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Abstract

It is critical to detect bugs or vulnerabilities in software because they can serve as
an entry point for an attacker, potentially leading to serious consequences. These
bugs or vulnerabilities could be the result of a programming error in the design of
the software or program. Manually locating all bugs or vulnerabilities in the field of
software security is an error-prone and complex task. These efforts can be reduced
by a technique known as Fuzzing or Fuzz Testing, which is based on the ability to
detect bugs or vulnerabilities by generating inputs of various types (valid, invalid,
malformed, etc.) that are fed into the software and tested repeatedly.

There are several Fuzzing Tools (Fuzzers) available that frequently succeed in
identifying vulnerabilities. This work demonstrates the complete operation of three
fuzzers, namely American Fuzzy Lop (AFL), LibFuzzer, and Angora Fuzzer, as well
as a comparison of these fuzzers with program metrics such as code coverage,
types of bugs or vulnerabilities detected, number of bugs detected, and execution
speed, which in turn measures the fuzzer’s performance.

iii



IV ABSTRACT



Contents

Abstract iii

1 Introduction 1
1.1 Company Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Report organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.0.1 Types of Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.0.2 True Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Implementation 11
3.1 Sanitizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Address Sanitizer(ASAN) . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Undefined Behavior Sanitizer(UBSAN) . . . . . . . . . . . . . . 12
3.1.3 Memory Sanitizer(MBSAN) . . . . . . . . . . . . . . . . . . . . 12
3.1.4 Data Flow Sanitizer(DFSAN) . . . . . . . . . . . . . . . . . . . 13

3.2 American Fuzzy Lop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Methods/Strategies used by the Fuzzer for input mutation and

generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Fuzzer Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Crash Triaging Tool - Exploitable GDB . . . . . . . . . . . . . . 19

3.3 LibFuzzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1 Methods/Strategies used by the Fuzzer for input mutation and

generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Crash Triaging Tool - Exploitable LLDB . . . . . . . . . . . . . . 25

3.4 Angora Fuzzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Context-sensitive branch coverage . . . . . . . . . . . . . . . . 27
3.4.2 Scalable byte-level taint tracking . . . . . . . . . . . . . . . . . 28
3.4.3 Search based on Gradient Descent . . . . . . . . . . . . . . . 28

v



VI CONTENTS

3.4.4 Type and shape inference . . . . . . . . . . . . . . . . . . . . . 28
3.4.5 Input length exploration . . . . . . . . . . . . . . . . . . . . . . 29
3.4.6 Fuzzer Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Experiments and Discussion 33
4.1 Fuzz Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Fuzzing with American Fuzzy Lop(AFL) . . . . . . . . . . . . . 34
4.1.2 Fuzzing with LibFuzzer . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Fuzzing with Angora Fuzzer . . . . . . . . . . . . . . . . . . . . 39

4.2 FuzzGoat - A Buggy JSON Parser . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Fuzzing with American Fuzzy Lop(AFL) . . . . . . . . . . . . . 40
4.2.2 Fuzzing with LibFuzzer . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Fuzzing with Angora Fuzzer . . . . . . . . . . . . . . . . . . . . 41

4.3 Test Experiment for Angora Fuzzer . . . . . . . . . . . . . . . . . . . . 42
4.4 Comparison of Fuzzers . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Code Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Types of bugs or vulnerabilities detected . . . . . . . . . . . . . 49
4.4.3 Number of bugs detected . . . . . . . . . . . . . . . . . . . . . 49
4.4.4 Execution Speed . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusions and recommendations 53
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

References 55



Chapter 1

Introduction

In 2017 the WannaCry ransomware attack [1] by WannaCry ransomware cryptoworm
affected over 300,000 computers with Windows operating system in 150 countries,
causing major disruptions and financial depletion in billions of dollars. The attack-
ers encrypted the data and demanded ransom payments in Bitcoin Cryptocurrency
form, which affected critical industries such as finance, energy, and healthcare.
Spanish mobile company Telefonica was one of the first companies to be affected.
The NHS hospitals and surgeries across the UK were also affected by a loss of 92
million pounds due to this attack. Identifying software vulnerabilities or bugs by man-
ually analyzing them is a significant research problem in software security. Due to
the complexity, it is hard to verify the software as it is an error-prone task manually. A
vulnerability [2] is a weakness or gap in a system’s security [3] measures that attack-
ers can exploit to breach the system’s security policies. Unpatched vulnerabilities
can lead to severe consequences, as demonstrated by high-profile attacks such as
WannaCry.

To reduce these efforts, a new technique was introduced by Miller [4] in 1988
called Fuzzing or Fuzz Testing, which can be used to detect software bugs or vul-
nerabilities. The main idea behind this technique is the generation of inputs of all
sorts (Valid, Invalid, Malformed, etc.), which are fed into the program or software be-
ing fuzzed, hoping to trigger software bugs and vulnerabilities. These software bugs
and vulnerabilities might be caused by a programmer’s mistake in designing the soft-
ware or program. Some of the most common vulnerabilities in targeted binaries are
stack and heap-based overflows, integer overflows, double-free and use-after-free
bugs [5]. These vulnerabilities can be classified based on the CVE (Common Vul-
nerabilities and Exposures) list, and CVSS (Common Vulnerability Scoring System)
score based on the bug’s severity. Therefore, it is essential to find these software
bugs or vulnerabilities as this could be the entry point for an attacker. From these
software bugs or vulnerabilities, the attacker can generate an exploit (e.g., a tool
or script) that can cause data loss, financial loss, or damage to the asset, i.e., the
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2 CHAPTER 1. INTRODUCTION

software or program being fuzzed.

In other words, Fuzzing is a technique that simulates attacks on the software or
program being fuzzed by repeatedly feeding the targeted program with malformed
or semi-valid inputs or test cases. For this reason, the fuzzing tools (also called
fuzzers) will often succeed in finding out more and more vulnerabilities. Multiple
fuzzing tools are available, and the bugs or vulnerabilities found during a fuzzing
session on a targeted program might be different in all fuzzers. Some of the fuzzers
focus on a particular technique that can trigger new bugs and improve performance.
For example, Angora Fuzzer uses principled search, and for the fuzzer to solve
all constraints in the targeted program, a minimum of one conditional statement is
needed. This cannot be performed the same way in other fuzzers, so the bugs found
will be different. The fuzzer stores the bugs and the input which caused it for further
use.

This report mainly focuses on understanding the working of three fuzzers: Amer-
ican Fuzzy Lop, LibFuzzer, and Angora Fuzzer. The fuzzers are compared by ex-
ecuting a set of experiments on targeted programs. Program metrics, namely code
coverage, types of bugs or vulnerabilities detected, the number of bugs detected,
and execution speed, are determined for all experiments, which can be used to
measure the performance of the fuzzer. The bugs or vulnerabilities in American
Fuzzy Lop can be categorized using an extension tool called Exploitable GDB, and
the same was ported and partially implemented in LLDB to categorize LibFuzzer
crashes.

1.1 Company Background

Marc Witteman, who has been working in the field of chip security since 1993,
founded Riscure [6] in 2001. Riscure began serving customers from all over the
world from its headquarters in Delft, The Netherlands. Riscure assesses the se-
curity of software, chip technology, and embedded/connected devices designed to
operate safely in any environment. Riscure is the industry’s leading security testing
lab for pay-TV solutions. Riscure is also an international market leader in provid-
ing test equipment for chip technology side channel and fault injection robustness.
Manufacturers, government agencies, and security testing laboratories worldwide
use Riscure’s equipment.
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1.2 Motivation

Finding software bugs or vulnerabilities manually in a targeted program is challeng-
ing, and fuzzing tools make this process easier. The current research work focuses
on understanding three state-of-the-art fuzzers. The idea behind this research is
to analyze the complete working of all the fuzzers. In addition, the analysis helps
understand different mutation/generation strategies used by fuzzers to obtain more
code coverage.

The current research’s state-of-the-art fuzzers differ from the several existing
works [7] [8] [9]. This work shows how bugs/vulnerabilities can be introduced into a
targeted program to compare the working of fuzzing tools.

1.3 Research Question

It is important to understand the working of the fuzzing tools in order to compare
them. This research aims to compare the fuzzers with the following research ques-
tion:

• How can we compare different state-of-the-art fuzzers, which fuzzers are
good at detecting security bugs/vulnerabilities and how can they be cat-
egorized?

1.4 Report organization

The rest of the report is organized as follows: Chapter 2 presents the background
knowledge needed to understand the report. Chapter 3 describes the design and
working of fuzzing tools in detail and describes the design or porting of the crash
triaging plugin from GDB to LLDB. Chapter 4 describes the targeted programs used
for this research and the results obtained fuzzing these programs. Chapter 5 com-
pares the three fuzzing tools used in this research with limitations and recommen-
dations concluding the report.
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Chapter 2

Background

This chapter discusses and presents the background for understanding this work.
In the following subsections, we present a classification containing different types of
fuzzing and real-world benchmarks used in industry and academia.

