
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

A Comparison of Anomaly Detection
Algorithms with applications on

Recoater Streaking in an Additive
Manufacturing Process.

Reinier H. Stribos
M.Sc. Thesis
March 2023

Supervisors:
prof. dr. M.I.A. Stoelinga

prof. dr. T.M. Heskes
M.Sc. M.C. Slot

M.Sc. L.A. Jimenez
M.Sc. R.C. Bouman

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Abstract

Additive manufacturing, the process of producing parts from 3D models in a layer-to-
layer process, has seen an enormous growth in recent years. However, consistently
producing high quality part remains challenging. One possible anomaly affecting the
output quality during the printing process is recoater streaking. Different detection
models have been proposed in literature with varying levels of proficiency. However,
a thorough comparison of these models is lacking. Moreover, every model is only
tested and tailored to their own specific datasets. In this research, these different
detection models have been implemented and compared to get a better overview of
the advantages and disadvantages of each model. Furthermore, an existing method
has been improved to make it more general applicable and a tried and tested pre-
processing step has been introduced to this application. All tested models score
>96% accuracy, but three models outperformed the others and these three all ex-
ceed in a single metric. Therefore, it depends on which metrics are deemed most
important which model is regarded as the highest performing model.

ii

List of acronyms

AM Additive manufacturing

RCS Recoater streaking

LB-PBF Laser beam powder bed fusion

LBP Local binary pattern

FF Fitted function

MA Moving average

LBP Local binary pattern

BoW Bag-of-Words

CNN Convolutional neural network

AUC Area under the curve

ROC Receiver operator characteristic

AP Average precision

TP True positives

TN True negatives

FP False positives

FN False negatives

iii

Contents

Abstract ii

List of acronyms iii

1 Introduction 1
1.1 Problem description . 1
1.2 Research objectives and questions . 5

2 Background 6
2.1 Laser Beam Powder Bed Fusion . 6
2.2 MetalFab1 . 7
2.3 Anomaly detection . 7
2.4 Neural networks . 9

3 Dataset description 11

4 Methodology 13
4.1 Study pipeline . 13
4.2 Comparison metrics . 14
4.3 Pre-processing . 15

4.3.1 Basic mask . 17
4.3.2 Image morphology . 18
4.3.3 Adaptive threshold segmentation 19

4.4 Detection algorithms . 19
4.4.1 Line Profiles . 20
4.4.2 Bag of words . 21
4.4.3 AlexNet . 23
4.4.4 Multi-scale neural network . 24
4.4.5 Triple-scale neural network . 25
4.4.6 Local Binary Patterns . 26

4.5 Labeling of image patches . 27
4.6 Cross validation . 28

iv

Contents v

5 Results 29
5.1 Hyperparameters . 29
5.2 Without pre-processing . 29
5.3 Basic mask pre-processing . 32
5.4 Image morphology pre-processing . 33
5.5 Adaptive threshold segmentation pre-processing 34
5.6 Performance evaluation . 34

5.6.1 Quantitative metrics . 34
5.6.2 Qualitative metrics . 37

6 Discussion 39
6.1 Label noise . 39
6.2 Multiple type of anomalies . 39
6.3 Basic mask pre-processing . 40
6.4 Limitations of the dataset . 40
6.5 Bag-of-words . 40

7 Conclusion 42

8 Future Research 43
8.1 Extention to other materials and machines 43
8.2 Adaptable basic mask . 43
8.3 More models . 44
8.4 Real time application . 44
8.5 Image Segmentation . 44
8.6 Comparison multiple type of defects 44

References 46

Appendices

A Comparison results 54

B Algorithms 56
B.1 Pre-processing algorithms . 56
B.2 Detection algorithms . 58

Chapter 1

Introduction

1.1 Problem description

Additive manufacturing (AM), the process of producing parts from 3D models, has
seen an enormous growth in recent years. This is mainly because, when compared
to traditional manufacturing, designing a new model is substantially faster [1]. Ad-
ditionally, more complex geometries are possible, and it needs significantly fewer
materials. These properties make it promising for aerospace and medical applica-
tions [2], as well as rapid prototyping and producing critical parts on-site [3].

However, these industries require a high degree of quality assurance and pro-
cess reliability, which are difficult to achieve [1]. Analysing the quality of the printed
part afterwards is possible but very costly, and it does not improve the quality nor
does it guarantee it. Early warning systems that tell about the presence of anoma-
lies during the printing process are necessary to save resources as a small deviation
during the printing process can have a big impact on the final part quality [4].

Some AM processes work by fusing powder together and printing a part layer by
layer. For each layer, powder is spread over a build plate and fused together with a
laser into a two-dimensional part cross-section, this is repeated until the complete
part is printed. More information about these processes can be found in Section

Figure 1.1: The printer studied in this research, the MetalFab1 from [5].

1

1.1. PROBLEM DESCRIPTION 2

2.1 and Figure 1.1 shows a printer that works according to this process. Regarding
such AM processes, defects can be categorized into three classes:

• Powder related : defects regarding the spreading of the new powder layer.

• Process related : defects regarding the interaction between the laser, powder,
and the metal.

• Post-process related : defects occurring during the post-processing afterwards
[6].

While not related to the AM process itself, deformation can also be caused by equip-
ment or the design of the to-be-manufactured part [7].

The powder related anomalies can have a big effect on the final part quality [8].
In a powder-AM process, every layer of the print starts with coating the build plate
with a new layer of metal powder. The distribution of the new powder layer is done
by the recoater. The recoater must ensure that the powder is distributed as evenly
as possible, every layer is identical, and must not disturb the previous layers [9].
The recoater works by carrying a cartridge across the build plate dispensing powder
along the way which is then pushed by either a roller or a blade into a uniformly
spread layer [6], [9]. During the coating of a new layer, distortions can occur in the
powder layer and can be divided in the following defects; recoater hopping, caused
by the recoater blade striking a part and ‘hopping’, debris, debris located in the
powder bed, incomplete spreading, an insufficient amount of powder is fetched from
the powder dispenser, elevation of printed parts, a part curling upwards out of the
powder layer, and the subject of this study, recoater streaking [6], [10], [11].

Figure 1.2: 3D printed part with recoater streaking defect. The red arrows indicate
the surface roughness.

This research focuses on Recoater streaking (RCS) because it is the most occur-
ring defect regarding the powder-related defects [11]. RCS is caused either by the
recoater dragging an elevated part across the powder bed or by a damaged blade or

1.1. PROBLEM DESCRIPTION 3

roller [3], resulting in an increase in surface roughness [12] and rendering the final
part unusable. Figure 1.2 shows a printed part with increased surface roughness.

RCS is characterized by stripes in the powder layer parallel to the recoater direc-
tion [3]. Figure 1.3 shows a powder bed with instances of recoater streaking. The
two dark stripes between the red lines are occurrences of recoater streaking.

Figure 1.3: Powder bed with instances of recoater streaking (two dark stripes).

Detection methods that can detect RCS early on, could save many resources.
Such detection methods, specialized for RCS, have been developed. Some of
these methods incorporate the use of Line Profiles [12], Clusters, [3], Neural Net-
works [13]–[16], and Support Vector Machines [17]. A more detailed overview of
the methods can be found in Table 1.1. These methods are all designed to detect
RCS based on images and perform quite accurately in general. However, these
methods have all been tested on, and tailored to, their own specific data sets. To
really be able to compare different models, they should be tested on the same data
sets, which has not yet been done [10]. Furthermore, as each model has only been
tested on its own data, it is currently unknown how each model reacts to a different
data set [20].

This research has the following objectives; (1) exploring and implementing image-
based anomaly detection algorithms to improve early-warning systems on the de-
tection of RCS, and (2) thoroughly compare the performance of state-of-the-art al-
gorithms in a unifying benchmark. In addition, (3) focus has been laid on the case of
MetalFab1 machines and to tailor algorithms with its requirements and conditions.

This study showed that multiple algorithms can detect RCS and perform accu-
rately. However, different algorithms excel in different performance metrics. Fur-
thermore, the effectiveness of different pre-processing steps differs per detection
algorithm. Therefore, which algorithms to use should be decided on a case by case
basis.

1.1. PROBLEM DESCRIPTION 4

R
ef

.
Ye

ar
M

et
ho

d
R

ep
or

te
d

A
cc

.
B

en
efi

t
S

ho
rt

co
m

in
gs

S
ec

[1
2]

20
11

Li
ne

pr
ofi

le
s

-
Ve

ry
qu

ic
k

N
ee

ds
sp

ec
ifi

c
lig

ht
in

g
an

d
ca

m
er

a
se

t-u
p

4.
4.

1

[3
]

20
18

B
ag

of
W

or
ds

+
fil

te
rf

ea
-

tu
re

s
83

.4
%

D
et

ec
ts

m
ul

tip
le

an
om

a-
lie

s
+

ca
n

do
se

gm
en

ta
-

tio
n

S
lo

w
+

lo
w

ac
cu

ra
cy

fo
r

R
C

S
4.

4.
2

[1
3]

20
21

N
eu

ra
ln

et
w

or
k

98
.7

4%
D

et
ec

ts
m

ul
tip

le
an

om
a-

lie
s

+
hi

gh
ac

c.
N

ee
ds

la
rg

e
tra

in
in

g
se

t
4.

4.
3

[1
4]

,[
15

]
20

18
N

eu
ra

ln
et

w
or

k
93

%
D

et
ec

ts
m

ul
tip

le
an

om
a-

lie
s

+
ca

n
do

se
gm

en
ta

-
tio

n

Ve
ry

sl
ow

4.
4.

4

[1
6]

20
21

N
eu

ra
ln

et
w

or
k

90
.3

%
D

et
ec

ts
m

ul
tip

le
an

om
a-

lie
s

Te
st

ed
on

sm
al

ld
at

as
et

4.
4.

5

[1
7]

20
21

Lo
ca

lb
in

ar
y

pa
tte

rn
s

98
.3

%
D

et
ec

ts
m

ul
tip

le
an

om
a-

lie
s

+
hi

gh
ac

c.
O

nl
y

te
st

ed
fo

r
re

co
at

er
ho

pp
in

g
de

te
ct

io
n

4.
4.

6

N
ot

te
st

ed
in

th
is

st
ud

y
[1

8]
20

21
P

ix
el

in
te

ns
ity

-
W

or
ks

on
sm

al
l

tra
in

in
g

se
t

D
es

ig
ne

d
fo

r
E

le
ct

ro
n

B
ea

m
M

el
tin

g
✗

[1
9]

20
14

Lo
w

co
he

re
nc

e
in

te
rfe

r-
om

et
ry

-
D

ef
or

m
iti

es
cl

ea
rly

vi
si

-
bl

e
in

sc
an

s
N

ee
ds

sp
ec

ifi
c

op
tic

al
se

ns
or

+
un

te
st

ed
✗

Table 1.1: Overview of existing anomaly detection algorithms.

1.2. RESEARCH OBJECTIVES AND QUESTIONS 5

1.2 Research objectives and questions

As mentioned previously, literature provides multiple possible methods to detect
RCS. However, what is missing is a clear comparison of the different methods,
distinctly showing the advantage and disadvantages of each model, so that when
developing a new machine, or implementing a new detection model, an informed
decision can be made.

The goal of this research is to create such a comparison. For this comparison
quantitative and qualitative metrics have been selected and are explained in more
detail in Section 4.2. In addition, all RCS detection models have been implemented
to, and benchmarked on the MetalFab1 machine. To be able to reach this goal, the
following research questions have been established.

1. Which detection algorithm has the best overall performance when detecting
recoater streaking?

(a) Which detection algorithm has the best performance across all metrics
when detecting recoater streaking?

(b) Which detection algorithm has the best performance when tailored to de-
tecting recoater streaking on the MetalFab1?

