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Abstract  

Purpose 

Psychophysiology and the measurement of physiological variables is an objective way to 

estimate cognitive states such as perceived stress. Available renowned physiological measuring 

devices are often expensive and lack transparency in how data is processed. Both play a factor in the 

shortage of hands-on psychophysiological education in some universities. Fortunately, the YLab 

initiative of the University of Twente has the goal to increase hands-on physiological measurement 

education. The YLab initiative is creating a platform where students can access relatively inexpensive 

hardware and free software to build physiological measurement devices. One such device is the YLab 

initiative’s first prototype. This YLab prototype was to be experimentally validated in measuring stress 

against the renowned Empatica E4.  

Method 

The experiment included a baseline measurement, a subjective stress scale, and an adjusted 

Sing-a-Song Stress Task (SSST). During the experiment, both devices recorded the participants' 

electrodermal activity (EDA) and heart rate (HR). 12 participants were recruited through convenience 

sampling. All participants were given a sensor placement manual to attach the sensors themselves, 

which all except one wanted to follow.  

Results 

The validation of the YLab prototype was unsuccessful thus far, partially because of the 

novelty of this prototype and the barricades in terms of transparency and compatibility of the E4. 

Difficulties were encountered with synchronizing the devices and pre-processing the YLab data. As 

well as, the EDA sensor of the YLab did not seem to be functioning properly. For this multitude of 

reasons, no systematic correlations of .8 or higher were found between devices or with the subjective 

stress scale. However, the ECG sensor placement by participants who followed a sensor placement 

manual did foster a clear signal.  

Conclusion 

Despite the failed validation of the YLab prototype important insights for future research can 

be drawn from this study. Recommendations include the need for further defining the ECG signal pre-

processing procedure to extract the HR. Furthermore, the sampling frequency of the ECG sensor 

should be increased. Thus, the first step was taken in investigating the YLab prototype. Therefore, the 

goal of the YLab initiative has come a little closer to being realized. 
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Introduction 

Psychophysiology refers to mechanisms in the brain and body that are related to mental 

processes. In the field of psychology, physiology is studied in relation to behavior, emotions, and 

perception often via direct experimental manipulation. For example, by introducing a stressful 

stimulus and measuring changes in physiological variables. Those changes show when and how the 

body reacts. As some (prolonged) changes in physiology are linked to unhealthy cognitive states or 

diseases (Torkamani-Azar et al., 2022; Segerstrom & Miller, 2004), insights gathered this way are 

useful. Understanding psychophysiological mechanisms and knowing which physiological variable 

values are disadvantageous can help improve (working) conditions and help prevent harm. The 

importance of measuring physiology can lie in the need for furthering knowledge or supporting 

decisions etcetera. 

Devices currently available often use multiple sensors for continuous and non-intrusive 

physiological measurements. Depending on the cognitive state or reaction of interest, various sensors 

can be used to measure physiology. For example, when measuring perceived stress you can measure 

skin conductance, and heart rate but also cortisol levels in saliva (Marques, Silverman & Sternberg, 

2010). If one would want to continuously measure cortisol in saliva that would require the sensor to be 

in the mouth. This sensor placement would interfere with speaking to a greater extent than e.g., skin 

conductance measurements on the forearm. During an experiment, (continuous) saliva measurements 

might be accounted for in terms of discomfort and tasks that need to be performed. However, when 

one wants to measure physiology in natural scenarios a cortisol measurement is less ideal. Therefore, 

the choice of the non-intrusive sensor(s) is often key to enabling measuring physiology in a broad 

range of scenarios, such as in a work environment. 

In recent years wearables have been on the rise which can measure perceived stress. The 

available wearables range from several commercially available smartwatches to the Muse headband 

gen 2 (Muse, 2022) and the (in Europe) medically certified Empatica E4 wristband (Empatica, 2020b). 

However, most of these and other validated methods of measuring stress are unavailable, difficult to 

interpret, and/or too expensive for people outside of research fields (Tsao, Li & Ma, 2019). For 

example, the algorithms implemented in those devices are often not available for inspection, making it 

difficult to understand how the physiological signals are processed. Even within (research) universities 

the number of measurement devices can be limited. This can be to the point that teaching how to 

measure physiological signals by first-hand experience is rare. Despite that the necessity of such 

devices is dependent on the research question, the strain on such education is still a serious issue. The 

shortage of first-hand experience could be tackled by attempting to increase the availability of 

physiological measurement devices.  

Thankfully, the YLab initiative within the University of Twente was established to create an 

educational platform that helps students gain first-hand experience with physiological measurement 
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devices. The YLab platform will cover the complete research workflow of creating physiological 

measuring devices. This workflow includes access to low-budget hardware and software to program 

sensors, analyze the data, and interpret the results. The students will conduct their own experiments, 

with the devices they have built and programmed. For the future of physiological education, this will 

be a crucial step in the right direction. Besides the gain on the educational front, another advantage to 

being able to create physiological measuring devices makes one less reliant on suppliers of the current 

measuring equipment. Possibly, the self-made devices can be used as an alternative to the less 

available store-bought equipment. 

The physiological variables related to stress will be the focus of this study. Stress was chosen 

as it is considered a relevant topic in today’s society. Furthermore, stress and the applicable sensors 

are already well covered in scientific literature, which is more practical in contrast to less researched 

phenomena. In order to use stress measurements, sufficient background knowledge of stress is 

essential. For this purpose, the stress topics of concern for the current study will be elaborated on 

below. 

Stress 

Stress has received attention in various fields of research and among the general public. For 

example, how humans experience and perceive stress, what stress is correlated with, and how it is 

measured (Epel et al., 2018). Stress in psychology has been considered a dynamic process that occurs 

when an individual appraises situational demands as exceeding available resources (Lazarus in 

Torkamani-Azar et al., 2022). Epel et al. (2018) state that perceived stress, in line with that definition, 

has the components of cognitive states and feelings. Because perceived stress is a cognitive state it is 

common to estimate stress by measuring its effects on individuals. Besides measuring (perceived) 

stress through physiology it can also be measured subjectively by ways of introspection through e.g. 

interviews or surveys.  

Individuals might react differently cognitively or behaviorally to stress however, inside the 

body a distinct stress response is widely accepted. This response lies within the “unconsciously” 

regulating autonomic nervous system (ANS). The ANS controls the functions of a wide range of 

organs including the heart, skin, digestive tract, and blood vessels. It has two branches the 

parasympathetic nervous system (PNS) and the sympathetic nervous system (SNS). The PNS is 

responsible for the conservation of energy, in other words, it is responsible for functioning in a state of 

relaxation. On the contrary, stress activates the SNS to release hormones like cortisol and adrenaline 

into the blood (Indikawati & Winiarti, 2020), simultaneously, (among others) sweat production, body 

temperature, and heart rate (HR) increase (Critchley, 2002; Kodithuwakku Arachchige et al., 2022; 

Torkamani-Azar et al., 2022). These physiological changes in the SNS are part of the “fight or flight” 

response. This stress response has evolved to increase our fitness by keeping us from harm.  
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However, chronic stress is harmful. It has been linked to mental illnesses e.g. depression and 

anxiety disorders and physical impairments e.g. the immune system (Torkamani-Azar et al., 2022; 

Segerstrom & Miller, 2004). Beside health decrements, stress has also been associated with reduced 

task performance, which can be particularly dangerous when e.g. involving surgeons or pilots 

(Torkamani-Azar et al., 2022). Because of the dangers surrounding stress-induced reduced task 

performance, Kodithuwakku Arachchige et al. (2022) propose that physiological measurements can be 

used as a pre-employment screening tool e.g., in selecting air traffic controllers. Propositions like the 

one from Kodithuwakku Arachchige et al. (2022) could spread to other high-risk occupations i.e., 

where one person can inflict damage on a large scale.  

The findings mentioned above again underline the importance of measuring the physiological 

reactions to stress for the prevention of harm, health-related or otherwise. Some examples of the 

available non-intrusive sensors are electrodermal activity (EDA) for the increases in sweat and thus 

skin conductance (Critchley, 2002), Electrocardiogram (ECG) or Photoplethysmography (PPG) 

(Shaffer & Ginsberg, 2017) from which HR and heart rate variability can be deduced. When it comes 

to these sensors various nuances should be considered as well as the devices available that incorporate 

them.  

Electrodermal Activity  

Electrodermal activity or electoral dermal activity (EDA) is the variation in the electrical 

conductance of the skin. EDA of the skin is mediated by sweat produced by the eccrine sweat glands. 

What is commonly understood is that sweat production is increased when stress is introduced 

(Boucsein et al., 2012; Critchley, 2002). Essentially, the conductance increases because resistance 

decreases due to an increase in sweat, as per Ohm’s Law below (A = Ampere, V = Volt, and Ω = 

resistance).  

EDA measurements often have two main components, the slow shifts in basal skin 

conductance (SCL, a.k.a. tonic EDA) and rapid changes known as skin conductance responses (SCRs, 

a.k.a. phasic EDA) (Critchley, 2002). Because the SCRs are sensitive to stimuli and stress, SCRs are 

often of more interest in experiments than the entirety of the EDA recording (Braithwaite et al., 2015; 

Caruelle et al., 2019). Braithwaite et al. (2015) and Li et al. (2022) state that a baseline measure of 2-4 

min can be enough to compare non-specific, event-related responses or unresponsiveness. In contrast, 

Boucsein et al. (2012) do not find the need for baseline measurements as event-related SCRs do not 

depend on SCL. Some EDA measurements can record the two components separately, but it is often 

necessary to filter out the SCRs afterwards. In such cases, higher sampling frequencies are 

recommended, also because higher frequencies can reduce timing errors (Caruelle et al., 2019; Li et 

al., 2022).  
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EDA can be measured by applying an external voltage or without (exosomatic and 

endosomatic recordings respectively). The current used in exosomatic recordings is applied between 

two electrodes, preferably placed on a singular palm or sole (Boucsein et al., 2012). That is because 

those areas have the highest density of eccrine sweat glands which makes them most sensitive during a 

stress response (Paloniemi et al., 2022). In particular, Boucsein et al. (2012) recommend the thenar 

and hypothenar parts of the palm. In other words, where the thumb is attached and its counterpart on 

the other outer side of the palm. Despite that, the wrist is used for EDA measurements to prevent 

obstruction of daily activities (Paloniemi et al., 2022). However, the wrist is considered suboptimal for 

various reasons (Caruelle et al., 2019; Li et al., 2022) e.g., because the wrist is more likely to reflect 

thermoregulation instead of relevant electrodermal phenomena (Boucsein et al., 2012). The drawback 

of these placements is that the wrist, palm, and fingers are all prone to motion artifacts. Therefore, 

depending on the activity the non-intrusiveness of a sensor placement has to be considered.  

Heart Rate  

 Critchley (2002) and De Looff et al. (2018) stated that heart rate (HR) rises as a response to 

stress. This rise in HR is mainly because the heart must facilitate possible movement, which requires 

blood flow to the muscles involved, for the fight or flight response mentioned earlier (Critchley, 

2002). HR (a.k.a. instantaneous HR) is determined by dividing 60 by the Inter Beat Interval (IBI). The 

IBI is also known as the R-R interval i.e., the time in between consecutive R peaks. R peaks are part of 

the P-Q-R-S-T wave that represents the electrical activity it takes to depolarize and repolarize the 

heart. Each letter of the  P-Q-R-S-T wave represents a distinct part of the heartbeat measured by an 

ECG. Depending on the lead i.e., the configuration of the ECG electrodes, used the components of the 

P-Q-R-S-T wave can be positive or negative. In Figure 1 an example of a positive P-Q-R-S-T wave is 

given. The highest peak in the Q-R-S complex is the R peak and it signals a heartbeat (Figure 1).  

Figure 1 

Two consecutive P-Q-R-S-T waves with R-R interval and Q-R-S complex 
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Note. Adapted from “Conceptualizing a real-time remote cardiac health monitoring system” by Page et 

al., 2017, In Medical Imaging: Concepts, Methodologies, Tools, and Applications, p. 177 

(https://www.researchgate.net/publication/281176903). IGI Global. 

The gold standard to measure HR is to derive it from a 12-Lead, a particular arrangement of 

12 electrodes on the torso, ECG reading (Cilhoroz et al., 2020; Kim et al., 2018; Laborde et al., 2017). 

The (12-Lead) ECG is the preferred method because it detects the depolarization and repolarization of 

the heart with a high temporal resolution (Shei et al., 2022). However, leads with fewer electrodes are 

also available and considered reliable (Jauniaux et al., 2020; Madona et al., 2021). For example, chest 

straps using fewer electrodes (often 2 or more) are also seen as reliable enough to measure HR 

(Cilhoroz et al., 2020) such as the Polar V800 HR monitor (Krejčí et al., 2018). The placement on the 

chest area for both sensors is favorable because it is less sensitive to motion artifacts in comparison to 

placement onto the extremities.  