Fuzzing [10] [11] is an automated software testing technique that feeds a com-
puter program with valid, unexpected, invalid, or random data as input. This com-
puter program is then monitored for errors such as crashes, failed built-in code as-
sertions, or potential memory leaks.

Fuzzing is mainly used as an automated technique to expose software bugs and
vulnerabilities in security-critical programs that might be exploited with malicious in-
tent. This technique saves the programmer a lot of time and energy by checking the
entire targeted program with all possible inputs generated by the fuzzer. With these
newly generated inputs, if the fuzzer found an input that caused a crash, using mu-
tation strategies, the fuzzer generates more inputs that can reproduce the findings.
As the fuzzer generates all sorts of inputs, Fuzzing can also help cover unexpected
edge cases. Fuzzing also allows us to achieve better code coverage as the fuzzers
run the software under test and always provide inputs that can be used to reproduce
a bug.

The steps followed by a fuzzer on a targeted program are as shown in Fig 2.1.

• The targeted program or system is first identified

• Using this targeted program, the inputs needed for the program are identified

• The inputs identified in the previous step are mutated in order to generate more
inputs for fuzzing

• The newly generated inputs are then used on the targeted program and is
tested

• Once the above steps are done, the fuzzer monitors the system behaviour to
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Figure 2.1: Steps followed for Fuzzing

check for software bugs or security-critical vulnerabilities which is also called
as crashes according to the fuzzer

• If a bug is found or if there is a crash in the fuzzing session, it will be logged
and stored as output which we can use to see what input caused that crash

2.0.1 Types of Fuzzing

There are three main categories of fuzzing techniques [12], which are discussed
below.

Black-box Fuzzing

In this method of fuzzing, inputs are generated without the knowledge of the tar-
geted program. This can be further classified into two variants, namely Mutational
and Generational black-box fuzzing. In mutational black-box fuzzing, one or more
seed inputs are needed for fuzzing to start. This seed input is mutated, and new
inputs are generated. At random locations in the input, random mutations are ap-
plied to generate more inputs. For example, a single bit may be flipped in the input
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to generate more inputs. Likewise, in generational black-box fuzzing, the inputs are
generated from scratch. New inputs are generated based on the structural speci-
fication of input. Peach fuzzer is an example of a black-box fuzzer. In a black-box
fuzzing scenario, the inner works and expected input format are unknown, as shown
in Fig 2.2.

Figure 2.2: Black-box Fuzzing

Grey-box Fuzzing

This fuzzing method leverages program instrumentation. The targeted program is
injected with a piece of code right after every conditional jump to get lightweight
feedback, which can be used to control the fuzzer. During compile time, several
control locations are instrumented in the program. The program is provided with an
input/seed corpus (Set of inputs stored into files individually and provided as an entry
point to the targeted program). This seed input is mutated in order to generate new
inputs for fuzzing. If the new inputs cover new control locations, the code coverage
automatically improves, and these inputs are added to the seed corpus. Fig 2.3
shows how grey-box fuzzers are implemented in which some of the inner workings
and input structure can be known.

Figure 2.3: Grey-box Fuzzing

White-box Fuzzing

This method of fuzzing is based on Symbolic Execution technique. Interesting
paths in the program can be found using symbolic execution as it uses program
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analysis and constraint solvers. The constraint solvers used here are Satisfiability
Modulo Theory (SMT) solvers. The path condition is calculated with a seed input,
and the input is mutated. The modified path condition is provided to a constraint
solver, which generates new inputs. The main advantage of this technique is the
generation of input by traversing into a new path while checking the previous inputs
for path conditions. Fig 2.4 shows how white-box fuzzers are implemented in which
the complete inner working and the input structure are known.

Figure 2.4: White-box Fuzzing

2.0.2 True Code

True Code [13] is an automated code testing solution designed by Riscure for test-
ing embedded systems with the main focus being SAST (Static Application Security
Testing) and DAST (Dynamic Application Security Testing). True Code uses Lib-
Fuzzer as the fuzzing tool to fuzz a targeted program or software.

SAST - Static Application Security Testing

SAST is a white-box testing technique used to secure the software by reviewing the
source code to identify sources of bugs or vulnerabilities. Identifying security-related
bugs or vulnerabilities is crucial, and True Code provides code checkers for this. The
Fault Injection sensitive checks are specific to situations where both software and
hardware are combined. These checks work entirely on C and partially on C++, with
the checks being performed on a piece or the entire codebase.

DAST - Dynamic Application Security Testing

DAST is a black-box testing technique to secure the software or program by per-
forming attacks on the software or program to identify security-related bugs and
vulnerabilities. The checks for bugs or vulnerabilities are done by True Code during
run-time using the following methods:

• Fault Injection Simulation
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• Fuzzing

Fault injection [14] is a technique that can stress test a computing system and un-
derstand its behavior. This technique can be achieved using hardware or software
or a hybrid approach. Some of the widely studied hardware fault injections include
applying extreme temperatures, high voltages, and so on. For fault injection and
fuzzing, the user must create a harness tree for the function under analysis. The
stubbed function will replace the original function to speed up the analysis, bypass
the hardware interfaces, and limit the call depth. Currently, both methods are fully
compatible with the C codebase.
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Chapter 3

Implementation

In this chapter, the in-depth analysis of three fuzzers, namely American Fuzzy
Lop [15], LibFuzzer [16], and Angora Fuzzer [17] is presented to understand the
working and the strategies used by the fuzzers. The following state-of-the-art fuzzers
used in this research are chosen, considering LibFuzzer as the main fuzzer since
it is the fuzzing engine used in TrueCode by Riscure [13]. Furthermore, American
Fuzzy Lop is used due to the design similarities with LibFuzzer. Whereas, Angora
Fuzzer in existing work [18] was tested in comparison with only American Fuzzy Lop,
and the designers of Angora claim the fuzzer to be the best state-of-the-art fuzzer.

3.1 Sanitizers

As explained in Chapter 2, the main idea behind fuzzing is to feed randomly gen-
erated inputs to the targeted program to trigger a bug or vulnerability. However, we
can accelerate this process using Sanitizers. The compilers used to build fuzzer in-
strumented binaries can be combined with sanitizers where the targeted program is
instrumented with extra code checks for illegal conditions like buffer overflow, integer
overflow, etc. These sanitizers are further categorized as follows.

3.1.1 Address Sanitizer(ASAN)

Address Sanitizer [19] is a fast error detector focused on memory-related bugs.
ASAN [20] [21] can be set as a flag in all fuzzers, consisting of a compiler instru-
mentation module and a run-time library. The program will exit with a non-zero exit
code, and the error message is printed if a memory-related bug is detected. On the
first detected error, ASAN exits. The following types of bugs or vulnerabilities can be
detected using ASAN.

• Out-of-bounds accesses to heap, stack and globals

11
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• Use-after-free

• Use-after-return

• Use-after-scope

• Double-free, invalid free

• Memory leaks (experimental)

ASAN can also be set with an option of Leak Sanitizer (ASAN OPTIONS=detect leaks=1).
This Leak Sanitizer is a run-time memory leak detector which detects leaks with
memory error when combined with ASAN.

3.1.2 Undefined Behavior Sanitizer(UBSAN)

Undefined Behavior Sanitizer [22] is an error detector to identify undefined behavior.
UBSAN can also be set as a flag for the LibFuzzer compiler and is still an exper-
imental feature in AFL and Angora. When the flag is set, the targeted program is
modified at compile time to detect variety of undefined behavior during program ex-
ecution. Some types of bugs or vulnerabilities detected by using UBSAN are as
follows.

• Array subscript out of bounds

• Bit-wise shifts that are out of bounds for their datatype

• De-referencing misaligned or null pointers

• Signed integer overflow

• Conversion from, to, or between floating-point types which would overflow the
destination

3.1.3 Memory Sanitizer(MBSAN)

Memory Sanitizer [23] is an error detector of uninitialized reads. MBSAN is an ex-
perimental feature that still needs to be fully implemented with all the fuzzers. It
consists of a run-time library and a compiler instrumentation module.
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3.1.4 Data Flow Sanitizer(DFSAN)

Data Flow Sanitizer [24] is a generalized dynamic flow analysis, not a tool, unlike
other sanitizers designed to detect a particular bug. DFSAN instead provides a
generic dynamic data flow analysis framework using which we can detect application-
specific issues within our code. This sanitizer is an experimental feature like MBSAN
and is not completely implemented in all fuzzers.

3.2 American Fuzzy Lop

American Fuzzy Lop (AFL) is a mutation-based, security-oriented Greybox fuzzer
released in 2013 [15]. AFL works on discovering clean and new test cases that
triggers a new internal state by the use of a novel type of compile-time instrumen-
tation and genetic algorithms. These new states increase the code coverage in the
targeted binary. Firstly, the usability of this fuzzer allows anyone with fuzzing knowl-
edge to run the fuzzer out-of-the-box on multiple programs without any knowledge
of the domain and the targeted program itself. Secondly, the uncovering of vulnera-
bilities is done by AFL with shallow effort for the security analyst.

AFL works with an instrumentation-guided genetic algorithm. The overall algo-
rithm can be added up as follows.