The rest of this thesis is structured as follows: first, Section 2 provides some
background information about the topics discussed during this research, while Sec-
tion 3 provides a detailed explanation on the dataset used to benchmark the differ-
ent models on RCS. Section 4 provides details on the steps taken to execute these
benchmarks. Section 5 presents the results of the different models and Section 6
discusses these results. Finally, Section 7 presents the conclusion of this research,
and Section 8 discusses interesting research directions for future work.

Chapter 2

Background

This chapter presents some background information on a few aspects of this re-
search. Section 2.1 describes the specific additive manufacturing process studied
in this research and Section 2.2 describes the specific machine. Section 2.3 gives
some details about the research field of anomaly detection. Finally, Section 2.4
gives some details about neural networks and their use.

2.1 Laser Beam Powder Bed Fusion

LB-PBF is an additive manufacturing process that uses a laser to melt and fuse
metal powders together to print a part. Figure 2.1 shows a schematic overview of
the printing process. This process starts with (1) the creation of a 3D model, called a
CAD-model, which is sliced into a number of very thin (20-100 µm thick [21]) layers.
(2) this model is loaded into the machine and the printer then lowers the oxygen level
in the build chamber to around 50 ppm O2 to ensure that the metal does not oxidize
during printing. (3) for each layer, a dispenser (i.e. recoater) coats the build plate

Figure 2.1: Build process for an LB-PBF machine. Rectangular gray drawings rep-
resent a powder bed. Picture taken from [6].

6

2.2. METALFAB1 7

with a thin, uniformly spread layer of metal powder. (4) the layer from the sliced CAD
model is projected and (5) the powder is then melted together using a laser beam
to recreate the layer of the sliced model. Surrounding powder remains loose and
serves as support for subsequent layers. After one layer is finished, the build plate
lowers slightly and steps 3-5 are repeated, until all layers have been printed. (6) the
melted particles fuse together and solidify to eventually form the original 3D model,
layer by layer.

After the part is printed, the powder is automatically removed and stored for later
use, and the build plate is moved to the heat treatment furnace for post-processing.
During post-processing the part is heated and subdued to pressure evenly across
its surface to remove residual stresses that have build up in the metal.

2.2 MetalFab1

The printer studied in this research, the MetalFab1 in Figure 1.1, is developed by Ad-
ditive Industries and was released to the public in 2017 [5]. The MetalFab1 is a Laser
Beam Powder Bed Fusion metal 3D printer. It has a build chamber of 420x420x400
mm, 4 lasers, and can print up to 150cm3/h [21]. It can print a broad variety of
metals, but this research focuses on titanium.

2.3 Anomaly detection

Anomaly detection refers to the problem of detecting patterns in data that conflict
with normal behaviour. Detecting anomalies in data has been studied as far back as
the 19th century [22] and is used in a wide variety of different fields. E.g., it has been
adopted to detect, among many other applications, fraud detection for credit cards,
intrusion detection for cyber-security, and fault detection in safety critical systems
[23]. Over the years many different anomaly detection models have been developed,
ranging from very specific for certain applications to more generic models that can
be applied extensively.

Anomaly detection has been widely applied to AM [24], [25]. E.g., research has
been done to detect, among other things, lack of fusion [26]–[28], porosity [29]–[32],
irregular heating [33]–[35], or recoater streaking. Some anomaly detection models
have been specifically designed for the field of AM. E.g., Grasso et al. proposed
a detection model for RCS for an electron beam powder bed fusion process [18],
which is closely related to LB-PBF . They analysed images by first comparing an
image post-meltering with a post-recoating image of the same layer and highlighting
the difference between these two images. The author’s reasoning was that this
will result in extreme values for defects in the powder bed. Secondly, they applied a

2.3. ANOMALY DETECTION 8

transfer function to the newly obtained image to enhance the isolation of the extreme
values. As can be seen in Figure 2.2, this function will return a high value for the
extreme values and a low value for the central values in between. Finally, a pixel is
classified as anomaly if its new value is higher than a pre-defined threshold.

Figure 2.2: Transfer function to highlight extreme values. Image taken from [18].

One field of anomaly detection, is visual anomaly detection, the field of interpret-
ing digital images or videos [36]. Filter response features have been found to be
very effective. They can be used to highlight, filter-out, or extract certain features of
images and various filters for various situations have been created [37]–[39]. Figure
2.3 shows an example of different filters being applied to the same image. Filter
features have been used frequently in literature for feature extraction. E.g., Koblar
et al. [40] used filter response features to extract features from fingerprint images.
In this research, various methods use such filters to detect RCS.

Figure 2.3: Effect of different Gabor filters on an image. Image taken from [41].

2.4. NEURAL NETWORKS 9

2.4 Neural networks

In this study, multiple neural networks are employed. A neural network consists
of multiple layers filled with nodes called neurons [42]. A neuron receives signals
from the neurons in the previous layer and processes them to signal neurons in the
subsequent layer. These signals travel from the input layer to the output layer. This
section describes various aspects of neural networks used in this research.

Traditional neural networks consist of only fully connected layers, where each
neuron has a connection with every neuron in the next layer. These layers are a large
computational burden. Convolutional neural networks make use of convolutional
layers next to fully connected layers. A convolutional layer contains a set of feature
maps [43]. The height and weight of the feature maps are smaller than those of
the input image. Each feature map is convolved with the input image to compute
an activation map made of neurons. In other words, the feature map is moved
across the input image and the dot products between the image and feature map
are computed at every position. All neurons within a feature map share the same
weight, resulting in fewer parameters and computations [44].

Neural networks may include pooling or normalization layers in between two con-
volutional layers. Pooling layers reduce the dimensions of the data and by doing so,
also the amount of parameters and computations of the network. They do this by
combining the outputs of a cluster of neurons into a single neuron for the next layer.
The two most common types of pooling are average and max pooling. Average
pooling uses the average value of these clusters, while max pooling takes the maxi-
mum value [45]. A normalization layer normalizes the input of a layer over all of the
summed inputs to the neurons for a layer to significantly reduce training time [46].

Every node not in a normalization or pooling layer, has an activation function.
This function defines the output of that node given an input. Furthermore, an acti-
vation function introduces non-linearity in a neural network, which allows a network
to calculate complex and abstract equations across many layers. Multiple different
activation functions exist, but in this study only the ReLu and the Softmax func-
tions are used. The rectified linear unit, or ReLu, will, as shown in Figure 2.4, out-
put the input directly if it is positive, otherwise, it will output zero and is defined as
ReLu(z) = max{0, z} [47]. ReLu activation functions offer a faster computation and
a better back-propagation than other activation functions [48]. Thanks to its simplic-
ity and effectiveness, ReLU has become the default activation function used when
designing neural networks.

The other activation function used in this research, is the softmax function. The
softmax function converts a vector of n numbers into a probability distributions of
n outcomes [49]. This function is often used as the activation function of the last

2.4. NEURAL NETWORKS 10

layer of a neural network to normalize the output to a probability distribution over the
possible classes, and is defined as:

σ(z) =
ezi∑n
j=1 e

zj
, for i = {0, ..., n} and z = (z1, .., zn)

Figure 2.4: The ReLu activation function.

Chapter 3

Dataset description

Since all described algorithms are image recognition based, pictures are needed to
compare them. As mentioned in Section 2.1, a print is printed layer by layer. The
machine takes two pictures of the build chamber during every layer. One picture is
taken after the build plate has been coated with a new layer of metal powder, while
the other is taken after the layer has been exposed to the laser and the powder
has been fused together. Because RCS occurs while spreading the new layer of
powder, only the pictures after recoating are kept. Figure 3.1 shows two images
from the dataset, one with RCS and one without.

The dataset consists of five different prints, totalling 9.136 images of printed
layers. Of these five prints, two prints display RCS, totalling 3.378 images with
significant RCS. All images are about 210 KB large and are stored in PNG files.
Table 3.1 shows an overview of the different prints.

ID Number of layers Layers with RCS
F04 2542 104 - 2542
F12 913 -
F14 3435 2495 - 3435
F15 2061 -
F16 185 -

Table 3.1: Overview of the different prints in the dataset. Showing the print ID, num-
ber of layers, and the layers containing RCS.

11

CHAPTER 3. DATASET DESCRIPTION 12

(a) (b)

Figure 3.1: (a) shows an image of the powder bed taken after the build plate has
been coated with metal powder, (b) also shows an image of the powder
bed taken after the build plate has been coated with metal powder, but
here RCS is visible.

Chapter 4

Methodology

This chapter will discuss the methodology used to answer the research questions as
introduced in Section 1.2. First, Section 4.1 introduces the pipeline set up to test the
different algorithms. Section 4.2 defines the different metrics used to compare the
different algorithms while Sections 4.3 and 4.4 describe the different pre-processing
techniques and the implementation of the different detection algorithms respectively.
After that, Section 4.5 explains how the different types of inputs were labelled. Fi-
nally, Section 4.6 illustrates the steps taken to ensure an unbiased comparison.

4.1 Study pipeline

Figure 4.1 shows the pipeline used to evaluate and compare the different anomaly
detection algorithms and the pre-processing steps. It starts (a) with an input image
or set of images, to which (b) one or none pre-processing algorithm is applied. (c) If
necessary for the detection algorithm, like the algorithms as discussed in Sections
4.4.2, 4.4.4, and 4.4.5, the pre-processed input is partitioned into the right sized
blocks. Finally, (d) the input is classified by one of the algorithms compared in this
study, and (e) the results are evaluated by the metrics as defined below.

Figure 4.1: The pipeline of the study.

13

4.2. COMPARISON METRICS 14

4.2 Comparison metrics

Predicted
Pos Neg

Actual
Pos TP FN
Neg FP TN

Table 4.1: Confusion Matrix.

To answer research question 1.a Which detection algorithm has the best perfor-
mance across all metrics when detecting recoater streaking?, these metrics need to
be defined. This study compared the different algorithms on both quantitative met-
rics that can be measured and qualitative metrics that describe various capabilities.

The quantitative metrics are calculated based on confusion matrices like Table
4.1. A confusion matrix displays the predicted classes from a detection algorithm
against the actual classes. It expresses this in the true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN).

The first metric, the accuracy, describes the ratio of correctly classified instances
and is defined in Equation 4.1.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Recall is the ratio of RCS instances that are successfully identified [50] and is
defined in Equation 4.2.

Recall =
TP

TP + FN
(4.2)

Precision is the ratio of correctly identified RCS instances [50] and is defined
in Equation 4.3. The recall and precision will be reported for the best performing
accuracy only.

Precision =
TP

TP + FP
(4.3)

The area under the curve (AUC) is the area under the receiver operator charac-
teristic (ROC) curve [51]. In a ROC-curve, the true positive rate, or recall, is plotted
against the false positive rate (FPR), for different thresholds. An optimal ROC has a
true positive rate of one for a false positive rate of zero, resulting in a high AUC. The
AUC shows how good a model is at ranking predictions. It measures the probability
that a randomly chosen positive instance is ranked higher than a randomly chosen
negative instance. A formal definition is given in Equation 4.4.

FPR =
FP

FP + TN

Area under the curve =

∫ 1

FPR=0

r(FPR) d(FPR)

(4.4)

4.3. PRE-PROCESSING 15

Average precision (AP) calculates the area under the graph plotting recall against
precision [52]. It is an indication whether a model correctly identifies all the positive
instances without marking too many negative instances. It calculates the average of
precision scores for different recall thresholds. A formal definition is given in Equa-
tion 4.5.

Average Precision =

∫ 1

r=0

p(r) d(r) (4.5)

Furthermore, the processing time will be measured. This measurement has
been split up into the training speed and the prediction speed. This is done because
these two can vary greatly and different use cases demand different requirements
for the two.

To answer Research question 1.b, Which detection algorithm has the best per-
formance when tailored to the MetalFab1?, these metrics and measurements were
also compared solely for the MetalFab1 to find the best performing model for that
machine and its requirements. One additional requirement for translating one of the
detection models to a real-time detection system used in the machine, is that the
time to process a single layer should be roughly equal to the time it takes to print a
small layer, below one second, and ideally below 100ms [5].

