3.3.3 Results from the Vignette Study
Convergence of the Markov chains was confirmed visually by inspection of the trace plots
and autocorrelation plots (see Figures B.2-B.5 of Appendix B.3). Furthermore, upon
doubling the posterior draws from 15,000 to 30,000 to test for local convergence, Geweke’s
convergence test yielded p-values above 0.05 for all part-worth utilities. Therefore, for
each part-worth utility, it could be assumed that the Markov chains had converged to
a stationary distribution. Upon inspecting the frequency histograms of the posterior
draws (see Figure B.6 of Appendix B.3), the distributions appeared to be smooth
without substantial gaps between the bins. Hence, 15,000 samples were ample enough
to adequately represent the posterior distributions.
As shown in Table 3.3, the directions of the effects of the β-coefficients were mostly
congruent with prior expectations. Only for fracture type, discrepancies with the a priori
hypotheses were observed. Based on the associated surgical procedures, it was anticipated
that the perceived benefit of conservative treatment would be the highest for displaced
femoral neck fractures, followed by extracapsular fractures and undisplaced femoral
neck fractures. The point estimates of the β-coefficients, on the other hand, indicated
indifference between displaced and undisplaced femoral neck fractures. Additionally, a
slight preference for conservative treatment was observed for undisplaced femoral neck
fractures, compared to extracapsular fractures.
Amongst the inspected patient attributes, only four showcased 95% CrIs which did not
overlap with the null effect. In descending order of relative importance, these were
metastatic carcinoma (18.5%), severe heart failure (17.1%), end-stage renal failure
(15.8%), and dementia (14.9%). Collectively, these attributes accounted for 64.1% of
the relative importance. From the estimated part-worth utilities, comorbid conditions
appeared to increase the perceived benefit of conservative treatment the most amongst
surgeons.
All substantive conclusions, i.e. whether the CrIs of the β-coefficients were non-overlapping
with the null effect, were robust with respect to decreased informativeness of priors.
Additionally, the sensitivity analysis revealed that the informativeness embedded into the
priors had little influence on the β-coefficients of end-stage renal failure, preoperative
residence, functional status, gender, and age. The prior influence was moderate for severe
heart failure, dementia, and fracture type. Finally, priors were highly influential for the
effect estimates of metastatic carcinoma and ASA classification.



Table 3.3: Part-worth utilities of patient attributes describing surgeons’ preferences for recommending conservative treatment. The 95% credible intervals were estimated by the
2.5% and 97.5% quantiles of the posterior samples. Model estimates are provided for two configurations of the hierarchical Bayesian logit model, i.e. with informative and
noninformative priors. Outcome differences for the two configurations are expressed in terms of relative deviations.

Attribute Level Estimates based on informative priors Estimates based on noninformative priors Relative deviation

β SD OR (95% CrI) Rel. imp. β SD OR (95% CrI) Rel. imp. OR Rel. imp.

Metastatic carcinomac Present 1.495 0.382 4.46 (2.13-9.49) 18.5% 1.870 0.508 6.49 (2.37-17.42) 21.7% 45.5% 17.3%
Absent* 0.000 0.000

Severe heart failureb Present 1.381 0.382 3.98 (1.93-8.11) 17.1% 1.522 0.416 4.58 (2.10-10.68) 17.6% 15.1% 2.9%
Absent* 0.000 0.000

End-stage renal failurea Present 1.275 0.364 3.58 (1.78-7.28) 15.8% 1.325 0.435 3.76 (1.58-9.06) 15.4% 5.0% 2.5%
Absent* 0.000 0.000

Dementiab Present 1.201 0.370 3.32 (1.61-6.83) 14.9% 1.368 0.435 3.93 (1.72-9.63) 15.9% 18.4% 6.7%
Absent* 0.000 0.000

Preoperative residencea Institution 0.663 0.377 1.94 (0.93-4.06) 8.2% 0.668 0.431 1.95 (0.84-4.63) 7.7% 0.5% 6.1%
Home* 0.000 0.000

ASA classificationc ASA IV 0.654 0.413 1.92 (0.87-4.32) 8.1% 0.409 0.465 1.51 (0.63-3.87) 4.7% 21.4% 42.0%
ASA III* 0.000 0.000

Functional statusa Severe handicaps 0.565 0.358 1.76 (0.88-3.54) 7.0% 0.524 0.404 1.69 (0.76-3.81) 6.1% 4.0% 12.9%
No severe handicaps* 0.000 0.000

Gendera Male 0.464 0.384 1.59 (0.75-3.30) 5.7% 0.450 0.415 1.57 (0.70-3.56) 5.2% 1.3% 8.8%
Female* 0.000 0.000

Fracture typeb Extracapsular fracture -0.199 0.441 0.82 (0.35-1.97) 2.5% -0.388 0.500 0.68 (0.25-1.81) 4.5% 17.1% 80.0%
DFN fracture 0.005 0.464 1.00 (0.41-2.53) -0.147 0.500 0.86 (0.33-2.33) 14.0%
UFN fracture* 0.000 0.000

Agea ≥ 90 years 0.184 0.384 1.20 (0.56-2.49) 2.2% 0.105 0.404 1.11 (0.50-2.44) 1.2% 7.5% 45.5%
80-89 years* 0.000 0.000

β part-worth utility coefficient, SD standard deviation of posterior draws, OR odds ratio, CrI credible interval, Rel. imp. relative importance, ASA American Society of Anaesthesiologists, DFN displaced
femoral neck, UFN undisplaced femoral neck
The relative deviation was computed as 100 × |(model with informative prior)-(model with noninformative prior)|/(model with informative prior)
* Reference level
a Minimally influenced by prior specification
b Moderately influenced by prior specification
c Highly influenced by prior specification
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3.3.4 Results from the Structured Expert Judgement
Expert Performance

Table 3.4 depicts the calibration scores, information scores, and performance-based
weights of the 9 surgeons who completed the SEJ. It was noteworthy that the surgical
residents obtained higher calibration scores than the medical specialists. Moreover, the
surgical residents were the only ones to achieve calibration scores corresponding to
p-values above 0.05, indicating that they were well-calibrated.
Overall, the information scores appeared similar across surgical residents and medical
specialists. However, across all surgeons, the information scores differed by a factor of
3 at most. This indicated substantial differences in the degrees of certainty expressed
in surgeons’ assessments of the CQs. It was noteworthy that the varying degrees of
certainty could not directly be explained by how experienced surgeons were. Pearson’s
correlation test revealed an insignificant negative correlation between information scores
and years of experience (r = -0.139, p = 0.722).

Table 3.4: Overview of calibration scores, information scores, performance-based weights.

Occupation Experience Calibration score Information score Performance weight

Medical specialist 8 years 3.24×10-7 2.11 8.60×10-7
Medical specialist 10 years 0.01 1.70 0.03
Surgical resident 4 years 0.53 0.71 0.47
Surgical resident 5 years 0.32 1.15 0.46
Surgical resident 5 years 9.58×10-7 2.18 2.62×10-6
Surgical resident 0.5 years 9.17×10-6 2.07 2.39×10-5
Medical specialist 20 years 3.90×10-12 0.70 3.42×10-12
Surgical resident 2 years 0.04 0.66 3.66×10-2
Medical specialist 20 years 1.33×10-15 1.59 2.65×10-15

Upon inspecting the performance-based weights, it became apparent that 93% of the
cumulative weight in the linear opinion pool was accounted for by the two surgical
residents with the highest calibration scores of 0.53 and 0.32. Although the calibration
scores differed by a factor of 1.65, the performance-based weights were nearly equal (0.47
vs 0.46). The reason for this was that the most statistically accurate surgeon specified
wider 90% CrIs, leading to a lower information score.

Pooled Estimates

An overview of the 30-day mortality probability estimates obtained through linear opinion
pooling with equal weights (EWs) and performance-based weights (PWs) is shown in
Table 3.5. For each vignette, the PW estimates were consistently lower than the EW
estimates. The pooled probabilities across all vignettes ranged between 20.7-62.7% and
11.9-50.8% for EW and PW respectively. The differences were most pronounced for
vignette 1 (EW: 20.7%, PW: 11.9%), vignette 11 (EW: 43.6%, PW: 26.8%), vignette 13
(EW: 37.1%, PW: 21.9%), and vignette 16 (EW: 38.6%, PW: 26.8%).
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3.3.5 Individual Risk Perceptions and Treatment Preferences
Figure 3.5 depicts the relationship between surgeons’ individual 30-day mortality risk
perceptions, and the probability that they would recommend conservative treatments.
For each vignette, the part-worth utilities and the surgeon-specific intercepts were used
to predict the probabilities of conservative treatment recommendations.

Figure 3.5: Relationships between subjective mortality risk perceptions and inclination to recommend
conservative treatments per surgeon.

Based on these results, heterogeneity was identified across two dimensions. Firstly, even
though all surgeons examined the same vignettes, their perceptions of 30-day mortality
risks differed substantially. For surgical resident 6, for instance, the 30-day mortality
bandwidth across all 16 vignettes was confined to 15-35%. This entailed that changes
in attribute levels minimally influenced the surgeon’s risk perceptions. Conversely, for
surgical resident 10, the 30-day mortality bandwidth spanned a much wider range of
15-95%. This indicated that the surgeon’s risk perceptions were sensitive to changes in
attribute levels.
Secondly, preferences for conservative treatment appeared to differ considerably from
surgeon to surgeon. The ICC was estimated at 0.299. This meant that 29.9% of the
treatment preferences was explained by personal differences between surgeons. Overall,
medical specialists appeared to be more inclined to prefer conservative treatment over
operative treatment than surgical residents. According to Wilcoxon’s rank sum test, the
difference in conservative treatment choice proportions was statistically significant (p =
0.046). To exemplify this difference, consider medical specialists 1, 2, 11, and 14, who
showcased conservative treatment choice proportions of 11/16, 12/16, 12/16, and 10/16
respectively. The surgical residents generally showcased lower choice proportions, with
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one resident even preferring operative treatment with curative intentions over conservative
treatment for all 16 vignettes. Therefore, practice variation appeared to be substantial.
Although heterogeneity was observed in risk perceptions and treatment preferences, the
trend lines shown in Figure 3.5 indicated that preferences for conservative treatment
generally increased with the perceived 30-day mortality risk. However, there was no
universal 30-day mortality probability threshold which could serve as a recommended
tipping point for favouring conservative treatment. To substantiate this claim, consider
the choice behaviours of medical specialist 2 and surgical resident 12 in Figure 3.5. The
former showcased a conservative treatment choice proportion of 12/16 across a 30-day
mortality probability bandwidth of 5-35%, whereas the latter showcased a conservative
treatment choice proportion of 2/16 across a 30-day mortality probability bandwidth of
65-95%. This entailed that the 30-day mortality risk tipping point at which the benefit
of conservative treatment was acknowledged differed considerably between the surgeons.

3.3.6 Uncertainty in Treatment Recommendations
For each vignette, surgeons were asked to express how certain they were about the
optimality of their treatment recommendation. The results are summarised in Figure 3.6.
The greatest degree of certainty was expressed for vignettes 1 and 4. Based on the a
priori assumed effect sizes of the respective attribute levels, these vignettes described the
theoretically best and theoretically worst candidates for surgery respectively. As shown in
Table 3.5, all 14 surgeons agreed that operative management with curative intentions was
the best choice for vignette 1. For vignette 4, 12/14 surgeons agreed that conservative
treatment was the best choice.

Figure 3.6: Summary of likert scale data depicting the certainty expressed in the optimality of treatment
recommendations for each vignette.



Table 3.5: Overview of descriptive statistics for each of the vignettes. The choice proportions for conservative treatments, surgery with palliative intentions, and surgery with
curative intentions were reported relative to the total number of respondents in the vignette study. The 30-day mortality probabilities estimated by surgeons were summarised
with equally weighted pooled estimates, performance weighted pooled estimates, and the interquartile range of the sample.

ID ASA Fracture Gender Age Functional status Residence Dementia SHF Metastasis ESRF Choice proportions 30-day mortality %

CTP PSP CSP EW PW IQR

1 III DFN Female 80-89 No severe handicaps Home Absent Absent Absent Absent 0/14 0/14 14/14 20.7 11.9 (15-25)
2 IV UFN Female 90+ No severe handicaps Home Absent Present Absent Present 4/14 3/14 10/14 48.6 40.8 (45-65)
3 IV DFN Female 90+ No severe handicaps Institution Present Absent Present Present 10/14 2/14 2/14 60.0 46.1 (55-75)
4 IV EXT Male 80-89 Severe handicaps Institution Absent Present Present Present 12/14 1/14 1/14 62.9 50.8 (55-85)
5 IV EXT Female 90+ Severe handicaps Home Absent Absent Present Absent 2/14 7/14 5/14 38.6 35.8 (25-45)
6 III DFN Male 80-89 Severe handicaps Home Present Absent Absent Present 4/14 3/14 7/14 42.1 36.1 (25-65)
7 IV UFN Female 80-89 Severe handicaps Institution Present Absent Absent Present 6/14 6/14 2/14 50.7 45.7 (35-75)
8 IV UFN Male 80-89 No severe handicaps Home Present Present Present Absent 8/14 2/14 4/14 52.9 41.5 (35-75)
9 IV DFN Male 90+ Severe handicaps Home Present Present Absent Absent 8/14 4/14 2/14 52.9 50.4 (45-65)
10 III EXT Female 90+ Severe handicaps Home Present Present Absent Present 7/14 5/14 2/14 55.0 41.5 (35-75)
11 IV DFN Female 80-89 Severe handicaps Institution Absent Present Absent Absent 3/14 8/14 3/14 43.6 26.8 (35-55)
12 III DFN Male 90+ No severe handicaps Institution Absent Present Absent Present 5/14 4/14 5/14 45.7 36.1 (35-55)
13 III UFN Male 90+ Severe handicaps Institution Absent Absent Absent Absent 2/14 1/14 11/14 37.1 21.9 (15-45)
14 IV EXT Male 80-89 No severe handicaps Home Absent Absent Absent Present 2/14 0/14 12/14 37.9 36.2 (25-45)
15 IV EXT Male 90+ No severe handicaps Institution Present Absent Absent Absent 3/14 4/14 7/14 40.7 31.8 (25-55)
16 III EXT Female 80-89 No severe handicaps Institution Present Present Absent Absent 4/14 4/14 6/14 38.6 26.8 (15-65)

ASA American Society of Anaesthesiologists physical status classification, SHF severe heart failure, ESRF End-stage renal failure, CTP conservative treatment proportion, PSP palliative surgery proportion,
CSP curative surgery proportion, EW equally weighted pooled estimate, PW performance weighted pooled estimate, IQR interquartile range, DFN displaced femoral neck, UFN undisplaced femoral neck,
EXT extracapsular
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However, a large proportion of treatment proposals for which certainty in optimality
was expressed did not necessarily imply a consensus between surgeons. Although 10/14
surgeons expressed to be certain, or even very certain, about the optimality of their
treatment recommendations for vignette 16, the treatment choice proportions were
rather divided. In total, 6/14 surgeons recommended conservative treatment, 4/14
surgeons recommended operative treatment with curative intentions, and 4/14 surgeons
recommended operative treatment with palliative intentions. It was noteworthy that
vignette 16 also exhibited the greatest degree of disagreement amongst surgeons with
respect to the estimated survival prognosis. As depicted in Table 3.5, the 30-day mortality
probability assessments of vignette 16 showcased the widest interquartile range of 15-65%.
Surgeons expressed the greatest degree of uncertainty about their treatment proposals for
vignettes 7, 11, and 12. Vignettes 7 and 11 described ASA IV patients with at most one
known physical comorbidity and at least two indicators of poor cognitive or functional
status. Vignette 12 described an ASA III patient with two known physical comorbidities
and a single indicator of poor cognitive or functional status. What these vignettes have
in common, is that they describe patients with a moderately poor health status and
pre-fracture hindrances in activities of daily living. As outlined previously, indicators of
poor health status had the highest relative importance in preoperative decision-making.
This indicated that medical grounds supported surgeons’ decisiveness the most. It is
postulated that patients with moderately poor health status, rather than a severely poor
health status, induced a greater degree of decision uncertainty due to a paucity of medical
grounds to base the treatment recommendation on.
Since the vignettes represented a simplification of reality, it was possible that surgeons
missed certain nuances that could have helped them to assess the patient cases more
confidently. In total, nine surgeons provided feedback on what information they missed in
the vignette descriptions. Two surgeons expressed that they did not need any additional
information. Amongst the remaining surgeons, the wish for additional information
concerned two primary themes. The first theme was conceptualised as: a need for an
enriched medical profile. In particular, surgeons were interested in knowing patients’
pulmonary status, their survival prognosis for metastatic cancer, the motivation behind
high ASA scores, and patients’ mobility status. The second theme was conceptualised as:
decision-making as a socially malleable process. Surgeons expressed that they missed
the social nuances of being able to look patients in the eye and asking them and their
relatives about their personal treatment preferences. Additionally, one surgeon expressed
that second opinions from geriatricians, anaesthesiologists, and cardiologists could have
helped in shaping a better treatment proposal.

3.4 Discussion
This paper reports on the results of the first health preference study examining surgeons’
perceived benefit of conservative treatment for frail geriatric hip fracture patients. The
results showed that metastatic carcinoma, severe heart failure, end-stage renal failure, and
dementia had the strongest influence on surgeons’ preferences to recommend conservative
treatment. Amongst the 10 examined attributes, these were the only ones with 95%
CrIs which did not overlap with the null effect. Furthermore, it was observed that
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the probability of preferring conservative treatment over operative treatment, generally
increased with the mortality risks prognosticated by surgeons. These findings underline
and confirm that comorbidities leading to increased mortality risk are some of the strongest
indicators of decreased benefit of operative treatment [21, 26].
However, some of these findings were unexpected given the a priori hypotheses. Firstly,
based on the power analysis with an assumed OR of 1.4, no significant effect was expected
to be found for the influence of dementia. In fact, with an observed OR of 3.32, dementia
appeared to have a subtantially higher influence on the perceived benefit of conservative
treatment than hypothesised. Secondly, the estimated effect size of metastatic carcinoma
appeared to be highly influenced by the specification of the informative prior. Similar
to before, the a priori assumed OR of 2.5 was substantially smaller than the observed
ORs of 4.46 (2.13-9.49) and 6.49 (2.37-17.42) for informative and noninformative priors
respectively. This gives rise to the question whether the influence of these attributes
was undervalued in the a priori hypotheses, or whether surgeons overvalued the utility of
conservative treatment for these attributes.
In retrospect, we would like to plead for the former. The a priori assumed effect sizes of
the attributes were solely estimated based on their prognostic value for 30-day mortality.
Initially, the assumption was made that 30-mortality risk could function as a viable
proxy to model the β-coefficients in the vignette study, since risk of early death is a
leading argument to elect conservative treatment according to the national guidelines
[26]. However, 30-day mortality risk alone may not be sufficient to fully encompass the
utility of conservative treatment, as it overlooks QoL considerations [28]. Spronk et al.
[21] found that over 90% of the 271 surveyed healthcare providers expressed that a poor
postoperative QoL prospect was a common reason for them to treat frail geriatric hip
fracture patients conservatively. Hence, as QoL was not accounted for in the a priori
estimates, we may have undervalued the influence of dementia and metastatic carcinoma.
To further substantiate these claims, important QoL considerations for both conditions
will be delineated.
Firstly, it is increasingly acknowledged that dementia is a terminal condition [248–
250] which necessitates palliative care assessments [251]. This necessity is particularly
pronounced in advanced stages of dementia with inclinations towards self-neglect, e.g. in
the form of malnutrition due to dysphagia [248]. In end-of-life care for demented older
adults, Dutch clinicians agree that forgoing artificial nutrition and hydration (ANH) could
be good medical practice [252], as ANH prolongs patients’ lives at the expense of serious
discomfort [253]. These findings demonstrate that improving the QoL of demented
patients may in fact entail improving their quality of dying. However, these circumstances
may not be applicable to all demented hip fracture patients, but primarily to those with
advanced dementia [189]. Nevertheless, since preoperative dementia is a well-known
significant risk factor for postoperative delirium, surgery may accelerate patients’ cognitive
decline [254–256]. With these outcomes in mind, the utility of conservative treatment
may come from poor postoperative QoL prognoses, on top of increased mortality risk.
Secondly, recovery-oriented surgery is unlikely to improve the well-being of geriatric hip
fracture patients who are debilitated by advanced malignancy [24]. While pain reduction
could be a viable motive to elect surgery, the treatment’s benefit depends on the patient’s
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age and health status. Preference studies have shown that cancer patients aged 65 years
and older are less willing to trade prolonged survival for decreased QoL than their younger
counterparts [257]. Concordantly, aggressive oncological treatments occur less frequently
in geriatric patients [258]. Especially for those who are frail and suffer from metastasis,
best supportive care could be preferred due to its acceptable outcomes with respect to
QoL [259–261]. Therefore, considering the implications of frailty and patients’ end-of-life
preferences, QoL aspects may have contributed to the perceived utility of conservative
treatment for hip fracture patients with metastatic cancer.
While several patient attributes were found to be critical for preoperative decision-making,
it should be noted that surgeons’ treatment preferences were rather heterogeneous. In
fact, personal differences between surgeons accounted for 29.9% of the explained variance
of surgeons’ treatment recommendations. These results suggest that practice variation
may be substantial. On the one hand, heterogeneity in stated preferences could be
attributable to the simplified nature of the vignettes, leading to a lack of nuances which
could have helped surgeons assess the patient cases more confidently and reliably. On the
other hand, even for vignettes where surgeons consistently expressed (high) certainty for
the optimality of their treatment recommendations, stated preferences remained divided.
These observations are most likely reflecting the lack of guidelines on electing conservative
treatment as a palliative treatment option.
Besides that, substantial heterogeneity in 30-day mortality risk perceptions was observed
as well. In the most extreme case, one surgeon estimated 30-day mortality risks to range
between 15-35% across all vignettes, whereas another surgeon provided an estimation
range of 65-95%. This exemplifies the need for objective 30-day mortality prediction
models to streamline risk perceptions across clinicians. Through the SEJ, an attempt
was done at forging a rational consensus between surgeons’ dispersed risk estimates.
Through linear opinion pooling with performance-based weights, the expert model yielded
a 30-day mortality prediction range between 11.9-50.8% across all vignettes. However, the
maximum risk estimate appeared to be rather low, considering that it was the prognosis
for a male institutionalised ASA IV patient, between the ages of 80-89 years, with severe
functional handicaps, severe heart failures, metastatic cancer, and end-stage renal failures.
To validate the expert-driven estimate, a comparison was made with data-driven prediction
models. An overview of the maximum predicted risks and the respective predictor variables
of the Nottingham Hip Fracture Score (NHFS) [176], Almelo Hip Fracture Score (AHFS)
[87], AHFS90 [262], and Brabant Hip Fracture Score (BHFS) [83] is shown in Table 3.6.
This overview shows that most predictors also appear in the vignettes. The vignettes,
however, include three strong predictors for 30-day mortality that are not included in the
prediction models: metastatic cancer, severe heart failure, and end-stage renal failure.
Based on the systematic review of Chapter 2, it can be concluded that these predictors
have larger effect sizes than most of the other predictors considered in the NHFS, AHFS,
AHFS90, and BHFS. Yet, the expert model only attained a marginally higher maximum
risk than the NHFS and BHFS, and a lower maximum risk than the AHFS and the
AHFS90. As the maximum AHFS and AHFS90 were computed in a relatively healthy
population compared to the vignettes, the expert model is likely downward biased for
the most vulnerable patients. Thus, patients who are at high risk of early mortality are
potentially underidentified in practice.
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Table 3.6: Comparison of objective 30-day mortality risk scores and subjective expert-driven estimates.
The attributes included in each of the prediction models is indicated with an X.