• The initial user-supplied test case is added to the queue

• The next input file in queue is taken

• Without modifying the behavior of the program, try to trim the test cases to the
smallest size

• File mutation using multiple fuzzing strategies

• As a result of mutated inputs, if the instrumentation records a new state tran-
sition, the mutated output is added to the queue as a new entry

• Go to 2 and repeat the steps

AFL generates new inputs by modifying a seed input/initial input. AFL leverages
coverage feedback to understand how to reach deeper into a program. The pro-
gram’s source code is compiled to build a fuzzer-instrumented executable binary. It
is also possible to run AFL on un-instrumented binaries using a virtual machine or
a dynamic instrumentation tool. AFL is implemented with Address Sanitizer 3.1.1,
and Undefined Behavior 3.1.2 is still an experimental feature. Hence, AFL will be
successful in detecting only memory-related bugs/vulnerabilities. The sub-section
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mentions how AFL generates new inputs to reach deeper into the target program
and thus increase code coverage.

3.2.1 Methods/Strategies used by the Fuzzer for input mutation
and generation

AFL works in such a way that it has a rare feedback loop where one can measure
what changes to the input file result in discovering new branches in the code and
which ones are a waste of time. Below are the steps or strategies used by AFL [25]
[26] to mutate and generate new inputs for fuzzing.

Walking Bit Flips

The input provided to the fuzzer is first bit flipped sequentially, resulting in new input.
The bits in the input can always be flipped by one bit in this method. In a single
row, there can be one to four bits flipped. For a large corpus [25] of input files, the
observed results are

• Flipping a single bit: Approx. 70 new paths per one million generated inputs

• Flipping two bits in a row: Approx. 20 additional paths per million generated
inputs

• Flipping four bits in a row: Approx. 10 additional paths per million inputs

1 / * S ing le walk ing b i t . * /
2 s tage shor t = ” f l i p 1 ” ;
3 stage max = len << 3;
4 stage name = ” b i t f l i p 1/1 ” ;
5

6 s tage va l t ype = STAGE VAL NONE;
7 o r i g h i t c n t = queued paths + unique crashes ;
8 prev cksum = queue cur −> exec cksum ;
9 f o r ( s tage cur = 0 ; s tage cur < stage max ; s tage cur ++) {

10 s tage cu r by te = s tage cur >> 3;
11 FLIP BIT ( ou t bu f , s tage cur ) ;
12 i f ( common fuzz stuf f ( argv , out buf , len ) ) goto abandon entry ;
13 FLIP BIT ( ou t bu f , s tage cur ) ;
14

15 / * Two walk ing b i t s . * /
16 stage name = ” b i t f l i p 2/1 ” ;
17 s tage shor t = ” f l i p 2 ” ;
18 stage max = ( len << 3) − 1 ;
19
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20 o r i g h i t c n t = new h i t cn t ;
21 f o r ( s tage cur = 0 ; s tage cur <stage max ; s tage cur ++) {
22 s tage cu r by te = s tage cur >> 3;
23 FLIP BIT ( out buf , s tage cur ) ;
24 FLIP BIT ( out buf , s tage cur + 1) ;
25

26 i f ( common fuzz stuf f ( argv , out buf , len ) ) goto abandon entry ;
27

28 FLIP BIT ( out buf , s tage cur ) ;
29 FLIP BIT ( out buf , s tage cur + 1) ;
30

31 / * Four walk ing b i t s . * /
32 stage name = ” b i t f l i p 4/1 ” ;
33 s tage shor t = ” f l i p 4 ” ;
34 stage max = ( len << 3) − 3 ;
35

36 o r i g h i t c n t = new h i t cn t ;
37 f o r ( s tage cur = 0 ; s tage cur <stage max ; s tage cur ++) {
38 s tage cu r by te = s tage cur >> 3;
39 FLIP BIT ( out buf , s tage cur ) ;
40 FLIP BIT ( out buf , s tage cur + 1) ;
41 FLIP BIT ( out buf , s tage cur + 2) ;
42 FLIP BIT ( out buf , s tage cur + 3) ;
43

44 i f ( common fuzz stuf f ( argv , out buf , len ) ) goto abandon entry ;
45

46 FLIP BIT ( out buf , s tage cur ) ;
47 FLIP BIT ( out buf , s tage cur + 1) ;
48 FLIP BIT ( out buf , s tage cur + 2) ;
49 FLIP BIT ( out buf , s tage cur + 3) ;

Listing 3.1: Walking Bit Flips

Walking Byte Flips

In this mutation method, the bits in the input are flipped by one byte. Like walking bit
flip, 8, 16, or 32-bit wide bitflips are done in walking byte flip [25]. With this method,
AFL can discover approximately 30 additional paths per million input in addition to
the path discovered with walking bit flips.

1 / * Walking byte . * /
2 stage name = ” b i t f l i p 8/8 ” ;
3 s tage shor t = ” f l i p 8 ” ;
4 stage max = len ;
5

6 o r i g h i t c n t = new h i t cn t ;
7
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8 / * Two walk ing bytes . * /
9 stage name = ” b i t f l i p 16/8 ” ;

10 s tage shor t = ” f l i p 1 6 ” ;
11 s tage cur = 0 ;
12 stage max = len − 1;
13

14 o r i g h i t c n t = new h i t cn t ;
15

16 / * Four walk ing bytes . * /
17 stage name = ” b i t f l i p 32/8 ” ;
18 s tage shor t = ” f l i p 3 2 ” ;
19 s tage cur = 0 ;
20 stage max = len − 3;
21

22 o r i g h i t c n t = new h i t cn t ;

Listing 3.2: Walking Byte Flips

Simple Arithmetic

This mutation method is divided into three stages. Initially, the fuzzer performs ad-
dition and subtraction on all the bytes in the input to generate new inputs. Next, the
input is either incremented or decremented by inspecting 16-bit values. If the most
significant byte is not modified, the results will be similar to stage one. Finally, the
input is added or subtracted in the third stage by inspecting 32-bit values.

1 / * 8− b i t a r i t h m e t i c . * /
2

3 stage name = ” a r i t h 8/8 ” ;
4 s tage shor t = ” a r i t h 8 ” ;
5 s tage cur = 0 ;
6 stage max = 2 * len * ARITH MAX ;
7

8 s tage va l t ype = STAGE VAL LE ;
9

10 o r i g h i t c n t = new h i t cn t ;
11

12 / * 16− b i t a r i t hme t i c , both endians . * /
13

14 stage name = ” a r i t h 16/8 ” ;
15 s tage shor t = ” a r i t h 1 6 ” ;
16 s tage cur = 0 ;
17 stage max = 4 * ( len − 1) * ARITH MAX ;
18

19 o r i g h i t c n t = new h i t cn t ;
20
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21 / * 32− b i t a r i t hme t i c , both endians . * /
22

23 stage name = ” a r i t h 32/8 ” ;
24 s tage shor t = ” a r i t h 3 2 ” ;
25 s tage cur = 0 ;
26 stage max = 4 * ( len − 3) * ARITH MAX ;
27

28 o r i g h i t c n t = new h i t cn t ;

Listing 3.3: Simple Arithmetic

Known Integers

In this mutation method, certain sets of integers are hard-coded. Then, the integers
are chosen to trigger a new edge condition in the targeted program. For example,
some integer values are -1, 256, 1024, MAX INT-1, and MAX INT+1 [25]. When this
method is used, the fuzzer overwrites the input with one of the mentioned integer
values.

Stacked Tweaks

Once all the previous methods are used, and inputs are generated, the fuzzer enters
a loop to generate more inputs by performing the below-mentioned operations.

• Single bit-flips

• Attempts to set ”interesting” bytes, words, or dwords (both endians)

• Addition or subtraction of small integers to bytes, words, or dwords (both endi-
ans)

• Completely random single-byte sets

• Block deletion

• Block duplication via overwrite or insertion

• Block memset

Test Case Splicing

The input is generated in this method by considering two different inputs. These two
inputs are then spliced at a random location, and the stacked tweaks method is run
on this newly generated input. As a result, this method requires a large input corpus
and usually discovers 20% more execution paths not triggered by other mutation
methods.
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3.2.2 Fuzzer Usage

To start with, the fuzzer needs to be installed with some necessary dependencies or
packages. The brief workflow of AFL is mentioned below.

• The targeted software or program is compiled with AFL’s compiler to obtain the
instrumented binary

• The fuzzing needs to be started with a test corpus (Testcase directory)

• On the instrumented binary, run AFL

• Analyze the results obtained

For the fuzzer to function correctly, we must ensure at least one seed file or initial
input in the testcase dir that is expected by the targeted software or program. One
has to keep in mind the two rules when designing the initial test case, which are

• Try to keep the initial input file small. Keeping it under 1kB is ideal, but not
strictly necessary

• Multiple test cases can be used only if they are different from each other func-
tionally

The targeted program should first be compiled with the AFL compiler. For exam-
ple, if the software or program that needs to be fuzzed is written in C, then afl-gcc
compiler has to be used, and similarly, afl-g++ for C++ programs. This compilation
instruments the targeted software or program with additional code, and this added
code allows the fuzzer to communicate with the compiled binary and generate new
inputs to discover new code paths. This entire process is called instrumentation.