Photoplethysmography  

Photoplethysmography (PPG) can be used as an alternative to ECG for measuring heart rate 

(HR) (Hinde et al., 2021; Shei et al., 2022). PPG sensors utilize light to measure the absorption, 

reflection, or transmission of light through the skin. These are altered by tissue perfusion i.e., blood 

flow, indicating heartbeats and consequently HR (Shei et al., 2022).. While the ECG is superior in 

accuracy Cilhoroz et al. (2020) state that in clinical settings patients have reported the discomfort of 

the irritating adhesive of the electrodes. The experienced discomfort has led to low patient compliance. 

Even chest straps are less employed than wrist-worn devices due to their impracticalities (Cosoli et al., 

2021). Therefore, Hinde et al. (2021) state that the wrist-worn PPG’s accessibility and practicality 

outweigh the negligible error rates reported. Especially, with the current updated algorithms the PPG 

has improved as a measuring alternative (Shei et al., 2022).  

However, an important nuance remains, the PPG significantly loses accuracy when the 

measuring conditions are not at rest e.g., when exercising. This can be due to the loss of contact with 

the skin, motion artifacts or sweat (Laborde et al., 2017; Shei et al., 2022; Wójcikowski & Pankiewicz, 

2020). Sometimes manufacturers of smartwatches/wristbands that employ this sensor also warn about 

the motion handicap of their devices (Empatica, 2020a). Another major drawback of the PPG is that it 

is not optimized for measuring HR in people of color (Bradford et al., 2022; Shei at al., 2022). The 

PPG is not powerful enough to accommodate higher pigmentation of the skin, often resulting in 

erroneous signals or no signal at all (Bradford et al., 2022).  

Current study 

In this thesis, the YLab prototype and the Empatica E4 will be compared. Current 

implementations of the YLab initiative’s efforts resulted in the YLab prototype. Coined the “YLab”, 

the YLab is a device containing two sensors to measure stress. Those sensors would match the sensors 

applied in the Empatica E4, a renowned device for personal and professional use (Empatica, 2021). 
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The professional use of the E4 can be in medical settings for patient monitoring and research settings 

such as in universities (Chandra et al., 2021). The E4 was chosen as a reference device because of its 

regular use in research settings. 

The current study combines the aim to improve and increase available physiological education 

and the importance of measuring the physiological stress response. The stress induced in the 

experiment that will be measured are electro dermal activity (EDA) and heart rate (HR). Between both 

devices and variables a positive correlation is hypothesized. Furthermore, a subjective stress scale is 

introduced to investigate if the devices correlate with those values. Again, a positive correlation is 

hypothesized. During this study, the signal of the YLab was investigated. Attempts were made to 

produce a suitable data processing procedure/algorithm. This paper aims to describe the pragmatic 

validation study to assess if the YLab prototype compares to the Empatica E4 in measuring stress.  

The research questions include,  

RQ1 Explore if the YLab can measure the same EDA as the E4 with a correlation of .8 or higher, 

Sub RQ1.1 Explore if the YLab and E4 EDA data correlate with the subjective stress measured, 

RQ2 find a way to detect the R peaks in the ECG data of the YLab,  

Sub RQ2.1 Explore if the YLab can measure the same HR as the E4 with a correlation of .8 or 

higher, 

Sub RQ2.2 Explore if the YLab and E4 HR data correlate with the subjective stress measured, 

Sub RQ2.3 Explore if the placement of the ECG electrodes by participants can foster an accurate 

signal, 

Sub RQ2.4 Explore if the use of linear interpolation to compensate for possible missing beats 

and/or rejected sections in the HR data of the YLab and the E4 leads to a correlation of .8 or higher.  
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Method 

Procedure  

For this validation study participants were welcomed to the experiment room by the 

researcher. After the participant was informed about the study and their rights, they consented to 

participate. Then they were given instructions and the sensor placement manual. The manual explained 

how to attach the sensors of the YLab prototype to themselves, including how to wear the Empatica 

E4. If the participant preferred they could leave the experiment room to attach the ECG sensors in 

private as those had to be attached to their torso. Depending on whether the participant wanted to leave 

the experiment room or not, these preparations took approximately 10 – 20 minutes.  

The participant was asked to find a comfortable position with their lower arms resting on the 

table to prevent movement. The sensors were attached to the YLab by the researcher. Then only the 

Empatica E4 was started. When the heart rate (HR) signal for the E4 stabilized the experiment was 

started simultaneously with the recording of the YLab. The experiment instructions were verbally 

given to the participant by the researcher as well as displayed on a computer screen. For example, a 

reminder to sit as still as possible until you see “End task” on the introduction slide of the experiment. 

The entire experiment sequence was presented to the participants in a PowerPoint on a computer 

screen. The baseline measurement took 5 minutes, during which the participants had to keep their eyes 

open to prevent them from dozing off. The instructions of/and the current Sing a Song Stress Task 

(SSST) took approximately 10 minutes. After the task was completed the measuring devices were 

turned off by the researcher and the participant was asked to remove the sensors. Then, the final 

questionnaire was filled in by the participant. Finally, the participant was debriefed and thanked for 

their participation. These closing steps after the SSST took approximately 10 minutes. In total the 

experiment took 35 to 45 minutes. The procedure was summarized in Figure 2.  

Figure 2 

YLab Validation Study Procedure Summary 
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Sensor Placement Manual 

The manual included the placement of the Empatica E4, the YLab ECG electrodes, and lastly 

the YLab electrodermal activity (EDA) sensor (Appendix A). With considerations for the privacy and 

comfort of the participants, the researcher aimed to stay outside of the participant’s personal space as 

much as possible. The images of the Empatica E4 user manual (Empatica, 2021) were mirrored, to 

increase the ease of following that part of the manual. Because for the current study the participant had 

to wear the E4 on their right instead of their left hand. With a copy of the manual to follow, the 

participant was given the option to place the ECG sensors on their torso in the privacy of a bathroom. 

Only two of the twelve participants made use of that option. The YLab ECG sensor placement part of 

the manual included an adapted picture with reference points from Cadogan (2022). Lastly, the YLab 

EDA sensors part of the manual included an adapted picture from Cionek (2020) on where to wear the 

finger sleeves. The EDA sensors were attached last as they hindered the placement of the electrodes 

and E4.  

The participants were given the option to let the researcher check their placement, in case a 

participant felt unsure about their sensor placement. Moreover, when they were comfortable with the 

researcher placing the sensors they did not have to do it themselves. However, they were encouraged 

and presented the manual first. Only one of the twelve participants wanted the researcher to place the 

sensors. 

Baseline and Stress Scale 

A baseline measurement and stress scale were included in the experiment to have more data to 

compare the devices with. The baseline measurement was implemented following the advice to do so 

for EDA measurements (Braithwaite et al., 2015; Li et al., 2022). The stress scale was implemented to 

correlate the physiological variables with as way to compare the devices. The participant was asked to 

rate the stress induced by the experiment verbally on a 7-point Likert scale as the following: 

1. Not at all stressed  

2. Low stress 

3. Slightly stressed 

4. Average 

5. Moderately stressed 

6. Very stressed 

7. Extremely stressed 

The stress scale was presented six times to the participant. The first one was presented immediately 

after the introduction slide i.e., before the baseline measurement of 5 minutes began. After the baseline 

measurement was finished the same question was asked again. The other four times the participants 

were asked to rate their subjective stress were during the SSST. This was done to hopefully capture the 

increase in perceived stress due to the SSST.  
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After feedback from one of the first two participants on the meaning of point “4. Average” the 

scale was changed to:  

1. Not at all stressed  

2. Low stress 

3. Slightly stressed 

4. Moderately stressed* 

5. Very stressed* 

6. Highly stressed* 

7. Extremely stressed 

Because none of the two participants had chosen the adjusted points their values did not need to be 

converted. The bipolar scale was intended to capture stress that might arise from participating in an 

experiment or stress the participants potentially feel in general. In hindsight, it did not make sense to 

the participants, whereas during the pilot testing nobody questioned the scale.  

The Adjusted SSST 

A Sing a Song Stress Task (SSST) aims to elicit stress based on social evaluation and singing, 

while adhering to ethical standards like the original SSST (Brouwer and Hogervorst, 2014). The SSST 

starts with participants following instructions to read sentences in their mind or out loud alternated 

with 1-minute intervals. At a certain point, the participant is asked to sing out loud. In experiments, 

participants can be told their singing will be judged afterwards or utilize confederates to enhance the 

social stress aspect (Brouwer and Hogervorst, 2014; van der Mee et al., 2020).  

The adjusted SSST was inspired by Brouwer and Hogervorst (2014) and van der Mee et al. 

(2020). The neutral statements in the current SSST were derived via the same method as van der Mee 

et al. (2020), i.e. English sentences were taken from the Wikipedia page on vacuum cleaners. The 

length of the adjusted SSST was approximately 10 minutes long, between the length of the SSST 

(Brouwer and Hogervorst, 2014) and the Short SSST (van der Mee et al., 2020).  

The current SSST was displayed in PowerPoint, in the same file as the baseline measurement, 

immediately after the second subjective stress scale was presented. This SSST is equipped with an 

example slide, it includes an example sequence of instruction slides and a counter slide. There was no 

practice set of slides. After the example slide, the first counter begins and the task sequence follows. 

After the final countdown is presented the end of the task is shown on the final slide. The first counter 

slide included the 7-point scale alternating with the counter-only slides until the task ended. The 

adjusted SSST is summarized in Figure 3 and the full version can be found in Appendix B. 

Reminder cues were given to the participant in case they did not follow instructions or did not 

react to the scale, e.g. “Please follow the instructions on screen” and  “Please indicate your level of 

stress.” For the singing part of the SSST encouraging cues were prepared, e.g. “Please sing the song 

you thought of” or if the participant was not responsive after that “Please sing any song that comes to 
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mind.” It was estimated that this adjusted SSST would still be a valid stress inducing task like the ones 

it is based on, i.e. the original SSST (Brouwer and Hogervorst, 2014) and the Short SSST (van der 

Mee et al., 2020).  

Figure 3 

Adjusted Sing a Song Stress Task (SSST) summary. 

 

Survey and Informed Consent 

The informed consent and survey were presented to the participant with Qualtrics, with a 

break in between to signal the experiment would begin. This was done to keep all data online and in 

one file. The survey after the SSST and sensor removal contained questions regarding demographics, 

the participant’s experience, frequency, and comfort regarding singing alone and in front of the 

researcher. Furthermore, it included a question on previous experience with the SSST. The final 

questions were to check if they followed the instructions prior to the experiment to stop consuming 

alcohol and caffeine and cease strenuous exercise. As well as, to check their health status concerning 

diseases for the exclusion criteria.  

The participants were reminded to cease consuming alcohol or caffeine 12 hours before the 

experiment per email 24 hours prior to the experiment. Strenuous exercise was also asked to be 

avoided 12 hours before the experiment. Because those behaviors have affected the physiological 

reaction of the heart (Krejčí et al., 2018; Li et al., 2022). This was only verified in the survey because, 

despite the possibly influenced data patterns, the YLab prototype and Empatica E4 should still be able 

to measure the variables with a high degree of accuracy. Furthermore, no inferences will be drawn 
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based on the physiology of the participants. Therefore, those behaviors did not need to be exclusion 

criteria. In summary, the survey was collected to potentially explain differences in correlations 

between the devices and the subjective stress scale. 

Materials and Measures 

The electrodermal activity (EDA) and heart rate (HR) data from the YLab and the E4 were 

matched and correlated. For both devices, the variable EDA was measured directly in the same 

manner. The HR was calculated based on the inter beat interval (IBI) for both devices afterwards. The 

devices had different sensors to measure the IBI but those were matched and correlated too. The IBI 

was chosen over the HR as it was closest to the raw data signal from the E4.  

Empatica E4 

The Empatica E4 contains four sensors of which two will be used to measure stress in the 

current study: the Photoplethysmography (PPG) and EDA (Empatica, 2020b). In the E4 the EDA is 

measured with a sampling frequency of 4Hz. The PPG is an optical technique to measure the 

volumetric changes in blood being pumped through the arteries by the heart. This is measured with a 

blood volume pulse at 64 Hz, which served as the basis for the IBI and thus the calculated HR. The 

algorithm which filters the IBI for true R peaks from noise is not publicly available (Empatica, 2020a).  

YLab prototype 

 The YLab prototype (Figure 4) is a low-budget Do-It-Yourself device that consists of various 

products (Table 1). The basis of the YLab is the Maker Pi Pico (rev 1.2) board on which the Raspberry 

Pi Pico 2040 (RP2040) is preinstalled. The RP2040 is the microcontroller that is programmed in 

Python (Appendix C) please refer to the YLab GitHub for all necessary libraries etcetera (Schmettow, 

2023). The python code was run in Thonny (v4.0.1) with Python (v3.10.6, 64-bit) and Tk (v8.6.12) to 

use the YLab prototype. The raw signals are written in CSV files on an SD card. The signals are 

retrieved via the grove system, to which the grove-compatible GSR sensor (v1.2) to measure EDA and 

EMG detector (v1.1) to measure ECG were attached. 