Next to the quantitative metrics, qualitative metrics are compared also. The quali-
tative metrics cannot be measured but describe properties of the models. For exam-
ple, different industries prioritise different things. Accurately detecting every mistake
is important for medical applications or aerospace because failures are costly, but
rapid prototyping can afford some mistakes and prioritises speed. Some algorithms
can be easily adjusted to these print specific requirements before a print while oth-
ers would require major changes in their design. Furthermore, some models can
detect multiple defects in the powder bed simultaneously while others can solely
detect recoater streaking. To describe these properties, the following metrics have
been selected:

• Possibility for detection of multiple anomalies types

• Adjustability for prints specific requirements

4.3 Pre-processing

The images used in this study are taken directly from the build chamber inside the
machine. These images are not perfect and contain noise. E.g., because the powder
layers are very thin, and metal is reflective, printed parts from the previous layer are
sometimes visible. Figure 4.2 shows an example where parts are very clearly visible.
For the printing process itself, it presents no problem. However, when searching

4.3. PRE-PROCESSING 16

Figure 4.2: Powder bed image with part of the previous layer still visible.

for horizontal stripes in the powder bed, it can affect the final outcome. As seen
in Figure 4.2, these parts can be lined up and clear lines become visible in the
powder bed. If these lines are significant enough, they affect the detection models
and result in false positives. Furthermore, Figure 3.1(b) in Section 3 showed an
image containing RCS. As can be seen, RCS is not clearly visible and is quite small.
Therefore, it can become quite difficult to detect. Pre-processing images could make
RCS more clearly visible by either removing noise like reflected parts from previous
layers, or by enhancing the RCS, and by doing so, increase the performance of the
detection algorithms.

Method Source Goal Section

Basic mask [17] Defect extraction 4.3.1
Image morphology [53] Noise reduction 4.3.2
Adaptive threshold [13] Defect extraction 4.3.3

Table 4.2: The different pre-processing algorithms used in this research. With their
source paper, method, goal, and the section which describes them in
more detail.

Two detection algorithms also included a pre-processing step. These two pre-
processing steps were both designed for defect extraction. As described above,
noise also presents some problems while detecting defects. Therefore, a third pre-
processing step is introduced to reduce said noise. This step is used more often in
computer vision to reduce noise [53] but has not been applied to additive manufac-
turing before. These three pre-processing steps can be found in Table 4.2 and will
be implemented and combined with each detection algorithm to see whether they
can improve the performance. The rest of this section explains the pre-processing
steps in more detail. The pseudo code implementation of the algorithms can be
found in Appendix B.1.

4.3. PRE-PROCESSING 17

(a) Image with RCS (b) Basic mask processing

Figure 4.3: (a) shows a powder bed with RCS. (b) shows the same image but after
basic mask processing.

4.3.1 Basic mask

The first method is the basic mask as introduced by Yin et al. in 2021 [17]. As
seen in Table 4.2 this method was designed for defect extraction. Figure 4.3 shows
an image with RCS and its processed image. As can be seen, RCS has been
selected and extracted from the image and is now clearly visible. The basic mask
pre-processing method consists of three steps which are explained in more detail
below:

1. Comparison with a ‘basic mask’

2. Median filtering

3. Gamma transformation

To extract anomalies in an image, first a defect-free powder bed image under the
same light source was selected, called the ‘basic mask’, and a threshold range was
set. The difference between the collected image and the base mask was calculated
to obtain a new image. If the gray value of a point on the new image is within the
threshold range, a possible defect is considered and its gray level is retained. If a
point is not in the threshold range, it is considered defect-free and the value if set to
0. Due to this binarization, RCS becomes much more clearly visible.

Next to enhancing defects in the powder bed, this first step also introduces some
noise as such a basic mask is never spotless. To remove this noise, a subsequent
step is added, median filtering. Median filtering is a tried and tested method ideal for
reducing random noise while not blurring image features [54]. It works by changing

4.3. PRE-PROCESSING 18

(a) Image with RCS (b) Image morphology processing

Figure 4.4: (a) shows a powder bed with RCS. (b) shows the same image but after
image morphology processing.

each pixel to the median of its neighbouring pixels [54]. In this study, the eight direct
neighbours are used. This way, smaller, random noise is filtered out, while larges
structures like RCS remain. The last step, Gamma transformation [55] is performed
to, again, enhance the anomalies in the image. During a gamma transformation, an
image is raised to the power of gamma, thereby enhancing the contrast in an image.

4.3.2 Image morphology

Image morphology has been around quite some time and has been used before to
remove noise from images [53]. This study introduces this method to the field of
Additive Manufacturing. Figure 4.4 shows an image with RCS and its processed
image. As can be seen, the background noise has been filtered out while the RCS
remains visible. The pre-processing method consists of two steps. First the image
is probed with a small horizontal line, 30 pixels wide by 1 pixel high, and eroded [56],
meaning that every pixel is changed to the darkest pixel in that small line. This way,
the light pixels of the reflecting parts are eroded out while the darker pixels of the
RCS are maintained. The second step is the inverse, dilation [56]. Here, again
the image is probed with the same horizontal line. But in this case, every pixel is
changed to the lightest pixel in that line. This sequence of erosion and dilation is
also called opening and is more often used to remove noise from an image while
preserving the shape and size of larger objects [53].

4.4. DETECTION ALGORITHMS 19

(a) (b)

Figure 4.5: (a) shows an image after adaptive thresholding and (b) shows the same
image but after image morphology. Both images are taken from [13].

4.3.3 Adaptive threshold segmentation

The adaptive multi-defect threshold segmentation algorithm relies on the difference
in gray values of different types of powder bed defects [13]. A histogram of the gray
values in an image is constructed and a function is fitted to this histogram. The
adaptive thresholds are calculated based on the set of local extrema of this function.
The image is then segmented by highlighting both the lowest and highest pixels and
dimming all pixels in between. This is done by setting each pixel to 0, black, if it is in
between the two thresholds, or to 1, white, if it lies outside.

The segmented image now consists of many small areas of white pixels. These
small areas will be connected based on image morphology by dilating, opening, and
closing the image with pre-defined structures as defined in [13]. After the morphol-
ogy operations there still are a small number of discrete defect areas and noise. To
diminish this, an area and distance threshold were set. If an area is smaller than the
area threshold, it is considered noise and is removed. If the distance between two
areas is smaller than the distance threshold, the two are merged together [13]. This
pre-processing algorithm proposed by Shi et al. highlights defects in the powder
bed. Figure 4.5 shows an image before and after these image morphology modifi-
cations.

4.4 Detection algorithms

A small overview of the different anomaly detection models can be found in Table
4.3. All models are explained in more detail in the rest of this section and their
pseudo code can be found in Appendix B.2.

4.4. DETECTION ALGORITHMS 20

Name Source Section

Fitted function line Profiles This work 4.4.1
Moving average line Profiles This work 4.4.1
Bag of Words [3] 4.4.2
AlexNet [13] 4.4.3
Multi-scale CNN [14] 4.4.4
Triple-scale CNN [16] 4.4.5
Local Binary Patterns [17] 4.4.6

Table 4.3: Overview of all compared detection algorithms

4.4.1 Line Profiles

The first model for recoater streaking detection was introduced by Craeghs et al. in
2011 [12]. This model extracts so called ‘line profiles’ from each image to detect
RCS. A line profile is defined as the average pixel gray value of five points of that
horizontal line in the image of a powder bed. Figure 4.6 shows a powder bed image
with its corresponding line profiles. These five points were taken at the far left as
not to be disturbed by other defects in the powder bed. The standard deviation of
the line profiles is then subsequently used as indicator for RCS, and streaking was
detected if a single line profile is six times the standard deviation higher or lower
than the mean [12].

(a) Construction of line profiles (b) Constructed line profiles

Figure 4.6: (a) shows a powder bed with recoater streaking. (b) shows a rotated
graph of the constructed line profiles from (a) with clear spikes at the
heights of the recoater streaking. Images taken from [12].

4.4. DETECTION ALGORITHMS 21

However, experimental results showed that the images used by Craeghs et al.
were lit uniformly while the images from the MetalFab1 are not. Line profiles from
a uniformly lit image behave linearly when no RCS occurs. When images are not
uniformly lit, this behaviour changes. Figure 4.7 shows line profiles that are con-
structed from an image with an uneven lighting. As can be seen, the line profiles no
longer behave linearly, but obtain more of a parabola shape. Detection based on the
standard deviation is therefore impractical.

Figure 4.7: Line profiles of an image from the MetalFab1.

To create a detection model capable of detecting RCS independent of the lighting
of images, two novel models are proposed in this study and compared to the other
detection models. Both models calculate magnitudes of distortion based on the line
profiles of an image and detect RCS if, for any point on the image, this distortion is
higher than a certain threshold. The first model calculates this distortion by fitting
a function (FF) to the line profile’s values as a function of the distance along the
image and calculating the deviation between the two. A second-degree polynomial
is fitted to the line profiles using the non-linear least squares fit as implemented by
the curve_fit function from SciPy [57]. The second model calculates this magnitude
of distortion by looking at the moving average (MA) of the line profiles. For both
models, again, the optimal threshold to detect RCS was selected by maximizing the
accuracy.

4.4.2 Bag of words

The first model of Scime et al. utilized bag-of-keypoints [58] in combination with fil-
ter response vectors [3]. A schematic overview of the model can be found in Figure
4.8. The model starts (a) with the creation of a filter bank. This bank consists of
multiple filters that all respond differently to an image. Figure 2.3 shows an exam-
ple of different responses from different filters on the same image. These filters (b)

4.4. DETECTION ALGORITHMS 22

Figure 4.8: Pipeline for the Bag of Words method. Image taken from [3]

are applied on the image and output a 2D image with the same dimensions as the
original image, where the value of each pixel is a vector with the responses of the
applied filters to the original image. By combining multiple filters, the response vec-
tors contain different sources of information. If pre-processing is used, the images
are first pre-processed before the filters are applied.

In the original paper, this bank consisted of thirty-seven filters [3]. However,
these filters were described too concisely, making it difficult to investigate which
filters were used exactly. In the end, all filters, except the ‘oriented line detectors’,
were uncovered and used for this study. The ‘oriented line detector’ filters were
designed to detect super-elevation defects. The filters designed to detect recoater
streaking were uncovered successfully, making the model suitable for this research.

The next step is dividing the images in smaller patches and creating ‘fingerprints’
for them. First, (c) similar response vectors are grouped together using the k-means
clustering algorithm [59] and (d) each group is represented by a mean response
vector, that is the mean response of each filter. (e-f) Fingerprints are then created
by calculating the percentage of pixels in a patch that are matched to each mean
response vector. Patches containing similar anomalies will have similar fingerprints,
while their fingerprints are dissimilar from patches with different anomalies or no
anomalies. (g) These fingerprint are stored in a table for later classification. In this

4.4. DETECTION ALGORITHMS 23

study, the proposed 20x20 [3] patches were used.
To classify an image, (h) it is again split up into patches to (i) create fingerprints.

To (j) predict whether RCS is present in a patch, its three closest fingerprints are
considered. If any off these fingerprints are labeled as defect-free, the patch is
classified as such. Because these patches are very small, small irregularities are
classified as defects as well. These irregularities are too small to cause any damage
and should be ignored. To ensure only images showing real defects are classified
as such, only images containing a certain threshold of flagged patches are classified
as defects. This threshold has been established by maximizing the accuracy.

4.4.3 AlexNet

Figure 4.9: Architecture of the AlexNet, image taken from [60].

