
Planning the Charging of an
Electric Vehicle with a Minimum

Run-time Constraint

by

Eveline Koster

University of Twente
2023

Faculty: Electrical Engineering, Mathematics and Computer Science
Master Programme: Applied Mathematics
Specialization: Operations Research
Chair: Discrete Mathematics and Mathematical Programming

Graduation Date: 08/03/2023
Assessment Committee:

Prof. Dr. J.L. Hurink
Dr. M. Schoot Uiterkamp
Dr. Ir. W. Scheinhardt

Planning the Charging of an Electric Vehicle with a Minimum
Run-time Constraint

Eveline Koster

Abstract

With the recent changes in energy production and energy consumption comes a need for change in
the management strategy for the electricity grid. One of the changes in consumption is caused by
the increase in the number of Electric Vehicles (EV’s) in need of charging. The charging behaviour of
EV’s has been extensively studied in literature, and efficient algorithms to calculate optimal charging
schemes have been developed. This thesis introduces a new constraint for a single-device EV charging
model, namely the constraint of a minimum run-time. We present both a discrete model with a
minimum run-time constraint, and two potential continuous charging models, of which one is selected.
For the discrete problem we develop a dynamic programming algorithm, based on another algorithm
found in existing literature. We then analyse the structure of the continuous problem, and a derived
result is used to develop an exact algorithm for this problem as well. This algorithm is found to be
rather inefficient in terms of speed and memory-usage. Therefore, we proceed to use the same structure
of the problem to design a local search approximation method. We utilize several properties of the
specific problem we consider here to improve the efficiency of the local search algorithm. This results
in a fast polynomial-time algorithm for the continuous problem.

i

Dankwoord

Het heeft een lange tijd gekost om de master thesis die u nu voor u heeft tot voltooiing te brengen,
maar het resultaat is nu eindelijk hier: de verslaglegging over een nieuwe uitbreiding voor het slim
opladen van een elektrische auto. Het was mij niet gelukt dit project zo goed af te ronden zonder alle
steun van de vele mensen om mij heen, en deze wil ik dus ook graag bedanken.

Allereerst wil ik Johann Hurink en Martijn Schoot Uiterkamp bedanken, mijn twee begeleiders die
mij door het complete process met onverminderd enthousiasme hebben geholpen. Na ieder overleg
kwam ik thuis met nieuwe duidelijkheid over de volgende stappen die ik moest nemen. Ook ben ik
naast de inhoud van onze gesprekken erg dankbaar voor de open en betrokken sfeer, waardoor er ook
gepraat kon worden over de problemen waar ik tegenaan liep buiten de inhoud van het onderzoek. Ik
wil hiernaast Lilian Spijker heel erg bedanken voor alle steun die zij mij heeft gegeven in haar rol als
studieadviseur.

Hiernaast heb ik ook veel gehad aan het contact met andere onderzoekers binnen de Energy Group
aan de Universiteit. Ik wil met name Gerwin Hoogsteen bedanken voor het aanleveren van meerdere
handige tools waarvan ik uitgebreid gebruik heb gemaakt met het uitvoeren van de simulaties. Ook wil
ik Victor Reijnders bedanken voor het op het juiste moment aanleveren van exact de wetenschappelijke
bronnen waar ik nog hard naar op zoek was.

De afleiding van het werk was ook een belangrijk onderdeel van het succesvol afronden van deze mas-
terthesis, en voor dit onderdeel moet ik vanzelfsprekend mijn vrienden bedanken. Ik ga geen namen
noemen, aangezien ik gegarandeerd iemand ga vergeten, maar ik wil wel een eervolle vermelding geven
aan de volgende zeer geslaagde afleidende activiteiten: de spelletjesavonden vol competitie, de gezellige
wandelingen door de natuur, de twee warme vakanties in Limburg, de fanatieke pubquizen op dinsdag,
en de avontuurlijke Dungeons & Dragons sessies. Allemaal voor herhaling vatbaar!

Tenslotte noem ik ook mijn familie, voor alle steun die ze mij nog altijd bieden: broertje Laurens en
vader Willem, tante Annemieke en oom Ronald, oma Brekelmans en grootvader Koster, tante Rimkje
en oom Eric, en last but not least de nichtjes Richtsje en Zwaantje. Ik weet dat mijn moeder Cecile
heel graag wilde dat ik mijn master wist te voltooiien ondanks alle tegenslagen, en ik ben blij dat ik
haar zorgzaamheid nog steeds bij me draag, en dat het inderdaad gelukt is.

ii

Contents

1 Introduction 1
1.1 Problem Statement/Research Question . 1

2 Background 3
2.1 Energy Management . 3
2.2 Profile Steering . 3
2.3 EV Charging . 4
2.4 A Minimum run-time . 4

3 The Problem 6
3.1 Terms and Definitions . 6
3.2 The Simple Models . 6

3.2.1 Continuous Charging Variable . 6
3.2.2 The Waterfilling Algorithm . 7
3.2.3 Discrete Charging Levels . 8

3.3 The Minimum Run-time . 8
3.4 The New Models . 9

3.4.1 Discrete and Fixed Charging Value . 9
3.4.2 Continuous and Fixed Charging Value . 9
3.4.3 Continuous and Free Charging Value . 10

3.5 Choice of Problems . 11

4 Discrete EVC with Minumum run-time 13
4.1 On/Off Device . 13
4.2 The Graph Representation . 13

4.2.1 The On/Off Graph . 13
4.2.2 Expanding the Graph . 14

4.3 The Dynamic Programming Algorithm . 15
4.4 Improvements on the Run-time . 15
4.5 Battery Charging . 17
4.6 Conclusion . 17

5 EVC with Minumum run-time 18
5.1 Definitions . 18
5.2 Analysing the Problem . 19

5.2.1 Comparison to EVC and mEVC . 19
5.2.2 Proof of Concept . 20

5.3 A First Algorithm for m1EVC . 24
5.3.1 To Find an Optimal Configuration . 24
5.3.2 The Algorithm . 26

5.4 Battery Charging . 26
5.5 Evaluation and Conclusion . 27

6 Local Search 28
6.1 Overview . 28
6.2 The Neighbourhood of a Configuration . 28

6.2.1 The Neighbourhood Operations . 28
6.2.2 Connectivity . 29

6.3 Calculation of the Gain . 30
6.3.1 Exact Gain Calculation . 30
6.3.2 Estimating the Gain . 32

iii

6.4 The Local Search Algorithm . 33
6.5 Conclusion . 33
6.6 Appendix: Flow Equality of Configurations . 34

6.6.1 A First Result . 34
6.6.2 A Generalised Result . 35

7 Results 37
7.1 Testing Parameters . 37
7.2 dm1EVC Dynamic Program . 37
7.3 m1EVC Exact Algorithm . 38
7.4 m1EVC Local Search Algorithm . 40

7.4.1 Initialization . 41
7.4.2 Local Minima . 42
7.4.3 Random Initialization . 43
7.4.4 Equality of Fill Levels . 44
7.4.5 Midpoint Waterfilling . 45
7.4.6 Gain Estimation . 46
7.4.7 Simulated Annealing . 47

8 Conclusions and Recommendations 49
8.1 Conclusion . 49
8.2 Discussion . 50

iv

1 Introduction

The battle against climate change is a topic getting more and more relevant as time goes by. Many
reports have been written on the heavy negative consequences of the increase in temperature, which in-
clude rising sea levels and intensified extreme weather conditions (see e.g. [Aalst, 2006], [Pörtner et al., 2022].
Agreements between governments to drastically reduce the emissions of fossil fuels in the future, as
well as international conferences organised by the United Nations, aim to address and limit climate
change [Falkner, 2016], [Kuyper et al., 2018]. These developments and activities all ask for cleaner,
renewable energy sources, such as wind and solar power, as well as sustainable developments on the
consumer side to efficiently use the resources we have.

Among the proposed solutions we see a rise in the penetration of Electric Vehicles (EV’s), which
use electricity instead of fossil fuels to drive [IEA, 2022]. Together with the increasing installation
of solar panels by households in residential areas this rising demand for the charging of EV’s causes
additional strain on the energy grid on a local level, due to higher peaks in both energy consump-
tion and energy generation, which can in the worst case lead to power outages such as described in
[Nykamp et al., 2015] and [Hoogsteen et al., 2017]. To overcome this challenge, the concept of a smart
grid has been proposed, which makes it is possible to match this growing supply and demand using
control strategies, without needing to upgrade the whole physical infrastructure of the electricity grid
to compensate for the increasing loads ([Bienstock and Mattia, 2007], [Strbac, 2008]). This approach
is also known as Demand Side Management. This approach has to use the flexibility in the charging
speed of EV’s, allowing for control in the charging of EV’s within the framework of such a smart grid
[Hemavathi and Shinisha, 2022].

[van der Klauw, 2017] proposes a particular framework for Demand Side Management based on a hi-
erarchical structure that offers several advantages in terms of scalability, privacy, and local limitations.
In this framework a device creates its own charging schedule based on a centralized control paradigm.
This means that an EV or a household battery requires a strategy to calculate these schedules de-
pending on the steering signals from the centralized controller. [van der Klauw, 2017] presents several
single-device models and corresponding charging strategies, however these models allow a battery to
switch its operational level in a charging schedule every time interval. Such frequent switching of
the power level may cause unnecessary wear on the battery, thus causing faster deterioration of its
capabilities and reducing its life-span [Khalid et al., 2022], [Rachid et al., 2023].

A counter to such unnecessary wear of the battery is suggested in [van der Klauw, 2017]. It aims to
limit how often the operational level of the device can be switched. In this research we look into a
potential strategy to incorporate such a constraint into the models presented in [van der Klauw, 2017],
by imposing a minimum run-time constraint. A more detailed formulation of this research topic is
given in the next section.

1.1 Problem Statement/Research Question

The aim of this thesis is to investigate the possibility of the addition of a minimum run-time constraint
to the single-device models developed in [van der Klauw, 2017], as well as possible solution strategies
to these newly defined problems. This leads us to state the following research question:

What are extensions to the single-device models in [van der Klauw, 2017] that incorporate a minimum
run-time constraint, and do efficient solution strategies still exist for these extended models?

To answer this question first an overview of relevant existing literature relating to this topic is discussed
in Chapter 2. The existing models as well as extensions for these models with a minimum run-time
constraint are presented in Chapter 3. In the remainder of this thesis the possibilities for efficient

1

solutions are then investigated. In Chapter 4 a dynamic programming approach is presented for one of
the models. The two following chapters are dedicated to another model, where Chapter 5 analyses the
structure of the problem and presents a first solution approach, and Chapter 6 presents an approach to
approximate the optimal solution. For these approaches, in Chapter 7 simulation results are presented
to support the conducted research. The thesis ends with some conclusions drawn in Chapter 8, as well
as a discussion of some improvements and suggestions for further research.

2

2 Background

This chapter gives an overview of literature in the areas of research related to the work in this thesis.
Specifically we discuss some topics related to demand-side energy managment, and the smart charging
of an EV.

2.1 Energy Management

Energy management is a wide, multi-disciplinary field of research. Several different energy manage-
ment approaches are reviewed in [Jebaraja and Iniyan, 2006]. We can distinguish between two different
types of energy management, namely centralized and decentralized. In centralized energy management
all demand for electricity is directly supplied by a number of external power plants. The problem of
determining the energy production at each moment in time is known as the Unit Commitment Problem
(see for example [Carrion and Arroyo, 2006]). On the other hand decentralized energy management
(DEM) attempts to match demand and supply on a local level. This has several advantages compared
to the central paradigm in a situation where there is on the one hand much uncontrollable energy
production from renewable energy sources and on the other hand flexibility in the demand of energy.
Some of these advantages include: the prevention of power outages due to a local overproduction of
electricity, and the matching of the growing demand for electricity (due to the transition to electric
devices) with local supply. By using such DEM strategies the costly undertaking of upgrading the
physical electricity infrastructure to compensate for the increasing loads may be largely avoided.

One example of an energy management strategy is Demand Side Management. In Demand Side
Management (DSM) consumers or suppliers are incentivized to shift or change the consumption or
production of electricity to achieve a common system goal. Different approaches are discussed for
example in [Barbato and Capone, 2014], [Siano, 2014], and [Esther and Kumar, 2016]. One method
to influence consumers is to use a pricing scheme. Another method is to directly match the supply and
demand of energy, taking into account any additional constraints or desires. Such a planning could both
be implemented as a centralized as well as a decentralized energy management method. A decentralized
approach is generally preferred because of the aforementioned reasons. In [van der Klauw, 2017] the
DSM approach Profile Steering is proposed, which is a decentralized energy management approach
with a hierarchical structure.

2.2 Profile Steering

The profile steering heuristic solves the problem of coordinated scheduling of smart appliances by split-
ting the overall problem into subproblems. This is achieved by letting each device calculate its own
schedule and letting a centralized controller steer the individual scheduling of the devices. The steering
signal from the central controller can for example be directly based on the desired profile of the system.
A detailed description of the Profile Steering algorithm can be found in [van der Klauw, 2017], and is
described there in Algorithm 3.1. The algorithm has an initial phase and an iterative phase, which we
briefly summarize here.

In the initial phase each device must calculate a first schedule, and the central controller combines all
schedules into an initial complete schedule. How to construct these initial schedules is open; a number
of different approaches may be followed. One approach is to make each device fit the system objectives
as well as possible. For example the objective could be to flatten the energy profile, in which case each
device could initially attempt to make a schedule that flattens their own profile.

In each iteration of the iterative phase exactly one device updates its schedule. To achieve this the cen-
tral controller requests each device to construct a new candidate schedule to fit the system objectives,
given the current total profile as communicated by the central controller. This means that there is a

3

current total schedule x and an objective f, and each device m has a current device schedule xm. Each
device now constructs a candidate schedule x̂m (that must be feasible) that minimizes f(x−xm+ x̂m).
The candidate schedules are all sent to the central controller, which picks the one that improves the
objective the most, and then updates the total schedule accordingly. This process is repeated until no
significant improvement is made and results in a final schedule for each device. Additional details such
as possible designs for the hierarchical structure and possible steering signals are discussed in Section
3 of [van der Klauw, 2017].

The research in this thesis focuses on possible extensions of the device-level models developed for the
profile steering approach in [van der Klauw, 2017]. For algorithms to be applicable in the sketched
setting there are some requirements on the speed and the memory usage. This is because in Profile
Steering many schedules need to be calculated, namely an initial one, and a number of updated
schedules within the iterative phase. This means that the calculation of one schedule should not
take much time. Moreover, the smart devices that perform these calculations usually have limited
memory available, meaning that memory usage of an algorithm must be minimized. These concerns
are addressed in this thesis, and are criteria for the quality of the developed algorithms.