A new test case directory and a ”findings” or ”output” directory are needed before
we start fuzzing the targeted software or program. AFL makes three sub-directories
inside the findings directory, namely crashes, that contains the test cases which
caused the application to crash, hangs, that holds the test cases which caused the
application to hang, and queue that contains the test cases which the fuzzer still
needs to test the application with. Finally, we use the command below to start the
fuzzing session.

$ ./afl-fuzz -i testcase dir -o findings dir /path/to/program [..params..]

If the program takes input from a file, @@ can be used to mark the location in
the target’s command line where the input file name should be placed [27]. The
fuzzer will substitute this automatically even if @@ is not explicitly mentioned in the
command.
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$ ./afl-fuzz -i testcase dir -o findings dir /path/to/program @@

Figure 3.1: American Fuzzy Lop (AFL)

Figure 3.1 shows the UI of the AFL fuzzer. The fuzzing process can be inter-
rupted using Ctrl-C.

3.2.3 Crash Triaging Tool - Exploitable GDB

The crashes obtained after a successful fuzzing session using AFL can be triaged
using a plugin called Exploitable. The Exploitable plugin [28] is a GDB extension
that classifies the bugs or crashes based on severity. This plugin examines the state
of a crashed software or program and summarizes how difficult it would be for an
attacker to generate exploits to gain control of the program or software. Software
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developers can use the plugin to prioritize bugs and address the most critical ones
[29].

Figure 3.2 shows a simple workflow of the Exploitable plugin. The plugin iterates
over a list of ordered rules (lib/rules.py) to generate Classification (lib/classifier.py).
Tag is added to the classification by the exploitable plugin when the state of applica-
tion running in GDB is matched with a rule. Depending on the command parameters,
classification obtained as a result of exploitable invocation can either be printed to
GDB’s stdout or saved to a pickle file.

Figure 3.2: Simple Workflow of Exploitable Plugin

lib/classifier.py

The file lib/classifier.py has some essential classes, namely, Tag, Classification,
and Classifier. The class Tag defines a partial description of the state of a GDB.
This tag is obtained if there is a matching rule. These tags are compared by type
and ordered by rank. The class Classification defines how exploitable the current
state in the GDB inferior or targeted program is. The classifier object returns an
instance of this object. The result obtained by this is as shown in Figure 3.3.

Figure 3.3: Result of Exploitable plugin

lib/rules.py

This file specifies the list of rules which are used to classify the state of a GDB
inferior. These rules are based on the CVE list and the CVSS score, categorized
and ordered from most exploitable to least exploitable. The four different categories
are
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• EXPLOITABLE

• PROBABLY EXPLOITABLE

• PROBABLY NOT EXPLOITABLE

• UNKNOWN

lib/analyzers/x86.py

Analyzers are used to match the rules and determine the severity of the bugs based
on the category. The class analyzers contains methods which corresponds to the
rules defined in lib/rules.py , that analyzes a targeted program to determine proper-
ties of the particular target. If the analyzer method returns True, the rule is said to
match to the state of the GDB inferior’s state, otherwise it’s not a match.

lib/gdb wrapper

A GDB wrapper is a collection of Python objects that wrap and extend the GDB
Python API.

Figure 3.4 shows the output of a sample test. From the result of the plugin we can
see that the crash is considered to be EXPLOITABLE as there is a possible stack
corruption. The plugin also gives a short explanation on what the actual problem is
or what actually caused the crash.

Figure 3.4: Exploitable Output
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3.3 LibFuzzer

LibFuzzer [16] is an in-process, coverage-guided Grey-box fuzzing engine. The
library under test is linked to fuzzer and fed with mutated inputs via target function
(A fuzzing entry point). New inputs are generated by the fuzzer keeping a track of
the reached areas of code to maximize code coverage. The address sanitizer 3.1.1,
undefined behavior sanitizer 3.1.2 is implemented in LibFuzzer and can be used
as flags to compile the targeted program, while memory sanitizer 3.1.3, and data
flow sanitizer 3.1.4 are still experimental features. LibFuzzer will successfully detect
memory-related and undefined behavior bugs/vulnerabilities.

Fuzz Target

Implementation of fuzz target for the use of fuzzer on a library under test is the initial
step. A function which accepts an array of bytes and uses the API under test to
do something interesting with these bytes is a fuzz target. The fuzz target can be
implemented as shown below

// fuzz target.cc
extern ”C” int LLVMFuzzerTestOneInput (const uint8 t *Data, size t Size){

DoSomethingInterestingWithMyAPI(Data, Size);
return 0;

}

While implementing the fuzz target, some of the important steps that needs to be
followed are mentioned below.

• Fuzz target is executed multiple times by the fuzzer inside the same process
with unique inputs

• Any kind of input must be accepted

• The fuzz target must not exit() on any input

• Avoiding greater complexity, logging, or excessive memory consumption im-
proves the fuzzing speed

Corpus

A corpus of sample inputs for library under test is very much needed for the fuzzer
to work efficiently. This corpus must usually be filled with all sorts of inputs which
are both valid and invalid for the library under test. Random mutations are applied
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to these sample inputs by LibFuzzer to generate new inputs that are stored in the
corpus. If a new path is discovered in the code under test, the respective mutated
input is added to the input corpus and maybe used later. LibFuzzer works without
any initial input unlike AFL but due to that reason, if the library under test accepts
structured, complex inputs the efficiency of fuzzing will reduce. This corpus also
acts as a check to make sure the fuzz target or entry point still works and the inputs
in the corpus run without any errors.

Fuzzer Usage

To use the LibFuzzer, we first need to install Clang compiler. A fuzzer binary has to
be generated using this compiler on the targeted program or software. To build this
fuzzer binary, certain flags has to be used with the Clang compiler

• -fsanitize=fuzzer(required) provides in-process coverage information to lib-
Fuzzer and links with the libFuzzer runtime

• -fsanitize=address(recommended) enables the Address Sanitizer

• -g(recommended) enables debug information which makes it easier to read
the error messages(if any)

clang -g -fsanitize=fuzzer,address path/to/program

The above command shows the example usage of the Clang compiler with flags,
which in turn generates a output fuzzer binary of the targeted program. The following
command can be used to run the fuzzer.

./a.out

Figure 3.5: LibFuzzer
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Figure 3.5 shows the output of LibFuzzer. Information about fuzzer options and
configuration is printed out initially as output which includes the present random
seed. The output lines below the information about the fuzzer reports the following
statistics (when non-zero) [16]

• cov gives the total number of code blocks or edges covered

• ft LibFuzzer uses different signals to evaluate the code coverage: edge cover-
age, edge counters, etc. These signals combined are called features

• corp Number of entries in the current test corpus and the size of it in bytes

• lim Current limit on the length of new entries in the corpus

• exec/s Number of fuzzer iterations per second

• rss Current memory consumption

3.3.1 Methods/Strategies used by the Fuzzer for input mutation
and generation

3.6 shows the fuzzing loop of LibFuzzer which is similar to almost all the other mu-
tational fuzzers. The execution starts with an initial seed input, new inputs are gen-
erated by selecting and applying a mutator. These inputs will then be tested on the
fuzz target, and we check whether the coverage increased or not. If code coverage
is increased by the mutated input, the input is added to the seed corpus which can
be used further. The mutators in the fuzzer are of random nature and this makes

Figure 3.6: LibFuzzer Fuzzing Loop

powerful local search for useful inputs, but as a consequence, to obtain additional
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coverage the tests have to be run multiple times. The table 3.1 [7] below shows the
list of LibFuzzer mutation operations.
The mutation strategies of LibFuzzer are almost similar to AFL. The inputs gener-

Mutator Description
EraseBytes Size reduction by removing a random byte
InsertByte Increase size by one random byte
InsertRepeatedBytes Increase size by adding at least 3 random bytes
ChangeBit Randomly flip a bit
ChangeByte Randomly flip a byte
ShuffleBytes Rearrange the input bytes randomly
ChangeASCIIInteger Find ASCII integer in data, perform random math ops and

overwrite into input
ChangeBinaryInteger Find Binary integer in data, perform random math ops and

overwrite into input
CopyPart Return part of input
CrossOver Recombine random inputs in corpus
AddWordPersist Au-
toDict

Replace part of input with the previous input that increased
the coverage

AddWordTemp Au-
toDict

Replace part of the input with one that increased code cover-
age previously

AddWord From-
TORC

Replace part of input with a recently performed comparison.

Table 3.1: Mutation Strategies used by LibFuzzer

ated after applying all these mutation strategies does not guarantee that it always
increases the code coverage. At times, the fuzzer might generate similar inputs that
do not explore any unexplored branches in the library or the code under test.

3.3.2 Crash Triaging Tool - Exploitable LLDB

The exploitable plugin for triaging AFL crashes uses GDB as the debugger. The
main focus here is to change the debugger from GDB to LLDB in-order to use this
plugin to triage crashes obtained after a libFuzzer fuzzing session. LLDB is a de-
bugger component of the LLVM project and supports more operating systems and
fuzzers. The porting of the plugin from GDB to LLDB was achieved by analyzing the
list of things that are being used by GDB and below-mentioned are the list of things
used.