The EMG detector was fed through the ADS1115 to convert the analog signal to a digital 

output. The ADS1115 has a 16-bit precision and a programmable gain amplifier which can boost the 

signal up to 16 times. The EMG detector made use of a three-electrode cord, meaning a 5 or 12 Lead 

ECG sensor configuration was not possible. Therefore the Lead-II ECG configuration was chosen as it 

was feasible with the three electrodes and that Lead-II was effective in previous research (Madona et 

al. 2021). The choice to use ECG measurement instead of a PPG sensor is because ECG is a more 

accurate and effective measurement of heartbeats (Chandra et al., 2021; Van Lier et al., 2020). The 

EDA was sampled at 4Hz to match the E4, and the ECG was sampled at 100Hz. The EDA and ECG 

sensors were called yeda and yema, respectively. 
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Table 1          

Products Used in the YLab Prototype 

Product Producer  

Maker Pi Pico rev 1.2 Cytron Technologies Sdn Bhd 

ADS1115 Adafruit Industries LLC 

Grove – GRS v1.2 Seeed Technology Co., Ltd 

Grove – EMG sensor v1.1 Seeed Technology Co., Ltd 

Grove – 4 pin cable Seeed Technology Co., Ltd 

  

Figure 4  

YLab Prototype   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The parts used to create the YLab are denoted as *Grove – EMG sensor v1.1,** ADS1115, *** 

Grove – GRS v1.2 and ****Maker Pi Pico rev 1.2 which are connected by the Grove – 4 pin cables. 
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Participants 

12 participants (9 females) aged 19 to 29 (M =  23.8, SD = 3.8) were recruited via 

convenience sampling and through the “SONA system” provided by the University of Twente. SONA 

participants that completed this experiment were rewarded 2 SONA points. The participants recruited 

in the network of the researcher did not receive a reward for their participation as they were not 

eligible for SONA points. The exclusion criteria for this study were heart disease or epilepsy. 

The sample size for this study was based on the initial power calculations of Van Lier et al. 

(2020). The study of Van Lier et al. (2020) also concerned validating a device and the Empatica E4 

and was thus deemed relevant. In their study, the signal and parameter level sample size were based on 

a correlation of .8 and effect size of 1.8. While [.8^2 /(1 – .8^2)] and the Bland-Altman analysis. Both 

suggested the sample size of 6 participants, Van Lier et al. (2020) increased it to 55 participants. 

However, due to the resource constraints of this study no more than 12 participants could be achieved. 

This was to an extent justified as this first validation study of the YLab will only use correlations and 

no other statistical analysis.  

Data analysis and Design 

This project has been approved by the Ethics committee of the University of Twente in the 

Netherlands under number 221300. In this study, a within-subjects design was implemented. The 

individual differences over time in heart rate (HR) and electrodermal activity (EDA) derived from the 

devices were compared with each other and the subjective stress scores.  

During the data analysis correlations within subjects were performed between the YLab and 

E4, on the signal level for EDA and the parameter level for HR. These variable correlations aimed to 

answer RQ1 and sub RQ2.1, respectively. Moreover, the YLab and E4 data for both EDA and HR 

were correlated with the subjective stress scale that aimed to measure the construct stress and answer 

sub RQ1.1 and sub RQ2.2, respectively. The correlations were then compared between devices.  

Time synchronization 

The raw data of the YLab had to undergo transformations, most importantly synchronizing the 

data. Due to the scope and timeframe of this study, no synchronization software could be created to 

match the start of E4 and YLab recordings. Nor were there resources to create an algorithm to match 

recordings after the experiment. Other timing issues occurred because the E4 has a lag between 

pressing start and recording/displaying the measurements of all signals in the E4 realtime (v2.1.1) 

streaming app. Even when the HR appeared on the streaming app it showed a calibration period where 

the first estimations of the HR went up from e.g., 52 bpm to stabilize around 82 bpm. 

Unlike the E4, the YLab does not have a lag or timing issues in starting the recording of the 

measurements. Luckily, the ending of the recordings could be done simultaneously for both devices. 

Therefore, they were stopped at the same time by the researcher. The last observations were matched 

and the YLab served as a timeline because it started to record with the start of the experiment. Because 
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the E4 was started in advance of the experiment it had more data than the YLab, given that the E4 

algorithm did not reject too much data in the beginning. The excess E4 data from before the 

experiment was deleted.  

The real time for the YLab was calculated based on an arbitrary number of seconds passed 

which was given to every participant. For example, the first 3 observations of “time” on the YLab 

were [3422.28, 3422.3, and 3422.32] and so on due to the sampling frequency. When the entire time 

series was deducted by 3422 the real timeline was created, resulting in the times from the example to 

become [0.28, 0.3, and 0.32] respectively. This arbitrary number differed per experiment therefore the 

researcher had to pre-process the data by reducing the start value accordingly.  

Similarly to Milstein and Gordon (2020), the synchronization of the output from both devices 

was done in Excel. This was convenient because the YLab and the E4 both recorded CSV files. After 

the real time and other pre-processing steps were completed in R the data was exported to Excel. Then 

the YLab and E4 data were aligned based on the last observation and the subjective stress scale values 

were inserted. Finally, the newly aligned data was imported back to R for the data analysis.  

Signal and parameter level pre-processing 

The pre-processing was mostly necessary for the data of both the yeda and yema sensors 

(EDA signal and HR parameter level respectively). However, for the YLab and the E4 the HR had to 

be calculated with the IBI as mentioned above. Furthermore, both devices underwent the same linear 

interpolation process. The EDA data from the yeda sensor had to be transformed as the skin resistance 

in Ohm (Ω) was measured instead of skin conductance in Siemens (S). Per the formula below 

(reciprocal of Ohms Law: A = Ampere, V = Volt, and Ω = resistance), 1 was divided by the yeda 

values to get the Siemens under the assumption A is constant. The EDA data could be correlated 

immediately afterwards as it was sampled at 4Hz for both devices. The Empatica E4 measures the 

EDA in micro-Siemens (μS) and the yeda was transformed to Siemens.  

The yema data was first visually inspected per participant for signs of the R peak in the Q-R-S 

complex of the heartbeat wave. Figure 5 shows a random fragment of 4 seconds for all participants, a 

visual difference can be seen between the higher peaks resembling R peaks and other lower waves for 

most participants. Despite that, the peaks are more prominent in some participants, for all participants 

the R peaks were tried to be detected. The visual inspection was also necessary to answer sub RQ2.3. 

As mentioned earlier, the HR for both devices were computed based on the inter beat interval (IBI). To 

calculate the IBI, first, the R peaks and their time stamps had to be detected. Three approaches were 

tried to detect true R peaks in the yema data.  
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Figure 5 

Excerpt Yema Sensor of the YLab Prototype ECG Values Representing Heart Rate Waves Participants  

 

For that purpose, the yema data had to be filtered multiple times. However, the conventional 

frequency filters such as Butterworth, Fourier transformations, or notch filters were not applied 

because the yema data looked similar to the result of those conventional filters (Basu & Mamud, 2020; 

Dotsinsky, 2005; Shankar & Babu, 2020). It is unknown if the E4 applies similar PPG filters to the 

PPG data e.g., those proposed by Liang et al. (2018). In a way, the filtering process is an attempt to 

mimic what the E4 algorithm does but after the data is collected. For the yema data, 4 filters based on 

the work from Francesca et al. (2018) on low-complexity algorithm steps were created. The 4 filters 

were tried by compounding them one by one. Using the 4 filters together seemed to deliver the best 

output, therefore they were used together as the first approach to pre-processing the yema data.  

Two filters were used to detect potential R peaks, which are distinct and rapid increases in the 

ECG value. The first filter was based on the height of the peak. For this, the positive outliers of the 

yema sensor values were used to choose a threshold. The second filter was based on the derivative 

between the yema sensor values. With this derivative, all peaks in the data could be detected by 

looking at when a positive value was followed by a negative value. However, for the R peaks, positive 

outliers from the derivative were used to choose a threshold. High derivative values are essentially big 

increases in the yema values and thus high peaks, similar to R peaks. Based on the values left over 

after both filters, the timestamps when potential R peaks and thus heartbeats occurred were extracted.  

Then the IBI was calculated between the consecutive potential heartbeats. The yema data thus 

far contains the potential peaks and some extreme values of IBIs. This is because false peaks, which 

often have very short IBIs, and missed peaks, which cause very long IBIs, are still included. Two IBI 

filters were thought of inspired by the E4 algorithm. Besides rejecting false peaks somehow, the 

algorithm only uses the first 2 accepted peaks after a rejected section to calculate the next recorded IBI 
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(Empatica, 2020a). In other words, rejected sections are not included in the recorded dataset, to 

achieve a similar result the extreme IBIs were filtered out. 

To this end, two IBI filters were estimated based on outliers from the yema data. The third 

filter was for the lower end of IBIs. IBIs shorter than .4 seconds were filtered out because, IBIs of 

0.01, 0.02, and 0.03 seconds were most likely measured on the rising side of the same peak. Then the 

fourth filter was for the upper end of the IBIs, filtering out outliers of 1.2 seconds or longer. The 

pinpointing of the threshold for the filters also took into consideration the HR which would result from 

the accepted IBIs. Because HR = 60/IBI, the IBI thresholds for the lower and upper end would give a 

HR of 150 and 50, respectively. This range was deemed broad enough considering the seated 

participants. This first approach of using the 4 filters served as the fundament for the remaining two 

approaches to pre-process the yema data.  

The second approach was to filter the yema IBIs on the minimum and maximum IBI lengths 

the E4 algorithm accepted per participant, which were expected to be more conservative. This 

approach is more influenced by the E4 algorithm as the E4 is already validated. In other words, this 

approach only differed from approach 1 by the thresholds given to the lower and upper IBI filters.  

It must be noted however that filtering the IBI lengths means a section of rejected and/or 

missed peaks will not show in the data. The exclusion of such sections in the recorded data is stated by 

Empatica (2020a). Therefore, by mimicking the E4 algorithm neither will such sections show the 

yema data. Moreover, it is important to note that the E4 and the YLab might reject/filter the data in 

differing places. In other words, when the yema might have filtered/missed a R peak the E4 might not 

have, potentially creating a mismatch between the datasets. This potential problem was not controlled 

for because this method of filtering is part of the validated E4 algorithm. Thus, the yema data of pre-

processing approaches 1 and 2 were aligned with the original E4 IBI data to compare. 

Interpolation was used in the final third approach, in an attempt to reveal all rejected sections 

and estimated the misses for both the YLab and the E4. This pre-processing approach could prevent a 

potential mismatch between the datasets. Various forms of interpolation are available when dealing 

with missing data (or rejected sections). For example, cubic spline and linear interpolation are popular 

and relatively easy options (North & Livingstone, 2013). However, when evaluating the cubic spline 

interpolation on the yema data even more extreme values were estimated. This is most likely due to 

the number of consecutive misses. Therefore, linear interpolation was chosen to be used on the IBIs. 

Moreover, Empatica (2020a) also mentions linear interpolating if necessary.  

Empatica (2020a) also provides a way to detect the hidden rejected timespans in the data. For 

the yema, the method is similar but more straightforward as the long IBIs are present in the data. 

Therefore, for both devices, the very long IBIs were located, and the number of misses was calculated 

by dividing the long IBI by the median IBI. The median was used because the long outlier IBIs could 

influence the mean whereas the median is more robust to outliers. Finally, the inserted empty spots 

were linearly interpolated. This was also necessary to answer sub RQ2.4.  
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Results 

The visual inspection of the data, pre-processing, and analysis were performed in RStudio 

(v4.2.2.) (RStudio Team, 2020) (Appendix D). First participant level plots were made to look at how 

the values compare between the YLab and E4 for the electrodermal activity (EDA) and then for the 

three pre-processing approaches for the heart rate (HR). All visualizations are of excerpts of the data 

around the last three minutes of the SSST because between seconds 815 – 845 the singing task was 

performed. Around this timeframe, the stress and thus EDA and HR of the participants were estimated 

to increase or peak as a result of the singing.  