2.3 EV Charging

Recharging the battery of an electric vehicle (EV) is a process that requires time and power, which is
a potential problem with the increased usage of EV’s by consumers. The requirement of power means
that an increased EV penetration in a certain neighbourhood causes a heavier strain on the electricity
grid. Research has been done in smart strategies for the charging of EV’s, both looking at a fleet of
vehicles, and considering a single device. A recent review on different DSM EV charging strategies is
given in [Mohanty et al., 2022].

As mentioned in the previous section [van der Klauw, 2017] proposes several single-device models for
the charging of an EV as well as for a bidirectional battery, together with solution approaches for
these charging problems. The models are based on the concept of resource allocation problems. An
overview of continuous nonlinear resource allocation problems and solution strategies can be found in
[Patriksson, 2008] and [Patriksson and Strömberg, 2015].

A much-used goal with respect to scheduling the charging of an EV in the energy grid is so-called valley-
filling and/or peak-shaving. Here the goal is to fill any time-spans with low grid-usage and reduce any
time-spans with high grid-usage, creating more balance in the electricity grid. A widely-used valley
filling algorithm is presented in [Chen et al., 2014]. As input the concept of the baseload of the energy
grid is used, represented by a value pt for each interval t. This baseload represents the basic usage of
the energy grid, and any charging of the considered EV is added on top of this baseload, to represent
the new total strain on the energy grid. This is modelled by the cost function f(x) =

∑
t(xt + pt)

2.
Minimising this cost function results in the desired behaviour of valley-filling.

In [Schoot Uiterkamp et al., 2018] a minimum threshold for the charging rate of the continuous charg-
ing variable is added to a single-device EV model. This threshold models one of the practical limitations
of EV charging rates, namely that charging at a small charging rate is not possible in practice (see for
example [Young et al., 2013]). The resulting optimisation problem is proven to be NP-hard in general,
however [Schoot Uiterkamp et al., 2018] develops an efficient algorithm for two specific subclasses of
instances.

2.4 A Minimum run-time

The concept of a minimum run-time constraint in relation to the charging of EV has been discussed
in literature before, though not often. We discuss two examples here. [Cenedese et al., 2019] considers

4

the optimization of a fleet of EV’s, with among other constraints a constraint of a minimum run-
time. Their solution approach uses the concept of a mixed integer aggregative game. This approach is
not directly applicable to the problem this research considers, because instead of a fleet of vehicles we
consider only the planning of a single device. In [Gerards and Hurink, 2016] a single-device model with
only an on state and an off state is considered, where there is a minimum on-time and a minimum
off-time constraint. A polynomial-time algorithm based on dynamic programming is given for this
problem. This approach is used as the inspiration for some of the algorithms that we develop later in
this thesis.

5

3 The Problem

The aim of this thesis is to investigate the possibility of adding a minimum run-time constraint to the
two single device models as presented in [van der Klauw, 2017]. To start, in this chapter we first give
the definition of these single device models. Then we consider the addition of a minimum run-time
constraint. Three different possibilities are identified for which a new model with a minimum run-time
constraint is presented. The structure of these new models is based on the closely related model pre-
sented in [Gerards and Hurink, 2016].

3.1 Terms and Definitions

The following terms and parameters are used within this research:

• Problem instance IP : a given instance of the specified optimization problem, P, where all
parameters are assigned a specific value.

• N : the number of equal length time intervals.

• xt: the amount charged at a time interval t.

• lt, ut: parameters indicating for an interval t the bounds for the charging variable, lt ≤ xt ≤ ut.

• Baseloads p1, ..., pN : the given power profile of the remaining elements, i.e. excluding the
charging x. pt is a parameter indicating the base power load at time interval t. Any charging xt
of the controllable device is done on top of this baseload.

• Required charge C: the charging goal that must be reached by time interval N .

• f(x): the cost function. For this research we assume throughout that f(x) =
∑
t ft(xt), with

ft(xt) = (xt + pt)
2, the objective function for valley-filling/peak-shaving as also discussed in

Section 2.3.

3.2 The Simple Models

This section presents the basic models for single-device charging taken from [van der Klauw, 2017],
Chapter 4 and 5. We present both the EV and the battery models here. We first present the models
with a continuous charging variable for each interval, and then the models with a certain finite set of
charging rates, resulting in a discrete model.

3.2.1 Continuous Charging Variable

The continuous model concerning the charging of an Electric Vehicle (denoted as EVC) is described
as a simple resource allocation problem:

EVC: min
x

f(x) =

N∑
t=1

ft(xt) (1)

s.t.

N∑
t=1

xt = C

lt ≤ xt ≤ ut t = 1, ..., N.

6

The problem BC (Battery Charging) concerns the charging of a battery and is described as follows:

BC: min
x

f(x) =

N∑
t=1

ft(xt) (2)

s.t. Bl ≤
l∑
t=1

xt ≤ Cl l = 1, ..., N

lt ≤ xt ≤ ut t = 1, ..., N,

where Bl and Cl are the cumulative lower and upper bounds for each time interval, ensuring that the
SoC (State of Charge) of the battery stays within predefined bounds for each time interval. In both
these cases the lower bound lt can actually be assumed to be 0, by a variable substitution: x′ = x− lt.

An algorithm to solve Problem EVC to optimality is the waterfilling algorithm. We shortly describe
this algorithm in the next section, before we continue to present the discrete models.

3.2.2 The Waterfilling Algorithm

In [van der Klauw, 2017] the waterfilling algorithm is applied to solve the EVC problem. This al-
gorithm is a Lagrangian multiplier approach, which means that it finds the value of the Lagrangian
multiplier λ, such that the generalised KKT conditions for optimality are met. It is discussed in
[Patriksson, 2008], and also described in Algorithm 4.1 of [van der Klauw, 2017]. Intuitively it can be
compared to increasing a water level, since always balance is maintained between all intervals: there
is one surface level of liquid, and more liquid can be poured in, causing the level to rise but never to
become imbalanced. We discuss some of the mathematical details here, insofar as they are relevant
for our research.

We assume that the objective function is quadratic: ft = 1
2atx

2
t + btxt + ct and that at > 0. In this

special case the KKT conditions for optimality for a given λ reduce to:

xt(λ) =

0 if λ ≤ bt
λ−bt
at

if bt ≤ λ ≤ atxmaxt + bt

xmaxt if λ ≥ atxmaxt + bt,

(3)

together with the condition that
∑
t xt = C. These conditions define an optimal solution for the EVC

problem. The waterfilling algorithm finds the correct value for λ by first making an initial guess λ̂,
and calculating the total charge Ĉ for this guess (using Equation (3)). Once Ĉ = C all optimality

conditions are met and an optimal solution has been found. To achieve this equality the value of λ̂
is incrementally increased, leading to an increase of Ĉ. The question remains by how much λ̂ should
be increased in each increment. This is determined by the so-called breakpoints of the problem instance.

If the guess λ̂ increases then the guess x̂ for the corresponding solution increases according to Equation
(3). This means that for an interval t with λ̂ ≤ bt x̂t = 0, and we call this interval inactive. When

λ̂ > bt the charge x̂t increases with λ̂, and we call such an interval active. The maximum charge is
reached when λ̂ ≥ atx

max
t + bt, and we call any maximally charged interval full. The breakpoints are

the points where any interval t changes either from inactive to active, or from active to full. The first
situation occurs when λ̂ reaches one of the values in the set A := {b1, ..., bN}, and the second situation

when λ̂ reaches a value in the set B := {a1x
max
1 + b1, ..., aNx

max
N + bN}. These values are called the

breakpoints, and they are the points where the algorithm calculates updates Ĉ as well as the set of
active intervals, until Ĉ = C.

7

Ĉ is updated by using the increasefactor of each interval, which is equal to 1
at

. This factor represents

by how much x̂t increases relative to the increase of λ̂. Ĉ must thus be increased by an amount equal
to the sum of the increasefactors of all active intervals.

3.2.3 Discrete Charging Levels

The second model is a charging model with a finite set of discrete charging levels, whereby for each
interval the amount charged must be equal to one of these levels. The set of charging levels for interval
t is defined as: Zt = {z0

t , ..., z
Mt
t }, where zjt < zj+1

t for all t and j.

The problem discrete EVC (dEVC) is now defined by:

dEVC: min
x

f(x) =

N∑
t=1

ft(xt) (4)

s.t.

N∑
t=1

xt = C

xt ∈ Zt t = 1, ..., N.

Following the same line as for the continuous case, discrete BC (dBC) is defined by:

dBC: min
x

f(x) =

N∑
t=1

ft(xt) (5)

s.t. Bl ≤
l∑
t=1

xt ≤ Cl l = 1, ..., N

xt ∈ Zt t = 1, ..., N.

Again, we assume without loss of generality that z0
t = 0 for all t, by applying the transformation

x′t = xt − z0
t .

These models form the basis of the potential new models, where the constraint of a minimum run-time
is added.

3.3 The Minimum Run-time

The remainder of this chapter focusses on modifying the models presented in the previous sections
to include the constraint of a minimum run-time. There are multiple interpretations possible for this
minimum run-time. The ones that we consider in this thesis are as follows:

• A minimum time to be in a specific charging ‘region’. These constraints express a minimum
required time for a device to remain charging, discharging, or remain off. Note that within each
of these regions the charging value is still free to change.

• A minimum time to be charging at one specific charging rate: a device is constrained to charge
at one charging rate for a minimum number of time intervals.

In the next section some model modifications are presented based on these aspects. Finally, we select
the options that seem to be the most promising, with respect to the possibility for efficient solution
methods.

8

3.4 The New Models

3.4.1 Discrete and Fixed Charging Value

We use the discrete models described in Section 3.2.3 as basis for these models. It is assumed
that the set Zt is the same for each time interval, resulting in the following simpler restriction:
xt ∈ Z = {z0, ..., zM} for all t. This adaptation is chosen to simplify the addition of a minimum
run-time on a fixed charging value over multiple intervals.

We introduce for each operational level zj of the device a minimum run-time Rj . This means that
if the device charges at rate zj it must do so for at least Rj consecutive intervals. This constraint is
added to the basic model to create a discrete model with a minimum run-time constraint. To define
this formally we define for each discrete charging level zj a subspace of the total solution space as being
the set of solutions that adhere to this minimum run-time constraint. In detail, for each j ∈ {0, ...,M}
we define a set:

Xj := {x ∈ ZN | if xi = zj there exists a k with k ≤ i ≤ k +Rj − 1 and xk = ... = xk+Rj−1 = zj}.

Or in other words: for any interval that charges at a charging rate zj , there must be at least Rj − 1
neighbouring intervals that charge at this same rate for a solution to be feasible. Using this defintion,
a solution fulfills all minimum run-time constraints if x ∈

⋂M
j=0Xj . We define Problem dm1EVC as:

dm1EVC: min
x∈

⋂M
j=0Xj

f(x) =

N∑
t=1

(xt + pt)
2 (6)

s.t.

N∑
t=1

xt = C.

The same adaption can be applied to problem BC, leading to problem dm1BC :

dm1BC: min
x∈

⋂M
j=0Xj

f(x) =

N∑
t=1

(xt + pt)
2 (7)

s.t. Bl ≤
l∑
t=1

xt ≤ Cl l = 1, ..., N.

The problems described and solved in [Gerards and Hurink, 2016] are a special case of these two prob-
lems, where Zt = {0, 1} ∀t, and are described in more detail in Section 4.

Concerning the time complexity of these two problems, van der Klauw proved that the two problems
dEVC and dBC without the minimum run-time constraint are NP-hard (see [van der Klauw, 2017]).
As the problems with the minimum run-time addition are a generalization of problems dEVC and
dBC, we can conclude that the problems dm1EVC and dm1BC are also NP-hard.

3.4.2 Continuous and Fixed Charging Value

In this and the next sections, following the lines of Section 3.4.1, two variations of the minimum run-
time constraint are considered for the continuous model, based on the continuous problem described
in (1). The basis for the variation presented in this section is a minimum run-time on a fixed value
(see also the second bullet-point in Section 3.3). We make a similar assumption as for the sets Zt in
Problem dm1EVC, namely we assume that the maximum charging rate is the same for all intervals t,

9

i.e. ut = u where u is some positive value.

We again define the minimum run-time as a minimum number of consecutive intervals where the device
should charge exactly the same amount. This means for example that if x1 = s, then it also must
be that x2 = x3 = ... = xR1 = s, since interval 1 is the first interval of the planning horizon. Only
at interval R1 + 1 the device may switch to another charging value, whereafter it again is required to
remain at this value for at least R1 intervals. However, the device may also make the decision to keep
charging at value s after the first R1 intervals.

To formally add this constraint to the model we define three subspaces of the solution space:

X−1 := {x ∈ RN | for s < 0, if xt = s there exists k with k ≤ t ≤ k +R−1 − 1 and xk = ... = xk+R−1−1 = s}
X0 := {x ∈ RN | if xt = 0 there exists k with k ≤ t ≤ k +R0 − 1 and xk = ... = xk+R0−1 = 0}
X1 := {x ∈ RN | for s > 0, if xt = s there exists k with k ≤ t ≤ k +R1 − 1 and xk = ... = xk+R1−1 = s},

where Rj is the minimum run-time of the device on mode j (discharging, off, charging). A solution
fulfills all minimum run-time constraints if x ∈ X−1 ∩ X0 ∩ X1. The EVC model with a minimum
run-time on one charging value (abreviated to m1EVC), expanded from problem definition (1), is now
defined by:

m1EVC: min
x∈X0∩X1

f(x) =

N∑
t=1

(xt + pt)
2 (8)

s.t.

N∑
t=1

xt = C

0 ≤ xt ≤ u t = 1, ..., N.

Similarly we define the adapted problem m1BC based on problem (2):

m1BC: min
x∈X−1∩X0∩X1

f(x) =

N∑
t=1

(xt + pt)
2 (9)

s.t. Bl ≤
l∑
t=1

xt ≤ Cl l = 1, ..., N

0 ≤ xt ≤ u t = 1, ..., N.

The above formulations concern one potential model for the definition of the minimum run-time con-
straint with a continuous charging variable. However, we also may define a second potential continuous
model, with the minimum run-time constraint defined in a different way. This second variation is pre-
sented in the next subsection.

3.4.3 Continuous and Free Charging Value

In this section we consider a variation of the minimum run-time model which is also an extension of
the EVC model. The basis for this variation is given in the first bullet-point of Section 3.3: there is a
minimum required time to remain charging in a certain region.