• Getting the OS name (show osabi)
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• Getting the target architecture (show architecture)

• Getting the program counter (print $pc)

• Getting the stack pointer (print $sp)

• Getting information about the signal (print $ siginfo)

• Getting the address that caused a segmentation fault (print $ siginfo, sifields,
sigfault, si addr)

• Getting the last executed assembly instruction, using the program counter

• Getting the process ID

• Getting the stackframe of the crash (Used to check stack buffer overflow and
heap errors)

• Using information from the process address space

The working of this exploitable plugin using LLDB is similar to the GDB version
3.2.3. LLDB Python API [30] available for public use is used to port all the GDB
functions to LLDB functions. LLDB debugger is necessary as it would be impossible
to get the values of program counter, stack frame and process ID. These values are
needed to write the libraries explained in 3.2.3 using LLDB Python API. Out of all the
rules written according to the CVE list and CVSS score in Exploitable GDB, majority
of them were successfully implemented in LLDB.
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3.4 Angora Fuzzer

Angora [18] is a mutational-based coverage-guided fuzzer whose primary goal is
to solve path constraints without the use of symbolic execution to increase branch
coverage. Angora considers the conditional statement in the targeted program or
software as a constraint and then mutates the inputs based on the conditional state-
ment. Whereas all the other fuzzers blindly mutate the input to generate new inputs,
which may or may not increase the code coverage. All the unexplored branches
of the targeted software or program are tracked by Angora in order to solve path
constraints on these branches. Using sanitizers 3.1 is an experimental feature in
Angora Fuzzer. Figure 3.7 shows the critical techniques used by Angora to solve
path constraints, and these techniques are explained below.

Figure 3.7: Angora Fuzz Loop

3.4.1 Context-sensitive branch coverage

The branch coverage in AFL is the count of the number of times each branch is exe-
cuted. Using lightweight instrumentation, AFL gets the branch coverage information
by instrumenting the targeted program at each branch point during compile time. To
record the number of executions of a branch in different runs, AFL uses a global
branch coverage table. Similarly, for each run AFL keeps record in a path trace table
of the number of times each branch in all conditional statements is executed. AFL
checks whether a new internal state of the program is triggered by a newly gen-
erated input by the fuzzer by comparing the branch coverage table and path trace
table. Unfortunately, the branches of AFL are context-insensitive, i.e., if the same
branch is executed in a different context, AFL fails to distinguish these executions, in
turn failing to notice new internal states of the program. To overcome this limitation,
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in Angora context sensitive branch coverage is used. Angora during instrumenta-
tion assigns random ID for each call site [18]. For recursive function calls, the ID is
pushed to the stack by Angora and outputs two unique values, where the number of
unique branches are at most doubled.

3.4.2 Scalable byte-level taint tracking

The objective of Angora [18] is to execute previously unexplored branches in a tar-
geted program by generating necessary inputs. The fuzzer does this by analyzing
how the predicate of the branch is affected by identifying the specific bytes in the
input. To achieve this level of precision, Angora uses byte-level taint tracking. How-
ever, this technique can be computationally intensive, mainly applied to each byte.
As a result, AFL avoids using it. For most program runs, taint tracking is optional.
By performing taint tracking on a single input, it is possible to determine which byte
offsets influence the execution of conditional statements. Once this information is
recorded, the program can be run, and input can be mutated without taint tracking,
allowing Angora to perform efficiently as AFL in input execution.

3.4.3 Search based on Gradient Descent

Angora modifies the input to satisfy path constraints rather than using the resource-
intensive symbolic execution method [18]. Gradient Descent algorithm is imple-
mented in Angora to solve path constraints and this algorithm is widely used in ma-
chine learning. Angora considers the predicate that determines whether a branch
should be executed on a black-box function f(x) as a constraint, where x is a vector
of the input values that are used in the predicate, and f() represents the computation
from the program start to predicate. Three types of constraints can be placed on f(x)

1 f ( x ) < 0;
2 f ( x ) <= 0;
3 f ( x ) == 0;

Gradient descent is iterative and is used to find the minimum of the function f(x).
Unfortunately, there is no analytic form of f(x) in fuzzing. Hence, to compute each
directional derivative, the program must be run twice with the original and modified
input. The input is modified by adding or/and subtracting with a small value of 1.

3.4.4 Type and shape inference

Shape inference is used to determine the bytes in the input which are always to-
gether and in the program used as a single value [18]. Similarly, type inference
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is used to determine the type of input value. This helps in better performance of
the gradient descent algorithm. Finally, dynamic taint analysis is used to solve the
problem of type and shape inference.

3.4.5 Input length exploration

During taint analysis, Angora associates the destination memory in read function
calls with byte offsets in input [18]. If a return value is used in a conditional statement
and the constraints of the same are not satisfied, the input length is increased by
Angora such that read call can get all the requested bytes.

3.4.6 Fuzzer Usage

Angora Clang compiler is needed to generate fuzzer binaries required for fuzzing a
targeted program. The compiler then generates a regular fuzzer binary and a taint
tracked fuzzer binary. Initial seeds/inputs are needed for Angora [17] to function.
The fuzzer can then be invoked with the command below

./angora fuzzer -i input -o output -t path/to/taint/program – path/to/fast/program
[argv]

To understand how Angora fuzzer uses the techniques explained previously we can
consider the following program as an example.

1 # inc lude ” s t d i n t . h ”
2 # inc lude ” s t d i o . h ”
3 # inc lude ” s t d l i b . h ”
4 # inc lude ” s t r i n g . h ”
5

6 i n t main ( i n t argc , char * * argv ) {
7

8 i f ( argc < 2)
9 r e t u r n 0 ;

10

11 FILE * fp ;
12 char buf [ 2 5 5 ] ;
13 s i z e t r e t ;
14

15 fp = fopen ( argv [ 1 ] , ” rb ” ) ;
16

17 i f ( ! fp ) {
18 p r i n t f ( ” s t e r r \n ” ) ;
19 r e t u r n 0 ;
20 }
21
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22 i n t len = 20;
23 r e t = f read ( buf , s i z e o f * buf , len , fp ) ;
24 f c l o s e ( fp ) ;
25 i f ( r e t < l en ) {
26 p r i n t f ( ” i npu t f a i l \n ” ) ;
27 r e t u r n 0 ;
28 }
29

30 u i n t 1 6 t x = 0;
31 i n t 3 2 t y = 0 ;
32 i n t 3 2 t z = 0 ;
33 u i n t 3 2 t a = 0;
34

35 memcpy(&x , buf + 1 , 2) ; / / x 1 − 2
36 memcpy(&y , buf + 4 , 4) ; / / y 4 − 7
37 memcpy(&z , buf + 10 , 4) ; / / 10 − 13
38 memcpy(&a , buf + 14 , 4) ; / / 14 − 17
39 i f ( x > 12300 && x < 12350 && z < −100000000 && z > −100000005 && z

!= −100000003 && y >= 987654321 && y <= 987654325 && a == 123456789) {
40

41 p r i n t f ( ” hey , you h i t i t \n ” ) ;
42 abor t ( ) ;
43 }
44 r e t u r n 7 ;
45 }

Listing 3.4: Simple Example Program

The program first opens a file to get inputs needed. Once the file is opened, the
values of the same are stored in a buffer. From this buffer, the values of x, y, z, and
a are obtained. Then it runs a conditional statement. When this program needs to
be fuzzed with Angora, it has to be compiled first with angora-clang to generate the
fuzzer binaries. Figure 3.8 shows how Angora evaluates the conditional statement.

For every condition in the conditional statement of the program being fuzzed, a
fuzz loop runs every time to solve constraints. In the above example program, the
first condition in the conditional statement is x < 12300. When the fuzz loop starts,
arg1 is assigned with the value obtained from the input file, and arg2 is assigned
with the right-hand value of the first condition. These arguments’ types are checked
to determine whether they are signed or unsigned. If signed, the values of arg1 and
arg2 are translated and then assigned to a and b. The values are assigned directly
to a and b if unsigned. These values are checked with the constraints defined in
output.rs file of the fuzzer, and the output is calculated based on that. If this calcu-
lated output is zero, then the first condition is explored. If not (output != 0), Gradient
Descent is applied. First, Angora increments a by one and b = arg2 to check for
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Figure 3.8: Simple Workflow of Angora

output. If zero, the condition is explored, and if not zero, then a is decremented by
one and b = arg2 to check for output. This fuzz loop is executed for all conditions
and stops when all conditions are explored. Figure 3.9 shows the output of Angora
Fuzzer.

Figure 3.9: Angora Fuzzer
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Chapter 4

Experiments and Discussion

This chapter describes the experiments conducted on targeted programs to evaluate
the fuzzers. The obtained results are then used to compare the fuzzers.

