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Abstract: 

Cities all over the world are increasingly exposed to the Urban Heat Island (UHI) phenomenon 

as a result of global warming and urbanization. Data-driven models have gained popularity 

over the recent years and are used to analyze UHI intensity in different urban settings. These 

models specifically address the need for an easy-to-use assessment tool that can incorporate 

UHI concerns in the decision-making of urban planning. Multiple data-driven models that 

employ location specific data have been developed and successfully validated for Land Surface 

Temperature (LST) estimation in cities. It would be of great value to be able to reuse the trained 

UHI models for multiple cities, because this saves the effort to train the model with location 

specific data for every city in advance. Yet, previous research provides very little insight into 

the extent to which such data-driven models are generalizable for cities that are different in 

size, population, and regional climate. This research aims to conduct a comprehensive 

generalizability study of a Random Forest (RF) regression approach in relation to different 

levels of similarities between the urban characteristics of the cities used in this research. To 

this end, five different cities from three different countries were selected to cover a diverse 

range of (dis-)similarities in urban contexts. The individual models that were developed for 

each city are shown to be accurate in LST estimation in the cities for which they were trained. 

However, external cross-validation of the model to data from other urban contexts reveals that 

the proposed data-driven models have very low generalization capabilities, regardless of the 

observed (dis-)similarities between the cities. It was concluded that small changes in the feature 

properties can result in significant variation in the UHI behavior, and therefore the 

generalization is deficient. The results of this research show that the emergence of UHI is very 

context-specific, and that implies that implementation of standardized/universal mitigation 

strategies across cities world wide may be inappropriate. Instead, urban planners should 

address UHI in a location-specific manner, considering the local UHI mechanism for any given 

city. 
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1 INTRODUCTION 

The construction sector is currently facing several major challenges as a result of climate change 

and the trend that is observable in the growing world population. Urban areas are expanding 

horizontally and vertically as more people converge towards large cities to settle. The United 

Nations anticipates the urban areas (i.e., cities) to be inhabited by 68% of the world's population 

by 2050 (United Nations, 2018). As a result, urban planners are left with the challenge of 

accommodating sustainable, safe and livable environments in cities, as those are expected to grow 

considerably in the near future. On top of urbanization, environmental impacts will bring 

additional issues to the drawing board for city developers in the coming years. The properties of 

building materials that are comonly used in urban areas (i.e., colors, surface roughness, thermal 

conductivity) lead to increased storage of solar radiation in cities compared to their rural 

environments. Furthermore, anthropogenic heat released from buildings due to human activities 

and the lacking availability of moisture to evaporate from hard surfaces also contribute to 

temperature rise in cities (Ahmed Memon et al., 2008; Pena Acosta et al., 2021a). The phenomenon 

of heat generation in urban areas is commonly known as the Urban Heat Island (UHI) effect. 

Human health, living comfort, and the local economy suffer from extremely high temperatures in 

urban areas that are prone to the UHI (Akbari et al., 2016). Among the most vulnerable segments 

of society are, for example, elderly or very young people (Akbari et al., 2016), people living in 

low-income housing (Sakka et al., 2012), but also people that are performing long lasting physical 

work in warm environments, like for example construction workers that have died from heat-

related illnesses (Acharya et al., 2018).  

Needless to say, the UHI effect plays an important role in the design of urban environments. 

Design decisions in urban planning are to a great degree made at street level, stressing the necessity 

to provide comprehension about UHI intensity at this scale. But in practice, UHI analyses are not 

widely considered by urban planners due to the complexity of UHI modelling. Conventionally, 
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archtects and sustainability engineers use physics-based simulation methods to model the UHI 

effect at micro- (i.e., individual buildings or street segments) and local-scale (i.e., 

neighbourhoods). These physics-based approaches rely on governing fluid dynamics principles, 

such as thermal convection, solar radiation exchange, and air ventilation around buildings 

(Mirzaei, 2015). EnergyPlus, Envi-met, and Urban Weather Generator are some examples of 

simulation software packages that are commonly used among architects and sustainability 

engineers to evaluate UHI. Among urban planners however, such tools are hardly used in the 

decision-making process. One major drawback of physics-based modeling is that the scale to 

which it can be applied is limited due to the computational capacity that is required for the 

calculations (Mirzaei, 2015). They require extensive representations of the building geometries 

and properties of building materials, which results in that similuations are often simplified (i.e., 

reduced to one building or urban canyon). Furthermore, developing these models can be time-

consuming, and simulation results can become too complex to be interpreted and implemented in 

the decision-making of urban design by average city planners. 