We first present the most straightforward or intuitive way to define this variation. We consider the
situation where the charging variables xt are bounded between 0 and a maximum ut, and we define a

10

minimum run-time R1 in the following manner: if xt > 0, then there must be R1 intervals neighbouring
interval t for which the charging rate is also strictly positive, i.e. larger than some minimum charging
level ε > 0, where ε may be arbitrarily small. Other than this addition of the minimum on-time R1 the
problem remains the same as (1). However, there are some problems with this model, which become
apparent if we compare it to Problem EVC to which is forms an extension. For illustration we assume
that x∗ is an optimal solution for a certain instance of Problem EVC where there are three consecutive
intervals t− 1, t, t+ 1 such that x∗t−1 = 0, x∗t > 0, x∗t+1 = 0. Note that x∗ is not a feasible solution for
our newly defined problem with the minimum run-time constraint (assuming R1 > 1), since there is a
single isolated interval with a positive charge. However, based on solution x∗ an optimal solution x′ can
easily be constructed. Let x′i = x∗i for all i except t− 1, t, and t+ 1 and let x′t−1 = x′t+1 = ε > 0, and
x′t = x∗t − 2ε. If ε → 0 this solution will converge towards x∗. Using this procedure, any infeasibility
of solution x∗ regarding the minimum run-time constraint can be solved, while the cost remains the
same up to an ε, and the result is also an optimal solution for the new minimum run-time problem.

The reasoning above shows that the specified addition of a minimum run-time constraint will not
have a meaningful purpose. Besides this, from a practical perspective, it is not possible to charge at
very small powers (see for example [Young et al., 2013]), even if that would theoretically be the best
solution. It makes more sense to define some lower bound Xmin on the charging value for EVC. In the
following such a model is presented.

For this new formulation we register whether an interval is charging or not. We define a binary
variable for each time interval t, denoted by yt, to indicate whether the device is on or off. These
binary variables can be used to define a minimum run-time constraint. To this end we define:

Y1 := {y ∈ {0, 1}N | if yt = 1 there exists k with k ≤ t ≤ k +R1 − 1 and yk = ... = yk+R1−1 = 1}
Y0 := {y ∈ {0, 1}T | if yt = 0 there exists k with k ≤ t ≤ k +R0 − 1 and yk = ... = yk+R0−1 = 0},

where R1 is a minimum on-time, R0 is a minimum off-time. This means that any solution in the subset
Y1 is always on for at least R1 consecutive intervals at a time, and the same holds for Y0 and being
off. Now we define Problem mEVC as follows:

mEVC: min
x

f(x) =

N∑
t=1

(xt + pt)
2 (10)

s.t.

N∑
t=1

xt = C

ytXmin ≤ xt ≤ ytut t = 1, ..., T

y ∈ Y0 ∩ Y1.

Without a minimum run-time constraint, the EVC problem with such a threshold is solved in
[Schoot Uiterkamp et al., 2018] for a specific subclass of instances. It is also proven in [Schoot Uiterkamp et al., 2018]
that the problem is NP-hard, meaning that Problem mEVC is also NP-hard. Furthermore, it is worth
mentioning that approaches based on sorting the intervals according to their base loads cannot be
used anymore, as was done in [Schoot Uiterkamp et al., 2018] to solve a certain subclass of problem
instances.

3.5 Choice of Problems

The first of the presented models, dm1EVC, is a direct expansion of the on/off model presented in
[Gerards and Hurink, 2016], where a polynomial solution method is given. Although the method does
not hold up for the more general case presented here, the structure of the approach can be used to

11

design a similar, pseudo-polynomial algorithm. This idea is expanded upon in Chapter 4.

The second and third presented models are two continuous models, for which there is no existing struc-
ture in place to inspire an efficient approach. Of the two new models Problem m1EVC is expected to be
simpler, based on the fact that Problem mEVC has the added difficulty of the charging bounds, which
have already been proven in the past to complicate the problem in [Schoot Uiterkamp et al., 2018].
Therefore the focus of this research is on Problem m1EVC. Chapter 5 is devoted to determining the un-
derlying structure of this problem, and to designing an exact method using this structure. In Chapter
6 a faster approximation method is developed.

12

4 Discrete EVC with Minumum run-time

In this chapter we develop a solution method for problem dm1EVC. The solution method is based on
the research in [Gerards and Hurink, 2016], and it largely follows the same reasoning. We start with
explaining the solution method for the on/off problem in more detail, and based on this we give an
extentsion of this solution method to also solve problem dm1EVC.

4.1 On/Off Device

We use the models for an on/off device with a minimum run-time constraint as they were first defined
in [Gerards and Hurink, 2016]. These follow the same structure as the minimum run-time models de-
fined in Chapter 3.

The basis are subspaces which are defined as follows:

X1 := {x ∈ {0, 1}N | ∀i ∈ {1, ..., N} : xi = 1⇒ ∃k : k ≤ i ≤ k +R1 − 1 ∧ xk = ... = xk+R1−1 = 1}
X0 := {x ∈ {0, 1}N | ∀i ∈ {1, ..., N} : xi = 0⇒ ∃k : k ≤ i ≤ k +R0 − 1 ∧ xk = ... = xk+R0−1 = 0},

leading to the following model for On/Off EV charging:

On/Off m1EVC: min
x∈X0∩X1

f(x) =

N∑
t=1

ft(xt) (11)

s.t.

N∑
t=1

xt = C,

and following the same structure for Battery charging:

On/Off m1BC: min
x∈X0∩X1

f(x) =

N∑
t=1

ft(xt) (12)

s.t. Bl ≤
l∑
t=1

xt ≤ Cl l = 1, ..., N

In [Gerards and Hurink, 2016] a dynamic programming approach to solve On/Off mEVC and mBC
is presented. This dynamic program determines for each state the cheapest way to get to this state,
resulting in the cheapest feasible solution. This approach is represented as a directed graph, which is
explained in the following section. We expand this graph to also represent Problem dm1EVC.

4.2 The Graph Representation

4.2.1 The On/Off Graph

In [Gerards and Hurink, 2016] a problem instance of On/Off m1EVC is represented as a directed
graph. For each time interval n there exist two nodes, on and off : vn,0 and vn,1, meaning that the
set of all vertices is given by V = {v1,0, ..., vN,0, v1,1, ..., vN,1}. The edges in this directed graph only
go forward in time. This ensures that any path starting at interval 0 and ending at interval N defines
a possible charging plan. Furthermore, the graph is constructed such that the minimum run-time/off-
time constraint is met for any such path in .

An edge from a node vn,zj to vn′,zj′ (n′ > n), where zj′ 6= zj , represents a switch at interval n+1 from
state zj′ to state zj , i.e. either from off to on, or from on to off. This arc corresponds to the setting

13

Figure 1: Picture taken from [Gerards and Hurink, 2016]. Example of a graph with the minimum
continuous run-time/off-time constraint, with the dashed path corresponding to a single schedule.
There are 5 intervals, and R0 = 1, R1 = 2. The graph nodes from Fig. 1a correspond to the schedule
from Fig. 1b.

xn+1 = ... = xn′ = zj′ . These intervals thus all have the same state, on or off in a solution using this
edge. On the other hand, an edge connecting a node to the same node of the next time interval, i.e.
with the same charging rate, so vn,zj to vn+1,zj , means that the charging rate remains zj for interval
n+ 1.

It remains to explain how the minimum run-time constraint gets incorporated into this graph repre-
sentation. In the on/off model a switch from level 0 to 1 or 1 to 0 can only be made after a minimum
time of R1 or R0 respectively. We represent a switch from 0 to 1 after a time interval n by an edge
connecting node vn,0 to vn+R1,1, thus exactly R1 steps in the future. This implies that if a path uses
this edge in the corresponding solution the charging will always be on for at least R1 consecutive
intervals, and likewise off for at least R0 consecutive intervals after a switch. An example of such a
graph and feasible path can be found in Figure 1. Note that a situation where the charging is on for
k > R1 intervals is represented by one arc from the off level to the on level and R1 − k subsequent
arcs between neighbouring vertices on the on level.

Finally the cost of an edge is defined with the cost function f =
∑N
t=1 ft(xt) in mind. If there is an

edge e from vertex vt,z∗ to vt′,zj used in a path this represents the intervals t + 1 to t′ in the actual
charging solution, where each interval should charge at level zj (either on or off). The cost of this edge

can be defined accordingly as: F (e) = F (vt,z∗vt′,zj) =
∑t′

i=t+1 fi(zj). Now to minimize the cost all one
has to do is select a cheapest feasible path, and the corresponding charging solution can be determined
by backtracking through this solution. In the next section we generalize this graph representation to
Problem dm1EVC.

4.2.2 Expanding the Graph

For the expanded problem m1EVC there are a total of M charging levels, each level zj with a mini-
mum on-time of Rj intervals. We define the nodes of the graph in the same manner as in the previous
subsection, resulting in a total of NM nodes V = {v1,z0 , ..., vN,z0 , ..., v1,zM , ..., vN,zM }. Any edge from
vn,zj that represents a switch to a different operational level zj′ connects to a node Rj′ steps into the
future, to vn+Rj′ ,zj′ . This is a straightforward expansion of the on/off graph.

Figure 1 can be adjusted to reflect this expanded graph in the following way: each row of nodes now
represents one charging level zj and there are M rows in total. From each node in row j there is a
connecting edge to a node of every other row j′ exactly Rj′ steps into the future, as well as an edge

14

connecting to the next node on row j, in the same manner as the connecting arrows in Figure 1 are
drawn. Any path from an initial node to an end node now corresponds to a charging solution for
problem m1EVC respecting the minimum run-time constraint. The cost of each edge can be defined
based on the cost function of m1EVC in the same way as before for On/Off m1EVC.

With the graph defined this way any feasible path the first interval (n = 0) to the final interval (n = N)
is a candidate solution to the problem as defined in (6) since each of these solutions adheres to the
minimum run-time constraints. But in this graph no restrictions are laid upon the amount charged
(C) at n = N , meaning that not every such path gives a feasible solution to dm1EVC yet. However,
the graph can be used as the basis of a dynamic programming approach to find an optimal solution to
Problem dm1EVC ((6)), in the same way as was done in [Gerards and Hurink, 2016] for the special
case of M = 2. This algorithm is described below.

4.3 The Dynamic Programming Algorithm

We use the expanded graph as the basis for a dynamic programming approach in order to solve Prob-
lem dm1EVC to optimality. To this end we first define a look-up matrix T along the same line as
[Gerards and Hurink, 2016]. In this matrix there is an entry T (v,m) for each vertex and each amount
m charged at this vertex in the cheapest path. Each entry T (v,m) equates to (v′, c) where v′ is the
predecessor in the cheapest path to v, charging a total of exactly m, and c is the cost of this path. The
size of T is MN × NzM . When defined in this manner we can conclude that any entry T (vN,zi , C)
encodes the entire path of a feasible solution, since exactly C has been charged at the final interval.
The optimal solutions to Problem dm1EVC are the ones with the lowest cost c.

To determine the elements of the matrix T we move forwards through time in the graph, starting at time
interval 0 (the dummy interval). For every possible charged amount m and each possible operational
level j the next step in the current cheapest path is explored by jumping to a new operational level j′

for the subsequent Rj′ intervals, or remaining on this operational level for 1 more interval. For each
of these possibilities the cost is compared to the current cost at the relevant node, and the cheapest
of the two is saved as the new entry of T . This algorithm is presented in 1. The time complexity of
the algorithm is O(N2M2zM).

4.4 Improvements on the Run-time

A possibility to speed up the algorithm is to bound off certain states, states that will certainly not
lead to a feasible solution in the end. First of all transitions from a state do not have to be considered
(in line 9) if c = ∞, since this will not lead to a feasible path. Secondly when transitioning to a new
state it can be checked if the end goal is still reachable, so the goal of having charged C at the end.
Two checks can be made for this when transitioning to a different level, zj′ (lines 10 to 16):

m+Rj′zj′ + (N − n−Rj′ − 1)zM ≥ C
m+Rj′zj′ + (N − n−Rj′ − 1)z0 = m+Rj′zj′ ≤ C

If one of these two checks fails, the loop can break and continue with the next j′. Also, in the special
case where all minimum run-times are the same (Rj = Ri), then once the second check fails it will fail
for all higher j′ for this state (vn,zj ,m), so the inner loop can be stopped entirely.

In a similar vein two checks can be done for continuing on the same level (lines 17 to 21):

m+ zj + (N − n− 1)zM ≥ C
m+ zj + (N − n− 1)z0 = m+ zj ≤ C

15

Algorithm 1 Create T

Initialization:1

T (v0,i, 0) = (0, 0) for all i2

else: T (v,m) = (v,∞)3

4

Loop:5

for n = 0, ..., N − 1 do6

for m = 0, ..., n · zM do7

for j = 0, ...,M do8

(v, c) = T (vn,zj ,m) (consider transitions from state (vn,zj ,m))9

for j′ ∈ {0, ...,M}\{j} do10

(v′, c′) = T (vn+Rj′ ,zj′ ,m+Rj′zj′)11

12

if n+Rj′ ≤ N and c+ F (vn,zjvn+Rj′ ,zj′) < c′ then13

T (vn+Rj′ ,zj′ ,m+Rj′zj′) = (vn,zj , c+ F (vn,zjvn+Rj′ ,zj′))14

end if15

16

end for17

(v′, c′) = T (vn+1,zj ,m+ zj)18

19

if c+ F (vn,zjvn+1,zj) < c′ then20

T (vn+1,zj ,m+ zj) = (vn,zj , c+ F (vn,zjvn+1,zj))21

end if22

23

end for24

end for25

end for26

16

4.5 Battery Charging

In [Gerards and Hurink, 2016] On/Off m1BC is solved with a simple extension of the algorithm for EV
charging. This same extension works for our purposes as well, in the case of problem dm1BC, and we
describe it here. There is a different set of constraints on the variable x, namely a cumulative lower and
upper bound for each interval. These cumulative constraints restrict the loop over m = 0, ..., n · zM
further in the algorithm, by restricting the value to be between Bn and Cn. This means that this
variant can easily be solved by the same algorithm approach.

4.6 Conclusion

In this chapter the problems described in Equations (6) and (7) were investigated as being an extension
of the problem described in [Gerards and Hurink, 2016]. A pseudopolynomial approach to calculate
an optimal charging plan has been presented. Some simulation results are presented in Chapter 7.
The next chapters are devoted to the same charging problem with minimum run-time, but now with
continuous charging variables instead of discrete variables.