 

Electrodermal activity 

Figure 6 

Excerpt EDA Values Yeda Sensor and E4 for last 3 Minutes of the Experiment 

  

As can be seen above the EDA measurements from the yeda sensor and E4 sensor do not seem 

similar. Unsurprisingly, the correlations look poor between the devices in Figure 7 and were revealed 

to be poor after statistical analysis in Table 2. The cluster formations for the E4 in Figure 7 are most 

likely the peaks and higher plateaus visible in Figure 6. The most prominent plateau occurred in 

participant 6 around second 820 (Figure 6). In contrast to the yeda values that seem to have peaks but 

no systematic increase in EDA. The yeda sensor seems to not have measured EDA but possibly static 

of some sort, as there seems to be an oscillation around a set value that differs per participant (Figure 

6). Whereas normally the EDA would contain SCL which is a certain rate of increase or decrease in 

the baseline (Boucsein et al., 2012). Moreover, the concern for a defective yeda sensor seems to be 

supported by the E4 data from e.g., participants 5, 8, and 12 where the E4 seemed to have measured 

SCL (Figure 6).  
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Figure 7   

Scatterplot EDA Data between the E4 and the Yeda Sensor of the YLab Prototype  

 

 

Table 2  

Correlation EDA between Yeda Sensor and the E4  

 EDA 

Participant yeda and E4 

1 -0.043 
2 0.002 
3 0.005 
4 0.000 
5 -0.030 
6 0.030 
7 0.001 
8 0.008 
9 -0.001 
10 -0.004 
11 -0.018 
12 0.113 

 

Heart Rate 

For an exploration of the yema sensor, of the yema values were plotted against the E4. The three 

approaches were looked at separately. In summary, the approaches were: 

1. Use yema IBI outliers to filter the yema IBI (Figures 8 & 9) 

2. Use E4 IBI min and max values to filter the yema IBI (Figures 10 & 11) 

3. Use linear interpolation on both the yema and E4 IBI data (Figures 12 & 13) 
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Figure 8 

Excerpt HR Values Yema Sensor and E4 for last 3 Minutes Experiment Approach 1 

 

Figure 9 

Scatterplot HR Data between the Yema Sensor and the E4 for Approach 1. 
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Figure 10 

Excerpt HR Values Yema Sensor and E4 for last 3 Minutes Experiment Approach 2 

 

Figure 11 

Scatterplot HR Data between the Yema Sensor and the E4 for Approach 2. 
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Figure 12 

Excerpt HR Values Yema Sensor and E4 for last 3 Minutes Experiment Approach 3 

 

Figure 13 

Scatterplot HR Data between the Yema Sensor and the E4 for Approach 3. 

  

Concerns based on irregular patterns in the data will be described below. The irregular patterns 

visible in the excerpt of data in the figures above are presumed to be present in the entire recording. 

For all approaches, it is clear that the yema has radical changes between consecutive HR values. 

Essentially, the very low to very high HRs are a result of long and short IBIs respectively. This is a 

concern because it is not normal for the HR to go change this drastically within seconds, such changes 

could be due to an error in the sensor or pre-processing to detect R peaks. Especially in approach 1, 

these rapid HR changes are present, but it gets reduced in approach 2 for example in participants 7 and 
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10. This is due to the E4 min and max IBI thresholds of those participants being more conservative 

than the min and max IBI from the yema outlier. In other words, hypothetically in approach 1 the 

lowest IBI accepted for a participant was .4 whereas the minimum E4 IBI value used in approach 2 

was .56. Vice versa would be true for the longest accepted IBIs. These changes in threshold values 

from approach 1 to 2 result in less extreme IBIs being accepted and consequently fewer radical 

changes in HR being present in participants 7 and 10 (Figure 10).  

Furthermore, the third approach raises other concerns with regard to the missed sections in the 

data. This is due to the interpolation for the rejected sections or “misses”, which are most prominently 

visible in participants 2 and 7 in the E4 data (Figure 12). What has happened in e.g., participant 7 is 

that the section between timestamps 720 – 815 seconds has been missed. This section has then been 

interpolated, between similar values, to cause the almost straight line of seemingly repeating values. 

Afterwards in the section between timestamp 825 – 885 seconds, the same happens but now between 

vastly differing HR estimations. Therefore, the line connecting the points has a positive slope. These 

segments are disconcerting as it shows the E4 misses 155 seconds of the 300 seconds displayed in the 

data visualizations for participant 7.  

In regard to the correlations, no systematic visual correlation could be seen for all participants 

of approaches 1 and 2 (Figures 9 & 11). However, the third approach showed more promising fitted 

lines (Figure 13). This seems to be partially confirmed by the correlations in Table 3. The small 

difference in overall correlation between the first and second approach could be due to the minor 

change in IBI filters. As can be seen clearly with participants 1 and 7, between Figures 9 and 11 only 

some outliers are removed but the better part of the scatterplots stays the same. In conclusion, no 

correlations higher than .8 were found for either the EDA or the three HR approaches between the 

devices. However, the yeda values were correlated to a lower extent than the yema values with the E4.  

 

Table 3  

Correlation HR between Yema Sensor and the E4 per Approach  

Participant HR approach 1 HR approach 2 HR approach 3 

1 0.098 0.168 0.057 

2 -0.037 -0.086 0.136 

3 0.152 0.210 0.309 

4 0.200 0.218 0.158 

5 0.367 0.262 0.597 

6 0.039 0.035 0.141 

7 0.084 0.068 -0.109 

8 0.129 0.210 0.314 

9 0.108 0.076 0.355 

10 0.172 0.351 0.424 

11 0.097 0.105 0.094 

12 0.182 0.104 0.117 



 
YLAB VALIDATION STUDY  26 

 

Subjective Stress Scale 

Lastly, the subjective stress scale was correlated per participant per device per measurement. 

A wide variety of correlations was found between participants as well as between devices (Tables 4 

and 5). The E4 EDA seemed to correlate better with the subjective stress scale but the negative 

correlations for other participants were quite high as well (Table 4). Then, the opposite is the case with 

the HR where all three approaches of the yema seemed to correlate better to the subjective stress scale 

(Table 5). This is most noticeable for participants 4, 5, and 9. The exact same correlations for 

participants 4 and 5 for approaches 1 and 2 are due to the IBI filters not changing the HRs at the time 

stamp the subjective stress score was appended. Contrarily to the differences between the devices and 

variables, some similarities are present. Participants 2 and 4 show some consistency in significance for 

the EDA and HR approach 3. It seems participant 2 did better with the E4 and participant 4 did better 

with the YLab. Nothing particularly distinctive about these participants or their behavior during the 

experiment were noted or retrieved from the movement sensor in the E4. The one thing that comes to 

mind is that the sensor attachment of the YLab might have been exceptionally well done for the fourth 

participant.  

 

Table 4 

Correlation Subjective Stress Scale and Measurements of the EDA for the YLab and the E4 

 EDA 

Participant yeda E4 

1 0.113 0.430 

2 -0.232 0.991** 

3 -0.159 0.806* 

4 0.829* 0.000 

5 0.262 0.620 

6 0.223 -0.521 

7 -0.333 0.638 

8 -0.349 0.971** 

9 -0.466 -0.991 

10 -0.453 -0.696 

11 -0.506 0.658 

12 -0.476 -0.105 

*high correlation of between .8 and .9 **very high correlation of .9 or above. 

  



 
YLAB VALIDATION STUDY  27 

 

Table 5 

Correlation Subjective Stress Scale and Measurements of the HR for the YLab and the E4 per 

Approach 

 HR Approach 1 HR Approach 2 HR Approach 3 

Participant yema E4 yema E4 Yema E4 

1 0.049 -0.145 0.049 -0.760 0.049 -0.022 

2 0.775 0.284 0.775 0.003 -0.285 0.878* 

3 -0.622 0.605 -0.622 -0.224 -0.622 0.466 

4 0.897* 0.354 0.897* 0.300 0.921** 0.533 

5 0.876* 0.317 0.876* 0.376 0.876* 0.825* 

6 -0.224 -0.187 0.439 0.156 -0.340 -0.550 

7 -0.392 0.632 -0.392 0.672 -0.252 0.302 

8 0.622 -0.570 0.622 -0.486 0.622 0.677 

9 0.863* 0.700 0.863* 0.225 0.863* 0.211 

10 -0.658 -0.023 -0.658 -0.083 -0.587 0.009 

11 -0.389 0.632 -0.389 0.427 -0.413 0.499 

12 0.173 0.636 0.173 0.419 0.173 0.190 

*high correlation of between .8 and .9 **very high correlation of .9 or above. 

 

In summary, the E4 on average performed better for both the raw EDA measurement and the 

measurement in correlation to the subjective stress scale. Then the HR measurements seemed to 

improve with the linear interpolation for both the devices and regarding the correlations with the 

subjective stress scale. Overall, the results were conclusive that the correlations between the devices 

for both EDA and HR are not up to the level that the YLab can be fully validated.  
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Discussion 

This study served as a first attempt to validate the YLab prototype when measuring stress in 

comparison to the Empatica E4. During the experiment that included a baseline and a stress task both 

devices were used simultaneously to measure the EDA and HR of participants. Because the E4 is 

validated, the assumption was that if the measurements of the electrodermal activity (EDA) and heart 

rate (HR) would correlate to a high degree between devices the YLab would be validated. The pre-

processed EDA and HR data were correlated but no systematic significant correlations were found.  

Therefore, the YLab prototype was not validated as the RQ1 “Explore if the YLab can 

measure the same EDA as the E4 with a correlation of .8 or higher” and Sub RQ2.1 “Explore if the 

YLab can measure the same HR as the E4 with a correlation of .8 or higher” were not supported. 

Essentially, for the HR related research questions no support was found because those depended on 

RQ2 “find a way to detect the R peaks in the ECG data of the YLab” which was not 

achieved/supported. In other words, if the R peaks could not be properly detected then the IBI is 

unreliable, thus the calculated HR of the yema would be faulty. Even the use of linear interpolation on 

the missing R peaks sections was not fully supported (Sub RQ2.4). Furthermore, the research 

questions regarding correlations between the devices for both EDA and HR and with the subjective 

stress scale were not supported either (Sub RQ1.1 and SubRQ2.2 respectively). Several explanations 

as to why the results did not support any of these research questions will be described in the next 

sections.  

In contrast, only sub RQ2.3 “Explore if placement of the ECG electrodes by participants can 

foster an accurate signal” seem to have some support. When inspecting the data visually it seems 

peaks are present, these peaks are considered R peaks (Figure 5). Despite that 11 of the participants 

placed the sensors themselves with the help of the sensor placement manual. This is an important 

observation considering the sampling frequency is lower than most other ECG set-ups. It is assumed 

that when the sampling frequency is increased the signal quality will improve. Thus, for future 

research, the use of a sensor placement manual can be encouraged. The comfort and privacy of the 

participant can be maintained with the sensor placement by the participant. Furthermore, the manual is 

useful because of the current risks associated with close contact between researcher and participant, 

related to the pandemic, movements, or otherwise.  

Yeda 

The EDA data from the YLab seems to have picked up a different/erroneous signal because a 

cable was not functioning properly (Figure 6). Unfortunately, this realization happened after data 

collection had ended when the results were visualized. When testing if the yeda sensor was defect, it 

was confirmed something was wrong. The sensor did not produce an appropriate signal change when 

the two electrodes were placed onto each other. The recorded EDA data was not visualized in the pilot 
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phase. This is because the ECG data required a visual inspection for R peaks whereas the EDA data 

did not. This will be a valuable lesson for the researcher and future research with the YLab. 

The cables for the GSR sensor, or the entire sensor, need to be replaced before new research 

with the YLab will be performed. Then, the new data needs to be visualized before data collection and 

should be similar to the E4 signal (Figure 6). This is because EDA data usually contains slow rises 

(the SCL) and peak moments (the SCRs) (Critchley, 2002). Another way to potentially improve the 

sensor once it is working, is to increase the sampling frequency to be higher than the 4Hz of the E4. 

This is because the YLab has the option to do that and using a higher sampling frequency has resulted 

in higher quality EDA data in previous research (Caruelle et al., 2019; Li et al., 2022).  

Yema 

Existing packages  

Numerous ways of processing the ECG signal were attempted. Among which, the “heartBeat” 

R package (Emilpl, 2015). This package was originally developed for a single lead ECG Zephyr 

signal. Despite that, it was attempted to process the yema data with it. The heartBeat package includes 

the frequency filters, from wavelet decomposition transformations like Fourier transformations, which 

were earlier deemed unnecessary for the yema data. The frequency filters were tried because it was a 

mandatory step in the walkthrough of the package. However, when the package seemingly did not 

result in any heartbeats detected it was realized problems had occurred. By backtracking each step in 

the process it became clear where the problems lied.  

 Starting with, the yema data did not match the required format nor values of the example data 

from the heartBeat package walkthrough. After the format was adjusted, the threshold value necessary 

for the R peak detection later on was changed to match the yema data. The selection of an alternative 

value for the threshold was informed by visual inspection. Now that the heartBeat package functioned, 

it was still no use. A noticeable contrast was between the example sample frequency of 250Hz and the 

sampling frequency of the yema. In the current study, the yema sampling frequency was expected to 

be 100Hz however it came closer to 44Hz. Even when adjusting the sampling frequency in the 

heartBeat package it did not change the outcome. Whilst unfortunate, this is to be expected with such a 

discrepancy in sampling frequencies. Further down the script, it became clear how much the yema data 

was impacted by the sampling frequency.  