In the paper of Shi et al. [13], the authors compared three different Neural Net-
work structures for correctly identifying defects in the powder bed; AlexNet [61],
VGG-16 [62], and ResNet-50 [63]. Of these three, the AlexNet performed the best
with an accuracy of 98.74% on the test set and a detection time of 0.25 seconds per
layer. As the AlexNet outperformed the other neural networks by a big margin, only
this model will be compared in this study.

The AlexNet consists of five convolutional layers and three fully connected layers
[61], Figure 4.9 shows a schematic overview of the architecture. Originally, the last
layer outputs a distribution over a 1000 classes since the network was designed for
that specific task. However, this can be adjusted for specific cases and in this study
a distribution over two classes in returned. Every layer but the last one uses the
Rectified Linear Unit (ReLu) activation function while the last layer uses the softmax
function. Furthermore, each convolutional layer is followed by a normalization layer
and a maxpooling layer.

Because AlexNet was originally designed for colour images, it expects an input
size of 227x227x3 pixels, where the three corresponds to the three colour channels.

4.4. DETECTION ALGORITHMS 24

The images used in the study of Shi et al. and in this study are grayscale images
however. To be able to still use the AlexNet, and to stay as close to the paper of
Shi et al., the gray value of every pixel was copied into the three colour channels to
transfer the image to the desired dimensions [13].

The AlexNet is a rather deep and complex network. Therefore, and because
the dataset is quite small, the network is at risk of overfitting [61]. The authors
of the AlexNet also described two different ways to combat this, and both were
implemented in this study. The first method is data augmentation, which is artificially
enlarging the training dataset using label preserving transformations. In this study, of
each image also its horizontal and vertical reflections are added to the training set,
as well as copies with a slightly higher or lower brightness. Furthermore, random
227x227 patches were extracted from the 256x256 images. This way the training
dataset was increased 180-fold without really altering the images, making overfitting
less likely to occur.

For the second method, the authors added a dropout for the first two fully con-
nected layers [61]. This dropout consists of changing the output of a hidden neuron
to 0 during training with a probability of 0.5. The neurons which are dropped out
in this way do not contribute to the forward pass and do not participate in back
propagation. This way a different architecture is sampled for every input and sin-
gle neurons cannot rely on the presence of other particular neurons. This reduces
complex co-adaptations of neurons and all neurons are forced to learn more robust
features that are useful with many different subsets of neurons.

Without these two methods, the neural network exhibits serious overfitting. With
these two methods implemented, training takes a bit longer before convergence but
overfitting is reduced significantly.

4.4.4 Multi-scale neural network

The second model proposed by Scime et al. also uses the AlexNet. As mentioned
previously, while the images available in this research are grayscaled, the AlexNet
expects colour images and therefore three colour channels. Shi et al. solved this
problem by copying the gray value three times into the three colour channels [13].
Scime et al. found a more pragmatic way to make use of these three channels [14].
Just like in their previous model, [3], images are split into patches of various sizes
to better capture the different anomalies. For this model, patches are extracted with
three different sizes; 25x25 pixels, 100x100 pixels, and the whole image. The first
two patches share the same center, resulting in overlapping 100x100 pixel patches.
These three different patches are all resized to the expected 227x227 input shape
using bilinear interpolation and inserted into one of the three colour channels [14].

4.4. DETECTION ALGORITHMS 25

As multiple patches can be extracted from a single image, more training data
is available and overfitting is less of a problem. However, as overfitting was still
observed, the reflections and brightness adjustments are still added to mitigate this
problem. This was not done in the original paper, but was necessary to make it work.

To classify an image, the different scales are extracted and the AlexNet makes
a prediction for each scale centre. If enough of these centres are classified as
containing RCS, the whole image is classified as such.

4.4.5 Triple-scale neural network

Figure 4.10: Flowchart for the labeling process of the triple-scale network, image
taken from [16]

In 2021, Yadav et al. designed a new convolutional neural network (CNN) ar-
chitecture to detect anomalies in the powder bed [16]. Their model was tested on
four different types of anomalies. The authors argued that different anomalies do
not have the same spatial detection scale. Therefore, they defined three different
scales to detect all irregularities. The detection process as introduced by the orig-
inal paper is shown in Figure 4.10. The first scale, 20x20 pixels, was defined to
detect part hopping and overheating. The second scale, 75x75 pixels, was defined
to detect recoater streaking, whereas the third scale, 150x150 pixels, was set to
detect uneven powder spread. Blocks from the first scale are non-overlapping while
the bigger blocks are, as the three different scales were extracted from the same
center, as can be seen in Figure 4.10.

To detect anomalies, the first scale block is passed through the trained CNN and
a classification is returned. If this block is classified as part hopping, the model will
directly classify is as such and skip the larger scales. If the first scale is not classified
as part hopping, the result is discarded and the larger scales for that specific center
are passed through the CNN. A label is decided based on the outcome of scale two
and three as specified by a decision matrix defined in [16].

4.4. DETECTION ALGORITHMS 26

This study focuses solely on recoater streaking, making the use of the smallest
scale, 20x20 pixels, ineffective. This is due to the fact that this scale was designed
to only detect part hopping and overheating, and its result is discarded when that
is not present. As this study does not look at part hopping or overheating at all,
this first step is skipped entirely. Both the predictions of the other two scales have
influence on RCS classification and both scales are therefore consulted in this study.
Again, if enough patches within an image are classified as anomaly, the image will
be classified as such.

The CNN as designed by Yadav et al. consists of five layers, three convolutional
and two fully connected ones [16]. Identical to the AlexNet, every layer uses the
ReLu activation function while the last layer uses the softmax function. Again, each
convolutional layer is followed by a normalization and a max pooling layer. In com-
parison to the AlexNet, this model was designed for grayscaled images and thus
does not expect three colour channels, but just the one.

4.4.6 Local Binary Patterns

Figure 4.11: (a) shows the LBP values of an image without RCS, while (b) shows
the LBP values of an image with RCS.

The model as discussed by Yin et al. was developed to detect recoater hopping
[17]. Since recoater hopping is very similar to RCS, the only difference being the
rotation of the defect, the algorithm can also be used in this study. This model uses
Local Binary Patterns (LBP) together with a Support Vector Machine to detect the
defects. A LBP is constructed for an image by, for every pixel, comparing its gray
value to the gray values of its eight direct neighbours. These transformations result
in 8-bit binary numbers, which decimal values are used to obtain an LBP response
image [64]. The histogram containing the LBP for every pixel of an image is used as
detection feature for the Support Vector Machine. Figure 4.11 shows two histograms
of LBP response images, one (a) without RCS and the other (b) with. In their original

4.5. LABELING OF IMAGE PATCHES 27

paper, Yin et al. compared several variations of LBP. They found that the unified LBP,
multi-block LBP, and partition LBP [65]–[67] were positive improvements. Therefore,
these improvements will also be tested in this research while improvements that
were found to be less influential, like the circular neighbourhood LBP, are ignored.

The unified LBP looks to speed up the model. A LBP is considered unified when
its binary number contains no more than two transitions from 0 to 1 or vice versa [65].
E.g, 10000001 is unified as it has two transitions, while 01100001 has three and
is therefore non-unified. Unified LBP capture the important information in images,
while non-unified LBP are often caused by noise. By discarding the non-unified
LBPs and only looking at the unified LBPs, the process time increases significantly
while keeping the important information by reducing the number of redundant fea-
tures.

LBP can describe the local information of images precisely, but are susceptible to
noise. Furthermore, it has trouble capturing the main frame of image features. Multi-
block LBP was designed to solve this. It selects a block of n×n pixels and calculates
the average. The LBP response image is then constructed not on single pixels, but
on the averages of these blocks. Multi-block LBP captures the main structures better
while filtering out smaller noise.

A LBP describes the main structure of an image. Because only one LBP re-
sponse image is generated per image, local features are often missed while they
contain valuable information. Partition LBP looks to capture these different local
features by dividing an image into M × N partitions. A LBP response image is
calculated for each partition and the histograms are concatenated to represent the
entire image again.

4.5 Labeling of image patches

Multiple models compared in this study try to detect recoater streaking by zooming
in on the images and classifying patches. These models are supervised learning
models, meaning that they need labelled data to train themselves. Therefore, image
patches need not only be constructed, but also labelled.

The line profiles model can locate RCS within an image. Furthermore, it can
be applied to both complete images, and image patches. The fitted function ver-
sion of this model, together with the highest performing pre-processing method, can
therefore assist during the labeling of the image patches.

Labelling is done by first locating RCS within an image, dividing the images in
patches and labeling each patch in accordance with the location of the RCS. After
which each patch is again classified by the line profiles model and this classification
is compared to the assigned label. Only patches where this comparison holds are

4.6. CROSS VALIDATION 28

used for the creation of the training data set.

4.6 Cross validation

To achieve the best performance, optimal hyperparameters were searched for. Hy-
perparameters are parameters which are used to control the learning process and
are set by the user before the training [68]. Unlike other parameters which are de-
rived via training, like network weights. E.g. the partition size of local binary patterns
or the number of training epochs of the neural networks are hyperparameters.

A possible pitfall when searching for the optimal hyperparameters is over-fitting.
Over-fitting happens when all parameters are tuned too closely to a dataset and
any noise in the dataset is registered as normal behaviour [69]. When this happens
the model performs extremely well, almost perfect, on the dataset, but fails when
confronted with new data.

Over-fitting occurs because the criteria for training the model differs from the
criteria used to measure the suitability. E.g. the model is trained by maximizing
its performance on a dataset but its suitability is measured by how well it performs
on unseen data. Over-fitting then occurs when the model "memorizes" the training
data, rather than learning the underlying pattern.

To prevent over-fitting, cross-validation was used. With cross-validation, three
different datasets are created; a training set, a validation set, and a testing set [70].
All three sets should follow the same distribution of positive and negative instances.

The training set is used to train the model, after which the model classifies the
observations in the validation set. This set provides an unbiased evaluation while
trying out different hyperparameters. Because the data in the validation set is com-
pletely new for the model, its understanding of the underlying patterns is tested in
stead of its memorization of the training data.

Finally, after selecting the best hyperparameters, the model is trained on the
training set once more and its final performance is measured on the testing set.
This test set is used to measure the generalizability of a fully specified model.

For this study, the dataset has been split in a training, validation, and testing set
by allocating 60, 20, 20 percent of the data accordingly. By doing this, not only over-
fitting is prevented, but the final performance of every model is measured on exactly
the same dataset as well.

Chapter 5

Results

This chapter will discuss the results obtained during this research. Sections 5.2 until
5.5 discuss the quantitative metrics of the different anomaly detection algorithms in
combination with different pre-processing methods. Section 5.6.1 compares the best
performing combinations with each other and Section 5.6.2 discusses the qualitative
metrics of the detection algorithms.

5.1 Hyperparameters

Table 5.1 lists all hyperparameters of this study together with their obtained optimal
value. The Bag-of-Words algorithm is not listed as all its parameters were obtained
during training or defined in the original paper. The optimal hyperparameters of
the local binary pattern changed when different pre-processing methods were used.
This table only shows the hyperparameters for the best performing pre-processing
method.

5.2 Without pre-processing

Figure 5.1 and 5.2 show the quantitative metrics and the training and prediction
times respectively off all the algorithms on the test set without any pre-processing.
Table A.1 in Appendix A shows the results in more detail. Apart from the time, the
models perform quite similar with all models scoring >90% in both accuracy and
precision as can be seen in Figure 5.1. Note that the precision and recall are given
for the highest accuracy. There are three models, both line profiles and the bag-of-
words, that perform a bit lower than the others. These models score below 90%, but
still >80% on the recall, and about 5% lower on the other metrics when compared to
the other algorithms. The algorithm with the highest metrics however, is the AlexNet
as discussed in Section 4.4.3 which outperforms the other algorithms on all but one
metric.

29

5.2. WITHOUT PRE-PROCESSING 30

Method Hyperparameter Value Description

Line profile
Window size 4 The size of the window

for calculating moving av-
erage.