4.1 Fuzz Test

The dependencies needed to fuzz a program with all three fuzzers as explained in
fuzzer usage 3.2.2, 3.3, 3.4.6 sections in Chapter 3 has to be installed initially. The
targeted program is then written in C-language as shown in 43. This program first
opens a file to get input from the file and stores the contents of the file in a buffer,
as shown in lines 25 - 35. The contents from this buffer are then copied to a and
b. When the calculate function is called on line 40, the function enters a conditional
statement and performs a few things as shown in line 8 - 17.

The program 43 is designed to test the fuzzers by manually injecting bugs or
vulnerabilities as shown in lines 11, 12, and 16. The bugs on lines 12, and 16 are
memory-related bugs/vulnerabilities as explained in Section 3.1, whereas the bug
on line 11 is undefined behavior bug/vulnerability. The program is then compiled
with the dependencies installed according to the fuzzer and further explained in the
sub-sections below.

1 # inc lude <s t d i o . h>
2 # inc lude <s t d l i b . h>
3 # inc lude <s t r i n g . h>
4 # inc lude <s t d i n t . h>
5

6 i n t a t t r i b u t e ( ( n o i n l i n e ) ) c a l c u l a t e ( i n t x , i n t y )
7 {
8 i f ( y >= x )
9 {

10 i n t op1 = x + y + 100000000000;
11 char * bu f f1 =( char * ) mal loc ( op1 ) ; / * Test2 i n t e g e r over f low * /

33
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12 r e t u r n ( x / y ) ; / * Test1 Div ide by zero * /
13 }
14 else
15 {
16 r e t u r n ( y / x ) ;
17 }
18 }
19

20 i n t main ( i n t argc , char * * argv ) {
21 i f ( argc < 2) {
22 f p r i n t f ( s tde r r , ” usage : %s <i nput − f i l e >\n ” , argv [ 0 ] ) ;
23 r e t u r n 0 ;
24 }
25 FILE * fp ;
26 char buf [ 2 5 5 ] ;
27 s i z e t r e t ;
28

29 fp = fopen ( argv [ 1 ] , ” rb ” ) ;
30 i f ( ! fp ) {
31 p r i n t f ( ” Cannot open f i l e \n ” ) ;
32 r e t u r n 0 ;
33 }
34 r e t = f read ( buf , s i z e o f * buf , 255 , fp ) ;
35 f c l o s e ( fp ) ;
36

37 i n t a , b , output ;
38 memcpy(&a , buf , s i z e o f ( i n t ) ) ;
39 memcpy(&b , buf + s i z e o f ( i n t ) , s i z e o f ( i n t ) ) ;
40 output = c a l c u l a t e ( a , b ) ;
41 r e t u r n 0 ;
42 }

Listing 4.1: Buggy Fuzz Test Program

4.1.1 Fuzzing with American Fuzzy Lop(AFL)

The targeted fuzztest.c program 43 is compiled with afl-gcc compiler to get AFL
instrumented binary. During this compilation process, multiple flags and sanitizers
3.1 can be set, which will help identify different types of bugs or vulnerabilities when
fuzzing.

AFL HARDEN=1 AFL USE ASAN=1 afl-gcc -ggdb -O0 fuzztest.c -o fuzztest

The above command is executed, and the resulting AFL fuzzer binary is named fuz-
ztest. From the command, we can observe that the Address Sanitizer is enabled
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to detect memory-related bugs using AFL USE ASAN=1 as a flag for the compiler.
Furthermore, the AFL HARDEN=1 flag causes the CC wrapper to enable code hard-
ening options automatically to detect simple memory bugs. To fuzz with AFL, as
explained in section 3.2.2 of Chapter 3, we first need to create an input and output
directory. From program lines 25 - 35, we can see that the program needs inputs
from a file. For this reason, we need to create an initial input and place it in the input
directory. The fuzzer can then be invoked with the following command.

afl-fuzz -i input -o output – ./fuzztest @@

For the first test run, only one bug was introduced in the code inside the calculate
function 6, as shown in 5

1 i n t a t t r i b u t e ( ( n o i n l i n e ) ) c a l c u l a t e ( i n t x , i n t y )
2 {
3 r e t u r n ( x / y ) ; / * Test1 Div ide by zero * /
4 }

Listing 4.2: Calculate function

When fuzzed with AFL, this program 5 detects the Divide by Zero 3 and considers
this a crash. The fuzzing session was interrupted after three minutes, and the re-
sulting AFL UI is shown in Fig 4.1. The same crash is detected multiple times with
the random inputs that are generated by the fuzzer. Only one crash of this particu-
lar type is considered unique, and the input that caused this is stored in the output
folder.

The input that caused the crash can be used as the initial input, and when the
fuzzer is invoked via GDB, the resulting output is as shown in Fig 4.2. The purpose
of running the fuzzer out of GDB is to debug the crash entirely, and we can see the
divide by zero error introduced to test the fuzzer.

For the second test run, the complete fuzztest program 43 is compiled with the
same command used for the first test run. The program is then fuzzed with AFL and
detects two unique crashes. The input that caused the crash is used as initial input
to the fuzzer invoked via GDB, and the resulting output is as shown in Fig 4.3 and
Fig 4.4.

4.1.2 Fuzzing with LibFuzzer

The targeted program 43 should be modified to a Fuzz Target, as explained in Sec-
tion 3.3 of Chapter 3. The resulting modified code is as shown in 29. The functioning
of the modified program is similar to the one explained in Section 4.1 except that the
fuzzer no longer needs an initial input which has to be provided by the user. In ad-
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Figure 4.1: AFL 1 Bug

dition, the main function in program 43 is changed to the LLVMFuzzerTestOneInput
function, which assigns the values to a and b and calls the calculate function.

1 # inc lude <s t d i o . h>
2 # inc lude <s t d l i b . h>
3 # inc lude <s t r i n g . h>
4 # inc lude <s t d i n t . h>
5

6 i n t a t t r i b u t e ( ( n o i n l i n e ) ) c a l c u l a t e ( i n t x , i n t y )
7 {
8 i f ( y >= x )
9 {

10 i n t op1 = x + y + 10000000;
11 char * bu f f1 =( char * ) mal loc ( op1 ) ; / * Test2 i n t e g e r over f low * /
12 r e t u r n ( x / y ) ; / * Test1 Div ide by zero * /
13 }
14 else
15 {
16 r e t u r n ( y + x ) ;
17 }
18 }
19 i n t LLVMFuzzerTestOneInput ( const u i n t 8 t * data , s i z e t s ize ) {
20 i f ( s i ze < 2 * s i z e o f ( i n t ) )
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Figure 4.2: AFL 1 Bug using GDB

Figure 4.3: AFL 1st Bug using GDB

21 {
22 r e t u r n 0 ;
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Figure 4.4: AFL 2nd Bug using GDB

23 }
24 const i n t a = * ( ( const i n t * ) ( data ) + 0) ;
25 const i n t b = * ( ( const i n t * ) ( data ) + 1) ;
26 const i n t r e s u l t = c a l c u l a t e ( a , b ) ;
27 r e t u r n 0 ;
28 }

Listing 4.3: Buggy Fuzz Test Program for LibFuzzer

For the first test run, the calculate function in program 29 was written the same as
5. The program is then compiled using Clang compiler with flags and sanitizers 3.1
to build a Libfuzzer instrumented binary. The command used to compile is shown
below.

clang -fsanitize=fuzzer,address,undefined -g fuzztest.c -o fuzztest

The flag -fsanitize=fuzzer performs necessary instrumentation and links the Lib-
fuzzer’s main() symbol, and the remaining flags -fsanitize=address,undefined en-
ables the address sanitizer and undefined behavior sanitizer to detect memory-
related bugs and undefined behavior. An input directory may be created to store
the input that caused the crash. The generated fuzzer binary is run ./fuzztest cor-
pus/ to start fuzzing with LibFuzzer, where the fuzzer generates random input and
stops when the first crash is detected. The detected crash is stored in the current
directory where the fuzzer binary is run. For this particular program 29 with the cal-
culate function 5, the Divide by Zero error on line 3 is detected by the fuzzer. Fuzzer,
when run with an input directory named corpus/ crashes at the error and prints the
output as shown in Fig 4.5.
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Figure 4.5: LibFuzzer 1st Bug

During the second test run, the program 29 is compiled the same way as the first
test run. The generated fuzzer binary, when run with an input folder, will stop at the
first crash, thereby detecting the Divide By Zero error in line 12. If the fuzzer has to
detect the second bug 11, the fuzzer has to be run with the command below where
-ignore crashes=1 is a flag that ignores the first crash, and -detect leaks=0 enables
the Leak Sanitizer. The resulting output is shown in Fig 4.6.

./fuzztest corpus/ -ignore crashes=1 -detect leaks=0

4.1.3 Fuzzing with Angora Fuzzer

The targeted program 43 is compiled using angora-clang compiler with flags and
sanitizers to obtain fast and taint binaries of the fuzzer. The command used for
compiling is shown below.

USE FAST=1 ANGORA USE ASAN=1 angora-clang fuzztest.c -lz -o fuzztest.fast
USE TRACK=1 angora-clang fuzztest.c -lz -o fuzztest.taint

The ANGORA USE ASAN=1 enables the address sanitizer 3.1. First, input and
output directories should be created to store the initial input and crashes obtained
after a fuzzing session. Then, using the command below, the fuzzer is invoked with
both fast and taint binaries.