Meanwhile, data-driven models have gained more popularity for UHI assessment at micro-scale 

over the last years. The increasing availability of urban data and data-driven models are used to 

find correlations between simplistic urban characteristics (i.e., low level of detail in the properties) 

and heat generation, without the need of modeling the heat exchange process, which involves 

numerous parameters and properties. One advantage of data-driven modeling is that the end user 

does not necessarily need full understanding of how output variables are predicted using the given 

independent input variables. Many Machine-Learning (ML) applications are known for analyzing 

buildings' energy performances and other UHI-related issues for specific urban environments 

(Gobakis et al., 2011; Pena Acosta et al., 2021a, 2021b; Wu et al., 2019; Zhang et al., 2019). The 

recent work of  the authors (Pena Acosta et al., 2021b) implemented both a Random Forest (RF) 

and Decision Tree (DT) regression approach to make a distinction between five UHI intensity 
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levels at street level, using publicly available datasets carrying geospatial information obtained 

from Geographic Information System (GIS) models. The DT regressor was applied to the city of 

Montreal, Canada, and performed very efficiently with an accuracy of 93%. However, a common 

question for data-driven models is to what extent they are generalizable. In this case, the question 

was raised how accurate the ML model can estimate UHI intensity in case it was trained employing 

data from one single city, and asked to predict temperatures in a city that is different in size, 

environmental climate, urban morphologies (e.g., building geometry, average building height to 

street width ratio (H/W), built-up density, water bodies, and vegetation) and socio-economic 

characteristics (e.g., land use, population density, and traffic flow).  

A generalizable data-driven predictor of UHI intensity could be of great value for urban planners, 

as it would yield high accuracies in UHI prediction at micro-scale for any given circumstances, 

without the necessity to employ location specific data to train the model in advance. Furthermore, 

such models could substitute physics-based models that are known to be complex and time-

consuming in practice. Nevertheless, a recent study (Pena Acosta et al., 2021b) demonstrated that 

in case the model is asked to predict temperatures outside the context of the training dataset in a 

different urban environment, the algorithms perform poorly for that particular case. This suggests 

that the generalizability of the model is limited.  However, to the best of the author’s knowledge, 

the coverage of current research on the domain of generalizable data-driven UHI assessment is 

insufficient as it is not yet applied to urban areas that are more similar in the core characteristics 

that affect UHI intensity in cities. Furthermore, whilst several studies investigated the influence of 

different factors on the UHI effect, quantification of the importance of these factors is sparce in 

the related literature. (Sangiorgio et al., 2020) quantified the contribution of a number of factors 

to UHI intensity for the first time. The results of their study suggest that presence of vegetation 

and the urban albedo (i.e., capacity of urban surfaces to reflect solar radiation) are the most 

important factors for UHI, followed by population density, street widths, canyon orientation and 
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building height. These empirical results were obtained from case studies in 41 European cities. 

However, supplementary researches that support these findings are lacking. Moreover, the 

inequality in the degree to which different factors contribute to the UHI effect in different urban 

contexts is not fully understood.  

In this research, a comprehensive generalizability study for a data-driven UHI assessment tool is 

conducted, considering five different cities that have varied levels of (dis-)similarities in the core 

characteristics that correlate to the UHI effect. This aims to better understand the importance of 

factors influencing UHI in different urban contexts, and the extent to which the proposed data-

driven modelling approach is generalizable for cities from different environments, sizes, and 

populations. This paper is structured as follows: The next section describes the methodology for 

assessing the generalizability of the proposed method in different scenarios. Thereafter, the results 

of the generalizability study are presented. The paper closes with a discussion and conclusions 

drawn from the research results presented in this study.  

2 RESEARCH METHODOLOGY 

Figure 1 shows a schematic representation of the research framework, including data collection, 

data processing, and data analysis. The generalizability of the data-driven model for different urban 

contexts is assessed by means of a combination between two measures, which are the most 

prominent outputs of the framework. The first is the performance of the ML models resulting from 

external cross-validation (i.e., applying the optimized model of each city to samples from the other 

four cities, that are different in urban context). The second is the pairwise quantification of the 

(dis-)similarity in urban context that exists between the cities under consideration. This section 

describes the research methodology, following the elements in the research framework of figure 

1.  



6 

 

 

2.1 Data Collection 

2.1.1 City selection 

For this study, five different cities were selected of which publicly available geospatial data was 

gathered. The criteria to select the cities in this research should be based on the ability to measure 

similarities and dissimilarities in the urban characteristics that influence UHI. It is hypothesized 

that the model will be generalizable for cities that are similar in the factors that have the most 

impact on UHI intensity at street level. Yet, differences in these characteristics are reflected in the 

distributions (i.e., mean, variance, and the shape of the distribution) of the features that are used 

in the model, and are therefore indistinguishable before the data for the selected cities has been 

collected and processed. Accordingly, cities were selected based on their proximity and (dis-

)similarities in size, population and climatic environment. The similarities derived from the feature 

distributions are quantified after the data has been collected and processed, as will be explained in 

subsection 2.3.3. Table 1 lists the five cities that were selected for this research. The regional 

climate, city size, and population are presented as indicators for the environmental, urban 

morphological and socio-economical factors respectively. 