Fitted function ax2 · bx+ c The function used to de-
scribe the line profiles.

Alexnet
Learning rate 0.001 Controls how quickly the

model learns.
Momentum 0.9 Used to remove random

convergence.
Batch size 64 The number of training

samples for each epoch.

Multi-scale network
Learning rate 0.001
Momentum 0.9
Batch size 64

Triple-scale network
Learning rate 0.001
Momentum 0.9
Batch size 64

Local binary pattern
Block size 3x3 Multi-block LBP takes the

average of these blocks.
Partition size 9x9 Partition LBP constructs

a histogram for each of
these partitions.

Table 5.1: Obtained hyperparameters for each detection algorithm with a small de-
scription.

5.2. WITHOUT PRE-PROCESSING 31

Accuracy Precision Recall AUC AP
70

80

90

100
(%

)

Moving average Fitted function Bag-of-Words AlexNet
Multi-scale Triple-scale Local binary pattern

Figure 5.1: Results of all models without any pre-processing.

The biggest difference between the models is the time, as can be seen in Figure
5.2, both to train and to predict. The three neural networks take more than an hour
to train while the other are in the range of a half to eight minutes. This big difference
is mostly due to the many trained epochs in neural networks. The big difference
in prediction speed in mainly happening between the two methods that need to
divide an image in very small patches and classify each patch, and the rest. The
methods splitting an image into multiple smaller patches take significantly longer
than methods that do not need to do that.

0

100

200

300

400

500

25 29

516
3,600 3,600 3,600

330se
c

Moving average Fitted function Bag-of-Words AlexNet
Multi-scale Triple-scale Local binary pattern

0

20

40

60

80

4 5

10,000

31

6,000

34

75

m
s

Figure 5.2: (a) Training speed in seconds and (b) the prediction speed in millisec-
onds of the algorithms without pre-processing.

5.3. BASIC MASK PRE-PROCESSING 32

Accuracy Precision Recall AUC AP
70

80

90

100
(%

)

Moving average Fitted function Bag-of-Words AlexNet
Multi-scale Triple-scale Local binary pattern

Figure 5.3: Results of all models with basic mask pre-processing.

5.3 Basic mask pre-processing

Figures 5.3 and 5.4 show the results of all the models on the test set with the basic
mask pre-processing as described in Section 4.3.1. More details can again be found
in Appendix A. The AlexNet performs mostly the same as without pre-processing.
The two line profile methods improved significantly, about 6% in accuracy and about
15% in recall, now both outperforming the other models on all metrics. The Bag-of-
Words method also improved with 2% on every metric.

0

200

400

600

800

1,000

258 287

1,847 3,600 3,600 3,600

831

se
c

Moving average Fitted function Bag-of-Words AlexNet
Multi-scale Triple-scale Local binary pattern

0

50

100

150

44 45

8,000

30

10,000

48

167

m
s

Figure 5.4: (a) Training speed in seconds and (b) the prediction speed in millisec-
onds of the algorithms with basic mask pre-processing.

5.4. IMAGE MORPHOLOGY PRE-PROCESSING 33

While the performance of some algorithms improved, the multi-scale and triple-
scale networks performed worse. The recall of the Multi-scale network reduced
significantly with 25% and the Triple-scale network declined 2-3% on all metrics.

With the use of basic mask pre-processing, the training and prediction times
became much larger for all models. Both line profiles take ten time as long to train
and to predict, and Local Binary Patterns and the Bag-of-Word method take twice
as long to train, as can be seen in Figure 5.4

5.4 Image morphology pre-processing

Accuracy Precision Recall AUC AP
70

80

90

100

(%
)

Moving average Fitted function Bag-of-Words AlexNet
Multi-scale Triple-scale Local binary pattern

Figure 5.5: Results of all models with image morphology pre-processing

Figure 5.5 shows the results of all the models on the test set with the image mor-
phology pre-processing as described in Section 4.3.2. The LBP, Alexnet, and Triple-
scale network were mostly unaffected by this pre-processing method. However, the
two line profile methods performed significantly better than without pre-processing
again, however, not as much as with the basic mask method. The Bag-of-words al-
gorithm improved more than with the basic mask, now scoring about 3-4% higher on
every metric than without pre-processing. The only model that performed worse with
image morphology, is the Multi-scale neural network where every metric decreased
about 1-4%.

With this pre-processing step, the prediction and training time did not change
significantly, as can be seen in Table A.2 in Appendix A. Only the prediction time for
the Multi-scale network, which was already very slow, increased.

5.5. ADAPTIVE THRESHOLD SEGMENTATION PRE-PROCESSING 34

5.5 Adaptive threshold segmentation pre-processing

Figure 5.6: Comparison a histogram of the pixels of an entire buildplate (in blue)
versus a histogram of only the RCS pixels of an image (in red).

Section 4.3.3 describes how the adaptive threshold segmentation algorithm ex-
ploits the difference in gray values between defects and normal powder beds. It
separates the two by looking at the histogram of an image and filtering out all pixels
within two thresholds. However, this model relies on uniformly lit images. Figure 5.6
shows two histograms, the first is computed over an entire image while the second
one only looks at the pixels of RCS. As can be seen, the histogram of RCS pixel val-
ues is contained entirely by the entire image histogram. Therefore, these pixels will
be filtered out based on the calculated thresholds with the bigger histogram. This
pre-processing algorithm will consequently not be regarded in the rest of this study

5.6 Performance evaluation

5.6.1 Quantitative metrics

Figures 5.7 and 5.8 show a comparison of all models together with their best per-
forming pre-processing step, again more details can be found in Appendix A. Dif-
ferent models improve the most from different pre-processing methods, or if already
doing some sort of noise reduction or enhancement, from none. The two line pro-
file models improved the most from the basic mask method while the Bag-of-Words
gained the most from the image morphology step. As can be seen in Figure 5.7, all
models score >96% accuracy and >90% in both recall and precision, with a differ-

5.6. PERFORMANCE EVALUATION 35

Accuracy Precision Recall AUC AP
70

80

90

100

(%
)

Moving average + Mask Fitted function + Mask Bag-of-Words + Morphology AlexNet
Multi-scale Triple-scale Local binary pattern

Figure 5.7: Comparison of all models with their best performing pre-processing al-
gorithm.

ent model scoring highest for each metric. Furthermore, all models score >0.930 in
AUC and AP.

The measurements where the models differ most, are the training and prediction
speeds, Figure 5.8. The three neural network models take over an hour to train while
the other models take around 5-6 minutes, mostly due to training for many epochs.
Next to that, the two algorithms that need to divide an image into very small patches
and classify each patch, take over six seconds to predict a single image while the
other models all take below 100ms.

Figure 5.9 shows a heatmap with the predictions per layer for a singel print for
each algorithm. Each algorithm uses the best pre-processing method as indicated
above. For this print, the RCS starts at layer 104. Line profiles and Local Binary
Patterns start identifying RCS right when it starts, with just a couple of false positives
or negatives surrounding it. The Triple-scale network commences later, around layer
109, but also with just a couple of false positives or negatives surrounding it. While
the AlexNet and Bag-of-Words algorithms observe quite some false positives before
the RCS occurs and, just like the Triple-scale network, notice the real RCS only at
layer 109, they quite steadily detect RCS after.

The only method that has real trouble is the Multi-scale network. As can be
seen, it classified everything but one as RCS, meaning that it is very sensitive for
RCS. Coherently, this model also has the lowest precision of all models as seen in
Figure 5.7.

5.6. PERFORMANCE EVALUATION 36

0

100

200

300

400

500

258
287

386

3,600 3,600 3,600

330se
c

Moving average Fitted function Bag-of-Words AlexNet
Multi-scale Triple-scale Local binary pattern

0

20

40

60

80

44 45

10,000

31

6,000

34

75

m
s

Figure 5.8: (a) Training speed in seconds and (b) the prediction speed in millisec-
onds of the algorithms with their best performing pre-processing algo-
rithm.

Figure 5.9: Heatmap showing the predictions per layer for each method, matched
to the labels of the print. RCS starts at layer 104

5.6. PERFORMANCE EVALUATION 37

5.6.2 Qualitative metrics

Line profiles BoW Alexnet Multi-scale Triple-scale LBP
✗ ✓ ✓ ✓ ✓ ✓

Table 5.2: Capability of detecting multiple anomalies simultaneously of all algo-
rithms.

Multiple type of anomalies While RCS is the most occurring powder-bed defect
[11], multiple different distortions can occur during the coating of a new layer. Some
methods can detect all these different anomalies, while others cannot. E.g., the line
profile methods were designed specifically for RCS, and the extracted features can
only be used to detect RCS. Table 5.2 shows which algorithms can detect multiple
anomalies simultaneously and which cannot.

While the dataset used in this study does not contain any anomalies next to
RCS, the original papers, or literature, described this property for the other meth-
ods. These methods can, and have been to an extent evaluated on, detecting mul-
tiple different anomalies at the same time. Local Binary Patterns are a powerful tool
for texture classification [67] and can detect multiple different textures. In the orig-
inal paper, Local Binary Patterns were used to detect recoater hopping [17]. The
performance on the other anomalies still has to be evaluated. In the original papers
by Scime et al., both models were evaluated on all six different anomalies, and both
models succeeded in detecting all anomalies [3], [14]. Yadav et al. originally also
evaluated their method on all six anomalies and succeeded in detecting them all ac-
curately [16]. Shi et al. applied the AlexNet on only three defects [13]. However, the
AlexNet was originally designed for a dataset containing 1000 different labels [61]
and should therefore be able to also work for all six anomalies.

Line profiles BoW Alexnet Multi-scale Triple-scale LBP
✓ ✓ ✗ ✓ ✓ ✗

Table 5.3: Capability of adjusting algorithm setting to adjust for print specific require-
ments.

Adjustability Additive manufacturing can be used for a wide degree of applica-
tions, ranging from rapid prototyping to the aeroplane industry [2], [3]. These differ-
ent applications demand different requirements, aeroplanes need to be very precise
while rapid prototyping needs to be rapid. Some models can be easily adapted to
these print specific requirements while others would require major changes in their
design. It would be possible for all algorithms to train a more or less sensitive ver-
sion and to select the version suitable for the print specific requirements. However,

5.6. PERFORMANCE EVALUATION 38

simply changing a setting before a print is much more practical than training and
using a multitude of different sensitivities. Table 5.3 shows which algorithms can be
easily adjusted before a print and which have to be re-trained.

Three models classify images based on the amount of patches containing de-
fects, the multi-scale and the triple-scale neural networks, and the Bag-of-Words.
The amount of defected patches before an image is classified as anomaly can be
easily adjusted before a print to allow for print specific requirements. Likewise, the
line profile models calculate the distortion in a powder bed image. The distortion
threshold before an image is flagged can also be adjusted before a print.

The Alexnet was only designed for recognition [13]. To change its sensitivity
before a print, a whole new model needs to be trained with different loss metrics.
This takes hours and is not something to easily change before a new print. Local
Binary Patterns are similar and can only be used for recognition. Both models lack
the ability to alter some parameters in the trained model to alter between strictness
and speed.

Chapter 6

Discussion

6.1 Label noise

As described in Section 4.5, the fitted function line profile method is used to label
the extracted image patches used for training the patch-based models. This model
scored an accuracy of 99.28%. As this is not perfect, some of the image patches will
be mislabelled. Therefore, the models using these patches for training will be limited
by the performance of the fitted function line profile method as they need to train with
imperfect data. The reported metrics are not affected however, as these models
are used to classify whole images just like all the other models. Thus, while the
comparison with the other models is viable, the patch-based models could increase
in performance with proper labelling of the training data.