Wavelet coefficients are influenced by the pronouncement of peaks in the data. The package 

calculates the wavelet coefficients that will then be filtered based on the earlier established threshold. 

The wavelet coefficient filtering is done to detect peaks. In Figure 5 the yema peaks are less 

pronounced and systematic over all participants. Therefore, the package was tried with participant 4 

which has one of the most pronounced peaks. However, this still led to the wavelet coefficients being 

too different from the heartBeat example data. In comparison, the yema data produced inconsistent 

heights and not as pronounced wavelet coefficient peaks.  
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From this point on, the use of the heartBeat package was halted. In future research, the sampling 

frequency of the yema should be increased. Moreover, it could prove useful to adapt the yema output 

to match the heartBeat package, or other packages like the RHRV package (Martínez et al., 2017), 

format and values. Matching the yema data to existing formats could lead to smoother pre-processing.  

The 3 HR approaches 

For the yema sensor and the three approaches to estimate HR, the lack of systematic correlations 

over all participants seems to point to a need to further define the data pre-processing. Despite that the 

current pre-processing was derived based on Francesca et al. (2018). And it was similar to the 

heartBeat package in the use of thresholds for peak detection, more refined pre-processing is 

necessary. Entirely different approaches might be created for future research. When choosing a 

method to expand upon in future research the following considerations should be kept in mind.  

Between the approaches, the amount of observation differed. There was a 3.1 % decrease in the 

number of observations between approach 1 (the yema min/max IBI) and approach 2 (the E4 min/max 

IBI). Whereas the linear interpolation added 17.2% to the observations in from approach 1 for the 

yema and 13.3% for the E4. Considering that the yema is a prototype and had a reduced sampling 

frequency these percentages are not shocking. Especially, when comparing the yema increase in 

observations to that of the E4. In Figure 12 the interpolation method revealed the sections of 

missing/rejected heartbeats by the E4 algorithm. The interpolation method, while excluded from the 

E4 algorithm, did cultivate the best correlations between devices in this study. While it would be best 

for both devices to be able to measure all R peaks accurately, interpolation might be a good method to 

insert the missing data.  

However, linear interpolation might not be the best option. A version of interpolation that takes 

the best of cubic spline and linear interpolation exists called constrained cubic spline interpolation 

(Kruger, 2003). It has the flexibility of cubic spline interpolation but stays within the bounds of the 

two values it must interpolate in between like linear interpolation. This will solve the problem of the 

under and overshooting from the cubic spline and the rigidness of the linear interpolation. Constrained 

cubic spline interpolation will hopefully increase the quality of the estimated misses in future research. 

Subjective stress scale 

Another weakness of the experiment was the stress scale. The need to change the scale does 

not bode well for the validity of the scale. The participants were informed when making an 

appointment to partake in the experiment that it involved stress. Therefore, the subjective stress scale 

should have made sense during the experiment. But one participant mentioned they did not feel the 

word “stress” was appropriate, because to the participant the experiment did not induce such strong 

feelings. If this is an issue of the participant having the bias due to knowing it is a stress experiment a 

double-blind study setup could be used. To accomplish that setup, the lead experimenter should set up 

the study without revealing the task involves stress. This would include randomly dividing the 



 
YLAB VALIDATION STUDY  31 

 

participants into the control and intervention groups. The control group might be given an SSST that 

does not involve the singing instruction and the intervention group would be presented with the 

adjusted SSST. Then a colleague could collect the data without knowing the division.  

Then, the appraisal of the word stress. The appraisal of stress can be negative or positive. This 

might be why the scores on the scale did not match well with the measurements of the devices. If the 

participant scored their stress as low because they appraised the feeling to excitement (eustress) their 

physiological measurements could still behave similarly to a (distress) stress response. This is one of 

the drawbacks of introspection methods. In future research using subjective measures can be attempted 

again with a more robust scale.  

Hardware and software 

 Hardware and software difficulties were encountered in this study. As mentioned previously, 

the sampling frequency of the yema sensor had dropped from the 100Hz to approximately 44 Hz. This 

seems to be a hardware issue. The YLab has a 16-bit precision which was at first estimated to be 

enough for the study. However, the current signal takes up approximately 14 kilobits to write all the 

raw data into the CSV file. This can potentially be solved by upgrading the hardware to increase the 

processing capacity. Alternatively, it can be tried to write the data with a different method or to 

another location than an SD card e.g., to the flash storage instead. The storage capacity will have to be 

checked per length of the experiment as the flash storage might not be big enough for longer 

experiments.  

Another option is to try and solve the data bottleneck. This can be done by applying the 

algorithms to filter out the yema data before it gets written in the CSV file. It is currently unknown 

how much the computing will take up on the capacity of the Raspberry Pi Pico 2040 microcontroller. 

However, because of the low complexity of the filtering steps it should be possible, much like in the 

work of Francesca et al. (2018). This is similar to what the E4 does and would greatly reduce the 

amount of data that needs to be recorded. The drawback of this method is the loss of access to the raw 

signal, ironically this was one of the hinderances with the E4. Therefore, it might still be better to try 

and solve the lack of processing capacity of the raw data with an upgrade in hardware.  

Another thing that could have potentially slowed the YLab down is the use of Python 

software. Python is one of the favorite programming languages in academia because it is robust and 

language-oriented, making it easier to learn (Marowka, 2018). However, Python is also regarded as a 

slow language (Marowka, 2018) because of its line-by-line interpretation e.g., in comparison to C++ 

which has a compiled interpretation (White, n.d.). Because the YLab initiative is meant for students it 

might be a leap to convert the YLab prototype to one of the other programming languages. However, 

it could be done and might help with the speed of processing the data. Furthermore, it could help in 

overcoming boundaries to existing data processing packages in other languages such as C++ or 
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MATLAB. It is outside the scope of this study to compare the programming languages available to 

boost the data recording speed for the YLab.  

 This data recording speed issue brings up the question of how the E4 manages to process the 

data. While their algorithm filters the raw data, the E4 also contains a body temperature sensor (4Hz) 

and MEMS type 3-axis accelerometer sensors (32Hz) (Empatica, 2020b). Therefore, the amount of 

data that the E4 has to record is estimated to be higher than the YLab. Furthermore, in contrast to the 

YLab, the E4 also uses Bluetooth to connect with the streaming app. One would assume that should 

also slow down the processing. Due to a lack of transparency, it is hard to find out how the E4 

manages the amount of data. This makes it difficult to draw any specific tips for future research from 

the E4.  

Another concern regarding the Empatica E4, despite the device’s validation, is how well it can 

measure what it describes it does. Similar to Van Lier et al. (2020) who could not fully support the 

validity of the E4 and stated additional research on the E4 is needed. Moreover, Bradford et al. (2022) 

state concern about how well a PPG can work on the skin of people of color. In this study, the 

different sensors and placement might have influenced the measurements to an extent that correlations 

are insufficient. The PPG on the wrist is one of the lesser placement and sensor combinations. 

Similarly, the EDA sensor on the wrist has the risk of also picking up thermal regulation signals 

instead of the true EDA fluctuations (Boucsein et al., 2012). When designing such a (medical) device 

which also doubles as a research tool, the degrees of freedom for sensor placement are hindered. This 

loss of degrees of freedom and thus accuracy of measurements might be a valid reason to discontinue 

the use of the Empatica E4 as a reference device in future research. 

Then, the worrisome aforementioned missing data sections of the E4 that were revealed by 

interpolation. In Figure 12 for participant 7 the rejected sections lasted for 155 seconds in total from 

the 3 minutes displayed. Empatica warns of data signal loss due to movement (Empatica, 2020a). 

However, participants were instructed and reminded to sit as still as possible. They were told why that 

was important and had to lay their lower arms on the table to further prevent the need for 

movement/adjusting their posture. The exposing of the missed beats by the E4 also reiterates how hard 

it is to produce a solid algorithm for detecting heartbeats. Unfortunately, whether that is due to the 

subpar sensor or algorithm is not clear and cannot be investigated without the raw E4 signal. If even in 

such an experiment an additional 13.3% of observations were revealed by the linear interpolation, it 

begs the question of how well the E4 functions and how well it has functioned in previous research. 

Especially in research where more movement was involved.  

In a similar vein, how did previous research achieve the synchronization of the data with the 

E4 and devices without Unix timestamps/clocks like the YLab. The way the E4 is incompatible with 

other devices makes it exceedingly difficult to use it as a reference device in a validation study. In 

participants 4, 9, and 11 the time synchronization difficulties are visible most prominently. Whether 

looking at Figures 8, 10, or 12 the yema signal shows a similar pattern to the E4 data but synchronized 
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incorrectly. For participants 4 and 11, the yema signal is ca. 25 seconds behind the E4 and if moved to 

the right would have overlapped to a higher degree. What is interesting is that for participant 9 the 

yema signal needed to be moved to the right only in Figure 12. In Figures 8 and 10 the yema signal 

seems to be in front of the E4 signal and would have to move to the left to overlap to a higher degree. 

This is most likely due to E4 data being interpolated before the 3-minute section shown in Figure 12. 

Other segments and other participants most likely have similar issues, but for the current study the 

visualizations were already enough to conclude the time synchronization had failed. 

 There are various solutions to the encountered time synchronization issues. Possibly by 

finding a way to remotely control and start the YLab and E4 simultaneously. A variation on that can 

be a coordinated centralized system for all data streams. Another way is to add a Unix timestamp or 

clock synchronization of the computer to the YLab, this can then be used as an anchor point to 

synchronize the devices. The Unix timestamp was tried to be recorded instead of the arbitrary time, 

but it slowed down the YLab to a degree it did not function properly anymore. If none of that is 

achievable with the E4, it might be more convenient to find a different validated reference device that 

can be synchronized e.g., the Polar V800 HR monitor. A change in reference device also enables 

comparison to devices that incorporate ECG signals which are deemed more reliable than that of a 

PPG (Kim et al., 2018; Laborde et al., 2017). One could even go as far as to use multiple renowned 

devices to correlate each of the YLab sensors with. However, it is outside the scope of this study to 

compare all other available devices for future YLab research. 

The E4 was chosen as a reference device because it is often used in research, had the sensors 

of interest, and was available at the time this study took place. However, in hindsight, it might not 

have been the right choice as a reference device due to a lack of transparency. Although it makes sense 

that a company like Empatica cannot share its algorithm or specific hardware set-up from a business 

perspective. Empatica remains marketing the E4 towards use in research, but the research setting 

comes with the need for transparency. Transparency is the cornerstone of science. Therefore, from a 

scientific perspective, it might not be appropriate to use such a device with an undisclosed algorithm 

that can not be reviewed as a reference device. The E4 might not be suitable for use in validation 

studies for that reason alone, not to mention the time synchronization issues and missed data in non-

movement conditions.  

Conclusion 

The strength of this study lies in the extensive exploration on how to process the ECG signal 

and the recommendations for future research. Another commendable thing is that the YLab has the 

degrees of freedom to prioritize which and where to apply the sensors based on the literature. The 

current findings might not have been what was hoped for the YLab prototype, but they are important 

nonetheless. The findings of this study highlight how difficult it is to produce a suitable processing 

procedure for physiological measurements.  
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In conclusion, the substantial first step was made in investigating the YLab, a device that uses 

open-source software and low-budget hardware for measuring physiology. Both the YLab and the 

Empatica E4 have their issues. Therefore, it might as well have been impossible to correlate the data 

to .8 or higher. The research questions were pragmatic and ambitious, maybe a bit too ambitious for a 

first validation study. However, by implementing the mentioned recommendations for future research 

the YLab will most likely live up to the expectations eventually. On the condition of at least increasing 

the sampling frequencies and finding a way to synchronize the time with the reference device, 

whichever may be used next. This should be prioritized in future validation studies. More work will 

need to be done to achieve the goal of the YLab initiative and get the YLab prototype validated.  
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Appendix A 

Sensor Placement Manual 

How to attach the Empatica E4 on your right wrist*  

Wear the E4 with the case on top of your wrist. Wear it snugly, so that it does not move around, but 

not so tight that it is uncomfortable. The EDA electrodes (under the snaps) should be on the inside of 

the wrist. You may optionally line them up with a finger, e.g. the third (ring) finger, but this is not 

required. 
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How to attach the 3 ECG electrodes to your torso 

Please attach the electrodes matching the colours White, Black, and Red on your torso as shown in 

the picture. If you went to the bathroom to place the electrode, please return to the experiment 

room when you are done. 

When placing the stickers with the White and Black cord attached, try to place them on the same 

height/on a horizontal line approximately 2 cm below your collarbones on each side respectively. 

- Place the white electrode under your collarbone on your right side.  