Attribute Maximum 30-day mortality probabilities Surgeons’ judgements

NHFS AHFS AHFS90 BHFS EW PW
(45.0%) (68.4%) (64.5%) (46.6%) (62.9%) (50.8%)

Age X X X X X X
Gender X X X X X X
Preoperative residence X X X X X X
History of any malignancy X X X Xa Xa

Cognitive impairment X X X X X
Admission haemoglobin X X X X
ASA classification X X X X
Number of comorbidities X X
Mobility X
COPD X
Diabetes X
Functional status X X
Severe heart failure X X
End-stage renal failure X X
Fracture type X X

NHFS Nottingham Hip Fracture Score, AHFS Almelo Hip Fracture Score, AHFS90, Almelo Hip Fracture Score in patients
aged ≥ 90 years, BHFS Brabant Hip Fracture Score, EW equally weighted pooled estimate, PW performance weighted
pooled estimate, ASA American Society of Anaesthesiologists physical status classification, COPD chronic obstructive
pulmonary disease
a Malignancy was exclusively defined as metastatic cancer

Several limitations may have caused the SEJ to yield poor risk estimates for the most
vulnerable patients. The underestimation may have been due to chance, since only nine
surgeons completed the SEJ. Hence, replication of the study in a larger cohort is necessary
to validate the results. Nevertheless, two exceptionally well-calibrated surgeons with
calibration scores of 0.53 and 0.32 were observed in this small sample, accounting for a
cumulative weight of 93% in the pooled estimates. Based on the premise of the SEJ,
it is counter-intuitive that these surgeons underestimated the 30-day mortality risks for
the most vulnerable patients. It is postulated that the CQs did not capture the required
range of expertise for the assessments of the diverse vignettes, since the seed variable
realisations were merely confined to 30-day mortality rates between 3.9-33.2%. Since
the SEJ instrument was calibrated to mortality rates of relatively healthy patients, a
high calibration score did not reflect accurate predictions for high-risk patients. This is a
challenge for SEJs in this field, since data on more frail hip fracture patients are limited
due to the lack of national registrations of severe comorbidities such as metastasis.
Another limitation is that all risk estimates and preferences were elicited, assuming
that the judgements of surgeons alone could represent the clinical decision context.
However, surgeons reported that patients’ preferences and fellow clinicians’ opinions
could have contributed to better-informed judgements. Hence, it is questionable whether
the aforementioned assumption is justified. From literature, it is known that a patient’s
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personal wish is one of the strongest deciding factors for surgeons to treat patients
conservatively [21]. Additionally, consultations with geriatricians may significantly increase
the percentage of elected conservative treatments following SDM [189]. Hence, it is
evident that decisions in healthcare are shaped by the opinions of multiple stakeholders in
the decision context [263]. As these considerations were not accounted for, the external
validity of the stated preferences may have been harmed [264]. Therefore, future studies
should incorporate the views and values of the core agents in the decision context, to
improve the external validity of the stated preferences.
Despite the concerns regarding external validity, we still believe that the contributions of
this study are valuable. While it cannot be determined how the stated preferences would
have changed if SDM had taken place, SDM should not be taken for granted. Amongst
others, lack of time to organise multidisciplinary consultations is a persistent barrier to
SDM in management of acute hip fractures [21]. Furthermore, when SDM between
patients and surgeons does take place, surgeons’ initial judgements may still have a
substantial influence due to the power asymmetry in doctor-patient interactions [265]. This
is not meant as a criticism, but rather as a reminder that patients put a lot of faith in the
expertise and authority of healthcare providers [266]. Based on medical grounds, surgeons
may firmly direct towards conservative treatment [267]. Therefore, surgeons’ treatment
preferences can still offer valuable insights into the utility of conservative treatment
for frail geriatric hip fracture patients. However, the results should be interpreted with
caution. Most statistical tests were underpowered, meaning that increasing the sample
size may lead to the detection of additional significant decision variables.

3.5 Conclusion
This study demonstrated that comorbidities had the strongest influence on surgeons’
perceived benefit of conservative treatment. Although surgeons were more inclined to
abstain from surgery amongst hip fracture patients for whom they prognosticated higher
30-day mortality risks, heterogeneity in treatment preferences and risk perceptions was
substantial. Hence, objective 30-day mortality prediction models should be used in clinical
practice to streamline risk perceptions across surgeons. However, objective mortality
risk estimates alone are postulated to be insufficient to identify eligible candidates for
conservative treatment. Although meta-analyses revealed that some of the examined
attributes were of small-to-moderate prognostic value for 30-day mortality, surgeons could
still associate them with a high utility of conservative treatment. The increased utility
of these attributes is presumably derived from poor postoperative QoL prognoses, in
addition to increased 30-day mortality risk. Hence, based on surgeons’ stated preferences,
more emphasis may need to be put on QoL considerations in the national guidelines, to
adequately provide decision support for electing nonoperative management.
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A Literature Review of Best Practices
in Ambulatory Accelerometry

4.1 Introduction
Over the years, the use of accelerometers in human movement analysis has proliferated
amongst clinicians and researchers alike [37, 268–275]. Amongst the applications in
healthcare and beyond [275], the impact on rehabilitation care is particularly pronounced
[274]. Ambulatory accelerometry provides a promising means to monitor patients’
physical activity reliably, continuously, and objectively in an unsupervised manner [268].
Consequently, accelerometers provide rich insights into a patient’s physical capacity of
being mobile [35, 38], which is beneficial to rehabilitation programmes geared towards
restitution of mobility and functional independence [268].
It should be noted that accelerometers do not measure physical activity directly
[276]. Most commercially available sensors are triaxial, meaning that they can register
accelerations of body segments along the x-, y-, and z-axes. This way, an accelerometer
encodes information on both body posture and movement [273, 277–279]. The general
premise is that different activities contain distinct information in their accelerations, from
which physical activities can be distinguished and quantified using algorithms. Various
researchers have successfully applied these principles to develop monitoring systems which
can recognise activities of daily living [276, 280–282].
To develop an ambulatory monitoring system, practitioners generally follow the human
activity recognition (HAR) chain [283]. The steps along the chain are summarised as
follows: (1) data acquisition, (2) preprocessing, (3) segmentation, (4) feature extraction
and selection, and (5) classification. In each step, practitioners have to decide which
design choices yield the best solution to the task at hand [284]. Although design choices
in HAR have been aggregated extensively in reviews [274, 275, 278, 284–287], concrete
recommendations for best practices along each step of the HAR chain remain lacking.
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To further support clinical researchers with making adequate design choices, this literature
review aims to synthesise best practices in ambulatory accelerometry. Evidence synthesis
is restricted to HAR paradigms which do not resort to so-called black-box machine
learning models, e.g. as described in [288–294], to safeguard the interpretability of the
models in clinical implementation processes which may follow. The aim of this review is to
provide recommendations for each step along the HAR chain to support the development
of ambulatory monitoring systems.

4.2 Data Acquisition
Data acquisition refers to the process of measuring bodily acceleration signals. Important
design decisions in this process include determining how many accelerometers should be
used for data collection, and where they should be positioned along the body to properly
characterise physical activities.

The Number of Accelerometers

The number of required accelerometers depends on the complexity of the to-be-
recognised activities. In the field of physical activity monitoring, it is recommended to
compartmentalise high-level descriptions of ADL tasks such as going to bed into simpler
atomic operations: walking (to the bedroom), standing (next to the bed), performing a
stand-to-sit transfer, performing a sit-to-lie transfer, and finally lying down [295]. Such
atomic operations can be recognised accurately with fewer accelerometers, and provide
sufficient insights into how physically active or how sedentary individuals are [276].
As shown in Table 4.1, most studies already attain satisfactory recognition rates with only
one [296–304] or two [305–309] accelerometers for a wide range of different HAR tasks.
Studies examining the influence of the number of sensors on HAR performance have
shown that using more than two accelerometers only improves the performance marginally
[307, 310]. Hence, the design choice regarding the number of accelerometers used for
data acquisition in HAR, can generally be simplified to choosing between measurement
setups comprising one or two accelerometers.
Two primary considerations to support the aformentioned design choice have been
identified in literature. On the one hand, using a single accelerometer could be favoured
from a user-centred standpoint. Multiple researchers in the field have argued that the
number of body-worn sensors should be minimised to reduce the discomfort of wearing
the devices [284, 303, 307, 311]. Especially for applications related to patient monitoring,
discomfort could induce compliance issues [307], resulting in a loss of prognostic insights.
On the other hand, performance-based considerations could steer practitioners towards
favouring two accelerometers. In some cases, a single accelerometer may yield similar
data patterns for different activities [296]. Then, the data from a single accelerometer
could be insufficiently discriminative between different activities to provide satisfactory
recognition rates and a second accelerometer may be necessary [274].



Table 4.1: Summary of accelerometer-based human activity recognition studies.

Study Activities No. sensors Sensor placement Features Classifier Performance

[296] Walking, standing, sitting, lying down,
stand-to-sit transfer, sit-to-stand transfer,
lie-to-stand transfer, stand-to-lie transfer

1 Waist Mean, signal magnitude area,
(shifted) delta coefficients

GMM Accuracy: 0.92

[312] Walking, sitting, standing, lying down,
running, nordic walking, cycling
ascending stairs, descending stairs,
vacuuming, ironing, rope jumping

3 Chest, wrist, ankle Variance, skewness, kurtosis, energy,
axial correlations, root mean square,
mean absolute value, harmonic mean
zero crossing rate, Wilson amplitude,
slope sign change, cumulative length

KNN F1-score: 0.97

[283] Walking, jogging, running, jumping,
trunk twist, waist bends, cycling
lateral bend, stretching, arm elevations,
shoulder rotations, arm rotations,
crouching, rowing, elliptical bike

9 Back, lower arms,
upper arms, calves,
thighs

Mean KNN F1-score: 0.95

[305] Walking, sitting, standing, running,
lying down, walking carrying items,
stretching, scrubbing, climbing stairs,
watching TV, eating or drinking, cycling
riding elevator, riding escalator, vacuuming
working on computer, strength-training
folding laundry, reading brushing teeth

2 Thigh, wrist Mean, spectral energy, spectral energy,
axial correlations

Decision tree Accuracy: 0.81

[306] Slow walking, fast walking, running,
ascending stairs, descending stairs, dancing

1 Waist Mean, standard deviation, range,
root mean square, axial correlations,
average peak frequency variance

MLP Accuracy: 0.90

[297] Walking, sleeping, eating or drinking,
brushing teeth, dressing, ironing, sweeping,
washing dishes, watching TV

1 Wrist Axial correlation, maximum, minimum,
root mean square, maximum norm,
differences

SVM F1-score: 0.95

Continued on next page



Table 4.1 (Continued)

Study Activities No. sensors Sensor placement Features Classifier Performance

[307] Walking, sitting, standing, lying down,
jogging, ascending stairs, descending stairs

2 Lower back, thigh Mean, average mean over 3 axes,
standard deviation, average standard
deviation over 3 axes, skewness,
average skewness over 3 axes, kurtosis,
average kurtosis over 3 axes, energy,
average energy over 3 axes, axial
correlations

SVM Accuracy: 0.98

[298] Walking, standing, sit-to-stand transfer,
ascending stairs, descending stairs

1 Chest Mean, variance, standard deviation,
median, range, root mean square,
minimum, maximum, power, energy,
skewness, kurtosis, interquartile range,
mean absolute deviation

Random forest Accuracy: 0.87

[299] Sit-to-stand/stand-to-sit transfer,
stand-to-kneel-to-stand transfer
walking, running, jumping, sitting

1 Waist Variance, range, spectral energy,
spectral entropy

KNN Accuracy: 0.98

[300] Walking, standing, sitting, lying down,
ascending stairs, descending stairs,
jogging, cycling

1 One of the following:
chest, upper arm,
lower arm, waist,
lower leg, upper leg

Principal components explaining 95%
of the variance, computed from time
and frequency domain features

KNN Accuracy: 0.96

[301] Walking, standing, sitting, ascending stairs,
descending stairs

1 Thigh Mean, standard deviation KNN Accuracy: 0.99

[302] Walking, standing and sitting (jointly),
cycling, other activities

1 Ankle Mean, standard deviation, minimum,
maximum, spectral power,
dominant frequency

SVM F1-score: 0.92

[308] Walking, standing, sitting, lying down,
squatting, crawling, moving hands

2 Wrist, hip Mean, variance HMM Accuracy: 0.87

[303] Walking, standing, sitting, lying down
prone, lying on the left, lying on the right

1 Waist Mean, minimum, maximum Naive Bayes Accuracy: 0.96

Continued on next page
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Study Activities No. sensors Sensor placement Features Classifier Performance

[313] Walking, sitting, standing, lying down,
cycling, ascending stairs, descending stairs,
riding elevator, vacuuming, brushing teeth,
cleaning whiteboard, reading, typing,
running, watching TV

4 Thigh, wrists, neck Mean, standard deviation KNN Accuracy: 0.91

[309] Walking, running, ascending stairs,
descending stairs, jogging, jumping,
hopping on left and right leg

2 Waist, ankle Mean, standard deviation KNN Accuracy: 0.95

[304] Walking, standing, sit-ups, running,
ascending stairs, descending stairs,
vacuuming, brushing teeth

1 Pelvis Mean, standard deviation, spectral
energy, axial correlations

Random forest Accuracy: 0.99
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Accelerometer Placement

Apart from deciding how many accelerometers a data acquisition setup should comprise,
practitioners should also consider where to position them along the human body. As
shown in Table 4.1, some of the most frequently used sensor positions in HAR (beyond
ambulatory monitoring) include the waist [283, 296, 299, 300, 303, 306, 309], thigh
[283, 301, 305, 307, 313], wrist [297, 305, 308, 312, 313], and ankle [302, 309, 312]. An
accelerometer’s output varies substantially depending upon its placement, even for the
same activity [314, 315]. Based on this observation, various studies have examined the
optimal placements of accelerometers for various HAR tasks [303, 307, 308, 311, 316].
However, it remains challenging to determine optimal sensor placements based on these
results. Firstly, Atallah et al. [311] provided recommendations for sensor placements for
the recognition of vaguely defined physical activities, such as low-level activities, medium-
level activities, and high-level activities. These findings are of limited utility to most HAR
researchers, who aim to classify more fine-grained physical activities [276, 295]. Secondly,
Orha and Oniga [316] postulate that placing the sensors on the right hand and right thigh
yields optimal results for the recognition of activities such as standing, sitting, walking,
ascending stairs, running, and lying down. However, they do not provide quantitative
comparisons with other sensor placements to further substantiate the superiority of their
recommendation. In addition to the paucity of substantive evidence, others have found
that the classification accuracy of activities similar to those described by Orha and Oniga
only differed marginally between differently located sensor pairs [303, 307]. Therefore,
gaps remain in the understanding of optimal sensor placements.
On a more general note, some guidelines can be followed to develop well-performing and
robust HAR models. For many HAR tasks, measurement of whole-body movement is
necessary to characterise physical activities. Waist-worn sensors are adequate for this
purpose, as the waist is near the centre of mass of the human body, allowing for a good
representation of major motions [278]. Additionally, for the recognition of sedentary
behaviours, the waist is also postulated to yield consistent and reliable measurements.
Lying postures, for instance, could be challenging to characterise when sensors are placed
on the limbs: even if individuals perform the same activity of lying down, their limbs may
be oriented differently in free-living conditions. These heterogeneous orientations could
further complicate HAR [285]. Positioning sensors at the waist could resolve this issue,
as this location is less affected by arbitrary peripheral body motions [303].
However, some activities may involve more subtle motions which cannot be captured by
measurement of coarse estimates of whole-body movement [315]. Hence, practitioners
should at least reason about which muscle regions are activated upon initiating the
activity they aim to classify [311]. For instance, omitting sensor placements near the
wrist for the recognition of hand movements is bound to compromise the classification
performance [308]. However, for HAR tasks specifically focusing on ambulatory
monitoring, various systems with high recognition accuracies between 0.92-0.98 have
been developed without using any information from the wrist [296, 299, 307]. In case of
single accelerometer measurement setups, others have even proposed that the wrist is
not biomechanically suitable for the characterisation of most physical activities [317].
Affirmatively, Janidarmian et al. [300] found that wrist-worn accelerometers were most
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sensitive to interpersonal differences in movement patterns and therefore generalised
poorly. Conversely, their results indicated that the upper leg position was most robust to
interpersonal differences. These findings are compelling and convincing, given that eight
different sensor placements were evaluated using 14 aggregated data sets describing over
70 physical activities measured across 228 subjects.

4.3 Preprocessing
Preprocessing refers to the procedure of transforming accelerometer signals and removing
artefacts from them prior to feature extraction. In many cases, preprocessing steps were
not described [299, 301, 305, 307, 312, 313, 318]. Amongst the available preprocessing
descriptions, the decomposition of accelerometer signals into DC and AC components
through the use of high-pass filters was a common transformation [306, 309]. This
separation allows researchers to analyse postural and kinetic information in isolation,
through examination of the DC and AC components respectively [273]. The most common
application of artefact removal was high-frequency noise suppression e.g. through median
filters [296, 303], (weighted) moving average filters [297], and low-pass filters [302]. In
some cases, researchers explicitly decided against applying filters for the purpose of noise
suppression [283, 298, 304, 319].
In principle, negligence towards artefact removal can be justified. The reason for this is
that accelerometer signals are particularly susceptible to information losses if the physical
activities of interest are diverse [283]. Most human activities are confined to a narrow and
low frequency band, which could be affected by noise suppression filters. The spectral
analysis of Sun and Hill [320] demonstrated that the major energy bands of various
activities of daily living varied between 0.3-3.5 Hz. They observed that activities with
frequencies above 10 Hz had seldom occurrences. Concordantly, others have found that
human movements produce accelerations with most of the energy below 15 Hz [321].

4.4 Segmentation
Segmentation refers to the process of dividing physical activity signals into a finite set of
smaller activity windows. Three windowing techniques are commonly used, i.e. sliding
windows, event-defined windows, and activity-defined windows [286]. The majority of the
HAR studies resort to sliding windows, since their low computational costs make them
suitable for real-time applications [309]. In this approach, signals are split into intervals
of fixed length without inter-window gaps. Upon defining sliding windows, practitioners
face two design choices: choosing the length of the window, and deciding whether or not
the windows should overlap.