2.1.2 Feature selection and data availability 

The data used in this study are available through open data sources, mainly operated by local 

governmental institutions. Hence, the cities in this study do not share the same data sources. The 

characteristics and structure of the data however, remains similar for all cities in this study in order 

to allow comparison between UHI assessment in different scenarios. The availability of the data 

through open sources has been a boundary condition for the feature selection in this research. The 

data that were gathered as input for the ML model carry information about 11 features (i.e., 

explanatory variables) that influence the UHI intensity, and the land surface temperature (LST) as 

response variable. The inclusion of most features (building geometries, vegetation, waterbodies, 

H/W ratio, population density, and land use) were adopted from a proposed data-driven model 



7 

 

 

(Pena Acosta et al., 2021b) that has shown to be accurate in estimating LST at street level. The 

ground surface elevation, retrieved from Digital Elevation Models (DEM), is added to the ML 

model as it known to have an significant impact on UHI intensity (Wu et al., 2019). Table 2 lists 

the features and the corresponding publicly available sources of the data that are used for the cities 

that were analyzed in this research. The LST data for all cities are derived from Landsat 8 satellite 

images (Landsat Data Access | U.S. Geological Survey), employing multiple images taken in the 

summers between 2019 and 2021. Only satellite images were used that have a proportion of cloud 

cover less than 30% to reduce the noise in the temperature data. After establishing the availability 

of the data required for all cities, the data will be collected and processed afterwards. 

2.2 Data Processing 

The processing of the data is carried out in ArcGIS mapping software. The general workflow for 

data processing is consistent with the proposed approach (Pena Acosta et al., 2021b). The 

following subsections provide a brief elaboration on the data processing approach. 

2.2.1 Specify Street Buffers 

The urban feature data and LST data that have been collected for each city has to be rearranged at 

street level, such that each observation reflects and distinguishes the local socio-economical and 

urban morphological characteristics, and the LST of that particular street segment. To this end, a 

buffer is created around the centre line of each street segment, used to capture and group the feature 

characteristics for each observation into one unit. The buffer distance was set at 15 meter in the 

proposed model (Pena Acosta et al., 2021b), and kept equal in this study. Figure 2 shows an 

example of a buffer area that is computed around a centre line of a street segment. 

2.2.2 Compute Feature Values 

The features that are used to develop the databases take different forms, and require different 

computations, as described hereafter. The street widths for New York were directly available in 
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the data source that is listed in table 2. For the other cities, the widths of the streets were not 

available as a feature in the publicly available data. Hence, the street widths were obtained by 

calculating the average closest distance along the street centre line to the outside boundary of the 

roadbed. The densities per street segment (i.e., building density, vegetation density, and water 

density) were computed by the taking the proportion of the buffer area that is overlapping with 

either buildings, vegetation, or water respectively. Figure 3 shows an example of how the 

overlapping areas of buildings, vegetation, and water are isolated in a street buffer, using the 

ArcGIS software. The different land use descriptions have been labeled according to eight 

categories listed in table 3. Subsequently, the predominant land use is represented by the land use 

category of which the proportion is most dominant within the buffer area, as illustrated in figure 

4. The population data for all cities are composed of grids that return the number of people per 

cell. The mean population per street section is computed by the weighted average (i.e., taking the 

proportions of cells that are within the buffer into account) of the population in each cell, as 

illustrated in figure 5. The mean building height is also derived from the weighted average within 

the buffer. The elevation is obtained by taking the average value of the DEM within the buffer 

area. 

2.2.3 Calculate ΔLST 

The intensity of UHI is generally expressed in terms of the LST differential (ΔLST) in the urban 

area, compared to its rural environment (Oke, 1973). The LST is estimated using Landsat 8 thermal 

bands using (USGS Landsat Level-1 Data Product | U.S. Geological Survey). The satellite images 

were processed according to the NDVI algorithm (Sobrino et al., 2004). The availability of useful 

satellite images between 2019 and 2021 per city varied from a maximum of nine for the cities of 

Apeldoorn, Rotterdam, New York, and Montreal, to a minimum of five for the city of Enschede. 

The value for ΔLST in each observation is calculated by the difference between the average LST 

within the created buffer, and the averaged reference LST measured at three independent locations 
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in the rural environment of the city. Figure 6 shows a LST map of the city of Enschede after 

processing the Landsat 8 images, and the locations of three reference points in the rural 

environment of the city.  Worth mentioning is that, different from other comparable data-driven 

UHI assessment studies, this research aims to investigate the generalizability of the model for 

different urban contexts. Many studies on the causes and mitigations strategies of UHI point out 

that the order of magnitude of UHI intensity is sensitive to the local environment, and in particular 

the local baseline temperature. This makes comparison of ΔLST between cities from different 

environments inappropriate. For instance, the average observed LST for New York City was 37.0 

°C, while it was 24.3 °C for the city of Apeldoorn. This difference between the observed urban 

environments will bring noice to the training datasets that are used for both cities. Accordingly, 

the average percentage difference ΔLST [%] for each observation, relative to the reference LST in 

the local rural environment, is used as responsive variable. Thus, the magnitude of ΔLST per city, 

in terms of percentage is used to account for environmental differences between cities. The ΔLST 

[%] for each observation is averaged using the created buffer areas, resulting in 20% increase in 

LST on average for Apeldoorn, and 17% for New York City, as an example. The computed values 

for the features and the ΔLST [%] of each observation are combined, and the data is cleaned (i.e., 

duplicate removal and  fixing structural errors), resulting in five datasets of which the general 

structure is shown in table 4.  