17

5 EVC with Minumum run-time

For the charging of an Electric Vehicle a simple model was presented in (1), and it is based on
continuous charging variables. Two potential new models are presented in (8) and (10), each with a
different way of adding a minimum run-time constraint to this simple convex model. For the two new
models this means that the EV can no longer switch its charging value freely at each interval, since
there is now a dependency between intervals, making the problem more difficult. As already stated
only the model described in (8) is the focus of subsequent research, based on perceived viability. The
model for m1EVC as considered in this chapter has one additional simplification compared to (8): we
assume that R1 = R0 = R for some positive integer R, in order to define a single minimum run-time
for all charging values. In this section we analyse this specific model further to identify structures
that could be used to approach this problem. In the following a first approach is presented, and an
implementation of this approach is discussed at the end of this chapter.

5.1 Definitions

In order to more effectively reason about Problem m1EVC we introduce some new terminology, with
the aim to describe a solution to Problem m1EVC with respect to the minimum run-time constraint. A
charging solution is generally represented by a tuple x ∈ RN . For Problem m1EVC we know that each
feasible solution x must adhere to the minimum run-time constraint, and therefore we can describe
the structure of a feasible solution in a more specific way. Namely, any charging rate must always
be charged for a minimum of R consecutive intervals, in order for a solution to be feasible. In other
words, for a solution x we can always state that it has substructures xt1 = xt1+1 = ... = xt2 for some
intervals t1 and t2, for which we have that t2 − t1 + 1 ≥ R.

We can use the above observation to define an alternative representation of a solution to Problem
m1EVC that is useful for this research. In the above example the only important information is the
two intervals t1 and t2, as well as the charging rate. If this information is given the solution for
all intervals t1 to t2 can be constructed. Therefore, to define an entire solution, we only need these
‘endpoints’, the beginning and end of a set of intervals that charge at the same rate, and we need the
corresponding charging rates. We call such a maximum set of consecutive intervals charging at the
same rate a block of intervals. So t1 and t2 would be the endpoints of one block, and the length of this
block would be t2 − t1 + 1. Note that in a solution every interval is part of exactly one block.

Finally, we also define the concept of a configuration. A configuration lists the lengths of all blocks in
the order they occur, and in this way codifies the endpoints of each block too. Therefore, a configuration
together with the charging rate for each block codifies a solution to Problem EVC. Note that in this
way the constraints are split: if all lengths in the configuration are greater than R, then the solution
adheres to the minimum run-time constraint and we call the configuration feasible; if all the charging
rates are between 0 and u then the solution adheres to the flow constraints. Representing a solution
using such configurations makes it easier to reason about solution approaches for the new minimum
run-time constraint. Below, we give the formal definitions of a block and a configuration as used in
this research, as well as a small example.

Definition 5.1 (Block of intervals). There are N intervals of equal length. For i, j ∈ {1, ..., N} with
j > i the subset of intervals B = {i, i + 1, ..., j − 1, j} defines a block of intervals, where the length of
the block is j − i+ 1 (i.e. the number of intervals).

Definition 5.2 (Feasible configuration). Given the set of intervals 1 to N , and given R ∈ Z with

R > 0, let n1, n2, ..., nk ∈ {R, ..., N} represent a set of block lengths, such that
∑k
i=1 ni = N . Then the

corresponding configuration is defined as the tuple (n1, n2, ..., nk). Hereby, an element ni of configura-
tion (n1, n2, ..., nk) now represents the length of the ith block of this configuration.

18

Example 5.1. If N = 7 and the minimum run-time and minimum idle time are both equal to 2
(R = 2), then one possible configuration would be (3, 2, 2), indicating that the first block has a length
of three and the second and third blocks both have a length of two. In other words, this implies that
intervals 1, 2, 3 form the first block, 4, 5 the second, and 6, 7 the third.

We note that the size of a configuration k, representing the number of blocks, is a variable for which
we may set some restrictions. However, we can also consider the solution space of all possible configu-
rations. To this end we define both the set of all feasible configurations of a certain length, as well as
how these sets together form the total solution space.

Definition 5.3. Let Sk be the set that, given the set of intervals 1 to N and given R ∈ Z, R > 0,
contains all feasible configurations of length k. Note that k ∈ {1, ..., bNR c}. Also define S as being the
set of all configurations: S := S1 ∪ S2 ∪ ... ∪ Sk.

In the following we consider the problem of finding the best charging plan for a given configuration
n = (n1, n2, ..., nk) for a problem instance of m1EVC, within the constraints of this configura-
tion. For any solution x of this problem given configuration n we have that:

xi = xj for all intervals i, j ∈ Bl and for all blocks Bl, 1 ≤ l ≤ k.

We denote the optimal solution within these additional constraints of configuration n xn. The cost
associated with this optimal planning xn is denoted by f(xn).

5.2 Analysing the Problem

In the first part of this section we create some more intuition for the problem and its structure. Some
of this intuition gives rise to a first structural property, which we prove, and then use to develop an
optimization strategy in the next section.

In definition Problem m1EVC is similar to Problem dm1EVC, which was investigated in Chapter 4. To
develop a solution approach for Problem dm1EVC the problem was described using a directed graph
(see an example in Figure 1), and using this graph representation a dynamic programming approach
was developed. The question now is whether such a graph representation is also possible for Problem
m1EVC. Unfortunately this is not the case. Both problems have the same type of minimum run-time
constraint, where it is required to charge for at least the minimum time on one value. However, where
Problem dm1EVC had a finite set of discrete charging values, in Problem m1EVC the charging value
can be any real number within [0, ut]. So, in theory, the graph representation would per interval have
a node for each possible charging value, which would result in an uncountable infinite set of nodes for
each interval. This is not a possible approach, and we need to take a different direction for a solution.

5.2.1 Comparison to EVC and mEVC

As Problem mEVC is an extension of Problem EVC (Equation (1)), we can look into where it differs
compared to this simpler problem. This means that we should focus on the new difficulties in the
solution structure that are not present in Problem EVC.

In an EVC problem instance each interval can be described by a lower and upper breakpoint, where
the lower breakpoint indicates when it is profitable to activate the interval, and thus start charging in
this interval, and the upper breakpoint indicates when the interval has reached the end of its charg-
ing. A solution can be characterized by one λ value (the dual) and these breakpoints. One algorithm
using this principle is the waterfilling algorithm (also discussed in Section 3.2.2), where the λ value
is incrementally increased and intervals are activated or deactivated according to their breakpoints.
However, in Problem m1EVC a solution can no longer be characterized by only a λ value and the

19

breakpoints of the intervals, because the intervals cannot be activated and deactivated separately, as
now the charging of one interval directly influences whether other intervals charge, due to the minimum
run-time constraint.

Secondly we observe that, given a feasible configuration n and a corresponding solution xn we can
raise or lower the charge of a block by increasing or decreasing the charge of all intervals within this
block by the same value. In this way a similar process to that of the waterfilling algorithm should be
possible, within one configuration, and as we discuss in more detail in Section 5.2.2 we can even define
a λ along the same lines. Now, given this concept, the ideal situation for a solution strategy would
be if the optimal configuration for a certain problem instance of m1EVC would be independent of the
needed charge C. The reason for this is that in this case we could start at a charge of 0, calculate the
best block to raise in charge, and iteratively continue this process in the same way as the waterfilling
algorithm for Problem EVC. However, unfortunately it is not the case that the optimal configuration
is independent from C, or in other words: the optimal configuration changes depending on how much
must be charged in total. The following example proves this point.

Example 5.2. Consider a m1EVC problem instance with N = 6, R = 2 as the minimum run-time, a
baseload energy profile p = (2, 1, 2, 3, 3, 2). First we set the required charge C to 1. In this case there
is one unique optimal solution, x∗1 = (1

2 ,
1
2 , 0, 0, 0, 0), corresponding to the configuration n1 = (2, 4).

Second, for C = 5 there is another unique optimal solution: x∗2 = (4
3 ,

4
3 ,

4
3 ,

1
3 ,

1
3 ,

1
3), with another

configuration: n2 = (3, 3).
This shift happens the moment that in configuration n1 the second block should be activated to keep the
optimal charging balance within this configuration. As soon as this happens, configuration n2 becomes
more cost-efficient in its grouping of the intervals. We can calculate the tipping point where the second
block should activate, which is at C = 2, as at this tipping point the costs of the optimal solutions for
configurations n1 and n2 are exactly equal, and for C > 2 the cost becomes lower for configuration n2.

This observation implies that we cannot infer the optimal configuration of a certain problem instances
from the baseloads pt alone; it also depends on C. However, we may separate the selection of a con-
figuration from the calculation of the corresponding optimal charge. A configuration n is independent
from C or p, as it only depends on R. In the continuous problem mEVC presented in Chapter 3 (see
10) this separation is made explicit through the binary variables yt, where y is an assignment of the
intervals into a certain configuration, meeting the constraint of the minimum run-time, and y only
depends on R. Problem m1EV C has this same structure, but more implicit: a solution x must be
selected from the set X0∩X1. This independence means that it is possible to first select a feasible con-
figuration n. Then this configuration for Problem m1EVC puts restrictions on the charging solution
x: all intervals within a block of the configuration must charge at the same value.

We aim to use this property to calculate the optimal solution xn of a certain configuration n. If we
know that intervals t1 to t2 (t1 < t2) are contained in the same block of configuration n, then this
implies that xnt1 = xnt1+1 = ... = xnt2 . Therefore changing the value of any one of these intervals changes
the value of all these intervals by the same amount. As such we may treat all these intervals together
as one ‘interval’. Such a transformation makes the problem of finding xn quite similar to Problem
EVC, and we can use the waterfilling algorithm to find the optimal solution for Problem EVC. This
similarity is given shape and proven in the next section. Finally, if we know how to calculate xn for
each configuration n we can calculate the globally optimal configuration x∗ as: x∗ = arg min

n∈S
(f(xn)).

5.2.2 Proof of Concept

We prove that given a problem instance of m1EVC and given a configuration, we can reduce the
resulting optimization problem to a problem instance of EVC, and thus can solve it by e.g. the water
filling algorithm. We first formulate what a problem instance Im1EV C of m1EVC given a configuration
is, and construct a corresponding EVC instance. Then we prove that an optimal charging solution for

20

this newly defined problem defines a corresponding optimal charging solution for Im1EV C given the
configuration.

Let Im1EV C be an instance of m1EVC, defined by a given number of intervals N , an amount of required
charging C, an upper bound ut for each interval t, and a minimum run-time of R. For the results
in this section we assume a convex and separable cost function f(x) =

∑N
t=1 ft(xt), since the results

established here also hold for this more general case. A feasible configuration n = (n1, n2, ..., nk) for
this instance is defined in accordance with Definition 5.2. We also define for each block j the set Inj ,
which contains the indices of all intervals t that belong in block j.

Given such a configuration n, we construct the corresponding problem instance for EVC by merging
all intervals of a block j together to form one new interval of ‘length’ nj . For these new intervals we
also define a new lower and upper bound, as well as a cost function. The new lower limit lnj will remain
0. The new upper limits unj we define by:

unj = nju,

and we define the cost function by:

fEV Cj (xj) =
∑
t∈Inj

ft

(
xj
nj

)
(13)

for all blocks j = 1, ..., k. This results in the following optimization problem:

IEV C(n): min
x

fEV C(x) =

k∑
j=1

fEV Cj (xj) (14)

s.t.

k∑
j=1

xj = C

0 ≤ xj ≤ unj t = 1, ..., k.

Note that the required capacity C remains the same. IEV C(n) thus has one interval j for each block
of intervals in configuration n, with a total of k intervals.

Let Im1EV C(n) denote the problem instance Im1EV C under the additional constraint that configuration
n must be followed. Given a solution x for IEV C(n), a corresponding solution for Im1EV C(n) is
constructed in the following way:

x̄t :=
xj
nj

∀t ∈ Inj . (15)

The solution x̄ is a feasible solution for Im1EV C , since it satisfies the minimum run-time constraint
(the charging is equal for each interval in a block of configuration n), each interval charges within the
bounds 0 and u (based on the construction of lnj and unj), and finally a total charge of C is reached.

Now we prove the following result.

Result 5.1. Given a problem instance Im1EV C and a configuration n, a solution that is optimal for
IEV C(n) also defines an optimal solution for Im1EV C(n), and this optimal solution can be constructed
using Equation (15).

The idea of the proof: We prove this by contradiction. We assume that the translated solution
for Im1EV C(n) according to Equation (15) corresponding to an optimal solution to IEV C(n) is not

21

optimal for Im1EV C(n). This in turn implies there is at least one other better solution for Im1EV C(n).
Taking this solution we can construct a corresponding feasible solution for IEV C(n), again using Equa-
tion (15). We show that this solution has a lower cost than the first solution to IEV C(n), which was
assumed to be optimal. Hence this leads to a contradiction, and thus the result must be true.

The Complete Proof : Given a problem instance Im1EV C and a feasible configuration n, we construct
the corresponding problem instance IEV C(n) as in Equation (14). Let x∗ ∈ Rk define an optimal
solution for IEV C(n), meaning that fEV C(x∗) ≤ fEV C(y) for all y ∈ FEV C , where FEV C ⊆ Rk is the
feasible solution region for IEV C(n).
Now assume that the result is false, meaning that the corresponding solution for Im1EV C(n), x̄∗ ∈ RN ,
is not optimal.
We construct x̄∗ from x∗ using Equation (15):

x̄∗t =
x∗j
nj

∀t ∈ [Sj−1, Sj]

Next, let Fn ⊆ RN denote the subspace of all feasible solutions for Im1EV C(n). We know that x̄∗

is feasible and therefore in Fn. It is also given that x̄∗ is not an optimal solution for Im1EV C(n),
therefore there must exist at least one solution z ∈ Fn such that f(z) < f(x̄∗).
We denote the total solution space of Im1EV C by F , and we note that Fn ⊆ F . So, since x̄∗, z ∈ Fn,
also x̄∗, z ∈ F , and we can calculate the costs f(x̄∗) =

∑N
t=1 ft(x̄

∗
t) and f(z) =

∑N
t=1 ft(zt).