Sliding Window Size

In most studies, relatively short sliding windows of 1-2 seconds provided satisfactory
results for the recognition of a wide range of ambulatory and sedentary behaviours [283,
301, 303, 304, 306, 308, 313, 318, 322]. Larger window sizes were also found in literature,
ranging from 4-10 seconds [297–299, 302, 304, 305, 307, 312, 323]. As shown in Table
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4.1, the studies resorting to small windows and those resorting to large windows aimed to
classify similar types of physical activities. Nevertheless, the chosen window sizes differed
substantially.
Practice variations could be attributable to a trade-off between classification speed
and accuracy. On the one hand, small windows allow computations to be performed
quickly, which is particularly desirable in real-time applications [321]. On the other hand,
large windows are believed to more informative as they capture physical activities more
comprehensively. Banos et al. [283] systematically evaluated the impact of window sizes
on the aforementioned trade-off and found that windows of 1-2 seconds yielded the
optimal result. Moreover, others have found that increasing the window size beyond 2
seconds could even harm the overall performance of HAR systems [318, 324]. Choosing
the window size to be too large could cause multiple different activities to be captured in
a single window. This is undesirable in HAR [311], as it introduces ambiguities in the
characterisation of specific activities.

Degree of Overlap in Sliding Windows

In most cases, researchers used overlapping sliding windows (OSWs) with 50% overlap
[297–299, 301, 303–307, 309, 323]. In some cases, different degrees of overlap of e.g.
20% were used [312, 325]. Amongst the studies identified in this review, reports of
non-overlapping windows (NOSWs) were relatively infrequent [283, 302, 308, 313].
There is a popular belief that OSWs improve the performance of HAR systems at the
expense of increased computation time. Although evidence in favour of this claim can
be found in literature [318], scepticists have argued that OSWs may cause recognition
performances to be inflated, especially when the error rate is estimated through activity-
stratified cross-validation (CV) where data of the same subject is present in both
the training and testing folds [302, 326]. Affirmatively, Dehghani et al. [319] have
demonstrated that OSWs could unrightfully inflate the F1-score by 16-21% if the repeated
measures structure of HAR data is not accounted for in CV. Upon comparing the
classification performance between OSWs and NOSWs through leave-one-subject-out
CV, the ostensible superiority of OSWs disappeared and both windows yielded similar
generalisation errors. Therefore, practitioners may rightfully favour NOSWs over OSWs,
and should even do so if leave-one-subject-out CV is not feasible.

4.5 Feature Extraction and Selection
Feature extraction refers to the process of computing informative attributes from the
data enclosed in activity windows. Most features are computed separately for each
signal measured by a single accelerometer sensing axis [274]. When multiple triaxial
accelerometers are used for HAR, the number of features under consideration could grow
substantially. It is unlikely that all features are (equally) informative for HAR tasks.
Hence, a feature subset with high discriminative power is generally selected to reduce
noise and thereby improve classification performance [286]. This process is known as
feature selection.
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Feature Extraction

In the application area of HAR, feature quality is postulated to be one of the primary
determinants of a high classifier performance [288]. Hence, domain-specific knowledge is
generally used to craft informative features [327]. An overview of the most commonly
extracted features in HAR is shown in Table 4.2.

Table 4.2: Overview of the most commonly used features in human activity recognition.

Feature Interpretation References

Mean / median The mean provides postural information. It can be used to distinguish
between different sedentary behaviours. In case of outliers, the median
may be preferred over the mean.

[276, 277, 283,
296, 298, 300–
309, 313, 328–
331]

Variance / standard
deviation / mean
absolute deviation

These metrics provides information about the intensity of a physical
activity. They can be used to distinguish between sedentary behaviours
and physical activities. In case of outliers, the mean absolute deviation
may be preferred over the standard deviation.

[277, 298–301,
306–309, 312,
313, 328, 329,
331]

Root mean square The root mean square is identical to the standard deviation for signals
with a mean of zero.

[297, 298, 300,
306, 330, 331]

Axial correlation Axial correlations can be used to distinguish between activities which
involve unidirectional and multidirectional translations. Walking and
running, for instance, primarily involve unidirectional translations
(anteroposterior), whereas stair climbing involves prominent
multidirectional translations (anteroposterior and vertical).

[297, 300, 304–
307, 312, 329,
331]

Minimum The minimum describes the lowest value measured along a single
sensing axis of an accelerometer.

[297, 298, 300,
302, 303]

Maximum The maximum describes the highest value measured along a single
sensing axis of an accelerometer.

[297, 298, 300,
302, 303]

Range / interquartile
range

The range is the difference between the minimum and the maximum
acceleration value. It can be used to distinguish between sedentary
behaviours and physical activities. In case of outliers, the interquartile
range may be preferred. The latter is the difference between the 25%
and 75% quantiles of the acceleration values.

[299, 300, 306,
331]

Skewness The skewness provides information about the shape of the probability
distribution of movement accelerations. It can take on negative and
positive values. If the values of the acceleration signals are
symmetrically distributed, the skewness is equal to zero. If high values
are more likely to occur than low values, the skewness is positive-valued.

[298, 300, 307,
328, 329, 331]

Kurtosis The kurtosis provides information about the shape of the probability
distribution of movement accelerations. It describes how likely extreme
values occur in a movement signal.

[298, 300, 307,
328, 329, 331]

Signal magnitude area The signal magnitude area is a predictor of energy expenditure. It can
be used to distinguish sedentary behaviours from physical activities.

[276, 279, 296,
300, 314, 331–
333]

Mean-crossing rate The mean-crossing rate is correlated with the frequency of an activity.
It can be used to distinguish between dynamic physical activities.

[283, 312, 329,
331]

Spectral energy The spectral energy is capable of detecting periodicity in data and it
can be used to distinguish between sedentary behaviours and physical
activities.

[299, 304, 305,
334, 335]

Spectral entropy The spectral entropy is used to distinguish between activities with
similar spectral energy values such as cycling and running The former
corresponds to a nearly uniform motion pattern with a single dominant
frequency component, whereas the latter has multiple major harmonics
which contribute to an overall higher spectral entropy.

[174, 299, 305,
309]

Sum of squares of
wavelet coefficients

The sum of squares of wavelet coefficients can be used to distinguish
between different walking patterns (flat surface walking, ascending, and
descending).

[323, 336]

Root mean square of
wavelet coefficients

The root mean square of wavelet coefficients can be used to distinguish
between different walking patterns (flat surface walking, ascending, and
descending).

[323, 337]

In general, most features used in HAR can be categorised as either time or frequency
domain features (see Figure 4.1). Amongst the formalisms for frequency domain
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transformations, a distinction is made between Fourier transforms [338] and wavelet
transforms [339]. The latter are more computationally costly, and have been introduced
to pose less stringent constraints on the assumption that physical activity signals are
stationary processes. Unlike wavelet features, the informativeness of simple time and
frequency domain features relies heavily upon this assumption [340]. However, previous
HAR studies have found that accounting for nonstationarity in HAR is not necessary, as
wavelet features did not yield predictive advantages over the conventional features [302,
309]. Hence, it is postulated that practitioners can safely restrict the candidate features
for their HAR system to simple time and frequency domain features.

Features

Mean, Median

Variance, 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Figure 4.1: Classification of time domain and frequency domain features, adapted from [341, p. 647].

Feature Selection

An overview of the most commonly used feature selection methods in HAR is shown
in Table 4.3. It is noteworthy that many studies resorted to manual feature selection
based on choices of previous studies [283, 296–298, 301, 302, 304, 306, 307, 309, 342,
343], despite the fact that studies often differ substantially in their experimental design.
Amongst the algorithmic feature selection procedures, Relief-F appeared to be most
frequently used [299, 303, 311, 344]. The strength of Relief-F lies in its ability to not only
select features based on their individual discriminative properties, but also the interactions
between them [345]. This is an advantage over solely performing feature selection based
on domain knowledge, since the current understanding of how features contribute to HAR
(see Table 4.2) is lacking with respect to interactions. Failing to identify interactions
may lead to underexploitation of synergy between features.
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Table 4.3: Overview of feature selection methods used in human activity recognition studies.

Feature selection mechanism Description Studies

Manual feature selection Selecting features based on the results of previously published
studies.

[283, 296–298,
301, 302, 304,
306, 307, 309,
342, 343]

Relief-F Relief-F uses instance-based learning to select features which
have homogeneous values within the same activity class, and
heterogeneous values across different activity classes. It is one
of the few multivariate feature selection algorithms which is
capable of capturing two-way interaction effects between
features. However, it is unable to identify redundancy in
feature sets.

[299, 303, 311,
344]

Forward-backward selection In forward-backward selection, features are sequentially added
and removed during the model training process, depending
upon whether the examined features improve classification
performance.

[299, 313]

Principal component analysis Principal component analysis produces an eigendecomposition
of the features’ covariance matrix. Each eigenvector describes
a new basis vector which can be used for a vector projection
to linearly decorrelate features: features can no longer be
interpreted on their original scales. By selecting a subset of
eigenvectors with the largest eigenvalues, i.e. with the highest
explained variance, feature redundancy can be reduced.

[300, 327]

L1 regularisation L1 regularisation first considers the full feature set and shrinks
the influence of irrelevant features to zero during the model
training process, by optimising a two-part objective function
with a goodness-of-fit term and a penalty for including a large
number of features.

[317, 329]

Correlation-based feature
selection

Correlation-based feature selection favours features which have
high correlations with the activity class, and are minimally
correlated with other features. While it is capable of detecting
interaction effects between features, it tends to include
redundant features as well.

[297, 344]

Fast correlation-based filter The fast correlation-based filter (FCBF) uses symmetrical
uncertainty (SU) as a goodness-of-fit measure, which is
defined as the ratio between the information gain and entropy
of two features. Features with a high SU are selected by
FCBF. While FBCF effectively removes redundant features, it
is unable to detect interaction effects between features.

[344]

Minimum redundancy
maximum relevance

Minimum redundancy maximum relevance selects features
which exhibit a high mutual information with the activity
classes (maximum relevance), and a low mutual information
between features (minimum redundancy). However, it is
unable to identify interactions.

[311]

4.6 Classification
Classification refers to the process of associating a set of features computed from a
single window with an activity class. A wide range of classification principles has been
used in HAR studies. Supervised machine learning algorithms were most commonly used,
which included k-nearest neighbours (KNN) [283, 298, 299, 301, 305, 309, 311–313],
decision trees [283, 297, 301, 303, 305, 307], random forests [298, 304, 306, 346], naive
Bayes [283, 299, 301, 303, 305, 307, 344], Bayesian networks [301, 303], support vector
machines (SVM) [298, 301–303, 306, 307, 344], and multilayer perceptrons (MLP) [297,
303, 306, 307, 313]. A minority of the HAR studies used unsupervised machine learning
algorithms such as Hidden Markov Models (HMM) [308] and Gaussian mixture models
(GMM) [296]. Apart from classifiers based on machine learning, several studies resorted
to rule-based heuristic systems [276, 280, 282, 342, 347, 348].
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The choice between rule-based heuristic systems and machine learning models generally
boils down to a trade-off between model interpretability and classification performance.
While rule-based heuristic systems are easier to interpret and more accessible in terms
of parameter tuning [276], machine learning algorithms tend to be superior in terms
of classification performance [296]. The current trends in HAR indicate that most
researchers favour the latter.
However, for practitioners who want to resort to machine learning, it may remain
challenging to choose the best-suited algorithm from the wide range of available options.
Various machine learning models have been evaluated simultaneously to identify the best
algorithm. Amongst these evaluations, KNN was frequently found to be superior [299–301,
313]. Compared to naive Bayes, decision trees, and a nearest centroid classifier, Banos et
al. [283] found that KNN attained the highest F1-score across different feature sets and
different window sizes. Moreover, they found that KNN required the least information,
i.e. fewer features and smaller window sizes, to attain a high classification performance.
Compared to decision trees, discriminant analysis, SVMs, ensemble methods, naive Bayes,
and MLPs, Janidarmian et al. [300] found that KNN performed well and retained stable
results over different accelerometer placements and different window sizes. Therefore,
KNN may be considered to be a good candidate algorithm for a wide range of HAR
applications.

4.7 Discussion
The field of HAR has been studied extensively. Previous literature reviews have primarily
focused on aggregating common practices in HAR, with limited attention to synthesis
of concrete best practice recommendations. Although it could be helpful to be aware
of popular trends, practitioners should bear in mind that common practices are not
necessarily well-suited. Hence, the current literature review provided a critical perspective
on common practices along the HAR chain, accompanied by concrete recommendations
for the design of ambulatory monitoring systems based on wearable accelerometers.
Although we agree with authors of previous reviews that no single activity recognition
procedure may be universally optimal [285], we believe that several recommendations are
generalisable across the HAR subdomain of ambulatory accelerometry. Consistent with
previous reviews [284], the current study proposes that most practitioners aim to classify
atomic activities such as walking, sitting, and lying down. Such atomic activities are
relatively simple and there is a convincing body of evidence indicating that no more than
two accelerometers are necessary to accurately characterise these [296–309]. So, although
the generalist perspective presupposes that the number of required accelerometers for
HAR depends on the complexity of activities, the design recommendation can be confined
to 1-2 accelerometers by focusing on the subdomain of ambulatory monitoring.
Another recommendation which deserves additional attention concerns the degree of
overlap in sliding windows. In accordance with a previous systematic review [285], sliding
windows with 50% overlap were found to be most commonly used. However, until now,
reviews have not addressed the adequacy of this common design choice. The results of
the current study propose that the popular belief of OSWs yielding superior classification
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results over NOSWs is misleading. An inherent property of existing HAR data sets is that
they comprise repeated measures of the same subjects. In general, physical activities are
more easily recognised by HAR systems if they concern measurements of subjects whose
data have already been observed before in the training set [349]. OSWs further duplicate
these repeated measures, which could lead to a false inflation of the classifier performance
if practitioners do not use leave-one-subject-out CV to estimate the generalisation error
[319, 326]. Overconfidence in classification performance could be harmful in clinical
practice and should thus be handled with care. Therefore, practitioners should critically
reflect on the implications of their design choices, rather than solely justifying them based
on their common use in the research community.
The same recommendation holds true for feature selection. It was observed that many
researchers resorted to domain knowledge by selecting features based on the choices
reported in previous studies [283, 296–298, 301, 302, 304, 306, 307, 309, 342, 343].
However, these feature recommendations generally have limited transferability to other
settings due to heterogeneity in experimental protocols [349]. For instance, recall that
accelerometer outputs of physical activity recordings vary substantially depending upon
the position along the human body from which they are measured [314, 315]. These
location-dependent variations in accelerometer outputs subsequently affect features’
values, which may alter their informativeness in classification schemes. Hence, manual
feature selection through domain knowledge is not a trivial task.
The limited understanding of how features exactly contribute to HAR further complicates
the task of manual feature selection. The overview of feature interpretations outlined
in Table 4.2 provides at most a partial explanation of how features contribute to the
induction process of HAR algorithms. The mean value of an acceleration signal, for
instance, has primarily been associated with distinguishing between different sedentary
behaviours through the postural information they provide [276]. Banos et al. [283], on
the other hand, have demonstrated that mean accelerations from nine different sensor
locations could not only distinguish between sedentary behaviours, but also between
physical activities. This could be indicative of interactions between mean features,
which introduce discriminative properties that are not encompassed by univariate feature
interpretations as described before. Consequently, feature sets obtained through manual
selection could be suboptimal due to underexploitation of feature interactions.
Feature selection algorithms such as Relief-F can accommodate for the aforementioned
limitations and should be adopted in HAR more regularly to identify informative features
based on their synergy, rather than solely their individual effects. However, this does not
imply that domain knowledge should be fully disregarded from feature selection [350].
Studies have shown that feature selection algorithms yield increasingly random results
upon increasing the cardinality of the initial candidate feature set [351]. Hence, it is
recommended that researchers pre-select a candidate feature set using domain knowledge,
and subsequently select the most informative subset using feature selection algorithms.
An important limitation of this review, is that all design choice recommendations were
given in isolation of each other. In reality, each design choice made along the HAR
chain, may affect the efficacy of another. For instance, the minimum viable window
size could depend on the number of informative features included in the HAR system
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[283]. Hence, the recommendations provided here should be considered to be a simplified
guideline. However, when possible, evidence synthesis was based on studies which
examined the influence of a design choice (e.g. the classification algorithm) under varying
conditions (e.g. different sensor placements and window sizes). Therefore, some degree
of generalisability can be assumed.

4.8 Conclusion
This review reports on recommendations for design choices along the HAR chain, aimed
towards practitioners in the field of ambulatory accelerometry. The guidelines presented
here can be used as a starting point for the development of ambulatory monitoring
systems. Practioners should bear in mind that this review does not present universally
optimal recommendations. It is therefore imperative that design choices are always made
with careful considerations. The synthesised evidence in this review can be used to better
substantiate design choices, which may lead to the development of better ambulatory
monitoring systems.
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Improving Physical Activity Monitoring
in Hip Fracture Rehabilitation

Abstract

Introduction: Physical activity during hip fracture rehabilitation is vital to counter long-lasting physical
dysfunction amongst geriatric patients. Nevertheless, physical activity is seldom measured in clinical
practice. Furthermore, existing continuous monitoring devices were developed in middle-aged adults,
causing their measurements to yield unreliable results in older adults with slower gait.
Objective: This study aimed to develop a new robust human activity recognition (HAR) system to
improve continuous physical activity monitoring during hip fracture rehabilitation.
Method: 24 healthy adults aged 80 years or older were included in this study. All participants’ physical
activities were measured in simulated free-living conditions for 75 minutes with two accelerometers: one
on the lower back and one on the anterior upper thigh. Our system selected informative features from
the acceleration data to classify walking, standing, sitting, lying down and postural transfers through
statistical machine learning. We further tried to enhance the system’s population-level impact by
improving its robustness to inter-person variability. This was done by building a synthetic data set
which represented the common gait characteristics of different participants to train a more generalisable
classification model. Robustness to inter-person variability was measured through leave-one-subject-out
cross-validation.
Results: Synthetic data showed potential to enhance classification performance and robustness to
inter-person variability. The final model was able to reliably detect physical activities across most
participants, with mean and standard deviations of F1-scores of 0.896±0.100 for walking, 0.927±0.039
for standing, 0.997±0.004 for sitting, 0.937±0.202 for lying down and 0.816±0.120 for postural
transfers. However, walking patterns associated with low acceleration amplitudes such as shuffling or
slow gait remained challenging to detect.
Conclusion: The preliminary classification results in healthy adults aged 80 years or older were
promising. Validation of the proposed HAR system in the hip fracture patient population remains
necessary to examine the system’s true utility in clinical practice.

Keywords: hip fracture, older adults, physical activity, human activity recognition, accelerometers
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5.1 Introduction
Hip fractures are expected to cause a substantial burden on healthcare systems worldwide
due to an increasing incidence in the ageing population [6]. Following surgical treatment,
many older patients require rehabilitation to ameliorate physical dysfunction and to avoid
bedridden state [352, 353]. Unfortunately, patients’ functional recovery rates are poor,
as more than half of them do not regain their prefracture mobility levels within the first
postoperative year [32, 354]. This results in a loss of independence in activities of daily
living (ADL) [355] and a long-lasting decline in health-related quality of life (HRQoL)
[30]. Therefore, it is evident that more effective rehabilitation strategies are necessary to
improve hip fractures patients’ recovery.
A potential way to improve the functional recovery during rehabilitation is by implementing
physical activity regimens. Various studies have demonstrated that physical activity during
rehabilitation increases patients’ chances of regaining their mobility and independence in
ADL [39–42]. Additionally, studies have shown that physical activity counteracts the risk
of secondary hip fractures [356] by preventing sarcopenia and balance deficits [357–362].
Therefore, physical activity levels are postulated to be a relevant modifiable target for
intervention during rehabilitation to improve patients’ functional recovery and HRQoL.
Although physical activity positively influences functional outcomes, it is seldom
quantified by healthcare professionals [353]. Consequently, researchers have begun to
use commercially available activity trackers, which are wearable devices which measure
acceleration signals, to detect and quantify how much hip fracture patients engaged in
physical activities during rehabilitation [353, 363, 364]. However, the validity of these
studies’ measurements could be questioned, as the employed activity tracker’s reliability
is known to be lower for the recognition of low-intensity activities such as (slow) walking
[365]. This finding may pose concerns as geriatric hip fracture patients mostly engage
in low-intensity activities [364]. Therefore, to determine whether activity trackers are
sufficiently reliable to be used for rehabilitation monitoring, a validation study in the
patient population was deemed necessary.
In our previous work [35], we validated whether a commercially available activity tracker
with a built-in human activity recognition (HAR) algorithm could reliably measure physical
activities in geriatric hip fracture patients. We found that the activity tracker’s built-
in HAR algorithm [366], which was calibrated to movements of middle-aged adults,
severely underestimated the time spent walking in hip fracture patients aged 82±6 years.
Specifically, instances of walking were often misclassified as instances of standing. Since
older adults exhibit distinctly slower gait patterns [317, 347, 367], algorithms developed
in younger populations may fail to detect ambulation behaviours [368]. Therefore, it is
necessary to develop a new monitoring system which can measure physical activities in
the geriatric population more reliably.
To adequately monitor geriatric hip fracture patients during rehabilitation, it is important
that the system can reliably detect all functional milestones. These are the physical
activities that patients should be able to perform independently for a successful discharge,
i.e. sitting, standing, lying down, walking and transfers (sit-to-stand, stand-to-sit, sit-
to-lie, and lie-to-sit transfers) [369]. Research on detection of all relevant functional



Chapter 5: Improving Physical Activity Monitoring in Hip Fracture Rehabilitation 62

milestones in the geriatric population is limited [296], as most HAR studies involving
older adults overlook transfers in the development of their monitoring systems [297,
303, 317, 337, 346]. While the system developed by Allen et al. [296] can detect all
milestones, its use for clinical practice may be limited since it was not developed in
free-living conditions (FLC). FLC give more insights into the “diverse activity patterns
due to individual habits and unpredictable real-life conditions” [285, p. 4]. To be of good
practical use, HAR algorithms should be able to generalise over intra-activity variation
induced by FLC [370–372]. Hence, more research into robust characterisation of the
functional milestones in FLC is needed.
However, new challenges regarding the robustness of the monitoring system may arise
upon using a FLC data collection protocol. Due to the lack of strict experimental
instructions which prescribe how often and for how long activities should be performed,
the collected data are prone to imbalances [373]. For instance, some test subjects may
spend significantly more time walking than others, causing the recordings of walking to
be dominated by a few subjects. Consequently, data collected in FLC may be limited
in their ability to represent inter-person differences in gait. This may harm the HAR
algorithm’s capability to generalise well across different individuals, since inter-person
variability is a major source of intra-activity variation [319, 349, 372–376]. Therefore,
to enhance generalisability, novel data mining methods are needed to extract physical
activity characteristics that are common across different individuals.
In this study, we aimed to develop a new monitoring system based on HAR to detect
the functional milestones for hip fracture rehabilitation reliably and robustly. Firstly, to
improve upon the reliability of commercially available activity trackers, the newly proposed
HAR algorithm was calibrated to healthy adults aged 80 years or older, i.e. a cohort which
is representative of hip fracture patients age-wise [2]. Secondly, to enhance robustness to
intra-activity variation, all data were collected in simulated FLC. Thirdly, to make the
HAR algorithm more robust to inter-person variability, we built an additional synthetic
data set which represented the common gait characteristics of different individuals to
train a more generalisable classification model.