2.3 Data Analysis 

2.3.1 Data selection 

Due to the differences in size of the observed cities, the available data populations per urban 

context will vary. Generally, the performance of ML models improves as the data population used 

for training increases. However, due to the need for comparison between the models that are 

developed for this study, a consistent number of data instances is used for all cities to develop the 

best-performing model, and perform external cross-validation. The populations that are used for 
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each of the cities are equal to the urban context that yields the smallest data population in total. 

For the remaining cities, the data instances are randomly selected from the total population. 

2.3.2 Individual RF regressors 

An RF regression approach is implemented, as random forests are known to be less prone to 

overfitting than DTs due to the use of multiple randomly generated trees. This makes RF more 

suited for generalization problems in general (Breiman, 2001; Lan et al., 2020). The 

implementation of the RF algorithm was carried out in the Python distribution platform, utilizing 

the scikit-learn library (Pedregosa et al., 2011). The selected data populations are randomly split 

into subsets with a 70:30 training and testing ratio. Two methods for hyperparameter tuning are 

used from the scikit-learn library. First, RandomizedSearchCV is applied to narrow down the 

range for each hyperparameter (i.e., number of estimators, minimum samples per split, min 

samples to reach a leaf, maximum depth, bootstrapping). Subsequently, GridSearchCV is used to 

obtain the hyperparameter settings of the best-performing models. The performance of the RF 

regressor is estimated by means of the Mean Absolute Error (MAE) and the Mean Absolute 

Percentage Error (MAPE) in the prediction of  response variable ΔLST [%]. For each model, the 

goodness of fit is estimated by means of R-squared (R2). 

2.3.3 Similarity Index 

To better understand the generalizability of the model for different urban context, the (dis-

)similarities in the feature properties between each of the models are studied. For all combinations 

of two cities a similarity index (SI) is developed that represents the degree of (dis-)similarity that 

exists between the two cities. First, the relative contribution of the features that are used in the 

model is investigated. To this end, the feature importances are extracted from the best performing 

RF regressor of each city, using the scikit-learn library. Subsequently, the dissimilarities in the 

distributions per feature are examined. A two-sample Kolmogorov-Smirnov (KS) test is used to 

quantify the distance between two empirical distributions, considering the KS-statistic (D) as a 
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measure for the dissimilarity. The distance between the given distributions of feature F(x) of two 

cities y and z is obtained following equation (1): 

(1) 𝐷𝑦𝑧 =  |𝐹𝑦(𝑥) − 𝐹𝑧(𝑥)|
𝑥

𝑠𝑢𝑝
 

Where Dyz is the KS-statistic (i.e., distance) corresponding to cities y and z, and supx is the 

supremum (i.e., largest absolute difference) of the cumulative functions Fy(x) and Fz(x). The 

feature importances (FI) of the best performing model of city y operate as a weighing factor to 

calculate dissimilarities. The SI is calculated by taking the sum of all feature distances, multiplied 

by the corresponding feature importances. The calculation of the SI is expressed in following 

equation (2): 

(2) 𝑆𝐼𝑦𝑧 =  ∑ 𝐷𝑖 ∗ 𝐹𝐼𝑖 +  𝐷𝑖+1 ∗  𝐹𝐼𝑖+1 … +  𝐷𝑛 ∗ 𝐹𝐼𝑛
𝑛
𝑖  

Where SIyz is the similarity index for the best performing model of city y cross-validated to city z. 

Di  is the KS-statistic for feature i (obtained from equation (1)), FIi  is the feature impotance 

considering feature i, and n is the number of features used in the RF regressor. Since external 

cross-validation between two cities is performed in two ways (i.e., city y to city z, and city z to city 

y), the SI in each direction is different because the feature importances of city y are not equal to 

those of city z. The structure of table 5 is used to calculate the SIs for all scenarios.  

2.3.4 External cross-validation 

The best performing model for each city in terms of R2 is asked to predict ΔLST [%] for the unseen 

data of the remaining four cities, resulting in 20 external cross-validations in total. In the next 

section, the generalizability of the RF regressor is assessed for different scenario’s, considering 

the varying levels (dis)-similarities, expressed in the SIs. 

3 STUDY RESULTS 

This section presents the results of the generalizability study, arising from the research framework, 

depicted in figure 1. An elaborate discussion on the study results is provided in the upfollowing 
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section. The collection and processing of the data resulted in five independent datasets, structured 

according to table 4. Due to the differences in size between the observed urban areas, the datasets 

vary in population size (see table 6 for data populations per city). The city of Montreal yields the 

smallest number of observations (slightly over 5000). In contrast, the data for New York City adds 

up to a total of 83.000 instances, making this dataset the largest. The histograms of the data in 

terms of ΔLST [%] for all cities are presented in figures 7 – 11.  