As z is under the constraint of configuration n, for any block j of configuration n the charging value
zt must the same for each interval t in the block. This knowledge can be used to rewrite the cost of z:

f(z) =

N∑
t=1

ft(zt) =

k∑
j=1

∑
t∈Inj

ft(zt), (16)

and since we know that zt1 = zt2 = z′j for all t1, t2 ∈ Inj , for some value z′j , we can write this as:

k∑
j=1

∑
t∈Inj

ft(zt) =

k∑
j=1

∑
t∈Inj

ft(z
′
j) (17)

=

k∑
j=1

∑
t∈Inj

ft

(
njz
′
j

nj

)

=

k∑
j=1

fEV Cj (njz
′
j) = fEV C(nT z′),

using (13) for the last equation. nT z′ is a vector of length k and defines a feasible solution to IEV C(n);
all bounds are met due to the fact that z meets the bounds in Im1EV C . Furthermore the amount that
is charged over the timespan is:

k∑
j=1

njz
′
j =

k∑
j=1

nj

∑
t∈Inj

zt

nj

=

k∑
j=1

∑
t∈Inj

zt

=

N∑
t=1

zt = C

22

Let z∗ := nT z′. Then we have from (16) and (17) that

f(z) = fEV C(z∗)

We know that f(z) < f(x̄∗) and

f(x̄∗) =

k∑
j=1

fEV Cj

(
x∗j
nj

)
= fEV C(x∗),

which leads to the conclusion that
fEV C(z∗) < fEV C(x∗).

This contradicts the assumption that x∗ was an optimal solution to IEV C(n). �

In conclusion, if the configuration of an optimal solution is known, an optimal charging solution
can be calculated efficiently using an existing algorithm for EVC.

This result gives part of a possible strategy to find an optimal solution for a problem instance of
m1EVC. It implies that given an optimal configuration—i.e. a configuration for which the best charg-
ing profile is also a globally optimal solution—it is a relatively easy matter to calculate the optimal
solution: the solution can be calculated using any efficient algorithm for Problem EVC, since we have
proven that the problem m1EVC for a given a configuration is reducible to Problem EVC, using (14).
Thus the remaining difficulty only lies in finding such an optimal configuration. Once this is achieved,
there is an efficient solution method in place to find an optimal charging profile. In the next subsection
we present a algorithm where this concept is used to calculate an optimal solution.

We have defined Problem IEV C(n) for every configuration n. Each of these problems has an associated
optimal fill level λn defining the optimal solution xn. This fill level can be calculated by for example the
waterfilling algorithm. In simulations it was observed that often a lower fill level λn of a configuration
results in a lower minimum cost f(xn). This raises the question whether there exists some monotone
relation between configurations, meaning that f(xn) < f(xn

′
) implies either λn < λn

′
or λn ≤ λn

′
.

However, in Example 5.3 we give a counterexample, showing that such a relation of monotonicity does
not hold universally.

Example 5.3. Consider a m1EVC instance with N = 6, R = 2, a baseload energy profile p =
(2, 1, 3, 2, 7, 2), costs ft = (xt + pt)

2, and a required charge C of 3. We can enumerate all possible
configurations, which are: (6), (3, 3), (2, 4), (4, 2), (2, 2, 2), and calculate their optimal charging solution
using the reduction to an EVC problem instance. For configuration (4, 2) this results in the best
solution having a dual value λ1 = 2.75 and a cost of 85.25. For configuration (2, 4) this results in
the best solution having a dual value λ2 = 3 and a cost of 84.5. Thus, the dual value for the second
configuration is higher, while the cost is lower than for the first configuration.

Finally, we can make the following observation, to ignore some configurations that are for certain
superfluous for the calculations:

Lemma 5.1. For any configuration n ∈ S with at least one block of at least length 2R there exists
another configuration n′ ∈ S such that f(xn

′
) ≤ f(xn).

This lemma implies that for any such configuration n there exists another configuration for which the
best charging solution xn

′
has a cost that is at least as low as the cost of solution xn.

Proof : Let n = [n1, ..., nk] ∈ S have a block i with ni ≥ 2R. We construct another feasible configura-
tion n′ by splitting block i into two new feasible blocks. This is possible because we know the length

23

of block i is at least 2R, so there is at least one way that the intervals in block i can be distributed
over two blocks, i1 and i2, such that ni1 ≥ R and ni2 ≥ R. This results in a feasible configuration
n′ = [n1, ..., ni1 , ni2 , ..., nm], n′ ∈ S. Secondly we know that in solution xn every interval in block i
had the same charging value, which was optimal for configuration n. In solution xn

′
the intervals in

blocks i1 and i2 can have a different charging value, but do not have to have this. This implies that
xn
′

can never result in a worse (best) solution than xn, implying that f(xn
′
) ≤ f(xn). �

With this observation any configuration with at least one block i of length greater than 2R can be
scrapped.

5.3 A First Algorithm for m1EVC

5.3.1 To Find an Optimal Configuration

In the last section we reached the conclusion that the remaining challenge is to calculate an optimal
configuration. In this section we present an algorithm to this end, which involves enumerating the
viable configurations in the search space. Once such a configuration can be calculated we have all the
building blocks for a solution strategy for Problem m1EVC.

Given an instance of Problem m1EVC, we aim to search through the possible feasible configurations
and check if they are optimal. The waterfilling algorithm is used to calculate the best charging solution
for each configuration. Out of all these solutions then the best one can be selected, and this is an
optimal solution to Problem m1EVC.

What is left to do is to enumerate all configurations. This translates to the problem of enumerating
all different sequences of integers (n1, ..., nk) where

∑k
i=1 ni = N and ni ≥ R for all i. We denote the

number of blocks in a configuration by k. For each k we calculate all viable configurations using a
tree structure. In this tree structure there are k+ 1 levels. At level 0 lies the root node. Furthermore,
level i represents the ith block of a configuration. We iteratively build the tree, starting at the root.
We add for each possible length n1 of the first block a branch. This branch has to cover a remaining
length of N − n1. We repeat this process to branch out to each possible length for the second block,
given a length for the first block, and so on. An example of this structure in given in Figure 2.

For the variable k we have an upper bound of bNR c, considering the minimum run-time R. By using
Lemma 5.1 we can also determine a lower bound on the number k of blocks in a configuration, as
all configurations containing a block ni with ni ≥ 2R do not have to be considered. If we have that
N ≤ k(2R− 1) then there is at least one configuration of length k where all ni ≤ (2R− 1), and so the
condition is not met. Oppositely, if N > k(2R − 1) then there must be at least one block ni in every
configuration of length k for which ni ≥ 2R. This results in a lower bound of k ≥ N

2R−1 .

We implemented the algorithm by building this tree from the root node, where each node has a couple
of arguments, besides the label indicating the length. The first of these arguments is the sum i of all
block lengths in its path back to the root node, or in other words the number of intervals already used.
This number is used to calculate all the possible block lengths branching from this node. The second
argument denotes the rest value, which once it reaches 0 means the last node is added to this branch,
which must have a length of N − i, i.e. the remaining tail of intervals must all be contained in this
final block. So this algorithm creates m branching levels of blocks underneath the root node, and then
adds 1 final node to each branch, meaning that m must be equated to the number of blocks minus 1
at the start. Pseudo-code for the used procedure is given in Algorithm 2.

24

Figure 2: Example of a configuration tree for all configurations of size 3, where N = 8 and R = 2.

Algorithm 2 Enumerate Configurations

for m = b N
2R−1c to bNR c − 1 do27

Create root node: (0, intervals = 0, rest = m)28

Create queue containing root node29

while queue is not empty do30

Pop out the first node in queue31

i = node.intervals32

m′ = node.rest33

if m′ > 0 then34

for l = i+R to N −Rm′ + 1 do35

Create new node with node as parent: (l − i, intervals = l, rest = m′ − 1)36

Add new node to queue37

end for38

else39

Create new node with node as parent: (l − i, intervals = l, rest = 0)40

end if41

end while42

Enumerate the path from each leaf node to the root and add each to the set of configurations43

end for44

We end this section by noting that for the trivial case of R = 1 the problem of enumerating all
configurations is equivalent to the problem of finding the powerset for a set of size N − 2: all intervals
can either be the beginning index of a block, or not, so this powerset encodes the set of all possible
configurations for a problem instance of size N . This trivial case therefore results in a total of 2N−2

configurations, a number exponential in the size of the problem instance, N . Within the scope of this
research we did not find a closed-form expression for the number of configurations depending on R
and N for R > 1.

25

5.3.2 The Algorithm

Once we have enumerated all configurations to be considered, we calculate for every configuration
calculate the best solution. The overall best solution is the optimal solution for Problem m1EVC.
Our implementation of this algorithm solves Problem m1EVC for the cost function ft = (xt + pt)

2.
We use the waterfilling algorithm as presented in Section 3.2.2 to solve each of these optimization
problems. To this end we define the parameters of the relevant cost function (fj = 1

2ajx
2
j + bjxj + cj)

for the waterfilling algorithm, for each ‘interval’. First of all we can observe that the parameters cj
are not used in the waterfilling algorithm, and so these can be removed. We define aj and bj using the
transformation in (13):

aj =
∑
t∈Inj

2

n2
j

=
2

nj
(18)

bj =
∑
t∈Inj

2pt
nj

=
2
∑
t∈Inj

pt

nj

With these parameters the waterfilling algorithm as it is defined in section 3.2.2 can be used for each
configuration. The best solution is selected, and this gives a global optimum for Problem m1EVC.

5.4 Battery Charging

In Chapter 3 both problem m1EVC and problem m1BC were presented (see (8) and (9)). Analogous
to Chapter 4—where the optimisation strategy for problem dm1EVC had a straightforward extension
to create an optimisation strategy for problem dm1BC —it is an interesting question whether the new
solution strategy we presented for m1EVC can be extended to a strategy for problem m1BC. We
discuss the possibilities in this section.

A first thing to note is the existence of efficient solution strategies for problem BC, see for example
Chapter 5 in [van der Klauw, 2017]. This means that the setup of the strategy for m1EVC —transform
a certain configuration into an equivalent instance of EVC —has a possibility for success: if we can
transform an m1BC instance given a certain configuration into an equivalent BC instance, we have
an approach to calculate the optimal solution for this configuration. The question is whether such a
transformation is possible.

The simple answer to this question is: No. It is not possible to follow the same steps as for the m1EVC
strategy to achieve an equivalent transformation for m1BC. The reason for this lies in the cumulative
constraint of Problem m1BC :

Bl ≤
l∑
t=1

xt ≤ Cl l = 1, ..., N. (19)

Given a configuration, the aim is to combine all the intervals contained in one block j of this config-
uration to one interval (or one variable) for our equivalent BC problem instance. In order to do this
we need to translate the cumulative constraint of every interval t to a set of cumulative constraints for
the new intervals j, of the form Bl ≤

∑l
j=1 zj ≤ Cl l = 1, ..., k. The following example shows that

this exact form is not possible for this transformation.

Example 5.4. Consider an m1BC instance with N = 6, R = 2, and cumulative lower bounds Bl and
upper bounds Cl for l = 1, ..., 6. Then consider the configuration n = (3, 3). The aim is to transform
the intervals of the first block of n (intervals 1, 2, 3) to one interval with one cumulative constraint. Let

26

z1 be the variable for this new interval. As we know that for any solution z of the transformed problem
we have that x1 = x2 = x3 = 1

3z1, we can rewrite the constraint of B1 ≤ x1 to 3B1 ≤ z1. Following
this same reaonsing, we rewrite the constraints B2 ≤ x1 + x2 and B3 ≤ x1 + x2 + x3 to 3

2B2 ≤ z1 and
B3 ≤ z1. This leads to a new lower bound of B′1 = max(3B1,

3
2B2, B3). Similarly, we can define a

new upper bound C ′1 as min(3C1,
3
2C2, C3). If we do the same procedure for the second block (this time

using that x4 = x5 = x6 = 1
3z2, and that z1 = x1 + x2 + x3), we again end up with three constraints

for the lower cumulative bound: B4 ≤ z1 + z2
3 , B2 ≤ z1 + 2

3z2 and B3 ≤ z1 + z2. However, this set of
bounds cannot be translated to one new cumulative constraint the way we did for the first block.

As the above example illustrates we cannot simply translate Problem m1BC (n) to an equivalent
instance of Problem BC. However, the above example does show how we can translate Problem
m1BC given a configuration n to a general linear program, since all the newly defined constraints
will be linear. Such a linear optimization problem can be solved in polynomial time, by for example
the simplex method or another polynomial-time linear programming solution method (see for example
[Winston, 2003]). However since such a method is not tailored to the specific structure of our problem,
this may be relatively inefficient, and it might be possible to develop a more streamlined strategy using
the restrictions this program has. However, this direction is outside the scope of this research, but
may be an interesting direction for future research.

5.5 Evaluation and Conclusion

The approach presented in Section 5.3.2 is guaranteed to calculate an optimal solution to Problem
m1EVC. But there are some disadvantages to this approach, which we discuss here, and which are
shown in the experimental results of Section 7.

The first disadvantage is perhaps the most obvious one, namely that this approach is a rather slow
one: for each of the possible configurations the waterfilling algorithm has to be applied, and although
the waterfilling algorithm is quite fast, running it so many times takes a while, and this running time
grows quickly with N , because the number of possible configurations for a problem instance grows fast
with N .

The second disadvantage has to do with the enumeration of all possible configurations. This requires
a lot of memory to do and therefore, also depending on the implementation, it may not be practi-
cal for larger instances, even if time is not of the essence. This problem might be mitigated by not
enumerating all possible configurations but focusing on promising ones, and thus arriving at only an
approximation of the optimal solution.

Because of these disadvantages it is of interest to look into possible approximation methods as well.
One promising approach is a local search approach, as the structure of the problem may lend itself to
such a method quite well. We discuss the development of this method in the next chapter.

27

6 Local Search

In the previous chapter an exact approach to solve the optimization problem m1EVC ((8)) was pre-
sented. This approach was implemented and some results are presented in Section 7. The brute-force
approach is rather heavy computationally due to the need to enumerate a significant amount of pos-
sible configurations. In this chapter we aim to approximate the optimum of an instance of Problem
m1EVC. The setup of the problem as it is now, with configurations and a corresponding optimal so-
lution, might lend itself well to a local search approach: if we define a candidate solution as being
a feasible configuration, with attached the costs of the corresponding best solution, one can search
the ’neighbourhood’ of this configuration for a configuration with lower costs, and so, repeating this
process until convergence, approach a local optimum.

In the next section a general overview of the different aspects of the local search algorithm is given,
after which these different aspects are discussed in some more detail in the sections following. Finally,
the implementation of the local search algorithm is presented.

6.1 Overview

The ingredients of the local search approach are as follows:

• The initialisation: An initial configuration is selected. Multiple strategies for this initialization
can be tried, to test whether there are clearly better or worse strategies.