5.2 Materials and Methods

5.2.1 Study Design
This prospective observational study was performed from May 2021 until November 2021
at the eHealth House (eHH) of the TechMed Simulation Centre at the University of
Twente, Enschede, The Netherlands. The eHH is a controlled environment where FLC
can be simulated. The facilities included a living room, kitchen, bedroom, and bathroom.
The entire experiment was recorded with five cameras installed in the eHH.
Participants were enrolled if they were aged 80 years or older and if they were physically
able to independently participate in the study. Participants were excluded if they had
cognitive impairments or mobility disorders which prohibited them from participating in the
study. According to the Dutch law and supported by a ruling from the appropriate ethics
committee (Medical Research Ethics Committee (MREC) Arnhem - Nijmegen), the study



Chapter 5: Improving Physical Activity Monitoring in Hip Fracture Rehabilitation 63

was exempt from the Medical Research Involving Human Subjects Act. Ethical approval
for conducting the study was granted by the ethical committee Natural Sciences and
Engineering Sciences of the University of Twente. Prior to participation, all participants
provided written informed consent.

5.2.2 Study Procedure
The participants were invited to the eHH once for a 75-minute visit, during which they
were instructed to perform several ADL tasks at their own pace in their own preferred
order. These tasks were related to discharge criteria for geriatric hip fracture patients
to return home and included (1) walking inside the eHH (walking back and forth to the
front door, walking back and forth to the kitchen, and walking back and forth to the
bedroom), (2) visiting the toilet once, (3) going in and out of bed once (sit-to-lie transfer,
lying down, lie-to-sit transfer), and (4) providing meals (walking to the kitchen, cutting
food and bringing it back to the living room), and (5) grabbing a drink (walking to the
kitchen, pouring a drink and bringing it back to the living room). During the ADL tasks,
participants’ movements and postures were characterised with two movement sensing
devices: the MOX activity monitor (Maastricht Instruments, The Netherlands) and the
APDM activity tracker (Hankamp Rehab BV, The Netherlands).

5.2.3 Activity Trackers
The MOX is a small waterproof device comprising a single triaxial accelerometer. It was
attached to the upper thigh with a special plaster, approximately 10 cm above the knee
and recorded data at a sampling frequency of 25 Hz. This location was chosen based
on compelling evidence that upper leg accelerations were least sensitive to inter-person
differences, allowing for better generalisation in HAR [300]. The APDM comprises three
small sensors: a triaxial accelerometer, a triaxial magnetometer, and a triaxial gyroscope.
The APDM was worn on the lower back with a strap and recorded data at a sampling
frequency of 128 Hz. This location was chosen since it yields (1) robust measurements of
sedentary behaviours with low sensitivity to inter-person postural differences [303], and
(2) representative characterisations of whole-body movements due to its proximity to the
centre of mass of the human body [278]. Measurements from both body locations (see
Figure 5.1) were deemed necessary for robust HAR since a single location was expected
to be unable to provide sufficiently distinctive information for all static activities (see
Appendix C.1).
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Figure 5.1: Schematic of activity trackers’ placements on a test subject’s upper thigh and lower back.
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5.2.4 Data Annotation
To obtain gold standard labels for HAR recognition, two independent reviewers annotated
the physical activities observed in the video recordings into the following categories:
walking, standing, sitting, lying (supine, left and right lateral recumbent), transfers
(stand-to-sit, sit-to-stand, lie-to-sit, and sit-to-lie). Discrepancies were resolved through
adjudication by a third reviewer. Subsequently, through visual inspection of the
acceleration data, the trackers’ recordings were synchronised with the timestamps at
which the first annotated sit-to-stand transfer occurred according to the videos.

5.2.5 Data Processing Pipeline
After establishing a relationship between the annotations and the activity trackers’
recordings, the remaining analyses were solely carried out using the trackers’ accelerometers.
The magnetometer and gyroscope were excluded, since previous studies demonstrated
that accelerometers were superior for HAR tasks similar to ours, and that there was no
significant performance gain upon combining the sensors [377, 378]. All accelerometer
data were processed using MATLAB (R2022a, MathWorks Inc., Natick, MA, USA).
To improve the HAR algorithm’s robustness to inter-person variability, we built a synthetic
data set which represented the common gait patterns across different individuals. In short,
we proposed two classification models based on synthetic data to explore whether the
common gait patterns could enhance the generalisation capabilities of HAR algorithms.
We also trained a classifier based on real data to serve as a control condition model
(CCM) to compare the performance with models involving synthetic data. For all three
candidate models, the data processing steps were based on the activity recognition chain
(ARC) [373]: preprocessing, feature extraction, feature selection, model building, and
model evaluation. The individual steps are explained in more detail in the following
sections.
For the first candidate model, we examined whether the synthetic data could be used to
aid the classifier in learning decision boundaries for classification which were more robust
to inter-person variability. The model was developed in three stages (left flow chart of
Figure 5.2): feature selection, training and testing. Feature selection and training were
strictly performed on the complete synthetic data set. After the model was fully trained,
it was evaluated on the real data of all participants, one by one, to quantify robustness to
inter-person variability. Since all steps of the model training process were performed on
the synthetic data, the model was named the complete data intervention model (CDIM).
For the second candidate model, we examined whether the synthetic data could be
used to aid in the identification of generalisable features which were more robust to
inter-person variability. The model was developed in three stages (middle flow chart of
Figure 5.2): feature selection, training and testing. During the feature selection stage,
the complete synthetic data set was used to identify a feature set proposal. Subsequently,
in the training phase, the proposed features were extracted from the real data to proceed
with model training. The model was trained and evaluated on the real data using
leave-one-subject-out cross-validation, where measurements of the left-out participant
were used for testing to gain insights into robustness to inter-person variability [302].
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Since we intervened in the traditional ARC by strictly performing feature selection on
synthetic data, the model was named the feature intervention model (FIM).
Finally, for the CCM, we followed the traditional progression of the ARC by solely relying
on real data. The CCM was developed in three stages (right flow chart of Figure 5.2):
feature selection, training and testing. We used 25% of the real data to perform feature
selection. Subsequently, the chosen features were used to train and evaluate the CCM
using leave-one-subject-out cross-validation on the remaining 75% of the data.

Preprocessing

Firstly, random fluctuations due to noise were suppressed by smoothing all physical
activity signals with a Savitzky-Golay filter [379]. A Savitzky-Golay filter was preferred
over a moving average filter, as it is better at preserving the characteristic shapes and
heights of peaks in signals during the smoothing process [380]. The Savitzky-Golay filter
was configured with a local frame length of 0.12 seconds and a polynomial order of
2. The frame length of 0.12 was chosen as it was previously found to be suitable for
smoothing gait patterns in the geriatric population [276]. The polynomial order was set
to 2, as it was found to be sufficiently complex to locally capture the characteristics of
movement signals recorded with accelerometers [381].
Following filtering, the data were split into non-overlapping sliding windows of 2
seconds. Non-overlapping windows were chosen since overlapping windows require more
computational resources without improving a HAR system’s generalisation properties
according to a previous study which quantitatively compared the two window types [319].
A window size of 2 seconds was chosen as previous studies found that windows of 2
seconds generally provide low classification error rates across a wide range of different
physical activities [283], and that windows of 2 seconds were particularly well-suited to
capture the physical activity patterns of older adults [276]. Windows containing a mix
of different activity annotations were excluded from the analysis to avoid ambiguity in
classifications [311].
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Figure 5.2: General workflow diagram of the development and evaluation of the three proposed human activity recognition algorithms. Within each of the three
flow diagrams, the feature set proposals remained the same across the pre-defined feature selection steps.
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Synthetic Data Generation

We generated synthetic data by finding generalised gait representations based on common
characteristics across different individuals and by manually removing potential biases
which could influence feature selection and classification algorithms. Firstly, to remove
biases, the raw acceleration data of all activities were visually examined for anomalies.
For walking, unusually large baseline drifts along the z-axis of the APDM were observed
amongst a few participants (see Appendix C.2 for an example). Since no kinematically
plausible cause could be determined, the drifts were deemed anomalous and we removed
them to streamline the signal trends with those observed in the majority of participants.
This was done by applying a noncausal fourth-order high-pass filter with a cut-off frequency
of 0.5 Hz. Secondly, to generate gait representations based on common characteristics
across different individuals, the dynamic time warping barycentre averaging (DBA) [382]
algorithm was used. We generated synthetic counterparts for each of the following
activities: walking, standing, sitting, lying supine, lying down in left lateral recumbent
position, lying down in right lateral recumbent position, sit-to-stand transfer, stand-to-sit
transfer, sit-to-lie transfer, and lie-to-sit transfer. We kept the number of available
2-second windows for each of these activities identical across both the real and synthetic
data, to fairly test the potential merit of using synthetic data in identical conditions of
class imbalance.
DBA has been widely used in signal processing and bioinformatics to extract common
characteristics from a set of time series which may have variations in timing or pace
[382–389]. It is based on the dynamic time warping (DTW) algorithm [390], which
aligns multiple time series by nonlinearly stretching or compressing the time axes to
minimise the difference in the values of the time series at each point in time. A key
boundary condition imposed during the alignment process is that the first and last points
of the compared time series must always be matched. An example of what alignment
under DTW looks like is shown in Figure 5.3. Following DTW, DBA then calculates the
average of the aligned time series to obtain a representative time series which captures
the common features, regardless of variations in timing or pace.

Figure 5.3: Example of two sequences which have been matched and aligned through dynamic time
warping. The black dashed lines depict the matched points between the two sequences.

To apply DBA to our study, we defined a custom protocol to generate synthetic activity
windows of 2 seconds (see Figure 5.4). The protocol comprised four main steps. Firstly,
for a given activity, we determined whether sufficient recordings (>100 windows) were
available to construct a generalised and diverse synthetic data set. If this was the case,
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one activity window was sampled from each participant as input for DBA. When fewer
windows were available, windows were subsampled across 20% of the participants to
ensure sufficient variability in the synthetic data. This rule of thumb was established since
we anticipated approximately 25 participants to participate in the study. If every iteration
of DBA then used 25 windows for synthetic data generation and fewer than 100 windows
were available in the sampling space, we anticipated that the synthetic windows would
look too similar. By subsampling across five participants (20%), the lack of diversity
in the synthetic data due to the limited number of available windows could be partially
countered, since there are 53,130 unique combinations of selecting five participants from
a group of 25.

Sample one window

from each subject

Perform DBA on

X MOX cluster

Equal output

lengths?

2-second

window?

NO

Select all subjects as

sampling candidates

Select 20% of the

subjects as sampling

candidates

YES
At least 100

windows?

Activity

class

NO

Save windowYES

Segment into

2-second window(s)

and save outcome(s)

NO

YES

Perform DBA on

X APDM cluster

Perform DBA on

Y MOX cluster

Perform DBA on

Y APDM cluster

Perform DBA on

Z MOX cluster

Perform DBA on

Z APDM cluster

Combine to one

complete synthetic

candidate window

Figure 5.4: General protocol for the generation of synthetic data using dynamic time warping barycentre
averaging (DBA).

Secondly, after establishing an adequate selection of participants, we proceeded with
sampling activity windows which served as inputs for DBA. For each selected participant,
one window was randomly sampled. One window was defined as a set of simultaneous
measurements from the MOX and APDM along the x-, y-, and z-axes for a given time
interval. The interval width, i.e. the window size, was customised for different activities
to mitigate artefacts at the start and end of synthetic signals due to violations of the
boundary conditions of DTW. For walking, we exploited its periodicity by providing longer
inputs than necessary (4 seconds). Potential violations of the boundary conditions could
then be ignored by solely extracting the 2-second segment of the 4-second window which
was free of artefacts. For transfers, which were not periodic and varied in duration, we
did not choose a fixed window size. Instead, transfers were processed from start to end,
irrespective of length, to ensure that the boundary conditions were satisfied. For static
activities, we directly processed 2-second windows without concerns regarding boundary
artefacts. The concerns were neglected as static activities did not have distinctive
boundaries due their minimal changes in acceleration content from start to end.
Thirdly, after sampling windows of adequate length for the respective activity, we
attempted to generate a temporally consistent synthetic window using DBA. To generate
a single window, the DBA algorithm was ran six times, once for each of the x-, y-, and
z-axes recordings of the MOX and APDM separately. A synthetic window was said to be
temporally consistent, if all six signals were of equal duration in time. This verification was
only necessary for transfers, since the input lengths were allowed to vary here. Specifically,
DTW solved the optimal alignment problem by stretching and compressing time axes,
such that the length of the synthetic signal produced by DBA always varied between the
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length of the shortest and longest input sequence. Depending upon whether the optimal
alignment was found by primarily stretching or primarily compressing the time axes, some
of the synthetic accelerations could be shorter than others. In case that the six synthetic
signals of a single window were temporally inconsistent, the window sampling step was
repeated to inform a new iteration of DBA.
Finally, once a temporally consistent synthetic window had been generated, we proceeded
with the final post-processing stage to complete the generation of a 2-second window:
truncation and segmentation. The choice between truncation, segmentation and no
post-processing was dependent upon the window sizes chosen in the second step of our
custom DBA protocol. For walking, the first and last seconds of the 4-second window
were truncated to obtain a 2-second window that was free of DTW boundary artefacts.
For transfers with durations longer than 2 seconds, the windows were segmented into
non-overlapping 2-second windows. For static activities, no post-processing was needed
since all windows were already 2 seconds long.

Feature Extraction

For the feature extraction step, the choice was made to rely on handcrafted features.
These are defined as discriminative attributes that researchers manually compute from
an activity window based domain knowledge. Although automatic feature extraction
methods based on deep learning are postulated to yield the most promising results with
regards to generalisability [288–294], they were deemed infeasible as large volumes of data
are a prerequisite for meaningful results [370]. Since the functional milestones we aimed
to characterise included transfers, which are well-known to have low occurrence rates in
HAR data [391–393], methods based on deep learning were considered unsuitable.
The candidate set of handcrafted features was identified based on literature. Although time
and frequency domain features are both commonly used in HAR [341], we limited ourselves
to time domain features for multiple reasons. Firstly, there is no compelling evidence that
frequency domain features yield superior discriminative properties in exchange for higher
computational costs [296, 300, 394]. Secondly, frequency domain features primarily
lend themselves useful for the characterisation of quasi-periodic movements with distinct
frequency content [296]. Amongst the physical activities of interest, most were either
static or aperiodic. Hence, frequency domain features were anticipated to be of minimal
utility and thus removed preemptively.
Additionally, a subselection was made amongst the time domain features to reduce
multicollinearity. For instance, it was anticipated that the mean and median values of
acceleration signals would provide nearly identical information about physical activities,
causing inclusion of both to be redundant. Similar outcomes were expected for the
standard deviation, mean absolute deviation, and variance. This resulted in a total of
62 candidate features as shown in Table 5.1. By preemptively eliminating redundant
features based on domain knowledge, as recommended by multiple researchers [350, 395],
subsequent feature set optimisations through feature selection (FS) algorithms can be
handled reliably [351].
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Table 5.1: Overview of the time domain features considered in the initial candidate set. Each feature
was computed for both the MOX and APDM signals across a window of size N . Except for the axial
correlations and signal vector magnitude, all features were computed along each individual acceleration
axis a ∈ {x, y, z}. This resulted in a total of 62 features.

Feature and interpretation Formula References

The mean provides postural information. It can
be used to distinguish between different
sedentary behaviours.

µa =
1
N

∑N

i=1 ai [276, 283, 296,
298, 300–309, 313,
328, 329, 331]

The standard deviation provides information
about the intensity of a physical activity. It can
be used to distinguish between sedentary
behaviours and physical activities.

σa =

√∑N

i=1(ai − µa)2

N − 1

[298, 300, 301,
306, 307, 309, 313,
328, 329, 331]

The root mean square is identical to the
standard deviation for signals with a mean of
zero.

√
1
N

∑N

i=1 ai [297, 298, 300,
306, 331]

Axial correlations can be used to distinguish
between activities which involve unidirectional
and multidirectional translations. Walking and
running, for instance, primarily involve
unidirectional translations (anteroposterior),
whereas stair climbing involves prominent
multidirectional translations (anteroposterior and
vertical).

cov(x, y)
σxσy

,

cov(x, z)
σxσz

,
cov(y, z)
σyσz

[297, 300, 304–
307, 312, 329, 331]

The minimum describes the lowest value
measured along a single sensing axis of an
accelerometer.

min(a1, a2, ..., aN ) [297, 298, 300,
302, 303]

The maximum describes the highest value
measured along a single sensing axis of an
accelerometer.

max(a1, a2, ..., aN ) [297, 298, 300,
302, 303]

The interquartile range is the difference between
the 25% and 75% quantiles of the acceleration
values. It can be used to distinguish between
sedentary behaviours and physical activities.

Q3 − Q1, where Q3 is the 75% quantile
and Q1 is the 25% quantile.

[300, 331]

The skewness provides information about the
shape of the probability distribution of
movement accelerations. It can take on negative
and positive values. If the values of the
acceleration signals are symmetrically distributed,
the skewness is equal to zero. If high values are
more likely to occur than low values, the
skewness is positive-valued.

∑N

i=1(ai − µa)3

(N − 1)σ3
a

[298, 300, 307,
328, 329, 331]

The kurtosis provides information about the
shape of the probability distribution of
movement accelerations. It describes how likely
extreme values occur in a movement signal.

∑N

i=1(ai − µa)4

(N − 1)σ4
a

[298, 300, 307,
328, 329, 331]

The mean-crossing rate provides information on
how fast accelerations change directions during
movements. It can be used to distinguish
between dynamic physical activities. It is
computed using the sgn(b) function, where
sgn(b) = -1 for b < 0 and +1 for b > 0.

∑N

i=2 |sgn(ai − µa)− sgn(ai−1 − µa)|
2

[283, 312, 329,
331]

The signal vector magnitude (SVM) can be
used to distinguish sedentary behaviours from
physical activities. All accelerations were filtered
with a noncausal fourth-order high-pass filter
with a cut-off frequency of 0.5 Hz prior to
computing the SVM.

1
N

∑N

i=1

√
x2

i + y2
i + z2

i [300, 341]
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Multistep Feature Selection

To improve the generalisability of the HAR classification model, we proposed a novel
FS pipeline to select a minimal set of features from the initial candidate set. The
overall procedure, which was applied to both real and synthetic data, is summarised
in Figure 5.5. In short, the pipeline addressed two generalisability challenges in FS.
The first challenge was the absence of a single universally optimal FS algorithm, as the
effectiveness of an individual FS algorithm’s heuristics is highly application-dependent
[396, 397]. We addressed this by designing a heterogeneous feature selection ensemble
(HFSE) [396]. A HFSE uses multiple FS algorithms to identify relevant features based
on a diverse and complementary range of selection heuristics, causing the final feature
set to be more generalisable [396–400]. The second challenge concerned the robustness
of the HFSE to small changes in the data [395]. This was addressed by imposing FS
stability as a secondary selection criterion. As proposed in [401], we repeated FS 10
times on activity-stratified subsamples of the data with approximately 78% overlap. The
10 outcomes were combined through vote counting: features were included in the final
set if they were selected by the HFSE at least 5/10 times. This threshold was chosen as
it is commonly used to eliminate features that were selected by chance [402–404].