./angora fuzzer -i input -o output -t ./fuzztest.taint – ./fuzztest.fast @@
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Figure 4.6: LibFuzzer 2 Bugs

Angora fuzzer fails to fuzz the targeted program and does not detect any bugs as
it tries to solve constraints, and in the program 43, there is only one conditional
statement.

4.2 FuzzGoat - A Buggy JSON Parser

This set of experiments is implemented on an open-source, intentionally insecure
JSON parser [31]. Using JavaScript Object Notation(JSON) format, the JSON parser
reads and writes entries. The program contains approx.1300 lines of code and
named fuzzgoat, which is injected with several memory corruption vulnerabilities
where the exact number is unknown to test the fuzzers.

4.2.1 Fuzzing with American Fuzzy Lop(AFL)

The fuzzgoat.c program is compiled with similar flags and sanitizers using the same
command as in sub-section 3.3. The fuzzing session was done for 30 minutes, and
the fuzzer detected 25 unique crashes, and the output UI of AFL is shown in Fig 4.7.
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Figure 4.7: FuzzGoat - Fuzzing with AFL

4.2.2 Fuzzing with LibFuzzer

For fuzzing with LibFuzzer, the program is compiled with flags and sanitizers as
in sub-section 4.1.2. The instrumented binary is run with an input folder, flags for
ignoring the first crash to prevent the fuzzer from exiting, and enabling leak sanitizer.
The fuzzing session was done for 30 minutes. The results are as shown in Fig 4.8
and are further explained in Section 4.4

4.2.3 Fuzzing with Angora Fuzzer

The fast and taint binaries are obtained by compiling the fuzzgoat.c program with
flags and sanitizers similar to the previous experiment in sub-section 4.1.3. The
fuzzer is then run with the generated binaries, and the fuzzing session is interrupted
after 30 minutes. From the output UI, as shown in Fig 4.9, we can observe that
Angora Fuzzer again fails to detect any bugs or vulnerabilities in a buggy JSON
parser program.
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Figure 4.8: FuzzGoat - Fuzzing with LibFuzzer

Figure 4.9: FuzzGoat - Fuzzing with Angora Fuzzer

4.3 Test Experiment for Angora Fuzzer

As the results of previous experiments for Angora Fuzzer were not successful, we
consider the mini2.c program, which is given as a test in the repository of fuzzer [17].

1 / *
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2 Test :
3 Nested ‘ i f ‘ c o n d i t i o n a l statements .
4 I t i s d i f f i c u l t f o r o ther fuzzers , but i t i s easy f o r Angora .
5 * /
6 # inc lude ” s t d i n t . h ”
7 # inc lude ” s t d i o . h ”
8 # inc lude ” s t d l i b . h ”
9 # inc lude ” s t r i n g . h ”

10

11 i n t main ( i n t argc , char * * argv ) {
12 i f ( argc < 2)
13 r e t u r n 0 ;
14 FILE * fp ;
15 char buf [ 2 5 5 ] ;
16 s i z e t r e t ;
17 fp = fopen ( argv [ 1 ] , ” rb ” ) ;
18 i f ( ! fp ) {
19 p r i n t f ( ” s t e r r \n ” ) ;
20 r e t u r n 0 ;
21 }
22 i n t len = 20;
23 r e t = f read ( buf , s i z e o f * buf , len , fp ) ;
24 f c l o s e ( fp ) ;
25 i f ( r e t < l en ) {
26 p r i n t f ( ” i npu t f a i l \n ” ) ;
27 r e t u r n 0 ;
28 }
29 u i n t 1 6 t x = 0;
30 i n t 3 2 t y = 0 ;
31 i n t 3 2 t z = 0 ;
32 u i n t 3 2 t a = 0;
33 memcpy(&x , buf + 1 , 2) ; / / x 0 − 1
34 memcpy(&y , buf + 4 , 4) ; / / y 4 − 7
35 memcpy(&z , buf + 10 , 4) ; / / 10 − 13
36 memcpy(&a , buf + 14 , 4) ; / / 14 − 17
37 i f ( x − 12300 > 0 && x − 12350 < 0 && z + 100000000 < 0 && z +

100000005 > 0 && z + 100000003 != 0 && y − 987654321 >= 0 && y −
987654325 <= 0 && a − 123456789 == 0) {

38 p r i n t f ( ” hey , you h i t i t \n ” ) ;
39 / / abor t ( ) ;
40 / * e x i t ( 6 ) ; * /
41 }
42 r e t u r n 0 ;
43 }

Listing 4.4: Mini2

The working of this program is similar to the one explained in Section 3.4.6. First, the
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fuzzer tries to solve all eight constraints of the conditional statement, as shown in Fig
4.10. Then, inputs are generated by the fuzzer for every condition in the program line
37, and once all the constraints are solved, the fuzzer exits with a success message
Solve all constraints!!.

Figure 4.10: Angora Fuzzer Test Experiment output

4.4 Comparison of Fuzzers

This section explains the different program metrics that are used on fuzztest 43 and
fuzzgoat 4.2 experiments to evaluate the results and compare all the fuzzers.

4.4.1 Code Coverage

Code coverage in fuzzing is a testing metric determining the number of lines, func-
tions, and branches validated successfully under a fuzzing session, which helps
analyze how well the targeted program is verified. Several tools and compiler flags
can be used to generate code coverage. The subsections below explain the usage
and results of fuzzgoat 4.2 with all the fuzzers.

American Fuzzy Lop Coverage

AFL has an extension tool called afl-cov [32] [33] to measure the code coverage.
The input files generated by the fuzzer for the targeted binary are used by afl-cov
to produce code coverage results. afl-cov interprets code coverage from one input
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to the next to determine which new lines and functions are hit with every newly
generated input by AFL. afl-cov requires the following dependencies to be installed.

• afl-fuzz

• gcov, lcov, genhtml

• python

The code coverage of fuzzgoat 4.2 is measured by creating a copy of the com-
plete project at two different directories, namely /path/to/afl-fuzz-output/ and /path/to/gcov-
project. The directory /path/to/afl-fuzz-output/ contains fuzzer instrumented binary,
and the /path/to/gcov-project directory contains fuzzer binary compiled for gcov pro-
filing support. The command to compile fuzzgoat with gcov profiling support is
shown below.

AFL HARDEN=1 AFL USE ASAN=1 afl-gcc -fprofile-arcs -ftest-coverage -ggdb
-O0 fuzzgoat.c -o fuzzgoatwcov

Next, afl-cov is started in –live mode before starting the fuzzing with fuzzer instru-
mented binary. /path/to/afl-fuzz-output/ should be specified as a command line ar-
gument for afl-cov and commands to execute with arguments is shown below. If
we wish to generate code coverage for an existing output directory of AFL, omit the
–live argument.

$ cd /path/to/project-gcov/
$ afl-cov -d /path/to/afl-fuzz-output/ –live –coverage-cmd
”cat AFL FILE | LD LIBRARY PATH=./lib/.libs ./bin/.libs/somebin -a -b -c”
–code-dir .

The AFL FILE string in the command corresponds to the inputs generated by AFL,
that are stored in the queue/ directory in /path/to/project-fuzz. afl-cov automatically
substitutes this AFL FILE with the ID of newly generated inputs queue/id:NNNNNNN*
in the order in which it is being generated while building the code coverage.

With afl-cov running, start a fuzzing session with AFL using the command below
in a new terminal.

$ cd /path/to/fuzzgoat $ afl-fuzz -i input -o output – ./fuzzgoat @@

The terminal in which afl-cov is running starts measuring the code coverage
once the fuzzer generates more inputs in the other terminal. The resulting terminal
output is shown in Fig 4.11.

In the /path/to/afl-fuzz-output directory, afl-cov creates a few directories to store
the coverage result. These directories are
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Figure 4.11: AFL Code Coverage

• cov/diff/ - Contains code coverage results when queue/id:NNNNN* input file
causes the fuzzer to execute a new location of code.

• cov/web/ - Contains code coverage results produced by genhtml in web format.

• cov/lcov/ - Contains raw code coverage data produced by lcov

• cov/zero-cov/ - Contains data for each input on functions that are never exe-
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cuted by the fuzzer.

Figure 4.12: Code Coverage Web Report - AFL

From the code coverage reports generated by afl-cov shown in Fig 4.12, we
can observe that the inputs generated by the fuzzer was successful in covering 12
out of 13 functions, 454 out of 557 lines, and 296 out of 422 branches, resulting
in a coverage of 92.3%, 81.5%, and 70.1% respectively on the targeted program
FuzzGoat 4.2
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LibFuzzer Coverage

To measure the code coverage of fuzzgoat with LibFuzzer 4.2.2, the program should
be compiled with coverage enabled [34], which is set as a flag during compilation,
and the command used is shown below.

clang -fsanitize=fuzzer,address,undefined -fprofile-instr-generate -fcoverage-
mapping fuzzgoat.c -o fuzzgoatwithcov

The next step is to run the fuzzer instrumented binary, and when the program exits,
raw profile is written to the path specified by LLVM PROFILE FILE environment
variable. It is written to default.profraw in the current directory if no variable exists.
Below mentioned command is used to perform this step.