• The neighbourhood: the neighbours of a given configuration must be defined.

• The gain: For every neighbour a gain must be calculated. If the gain is positive, this neighbour
is a candidate for the new best (up-till-now) solution. The gain can be calculated exactly or it
can be approximated.

• At the end of an iteration, when all neighbours have been considered, a new best candidate is
selected (if there is one). For this candidate the exact costs must be known before starting the
next iteration.

To develop such a local search algorithm we first define formally what the neighbourhood of a configu-
ration is. It is also proven that this definition is such that the entirety of the solution space is connected
by the neighbourhood operation. Some useful observations of the solution structure of m1EVC will
be discussed; these can be utilized for an efficient local search implementation. Two different methods
to make an estimation of the gain of a neighbour will be discussed.

6.2 The Neighbourhood of a Configuration

In this section a set of neighbourhood operations are defined for the local search approach, and we
prove that these operations connect the entire solution space of the problem.

6.2.1 The Neighbourhood Operations

The first two operators we define are the + and - operators. These two operators allow one interval of a
selected block to shift one block. With the + operator the leftmost interval of a selected block shifts to
the adjacent block to the left. With the - operator the rightmost interval of the selected block shifts to
the adjacent block to the right. In the case that this would result in an infeasible configuration, which
happens when the block losing an interval now has a length smaller than R, a feasible configuration
is reached by shifting the leftmost or rightmost interval of this block to the next adjacent block too,
respectively.

28

A configuration is again defined as being a vector (n1, n2, ..., nk) with the properties as described in
Definition 5.2. Let n = (n1, ..., nk) ∈ Sk define a certain feasible configuration. Formally, the + and -
operators are defined as follows:

Definition 6.1 (+ Operator). For a given block i in configuration n, let j > i be the first block such
that nj > R (this implies that for all blocks l inbetween (i < l < j) it holds that nl = R)j.
Then +(n, i) := (n1, ..., ni−1, ni + 1, ..., nj − 1, nj+1, ..., nk)

Definition 6.2 (- Operator). Given block i in configuration n with ni > R. Let j be a block such that
i < j and for all blocks l inbetween (i < l < j) it holds that nl = R.
Then: −(n, i) = (n1, ..., ni−2, ni − 1, ..., nj + 1, nj+2, ..., nk)

Next we also define a join and a split operator, to enable a jump from level Sk one level up or down.
To jump one level down to a configuration in Sk−1, two blocks of a configuration are joined together.
To jump one level up to Sk+1 one block is split into two blocks, while maintaining feasibility, meaning
that all blocks must still have a length of at least R after the operation. If this is not possible (because
there is no block of length 2R or more), then we define the operation such that a block of maximum
length is split, and a next block is split until a minimum of R intervals is available to create a new
block of at least length R.

The two operations are formally described below:

Definition 6.3 (Join Operator (Sk → Sk−1)). For a given block i < k in configuration n, we define:
join(n, i) = (n1, n2, ...ni−1, ni + ni+1, ni+2..., nk) ∈ Sk−1

Definition 6.4 (Split Operator (Sk → Sk+1)). i) For a given block i in configuration n with i ∈
argmaxjnj and ni ≥ 2R, let n′i, n∗ be two integers such that n′i, n∗ ≥ R and n′i + n∗ = ni.
Then: split(n, i) = (n1, n2, ..., ni−1, n

′
i, n∗, ni+1, ..., nk). This is called the simple split operation.

ii) If no ni ≥ 2R exists we let i ∈ argmaxjnj, and we define two suboperators: split+ and split-, which
use the blocks immediately to the left or to the right of the considered block respectively to split off
enough intervals in total to create one new feasible block:

For split+ choose r such that
∑r
j=0(ni−j − R) ≥ R, and let this be the smallest r for which the in-

equality holds. We set the new length n′j = R for each block j ∈ {i− r, ..., i} and n′j = nj for all other

j ∈ {1, ..., k}, and we define the new length n′k+1 =
∑r
j=0(ni−j −R).

Then we define: split+ (n) = n′

For split- choose r such that
∑r
j=0(ni+j − R) ≥ R, and let this be the smallest r for which the

inequality holds. We set the new length n′j = R for each block j ∈ {i..., i+ r} and n′j = nj for all other

j ∈ {1, ..., k}, and we define the new length n′k+1 =
∑r
j=0(ni+j −R).

Then we define: split− (n) = n′

Note that the join operator can never improve the cost, i.e. never result in a positive gain: the best
possible gain for this operation is 0. The other way around the same principle holds for the simple
split operator: For this operator there can never be a gain smaller than 0. The reasoning for these
properties is similar to the proof of Lemma 5.1: in case two blocks of configuration n are joined by the
join operator before the operation there was more freedom for the charging within the intervals in these
blocks than after the operation. The opposite is true for the simple split operator: here the intervals
of the two new blocks have more freedom in their charging than before, when they were contained in
one block.

6.2.2 Connectivity

Let S be the space containing all feasible configurations n. Above, specific operations on a configu-
ration have been defined. Now we aim to investigate whether these operations together connect the

29

entire space S. This would be desirable since then the local search algorithm in principle is able to
search the entire solution space using only these operations.

To prove that this is indeed the case let n ∈ S be a randomly chosen feasible configuration of length k,
and let n′ = (n′1, ..., n

′
k′) ∈ S be another random feasible configuration of length k′. If the four defined

operations, +, -, join, and split, can together define a path from n to n′ this would indeed show that
these operations connect the entirety of S. To prove this, we perform the following operations, starting
with configuration n:

1. Apply the join operator until no two intervals can be joined together anymore (this occurs after
k − 1 steps). The result is the configuration (N) of length 1.

2. To this configuration (N) apply the simple split operator until configuration n′ is reached by
first splitting off n′k′ , then n′k′−1 and so on, until configuration n′ is reached in k′ − 1 steps.

This implies that any two configurations in S have at least one path connecting them by the four
defined operations, implying that the operations connect S. Note that the above shows that already
the two operators join and split are sufficient to prove connectivity. However, we have defined the +
and - operators in order to shorten the path between two configurations in S, as the procedure used
above to prove connectivity involves a lot of steps to connect two configurations.

6.3 Calculation of the Gain

We consider the application of the local search approach to Problem m1EVC with the cost function
again defined as ft(x) = (xt+pt)

2 for an interval t, and the total objective value as f(x) =
∑N
t=1 ft(x).

Given a candidate configuration n we can calculate its optimal solution xn and the corresponding
cost f(xn) using the method developed in Sections 5.2.2 and 5.3.2. Now, the next step is to search
the neighbourhood of this candidate for a configuration with a positive gain. For this there are
two possibilities: we can use our exact method to also calculate the cost f(xn

′
) of a neighbouring

configuration n′, or we can make an estimation of this cost to save time. The latter option may be a
significant improvement on the calculation time for larger instances, since in each iteration the gain of
all neighbouring configurations must be calculated and compared. In this section we first elaborate on
the exact approach, and then we explore an idea for estimating the gain for each neighbour.

6.3.1 Exact Gain Calculation

From Chapter 5 we know how to calculate the optimal charging solution xn for a given configuration
n and the associated cost f(xn), using the waterfilling algorithm. This way we can calculate for any
neighbour the corresponding exact gain.

To recap Section 3.2.2, the waterfilling algorithm functions with a fill level λ̂. Once the correct fill level
is reached we calculate the corresponding charging solution using Equation (3). So if we look at the
candidate solution within local search there is a current candidate configuration n with an associated
fill level λn calculated by the waterfilling algorithm, by solving Problem IEV C(n) (see (14)). Using the
fill level λn a charging solution x̄n of problem instance Im1EV C follows, with a cost of f(x̄n). Now to
calculate the gain of every neighbour of this current candidate solution n we must repeat this approach
to calculate the λ value of each neighbour and use this value to calculate the gain of the neighbour.

However, we can improve this process by using the properties of the neighbouring solutions. To this
end we investigate the different cases for the relation between the candidate solution and its neigh-
bours, and what the implications are for each of these cases. This enables us to develop a more efficient
exact method for calculating the gain of each neighbour.

30

We start by looking at the + operator as an example of a neighbouring operator. The arguments for
the other neighbourhood operations are similar, and are shortly discussed at the end of this section.
Now suppose we have the current candidate configuration n and we have a neighbouring configuration
n′ that is reached by applying the + operator to some feasible pair of blocks i and j of n, i.e. n′ looks
like:

n′ := (n1, ..., ni + 1, ..., nj − 1, ..., nk)

Note that λn is the optimal fill level of Problem IEV C(n), and let xn be the corresponding optimal so-
lution for Problem IEV C(n) (see section 5.2.2 for a more detailed explanation of problems Im1EV C(n)
and IEV C(n)). Furthermore, let C denote the total required charging.

One can distinguish between three cases for the relation between the current λn and the optimal fill
level λn

′
of the neighbour n′. For each of these cases we can characterize the gain, using the relation

between λn and λn
′
. To this end let ∆f denote the gain if we would move from configuration n

to configuration n′. Note that the proof of Result 5.1 shows that the objective values of f(x̄n) and
fEV C(n)(xn) (the objective value of the transformed problem IEV C(n)) are equal, meaning that we
can conclude that the gain ∆f is equal to ∆fEV C , where ∆fEV C = fEV C(n)(xn)−fEV C(n′)(xn

′
), which

is the difference in cost between the optimal solution of problem instance IEV C(n) and the optimal
solution of problem instance IEV C(n′).

Case 1: λn = λn
′
, j = i+ 1

If j = i+ 1 then the only difference between configuration n and configuration n′ lies in the two blocks
i and j. All other blocks of the two configurations remain the same, meaning that the parameters
of the cost functions fEV C(n) and fEV C(n′) are equal for these blocks: anl = an

′

l and bnl = bn
′

l (see

Equation (18) for the definition of these parameters). This together with the fact that λn = λn
′

implies that xn
′

l = xnl for all blocks l (making use of Equation (3)), except for blocks i and j.

This in turn implies that f
EV C(n)xn

l

l = f
EV C(n′)xn′

l

l for those blocks when jumping from configu-
ration n to n′. Therefore the gain of neighbour n′ depends only on blocks i and j, and we have

∆f = f
EV C(n)
i (xni)− fEV C(n′)

i (xn
′

i) + f
EV C(n)
j (xnj)− fEV C(n′)

j (xn
′

j).

Case 2: λn = λn
′
, j > i+ 1

This case is almost the same as Case 1, but now all blocks between i and j also change compared to
configuration n. ∆f can be written as:

∆f = f
EV C(n)
i (xni)− fEV C(n′)

i (xn
′

i) + f
EV C(n)
i+1 (xni+1)− fEV C(n′)

i+1 (xn
′

i+1) + ...+ f
EV C(n)
j (xnj)− fEV C(n′)

j (xn
′

j)

=

j∑
s=i

fEV C(n)
s (xns)− fEV C(n′)

s (xn
′

s) (20)

Case 3: λn 6= λn
′

This implies that either λn > λn
′

or λn < λn
′
. In either case we cannot find any direct expression

for a simplification of ∆f . Thus, the new solution xn
′

and the cost f(xn
′
) must be calculated, and

∆f = f(xn)− f(xn
′
).

The arguments made above for the + operator can be made in the same fashion for the other three
operators, where in each case only the objective values of the blocks transformed by the operation are
relevant for the change in the total cost, if λn = λn

′
.

Above, we have described how we can calculate the gain provided we know whether λn = λn
′
. It

is relatively straightforward to check whether λn = λn
′
: given λn and configuration n′ we can use

31

Equation (3) to calculate a candidate solution where λn is our ‘guess’ for λn
′
. According to the KKT

conditions this solution is an optimal solution to IEV C(n′) if it holds that the total charging is equal
to C. It can be shown for the specific problem considered in this research (Problem m1EVC with a
cost function of the form

∑
t(xt + pt)

2), that it frequently occurs that λn = λn
′
. A substantiation of

this observation is given in the appendix at the end of this chapter, in Section 6.6. Here it is proven
that for two configurations for which intervals are in the same state (off, active, or full) in the optimal
solutions of the two configurations, then also the optimal fill level is equal.

If this is not the case, i.e. if λn 6= λn
′
, then λn

′
must be calculated in order to determine the gain ∆f . In

this case using Equation (3) with λn as the ‘guess’ for λn
′

resulted in either a charge Ĉ < C or Ĉ > C,
depending on whether λn > λn

′
or λn < λn

′
respectively. It is possible to use an alternative approach

to the waterfilling method where we use λn as the initial fill level instead of the first breakpoint, and
where ∆C = Ĉ−C is the target charge. Now λn can be either increased or decreased until the correct
charge C is reached. This results in the optimal solution to IEV C(n′) and the gain of configuration
n′ can be calculated. This alternative approach can improve the calculation time if the values of the
two optimal fill levels are generally close-by. This ’midpoint waterfilling’ approach is compared to the
traditional waterfilling algorithm in Section 7.4.5.

6.3.2 Estimating the Gain

In this section we present a method to estimate the gain and improve the run-time of the local search
algorithm. Within this method the estimation is used to select the neighbouring configuration with the
best gain. Once this neighbour is selected we still use the exact approach of the waterfilling algorithm
to calculate the real cost of the new candidate configuration.

Firstly, we have observed that there are cases where λn = λn
′
. In these cases we can easily calculate

the exact optimal solution xn
′

using Equation (3) and there is no need for an estimate instead. When
λn 6= λn

′
we have either that λn > λn

′
or that λn < λn

′
, and the planning x̃n

′
calculated from Equa-

tion (3) using λn results in Ĉ < C or Ĉ > C respectively. This means results in an error in the total
charge of ∆C = Ĉ − C.

We use the guess x̃n
′

made with λn. We make an estimate of the real optimal planning xn
′

by dis-
tributing the remaining charge ∆C over the active blocks of solution x̃n

′
. This is the same procedure

as the waterfilling algorithm, with the difference being that in the waterfilling algorithm the active
blocks are only increased in charge until the next breakpoint, where the set of active blocks changes.
This means that this method of estimating may result in a solution that is infeasible, because a block
receives a charge that is higher than its maximum charging rate. Note that the bigger ∆C is, the
bigger the difference to the true optimal cost f(n′) might be.