Data set

Subsample 1

Feature

selector 1

Feature

selector 5

Robust rank

aggregator 1

Robust rank

aggregator 10

Vote counter

Feature

selector 1

Feature

selector 5

Subsample 10

Figure 5.5: Overview of the multistep feature selection pipeline. The pipeline was applied to the real
data to build the control condition model, and it was applied to the synthetic data to build the complete
data intervention model and the feature intervention model.

Designing the HFSE comprised two steps: selecting the FS algorithms for the ensemble,
and choosing the aggregation method to combine the ranking lists. For the first design
step, five FS algorithms were selected: Relief-F [345], maximum relevance minimum
redundancy (MRMR) [405], interaction-curvature tests embedded into a decision tree
[406], out-of-bag (OOB) feature importance by permutation embedded into a random
forest [407], and regularisation embedded into a linear discriminant [408]. The selection
of these FS algorithms was based on the two primary criteria for well-performing HFSE:
diversity in selection heuristics and stability of the individual FS algorithms described
above [396, 399].
Firstly, diversity was ensured by composing an ensemble such that the limitation of one
FS algorithm could be overcome by the strength of another (see Table 5.2). For instance,
Relief-F is known to be one of the few FS algorithms which is capable of capturing
interactions between features. However, it is unable to identify redundancy in feature sets.



Chapter 5: Improving Physical Activity Monitoring in Hip Fracture Rehabilitation 72

MRMR, on the other hand, does consider feature redundancy but it neglects interactions
between features.

Table 5.2: Overview of the individual feature selection algorithms used in the heterogeneous feature
selection ensemble, accompanied by their properties.

Algorithm Type Relationship Feature redundancy Classifier type

Relief-F Filter Multivariate Not accounted for -
MRMR Filter Univariate Accounted for -
ICTa Embedded Multivariate - Nonlinear & greedy
OOB importanceb Embedded Univariate - Nonlinear & non-greedy
Regularisationc Embedded Univariate - Linear

MRMR maximum relevance minimum redundancy, ICT interaction-curvature tests, OOB out-of-bag
a Embedded into decision tree classifier
b Embedded into random forest classifier
c Embedded into linear discriminant classifier

Secondly, we empirically verified that the five FS algorithms were sufficiently stable
to reliably contribute to the HFSE. Here, stability referred to the consistency of FS
algorithms’ results under variations of the data. To assess this, each FS algorithm was
evaluated on 10 activity-stratified subsamples of the synthetic data with approximately
78% overlap to produce 10 feature ranking lists. Following common practices in literature
[396, 401, 409], the Tanimoto similarity T (5.1) was chosen to measure the FS stability
across the 10 lists, where {s, s′} denotes a pair of feature subsets obtained from the same
FS algorithm applied to two different subsamples, |.| denotes the feature set cardinality,
and s ∩ s′ denotes the intersection between the two subsets. The Tanimoto similarity
quantifies the overlap of features between subsets s and s′ regardless of their rankings,
with T = 0 indicating no overlap and T = 1 indicating identical subsets. Since most
of our FS algorithms solely ranked features by importance without selecting a subset,
we defined the subsets s and s′ as the top 10 features of a ranking list to compute
T as proposed in [401]. T was computed for all 45 unique pairs of {s, s′} that could
be constructed from the 10 feature ranking lists. The overall stability for a single FS
algorithm was then determined by averaging over all 45 estimates.

T (s, s′) = 1− |s|+ |s
′| − 2|s ∩ s′|

|s|+ |s′| − |s ∩ s′| (5.1)

For the second design step, the robust rank aggregation (RRA) algorithm [410] was
chosen to combine the ranking lists produced by the individual FS algorithms. This
model-based approach uses order statistics to forge a consensus set by selecting features
which ranked significantly better than expected by chance (p < 0.05). Aggregation
techniques based on order statistics were preferred over simpler methods such as rank
averaging, as these simpler methods tend to produce erratic results [397], causing their
performance to be inferior [410]. Amongst the available methods based on order statistics,
i.e. RRA and Stuart’s method [411, 412], RRA was preferred based on its substantially
lower false discovery rate (FDR) [410]. A low FDR was prioritised to prevent overfitting
by limiting the feature set cardinality [413].
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In short, the RRA algorithm functions as follows. Each feature was associated with five
ranks: one estimated by each FS algorithm in the HFSE. Each rank varied between 1 and
m, where m denotes the total number of examined features. For each feature, RRA first
normalised each rank over m, such that ri ∈ (0, 1], for i = 1, 2, 3, 4, 5. Let the collection
of normalised ranks for a single feature be denoted by r = (r1, r2, r3, r4, r5) and let
r(1), r(2), r(3), r(4), r(5) be a reordering of r which satisfies r(1) ≤ r(2) ≤ r(3) ≤ r(4) ≤ r(5).
The RRA algorithm examined how probable it was to obtain r̂(k) ≤ r(k) if all r̂i ∈ r̂ were
sampled from the uniform distribution U(0, 1). Under this null model, the probability that
the order statistic r̂(k) was smaller than or equal to r(k), was estimated by the binomial
probability β(k) (5.2). The p-value indicating whether a feature ranked significantly better
than expected by chance was estimated as the minimum β(k) associated with r with a
post-hoc Bonferroni correction (5.3).

β(k) :=
5∑
`=k

(
5
`

)
r`(k)

(
1− r(k)

)(5−`)
(5.2)

p(r) = min
(

1, 5 · arg min
k∈{1,2,3,4,5}

β(k)(r)
)

(5.3)

Model Building

For the CCM, CDIM, and FIM, the classification algorithm and hyperparameters were
kept fixed to allow for fair comparisons. K-nearest neighbours (KNN) was selected as the
classification algorithm, since it consistently performed well across various HAR studies
[299–301, 313], generally required fewer features and smaller window sizes to attain a
high classification performance [283], and remained superior across classifier comparisons
under varying sensor placements [300].
We abstained from hyperparameter tuning, since it was deemed infeasible to partition
the data into meaningful tuning sets due to severe class imbalance and low availability
of data from the minority class. Since the optimal hyperparameters for KNN have been
studied extensively, the hyperparameters were based on evidence from literature. Firstly,
studies have repeatedly demonstrated that k ∈ [3, 10] works well for various HAR tasks,
and that variations in this range minimally affect KNN’s performance [283, 299, 300, 311,
330, 378]. From the empirical range reported in literature, we conservatively chose k = 5
based on several theoretical considerations. Firstly, the lower bound reported in literature
was not chosen since KNN is known to be more prone to overfitting for small values of k
[414]. Secondly, it is still desired to choose k to be small, as the good performance of
KNN lies in its ability to capture small local differences [300]. Thirdly, upon considering
values of k that were slightly larger than 3, k = 5 was preferred over k = 4, as an
odd number of neighbours would avoid a tie in majority voting [378]. For the distance
metric, the Euclidean distance was chosen as it was found to be superior according to
one of the most extensive inquiries into hyperparameter tuning for KNN in HAR to date
[300]. Finally, since KNN is sensitive to feature ranges due to its distance-based similarity
heuristics, we configured KNN with Z-standardisation of the features to ensure that all
features could contribute fairly to classifications regardless of their scales [299].
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Classification and Evaluation

The CCM, CDIM, and FIM were trained to recognise the following five activity classes:
walking, standing, sitting, lying down and transfers. Due to limited data for each of the
individual four transfers (sit-to-stand, stand-to-sit, sit-to-lie and lie-to-sit), all four were
merged into a single activity class. For performance comparison, the F1-scores (5.4) were
computed for each model. The best performing model was chosen by comparing the
mean and standard deviations of the models’ F1-scores across evaluations on individual
participants.

F1-score = 2 · precision · recall
precision + recall

precision = true positives
true positives + false positives

recall = true positives
true positives + false negatives

(5.4)

5.3 Results

5.3.1 Data Set

Table 5.3: Overview of how many 2-second windows were available for each physical activity.

Physical activity Available windows N Windows per participant

Abs. freq. Rel. freq. Median Range across N

Walking 2,244 8.0% 24 90.5 (58 - 139)
Standing 3,258 11.6% 24 133 (36 - 234)
Sitting 20,677 73.5% 24 967 (322 - 1,487)
Lying down (supine) 929 3.3% 21 19 (5 - 171)
Lying down (left lateral recumbent) 300 1.1% 5 24 (15 - 206)
Lying down (right lateral recumbent) 311 1.1% 2 155.5 (6 - 305)
Sit-to-stand transfer 178 0.6% 24 8 (2 - 10)
Stand-to-sit transfer 163 0.6% 24 7 (3 - 11)
Sit-to-lie transfer 35 0.1% 23* 1 (1 - 3)
Lie-to-sit transfer 41 0.1% 24 1.5 (1 - 4)

N number of participants, abs. freq. absolute frequency, rel. freq. relative frequency
* The sit-to-lie transfer of one participant was missing as the activity could not be verified with the video recordings
due to a faulty camera orientation

In total, 24 participants were included in this study. This sample comprised 11 male and
13 female participants. The median age and interquantile range of this cohort were 82
and (81-85) years respectively. A brief summary of the data set is shown in Table 5.3. It
is evident that data collection in a simulated FLC contributed to data imbalance in three
ways. Firstly, class imbalance was present, where transfers were the minority class (1.4%)
and sitting was the majority class (73.5%). Secondly, there was imbalance in the number
of participants contributing to physical activity measurements. For instance, for left and
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right recumbent positions, measurements of only five and two participants were available
respectively. Finally, there was imbalance in measurements per participants. For lying
down in a right lateral recumbent position, for instance, one participant only contributed
six windows to the data set, whereas another participant contributed 305 windows.

5.3.2 Feature Selection
All five individual FS algorithms were found to be sufficiently reliable to contribute to the
HFSE, since their Tanimoto similarity scores varied between 0.648-1.0 which indicated
good to excellent stability [396]. The results of the HFSE applied to 10 subsamples of
the real data and 10 subsamples of the synthetic data are shown in Figure 5.6. Across the
10 subsamples of the real data, three features were stably selected for the CCM. Features
from both the upper thigh (UT) and lower back (LB) accelerations were selected, which
were mean accelerations (Mean-X UT, Mean-Z UT), and minimum accelerations (Min-X
LB).

Figure 5.6: Overview of feature selection results of the heterogeneous feature selection ensemble across
the 10 subsamples of the real and synthetic data.

Across the 10 subsamples of the synthetic data, six features were stably selected for
the CDIM and FIM. The selected features comprised mean accelerations (Mean-X UT,
Mean-Z UT, Mean-X LB), minimum accelerations (Min-X UT), and root mean squares
of accelerations (RMS-X UT, RMS-X LB). It was noteworthy that the two mean features
were the only ones to overlap with the feature set selected based on the real data.
The class conditional distributions of the features selected for the CCM, CDIM, and
FIM are shown in Figure 5.7. Overall, the features showcase good (pairwise) separability
between the different physical activities in both the real and synthetic data. For instance,
the mean accelerations generally showcased good pairwise separability between the
different static postures. Furthermore, the feature values of Min-X UT and RMS-X UT
appeared to be rather distinctive between standing and walking.
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Figure 5.7: Comparison of feature distributions across the real and synthetic physical activity signals.

Generally, the degree of pairwise separability of feature values between different physical
appeared to be greater across the synthetic data. The reason for this was that features
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extracted from the synthetic data showcased less variability than features extracted from
the real data, leaving less room for the feature ranges to overlap. This entailed that the
synthetic data exhibited a lower degree of intra-activity variation. Nevertheless, there
was no obvious difference between the real and synthetic data according to the box plots
and case-by-case comparisons of real and synthetic data (see Figure 5.8). This indicated
that the synthetic data could present the common patterns of physical activities.

Figure 5.8: Comparison of synthetic and real physical activity signals for walking. Data from all 24
participants were used to generate the synthetic signals. Examples of real physical activity signals for
9/24 participants are shown here to give a general impression.

5.3.3 Model Evaluation
Control Condition Model

The classification performance of the CCM estimated through leave-one-subject-out
cross-validation is shown in Table 5.4. Overall, HAR was performed with a mean precision
of 0.932±0.045, a mean recall of 0.885±0.064, and a mean F1-score of 0.896±0.075
across all 24 participants. Upon examining the recognition rates of the individual activities,
inter-person variability in classification performance appeared to be large for recognition of
walking (F1-score range: 0.107-1.0) lying down (F1-score range: 0.154-1.0) and transfers
(F1-score range: 0.176-0.929).

Table 5.4: Performance of control condition model evaluated with leave-one-subject-out cross-validation.

Physical
activity

Precision Recall F1-score

Mean ± SD Range Mean ± SD Range Mean ± SD Range

Walk 0.894±0.072 0.744-1.0 0.861±0.197 0.058-1.0 0.861±0.172 0.107-1.0
Stand 0.914±0.070 0.708-1.0 0.912±0.086 0.654-1.0 0.911±0.066 0.680-1.0
Sit 0.994±0.006 0.977-1.0 0.999±0.002 0.993-1.0 0.997±0.003 0.987-1.0
Lie down 0.986±0.037 0.833-1.0 0.956±0.187 0.083-1.0 0.955±0.172 0.154-1.0
Transfer 0.871±0.187 0.100-1.0 0.698±0.130 0.438-0.867 0.755±0.159 0.176-0.929
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Complete Data Intervention Model

The aggregated classification performance of the CDIM evaluated per participant is shown
in Table 5.5. Overall, HAR was performed with a mean precision of 0.828±0.101, a mean
recall of 0.881±0.070, and a mean F1-score of 0.812±0.113 across all 24 participants.
Upon examining the recognition rates of the individual activities, inter-person variability
in classification performance appeared to be large for recognition of sitting (F1-score
range: 0.339-0.999), lying down (F1-score range: 0-1.0), and transfers (F1-score range:
0.034-0.929).

Table 5.5: Performance of complete data intervention model.

Physical
activity

Precision Recall F1-score

Mean ± SD Range Mean ± SD Range Mean ± SD Range

Walk 0.918±0.040 0.845-1.0 0.897±0.092 0.596-0.984 0.826±0.118 0.600-1.0
Stand 0.925±0.057 0.727-0.992 0.937±0.049 0.815-1.0 0.930±0.040 0.800-0972
Sit 0.998±0.002 0.995-1.0 0.837±0.252 0.197-1.0 0,884±0.201 0.329-0.999
Lie down 0.892±0.279 0-1.0 0.910±0.282 0-1.0 0.900±0.279 0-1.0
Transfer 0.407±0.384 0.017-1.0 0.826±0.118 0.600-1.0 0.444±0.342 0.034-0.929

Feature Intervention Model

The classification performance of the FIM estimated through leave-one-subject-out cross-
validation is shown in Table 5.6. Overall, HAR was performed with a mean precision of
0.936±0.055, a mean recall of 0.905±0.066, and a mean F1-score of 0.915±0.064 across
all 24 participants. Upon examining the recognition rates of the individual activities,
inter-person variability in classification performance appeared to be large for recognition
of lying down (F1-score range: 0-1.0), and moderately large for walking (F1-score range:
0.448-0.966) and transfers (F1-score range: 0.500-1.0).

Table 5.6: Performance of the feature intervention model evaluated with leave-one-subject-out cross-
validation.

Physical
activity

Precision Recall F1-score

Mean ± SD Range Mean ± SD Range Mean ± SD Range

Walk 0.922±0.037 0.855-1.0 0,889±0.138 0.288-1.0 0.896±0.100 0.448-0.966
Stand 0.924±0.051 0.768-1.0 0.932±0.051 0.769-1.0 0,927±0.039 0.833-0.975
Sit 0.994±0.008 0.961-1.0 0.999±0.001 0.996-1.0 0.997±0.004 0.980-1.000
Lie down 0.929±0.205 0-1.0 0.948±0.204 0-1.0 0.937±0.202 0-1.0
Transfer 0.909±0.136 0.417-1.0 0.758±0.151 0.500-1.0 0.816±0.120 0.500-1.0

Performance Comparison

On average, the FIM achieved the highest overall F1-score with the lowest inter-person
variability (0.915±0.064), followed by the CCM (0.896±0.075) and CDIM (0.828±0.101).
The CDIM was deemed unsuitable for clinical monitoring, based on its poor transfer
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recognition rate with high sensitivity to inter-person variability (F1-score: 0.444±0.342).
Amongst the remaining two candidate models, the FIM was preferred. The superiority of
the FIM compared to the CCM was most noticeable in the classification performance
for transfers on an individual participant level. The FIM improved the F1-score of
transfer recognition for 18/24 participants, while retaining identical performance for 1/24
participants and only decreasing the performance for 5/24 participants (see Appendix
C.3 for more details). Overall, the F1-score range across all participants increased from
0.176-0.929 to 0.500-1.0.

Inter-Person Variability Biases in the Best Classification Model

The FIM still produced relatively poor F1-scores (< 0.5) for lying down and walking in
two participants. Specifically, all 12 cases of lying down were misclassified as sitting for
participant 18, and 33/48 cases of walking were misclassified as standing for participant 1.
To illustrate which forms of inter-person variability in gait caused generalisation issues, we
compared the gait patterns of participants 18 and 1 with those of the two best classified
participants for lying down and walking respectively.
First, the misclassifications for participant 18 are discussed. As previously observed in
Figure 5.7, the mean acceleration feature (Mean-X LB) carried distinctive information to
distinguish between the postural differences of sitting and lying down. Figure 5.9 showed
that most participants, including the best classified participant, exhibited Mean-X LB
values between -0.1-0.1g. This acceleration range entailed that the vertical axis of the
upper body was oriented (nearly) parallel to the bed’s surface while lying down. For
participant 18, the Mean-X LB values were more deviant with fluctuations around -0.4g,
which were in the vicinity of the Mean-X LB range observed during sitting.

Figure 5.9: Comparison of worst and best classified individuals across physical activities with the most
substantial inter-person variability. Amongst the least accurate classifications, lying down was mistaken
for sitting, and walking was mistaken for standing. The 95% feature ranges describe the ranges within
which 95% of the class conditional feature values lie, i.e. the 2.5% and 97.5% quantiles.

Next, the misclassifications for participant 1 are discussed. Based on Figure 5.9, it can
be observed that the walking accelerations of participant 1 exhibit considerably smaller
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amplitudes than those of most participants, and the difference is especially noticeable
compared to the best classified participant. As previously observed in Figure 5.7, the
minimum acceleration feature (Min-X UT) was found to separate most cases of walking
and standing from each other. However, as illustrated in Figure 5.9, the low amplitudes
of participant 1 caused the Min-X UT values during walking to fall within the Min-X UT
value range observed during standing.