- Place the black electrode under your collarbone on the left side.  

- Place the red electrode at the lower part of your left ribcage.  
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How to attach the finger sleeves to your fingers  

Put on the finger sleeves with the metal touching the middle part between the two joints on your 

index and middle finger on the left palm.  

The sleeve with the red cable should be on your index finger and the sleeve with the black cable 

should be on your middle finger.  

 

 

 

 

 

 

 

 

 

 

 

 

 

* 
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Appendix B 

Experiment Sequence: Baseline and Adjusted Sing-a-Song Stress 

Task (SSST) 
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Appendix C 

Python Code YLab Prototype 

""" 

YLab1(Ylab0): YEDA and MOI  

""" 

 

import board 

import time 

 

from sensory import Yeda, Yema_ads, MOI, Sensory from yui import Button, RGB 

from ydata import SDcard 

 

def main(): 

    STATE = "Init" 

    print(STATE) 

     

    sensory = Sensory([MOI(pins = board.GP21), 

                       MOI(pins = board.GP22), 

                       Yeda(), 

                       Yema_ads()]) 

    sensory.connect() 

         

    SDcard.init() 

    drive = SDcard(sensory, filename = "ylab1_" + str(time.time()) + ".csv") 

    drive.connect() 

     

    btn = Button() 

    btn.connect() 

     

    rgb = RGB() 

    rgb.connect() 

    rgb.white() 

         

    ## Fast while loop 

    while True: 

        ################ Interactive transitionals ############# 

        if btn.update(): 
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            if btn.update_event(): 

                if btn.event == "short": 

                    ## Init --> Pause 

                    if STATE == "Init": 

                        STATE = "Pause" 

                    ## Record --> Pause 

                    elif STATE == "Record": 

                        STATE = "Pause" 

                    ## Pause --> Record 

                    elif STATE == "Pause": 

                        STATE = "Record" 

                    ## Stop --> Record 

                    elif STATE == "Stop": 

                        sensory.reset_data() 

                        drive.filename = "ylab1_" + str(time.time()) + ".csv" 

                        STATE = "Record" 

                    ## --> STOP 

                elif btn.event == "long": 

                    if STATE == "Stop": 

                        drive.disconnect() 

                        rgb.off() 

                        STATE = "End" 

                        print("YLab0 says bye.") 

                        break 

                    else: 

                        STATE = "Stop" 

                 

                ## Updating the static displays ## 

                if STATE == "Record": 

                    rgb.red() 

                elif STATE == "Pause": 

                    rgb.green() 

                elif STATE == "Stop": 

                    rgb.white() 

                 

                print(STATE) 
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        ################ Continuous processing ############# 

 

        if STATE == "Record": 

            if sensory.sample(): 

                sensory.print() 

                sensory.record() 

            drive.update() 

        elif STATE == "Pause": 

            if sensory.sample(): 

                sensory.print() 

        elif STATE == "Stop": 

            pass 

        else: 

            pass 

 

main()  
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Appendix D 

R Script - YLab Prototype Yeda and Yema Sensors (pre-)processing 

YLab validation study data transformations 

I.G.M. Jongmans 

2023-31-01 

YLab validation study ’22-’23 

The following script documents the data (pre-)processing, exploration and analysis necessary 

for the YLab validation study. It was also written with future research in mind wherein the 

current time synchronization issue is no longer present. The time synchronization and 

inserting of the subjective stress scale values for the current study was done in Excel. 

#Load packages  

library(tidyverse) 

library(readr) 

library(ggplot2) 

library(dplyr) 

library(lme4) 

library(zoo) 

 

library(devtools) 

library(heartBeat) 

 

setwd("~/2022-2023/Masterthese/Analysis") 

1. Data pre-processing 

Data importation 

The raw data of the YLab is imported. Simultaneously the arbitrary time is reduced by the 

corresponding value per participant to create the Real Time (RT). Furthermore, the minimum 

and maximum inter beat interval (IBI) values from the E4 are added. 
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# Import all raw data for the YLab  

# Add participant number and calculate real time (RT). Manually look

 up the time that should be deducted from the time column per partic

ipant. 

# It would be best to figure out how to have R auto select the right

 arbitrary time from the first observation in the time column per pa

rticipant. 

P1 <- read.csv(file = "ylab1_1668879901.csv", sep = ",", header = TR

UE) 

P2 <- read.csv(file = "ylab1_1669484532.csv", sep = ",", header = TR

UE) 

P3 <- read.csv(file = "ylab1_1669557636.csv", sep = ",", header = TR

UE) 

P4 <- read.csv(file = "ylab1_1669644271.csv", sep = ",", header = TR

UE) 

P5 <- read.csv(file = "ylab1_1669651688.csv", sep = ",", header = TR

UE) 

P6 <- read.csv(file = "ylab1_1669721446.csv", sep = ",", header = TR

UE) 

P7 <- read.csv(file = "ylab1_1669738294.csv", sep = ",", header = TR

UE) 

P8 <- read.csv(file = "ylab1_1669811947.csv", sep = ",", header = TR

UE) 

P9 <- read.csv(file = "ylab1_1669815456.csv", sep = ",", header = TR

UE) 

P10 <- read.csv(file = "ylab1_1670319435.csv", sep = ",", header = T

RUE) 

P11 <- read.csv(file = "ylab1_1670330430.csv", sep = ",", header = T

RUE) 

P12 <- read.csv(file = "ylab1_1670333844.csv", sep = ",", header = T

RUE) 

 

#add in values including the min and max values E4 necessary later o
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n 

P1 <- P1 %>% mutate(part = 1, RT = time - 3422, E4min = .58, E4max =

 .84) 

P2 <- P2 %>% mutate(part = 2, RT = time - 45, E4min = .53, E4max = .

95) 

P3 <- P3 %>% mutate(part = 3, RT = time - 153, E4min = .55, E4max = 

1.02) 

P4 <- P4 %>% mutate(part = 4, RT = time - 48, E4min = .59, E4max = 1

.14) 

P5 <- P5 %>% mutate(part = 5, RT = time - 39, E4min = .61, E4max = 1

.08) 

P6 <- P6 %>% mutate(part = 6, RT = time - 919, E4min = .53, E4max = 

1.08) 

P7 <- P7 %>% mutate(part = 7, RT = time - 646, E4min = .53, E4max = 

.86) 

P8 <- P8 %>% mutate(part = 8, RT = time - 1006, E4min = .53, E4max =

 .89) 

P9 <- P9 %>% mutate(part = 9, RT = time - 4231, E4min = .56, E4max =

 1.05) 

P10 <- P10 %>% mutate(part = 10, RT = time - 2188, E4min = .52, E4ma

x = 1.05) 

P11 <- P11 %>% mutate(part = 11, RT = time - 3469, E4min = .58, E4ma

x = 1.11) 

P12 <- P12 %>% mutate(part = 12, RT = time - 710, E4min = .63, E4max

 = 1.06) 

 

# Create long data frame for all participants 

YLAB <- rbind(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12) 

HR visualizations 

To check if the yema signal shows signs of QRS complexes the data is plotted. 

#create a YLab data object with only the Yema_ads0 input 

YEMA <- filter(YLAB, ID == "Yema_ads0") 
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#plot a segment of yema values for each participant 

#for the xlim values between 0 and approximately 900 should work how

ever as all experiments lasted at least that long 

YEMA %>%   

    ggplot(aes(x = RT,  

             y = value)) + 

  facet_grid(ID ~ 1, scales = "free_y") + 

  geom_line() + xlim(620, 624) + ylim(0.32, 0.5) + xlab("Real time e

xperiment in seconds") + ylab("YLab ECG Values") + facet_wrap(~YEMA$

part) 

 

#per participant check 

YEMA %>%  filter(part == 1) %>%  

            ggplot(aes(x = RT, y = value)) + 

  facet_grid(scales = "free_y") + 

  geom_line() + xlim(620, 630) + ylim(0.32, 0.5) + xlab("Real time e

xperiment in seconds") + ylab("YLab ECG Values") 

 

 

#The signal looks like it contains QRS complexes with distinguishabl

e R peaks. Therefore, it was deemed good enough to continue towards 

data (pre-) processing 

HR and EDA transformations 

The YLab data needed to be transformed and pre-processed before it would be useful to 

analyze. For the Hr transformations the YLab ECG sensor is referred to as yema, for the EDA 

sensor it will be denoted as yeda.  

HR transformations 

Four ways of pre-processing the yema data will be compared based on correlation with the 

E4 data on acquiring the heart rate (HR) from and pre-processing the yema data. 
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Pre-processing the yema data with an existing package 0) use heartBeats from 

(https://github.com/ehrscape/R-project/blob/master/HeartBeat-walkthrough.md) to detect 

heartbeats and then HR 

Pre-processing the yema data step by step and then 1) filtering with yema IBI outliers to 

filter the yema IBI 2) filtering based on IBI values and algorithm from the E4 

(https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-

signal) 3) applying linear interpolation to estimate the missing inter beat intervals (IBIs) 

The HeartBeat package 

The yema data is similar to filtered data from the literature so it should probably not be 

filtered with the usual frequency filters. However, for this package the instructions were 

followed to pass the data through the wavelet decomposition transformations. 

# transform df to necessary df for package functions 

# Try per participant 

HR0.1 <- YEMA %>% filter(part == 1) %>% select(RT, value) 

# convert time to unix timestamp by adding a random unix timestamp t

o the RT 

# the unix from Monday the 2nd of January at 12:00 = 1672657200 

HR0.1 <- HR0.1 %>% mutate(time = format(round(RT + 1672657200, 2), n

small = 2)) 

HR0.1 <- HR0.1 %>% transmute(time = time, ecg = value) 

options(digits=12) 

HR0.1 <-transform(HR0.1, time = as.numeric(time), 

ecg = as.numeric(ecg)) 

 

#adjust to YLab settings 

SampleFreq = 44 # 100Hz adjusted to the recorded amount of observati

ons (around 42-46 obs per second) 

thr = 0.009 # initial threshold of 9 / 1000 to match the yema values

  

 

# 4-level decomposition is used with the Daubechie d4 wavelet. (as i

n the package example) 

https://github.com/ehrscape/R-project/blob/master/HeartBeat-walkthrough.md
https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal
https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal
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wavelet <- "d4" 

level <- 4L 

 

X <- as.numeric(HR1.1$ecg)  

 

library(wavelets) 

ecg_wav <- dwt(X, filter = wavelet, n.levels = level, boundary = "pe

riodic",  

    fast = TRUE) 

str(ecg_wav) 

 

# Coefficients of the second level of decomposition are used for R p

eak detection. 

x <- ecg_wav@W$W2 

 

#plot the coefficients 

plot(x, type = "l") 

plot(x) 

 

# after the visualizations a more appropriate threshold seems to be 

.02  

thr = .02 

 

#plot x again, but zoom to get a grasp on what the yema data produce

s thus far 

#to do so the wavelet coefficients of x are made into a df and prepa

red for ggplot 

xx <- as.data.frame(x) #make df from the object x 

xx <- add_column(xx, indx = NA) #add column for row names  

xx <- xx %>%  mutate(indx = row_number()) 

 

#adjust xlim to scan the wavelet coefficients wherever you want 

ggplot(data = xx, aes(x = indx, y = xx$V1)) + geom_line() + xlim(140
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0, 1500) + xlab("observation count") + ylab("wavelet coefficients fr

om x")      

 

# Unfortunately, the wavelet coefficients seem to be irregular and t

his could be due to the sampling rate the yema currently has. Due to

 the low sampling rate the signal clarity for various participants i

s not enough for the data processing of the hearBeat package.  

# From here on, someone could continue with the process if the sampl

ing rate is increased to match the example data to a higher degree. 

The heartBeat package does not seem to work on the yema data yet, so it will be skipped for 

now. This leaves the 3 other options of further pre-processing the data, the filtering based 

on yema outliers, E4 data and applying linear interpolation. The rest of the heartBeat 

package code would be to continue at the “Peak detection” chapter, except that [x <- 

ecg_wav@W$W2] is already performed in the R chunk above. 

Pre-processing the yema data step by step 

The following steps were chosen to extract the IBI and HR from the raw yema sensor data. 

Basic Filter round 1  

The threshold of .39 and the derivative of .01 were chosen based on outliers and visual 

examination. Subsequently the data is filtered with those values as cut off points. 