The estimation of the gain ∆f now consists of 2 steps. The first step is analogous to Case 2: if λn = λn
′

then ∆f is given in Equation (20). If this is not the case we make an estimation using the current

guess for the solution, x̃n
′
. We calculate the error in the total charge, ∆C, and we define Y to contain

the indices of all active blocks in x̃n
′
, and Ȳ the indices of all other blocks. ∆C is distributed over

the active blocks, where each active block l should be changed relative to its increase factor 1
al

, which
means we estimate the cost of the optimal solution as:

f̃(xn
′
) =

∑
l∈Ȳ

f(x̃n
′

l) +
∑
l∈Y

f

(
x̃n
′

l +
1

al

∆C∑
i∈Y

1
ai

)
. (21)

Now the gain is estimated as ∆̃f = f(xn)− f̃(xn
′
).

32

This estimate is compared to the exact method in Section 7.4.6, where both the solution quality and
the time of the algorithms are compared.

6.4 The Local Search Algorithm

Above, we have already discussed some of the important aspects of the local search algorithm. Some
other aspects include the initialization of the algorithm and the choice of the neighbourhood operator.
For the initialization some different possibilities are considered in Chapter 7. Hereby multiple deter-
ministic initializations are discussed in Section 7.4.1 and a random initialization strategy is tested in
Section 7.4.6.

For the neighbourhood operator we presented four basic versions in Section 6.2. In our implentation
we use the + and - neighbourhood operators to search within a certain level Sk and select the best
neighbour of the configuration n on this level. We use the split operator to search the neighbours of a
configuration one level above, i.e. in level Sk+1. Finally we have the join operation. As mentioned at
the end of Section 6.2 this operator can never result in a positive gain for a neighbour, in the way it is
defined now. This leads us to perform a second operation whenever the join operator is applied to the
candidate configuration, namely a split operation, and only after these two subsequent operations the
gain is calculated, meaning that the ‘neighbours’ are achieved not by one but by two neighbourhood
operations applied to the current candidate when the join operator is selected. We summarize this in
Algorithm 3.

Algorithm 3 Local Search

Select initial configuration n45

Calculate solution xn and cost f(n) of initial configuration46

47

for K iterations do48

Randomly select neighbouring operation (+/- or join or split)49

50

for every neighbour n′ do51

calculate x̃n
′

52

if
∑
x̃n
′

= C then53

Calculate the gain using Equation (20)54

else55

Calculate the gain using the waterfilling algorithm, or estimate the gain using Equation (21)56

end if57

end for58

59

if ∆f > 0 for some n′ then60

Select the neighbour with the largest gain as the new candidate solution. For this configuration,
if the gain was estimated, calculate the corresponding optimal solution and cost.

61

62

end if63

64

end for65

6.5 Conclusion

In this chapter we developed a local search approach to approximate the optimal solution to an m1EVC
problem instance, where we both presented a strategy to calculate the gain exactly for every neigh-
bour, and a strategy to estimate this gain. In Chapter 7 some simulation results for this approximation
method are presented. The remainder of this chapter is dedicated to a deeper analysis of the config-

33

urations and their λ values, in particular we determine some conditions for two configurations n and
n′ where we have that λn = λn

′
.

6.6 Appendix: Flow Equality of Configurations

It is notable that for Problem m1EVC with cost function f =
∑
t (xt + pt)

2
it is often the case that

for different configurations n and n′ the optimal fill levels of IEV C(n) and IEV C(n′) are equal. In this
section we prove some of the conditions under which this behaviour occurs. To this end we start with
a specific case, proving that when all intervals are active in both xn and xn

′
it is so that λn = λn

′
.

Then we generalize this result further.

We define a problem instance Im1EV C of Problem m1EVC with N intervals, a set of interval baseloads
pt, a maximum charge of u for each interval t, a required charge C, and a minimum run-time/off-time
R.

6.6.1 A First Result

We start with the case where n = (n1, ..., nk) is a configuration where every block is active in the
optimal charging plan xn of Problem IEV C(n), meaning that 0 < xni < uni for all blocks i of n. For
this case we show that the value λn is independent of the configuration n, so independent of ni for all
blocks i. This then implies that for any other configuration n′ where all blocks are also active in the
optimal solution xn

′
, it holds that λn

′
= λn.

Result 6.1. Given an instance of Problem m1EVC and given that configuration n is such that 0 <
xni < uni for all blocks i (where xn defines the optimal solution to Problem IEV C(n) as given in (14),
it is so that the optimal fill level λn is independent of the configuration n = (n1, ..., nk), and

λn = 2

(
C +

∑N
t=1 pt

N

)
.

Idea of the proof: we use the special-case KKT conditions for this problem to express λn in the
parameters of the problem instance, and then we show that when all intervals are active this expression
is not dependent on any parameters related to the configuration (n1, ..., nk).

The Proof : let j be the index of some block of configuration n. Using Equation (3) and the fact that
we know that xnj is active we can express λn as:

λn = anj x
n
j + bnj .

We use equation (18) to express anj and bnj , resulting in,

λn =
2xnj
nj

+
2
∑
t∈Inj

pt

nj
,

or
njλ

n = 2xnj + 2
∑
t∈Inj

pt.

We know that this relation is true for every block j, and therefore we can write

34

λn
∑
j

nj = 2
∑
j

xnj + 2
∑
j

∑
t∈Inj

pt

⇐⇒ Nλn = 2C + 2
∑
t

pt

⇐⇒ λn = 2

(
C +

∑N
t=1 pt

N

)
�

6.6.2 A Generalised Result

We can use the same principle to prove a more general result. We again denote by xn the optimal
solution to Problem IEV C(n) for a certain configuration n and by x̄n the corresponding optimal solution
to Problem Im1EV C(n). Let PnA denote the set of all blocks active in xn, so for which 0 < xnj < unj ,
and similarly let PnF denote the set off all full blocks, so where xnj = unj , and P0 the set of all inactive
blocks, so where xnj = 0.

Result 6.2. Given an instance of Problem m1EVC and a configuration n, we have that

λn =
C +

∑
j∈Pn

A

∑
t∈Inj

pt − u
∑
j∈Pn

F
nj

1
2

∑
j∈Pn

A
nj

.

Interpretation: This relation shows that the value of λn depends on the sets PnA and PnF , but not on
the specific configuration n. The summations in the expression will be equal for two configurations n
and n′ when the sets PnA and PnF contain the same intervals, and so in this case λn would be equal to λn

′
.

The Proof: Given n and the corresponding optimal solution xn to Problem IEV C(n) we have for
each block j that it is either inactive, in which case xnj = 0, it is active, in which case the following
relation holds:

λn = anj x
n
j + bnj =

2xnj
nj

+
2
∑
t∈Inj

pt

nj
,

or it is full, in which case xnj = unj = nju.

First of all, considering the set of all active blocks PnA, we can write, following a similar procedure as
the previous proof:

λn
∑
j∈Pn

A

nj = 2
∑
j∈Pn

A

xnj + 2
∑
j∈Pn

A

∑
t∈Inj

pt

⇐⇒ λn
∑
j∈Pn

A

nj + 2
∑
j∈Pn

F

xnj = 2
∑
j∈Pn

A

xnj + 2
∑
j∈Pn

F

xnj + 0 + 2
∑
j∈Pn

A

∑
t∈Inj

pt

⇐⇒ λn
∑
j∈Pn

A

nj + 2u
∑
j∈Pn

F

nj = 2
∑
j∈Pn

A

xnj + 2
∑
j∈Pn

F

xnj + 2
∑
j∈Pn

0

xnj + 2
∑
j∈Pn

A

∑
t∈Inj

pt

⇐⇒ λn
∑
j∈Pn

A

nj = 2C + 2
∑
j∈Pn

A

∑
t∈Inj

pt − 2u
∑
j∈Pn

F

nj ,

which indeed gives us,

35

λn =
C +

∑
j∈Pn

A

∑
t∈Inj

pt − u
∑
j∈Pn

F
nj

1
2

∑
j∈Pn

A
nj

�

36

7 Results

In this section the efficiency of the methods developed in this research is tested and their properties
are evaluated via simulation. We first discuss the simulation results for the dynamic programming
approach for Problem dm1EVC developed in Chapter 4. The remainder of this chapter focusses on
the m1EVC problem. We first discuss the observed shortcomings of the exact approach developed in
Chapter 5, and subsequently we discuss the simulation results of the local search approach developed
in Chapter 6.

7.1 Testing Parameters

The parameters that together define a problem instance of Problem m1EVC, as defined in (8), are
the maximum charging rate u, the baseloads of each time interval pt, the number of intervals N , the
minimum run-time R, and the required charge C. The parameters N , R and C are assigned different
values throughout this chapter. For the maximum charging rate we use a rate of 7400 Watt. Each
interval has a length of 1 minute, meaning that the maximum charging rate of each interval is equal
to 7400

60 ≈ 123 Wh.

The parameters that define a problem instance of Problem dm1EVC, as defined in (6), are the set
of discrete charging rates Z, the baseloads of each time interval pt, the number of intervals N , the
set of minimum run-times R, and the required charge C. For every test instance we use a subset of
{0, 1..., 12} Wh as the set of charging rates Z, where it varies which subset is used in a simulation
based on the properties we want to test. Note that multiplying all rates and the required charge C
by some positive integer results in a problem instance that is equivalent to this problem instance, but
potentially have a greater calculation time. This is the reason we selected these relatively low charging
rates, while keeping all rates integer.

We generated testing data for the baseload input in three different manners. Firstly, to see the per-
formance of the various algorithms in a setting relatively close to reality we generated some household
energy profiles using the open source tool presented in [Hoogsteen et al., 2016]. These energy profiles
are used as the baseloads pt. Secondly we created some more ‘difficult’ instances. These were generated
by creating bigger peaks and valleys, and by adding some random ‘spikes’ in these peaks and valleys,
where a spike denotes a single interval t where the baseload pt is suddenly much higher (in case of
a valley) or much lower (in case of a peak) than the surrounding intervals. The third collection of
datasets consists of valleys with value 0 throughout, and peaks with an extremely high value through-
out, and no spikes. These datasets are called the ’extreme datasets’. The reasons for creating these
specific datasets is explained in more detail in Sections 7.4.2 and 7.4.4. We show an example of the
first 30 intervals for a realistic and a difficult dataset in Figure 3.

We implemented these algorithms in Python (version 3.5.0), and all simulations were executed on a
Lenovo laptop with Intel Core i7.

7.2 dm1EVC Dynamic Program

The dynamic programming approach presented in Algorithm 1 is guaranteed to calculate an optimal
solution to Problem dm1EVC, and has a worst-case time complexity of O(N2M2zM). To evaluate the
practical behavior of the algorithm, we conduct several simulations. In these simulations we assume
that Rj = R for every charging rate zj ∈ Z, in order to study at the dependency of the perfomance
on the value of the minimum run-time. We incrementally increase the various parameters, N , M , zM ,
and the minimum run-time R, and some results are presented in Figure 4. In this figure the average
runtime is shown when varying the value of each parameter seperately.

37

(a) Realistic Dataset. (b) Difficult dataset.

Figure 3: The baseloads of the first 30 intervals for two test instances.

We see a roughly quadratic increase in run-time with an increase in N and M in the simulations,
as the theoretical time complexity of O(N2M2zM) also implied. This also holds for the maximum
charging rate zM . We also varied the value of the minimum run-time R. While R is not presented in
the theoretical time complexity we know that a greater value of R decreases the number of necessary
calculations in Algorithm 1. We can see in Figure 4d that this is on average the case. Looking at the
simulation results for each test instance we see that the first region, with R roughly between 3 and 20,
there is a lot of variation in the run-time, though always the values are somewhere between 0.7 and
0.9 seconds. Only between R = 20 and R = 30 the run-time starts to truly decrease drastically. These
relatively big values for the minimum run-time thus seem to simplify the problem by a large margin,
as is in line with our expectations.

7.3 m1EVC Exact Algorithm

Algorithm 2 presented in Chapter 5 calculates an optimal solution to problem m1EVC. We expect
this algorithm to perform quite poorly in terms of speed, because a large set of configurations must
be enumerated, and the size of this set grows fast with the number of intervals N . Some tests were
conducted to confirm this behaviour. The run-time of the algorithm quickly increases with an increase
of N , as can also be observed in the simulation results shown in figure 5. In this figure the average
runtime is shown when the number of intervals N is increased.

38

(a) The run-time in seconds when the number of in-
tervals N is increased. We have that C = 2N always.

(b) The run-time in seconds when the number of
charging rates M is increased, with always a max-
imum rate of zM = 8 except for M = 12, where
zM = 12.

(c) The run-time in seconds when the maximum
charging rate zM is increased.

(d) The run-time in seconds when the minimum run-
time R is increased.

Figure 4: Dependence of the performance of Algorithm 1 on its various input parameters, using the
realistic simulation data. In the base case we always have that N = 120, Z = {0, 2, 4}, and C = 360,
and in each figure one particular parameter is varied.

39

Figure 5: Run-time of the enumeration algorithm for Problem m1EVC, for an increasing value of N .
We have that R = 15 and C = 10000.

The run-time of the algorithm increases relatively slowly, until there is a shocking jump going from
N = 110 to N = 120. This fast increase in run-time can be explained by the fast-growing number of
possible configurations, as is also shown in Table 1. The calculation time per configuration is not a
bottleneck, as the waterfilling algorithm is an algorithm with a fast run-time, even for large instances,
so it is the fact that such a charging solution has to be calculated for each one of so many configurations
that makes this algorithm unsuitable for larger instances.

N # of Configurations run-time (s)
25 7 0.015
50 43 0.016
75 1359 0.565
100 40691 24.192
110 161480 100.493
120 630484 447.446

Table 1: Number of considered configurations for each value of N (where Lemma 5.1 has been applied
to cut off some irrelevant configurations).

7.4 m1EVC Local Search Algorithm

In Chapter 6 we developed an approximation method for Problem m1EVC based on a local search
approach. In this section we investigate whether such an approach works for this problem structure,
and we study the initialization of the algorithm and the calculation of the gain. Finally, we also
substantiate the claims made in Chapter 6 about the λ values of different configurations, both that
they would generally be close in value, and that there are circumstances in which they are equal in value.

We use Algorithm 2 to calculate the optimal solution to some problem instances, as well as the worst
solution (the charging solution for the worst configuration), in order to evaluate the solution quality

40

of the local search algorithm with an upper and lower baseline.

7.4.1 Initialization

In this section we look at simulation results for five different initializations, which are given in Table
2. We have N = 100 and R = 15 for each test instance, and we used the realistic simulated baseloads
as described in Section 7.1.

Name Configuration
Init 1 (50, 50)
Init 2 (25, 25, 25, 25)
Init 3 (20, 20, 20, 20, 20)
Init 4 (16, 16, 18, 18, 16, 16)
Init 5 (15, 18, 15, 19, 15, 18)

Table 2: The five different initial configurations for the local search algorithm.