6.2 Multiple type of anomalies

In this study, only recoater streaking is considered, as it is the most occurring de-
fect regarding the powder bed [11]. The performance of the models of this study
are tested when detecting only RCS also. Some models can only detect RCS while
others can detect multiple anomalies simultaneously. When tested for this prop-
erty in their original papers, the performance metrics for detecting RCS specifically
changed quite drastically when more anomalies were added [3], [14], [16]. While
the overall performance remains similar, a significant decrease is seen when only
regarding the RCS metrics for these models. According to Scime et al. this is due
to its small representation in the training data, the small area recoater streaking
occupies on a powder layer, and its frequent co-location with an easier to classify
anomaly type [3]. Thus, while detection of multiple anomalies simultaneously is pos-
sible, the performance for RCS can decrease compared to an exclusive detection.

39

6.3. BASIC MASK PRE-PROCESSING 40

6.3 Basic mask pre-processing

The basic mask pre-processing method compares an image with a defect-free im-
age and highlights the differences [17]. This pre-processing method can significantly
increase the performance of a detection model. Selecting the appropriate mask for
the comparison is crucial for a good result. To ensure a proper comparison, the
two images should be taken under the same lighting source. During this study all
images were taken under the same lighting source and the same basic mask could
be used for all prints. The lighting can change however, and when that happens, a
different mask should be used. The lighting can change in between prints, but also
during a print. Therefore, this pre-processing step is less robust as there is not one
basic mask suitable for every situation. Thus, while the basic mask pre-processing
method does increase the performance of certain methods, extra care should be
taken into selecting the mask.

6.4 Limitations of the dataset

The dataset used in this research and described in Section 3 consists of 9.136
images taken over five different prints. While this is not too small of a dataset, it
is not extensive enough to represent a wide range of characteristics of RCS and
additive manufacturing. Furthermore, even though there are 3.378 images showing
RCS in the dataset, they appear in only two prints. Therefore, while this is enough to
construct a trustworthy comparison, all instances of RCS are quite similar and occur
in the same locations. Furthermore, there will be some characteristics of RCS that
are missing in the dataset. Thus, while the comparison made in this study is reliable,
some detection algorithms can show artificially high metrics because all instances
of RCS are quite similar. Furthermore, some edge cases are missing which could
influence the final performance and lead to a better understanding of detecting RCS
in a powder bed fusion process.

6.5 Bag-of-words

As mentioned in Section 4.4.2, not all filters described in the original paper for the
Bag-of-Words method [3] were implemented. Thus, while this method was shown to
accurately detect RCS in this study, the final performance can change when these
filters are added. Not only in performance metrics but also in prediction time.

The prediction time measured in this study is quite slow, the slowest model
with 10.58s per layer. When the last filters are added, this time will only increase.
However, in the original paper, with all filters implemented, the model took 4s per

6.5. BAG-OF-WORDS 41

layer [14]. While the original paper shows a significant decrease from the time mea-
sured in this study, it is still quite slow. Thus, while there is prediction speed to be
gained by an improved implementation or a better performing computer, it will not
be enough to be competitive with the other models.

Chapter 7

Conclusion

The first research question as formulated in Section 1.2, inquiring which detection
algorithm has the best overall performance when detecting recoater streaking, does
not have a straightforward answer as multiple trade-offs have to be made. There
are three models that outperform the others and they all score highest on a different
metric. While the LBP algorithm has the highest precision, Alexnet scores the high-
est recall. At the same time, the line profile methods, in combination with the basic
mask pre-processing, always performs better than one of these but never both, and
have the highest accuracy of all methods. Therefore, a trade-off has to be made on
a case by case basis which metric is deemed most important.

Furthermore, these three methods are all unsuccessful in one qualitative metric.
E.g., the line profile methods usability diminishes when detecting multiple anomalies
simultaneously has priority over high accuracy. Furthermore, the AlexNet and LBP
algorithms are less effective when a printer is used for a variety of use cases and
need to be adjusted for print specific requirements. In these cases, one of the other
models becomes more practical. Of these models, the Triple-scale network outper-
forms the other two models on all metrics apart from the training speed. Therefore,
again, a trade-off has to be made on a case by case basis whether qualitative or
quantitative metrics are deemed most important.

To answer the second research question as formulated in Section 1.2, inquiring
which detection algorithm has the best overall performance when tailored to the
MetalFab1, the additional requirements as introduced in Section 4.2, stating that the
prediction time for a single layer lies beneath one second, and ideally below 100ms,
are taken into consideration. As shown in Figure 5.8, both the Bag-of-Words and
the Multi-scale network take longer than one second to process a single layer, 10s
and 6s respectively. The other methods all take less than 100ms to process a single
layer. Therefore, the same trade-offs have to be made as to answer the first research
question.

42

Chapter 8

Future Research

8.1 Extention to other materials and machines

This study is focused on the MetalFab1 printer printing titanium. However, the Met-
alFab1 can print a multitude of materials [21]. These various materials all have
different specular reflection properties, thus the images taken for each material can
differ significantly and the effectiveness of the different models from this study can
alter drastically. Furthermore, there are a wide variety of additive manufacturing ma-
chines. All these machines behave differently and result in different images taken,
again influencing the effectiveness of the models compared in this study. It would
be interesting to see how the different detection- and pre-processing models react
to images from different machines or different materials.

8.2 Adaptable basic mask

As described previously, the basic mask pre-processing method compares an im-
age with a defect-free image with a matching lighting source. This pre-processing
method can significantly increase the performance of a detection model. Selecting
the mask is essential for a fitting comparison between the two images. One prob-
lem is the fact that the lighting source can change during the print, thus requiring
a change in the basic mask as well. One way of solving this could be the imple-
mentation of an adaptable basic mask. This adaptable basic mask would change
according to the changing lighting source to ensure an appropriate mask at all times.
Future research would be interesting to look into the implementation of this adapt-
able basic mask as it could be beneficial for the use of this pre-processing method.

43

8.3. MORE MODELS 44

8.3 More models

All models compared in this study were designed for recoater streaking specifically,
or have been used to detect RCS before. A lot more models exist in the field of
image recognition that have yet to be tested on the RCS problem. For example
the YOLO model series [71], which is the state of the art when it comes to image
recognition and is used on an ever increasing range of problems [72]–[74]. While
the models used in this study perform quite well, it would be interesting to see how
these new models perform when detecting RCS.

8.4 Real time application

The comparison made in this study compares the performance of the different mod-
els over all images in the data set. From this comparison, conclusions can be drawn
regarding which model performs best, based on which metrics are deemed most im-
portant. Translating this model into a real time application is non-trivial. Figure 5.9
showed that multiple models struggle with accurately identifying RCS around the
root of RCS. Therefore, installing a real time application is not as trivial as pausing
a print for every detected instance of RCS. It would be interesting to study the best
set-up for a real time application using one of the models compared in this study.

8.5 Image Segmentation

Next to recognition of images containing RCS, detecting where RCS occurs can
be of importance. Image segmentation algorithms already exist and perform ac-
curately [71]. However, these algorithms have not yet been applied to RCS. The
Bag-of-Words and Multi-scale algorithms were originally designed for just that [3],
[14]. However, these models are too slow to be used in real time applications as
they take too long to process a single image. Segmentation algorithms based on
Alexnet or local binary patterns are currently being studied [75], [76] but have not
yet been applied to RCS. Future research into image segmentation applied to RCS
could be very interesting, especially in combination with detection of multiple types
of anomalies.

8.6 Comparison multiple type of defects

As mentioned in Section 6, the performance of the detection models changes when
they are utilized to detect multiple different anomalies simultaneously. Furthermore,

8.6. COMPARISON MULTIPLE TYPE OF DEFECTS 45

the performance of a model can vary significantly for each anomaly individually [3],
[14], [16]. When other anomalies are of interest instead of RCS, or when multiple
anomalies need to be detected, research has to be done in order to find out which
model performs best. It would be interesting to study which model would suit which
qualification best.

Bibliography

[1] G. Tapia and A. Elwany, “A review on process monitoring and control
in metal-based additive manufacturing,” Journal of Manufacturing Science
and Engineering, Transactions of the ASME, vol. 136, 12 2014. [Online].
Available: https://asmedigitalcollection.asme.org/manufacturingscience/article/
136/6/060801/377521/A-Review-on-Process-Monitoring-and-Control-in

[2] K. M. Taminger and R. A. Hafley, “Electron beam freeform fabrication for
cost effective near-net shape manufacturing,” in NATO/RTO AVT-139 Special-
ists”Meeting on Cost Effective Manufacture via Net Shape Processing, 2006.

[3] L. Scime and J. Beuth, “Anomaly detection and classification in a laser powder
bed additive manufacturing process using a trained computer vision algorithm,”
Additive Manufacturing, vol. 19, pp. 114–126, 2018.

[4] K. Zeng, D. Pal, and B. Stucker, “A review of thermal analysis methods in laser
sintering and selective laser melting,” in 2012 International Solid Freeform Fab-
rication Symposium. University of Texas at Austin, 2012.

[5] A. Industries. Additive industries presents metalfab1 process & application
development tool. https://www.additiveindustries.com/news/news-and-press/
additive-industries-presents-metalfab1-process-application-development-too.

[6] A. Mostafaei, C. Zhao, Y. He, S. R. Ghiaasiaan, B. Shi, S. Shao, N. Shamsaei,
Z. Wu, N. Kouraytem, T. Sun, J. Pauza, J. V. Gordon, B. Webler, N. D. Parab,
M. Asherloo, Q. Guo, L. Chen, and A. D. Rollett, “Defects and anomalies in
powder bed fusion metal additive manufacturing,” Current Opinion in Solid State
and Materials Science, vol. 26, p. 100974, 4 2022.

[7] M. Grasso and B. M. Colosimo, “Process defects and in situ mon-
itoring methods in metal powder bed fusion: a review,” Measure-
ment Science and Technology, vol. 28, p. 044005, 2 2017. [Online].
Available: https://iopscience.iop.org/article/10.1088/1361-6501/aa5c4fhttps:
//iopscience.iop.org/article/10.1088/1361-6501/aa5c4f/meta

46

https://asmedigitalcollection.asme.org/manufacturingscience/article/136/6/060801/377521/A-Review-on-Process-Monitoring-and-Control-in
https://asmedigitalcollection.asme.org/manufacturingscience/article/136/6/060801/377521/A-Review-on-Process-Monitoring-and-Control-in
https://www.additiveindustries.com/news/news-and-press/additive-industries-presents-metalfab1-process-application-development-too
https://www.additiveindustries.com/news/news-and-press/additive-industries-presents-metalfab1-process-application-development-too
https://iopscience.iop.org/article/10.1088/1361-6501/aa5c4f https://iopscience.iop.org/article/10.1088/1361-6501/aa5c4f/meta
https://iopscience.iop.org/article/10.1088/1361-6501/aa5c4f https://iopscience.iop.org/article/10.1088/1361-6501/aa5c4f/meta

BIBLIOGRAPHY 47

[8] R. McCann, M. A. Obeidi, C. Hughes, Éanna McCarthy, D. S. Egan, R. K.
Vijayaraghavan, A. M. Joshi, V. A. Garzon, D. P. Dowling, P. J. McNally, and
D. Brabazon, “In-situ sensing, process monitoring and machine control in laser
powder bed fusion: A review,” Additive Manufacturing, vol. 45, p. 102058, 9
2021.

[9] I. Gibson, D. Rosen, B. Stucker, and M. Khorasani, “Powder bed fusion,”
Additive Manufacturing Technologies, pp. 125–170, 2021. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-56127-7_5

[10] M. Grasso, A. Remani, A. Dickins, B. M. Colosimo, and R. K. Leach, “In-situ
measurement and monitoring methods for metal powder bed fusion: an
updated review,” Measurement Science and Technology, vol. 32, p. 112001, 7
2021. [Online]. Available: https://iopscience.iop.org/article/10.1088/1361-6501/
ac0b6bhttps://iopscience.iop.org/article/10.1088/1361-6501/ac0b6b/meta

[11] P. Yadav, O. Rigo, C. Arvieu, V. K. Singh, and E. Lacoste, “Data
processing techniques for in-situ monitoring in l-pbf process,” Journal of
Manufacturing Processes, vol. 81, pp. 155–165, 9 2022. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1526612522004509

[12] T. Craeghs, S. Clijsters, E. Yasa, and J.-P. Kruth, “Online quality control of selec-
tive laser melting,” in 2011 International Solid Freeform Fabrication Symposium.
University of Texas at Austin, 2011.