5.4 Discussion
This study aimed to develop a robust HAR algorithm, which could be used to continuously
monitor physical activity in geriatric hip fracture patient rehabilitation. To improve the
system’s robustness to intra-activity variation, we collected all data in simulated FLC. To
improve the system’s robustness to inter-person variability in gait patterns, we created a
synthetic data set which emphasised common gait patterns across different individuals.
We found that the synthetic data supported our novel multistep feature selection pipeline
in identifying features which generalised better across different individuals. By using the
proposed feature set selected from the synthetic data to train a classifier on the real data,
i.e. the FIM, the classification performance and robustness to inter-person variability
improved slightly compared to the CCM. The aforementioned improvements were most
noticeable in the classifications of transfers.
The differences between the real and synthetic data are worth examining to infer how
they complemented each other in the development of the FIM. We previously observed
that the synthetic data exhibited a lower intra-activity variation than the real data. It is
postulated that this was due to a reduced inter-person variability, since DBA produced
generalised gait patterns based on the common characteristics across different individuals.
We believe that the elimination of individual gait deviations could be seen as a form
of noise suppression, which aided the HFSE in identifying features which characterised
the fundamental patterns of physical activities. This is consistent with Bai et al. [317],
who found that reduced variability in HAR data could improve the stability of pattern
recognition in machine learning. However, our findings show that the variability reduction
in the synthetic data only improved pattern recognition during feature selection, since
the CDIM performed relatively poorly. Hence, exposure to real-life intra-activity variation
during training remains necessary to ensure more generalised decision boundaries for
classification.
With the FIM, we were able to classify most physical activities correctly using solely six
features selected with our proposed multistep feature selection method. These were:
Mean-X UT, Mean-Z UT, Mean-X LB, Min-X UT, RMS-X UT, and RMS-X LB. Since the
FIM only relies on a few features, it has the advantage that the predictors for the activity
classifications can be pinpointed effectively. In Figure 5.7, we provided an overview of the
feature value distributions of these six features across each physical activity, to illustrate
how they could make distinctions between pairs of physical activities from a univariate
point of view. From here, several lessons could be learnt:
Firstly, we observed that the mean accelerations primarily supported the discrimination
between standing, sitting, and lying down. These findings are in line with previous HAR
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studies which characterised body postures using the mean. For example, Capela et al.
[344] tested three different feature selection algorithms and found that mean accelerations
were consistently selected to distinguish between sitting, standing, and lying down, in
able-bodied older adults (74±6.3 years). Similarly, Pannurat et al. [303] found that
mean accelerations of the waist were ranked amongst the six most important features for
classification of walking, standing, sitting, and lying down in healthy adults (average age
of 67.5 years). Finally, Bijnens et al. [276] demonstrated the feasibility of using mean
accelerations of the upper thigh to distinguish between standing and sitting/lying down
in healthy older adults between the ages of 60-88 years. Hence, our findings underline
and reconfirm the importance of the mean for distinguishing between static activities
whose differences are primarily defined by posture.
Secondly, to distinguish between standing and walking, which are similar in posture,
Min-X UT and RMS-X UT appeared to provide discriminative information. Despite the
widespread use of the minimum [297, 298, 300, 302, 303] and RMS [297, 298, 300,
306, 330, 331] in HAR, their exact discriminative properties are ill-defined in literature.
However, it is known that the RMS is sensitive to signal variability and that the minimum
is sensitive to signal amplitudes. Both of these properties are distinctive for static and
dynamic activities, which could explain their ability to discriminate between standing and
walking.
Thirdly, the contribution of the aforementioned features in relation to recognition of
transfers remains challenging to explain. The primary challenge resides in the fact that
transfers always occur in between two other activities, which causes their feature values
to overlap. In the feature selection study by Capela et al. [344], no generalisable features
for the characterisation of transfers could be identified either. However, others did find
that accelerations of the chest, waist, and upper thigh effectively captured the range of
motion of transfers, and thereby enhanced recognition rates [311]. We extracted features
from two similar locations: the lower back and upper thigh. We demonstrated that the
six features extracted from these locations could collectively recognise transfers quite
accurately with an F1-score of 0.816±0.120. Hence, since the most crucial features could
not be pinpointed from a univariate standpoint, it is postulated that interactions between
these features underpinned the success of the good transfer recognition rate.
Although our model generally performed well on most participants, some issues with
regards to inter-person variability were observed for the detection of lying down and
walking. Firstly, the HAR algorithm misclassified all instances of lying down as sitting for
participant 18. Amongst participants for whom lying down was mostly correctly classified,
the Mean-X LB values primarily varied between -0.1-0.1g. The Mean-X LB values of
participant 18 were more deviant with values near -0.4g, which may also be observed
during a backward leaning sitting posture. This could potentially explain why instances of
lying down were misclassified as sitting in participant 18. There are several external factors
which may have caused this deviating feature value, such as physiological differences
between participants which altered the sensor orientation, or sensor displacement during
execution of ADL tasks. Clinical practitioners may need to be particularly mindful of
the latter, as displacements are more likely to occur during long-term monitoring in
FLC [311], which may harm the HAR algorithm’s ability to accurately recognise physical
activities [415].
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Secondly, the HAR algorithm misclassified most instances of walking as standing for
participant 1. The misclassifications were postulated to be due to the fact that participant
1 showcased noticeably smaller acceleration amplitudes during walking, which decreased
the discriminative properties of Min-X UT to distinguish it from standing. This may explain
why walking was often mistaken for standing in participant 1. These observations entail
that our HAR algorithm recognises ambulation behaviours less accurately in individuals
whose walking accelerations exhibit lower amplitudes, e.g. due to slower or shuffling gait.
The limitation of our algorithm in accurately recognising slow or shuffling gait presents a
challenge when applied to the hip fracture patient population. These forms of ambulation
may be more prominent amongst geriatric hip fracture patients, considering that more than
half of them do not regain their prefracture mobility level within the first postoperative
year [32, 354]. Following hip fracture surgery, increased double support time, increased
single support asymmetry, decreased cadence, and increased step length may be observed
amongst patients [416]. These factors highlight the need to consider the unique gait
characteristics of hip fracture patients.
Apart from deviating ambulation patterns, transfers may also look different in hip fracture
patients. Compared to healthy older adults (69.4±10.9 years), patients recovering from
a hip fracture (76.4±7.1 years) rely significantly more on force compensations from the
contralateral side of the fractured hip to perform sit-to-stand transfers [417]. Besides
force asymmetry in the lower extremities, transfer times are generally prolonged for hip
fracture patients. The cohort examined in our study showcased an average sit-to-stand
transfer time of 2.16 seconds. This is comparable to other studies examining healthy older
adults, in which average sit-to-stand transfers times of 2.41-2.90 seconds were reported
[418–421]. However, for rehabilitating hip fracture patients, the average transfer time was
previously estimated at approximately 5.35 seconds [418]. In conclusion, the deviating
transfer movements and prolonged transfer times highlight the potential generalisation
problems that may be encountered when using our algorithm in the patient population.
Based on the aforementioned limitations, developing an algorithm in a cohort that is
age-matched with the average hip fracture population may not be enough to fully optimise
the algorithm’s generalisation capabilities. In line with a systematic review on HAR for
health research [285], we want to emphasise the importance of producing HAR algorithms
in a diverse participant pool to improve the population-level impact. Previous studies
have already demonstrated that diversifying the study population in terms of physical
activity performance leads to HAR algorithms with better generalisation properties [317].
These advancements towards generalisation are postulated to be particularly important for
monitoring systems geared towards hip fracture patients, since heterogeneity in movement
patterns due to fracture type [416, 422] and recovery stage may be observed.
Despite the absence of hip fracture patients in our study cohort, we believe that the
contributions of this study are still valuable. Firstly, contrary to commercially available
activity trackers, we developed our HAR algorithm in a demographic age group which
is representative of the hip fracture patient population. Secondly, a well-functioning
monitoring system should be able to recognise physical activities across patients with a
wide range of prognoses, which includes those with a more swift and better restitution of
their prefracture mobility levels. Thirdly, we have pinpointed several focus areas for future
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researchers to improve the generalisability of the proposed monitoring system. Hence, the
HAR algorithm presented here provides the first step in the development of a continuous
monitoring system which can be applied across all rehabilitating hip fracture patients.

5.5 Conclusion
This study focused on the development of a continuous monitoring system for the
detection of physical activities during hip fracture rehabilitation. The activities of interest
were walking, standing, sitting, lying down and transfers. Firstly, we accounted for intra-
activity variation by collecting data in simulated FLC. Secondly, robustness to inter-person
variability was accounted for through the use of a synthetic data set which represented
the common gait characteristics across different individuals. We found that feature
extraction from synthetic data had the potential to enhance classification performance on
real data, which was most noticeable in the improved recognition rate of lying down and
transfers. The developed monitoring system showcased good predictive abilities, using
only six features extracted from a total of two accelerometers placed on the upper thigh
and lower back. While the preliminary results are promising, validation in the hip fracture
patient population is necessary to examine the system’s true utility in clinical practice.
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Summary and Future Perspectives

The objective of this thesis was to optimise care for two distinct subgroups in the hip
fracture patient population: (1) frail patients with a limited life expectancy and (2)
resilient patients for whom functional recovery is feasible. To achieve the former aim,
we focused on decision support for optimal treatment choices in the preoperative phase.
To achieve the latter aim, we focused on the development of a continuous monitoring
system which can be used to gain more insights into a patient’s restitution of physical
activity during rehabilitation. In this chapter, we provide a summary of the main findings
of this thesis, along with recommendations for future research.

6.1 Part I: Optimal Preoperative Decision-Making
Main Findings

In Chapter 2, we started with the identification of patients who could potentially be unfit
for surgery to aid prevention of surgical overtreatment. This was done by means of a
systematic review and meta-analysis of preoperative predictors for early postoperative
mortality. Subsequently, the identified predictors were embedded into a clinical vignette
study to examine how they would affect surgeons’ risk perceptions and preferences for
recommending nonoperative management (Chapter 3). Through these two studies, we
provided decision support for electing conservative treatment using an empirical risk
perspective, and surgeons’ clinical expertise.
The main findings were consistent with the national guidelines, which recommend palliative
nonoperative management for patients who are at a high risk of perioperative death.
Amongst the examined attributes, we found that metastatic carcinoma, severe heart
failure, end-stage renal failure, and dementia increased surgeons’ perceived utility of
conservative treatment the most. The first three attributes in particular, were associated
with a high prognostic value for postoperative 30-day mortality according to our systematic
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review. Although surgeons agreed that the utility of conservative treatment was higher
for patients who were at a higher risk of early mortality, we observed that surgeons’ risk
perceptions for the same patient cases were highly heterogeneous. Therefore, the use of
objective mortality prediction models is necessary in clinical practice to streamline risk
perceptions across surgeons.
However, we hypothesise that mortality prediction models alone are insufficient to identify
patients who may benefit from conservative treatment. We observed that the presence of
dementia substantially influenced surgeons’ perceived benefit of conservative treatment,
even though our meta-analysis proposed that dementia only increased mortality risk
with a small-to-moderate effect size. In fact, the observed effect size was twice as large
as the prior mean we specified in our hierarchical Bayesian logit model. Where our
prior specification fell short, was that we did not consider the utility of conservative
treatment in terms of quality of life (QoL) prospects. In clinical practice, QoL does play
an important role in electing conservative treatment. Thus, it is postulated that the
observed increase in utility is derived from poor postoperative QoL prognoses, on top of
increased mortality risk. Based on surgeons’ stated preferences, we conclude that decision
support for electing nonoperative management requires more active considerations of
QoL prospects.

Future Perspectives

We see several interesting directions for future research to optimise the preoperative
decision-making process. Although we advocate the use of objective mortality prediction
models in clinical practice, we believe that it could be valuable to move beyond mortality
as the model’s outcome variable. To provide more holistic decision support, future
studies could develop models which predict the optimal treatment choice based on
attributes which encompass both mortality risk and QoL considerations. The task of
predicting the optimal treatment can be conceptualised as a choice modelling problem,
in which we aim to elect the treatment which maximises a patient’s utility. From this
problem formulation follows that a health preference research framework is suitable
for data collection and modelling. Based on the lessons learnt, we propose several
recommendations to accomplish this.
As described in Chapter 3, surgeons repeatedly expressed that they missed information
on patients’ personal preferences while assessing the vignettes. Some surgeons also
stated that the opinions of geriatricians and anaesthesiologists could have helped them
in providing better treatment recommendations. Omission of views and values of core
actors in the decision context could harm the external validity of the stated optimal
treatment choice. Therefore, we provide two recommendations to safeguard the external
validity of the prediction model. Firstly, the attributes presented in Chapter 3 could be
updated by incorporating important patient reported outcome measures (PROMs) into
the vignettes. We believe that PROMs can provide a more holistic perspective on which
QoL considerations are important to patients during the final phases of their lives. Hence,
we encourage researchers to actively involve conservatively treated patients and their
caregivers into the research process. Secondly, preference elicitation could be performed
through a multidisciplinary consultation, to ensure that the expertise of the complete
medical team is reflected in the optimal treatment choice.



Chapter 6: Summary and Future Perspectives 86

6.2 Part II: Optimal Monitoring during Rehabilitation
Main Findings

In Chapter 4, we provided a critical perspective on common practices in the development
of human activity recognition (HAR) algorithms based on wearable accelerometers. We
observed that common practices were often transferred from one setting to another,
without keeping the specifics of the study cohort, experimental setup, and performed
activities in mind. It was postulated that such practices would be particularly harmful for
feature selection, and thus for the system’s performance, since the informativeness of
features depends strongly on the aforementioned specifics. Through synthesis of evidence
found in literature, we provided concrete recommendations to practitioners for various
(algorithmic) design choices for the development of ambulatory monitoring systems.
Amongst others, these included recommendations for choosing optimal accelerometer
placements, adequate signal segmentation techniques, and effective feature selection
methods. We used these best practices to inform the design of our monitoring system
described in Chapter 5.
In Chapter 5, we developed a monitoring system which could reliably detect physical
activities and important functional milestones for rehabilitating hip fracture patients. We
showed that it was feasible to develop a high-performing activity classification algorithm
based on machine learning, using a total of two accelerometers placed on the upper thigh
and lower back. Based on leave-one-subject-out cross-validation, we estimated that the
system had a low prediction error for physical activity classifications in healthy adults aged
80 years or older, as the mean and standard deviations of the F1-scores were 0.896±0.100
for walking, 0.927±0.039 for standing, 0.997±0.004 for sitting, 0.937±0.202 for lying
down and 0.816±0.120 for transfers.
To develop this system, we introduced a novel feature selection pipeline to enhance the
robustness and generalisability of the selected features. First, we created a synthetic data
set based on common gait patterns across different individuals, to improve robustness to
inter-person variability. Subsequently, we performed feature selection on the synthetic
data set. We controlled the robustness of the feature selection process in two-fold.
Firstly, we developed a stable heterogeneous feature selection ensemble (HFSE) to ensure
that the selected features would be robust to different heuristics for determining feature
importance. Secondly, we reduced the likelihood of including features that were selected
by chance, by imposing selection stability across different partitions of the data as
an additional criterion. We found that the proposed pipeline was capable of reducing
the initial candidate set of 62 features, down to solely six highly informative features.
Compared to strictly using real data for model building, we observed that synthetic data
manipulation yielded a slight improvement in overall classification performance, which
was most noticeable in the recognition rates of transfers and lying down.

Future Perspectives

First and foremost, we believe that it is necessary to validate the developed algorithm in
the hip fracture patient population to assess its generalisation capabilities. As argued
in Chapter 5, we foresee several challenges in the recognition of hip fracture patients’



Chapter 6: Summary and Future Perspectives 87

ambulation and transfer behaviours. Specifically, our system may underestimate the time
spent in ambulation for patients with slow or shuffling gait, and it may fail to detect slow
transfers. Therefore, we recommend future researchers to augment the data collected in
our study with physical activity data of hip fracture patients. We strongly believe that
this approach will contribute to improved generalisability the most, to ultimately make
the monitoring system useful for all rehabilitating hip fracture patients.
Besides focusing on generalisability, we believe that there is still room for improvement
in the recognition rate of transfers. The current monitoring system still faces some
challenges in distinguishing between dynamic sitting activities, such as adjustments
of sitting postures, from transfers. Since transfers were heavily underrepresented in
our data set, it is possible that the HFSE was biased towards selecting features which
were informative for recognising the majority class, i.e. sitting. Therefore, it could
be interesting to examine whether better features for recognition of transfers could be
identified by applying the HFSE to a synthetic data set without class imbalance.

6.3 Final Remarks
This thesis contributes to our understanding on how to optimise care for specific subgroups
in the hip fracture patient population. We hope that our findings serve as a reference
framework for future researchers, who continue to work on improving preoperative
decision-making and monitoring during postoperative rehabilitation. Ultimately, we hope
that the contributions described in this thesis may benefit hip fracture patients through
improvements in the quality of care in the future.
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A.1 Study Selection and Characteristics
Table A.1: Overview of the database search query used for the systematic search of articles.

Term [Older adult] Term [Hip fracture] Term [Mortality] Term [Predictor]

elderly OR
octogenarian* OR
nonagenarian* OR
“old* adult*”

AND “hip fracture*” OR
“proximal femure fracture*” OR
“neck of femur fracture*” OR
“cervical fracture*” OR
“femoral neck fracture*” OR
“trochanteric fracture*” OR
“intertrochanteric fracture*” OR
“subtrochanteric fracture*” OR
“pertrochanteric fracture*”

AND “early mortality” OR
“inpatient mortality” OR
“in-hospital mortality” OR
“30-day mortality” OR
“1-year mortality” OR
“postoperative mortality” OR
“post-operative mortality” OR
“postoperative mortality” OR
“postsurgical mortality” OR
“post-surgical mortality” OR
death OR
surviv*

AND “risk factor*” OR
“preoperative risk factor*” OR
“pre-operative risk factor*” OR
“presurgical risk factor*” OR
“pre-surgical risk factor*” OR
predict* OR
“preoperative predict*” OR
“pre-operative predict*” OR
“presurgical predict*” OR
“pre-surgical predict*”

Table A.2: Exclusion criteria used for the literature screening procedure.

Exclusion criteria Explanation

E1 - The article does not report on primary data. The article is a literature review or a systematic review.
E2 - The article describes an unrepresentative population. The described study population has a mean or median age below

70 years, solely comprises a single gender, or solely describes a
periprosthetic hip fracture population.

E3 - The article does not report on preoperative predictors. The reported risk factors for mortality do not provide predictive
information prior to surgery.

E4 - The article does not report independent risk factors. The study does not control for confounding using multiple (Cox
or logistic) regression analysis.

E5 - The article does not report the statistics of interest. The odds and hazard ratios are not reported, or they are
reported without 95% confidence intervals.

E6 - The article does not (clearly) report predictors of mortality. Mortality is not an outcome, or it is reported as a composite
score of multiple adverse events.

E7 - The article does not report on mortality within one year. The lower a priori life expectancy of older adults decreases the
predictive value of long-term studies.

E8 - No full access to the article can be acquired.



Table A.3: Characteristics of studies included in the systematic review. The fracture types were categorised as femoral neck (FN), displaced femoral neck (DFN),
undisplaced femoral neck (UFN), trochanteric (T), and other (O) fractures. The surgical procedures were categorised as internal fixation (IF), arthroplasty (A),
hemiarthroplasty (HA), total hip arthroplasty (THA), and other (O). The risk measures were described with either an odds ratio (OR) or hazard ratio (HR).

Study (first author and year) Country Study design Sample Females Population age Fracture types Surgical procedures Mortality (rate) Risk

Aharonoff (1997) [107] United States Retrospective 612 80.1% ≥65 FN: 53%, T: 47% IF, A 1-year (12.7%) HR

Aldebeyan (2017) [172] United States, Retrospective 10,117 69.7% Mean: 80.5 - IF: 78.8%, HA: 18.6%, 30-day (-) OR

Canada THA: 2.6%

Adunsky (2012) [106] Israel Retrospective 1,114 21.9% Mean: 82.4 FN: 38.7%, T: 61.3% IF: 60.7%, A: 39.3% 3-month (4.2%), HR

1-year (10.6%)

Ariza-Vega (2015) [108] Spain Prospective 275 78.5% Mean: 81.4 FN: 46.9%, T: 52.0%, IF: 65.1%, HA: 33.8%, 1-year (21%) HR

O: 1.1% O: 1.1%

Baidoo (2021) [145] Ghana Prospective 76 52.6% Mean: 75.8 FN: 50.0%, T: 50.0% - 6-month (13.2%), HR

1-year (19.7%),

4-year (27.6%)

Bell (2016) [153] Australia Prospective 322 71.4% Median: 83.4 DFN: 34%, UFN: 19%, IF: 62.4%, HA: 30.7%, 1-year (23.9%) OR

T: 46.1%, O: 0.9% THA: 6.9%

Bellelli (2012) [109] Italy Retrospective 390 81.8% Mean: 83.7 FN: 46.2%, T: 53.8% IF: 59.0%, A: 41.0% 1-year (-) HR

Belmont (2014) [14] United States Retrospective 44,419 61.6% Mean: 72.7 FN: 63.5%, T: 36.5% IF, A Inpatient (4.5%) OR

Björkelund (2009) [110] Sweden Retrospective 428 72.9% Mean: 82.5 DFN: 34.1%, UFN: 18.0%, IF: 70%, HA: 27%, 4-month (13.5%) OR

T: 31.8%, O: 16.1% THA: 3%

Bliemel (2016) [154] Germany Prospective 391 72.4% Mean: 81 FN: 48.8%, T: 51.2% IF, A 1-year (28.1%) OR

Bokshan (2018) [111] United States Retrospective 284 79.9% Mean: 87.5 FN: 41.5%, T: 58.5% - 1-year (-) OR

Bottle (2006) [91] England Retrospective 129,522 79.4% ≥65 FN, T IF: 48.0%, A: 40.7%, 30-day (9.7%), OR

O: 11.3%

Camur (2019) [146] Turkey Retrospective 109 65.1% Mean: 80 FN: 62.4%, T: 37.6% IF: 28.4%, HA: 71.6% 1-year (27.4%), OR

2-year (49.1%),

Continued on next page



Table A.3 (Continued)

Study (first author and year) Country Study design Sample Females Population age Fracture types Surgical procedures Mortality (rate) Risk

5-year (80.2%)

Camurcu (2017) [162] Turkey Retrospective 106 55.7% Mean: 80.7 T: 100% HA: 100% 1-year (34.0%) OR

Cao (2021) [76] Sweden Retrospective 134,915 68.1% Mean: 82.0 DFN: 37.2% , UFN: 13.6%, IF: 67.0%, HA: 25.7%, 30-day (7.6%) OR

T: 47.3%, O: 1.9% THA: 7.3%

Carow (2017) [112] Germany Retrospective 437 74.8% Mean: 81.2 T: 100% IF: 100% Inpatient (8.2%) OR

Cenzer (2016) [113] United States Retrospective 857 76.0% Mean: 83.8 FN: 100% IF, O 1-year (27.4%) OR

Chatterton (2015) [85] England Retrospective 4,426 74.5% Mean: 82.0 FN: 74.0%, T: 26.0% - 30-day (6.5%) OR

Chen (2021) [147] Taiwan Prospective 281 70.1% Mean: 81.3 FN: 52.7%, T: 47.3% IF: 62.3%, HA: 37.7% 1-year (13.9%) HR