The dataset of each city that is used for further analysis is reduced to a total number of 

approximately 5000, selected from the total data populations. Random selection however, results 

in unbalanced datasets in terms of ΔLST [%], especially for the larger populations like New York 

and Rotterdam. Since only a small proportion of the total population is selected for these cities 

(5000 out of 83.000 and 15.000 respectively), it is more likely that instances close to the mean are 

selected, as there are considerably more observations in this range compared to the lower and 

higher values of  ΔLST [%]. As a result, the data instances with relatively high and low UHI 

intensities are overlooked. Likewise, the RF regressor gains the most information from a more 

varied dataset. Particularly the higher and lower UHI intensities are of major interest for city 

developers, in order to evaluate mitigation strategies. Therefore, the 5000 data instances are picked 

from the total population, such that the range and variance in terms of ΔLST [%] is maximized for 

each city. Figures 12 – 16 show the histograms of the datasets that were used for training and 

testing of the models.  

The individual models for each city are trained using the best hyperparameter settings (i.e., 

yielding the highest value for R2). Table 7 shows the feature importances per city, derived from 

the best-performing RF regressors. A sixth row was added to show the average of the feature 

importances that were derived from the best-performing models, and a seventh row that shows the 

feature importance, based on a model trained on a mixed dataset (i.e., containing the 5000 data 

instances of each city). Subsequently, the SIs for the different scenarios are calculated, considering 
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the KS-statistic for the feature distance, multiplied by the feature importance retrieved from the 

optimized model. Table 8 shows the SIs for all scenarios that were analyzed in this study. The 

values in the diagonal of the grid are equal to 1.00, since the cities used for training and testing in 

these scenarios constitute the exact same urban context. Table 9 summarizes the performance of 

the RF regressor in terms of MAE, R2 and MAPE for different scenarios. The metrics for the best-

performing models per city are positioned in the diagonal of the grid. Figures 17 – 21 show the 

scatterplots, resulting from the best performing models and external cross-validation for each city.  

The correlation between tables 8 (Similarity Indeces) and 9 (model performance) is further 

analyzed to divulge the generalizability of the proposed model, in relation to the (dis-)similarities 

between the cities. To this end, a Pearson’s correlation test is performed, summarized in table 10.  

Because the external cross-validation of all models signifficantly reduced performance of the 

models, as will be explained in the discussion section, five additional scenarios were analyzed in 

which the model was trained on a mixed dataset containing the 5000 data instances from four 

cities, and tested on the fifth city of which the data was excluded from the training dataset. The 

reasoning behind this strategy is that all individual models are only able to capture location specific 

UHI behavior, and therefore, it is assumed that the regression models fail to generalize for the 

other cities. The advantage of mixing the datasets with feature vectors from different cities is 

twofold. First to mention, the model is trained on a larger dataset, which generally improves the 

accuracy and generalizability of RF regressors. Second, a mixed dataset captures a more averaged 

relationship between UHI intensity and the feature values of different cities, reducing the chance 

of overfitting the training data obtained from one specific urban context. In the five additional 

scenarios, the model is trained on a mixed dataset containing approximately 20.000 data instances 

from four out of the five cities, and external cross-validated on the 5000 data instances from the 

city that was not included in the mixed data population. Figures 22 – 26 show the scatterplots and 
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performance metrics of the five scenarios. In the following section, the results of the 

generalizability study are discussed. 

4 DISCUSSION AND CONCLUSIONS 

Recent research has shown that the proposed data-driven method to analyze UHI intensity at 

micro-scale could be a reliable substitute for conventional physics-based models, which are known 

to be too complex and time consuming for average city planners. The use of simplistic feature 

vectors that are easily obtained through open data sources, and the interpretability of the models 

make this an easy-to-use tool for the assessment of UHI. This section discusses the results of the 

conducted generalizability study for the proposed model.  

All individual ML models show good predictability within the scope of the training datasets that 

were used to develop the RF regressors for each city. The data for Enschede, Apeldoorn, and 

Montreal fit the regression models best, indicated with an R2-value around 0.7. The R2-values for 

Rotterdam and New York are 0.56 and 0.63 respectively. This difference could be explained by 

the fact that a smaller proportion of the total data population was used for the cities of Rotterdam 

and New York, and UHI behaviour within the scope of larger cities may vary more in different 

neighbourhoods, compared to smaller cities. The model of Montreal performs best with MAE 

equal to 0.02, which is equal to an everage error of 0.49 ℃ (0.02 ΔLST [%] error relative to the 

reference temperature which was 24.5 ℃ for Montreal), and MAPE equal to 0.13, as shown in 

figure 21(a). The model of Rotterdam performs worst with an MAE equal to 0.07, which is an 

average error of 1.68 ℃, and MAPE of 4.45, shown in figure 19(a).  