[13] B. Shi and Z. Chen, “A layer-wise multi-defect detection system for powder bed
monitoring: Lighting strategy for imaging, adaptive segmentation and classifi-
cation,” Materials & Design, vol. 210, p. 110035, 2021.

[14] L. Scime and J. Beuth, “A multi-scale convolutional neural network for au-
tonomous anomaly detection and classification in a laser powder bed fusion
additive manufacturing process,” Additive Manufacturing, vol. 24, pp. 273–286,
2018.

[15] L. Scime, D. Siddel, S. Baird, and V. Paquit, “Layer-wise anomaly detection and
classification for powder bed additive manufacturing processes: A machine-
agnostic algorithm for real-time pixel-wise semantic segmentation,” Additive
Manufacturing, vol. 36, p. 101453, 12 2020.

[16] P. Yadav, O. Rigo, C. Arvieu, E. L. Guen, and E. Lacoste, “Data treatment of
in situ monitoring systems in selective laser melting machines,” Advanced
Engineering Materials, vol. 23, p. 2001327, 5 2021. [Online]. Avail-
able: https://onlinelibrary.wiley.com/doi/full/10.1002/adem.202001327https:

https://link.springer.com/chapter/10.1007/978-3-030-56127-7_5
https://iopscience.iop.org/article/10.1088/1361-6501/ac0b6b https://iopscience.iop.org/article/10.1088/1361-6501/ac0b6b/meta
https://iopscience.iop.org/article/10.1088/1361-6501/ac0b6b https://iopscience.iop.org/article/10.1088/1361-6501/ac0b6b/meta
https://linkinghub.elsevier.com/retrieve/pii/S1526612522004509
https://onlinelibrary.wiley.com/doi/full/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/10.1002/adem.202001327
https://onlinelibrary.wiley.com/doi/full/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/10.1002/adem.202001327

BIBLIOGRAPHY 48

//onlinelibrary.wiley.com/doi/abs/10.1002/adem.202001327https://onlinelibrary.
wiley.com/doi/10.1002/adem.202001327

[17] Y. Yin, G. Dali et al., “Research on feature extraction of local binary pattern of
slm powder bed gray image,” in Journal of Physics: Conference Series, vol.
1885, no. 3. IOP Publishing, 2021, p. 032007.

[18] M. Grasso, “In situ monitoring of powder bed fusion homogeneity in electron
beam melting,” Materials, vol. 14, no. 22, p. 7015, 2021.

[19] A. Neef, V. Seyda, D. Herzog, C. Emmelmann, M. Schönleber, and M. Kogel-
Hollacher, “Low coherence interferometry in selective laser melting,” Physics
Procedia, vol. 56, pp. 82–89, 2014.

[20] Y. Fu, A. R. Downey, L. Yuan, T. Zhang, A. Pratt, and Y. Balogun, “Machine
learning algorithms for defect detection in metal laser-based additive manufac-
turing: A review,” Journal of Manufacturing Processes, vol. 75, pp. 693–710, 3
2022.

[21] A. Industries, “Metalfab continuous production,” https://www.additiveindustries.
com/metalfabg2-continuous-production.

[22] F. Y. Edgeworth, “Xli. on discordant observations,” The london, edinburgh, and
dublin philosophical magazine and journal of science, vol. 23, no. 143, pp. 364–
375, 1887.

[23] V. Chandola, “Anomaly detection: A survey varun chandola, arindam banerjee,
and vipin kumar,” 2007.

[24] C. Wang, X. Tan, S. B. Tor, and C. Lim, “Machine learning in additive manu-
facturing: State-of-the-art and perspectives,” Additive Manufacturing, vol. 36, p.
101538, 2020.

[25] L. Meng, B. McWilliams, W. Jarosinski, H.-Y. Park, Y.-G. Jung, J. Lee, and
J. Zhang, “Machine learning in additive manufacturing: a review,” Jom, vol. 72,
pp. 2363–2377, 2020.

[26] A. Gaikwad, B. Giera, G. M. Guss, J.-B. Forien, M. J. Matthews, and P. Rao,
“Heterogeneous sensing and scientific machine learning for quality assur-
ance in laser powder bed fusion–a single-track study,” Additive Manufacturing,
vol. 36, p. 101659, 2020.

[27] W. Cui, Y. Zhang, X. Zhang, L. Li, and F. Liou, “Metal additive manufacturing
parts inspection using convolutional neural network,” Applied Sciences, vol. 10,
no. 2, p. 545, 2020.

https://onlinelibrary.wiley.com/doi/full/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/10.1002/adem.202001327
https://onlinelibrary.wiley.com/doi/full/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/10.1002/adem.202001327
https://onlinelibrary.wiley.com/doi/full/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/10.1002/adem.202001327
https://onlinelibrary.wiley.com/doi/full/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/10.1002/adem.202001327
https://onlinelibrary.wiley.com/doi/full/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.202001327 https://onlinelibrary.wiley.com/doi/10.1002/adem.202001327
https://www.additiveindustries.com/metalfabg2-continuous-production
https://www.additiveindustries.com/metalfabg2-continuous-production

BIBLIOGRAPHY 49

[28] J. L. Bartlett, A. Jarama, J. Jones, and X. Li, “Prediction of microstructural
defects in additive manufacturing from powder bed quality using digital image
correlation,” Materials Science and Engineering: A, vol. 794, p. 140002, 2020.

[29] G. Tapia, A. H. Elwany, and H. Sang, “Prediction of porosity in metal-based
additive manufacturing using spatial gaussian process models,” Additive Man-
ufacturing, vol. 12, pp. 282–290, 2016.

[30] M. Khanzadeh, S. Chowdhury, M. Marufuzzaman, M. A. Tschopp, and L. Bian,
“Porosity prediction: Supervised-learning of thermal history for direct laser de-
position,” Journal of manufacturing systems, vol. 47, pp. 69–82, 2018.

[31] F. Imani, A. Gaikwad, M. Montazeri, P. Rao, H. Yang, and E. Reutzel, “Process
mapping and in-process monitoring of porosity in laser powder bed fusion using
layerwise optical imaging,” Journal of Manufacturing Science and Engineering,
vol. 140, no. 10, 2018.

[32] M. Montazeri, A. R. Nassar, A. J. Dunbar, and P. Rao, “In-process monitoring
of porosity in additive manufacturing using optical emission spectroscopy,” IISE
Transactions, vol. 52, no. 5, pp. 500–515, 2020.

[33] D. S. Ye, Y. Fuh, Y. Zhang, G. Hong, and K. P. Zhu, “Defects recognition in
selective laser melting with acoustic signals by svm based on feature reduction,”
in IOP Conference Series: Materials Science and Engineering, vol. 436, no. 1.
IOP Publishing, 2018, p. 012020.

[34] Y. Zhang, H. G. Soon, D. Ye, J. Y. H. Fuh, and K. Zhu, “Powder-bed fusion pro-
cess monitoring by machine vision with hybrid convolutional neural networks,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 5769–5779,
2019.

[35] B. Zhang, P. Jaiswal, R. Rai, P. Guerrier, and G. Baggs, “Convolutional neural
network-based inspection of metal additive manufacturing parts,” Rapid Proto-
typing Journal, 2019.

[36] T. Huang, “Computer vision: Evolution and promise,” 1996.

[37] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D.
Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors,
“scikit-image: image processing in Python,” PeerJ, vol. 2, p. e453, 6 2014.
[Online]. Available: https://doi.org/10.7717/peerj.453

[38] R. Szeliski, Computer vision: algorithms and applications. Springer Nature,
2022.

https://doi.org/10.7717/peerj.453

BIBLIOGRAPHY 50

[39] W. Sun, B. Yao, B. Chen, Y. He, X. Cao, T. Zhou, and H. Liu, “Noncontact
surface roughness estimation using 2d complex wavelet enhanced resnet for
intelligent evaluation of milled metal surface quality,” Applied Sciences, vol. 8,
no. 3, p. 381, 2018.

[40] V. Koblar, M. Pecar, K. Gantar, T. Tusar, and B. Filipic, “Determining surface
roughness of semifinished products using computer vision and machine learn-
ing,” in Proceedings of the 18th International Multiconference Information Soci-
ety, IS, 2015, pp. 51–54.

[41] Scikit. Gabor filter banks for texture classification. https://scikit-image.
org/docs/stable/auto_examples/features_detection/plot_gabor.html#
sphx-glr-auto-examples-features-detection-plot-gabor-py.

[42] S.-C. Wang, “Artificial neural network,” in Interdisciplinary computing in java
programming. Springer, 2003, pp. 81–100.

[43] Q. Ke, J. Liu, M. Bennamoun, S. An, F. Sohel, and F. Boussaid, “Computer
vision for human–machine interaction,” in Computer Vision for Assistive Health-
care. Elsevier, 2018, pp. 127–145.

[44] W. Rawat and Z. Wang, “Deep convolutional neural networks for image clas-
sification: A comprehensive review,” Neural computation, vol. 29, no. 9, pp.
2352–2449, 2017.

[45] M. Sun, Z. Song, X. Jiang, J. Pan, and Y. Pang, “Learning pooling for convolu-
tional neural network,” Neurocomputing, vol. 224, pp. 96–104, 2017.

[46] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[47] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,”
arXiv preprint arXiv:1710.05941, 2017.

[48] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the fourteenth international conference on artificial intelligence
and statistics. JMLR Workshop and Conference Proceedings, 2011, pp. 315–
323.

[49] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[50] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc, in-
formedness, markedness and correlation,” arXiv preprint arXiv:2010.16061,
2020.

https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_gabor.html#sphx-glr-auto-examples-features-detection-plot-gabor-py
https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_gabor.html#sphx-glr-auto-examples-features-detection-plot-gabor-py
https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_gabor.html#sphx-glr-auto-examples-features-detection-plot-gabor-py

BIBLIOGRAPHY 51

[51] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27,
no. 8, pp. 861–874, 2006.

[52] M. Zhu, “Recall, precision and average precision,” Department of Statistics and
Actuarial Science, University of Waterloo, Waterloo, vol. 2, no. 30, p. 6, 2004.

[53] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using mathe-
matical morphology,” IEEE transactions on pattern analysis and machine intel-
ligence, no. 4, pp. 532–550, 1987.

[54] T. Huang, G. Yang, and G. Tang, “A fast two-dimensional median filtering algo-
rithm,” IEEE transactions on acoustics, speech, and signal processing, vol. 27,
no. 1, pp. 13–18, 1979.

[55] C. Poynton, Digital video and HD: Algorithms and Interfaces. Elsevier, 2012.

[56] J. Serra, “Image analysis and mathematical morphol-ogy,” (No Title), 1982.

[57] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Courna-
peau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt,
M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vander-
Plas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy
1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[58] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categoriza-
tion with bags of keypoints,” in Workshop on statistical learning in computer
vision, ECCV, vol. 1, no. 1-22. Prague, 2004, pp. 1–2.

[59] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for mining out-
liers from large data sets,” in Proceedings of the 2000 ACM SIGMOD interna-
tional conference on Management of data, 2000, pp. 427–438.

[60] X. Han, Y. Zhong, L. Cao, and L. Zhang, “Pre-trained alexnet architecture with
pyramid pooling and supervision for high spatial resolution remote sensing im-
age scene classification,” Remote Sensing, vol. 9, no. 8, p. 848, 2017.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp.
84–90, 2017.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

BIBLIOGRAPHY 52

[63] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[64] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rota-
tion invariant texture classification with local binary patterns,” IEEE Transactions
on pattern analysis and machine intelligence, vol. 24, no. 7, pp. 971–987, 2002.