Chiu (2018) [95] Taiwan Retrospective 6,626 64.4% ≥65 FN: 51.4%, T: 48.6% IF: 60.4%, HA: 39.6% 30-day (1.6%), HR

3-month (3.6%),

1-year (10.2%)

Crawford (2020) [104] United States Retrospective 5,918 - ≥60 DFN: 100% HA: 100% 30-day (4.5%) OR

D’Angelo (2005) [168] Italy Retrospective 299 84% Mean: 80 DFN: 100% HA: 100% 6-month (18.4%), OR

1-year (43.8%),

2-year (60.5%)

De Luise (2008) [74] Denmark Retrospective 11,985 71.4% Mean: 80 FN, T IF, HA 30-day (-), HR

3-month (-),

1-year (-)

Elliott (2003) [114] Ireland Prospective 1,780 76.7% - FN: 100% - 1-year (22.0%) OR

Endo (2005) [115] United States Retrospective 983 79.0% Mean: 79.7 FN: 53.4%, T: 46.6% - 1-year (11.0%) HR

Eschbach (2013) [148] Germany Prospective 402 72.9% ≥60 FN: 48.5%, T: 51.5% IF: 59.0%, A: 41.0% Inpatient (6.2%) OR

Faizi (2014) [92] England Retrospective 1,066 74.4% Mean: 81 FN: 100% - 30-day (8%) OR

Fisher (2018) [169] Australia Retrospective 1,820 76.4% Mean: 82.8 - - Inpatient (6.0%) OR

Flodin (2016) [116] Sweden Prospective 843 73.2% Mean: 82.1 FN: 51.6%, T: 48.4% IF: 74.6%, A: 25.4% 1-year (15.2%) OR

Folbert (2017) [117] Netherlands Retrospective 850 73.6% Mean: 83 FN: 52.1%, T: 47.9% IF: 65.9%, A: 33.6%, 1-year (23.2%) OR

Continued on next page



Table A.3 (Continued)

Study (first author and year) Country Study design Sample Females Population age Fracture types Surgical procedures Mortality (rate) Risk

O: 0.5%

Forni (2019) [77] Italy Prospective 728 77.6% Mean: 83.8 FN, T - 30-day (4.9%) OR

Foss (2006) [86] Denmark Prospective 600 74.8% Mean: 82.4 FN: 49.3%, T: 50.0%, - 30-day (13.5%) OR

O: 0.7%

Franzo (2005) [97] Italy Retrospective 6,629 81.3% Mean: 82.4 FN, O IF, HA, THA Inpatient (5.4%), OR

30-day (9.6%),

6-month (20.0%),

1-year (25.3%)

Fu (2021) [149] China Retrospective 528 75.5% Mean: 77.9 FN: 100% HA, THA 1-year (23.4%) OR

Giummarra (2020) [118] Australia Retrospective 4,621 69.5% Mean: 83.4 FN, T IF: 54.6%, HA: 35.7%, 1-year (29.4%) HR

THA: 3.9%, O: 5.8%

Härstedt (2015) [164] Sweden Prospective 272 72.1% Mean: 82.6 - - 6-month (13.2%) OR

Henderson (2015) [119] Ireland Prospective 206 73% Median: 82 FN: 100% - 1-year (12.1%) OR

Heyes (2017) [157] Ireland Retrospective 443 70.2% Mean: 77 - IF, HA, THA 1-year (15.1%) OR

Ho (2010) [120] Taiwan Retrospective 409 51.6% Mean: 72.5 FN: 40.6%, T: 59.4% IF: 73.3%, A: 26.7% 1-year (14%) HR

Huette (2020) [121] France Prospective 309 73.5% Median: 85 - IF: 47.2%, HA: 37.5%, 1-year (23.9%) HR

THA: 12.6%, O: 2.7%

Hung (2017) [122] Taiwan Retrospective 5,982 64.8% Mean: 74.9 FN: 45.2%, T: 45.6% IF: 57.8%, A: 42.2% 3-month (-), HR

O: 9.2% 1-year (-),

6-year (-),

10-year (34.2%)

Ireland (2015) [100] Australia Retrospective 2,552 62.4% Mean: 86.6 FN: 38.4%, T: 46.7%, IF: 38.4%, HA: 42.4%, 30-day (11%), HR

O: 14.9% THA: 4.3%, O: 14.9% 1-year (34%),

2-year (47%)

Ishidou (2017) [155] Japan Prospective 377 81.4% Mean: 83.1 FN: 36.4%, T: 63.6% IF: 70.3%, HA: 26.8%, 1-year (8.0%) OR

Continued on next page
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Study (first author and year) Country Study design Sample Females Population age Fracture types Surgical procedures Mortality (rate) Risk

O: 2.9%

Jiang (2005) [123] Canada Retrospective 3,981 71.3% Median: 82 - - Inpatient (6.3%) OR

Kang (2010) [124] Korea Retrospective 9,817 70.2% Mean: 74.9 FN: 55.4%, T: 38.0%, IF: 46.8%, HA: 2.2%, 1-year (16.6%) HR

O: 6.6% THA: 46.6%, O: 4.4%

Kannegaard (2010) [156] Denmark Retrospective 42,076 73.1% Mean: 80.7 FN: 58.7%, T: 36.8%, - 1-year (29.3%) HR

O: 4.5%

Karres (2018) [90] Netherlands Retrospective 746 57.1% Mean: 80 FN: 44.5%, T: 55.5% IF, HA 30-day (8.2%) OR

Khan (2013) [105] England Retrospective 467 72.6% Mean: 79.6 FN: 55.5%, T: 44.5% - 30-day (7.5%) OR

Kim (2012) [125] Korea Prospective 415 68.2% Mean: 75.1 FN: 55.7%, T: 44.3% IF: 43.9%, A: 56.1% 1-year (14.7%) HR

Kim (2016) [160] Korea Retrospective 772 75.1% Mean: 79.4 FN: 46.2%, T: 53.8% - 1-year (14.1%) OR

Kirkland (2011) [99] United States Retrospective 485 73.4% Mean: 82.3 - - 30-day (8.2%) OR

Kovar (2015) [171] Austria Retrospective 3,595 72.2% Mean: 78.5 FN: 43.8%, T: 53.2%, - 3-month (10.7%), OR

O: 3.0% 6-month (11.4%),

1-year (12.2%)

Lau (2015) [166] China Retrospective 759 72% Mean: 84 DFN: 25%, UFN: 24%, IF: 75%, HA: 25% 30-day (2.5%), HR

T: 51% 1-year (16.3%)

Lawrence (2017) [175] England Retrospective 1,979 70.6% Median: 84 DFN: 48.8%, UFN: 9.0%, IF: 50.2%, HA: 46.4%, 1-year (24.4%) HR

T: 42.0%, O: 0.2% THA: 3.4%

Lizaur-Utrilla (2016) [158] Spain Prospective 628 74.2% Mean: 83.5 FN: 37.1%, T: 62.9% IF, A Inpatient (0.9%), OR

3-month (7.0%),

1-year (13.6%)

Lizaur-Utrilla (2019) [94] Spain Prospective 1,083 71.4% Mean: 83.3 FN: 31.0%, T: 69.0% - Inpatient (8.2%) OR

Mangoni (2013) [150] Netherlands Retrospective 71 70.4% Mean: 84 FN: 48.5%, T: 42.5%, IF: 61.8%, A: 38.2% 3-month (12.7%), HR

O: 8.8% 1-year (25.4%)

Mariconda (2015) [161] Italy Prospective 552 77.3% Mean: 78.3 FN: 43.7%, T: 56.3% IF: 60.2%, HA: 27.6%, 30-day (4.3%), HR

Continued on next page
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Study (first author and year) Country Study design Sample Females Population age Fracture types Surgical procedures Mortality (rate) Risk

THA: 12.2% 1-year (18.8%)

Maxwell (2008) [93] England Prospective 4,967 76.4% Mean: 79.9 FN: 100% - 30-day (8.0%) OR

Mayordomo-Cava (2020) [78] Spain Retrospective 5,543 79.1% Mean: 93.2 T: 57.7%, O: 42.3% IF: 60.9%, O: 39.1% 30-day (7.0%) OR

Mazzola (2015) [126] Italy Prospective 275 85.5% Mean: 89.4 FN: 44.4% T: 55.6% IF, HA 6-month (21.2%) OR

Menéndez-Colino (2018) [127] Spain Prospective 491 79.2% Mean: 85.6 T: 58.0%, O: 42.0% IF: 54.6%, A: 37.5%, 1-year (23.2%) HR

O: 7.9%

Meng (2021) [128] China Retrospective 480 66.5% Mean: 78.3 FN, T IF: 61.3%, HA: 26.7%, 1-year (15.6%) OR

THA: 12.0%

Morrissey (2017) [79] England Retrospective 1,913 73.7% Mean: 83.9 FN: 49.7%, T: 50.3% IF: 47.5%, HA: 44.5%, 30-day (6.1%) OR

THA: 6.2%, O: 1.8%

Myers (1991) [130] United States Retrospective 27,370 80.0% Median: 81 FN: 29.8%, T: 52.8%, IF, HA, THA, O Inpatient (4.9%) OR

O: 17.4%

Nijland (2017) [80] Netherlands Retrospective 1,803 67.3% Median: 83 FN: 45.1%, T: 54.0% IF: 65.6%, HA: 34.4% 30-day (7.6%), OR

O: 0.9% 1-year (29.0%)

Nijmeijer (2016) [87] Netherlands Retrospective 850 73.6% Median: 83.0 FN: 52.1%, T: 41.9% - 30-day (7.5%) OR

Norring-Agerskov (2017) [173] Denmark Retrospective 7,293 76.6% Mean: 82.6 - - 30-day (10.2%) HR

Norring-Agerskov (2019) [89] Denmark Retrospective 113,211 68.8% Median: 81 FN, T - 30-day (10.1%) OR

Nuotio (2016) [131] Finland Prospective 472 75.2% Median: 82 - - 4-month (19.1%) OR

O’Daly (2010) [132] Ireland Retrospective 377 78.0% Median: 83 FN: 50.9%, T: 49.1% IF, HA 1-year (25.5%) HR

Padrón-Monedero (2017) [133] Spain Retrospective 31,884 75.9% ≥65 - IF, A Inpatient (5.5%) OR

Pang (2020) [81] England Retrospective 894 72.8% Mean: 82.7 FN: 100% - 30-day (9.5%) OR

Pereira (2010) [134] Brazil Prospective 246 72.8% Mean: 79.3 - IF: 77.6%, A: 22.4% 1-year (35%) HR

Petersen (2006) [135] Denmark Retrospective 1,186 77.3% Mean: 81.6 DFN: 100% HA: 100% 3-month (-), HR

1-year (-)

Petersen (2020) [96] Denmark Retrospective 11,318 71.6% Median: 84 FN: 51.7%, T: 46.1%, IF: 63.7%, A: 36.3% 30-day (11.4%) HR

Continued on next page
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Study (first author and year) Country Study design Sample Females Population age Fracture types Surgical procedures Mortality (rate) Risk

O: 2.2%

Pioli (2006) [159] Italy Prospective 248 85.5% Mean 83.6 FN: 46.0%, T: 54.0% - Inpatient (4.8%), OR

3-month (12.9%),

6-month (19.0%),

1-year (25.4%)

Rae (2007) [84] Australia Prospective 222 72.1% Mean: 79 FN: 100% IF: 63.0%, HA: 36.0%, 30-day (7.2%) OR

THA: 1.0%

Ribeiro (2014) [136] Brazil Prospective 418 76.1% Mean: 79.8 FN: 38.8%, T: 61.2% IF: 53.4%, HA: 30.6%, Inpatient (4.3%), Both

THA: 6.0%, O: 10.0% 1-year (15.3%)

Roche (2005) [101] England Prospective 2,448 79.9% Mean: 82 FN: 57%, T: 43% - 30-day (9.6%), HR

1-year (33%)

Rosso (2016) [137] Italy Retrospective 1,448 75.8% Mean: 80.3 - - 30-day (4.0%), OR

6-month (14.1%),

1-year (18.8%)

Sanz-Reig (2018) [138] Spain Prospective 331 73.1% Mean: 83.7 FN: 57.7%, T: 42.3% IF: 40.2% HA: 53.5% Inpatient (11.4%) OR

O: 6.3%

Schuijt (2021) [88] Netherlands Retrospective 492 56.9% Median: 89 - - 30-day (12.4%) OR

Sheikh (2017) [102] England Retrospective 1,356 72.8% Mean: 81.4 DFN: 31.0%, UFN: 31.2%, IF, HA 30-day (8.7%) HR

T: 32.1%, O: 5.7%

Söderqvist (2006) Sweden Prospective 213 81% Mean: 84 T: 100% IF: 100% 1-year (24.9%) HR

Söderqvist (2009) [139] Sweden Prospective 1,944 74.4% Mean: 84 UFN: 13.2%, DFN: 36.4%, - 4-month (16%), HR

T: 50.4% 2-year (38%)

Tal (2016) [140] Israel Retrospective 1,161 73.9% Mean: 81.8 FN: 42.4%, T: 57.6% IF, HA Inpatient (8.8%), OR

1-year (20.6%)

Talsnes (2011) [141] Norway Prospective 302 76.2% Mean: 84.5 DFN: 100% HA: 100% 3-month (19.5%) OR

Continued on next page
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Study (first author and year) Country Study design Sample Females Population age Fracture types Surgical procedures Mortality (rate) Risk

Thomas (2014) [82] England Retrospective 2,989 71.7% Mean: 81 FN: 100% - 30-day (8.8%) OR

Thorne (2021) [163] England Retrospective 2,422 70.6% Median: 85 FN: 100% IF: 40.4%, A: 47.2%, Inpatient (6.4%), OR

O: 12.4% 1-year (23.5%)

Van de Ree (2020) [83] Netherlands Retrospective 925 69.9% Mean: 81.9 FN, T IF, HA, THA 30-day (9.9%) OR

Velez (2020) [170] Colombia Retrospective 275 70.5% Mean: 79.9 T: 100% IF: 100% 6-month (16.0%) OR

Vosoughi (2017) [142] Iran Prospective 724 56.1% Mean: 75.7 FN: 24.2%, T: 75.8% IF: 91.6%, A: 8.4% 3-month (14.5%), OR

1-year (22.4%)

Wang (2021) [103] China Retrospective 460 67.0% Mean: 79.3 FN: 52.4%, T: 47.6% - 30-day (4.1%), HR

6-month (13.3%),

1-year (20.0%)

Wu (2016) [167] Taiwan Prospective 195 48.2% Mean: 79.4 FN: 63.6%, T: 46.4% IF: 46.4%, HA: 33.8%, 1-year (20.0%) HR

THA: 20.0%, O: 12.2%

Würdemann (2021) [75] Netherlands Prospective 4,421 67.6% Mean: 79.9 DFN: 41.7%, UFN: 14.8%, - 30-day (7.2%), OR

T: 43.5% 3-month (12.5%),

1-year (21.1%)

Xing (2021) [143] China Retrospective 445 61.6% Mean: 79.4 FN: 55.7, T: 44.3% IF: 51.5%, A: 48.5% 1-year (14.4%) OR

Yombi (2019) [144] Belgium Retrospective 829 67.8% Mean: 81 - IF: 64.3%, HA: 22.3%, 1-year (23.5%) HR

THA: 11.8%, O: 1.6%

Yoo (2018) [152] Korea Retrospective 324 75.9% Mean: 77.8 FN: 38.6%, T: 64.8% IF: 33.0%, A: 64.8%, 1-year (9.0%) HR

O: 2.2%

Zanetti (2019) [165] Italy Retrospective 1,211 78.6% Mean: 84.7 - A: 57.0%, O: 43% 3-month (11.4%), OR

6-month (17.0%),

1-year (23.5%)
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A.2 Risk of Bias Assessment Protocol

Study Participation
Prompts

1. Were the selection criteria clearly defined?
• Yes: Inclusion and exclusion criteria were clearly reported.
• No: Solely a description of study participants (e.g. number and types of

participants described, but no further details on the selection process).
2. Was the study population representative of the population of interest?

• Yes: Both intracapsular AND extracapsular fractures were present in the
study population, without exclusion based on residence OR cognitive status
OR mobility status1, AND at most 10% of sample was unrepresentative
(pathological fractures, periprosthetic fractures, conservative treatments).
If the paper does not explicitly report on intracapsular and extracapsular
fractures, but instead broadly mentions that “all hip fracture patients” were
enrolled into the study, it is assumed that both intracapsular and extracapsular
fractures are represented.2

• No: Evidence was found that one of the aforementioned conditions had not
been satisfied.

3. Were the baseline characteristics of the study sample described in sufficient detail?
• Yes: Baseline characteristics were described in summary tables using

descriptive statistics (e.g. gender and age distributions, prevalence of
comorbidities, fracture types).

• No: The study sample was only described in a general manner, without
descriptive statistics (e.g. the sample comprised older adults above the age
of 70 with trochanteric and femoral neck fractures).

Rating scheme

• Low risk of bias if:
– All questions were answered with yes.

• Moderate risk of bias if:
– At most one question was answered with no.

• High risk of bias if:
1The criteria of not excluding patients based on preoperative residence, cognitive status, and

mobility status was defined after amendment of the protocol. The first and second author added these
specifications to make the notion of a representative population less ambiguous.

2The last assumption was added after amendment of the protocol. Not all papers specifically reported
on the exact types of fractures in their cohorts. It was deemed unlikely that descriptions along the line
of “all hip fracture patients” would exclude either intracapsular or extracapsular fractures.
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– At least two questions were answered with no.

Attrition
Prompts

1. Was completeness of follow-up adequate?
• Yes: At most 20% of the data was lost.
• No: Data loss above the pre-defined threshold.
• Unclear: No statement on loss of follow-up was provided.

2. Were there no important differences between participants who completed the study
and those who did not?

• Yes: The data appeared to be missing at random.
• No: Missing data was correlated with relevant patient characteristics.
• Unclear: No characteristics of patients lost to follow-up were provided OR no

conclusion could be drawn since no statement for data loss was provided in
the first place.

Rating scheme

• Low risk of bias if:
– All questions were answered with yes.

• Moderate risk of bias if:
– Both questions were answered with unclear.
– Only question 1 was answered with no.

• High risk of bias if:
– Question 2 was answered with no.

Prognostic Factor Measurement
Prompts

1. Were prognostic factors clearly defined?
• Yes: At least 80% of the prognostic factors (i.e. covariates in multiple

regression models) were defined using clear medical classifications (e.g. ICD
codes, or clear cut-off levels where applicable). For sum scores, e.g. the
Nottingham Hip Fracture Score or the Charlson Comorbidity Index, it suffices
to provide definitions of proper cut-off levels. That is, the exact descriptions of
the comorbidities contributing to the sum scores do not have to be provided.

• No: Less than 80% of the prognostic factors were not described in sufficient
detail to permit replication.
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2. Were prognostic factors measured or acquired appropriately?
• Yes: Prognostic factors were measured preoperatively AND obtained through

routinely used medical practices (e.g. chart abstraction or chart review).
• No: No clear indication that prognostic factors were present preoperatively

OR prognostic factors were defined based on self-report.
Rating scheme

• Low risk of bias if:
– All questions were answered with yes.

• Moderate risk of bias if:
– At most one question was answered with no.

• High risk of bias if:
– Both questions were answered with no.

Outcome Measurement
1. Is the outcome measure clearly and correctly defined?

• Yes: Inpatient (including days of admission), 30-day, or 1-year mortality are
reported.

• No: In case of inpatient mortality, the length of admission is left unspecified.
2. Has the outcome measurement been obtained validly?

• Yes: In prospective studies, mortality was obtained through follow-up
interviews with patients and relatives. In retrospective studies, mortality was
obtained from medical records or municipal mortality registers. Furthermore,
30-day mortality should be measured including discharged patients, and not
solely inpatients.

• No: No description of outcome ascertainment is provided OR 30-day mortality
is solely based on inpatient records.

Rating scheme

• Low risk of bias if:
– All questions were answered with yes.

• Moderate risk of bias if:
– At most one question was answered with no.

• High risk of bias if:
– Both questions were answered with no.
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Confounding
Prompts and rating

1. Were important confounders accounted for?
• Yes: Low risk if regression analyses controlled for at least age AND gender,

AND (comorbidities (e.g. >2, ASA, CCI), OR preoperative functional status in
ADL, OR preoperative mobility OR living situation OR cognitive status). Sum
scores which include age, gender and comorbidities, such as the Nottingham
Hip Fracture Score are assumed to provide sufficient control for confounding
as well3.

• Yes: Moderate risk if regression analyses controlled for at least age AND
gender.

• Yes: Moderate risk if regression analyses controlled for either age OR gender
AND one of the other confounders listed above.

• No: High risk if neither of the aforementioned combinations of confounders
was controlled for.

Analysis and Reporting
1. Is the statistical model appropriate for the study design?

• Yes: Appropriate regression models were used to analyse the influence of
prognostic factors in cohort studies (e.g. logistic regression or Cox proportional
hazard regression).

• No: None of the aforementioned regression models were used in the statistical
analysis.