From the best performing models, the feature importances were derived. On average, the ground 

surface elevation, vegetation density, and landuse are the most important features, followed by the 

population density, building density, street width, and maximum building height. These outcomes 

are quite consistent with the findings of comparable research, that also marked vegetation, 

population, street widths, and building height as important factors for UHI (Sangiorgio et al., 
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2020). Noteworthy, not all features that were analyzed are exactly the same in both studies, and 

these observations are the result of average UHI behaviour and do not necessarily represent all 

individual cities. The feature importances that were derived from the mixed dataset are more or 

less consistent with the average feature importances of all the individual models. When looking at 

the feature importances of the models (table 7), the individual values hover around the average 

feature importance. The maximum deviation from the averaged values are the feature importances 

of vegetation density and population density for the city of Enschede (0.137 and 0.115 higher than 

the mean respectively). All other values are within 0.1 range of the average feature importances. 

In this research, (dis-)similarities in the most important urban characteristics between the observed 

cities were quantified. As indicated by tables 1 and 8, the resulting SIs are very little related to the 

geographic proximity, and the differences in size and population of the cities in this study. 

However, while the SIs are the result of the differences in feature importance and the feature 

distributions, they still might help in explaining the generalizability potential of the model for 

different cities.  

The individual models for each of the cities show good predictability within the context of the 

training data. The model of Rotterdam performs worst, where R2 is 0.56 and MAPE is 4.45, but 

still shows good predictive capability. This confirms the validity of the model in case it is applied 

to the context of the training data. However, for all of the 20 scenarios in which the trained model 

was cross-validated to data from another city, the performance decreases drastically. The wide 

spreaded observations in the scatterplots and low R2 values in figures 17 (b, c, d, and e)  – 21 (b, 

c, d, and e) are indicators for low generalizability of the model. None of the scenarios that were 

analyzed show reasonable predictive capacity outside the scope of the training data. The 

correlation between the SI and the cross-validated models was further investigated. As can be seen 

in table 10, the high P values and low values for the correlation coefficient (r) for all three 

performance metrics suggest a weak correlation between the SIs and the model performances. This 
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weak correlation stresses the strong dependency of the ML model on the specificities of the urban 

context (i.e., small variations in the model’s feature properties result in significant variation in the 

predicted UHI intensity). Although the differences in feature importances are relatively small, as 

shown in table 7, the model is not generalizable for the cities other than the one that was used for 

training.  

In five additional scenarios, the model was trained on a mixed dataset and cross-validated on data 

instances from a city that was excluded from the training data. As can be seen in figures 22 – 26, 

the mixed models performed slightly worse than the individual models that were developed for 

each city. The worst performing model concerned the one that excluded Enschede from the mixed 

data, and performed with an R2-value of 0.61 and MAPE of 3.44. Yet, when the mixed models 

were cross-validated to the unseen data of the excluded city, again the performance dropped 

significantly. This, in addition to the other scenarios that were analyzed in this study, indicate that 

the models are too sensitive to small differences in urban context, eventhough the variety and 

quantity of the training data was expanded.  

From the conducted research it can be concluded that model has low generalizability for cities 

from different contexts. It appears that UHI behavior is very sensitive to the local environment, 

and that the magnitude of the factors contributing to UHI may vary for different environments. 

This finding indicates that world wide universal strategies to mitigate UHI intensity may have 

different outcomes in different urban contexts, and therefore, the implementation of a standardized 

‘one-size-fits-all’ strategy may be inappropriate, or at least suboptimal. Instead, the UHI 

phenomenon should be studied and addressed in a context-specific manner, considering the local 

driving factors of UHI for any given urban context. The proposed data-driven modeling approach 

shows great potential in revealing the UHI mechanism for any city and it is fairly easy to 

implement, in spite of the differences in how the required data are structured and stored by different 

governmental institutions. This indicates the strong possibility and adding value of using this 
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approach in urban planning decision-making, as it provides a proper substitute conventional 

assessment methods. 
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Figure 1. Conceptual research framework 
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Figure 2. Buffer area used to capture urban features 

 

 

 

Overlapping 

features: 

 

Vegetation 

 

Buildings 

 

Roadbed 

 

Water bodies 

Figure 3. Isolation of urban features that are overlapping with the buffer area 
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 Figure 4. Determination dominant land use,  

adopted from (Pena Acosta et al., 2021a) 

Figure 5. Determination population density,  

adopted from (Pena Acosta et al., 2021a) 
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Figure 6. Heat map of the city of Enschede and locations of reference 

temperatures used to calculate ΔLST [%] 

 

  



3 

 

 

 

 

N = 7.143 

Figure 7. ΔLST [%] histogram, total data population Enschede  

 

 

N = 6.692 

Figure 8. ΔLST [%] histogram, total data population Apeldoorn  

 

 