#find filter based on the height of the peaks in the yema data  

#after the visual inspection a threshold of around .4 should work fo

r most peaks 

#however a check was done based on outliers in the yema data  

YEMA_out <- c(boxplot.stats(YEMA$value, do.out = T)) 

 

summary(YEMA_out$out) 

#the min value of .0947 seems like an error based on the visual insp

ection 

#the outliers will have to be above .33 to find a suitable min value 

summary(YEMA_out$out[YEMA_out$out >= .33]) 

 

mailto:ecg_wav@W
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#select threshold for value filter 

value_t <- .39 

 

#find filter based on the calculated derivative 

YEMA <- YEMA %>%  group_by(part) %>% mutate(deriv = value-lag(value,

 default = first(value))) 

 

#find the positive (> 0) outliers in the derivatives that are part o

f the rising R peak 

deriv_out <- c(boxplot.stats(YEMA$deriv, do.out = T)) 

 

summary(deriv_out$out[deriv_out$out >= 0]) 

 

#select threshold for derivative filter 

deriv_t <- .01 

 

#value filter 

YEMA <- YEMA %>%  

  mutate(value_filter = if_else(condition = value > value_t,  

                        true = 1,  

                        false = 0), .after = value) 

 

#derivative filter 

YEMA <- YEMA %>%  

  mutate(deriv_filter = if_else(condition = deriv > deriv_t,  

                        true = 1,  

                        false = 0), .after = deriv) 

 

YEMA %>% count() 

Basic Filter round 2  
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The next filter is based on the length of the Inter Beat Interval (IBI). Based on an examination 

of the outliers the cut off point is determined at being longer than .4 seconds. Then the 

Heart Rate (HR) is calculated. These are the final steps of approach 1. 

#take the values that met the criteria from filter round 1 and put t

hem in the inter beat interval (IBI) df 

IBI <- dplyr::filter(YEMA, value_filter == 1 & deriv_filter == 1) 

 

#calculate the IBI based on the differences between the time stamps 

of the selected peaks 

IBI <- IBI %>%  group_by(part) %>% mutate(IBI = RT-lag(RT, default =

 first(RT))) 

 

#find the positive (> 0) outliers in the derivatives for the derivat

ive filter 

IBI_out <- c(boxplot.stats(IBI$IBI, do.out = T)) 

 

summary(IBI_out$out) 

#hist(IBI_out$out) 

#from the lower end outliers anything under .4 will be filtered out 

#from the upper end a more narrowed look might be better 

summary(IBI_out$out[IBI_out$out <= .5716]) #lower end 

summary(IBI_out$out[IBI_out$out >= .5716]) #upper end 

 

#select threshold for IBI filters 

IBI_t1 <- .4 #lower end also due to respective HR of 150 (based on u

pper spectrum max HR) 

IBI_t2 <- 1.2 #upper end also due to respective HR of 50 (based on l

ower spectrum resting HR) 

 

 

#filter IBI  

IBI <- IBI %>% mutate(IBI_filter = if_else(condition = IBI > IBI_t1 

& IBI < IBI_t2,  
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                        true = 1,  

                        false = 0), .after = IBI) 

 

#take the filtered IBI values to calculate the HR 

HR <- dplyr::filter(IBI, IBI_filter == 1) 

 

HR <- HR %>% mutate(HR = 60/IBI) 

 

HR %>% group_by(part) %>% count() 

#the HR for the yema sensor of the YLab prototype is now computed an

d can be used in statistical tests 

#However, some HR are lower because no R peaks were present based on

 the current filters 

#after checking the data some segments seem to miss R peaks, which w

as also confirmed by visualizations. 

#it appeared the data needed some further processing hence the next 

approaches, filtering based on E4 values and linear interpolation,  

Further filtering yema data based on E4 values  

In approach 2 the goal is to filter out both the short and long IBIs based on the min/max E4 

IBIs, respectively. The Empatica uses an algorithm to determine the difference between true 

heartbeats and false beats. From the accepted beats the IBI and the HR are calculated. When 

using the IBI to synchronize the YLab and E4 data the false beats are left out of the E4 data 

thus to create a similar effect in the YLab data it is filtered further based on the min and max 

IBI lengths of the E4.  

#to clean up the df keep columns relevant to synchronization later o

n 

#filter out yema IBI outside boundaries min and max E4 IBI 

HR2 <- IBI %>% group_by(part) %>%  transmute(IBI = ifelse(IBI < E4mi

n | IBI > E4max, NA, IBI), RT, E4min, E4max) 

 

#calculate HR based on accepted IBIs 

HR2 <- HR2 %>%  group_by(part) %>%  mutate(HR = 60/IBI) 
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#filter out NAs to obtain new HR list to be synchronized to the E4 l

ist 

HR2 <- na.omit(HR2)  

 

HR2 %>%  group_by(part) %>% count() 

#the accepted data is reduced greatly by this procedure and might no

t be the best way to go 

Linear interpolation for IBI  

In approach 3 the goal is to identify where beats were missed based on too long IBIs. 

Calculate the amount of missed beats to be inserted. Prepare the rows associated with 

missed beat to have NA, then interpolate. 

#to clean up the df keep columns relevant to synchronization later o

n 

HR3 <- IBI %>% select(part, RT, IBI, E4min, E4max) 

 

#filter out erroneous beats with the lower end IBI threshold 

HR3 <- HR3 %>% group_by(part) %>%  transmute(IBI = ifelse(IBI < IBI_

t1, NA, IBI), RT, E4min, E4max) 

HR3 <- na.omit(HR3) 

 

#find IBIs that are too long based on the upper end IBI threshold 

#use median per participant to determine amount of missed beats 

#the row containing the too long IBI will be interpolated later thus

 misses -1 

HR3 <- HR3 %>% group_by(part) %>% mutate(misses = if_else(condition 

= IBI > IBI_t2, round(IBI / median(IBI) -1), 0), .after = IBI) 

 

#change long IBIs to NA 

HR3 <- HR3 %>% group_by(part) %>% mutate(IBI = ifelse(IBI > IBI_t2, 

NA, IBI)) 
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#add rows based on amount of misses and copy all other columns relev

ant to synchronization 

HR3 <- HR3 %>% 

  rowwise() %>% 

  do(if(.$misses > 0) { 

    data.frame(part = c(rep(.$part, .$misses), .$part), 

               RT = c(rep(.$RT, .$misses), .$RT),  

               IBI = c(rep(NA, .$misses), .$IBI), 

               misses = c(rep(.$misses, .$misses), .$misses), 

               E4min = c(rep(.$E4min, .$misses), .$E4min), 

               E4max = c(rep(.$E4max, . $misses), .$E4max))  

  } else if (.$misses == 0) { 

    data.frame(part = .$part, 

               RT = .$RT, 

               IBI = .$IBI, 

               misses = .$misses, 

               E4min = .$E4min, 

               E4max = .$E4max)  

  } else {  

  }) %>% 

  ungroup() 

Interpolate the inserted rows 

#linear interpolation for the IBI values 

HR3 <- na.approx(HR3) 

HR3 <- data.frame(HR3) 

 

#make the affected rows easier to read 

HR3 <- HR3 %>%  mutate(IBI = round(IBI, digits = 3)) 

 

#calculate HR based with interpolated IBI 

HR3 <- HR3 %>% mutate(HR = 60/IBI) 

HR3 %>%  group_by(part) %>% count() 
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E4 linear interpolation  

After interpolating the yema data the interpolation steps will also be performed on the E4 

data. 

Import E4 data 

#Import and change data accordingly 

PE1 <- read.csv(file = "IBI_P1.csv", sep = ",", header = TRUE) 

PE2 <- read.csv(file = "IBI_P2.csv", sep = ",", header = TRUE) 

PE3 <- read.csv(file = "IBI_P3.csv", sep = ",", header = TRUE) 

PE4 <- read.csv(file = "IBI_P4.csv", sep = ",", header = TRUE) 

PE5 <- read.csv(file = "IBI_P5.csv", sep = ",", header = TRUE) 

PE6 <- read.csv(file = "IBI_P6.csv", sep = ",", header = TRUE) 

PE7 <- read.csv(file = "IBI_P7.csv", sep = ",", header = TRUE) 

PE8 <- read.csv(file = "IBI_P8.csv", sep = ",", header = TRUE) 

PE9 <- read.csv(file = "IBI_P9.csv", sep = ",", header = TRUE) 

PE10 <- read.csv(file = "IBI_P10.csv", sep = ",", header = TRUE) 

PE11 <- read.csv(file = "IBI_P11.csv", sep = ",", header = TRUE) 

PE12 <- read.csv(file = "IBI_P12.csv", sep = ",", header = TRUE) 

 

 

PE1 <- PE1 %>% mutate(part = 1, E4min = .58, E4max = .84)   

PE2 <- PE2 %>% mutate(part = 2, E4min = .53, E4max = .95) 

PE3 <- PE3 %>% mutate(part = 3, E4min = .55, E4max = 1.02) 

PE4 <- PE4 %>% mutate(part = 4, E4min = .59, E4max = 1.14) 

PE5 <- PE5 %>% mutate(part = 5, E4min = .61, E4max = 1.08) 

PE6 <- PE6 %>% mutate(part = 6, E4min = .53, E4max = 1.08) 

PE7 <- PE7 %>% mutate(part = 7, E4min = .53, E4max = .86) 

PE8 <- PE8 %>% mutate(part = 8, E4min = .53, E4max = .89) 

PE9 <- PE9 %>% mutate(part = 9, E4min = .56, E4max = 1.05) 

PE10 <- PE10 %>% mutate(part = 10, E4min = .52, E4max = 1.05) 

PE11 <- PE11 %>% mutate(part = 11, E4min = .58, E4max = 1.11) 

PE12 <- PE12 %>% mutate(part = 12, E4min = .63, E4max = 1.06) 
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colnames(PE1)[1] <- "RT" 

colnames(PE2)[1] <- "RT" 

colnames(PE3)[1] <- "RT" 

colnames(PE4)[1] <- "RT" 

colnames(PE5)[1] <- "RT" 

colnames(PE6)[1] <- "RT" 

colnames(PE7)[1] <- "RT" 

colnames(PE8)[1] <- "RT" 

colnames(PE9)[1] <- "RT" 

colnames(PE10)[1] <- "RT" 

colnames(PE11)[1] <- "RT" 

colnames(PE12)[1] <- "RT" 

 

E4_ALL <- rbind(PE1, PE2, PE3, PE4, PE5, PE6, PE7, PE8, PE9, PE10, P

E11, PE12) 

Calculate misses E4 based on derivative 

#calculate derivative RT 

E4_ALL <- E4_ALL %>%  group_by(part) %>% mutate(misses = RT-lag(RT, 

default = first(RT)), .before = RT) 

 

#calculate the amount of misses based on median IBI   

#The row the misses were located in remains the same in contrast to 

the yema data 

#thus -1 is no longer necessary 

E4_ALL <- E4_ALL %>% group_by(part) %>% mutate(misses = if_else(cond

ition = misses > IBI, round(misses/median(IBI)), 0)) 

 

#sum amount of misses per participant 

E4_ALL %>%  group_by(part) %>% summarize(Freq = sum(misses)) #amount

 of misses 

Insert rows with NA into E4 data 
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#because the IBI in the row the misses were located is an accepted I

BI by the E4 algorithm it does not need to be corrected 

#only the missing rows need to be inserted 

E4_ALL <- E4_ALL %>% 

  rowwise() %>% 

  do(if(.$misses > 0) { 

    data.frame(part = c(rep(.$part, .$misses), .$part), 

               RT = c(rep(.$RT, .$misses), .$RT), 

               IBI = c(rep(NA, .$misses), .$IBI), 

               misses = c(rep(.$misses, .$misses), .$misses), 

               E4min = c(rep(.$E4min, .$misses), .$E4min), 

               E4max = c(rep(.$E4max, . $misses), .$E4max))  

  } else if (.$misses == 0) { 

    data.frame(part = .$part, 

               RT = .$RT, 

               IBI = .$IBI, 

               misses = .$misses, 

               E4min = .$E4min, 

               E4max = .$E4max)  

  } else {  

  }) %>% 

  ungroup() 

 

 

#Use linear interpolation to insert the IBI  

E4_ALL <- na.approx(E4_ALL) 

E4_ALL <- data.frame(E4_ALL) 

 

#calculate HR based with interpolated IBI 

E4_ALL <- E4_ALL %>% mutate(HR = 60/IBI, .after = IBI) 

E4_ALL %>%  group_by(part) %>% count() 

EDA transformation  
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To match the E4 and the use of Siemens (S) the same unit is calculated for the YLab from 

Ohm (Ω) with S = 1/Ω. Based on Ohms law, when A remains constant the reciprocal from 

ohm will be Siemens. 