2. Were results reported without selective biases?
• Yes: Risk measures of all covariates included in the multivariate regression

models were reported.
• No: Risk measures of covariates included in multivariate models were

suppressed, based on statistical insignificance.
Rating scheme

• Low risk of bias if:
– All questions were answered with yes.

• Moderate risk of bias if:
– At most one question was answered with no.

• High risk of bias if:
3The protocol for dealing with sum scores was an amendment following an initial trial phase of the

risk of bias assessment. Initially, only the individual confounding factors were considered.
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– Both questions were answered with no.

Overall Risk of Bias Assessment
1. The overall risk of bias of a study was rated as low if:

• All domains are bias domains were rated low risk.
• The attrition domain was rated to be at moderate risk of bias AND all other

domains were rated to be at low risk of bias.4

2. The overall risk of bias of a study is rated as moderate if:
• At least two domains are rated moderate risk, and all other domains are rated

low risk.
3. The overall risk of bias of a study is rated high if:

• At least one domains was rated to be at high risk of bias.
• At least four domains were rated to be at moderate risk of bias.

A.3 Risk of Bias Summary

Overall

Bias in statistical analysis and reporting

Bias due to confounding

Bias due to outcome measurement

Bias due to prognostic factor measurement

Bias due to attrition

Bias due to participation

0% 25% 50% 75% 100%

  High risk of bias    Some concerns        Low risk of bias   

Figure A.1: Unweighted risk of bias summary of all studies included in the systematic review examining
predictors for mortality within one year following hip fracture surgery.

4A priori, it had been decided that moderate risk of bias was acceptable for an overall low risk of
bias. It was anticipated that data missing to follow-up would not be reported in detail in many cases.
However, it was expected that if data were lost to follow-up, that this would mostly concern small
percentages with limited influence on the inferences, as retrospective cohort designs generally allow for
the analysis of very large sample sizes.
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A.4 Certainty of Evidence Assessment (GRADE)

Risk of Bias
Rate down by one level if the cumulative weight of studies at high risk of bias exceeds
60% in an analysis.

Inconsistency
Rate down by one level if I2 exceeds 60%, with unexplained causes for heterogeneity.
Exceptions apply to cases where the interpretation of I2 is misleading due to presence
of large studies which report exceptionally narrow confidence intervals. In these cases,
the forest plots should be examined further to determine whether the majority of the
confidence intervals overlap, and whether the point estimates are similar. If this is the
case, decide against downgrading for inconsistency.

Imprecision
Rate down by one level if both the Knapp-Hartung 95% confidence interval (CI) and the
Bayesian 95% credible interval (CrI) overlap with the null effect.
Rate down by two levels if the DerSimonian-Laird, Knapp-Hartung, and Bayesian C(r)Is
all overlap with the null effect.

Publication Bias
Rate down by one level if the corrected pooled estimate produced by either the L+

0
estimator OR the R+

0 estimator of the trim-and-fill method is 20% lower than the
DerSimonian-Laird estimate. Solely the suspicion of studies being suppressed due to
publication bias is not sufficient for downgrading: the magnitude of the effect of publication
bias is of interest.
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A.5 Bayesian Hierarchical Model Specification
This supplement discusses the Bayesian hierarchical model which was used for the
Bayesian sensitivity analyses with respect to heterogeneity underestimation. The Bayesian
hierarchical model was specified as follows, with parameters based on the model by Harrer
et al.5 (A.1).


θ̂i ∼ N (θi, σ2

i )
θi ∼ N (µ, τ 2)
µ ∼ N (0, 1)
τ ∼ HC(0, 0.5)

(A.1)

where θ̂i denotes the observed effect size in study i, which deviates from the true
underlying effect θi due to sampling errors which are captured by the variance term σ2

i .
It is assumed that θi is drawn from a normal distribution with mean µ and variance τ 2.
The latter two parameters require manual specification by researchers. The underlying
mechanics and rationales are briefly described here, but the reader is referred to the book
by Harrer et al.5 for additional information.
A common problem in meta-analyses involving only a few studies is that the between-study
variance τ 2 is often estimated at exactly zero, even though this is highly unlikely to be
correct6. The estimated effects of prognostic factors are bound to differ due to population
and intervention heterogeneity. Failing to acknowledge between-study heterogeneity leads
to overly confident pooled estimates and potentially false positives in significance testing.
The Bayesian hierarchical model allows prior knowledge and assumptions to be
incorporated into the pooling procedure through so-called weakly informative priors.
Weakly informative priors gently influence the analytical results based on researchers’
theoretically supported assumptions, without biasing the results too strongly towards
researchers’ beliefs. One such valid assumption is that τ 2 should never be zero. In the
proposed Bayesian hierarchical model, this is ensured by modelling the between-study
variance with a Half-Cauchy (HC) prior, which is one of the most used weakly informative
priors for modelling variance terms in Bayesian statistics7. This modelling step is
represented by τ 2 ∼ HC(0, 0.5) in the hierarchical model, which realistically represents
values for τ encountered in meta-analyses5.
To complete the modelling process of θi, only µ is left to be specified. This is the
value that the true underlying effect size attains on average. Since this is challenging to
anticipate, we limit the assumptions imposed by the prior. Choosing µ ∼ N (0, 1) entails
a 95% chance that the mean log odds or mean log hazards attains a value between -2
and 2. This is a conservative guess, since the prior spans both positive and negative
ranges: no assumptions are made about the direction of the prognostic factors’ effects.

5Harrer M, Cuijpers P, A FT et al. Doing Meta-Analysis With R: A Hands-On Guide. 1st ed. Boca Raton, FL and
London: Chapman & Hall/CRC Press, 2021

6Chung Y, Rabe-Hesketh S, Choi I-H. Avoiding zero between-study variance estimates in random-effects meta-analysis.
Stat Med 2013;32:4071-89.

7Gelman A. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 2006; 1:515-34.
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A.6 Forest Plots with Risk of Bias Assessments
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Figure A.2: Forest plot illustrating the increased odds of 30-day mortality for advanced age (per year
increase). High-quality evidence was found for age being a risk factor for 30-day mortality following hip
fracture surgery.

0.01 0.1 1 10 100

Würdemann et al. (2021)

Pang et al. (2020)

Nijmeijer et al. (2016)

Nijland et al. (2017)

Foss and Kehlet (2006)

Chatterton et al. (2015)

27.3%

8.0%

1.4%

39.7%

12.9%

10.7%

2.57 [1.62,  4.07]

2.60 [1.11,  6.10]

6.47 [0.87, 48.10]

2.18 [1.49,  3.19]

3.67 [1.88,  7.17]

4.16 [1.99,  8.68]

2.69 [2.12,  3.43]

Study IV, Random, 95% CIWeight

Odds ratio: ASA Risk of Bias

IV, Random, 95% CI

Total (95% CI)00100.0%

Favours ASA I−II Favours ASA III−V

Heterogeneity: Tau2 = 0.00; Chi2 = 4.12, df = 5 (P = 0.53); I2 = 0%

Test for overall effect: Z = 8.07 (P = 0.00)

+

+

+

+

+

+

?

+

?

?

+

?

+

+

+

+

+

+

?

+

+

+

+

+

+

?

+

+

+

+

+

?

+

+

?

+

?

?

+

+

?

+

D1 D2 D3 D4 D5 D6 Overall

0.01 0.1 1 10 100

Thomas et al. (2014)

Schuijt et al. (2021)

Morrissey et al. (2017)

71.6%

6.2%

22.1%

2.60 [2.12, 3.18]

1.93 [0.97, 3.83]

2.95 [2.05, 4.25]

2.62 [2.21, 3.12]

Study IV, Random, 95% CIWeight

Odds ratio: ASA Risk of Bias

IV, Random, 95% CI

Total (95% CI)00100.0%

Favours point decrease Favours point increase

Heterogeneity: Tau2 = 0.00; Chi2 = 1.17, df = 2 (P = 0.56); I2 = 0%

Test for overall effect: Z = 11.02 (P = 0.00)

+

?

−

?

?

+

?

+

+

+

+

+

+

+

+

+

+

+

?

?

−

D1 D2 D3 D4 D5 D6 Overall

Figure A.3: Forest plots illustrating the increased odds of 30-day mortality for increased ASA scores.
The upper panel shows the influence of ASA III-V compared to ASA I-II. The lower panel shows the
influence per point increase. Based on the pooled estimate comprising most data (upper panel), ASA
scores were rated as a high-quality evidence predictor for 30-day mortality following hip fracture surgery.
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Figure A.4: Forest plot illustrating the increased odds of 30-day mortality in presence of comorbid
chronic renal failures. Moderate-quality evidence was found for chronic renal failure.
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Figure A.5: Forest plots illustrating the increased hazards and odds of 30-day mortality in presence of
comorbid dementia. Based on the pooled estimate comprising most data (lower panel), dementia was
rated as a moderate-quality evidence predictor for 30-day mortality following hip fracture surgery.
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Figure A.6: Forest plot illustrating the increased odds of 30-day mortality in presence of comorbid
diabetes. Moderate-quality evidence was found for diabetes.
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Figure A.7: Forest plots illustrating the increased hazards and odds of 30-day mortality amongst males
compared to females. Both pooled estimates were found to be of high-quality evidence.
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Figure A.8: Forest plot illustrating the increased risk of 30-day mortality in case of lower haemoglobin
levels at admission. Moderate-quality evidence was found for low haemoglobin.
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Figure A.9: Forest plot illustrating the increased risk of 30-day mortality in presence of comorbid heart
failures. Moderate-quality evidence was found for heart failure.

0.01 0.1 1 10 100

Würdemann et al. (2021)

Van de Ree et al. (2020)

Schuijt et al. (2021)

Maxwell et al. (2008)

Khan et al. (2013)

Faizi et al. (2014)

20.4%

18.4%

13.1%

19.6%

11.8%

16.7%

1.10 [0.73, 1.66]

2.53 [1.58, 4.06]

1.94 [0.99, 3.80]

1.51 [0.98, 2.33]

3.56 [1.71, 7.42]

1.66 [0.98, 2.81]

1.81 [1.31, 2.49]

Study IV, Random, 95% CIWeight

Odds ratio: Institutional residence Risk of Bias

IV, Random, 95% CI

Total (95% CI)00100.0%

Favours home Favours institution

Heterogeneity: Tau2 = 0.09; Chi2 = 11.39, df = 5 (P = 0.04); I2 = 56%

Test for overall effect: Z = 3.61 (P = 0.00)

−

?

?

?

+

+

?

?

?

?

+

?

+

?

+

+

+

+

+

+

+

+

+

+

+

−

+

+

+

+

+

+

+

+

+

+

−

−

?

?

+

+

D1 D2 D3 D4 D5 D6 Overall

Figure A.10: Forest plot illustrating the increased risk of 30-day mortality for patients living in an
institution prior to admission. High-quality evidence was found for institutional.
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Figure A.11: Forest plots illustrating the increased risk of 30-day mortality for patients with a history
of any malignancy. Moderate-quality evidence was found for a history of any malignancy.
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Figure A.12: Forest plots illustrating the increased risk of 30-day mortality for patients with non-
metastatic cancer. Low-quality evidence was found for non-metastatic cancer.
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Figure A.13: Forest plots illustrating the increased risk of 30-day mortality for patients with metastatic
cancer. High-quality evidence was found for non-metastatic cancer.
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Vignette Study Supplements

B.1 D-efficiency of Experimental Designs

Figure B.1: Distribution of D-efficiencies for a fixed number of vignettes, each computed for 300
different initial conditions in Federov’s exchange algorithm. Outliers are marked in red.
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B.2 Calibration Questions
Table B.1: Overview of calibration questions and their true seed realisations, accompanied by their
95% confidence intervals (CIs) computed through Rubin’s rules.

Calibration Question Realisation (95% CI)

How many percent of the female hip fracture patients aged 80 years or older
died within 30 days following hip fracture surgery between 2017-2019, according
to the DHFA-TFI group?

8.0% (4.8-11.3%)

How many percent of the male hip fracture patients aged 90 years or older died
within 30 days following hip fracture surgery between 2017-2019, according to the
DHFA-TFI group?

18.3% (13.4-23.1%)

How many percent of the hip fracture patients aged 85 years or older with an
ASA IV classification died within 30 days following hip fracture surgery between
2017-2019, according to the DHFA-TFI group?

25.9% (20.1-31.7%)

How many percent of the hip fracture patients aged 80 years or older with an
ASA II-III classification died within 30 days following hip fracture surgery
between 2017-2019, according to the DHFA-TFI group?

8.2% (4.9-11.5%)

How many percent of the hip fracture patients aged 80 years or older with a
high risk of malnutrition (SNAQ score ≥ 3) and pre-fracture institutional
residence died within 30 days following hip fracture surgery between 2017-2019,
according to the DHFA-TFI group?

22.8% (16.6-29.0%)

How many percent of the hip fracture patients aged 80 years or older with a
high risk of malnutrition (SNAQ score ≥ 3) and preoperative anaemia died
within 30 days following hip fracture surgery between 2017-2019, according to the
DHFA-TFI group?

13.9% (9.2-18.7%)

How many percent of the hip fracture patients aged 80 years or older with a
displaced femoral neck fracture died within 30 days following hip fracture
surgery between 2017-2019, according to the DHFA-TFI group?

6.5% (3.4-9.7%)

How many percent of the hip fracture patients aged 80 years or older who were
fully independent in activities of daily living (Katz score of 6) and at low risk
of malnutrition (SNAQ score ≤ 1), died within 30 days following hip fracture
surgery between 2017-2019, according to the DHFA-TFI group?

4.2% (1.7-6.6%)

How many percent of the hip fracture patients aged 90 years or older, who were
mobile without walking aids and did not have dementia, died within 30 days
following hip fracture surgery between 2017-2019, according to the DHFA-TFI
group?

10.2% (6.3-14.2%)

How many percent of the hip fracture patients aged 80 years or older with an
ASA IV classification and prefracture institutional residence died within 30
days following hip fracture surgery between 2017-2019, according to the
DHFA-TFI group?

33.2% (26.7-39.7%)

How many percent of the hip fracture patients aged 90 years or older with an
extracapsular fracture and preoperative anaemia died within 30 days following
hip fracture surgery between 2017-2019, according to the DHFA-TFI group?

15.7% (11.1-20.3%)

How many percent of the hip fracture patients aged 90 years or older with an
ASA I-II classification died within 30 days following hip fracture surgery between
2017-2019, according to the DHFA-TFI group?

3.9% (1.4-6.4%)

How many percent of the hip fracture patients aged 90 years or older with an
ASA III-IV classification, dementia and pre-fracture institutional residence
died within 30 days following hip fracture surgery between 2017-2019, according
to the DHFA-TFI group?

23.2% (17.6-28.7%)

How many percent of the hip fracture patients aged 90 years or older with
severe functional handicaps (Katz score 0-2), died within 30 days following hip
fracture surgery between 2017-2019, according to the DHFA-TFI group?

16.7% (12.1-21.3%)



Chapter B: Vignette Study Supplements 147

B.3 MCMC Convergence Diagnostics

Figure B.2: Trace plots and densities of the posterior distributions of the β-coefficients (1/3).
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Figure B.3: Trace plots and densities of the posterior distributions of the β-coefficients (2/3).
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Figure B.4: Trace plots and densities of the posterior distributions of the β-coefficients (3/3).
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Figure B.5: Autocorrelation plots of Markov chains for each β-coefficient.
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Figure B.6: Histograms depicting the distributions of posterior samples drawn through Markov Chain
Monte Carlo, for each β-coefficient.
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Activity Recognition Supplements

C.1 Rationale Behind Chosen Number of Sensors
The static activities of interest for the human activity recognition (HAR) system included
sitting, standing, and lying down. Based on the analysis of expected accelerometer values
for these activities, as shown in Table C.1, it was postulated that a single accelerometer
was unable to distinguish between all static activities. The MOX on the upper leg was
anticipated to yield highly similar axes orientations during sitting and lying down (supine).
The APDM on the lower back was anticipated to yield highly similar axes orientations
during sitting and standing. Combined, however, sufficient distinct information should
be available to distinguish between all static activities. Therefore, a minimum of two
accelerometers was expected to be necessary to successfully develop a robust HAR system.

Table C.1: Overview of expected accelerometer values (m/s2) for the static activities of interest for
the human activity recognition task. The expected accelerometer values are provided for the MOX on
the upper leg, and the APDM on the lower back.

Static activities MOX orientation (upper leg) APDM orientation (lower back)

X-axis Y-axis Z-axis X-axis Y-axis Z-axis

Sittingab 0 0 9.81 -9.81 0 0
Standingb 9.81 0 0 -9.81 0 0
Lying down (supine)a 0 0 9.81 0 0 9.81
Lying down (facing left) 0 9.81 0 0 -9.81 0
Lying down (facing right) 0 -9.81 0 0 9.81 0

a It is anticipated that the MOX alone is unable to distinguish between distinguish between sitting and supine
b It is anticipated that the APDM alone is unable to distinguish between sitting and standing
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C.2 Anomalous Drifts in Walking Accelerations

Figure C.1: Comparison of typical walking accelerations (left panel), and anomalous walking
accelerations with a baseline drift along the Z-axis (right panel).

C.3 Individual Participant Performance
Table C.2: Individual participant performance for each activity. The F1-scores are reported for the
feature intervention model (FIM), control condition model (CCM) and complete data intervention model
(CDIM).

Participant F1 Walking F1 Standing F1 Sitting F1 Lying down F1 Transfer

FIM CCM CDIM FIM CCM CDIM FIM CCM CDIM FIM CCM CDIM FIM CCM CDIM

1 0.45 0.11 1.00 0.86 0.88 0.93 1.00 1.00 0.96 1.00 1.00 1.00 0.50 0.18 0.15
2 0.83 0.85 0.69 0.93 0.94 0.94 1.00 0.99 0.93 1.00 0.98 1.00 0.67 0.58 0.18
3 0.89 0.87 0.82 0.91 0.89 0.92 1.00 1.00 0.67 0.99 1.00 1.00 0.76 0.76 0.04
4 0.95 0.93 0.93 0.97 0.94 0.94 1.00 0.99 0.99 1.00 1.00 1.00 0.90 0.90 0.90
5 0.93 0.87 1.00 0.96 0.93 0.95 1.00 1.00 0.33 1.00 1.00 1.00 0.97 0.84 0.04
6 0.90 0.96 0.60 0.90 0.95 0.91 1.00 1.00 0.91 0.94 1.00 0.94 0.70 0.77 0.10
7 0.92 0.97 0.86 0.94 0.98 0.96 0.99 0.99 0.98 1.00 1.00 1.00 0.72 0.67 0.57
8 0.90 0.90 0.67 0.88 0.85 0.87 1.00 0.99 0.96 0.99 0.99 0.99 0.69 0.64 0.31
9 0.91 0.71 0.78 0.96 0.90 0.94 0.99 1.00 1.00 1.00 1.00 1.00 0.71 0.75 0.88
10 0.90 0.91 1.00 0.93 0.93 0.94 1.00 1.00 0.99 1.00 1.00 1.00 0.88 0.78 0.69
11 0.90 0.92 0.80 0.93 0.95 0.93 1.00 1.00 1.00 0.97 0.97 0.97 0.89 0.86 0.86
12 0.93 0.88 0.62 0.97 0.95 0.97 0.99 0.99 0.99 1.00 1.00 0.99 0.77 0.61 0.62
13 0.89 0.93 0.86 0.88 0.92 0.88 0.98 0.99 1.00 0.93 0.99 0.00 0.83 0.67 0.12
14 0.92 0.92 0.78 0.97 0.97 0.97 1.00 1.00 0.37 0.91 0.91 0.91 0.80 0.88 0.03
15 0.90 0.88 0.86 0.95 0.95 0.94 1.00 1.00 0.51 1.00 1.00 0.99 1.00 0.92 0.04
16 0.94 0.80 0.92 0.94 0.85 0.95 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.86 0.92
17 0.95 0.89 0.73 0.97 0.95 0.96 1.00 1.00 1.00 0.91 1.00 0.91 0.85 0.70 0.85
18 0.87 0.84 0.79 0.91 0.86 0.93 0.99 0.99 1.00 0.00 0.15 0.00 0.72 0.77 0.59
19 0.92 0.96 0.67 0.92 0.93 0.93 1.00 1.00 0.94 0.97 0.97 0.99 0.80 0.72 0.27
20 0.95 0.88 0.87 0.83 0.68 0.86 1.00 1.00 1.00 0.94 1.00 1.00 0.85 0.80 0.93
21 0.97 1.00 0.93 0.95 1.00 0.95 1.00 1.00 0.93 1.00 1.00 1.00 0.86 0.89 0.20
22 0.92 0.92 0.89 0.93 0.95 0.96 1.00 1.00 0.86 1.00 1.00 1.00 1.00 0.91 0.37
23 0.93 0.84 0.93 0.97 0.91 0.97 1.00 1.00 0.90 1.00 1.00 1.00 0.97 0.93 0.16
24 0.92 0.91 0.85 0.88 0.82 0.80 1.00 0.99 1.00 0.95 0.95 0.91 0.86 0.74 0.83
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