N = 15.864 

Figure 9. ΔLST [%] histogram, total data population Rotterdam  
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N = 83.822 

Figure 10. ΔLST [%] histogram, total data population New York  

 

 

 

N = 5.266 

Figure 11. ΔLST [%] histogram, total data population Montreal  
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N = 4.763 

Figure 12. ΔLST [%] histogram, selected data population Enschede  

 

 

N = 4.678 

Figure 13. ΔLST [%] histogram, selected data population Apeldoorn  

 

 

N = 4.640 

Figure 14. ΔLST [%] histogram, selected data population Rotterdam  
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N = 5.000 

Figure 15. ΔLST [%] histogram, selected data population New York 

 

 

 

N = 4.696 

Figure 16. ΔLST [%] histogram, selected data population Montreal  
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Figure 17(a). Scatter plot best performing RF, Enschede 
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Figure 17(b). Model Enschede, tested on Apeldoorn Figure 17(c). Model Enschede, tested on Rotterdam 
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Figure 17(d). Model Enschede, tested on New York Figure 17(e). Model Enschede, tested on Montreal 
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Figure 18(a). Scatter plot best performing RF, 

Apeldoorn 
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Figure 18(b). Model Apeldoorn, tested on Enschede Figure 18(c). Model Apeldoorn, tested on Rotterdam 

 

 

 

 

 

 

 

 

MEA 

R2 

MAPE 

 

= 0.07 

= -0.42 

= 1.6 

 

  

MEA 

R2 

MAPE 

 

= 0.06 

= -0.76  

= 0.3 

 

Figure 18(d). Model Apeldoorn, tested on New York Figure 18(e). Model Apeldoorn, tested on Montreal 
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Figure 19(a). Scatter plot best performing RF, 

Rotterdam 
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Figure 19(b). Model Rotterdam, tested on Enschede Figure 19(c). Model Rotterdam, tested on Apeldoorn 
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Figure 19(d). Model  Rotterdam, tested on New York Figure 19(e). Model Rotterdam, tested on Montreal 
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Figure 20(a). Scatter plot best performing RF, New York 
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Figure 20(b). Model New York, tested on Enschede Figure 20(c). Model New York, tested on Apeldoorn 
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Figure 20(d). Model New York, tested on Rotterdam Figure 20(e). Model New York, tested on Montreal 
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Figure 21(a). Scatter plot best performing RF, Montreal 
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Figure 21(b). Model Montreal, tested on Enschede Figure 21(c). Model Montreal, tested on Apeldoorn 
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Figure 21(d). Model Montreal, tested on Rotterdam Figure 21(e). Model Montreal, tested on New York 
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Figure 22(a). Performance mixed dataset excl. Enschede Figure 22(b). Model tested on Enschede 
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Figure 23(a). Performance mixed dataset excl. 
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Figure 23(b). Model tested on Apeldoorn 
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Figure 24(a). Performance mixed dataset excl. Rotterdam Figure 24(b). Model tested on Rotterdam 
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Figure 25(a). Performance mixed dataset excl. New 

York 

Figure 25(b). Model tested on New York 
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Figure 26(a). Performance mixed dataset excl. Montreal Figure 26(b). Model tested on Montreal 
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TABLES 

Table 1. City selection for generalizability assessment 
 City Regional climate City area Population  

 Enschede 

Maritime 

142 km2 158.550  

 Apeldoorn 341 km2 158.800  

 Rotterdam 324 km2 623.652  

 New York 
Humid Continental 

784 km2 8.419.000  

 Montreal 432 km2 1.780.000  

 

Table 2. Publicly available data sources to determine the feature values per city 
 Feature Enschede Apeldoorn Rotterdam New York Montreal  

 Street Width (3D Basisvoorziening - PDOK) (CSCL | NYC Open Data) (Montreal Open Data Portal)  

 Bld Density (3D Basisvoorziening - PDOK) (NYC 3D Model | NYC Open Data) (Montreal Open Data Portal)  

 Veg Density (3D Basisvoorziening - PDOK)  (DoITT) (Montreal Open Data Portal)  

 Water Density (3D Basisvoorziening - PDOK)  (DoITT) (Montreal Open Data Portal)  

 Max Bld Height (3D Basisvoorziening - PDOK)  (NYC 3D Model | NYC Open Data) (Montreal Open Data Portal)  

 Mean Bld Height (3D Basisvoorziening - PDOK)  (NYC 3D Model | NYC Open Data) (Montreal Open Data Portal)  

 Std Bld Height (3D Basisvoorziening - PDOK)  (NYC 3D Model | NYC Open Data) (Montreal Open Data Portal)  

 Elevation (3D Basisvoorziening - PDOK) (DEM | NYC Open Data) (Montreal Open Data Portal)  

 HW Ratio (3D Basisvoorziening - PDOK)  (CSCL | NYC Open Data) (Montreal Open Data Portal)  

 Mean Population (Centraal Bureau Statistiek) (WorldPop - Population Counts) (WorldPop - Population Counts)  