#create a YLab Data object with only the Yeda input 

YEDA <- filter(YLAB, ID == "Yeda0") 

 

#compute skin conductance in Siemens (S) from the yeda values in Ohm

 (Ω)  

YEDA <- YEDA %>% mutate(yeda = 1/value, .after = value) 

 

YEDA 

Export transformed data to by synchronized in Excel  

This is done by performing the following steps per participant: 1. reversing the order of the 

observations by sorting the RT from high to low 2. copying the E4 data next to it 3. deleting 

excess E4 data at the bottom 4. sorting the RT from low to high to get the correct order of 

observations for both the YLab and E4 5. searching for the time stamps in RT to append the 

subjective stress scale values 6. creating a CSV with all participants below each other (as a 

long data format) 7. import the synchronized data back into R 

#convert objects to CSV files to be synchronized in Excel 

write_excel_csv(HR, "~/2022-2023/Masterthese/Analysis/HRoutliermin-m

ax.csv", col_names = T) 

write_excel_csv(HR2, "~/2022-2023/Masterthese/Analysis/HRE4min-max.c

sv", col_names = T) 

write_excel_csv(HR3, "~/2022-2023/Masterthese/Analysis/HRlinear(E4).

csv", col_names = T) 

write_excel_csv(E4_ALL, "~/2022-2023/Masterthese/Analysis/E4linear.c

sv", col_names = T) 

write_excel_csv(HR3, "~/2022-2023/Masterthese/Analysis/HRlinear(outl

iers).csv", col_names = T) 
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2. Data visualization 

plot EDA and HR data from the YLab and E4 per participant 

#import synchronized data 

# Approach 1 (4 yema base filters) 

HR1_ALL <- read.csv(file = "HRlong.csv", sep = ",", header = TRUE) 

# Approach 2 (IBI filtered further with E4 min/max) 

HR2_ALL <- read.csv(file = "HR2long.csv", sep = ",", header = TRUE)  

# Approach 3 (Linear interpolated yema and E4) 

HR3_ALL <- read.csv(file = "HR3long.csv", sep = ",", header = TRUE)  

# EDA data 

EDA_ALL <- read.csv(file = "EDA_long.csv", sep = ",", header = TRUE)

  

plot individual participants per device 

#plot excerpts from participants in the last 3 minutes (c.a. second 

720 - 900) per device  

#this is done for a detailed look at the data 

#EDA yema and E4 

EDA_ALL %>%   

    ggplot(aes(x = RT,  

             y = yeda)) + 

  geom_line() + xlim(720, 900) + xlab("Real time experiment in secon

ds") + ylab("EDA yeda") + facet_wrap(~EDA_ALL$part, scales = "free_y

") 

 

EDA_ALL %>%   

    ggplot(aes(x = RT,  

             y = E4)) + 

  geom_line() + xlim(720, 900) + xlab("Real time experiment in secon

ds") + ylab("EDA E4") + facet_wrap(~EDA_ALL$part, scales = "free_y") 

 

#HR approaches yema and E4 

#Approach 1 
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HR1_ALL %>%   

    ggplot(aes(x = RT,  

             y = yema)) + 

  geom_line() + xlim(720, 900) + xlab("Real time experiment in secon

ds") + ylab("HR yema") + facet_wrap(~HR1_ALL$part, scales = "free_y"

) 

 

HR1_ALL %>%   

    ggplot(aes(x = RT,  

             y = E4)) + 

  geom_line() + xlim(720, 900) + xlab("Real time experiment in secon

ds") + ylab("HR E4") + facet_wrap(~HR1_ALL$part, scales = "free_y") 

 

#Approach 2 

HR2_ALL %>%   

    ggplot(aes(x = RT,  

             y = yema)) + 

  geom_line() + xlim(720, 900) + xlab("Real time experiment in secon

ds") + ylab("HR yema") + facet_wrap(~HR2_ALL$part, scales = "free_y"

) 

 

HR2_ALL %>%   

    ggplot(aes(x = RT,  

             y = E4)) + 

  geom_line() + xlim(720, 900) + xlab("Real time experiment in secon

ds") + ylab("HR E4") + facet_wrap(~HR2_ALL$part, scales = "free_y") 

 

#Approach 3 

HR3_ALL %>%   

    ggplot(aes(x = RT,  

             y = yema)) + 

  geom_line() + xlim(720, 900) + xlab("Real time experiment in secon

ds") + ylab("HR yema") + facet_wrap(~HR2_ALL$part, scales = "free_y"
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) 

 

HR3_ALL %>%   

    ggplot(aes(x = RT,  

             y = E4)) + 

  geom_line() + xlim(720, 900) + xlab("Real time experiment in secon

ds") + ylab("HR E4") + facet_wrap(~HR2_ALL$part, scales = "free_y") 

plot the data for both devices per participant 

#Change format to use plotting function later on 

#EDA 

#Select relevant columns 

EDA_ALLx <- EDA_ALL %>% select(part, RT, E4, sub) 

EDA_ALLy <- EDA_ALL %>% select(part, RT, yeda, sub) 

 

#transform data 

EDA_ALLx <- EDA_ALLx %>% transmute(device = "E4", value = E4, part, 

RT, sub) 

EDA_ALLy <- EDA_ALLy %>% transmute(device = "yeda", value = yeda, pa

rt, RT, sub) 

 

#complete necessary format 

EDA_ALLz <- rbind(EDA_ALLx, EDA_ALLy) 

 

#repeat steps for HR per approach 

#Aproach 1 

HR1_ALLx <- HR1_ALL %>% select(part, RT, E4, sub) 

HR1_ALLy <- HR1_ALL %>% select(part, RT, yema, sub) 

 

HR1_ALLx <- HR1_ALLx %>% transmute(device = "E4", value = E4, part, 

RT, sub) 

HR1_ALLy <- HR1_ALLy %>% transmute(device = "yema", value = yema, pa

rt, RT, sub) 
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HR1_ALLz <- rbind(HR1_ALLx, HR1_ALLy) 

 

#Aproach 2 

HR2_ALLx <- HR2_ALL %>% select(part, RT, E4, sub) 

HR2_ALLy <- HR2_ALL %>% select(part, RT, yema, sub) 

 

HR2_ALLx <- HR2_ALLx %>% transmute(device = "E4", value = E4, part, 

RT, sub) 

HR2_ALLy <- HR2_ALLy %>% transmute(device = "yema", value = yema, pa

rt, RT, sub) 

 

HR2_ALLz <- rbind(HR2_ALLx, HR2_ALLy) 

 

#Approch 3 

HR3_ALLx <- HR3_ALL %>% select(part, RT, E4, sub) 

HR3_ALLy <- HR3_ALL %>% select(part, RT, yema, sub) 

 

HR3_ALLx <- HR3_ALLx %>% transmute(device = "E4", value = E4, part, 

RT, sub) 

HR3_ALLy <- HR3_ALLy %>% transmute(device = "yema", value = yema, pa

rt, RT, sub) 

 

HR3_ALLz <- rbind(HR3_ALLx, HR3_ALLy) 

 

# plot data with both devices for EDA and HR approaches 

#EDA 

ggplot(data = EDA_ALLz,aes(x = RT, y = value)) +  

    facet_wrap(~part, scales = "free_y", nrow = 4, ncol = 3) +  

    geom_line(aes(colour = device, group = device)) +  

    labs(x = NULL, y = NULL, colour = "") +  

    theme_bw() + xlim(720, 900) + xlab("Time (secs)") + ylab("EDA") 

+   theme(legend.position="bottom") 
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#HR 

#Approach 1 

ggplot(data = HR1_ALLz,aes(x = RT, y = value)) +  

    facet_wrap(~part, scales = "free_y", nrow = 4, ncol = 3) +  

    geom_line(aes(colour = device, group = device)) +  

    labs(x = NULL, y = NULL, colour = "") +  

    theme_bw() + xlim(720, 900) + xlab("Time (secs)") + ylab("Heart 

Rate (bpm)") + theme(legend.position="bottom") 

 

#Approach 2 

ggplot(data = HR2_ALLz,aes(x = RT, y = value)) +  

    facet_wrap(~part, scales = "free_y", nrow = 4, ncol = 3) +  

    geom_line(aes(colour = device, group = device)) +  

    labs(x = NULL, y = NULL, colour = "") +  

    theme_bw() + xlim(720, 900) + xlab("Time (secs)") + ylab("Heart 

Rate (bpm)") + theme(legend.position="bottom") 

 

#Approach 3 

ggplot(data = HR3_ALLz,aes(x = RT, y = value)) +  

    facet_wrap(~part, scales = "free_y", nrow = 4, ncol = 3) +  

    geom_line(aes(colour = device, group = device)) +  

    labs(x = NULL, y = NULL, colour = "") +  

    theme_bw() + xlim(720, 900) + xlab("Time (secs)") + ylab("Heart 

Rate (bpm)") + theme(legend.position="bottom") 

visualize correlations between devices 

#plot EDA for all participants 

EDA_ALL %>%    

  ggplot(aes(x= yeda, y= E4)) + facet_wrap(~EDA_ALL$part, scales = "

free_y") + geom_point() + geom_smooth(method = "lm") + labs(x= "Yeda

 value in Siemens", y= "E4 values in micro Siemens") 

 

#plot HR approaches 

HR1_ALL %>%  
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  ggplot(aes(x= yema, y= E4)) + facet_wrap(~HR1_ALL$part) + geom_poi

nt() + geom_smooth(method = "lm") + labs(x= "HR yema filtered with y

ema outliers", y= "HR derived from E4") 

 

HR2_ALL %>%  

  ggplot(aes(x= yema, y= E4)) + facet_wrap(~HR2_ALL$part) + geom_poi

nt() + geom_smooth(method = "lm") + labs(x= "HR yema filtered with E

4 min/max", y= "HR derived from E4") 

 

HR3_ALL %>%  

  ggplot(aes(x= yema, y= E4)) + facet_wrap(~HR3_ALL$part) + geom_poi

nt() + geom_smooth(method = "lm") + labs(x= "HR yema linear interpol

ation", y= "HR E4 linear interpolation") 

3. Results (correlations) 

Correlate the YLab and E4 data with each other for the EDA and HR. For the HR correlate the 

3 approaches: 1. The yema data based on the process of the E4 algorithm 2. The yema data 

based on the results of the E4 algorithm (E4 min/max IBI values) 3. The linear interpolated 

data of the yema and E4 

##See if the EDA values of the E4 and YLab correlate for participant 

EDA_ALL %>% 

  group_by(part) %>% 

  summarize(cor=cor(yeda, E4)) 

 

#See if the HR values of the E4 and YLab correlate for participant 

HR1_ALL %>% 

  group_by(part) %>% 

  summarize(cor=cor(yema, E4)) 

 

HR2_ALL %>% 

  group_by(part) %>% 

  summarize(cor=cor(yema, E4)) 
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HR3_ALL %>% 

  group_by(part) %>% 

  summarize(cor=cor(yema, E4)) 

Correlate the subjective stress scale with each device and sensor per data set 

##EDA 

#correlate subjective stress with Ylab 

EDA_ALL %>%  

  group_by(part) %>% 

  summarize(cor=cor(yeda, sub, use = "complete.obs")) 

 

#correlate subjective stress with E4 

EDA_ALL %>%  

  group_by(part) %>% 

  summarize(cor=cor(E4, sub, use = "complete.obs")) 

 

#HR 

#Approach 1 

#correlate subjective stress with Ylab 

HR1_ALL %>% 

  group_by(part) %>% 

  summarize(cor=cor(yema, sub, use = "complete.obs")) 

 

#correlate subjective stress with E4 

HR1_ALL %>% 

  group_by(part) %>% 

  summarize(cor=cor(E4, sub, use = "complete.obs")) 

 

#Approach 2 

#correlate subjective stress with Ylab 

HR2_ALL %>% 

  group_by(part) %>% 

  summarize(cor=cor(yema, sub, use = "complete.obs")) 
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#correlate subjective stress with E4 

HR2_ALL %>% 

  group_by(part) %>% 

  summarize(cor=cor(E4, sub, use = "complete.obs")) 

 

 

#Approach 3 

#correlate subjective stress with Ylab 

HR3_ALL %>% 

  group_by(part) %>% 

  summarize(cor=cor(yema, sub, use = "complete.obs")) 

 

#correlate subjective stress with E4 

HR3_ALL %>% 

  group_by(part) %>% 

  summarize(cor=cor(E4, sub, use = "complete.obs")) 

Cable test EDA (post hoc) 

#test if the cable is broken post hoc  

#because the yeda signal seemed to not be working an just picking up

 surrounding frequencies the cable was tested. This was done by maki

ng a recording where 30 sec a normal recording was simulated, 15 sec

 without touching the sensor, 15 sec sensors touching each other, ~1

5 sec again without touching the sensor. This should lead to a chang

e in signal around the timestamps of 30 sec, 45 sec and again at 60 

sec. If that does not happen it means the cable is not broken.  

 

T1 <- read.csv(file = "ylab1_cabletest.csv", sep = ",", header = TRU

E) 

T1 <- T1 %>% mutate(RT = time - 136) 

T1 <- T1 %>% filter(ID == "Yeda0") 

 

T1 %>% ggplot(aes(x= RT, y=value)) + geom_line() + labs(x= "Real tim
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e broken cable test", y= "Yeda signal") 

 

#The cable does not produce an appropriate signal when the electrode

s touch, therefore the cable is deemed broken.  

 

 

 

 

 