LLVM PROFILE FILE=”fuzzgoat.profraw” ./fuzzgoatwithcov

The raw profiles created in the previous step should be indexed to generate code
coverage reports. The merge tool in llvm-profdata combines multiple raw profiles
and indexes them simultaneously. The command used for this step is shown below.

llvm-profdata merge -sparse fuzzgoat.profraw -o fuzzgoat.profdata

Finally, a file-level code coverage report can be generated with statistics as
shown in Fig 4.13, using the command below.

llvm-cov report ./fuzzgoatwithcov -instr-profile=fuzzgoat.profdata

Figure 4.13: Code Coverage Report - LibFuzzer

The mutation strategies and sanitizers flags used by LibFuzzer successfully cover
481 regions out of 581, 14 out of 15 functions, 617 out of 777 lines, and 372 out of
468 branches, resulting in a coverage of 82.08%, 93.33%, 79.41%, and 79.46%
respectively on the targeted program FuzzGoat 4.2 as shown in Fig 4.13.

Angora Fuzzer Coverage

The steps followed to measure the code coverage of fuzzgoat using Angora Fuzzer
4.2.3 is similar to LibFuzzer code coverage 4.4.1. Therefore, the program fuzzgoat
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Figure 4.14: Code Coverage Report - Angora Fuzzer

should be compiled for fast and taint instrumented binaries with coverage enabled.
Fig 4.9 shows the output, and we can observe that no crashes were detected.

Angora fuzzer fails to solve the path constraints, due to which it failed to detect
any crashes in the buggy JSON parser FuzzGoat 4.2. The fuzzer was successful
only in covering 132 out of 596 regions, 10 out of 14 functions, and 293 out of 1089
lines, resulting in a code coverage of 22.15%, 57.14%, and 26.91% respectively, as
shown in Fig 4.14.

4.4.2 Types of bugs or vulnerabilities detected

The types of bugs or vulnerabilities detected by a fuzzer entirely depend on the use
of Sanitizers 3.1. To evaluate this metric, we consider the fuzzing of fuzztest 43
program.

From the results of sub-sections 4.1.1, 4.1.2, and 4.1.3 in Section 4.1, we can
observe that LibFuzzer detects two types of bugs or vulnerabilities. In contrast,
Angora detects no bugs, and AFL detects only one memory-related bugs.

4.4.3 Number of bugs detected

This metric is dependent on the types of bugs or vulnerabilities detected. The metric
can be evaluated considering fuzztest 43 program. From Fig 4.1, the bugs detected
are divided into the total number and unique crashes. Unique crashes are counted
based on a particular type of bug or vulnerability, and the duplicates are added to
the total number. In LibFuzzer, fuzzing stops when a crash is detected, and if -
ignore crashes=1 flag is set, multiple crashes are duplicates. So, the total number
of bugs detected could be a wrong count. Whereas for the Angora fuzzer, with the
main idea being solving constraints, the fuzzer might not detect any bugs and still
solve constraints as explained in the test experiment for Angora fuzzer 4.3.

4.4.4 Execution Speed

Execution Speed is the speed at which the fuzzers perform mutation strategies to
generate inputs for fuzzing. The execution speed of AFL and LibFuzzer is similar
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as both these fuzzers use almost identical mutation strategies as explained in sub-
sections 3.2.1, and 3.3.1 of Chapter 3. The execution speed of Angora cannot be
determined as the primary goal of the fuzzer is to solve path constraints, and the
size of constraints can vary from small to large.

Finally, the results are used to compare AFL, LibFuzzer, and Angora Fuzzer based
on the above-mentioned metrics. The code coverage report was generated only for
FuzzGoat 4.2 buggy JSON parser program. The open source FuzzGoat program
has approx.1300 lines of code with bugs or vulnerabilities injected into it. In contrast,
the FuzzTest 4.1 was designed with a limited number of bugs or vulnerabilities, and
generating a code coverage report for a small codebase would not result in a code
coverage that can be used to compare the three fuzzers.

The code coverage results obtained for all three fuzzers with the FuzzGoat being
the targeted program is tabulated and shown in Table 4.1. The table shows that Lib-
Fuzzer successfully covers slightly more lines, functions, and branches than Ameri-
can Fuzzy Lop. At the same time, the code coverage results for Angora Fuzzer are
shallow as the fuzzer did not solve all constraints and failed to detect any crashes.
The newly generated inputs by the fuzzers mutation strategy should increase the
coverage, and the Angora fuzzer fails to do so.

American
Fuzzy Lop

LibFuzzer Angora
Fuzzer

Code Coverage Lines:
81.5%
Functions:
92.3%
Branches:
70.1%

Lines:
82.08%
Functions:
93.33%
Branches:
79.49%

Lines:
22.15%
Functions:
57.14%

Table 4.1: Code Coverage Results for Fuzzers with FuzzGoat

The rest of the metrics explained above is used to compare all the fuzzers using
FuzzTest 4.1 as the targeted program, and this is tabulated as shown in Table 4.2.
The metric Types of bugs or vulnerabilities detected shows that LibFuzzer succeeds
in finding two different types of bugs, namely Divide By Zero on line 12, and Signed
Integer Overflow on line 11. In contrast, AFL detects only the Divide by Zero on line
12, and line 16. On the other hand, the Angora fuzzer fails to detect any bugs or vul-
nerabilities. Similarly, for metric Number of bugs detected, both AFL and LibFuzzer
detect two bugs in total, and Angora detects 0 bugs. Lastly, from the metric Execu-
tion speed, we can observe that LibFuzzer took approx. Two seconds to detect both
bugs by generating the necessary inputs for them. AFL took approx. Five seconds
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to detect the same type of bug or vulnerability in which the Angora fuzzer fails to
fuzz the targeted program.

American
Fuzzy Lop

LibFuzzer Angora
Fuzzer

Types of bugs or
Vulnerabilities de-
tected

1 2 0

Number of bugs
detected

2 2 0

Execution speed approx.
5seconds

approx.
2seconds

NA

Table 4.2: Evaluation of Fuzzers with FuzzTest
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Chapter 5

Conclusions and recommendations

In this chapter, the project’s conclusion is presented over the proposed question by
research and how this work was achieved to answer the research question, there-
fore concluding this work. Furthermore, recommendations are discussed as a way
forward for this research work.

5.1 Conclusions

This research work presented a comparison of fuzzing tools. The approach for
this comparison was to understand the necessary background in fuzzing initially,
then understand the working of the fuzzing tools, and run a set of experiments on
targeted programs to obtain the results needed for comparison.

In this section, the research question proposed by the introduction of this work is
restated and answered, which is as follows.

• How can we compare different state-of-the-art fuzzers, which fuzzers are
good at detecting security bugs/vulnerabilities and how can they be cat-
egorized?

This question can be answered by comparing the three fuzzers, namely, Ameri-
can Fuzzy Lop 3.2, LibFuzzer 3.3, and Angora Fuzzer 3.4. To compare the fuzzers,
program metrics code coverage, types of bugs or vulnerabilities detected, number of
bugs detected, and execution speed 4.4 was considered. The results for these met-
rics were obtained by running experiments with all the fuzzers using FuzzTest 4.1,
and FuzzGoat 4.2 as targeted programs. From the analysis of results in Section 4.4
of Chapter 4, we can observe that LibFuzzer performs better than American Fuzzy
Lop, and Angora Fuzzer.

This work also presents a way to categorize bugs or vulnerabilities in American
Fuzzy Lop and LibFuzzer. The crash triaging tool built for AFL 3.2.3 was modi-

53
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fied and designed for LibFuzzer 3.3.2, and this tool can be used to categorize the
security-related bugs or vulnerabilities.

As a final thought and conclusion, this work has found a satisfactory answer to
the research question proposed, and the recommendations or future work will be
discussed in the next section.

5.2 Limitations

The Angora fuzzer 3.4 failed to run on the targeted program 4.1, due to which the
results of comparison with the other two fuzzers were not satisfactory. The fuzzer
seemed to work perfectly with the example programs provided in the fuzzer repos-
itory and the LAVA-M data set [35] used in the documentation [18]. Angora’s in-
put generation/mutation strategies were analyzed to understand the workflow of the
fuzzer, and it was nearly impossible to fuzz different targeted programs to test the
fuzzer with the resource available for the fuzzer.

5.3 Recommendations

This work presented the design of Exploitable LLDB, which was ported from GDB
to LLDB. In Exploitable GDB, there are 21 rules using which the crashes can be
categorized. In Exploitable LLDB, 14 of the 21 rules were implemented. The rest of
the rules needed the use of the stack, and implementing this is a complex process
in LLDB and is open research.

The work also presented a complete understanding of the Angora Fuzzer, but the
fuzzer failed to fuzz the targeted programs. The lack of documentation and support
for the tool resulted in this failure. For future work, we can get support from the
designers of the fuzzer, and the test experiments may succeed, which in turn might
change the results of the comparison.
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