 Predominant Land Use (Geo Services - PDOK) (PLUTO - NYC DCP) (Montreal Open Data Portal)  

 

Table 3. Land use categorization 
 Land Use Category Label  

 Parks and conversation 0  

 Industrial 1  

 Residential 2  

 Commercial 3  

 Governmental 4  

 Agricultural 5  

 Paved open spaces 6  

 Mix 7  

 

Table 4. Example of structured dataset, including all features and dependent variable ΔLST [%] 
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Δ
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S
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 [
%

] 

7,62 0,13 0,26 0,00 10,40 8,98 2,00 3,21 1,17 0,00 7  0,054 

6,09 0,02 0,80 0,00 105,91 104,14 1,82 103,28 17,08 7,61 2  0,044 

5,48 0,00 0,68 0,15 0,00 0,00 0,00 0,71 0,00 19,73 0  0,054 

… … … … … … … … … … …  … 
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Table 5. Example calculation Similarity Indeces for Enschede  
     

Enschede 
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Feature Importance (FI) 0,04 0,07 0,33 0,02 0,06 0,02 0,02 0,12 0,02 0,20 0,11  

 

Apeldoorn KS-Statistic 0,363 0,203 0,204 0,103 0,469 0,400 0,171 0,842 0,172 0,414 0,210 

0.66 

 

1 – KS  0,637 0,797 0,796 0,897 0,531 0,600 0,829 0,158 0,828 0,586 0,790 

FI * (1 – KS) 0,025 0,056 0,263 0,018 0,032 0,012 0,017 0,019 0,017 0,117 0,087 

 

Rotterdam KS-Statistic 0,223 0,071 0,268 0,061 0,222 0,223 0,099 1,000 0,077 0,240 0,195 

 1 – KS  0,777 0,929 0,732 0,939 0,778 0,777 0,901 0,000 0,923 0,760 0,805 

FI * (1 – KS) 0,031 0,065 0,242 0,019 0,047 0,016 0,018 0,000 0,018 0,152 0,089 0.70 

 

… 
 

… … … … … … … … … … … … … 

 

Table 6. Total data populations per city 
 City 

Data 

Population 
 

 Enschede 7.143  

 Apeldoorn 6.692  

 Rotterdam 15.864  

 New York 83.822  

 Montreal 5.266  

 

 

Table 7. Feature importances, derived from best perfoming RFs per city 

 Feature Importance 
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Enschede 0,04 0,07 0,33 0,02 0,06 0,02 0,02 0,12 0,02 0,2 0,11 

Apeldoorn 0,07 0,06 0,27 0,01 0,03 0,02 0,03 0,3 0,03 0,03 0,16 

Rotterdam 0,07 0,09 0,11 0,04 0,08 0,04 0,04 0,3 0,03 0,1 0,12 

New York 0,06 0,07 0,22 0,03 0,1 0,09 0,05 0,11 0,07 0,13 0,06 

Montreal 0,05 0,04 0,17 0 0,04 0,06 0,03 0,37 0,04 0,08 0,1 

 

Average 0,063 0,065 0,193 0,02 0,063 0,053 0,038 0,27 0,043 0,085 0,11 

 

Mix 0,06 0,04 0,24 0,02 0,05 0,05 0,03 0,19 0,03 0,12 0,08 
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Table 8. Similarity Indeces  

  Testing 

 

Similarity 

Index 
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Enschede 1,00 0,66 0,70 0,71 0,62 

Apeldoorn 0,59 1,00 0,54 0,73 0,59 

Rotterdam 0,59 0,52 1,00 0,62 0,47 

New York 0,63 0,65 0,66 1,00 0,47 

Montreal 0,60 0,48 0,41 0,58 1,00 

 

 

Table 9. Test results of external cross-validation of best performing RFs 
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Enschede 

0,05 0,08 0,12 0,09 0,09 

0,71 0,15 0,07 -1,33 -2,71 

0,86 2,52 11,33 1,82 0,58 

Apeldoorn 

0,13 0,05 0,12 0,07 0,06 

-0,44 0,71 -0,11 -0,42 -0,76 

0,86 1,21 10,07 1,6 0,3 

Rotterdam 

0,1 0,09 0,07 0,1 0,06 

0,2 -0,17 0,56 -1,54 -0,92 

2,55 3,48 4,45 2,12 0,38 

New York 

0,13 0,08 0,11 0,04 0,07 

-0,26 0,14 0,04 0,63 -1,03 

1,03 0,97 8,99 0,96 0,31 

Montreal 

0,1 0,08 0,11 0,07 0,02 

0,18 -0,06 -0,04 -0,26 0,7 

1,15 1,64 5,25 2,12 0,13 

 

Table 10. Correlations between Similarity Index and performance metrics 
 MAE R2 MAPE  

Coefficient (r)  0,011 -0,144 0,024  

N 20 20 20  

T statistic 0,049 -0,616 0,104  

DF 18 18 18  

p value 0,960 0,544 0,919  

 