[65] G.-W. Yuan, Y. Gao, D. Xu, and M.-R. Jiang, “A new background subtraction
method using texture and color information,” in International Conference on
Intelligent Computing. Springer, 2011, pp. 541–548.

[66] C. Silva, T. Bouwmans, and C. Frélicot, “An extended center-symmetric
local binary pattern for background modeling and subtraction in videos,”
VISAPP 2015 - 10th International Conference on Computer Vision Theory
and Applications; VISIGRAPP, Proceedings, vol. 1, pp. 395–402, 3
2015. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01227955https:
//hal.archives-ouvertes.fr/hal-01227955/document

[67] T. Bouwmans, C. Silva, C. Marghes, M. S. Zitouni, H. Bhaskar, and C. Freli-
cot, “On the role and the importance of features for background modeling and
foreground detection,” Computer Science Review, vol. 28, pp. 26–91, 5 2018.

[68] M. Claesen and B. De Moor, “Hyperparameter search in machine learning,”
arXiv preprint arXiv:1502.02127, 2015.

[69] G. Claeskens, N. L. Hjort et al., “Model selection and model averaging,” Cam-
bridge Books, 2008.

[70] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical
learning. Springer, 2013, vol. 112.

[71] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-
fied, real-time object detection,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 779–788.

[72] R. Huang, J. Pedoeem, and C. Chen, “Yolo-lite: a real-time object detection
algorithm optimized for non-gpu computers,” in 2018 IEEE International Con-
ference on Big Data (Big Data). IEEE, 2018, pp. 2503–2510.

[73] Y. Tian, G. Yang, Z. Wang, H. Wang, E. Li, and Z. Liang, “Apple detection
during different growth stages in orchards using the improved yolo-v3 model,”
Computers and electronics in agriculture, vol. 157, pp. 417–426, 2019.

https://hal.archives-ouvertes.fr/hal-01227955 https://hal.archives-ouvertes.fr/hal-01227955/document
https://hal.archives-ouvertes.fr/hal-01227955 https://hal.archives-ouvertes.fr/hal-01227955/document

BIBLIOGRAPHY 53

[74] W. Lan, J. Dang, Y. Wang, and S. Wang, “Pedestrian detection based on yolo
network model,” in 2018 IEEE international conference on mechatronics and
automation (ICMA). IEEE, 2018, pp. 1547–1551.

[75] P. M. Pereira, R. Fonseca-Pinto, R. P. Paiva, P. A. Assuncao, L. M. Tavora,
L. A. Thomaz, and S. M. Faria, “Dermoscopic skin lesion image segmentation
based on local binary pattern clustering: Comparative study,” Biomedical Signal
Processing and Control, vol. 59, p. 101924, 2020.

[76] J. Chen, Z. Wan, J. Zhang, W. Li, Y. Chen, Y. Li, and Y. Duan, “Medical im-
age segmentation and reconstruction of prostate tumor based on 3d alexnet,”
Computer methods and programs in biomedicine, vol. 200, p. 105878, 2021.

Appendix A

Comparison results

Method Acc. Precision Recall AUC AP Train speed Pred. speed
Moving Average 93.24% 97.83% 83.66% 0.966 0.950 25s 4.55ms
Fitted function 92.99% 97.83% 84.13% 0.966 0.922 29s 5.22ms
LBP 98.95% 99.13% 98.10% 0.999 0.999 330s 75ms
Bag of Words 93.54% 94.60% 87.18% 0.950 0.931 516s 10.47s
Multi-scale 96.11% 92.17% 97.59% 0.983 0.937 >1 hour 6.7s
Triple-scale 98.47% 98.71% 97.30% 0.995 0.985 >1 hour 34.84ms
AlexNet 99.01% 97.64% 99.70% 0.999 0.999 >1 hour 31.34ms

Table A.1: Results of all models without any pre-processing

Method Acc. Precision Recall AUC AP Train speed Pred. speed
Moving Average 98.86% 98.88% 98.07% 0.998 0.993 30s 5.22ms
Fitted function 98.88% 98.53% 98.47% 0.997 0.988 36s 6.63ms
LBP 98.93% 99.19% 97.99% 0.997 0.997 340s 77ms
Bag of Words 96.06% 97.28% 91.70% 0.970 0.955 386s 10.58s
Multi-scale 93.92% 88.33% 95.93% 0.974 0.919 >1 hour 20s
Triple-scale 98.41% 96.76% 98.94% 0.997 0.990 >1 hour 38.76ms
AlexNet 98.80% 97.34% 99.40% 0.999 0.999 >1 hour 30.22ms

Table A.2: Results of all models with image morphology pre-processing

54

APPENDIX A. COMPARISON RESULTS 55

Method Acc. Precision Recall AUC AP Train speed Pred. speed
Moving Average 99.20% 99.08% 98.76% 0.998 0.998 258s 44.16ms
Fitted function 99.28% 98.66% 99.41% 0.998 0.998 287s 45.74ms
LBP 98.93% 98.60% 98.54% 0.999 0.999 831s 167ms
Bag of Words 94.69% 96.09% 88.99% 0.972 0.953 1847s 8.40s
Multi-scale 88.51% 94.32% 72.70% 0.931 0.900 >1 hour 10.38s
Triple-scale 96.39% 95.16% 94.87% 0.992 0.987 >1 hour 48.07ms
AlexNet 98.85% 98.49% 98.34% 0.998 0.998 >1 hour 30.58ms

Table A.3: Results of all models with basic mask pre-processing

Method Pre Acc. Precision Recall AUC AP Training Prediction
Line profiles Mask 99.28% 98.66% 99.41% 0.998 0.998 287s 45.74ms
LBP None 98.95% 99.13% 98.10% 0.999 0.999 330s 75ms
Bag of Words Morph. 96.06% 97.28% 91.70% 0.970 0.955 386s 10.58s
Multi-scale None 96.11% 92.17% 97.59% 0.983 0.937 >1 hour 6.7s
Triple-scale None 98.47% 98.71% 97.30% 0.995 0.985 >1 hour 34.84ms
AlexNet None 99.01% 97.64% 99.70% 0.999 0.998 >1 hour 31.34ms

Table A.4: Comparison of all models on the MetalFab1 dataset

Appendix B

Algorithms

B.1 Pre-processing algorithms

Algorithm 1 Basic mask
function BASIC MASK(image)

processed← image - mask
threshold1 ← 100
threshold2 ← 255
for all pixel ∈ processed do

if pixel ≤ threshold1 or pixel ≥ threshold2 then
pixel← 0

end if
end for
processed←MedianFilter(processed, filterSize = (3, 3))
processed← GammaTransformation(processed, gamma = 2)
Return processed

end function

Algorithm 2 Image morphology
function IMAGE MORPHOLOGY(image)

structure← Rectangle(width = 30, height = 1)
image← Erode(image, structure)
image← Dilate(image, structure)
Return image

end function

56

B.1. PRE-PROCESSING ALGORITHMS 57

Algorithm 3 Adaptive thresholds
function ADAPTIVE THRESHOLD(image)

histogram← ConstructHistogram(image)
threshold1 ←Min(LocalExtrema(histogram))
threshold2 ←Max(LocalExtrema(histogram))
for all pixel ∈ image do

if threshold1 ≤ pixel ≤ threshold2 then
pixel← 0

end if
end for
image← Close(Open(Dilation(image, Structure1), Structure2), Structure3)
for all pixelArea ∈ image do

if pixelArea.Surface() < AreaThreshold then
pixelArea.Delete()

end if
if pixelArea.DistanceToOthers() < DistanceThreshold then

pixelArea.Merge()

end if
end for
Return image

end function

B.2. DETECTION ALGORITHMS 58

B.2 Detection algorithms

Algorithm 4 Line profiles
function PREDICT(image)

LineProfiles← {}
for all row ∈ image do

LineProfiles.append(row.mean())
end for
MovingAverage← CalculateMovingAverage(LineProfiles)
Distortion← LineProfiles - MovingAverage
Return max(abs(Distortion)) ≥ threshold

end function

Algorithm 5 Local binary pattern
function PREDICT(image)

LBPs← {}
for all pixel ∈ image do

LBPs.append(GetLocalBinaryPattern(pixel))
end for
histogram← ConstructHistogram(LBPs)
Return SVM.Predict(LBPs)

end function

B.2. DETECTION ALGORITHMS 59

Algorithm 6 Bag-of-Words
function FIT(images, labels)

features← ApplyF ilterBank(images)
clusters← KMeans.cluster(features.pixels())
clusters← clusters.mean()
Bag-of-Words← KNN.fit(clusters)
features← Partition(features, size = (20, 20))
fingerprints← Fingerprint(features)
fingerprintDictionary← KNN.fit(fingerprints, labels)

end function

function FINGERPRINT(image_features)
fingerprint← [0] · AmountOfClusters

for all pixel ∈ image_feature do
closestCluster← Bag-of-Words.Neighbour(pixel, neighbours = 1)
fingerprint[closestCluster] += 1

end for
fingerprint.Normalize()
return fingerprint

end function

function PREDICT(image)
features← ApplyF ilterBank(images)
features← Partition(features, size = (20, 20))
fingerprints← Fingerprint(features)
predictions← 0
for all fingerprint ∈ fingerprints do

patchPrediction ← fingerprintDictionary.Neighbour(fingerprint,
neighbours = 3)

if patchPrediction.Contain(False) then
predictions← predictions

else
predictions← predictions + 1

end if
end for
return predictions ≥ threshold

end function

B.2. DETECTION ALGORITHMS 60

Algorithm 7 AlexNet
function FIT(images)

images← ExtendDataset(images, transformations =(mirror, flip, brightness,
randomCrop))

Alexnet.Fit(images)
end function

function PREDICT(image)
return Alexnet.predict(image)

end function

Algorithm 8 Multi-scale network
function FIT(images)

patches← GeneratePatches(images)
patches ← ExtendDataset(patches, transformations =(mirror, flip, bright-

ness, randomCrop))
Alexnet.Fit(patches)

end function

function PREDICT(image)
patches← GeneratePatches(images)
predictions← Alexnet.predict(patches)
return predictions ≥ threshold

end function

Algorithm 9 Triple-scale network
function FIT(images)

patches← GeneratePatches(images)
patches ← ExtendDataset(patches, transformations =(mirror, flip, bright-

ness, randomCrop))
CNN.Fit(patches)

end function

function PREDICT(image)
patches← GeneratePatches(images)
predictions← CNN.predict(patches)
return predictions ≥ threshold

end function

	Abstract
	List of acronyms
	Introduction
	Problem description
	Research objectives and questions

	Background
	Laser Beam Powder Bed Fusion
	MetalFab1
	Anomaly detection
	Neural networks

	Dataset description
	Methodology
	Study pipeline
	Comparison metrics
	Pre-processing
	Basic mask
	Image morphology
	Adaptive threshold segmentation

	Detection algorithms
	Line Profiles
	Bag of words
	AlexNet
	Multi-scale neural network
	Triple-scale neural network
	Local Binary Patterns

	Labeling of image patches
	Cross validation

	Results
	Hyperparameters
	Without pre-processing
	Basic mask pre-processing
	Image morphology pre-processing
	Adaptive threshold segmentation pre-processing
	Performance evaluation
	Quantitative metrics
	Qualitative metrics

	Discussion
	Label noise
	Multiple type of anomalies
	Basic mask pre-processing
	Limitations of the dataset
	Bag-of-words

	Conclusion
	Future Research
	Extention to other materials and machines
	Adaptable basic mask
	More models
	Real time application
	Image Segmentation
	Comparison multiple type of defects

	References
	Comparison results
	Algorithms
	Pre-processing algorithms
	Detection algorithms