The results from these first simulations are shown in Figure 6. In this figure the average objective
value is shown for each iteration of the algorithm, as well as one particular test instance where we
saw some initializations converge to a local minimum. We see the local search algorithm converge to
a solution within 40 iterations for all but 1 simulation, and in most cases the algorithm will converge
within 20 iterations. In a lot of these simulations the algorithm converges to the global optimum, but
there are also cases where the solution instead converges to a local optimum. An example of such an
instance is shown in Figure 6b, where for three of the five different initialisations the solution does not
converge to the global optimum (represented by the blue line).

We can observe some differences in the results for the different initialisations in Table 2. The initial-
isation with the least blocks, init 1, unsurprisingly results in the worst starting solution because of
a lack of flexibility in the charging solution for each interval. We see in Figure 6a that on average
the convergence for this initialisation is a much slower than for the other initialisations. However, on
the other hand we can see in Figure 6b that it does not necessarily result in the worst final solution,
where in this case it converges to the global optimum while three of the other initialisations do not.
A possible explanation for this behaviour is that with this initialisation there is more opportunity
to apply the split operator in an iteration and thus select the most promising split. If the algorithm
initially starts with a candidate configuration where there are many relatively small blocks, it is harder
to find improvement, since at some point no more splitting is possible.

41

(a) Average objective value of the candidate solution
in each iteration of local search. Average taken over
14 test realistic test instances.

(b) Objective value of the candidate solution in each
iteration of local search, for one test instance with.

Figure 6: Objective value per iteration of the local search algorithm, with N = 100, R = 15, and
C = 10000, for the five different initializations in Table 2.

7.4.2 Local Minima

We saw in the results from the previous section that it is possible for the local search algorithm to get
stuck in a local minimum and therefore never reach the global minimum. In this section we briefly look
into what aspects of the structure of Problem m1EVC might cause more local minima to occur. Based
on this we run some more simulations, this time with a ‘difficult’ baseload. With ‘difficult’ we mean
that the instance has many local minima. A candidate solution is a local minimum when there does
not exist any neighbouring configuration with a better objective value, even though within S (the set
of all feasible configurations) there does exist another configuration with a better objective value. This
better solution can never be reached by the algorithm once the local minimum is the current candidate.
We designed a second set of problem instances that we expect will have more of these local minima,
due to the structure of the baseload data. First of all we create clusters of low and of high values in
this data, so-called valleys and peaks. However, unlike the realistic data we also add single-interval
‘gaps’ in these valleys and peaks: one interval with a high baseload in a valley, and one interval with
a low baseload in a peak. This means the baseload data is less ‘smooth’, and that neighbours may
be more likely to be worse than the current candidate solution even though there does exist a better
configuration some neighbour steps away.

We ran the local search algorithm for these ‘difficult’ instances, using the same five different initialisa-
tions in Table 2. Some results are shown in Figure 7, where the average objective value is again shown
for each iteration of the algorithm, as well as one particular test instance where we saw each of the five
initializations converge to a local minimum. In Figure 7a we can see that on average the convergence
to the global minimum is a more rare occurrence than for the simpler instances, and it can be observed
that there are significantly more cases where the algorithm terminates in a local minimum.

42

(a) Average objective value of the candidate solution
in each iteration of local search with ‘difficult’ test
instances. Average taken over 10 test instances.

(b) Objective value of the candidate solution in each
iteration of local search, for one ‘difficult’ test in-
stance.

Figure 7: Objective value per iteration of the local search algorithm for the ‘difficult’ instances for the
five different initializations in Table 2, with N = 100, R = 15, and C = 10000.

We can also observe in Figure 7a that on average initialisation 1 and 2 eventually converge to a better
solution than the three other initial configurations, which contain more blocks. This again suggests
that even though an initial configuration with many smaller blocks may initially result in a better
object of value, it can be more likely that the algorithm ends up in a local minimum this way.

Until now we evaluated the local search algorithm using the same set of five initial configurations. In
the next section we briefly look into a randomized initialization.

7.4.3 Random Initialization

In this section we use a randomized initialization to perform multiple runs of the local search algo-
rithm for one problem instance, where we can select the best solution. A new initial configuration is
randomly generated for each run. We generate these configurations by splitting the total number of
intervals into two blocks, with the length of the first block chosen uniformly at random (but feasible, so
no smaller than R), and repeating this process recurrently repeated for these two blocks, until finally
no block of intervals can be split further without losing feasibility. This means that if R = 15, as in
our test case, every block in a randomized initialization will have a length somewhere between 15 and
29. We discuss the results of this approach here.

We consider a test instance from Section 7.4.1 where we observed the occurrence of local minima, and
we run 20 randomised runs of the local search algorithm. The resulting best objective value of each
run is shown in Figure 8, as well as the best objective value of all runs up to and including the current
run. We see that while the initial runs converge to a local minimum, eventually the global optimum is
reached in the 17th run.

We have now discussed some simulation results with regards to the solution quality of the local search
algorithm. In the next two sections we discuss some simulation results with regards to Result 6.2, and
we compare the midpoint waterfilling approach to the traditional approach when calculating the gain
of a neighbour.

43

Figure 8: Relative cost of the final charging solution calculated by the local search algorithm for 20 runs
with randomized initialization, as well as the best relative cost up to and including the current run.

7.4.4 Equality of Fill Levels

Result 6.2 suggests that the λ value of the current candidate solution and the λ value of a neighbouring
solution are relatively likely to be equal. We investigate here whether this behaviour can be observed
in practice. To this end we counted for a number of different test instances both the neighbours of a
candidate configuration n for which λn = λn

′
and the neighbours for which λn 6= λn

′
, over all iterations

of the local search algorithm. We discuss the results here.

For the first simulations we used the realistic household data as described in Section 7.1, with N = 100,
a minimum run-time R = 10, and a required charge C = 10000. We always used the initial configu-
ration (25, 25, 25, 25). It turns out that in these circumstances it was always the case that λn = λn

′
.

This may seem strange, but there is a logical explanation using Result 6.1. This result states that if
it is the case that all intervals are active in the optimal solution of two different configurations, then
the λ values are equal. For these test instances it is very likely that all intervals have a charge that
is somewhere between the minimum and maximum in the optimal solution of any configuration, since
the required charge is not too high or too low. Thus we see that the requirements of Result 6.1 do
occur frequently in practice.

From this explanation it follows that the λ values of different configurations should be unequal more
frequently when the required charge C is very high or very low, since in this case the state of intervals
(inactive, active, or full) will more often differ in the optimal solution of different configurations. To
test this hypothesis we use the same datasets again but now with C = 12300, and indeed we see an
increase in the number of neighbouring configurations where the λ value is different, as can be seen
in Figure 9, where we show the total count of both equality and unequality of the λ values of the
candidate and a neighbour. We expect the same trend to occur for a baseload dataset with extremely
diverging peaks and valleys, by which we mean that there is a great difference between the high peaks
and low valleys. We tested this hypothesis using the randomly generated datasets where there are
valleys of baseload value 0, and peaks where the baseload value is somewhere between 5000 and 10000.

44

We set C to 10000 again. In these simulations we again see the expected increase in the number of
neighbouring configurations where the λ value is different as can be seen in the second to last column
of Figure 9.

Figure 9: The average count of neighbours n′ for which λn = λn
′
, and the average count of neighbours

n′ for which λn 6= λn
′
, for a candidate configuration n in an iteration of local search. Averages were

taken over 10 test instances, always with N = 100 and R = 10, and the algorithm was run for 50
iterations each time. (1) indicates the realistic baseload datasets. (2) indicates the baseload datasets
of extreme valleys and peaks.

7.4.5 Midpoint Waterfilling

For the local search algorithm we applied an alternative approach to the waterfilling optimization step
when calculating the gain, as was discussed in more detail in Section 6.3.1. Namely, we claimed that
the values of λ would in general lie in close proximity to each other for different configurations. In
this section we will present some results to substantiate this claim, and so support the choice for the
alternative midpoint waterfilling algorithm.

We use the datasets of extreme peaks and valleys and a required charge C = 10000, because we ob-
served in the last section that in these circumstances the λ value of neighbouring configurations is
frequently unequal to that of the current candidate, and therefore we can better compare the perfor-
mance of the midpoint waterfilling approach to the traditional waterfilling approach (the algorithm as
it is described in Section 3.2.2).

We compare the two algorithms by the number of steps the waterfilling algorithm takes to calculate
the new λ value. This number of steps is determined by the number of breakpoints that the guess λ̂
passes (see Section 3.2.2 for more details). We count the number of breakpoints that are passed for
each neighbour in each iteration of local search. The results counted over a total of 10 test instances are
shown in Figure 10. In this figure the number of breakpoints in the waterfilling algorithm is counted
for each neighbour, both using the midpoint and using the traditional waterfilling algorithm. We see
in Figure 10a that using the midpoint algorithm there is for most neighbours only one breakpoint step
when calculating the new λ value, with at most three or four breakpoints in some rare cases. On the

45

other hand Figure 10b shows that in the traditional waterfilling algorithm there are more breakpoints
before the new λ value is reached, where 9 breakpoints is most common. This shows that the midpoint
waterfilling approach we proposed is indeed more efficient in calculating the gain of each neighbour.

(a) Amount of neighbours counted in local search for
which a certain number of breakpoints was passed in
the midpoint waterfilling algorithm, over a total of 10
test instances.

(b) Amount of neighbours counted in local search for
which a certain number of breakpoints was passed in
the traditional waterfilling algorithm, over a total of
10 test instances.

Figure 10: Comparison of the number of breakpoints when applying the midpoint waterfilling algorithm
and when applying the standard waterfilling algorithm. The x-axis shows the number of breakpoints,
and the y-axis shows the amount of neighbours counted.

7.4.6 Gain Estimation

In Section 6.3.2 we discussed a strategy to estimate the gain, instead of using the exact method of
the waterfilling algorithm for each neighbour. In this section we apply this estimation strategy and
compare it to the exact method.

We would expect the estimation to generally perform worse than the exact method, however, in Fig-
ure 11 the average objective value for both methods is plotted for each iteration of the local search
algorithm, using the same test instances. It can be seen that on average both methods are comparable
in their performance, where for some test instances the exact method performs better and for some
test instances the estimation method performs better. This unexpected behaviour can partially be
explained using the observations from the previous section. Here we saw that for a significant number
of neighbours the midpoint of waterfilling algorithm only requires one step to calculate the gain. In
this case the estimation strategy we implemented actually calculates the same charging solution as the
waterfilling algorithm by adding the total remaining charge to the active intervals. This can partially
explain the good performance of the estimation in this setting.

In terms of speed we see that the estimation strategy does make the local search algorithm faster in
most test cases. This can be seen for 10 test instances in table 3. The table also gives the number
times to gain was calculated/estimated in each test. We see that indeed the estimation strategy allows
the local search algorithm to do the same number of calculations of the gain in a shorter amount of
time, though the difference is not spectacular (this can again be explained by the little difference there
is between the midpoint waterfilling method and the estimation in the number of steps).

46

Figure 11: Relative average objective value of the candidate solution in each iteration of local search.
Average taken over 10 difficult test instances with N = 1440, using a required charge C = 175000.

Dataset Exact time (s) # of calculations Estimation time (s) # of estimations
1 42.84 15055 35.46 15425
2 46.68 16344 40.92 16553
3 28.91 9480 28.94 11532
4 59.50 20680 59.14 22166
5 32.62 11203 41.91 17226
6 45.04 15543 39.67 16441
7 47.21 15180 46.72 15545
8 54.90 17701 48.97 16214
9 72.64 22634 80.22 29694
10 48.49 14466 32.29 11062

Table 3: The run-time of the local search algorithm both when the gain is calculated exactly, and
when the gain is estimated. The number of calculations/estimations of the gain is also shown for each
test instance.

7.4.7 Simulated Annealing

A specific local search methods that is often applied to mitigate the problem of local minima is simu-
lated annealing [Eglese, 1990]. In this implementation of local search there is a possibility to jump to
a neighbouring state even if the gain is negative, i.e. the objective value of this state is worse than the
current candidate. We briefly discuss the results from our implementation here.

In our simulated annealing implementation we select one random neighbour in each iteration. We
always accept this neighbour if the gain is positive. However, we also define pA, which is the chance
that the neighbour is accepted even though there is a non-positive gain. pA should decrease both with
a larger negative gain and with a higher iteration of the algorithm. The latter is to ensure there is still
convergence to one solution.

47

Let n denote the current candidate configuration, and n′ a neighbour with a non-positive gain. We
define pA as:

pA = e
− f(xn′)−f(xn)

Ti .

T1 is set to be equal to 1, and T500 equal to 0.005. We update Ti in each iteration i in the following
way:

Ti = αTi−1,

where α ≈ 0.9895 for the parameters in these test runs, to ensure T1 = 1, and T500 = 0.005. We use
the same difficult datasets as in Section 7.4.2. The average objective value for each iteration of the
algorithm is shown in Figure 12. We see the behaviour that we expected, namely fluctuations in the
cost that become less and less, while the objective value of the candidate solution decreases. However
we do not see a clear improvement to the other local search implementation. In fact we see more
instances where the solution converges to a local minimum in the end, though we cannot explain this
behaviour. Unfortunately due to time constraints there was no opportunity within the scope of this
research to develop the simulated annealing approach further beyond this first implementation.

Figure 12: Average objective value of the candidate solution in each iteration of simulated annealing,
for the five different initializations and N = 100, R = 15, and C = 10000. Average taken over 10
difficult test instances.

48

8 Conclusions and Recommendations

8.1 Conclusion

In this research we investigated the possibilities for a minimum run-time constraint in a single-device
EV charging model, with the goal to flatten the load on the energy grid. Such a minimum run-time
constraint can prevent unnecessary wear on the battery of the device, because it prevents the frequent
switching of the operational level of the battery. We specifically focused on the single device models
presented in [van der Klauw, 2017] within the Profile Steering framework, a specific demand-side man-
agement approach. To this end we first presented possible extensions to these single-device models,
both for discrete and for continuous charging variables. We selected two of these extensions, dm1EVC
as described in (6) and m1EVC as described in (8), to be the focus of this thesis. For these two
problems we each presented an exact solution method, and we presented an approximation method
for Problem m1EVC.

For Problem (6) we developed a dynamic programming algorithm that was based on an algorithm pre-
sented in [Gerards and Hurink, 2016], where a minimum run-time constraint was imposed on specif-
ically an on/off single-device model. Our algorithm calculates an optimal solution to Problem (6)
in pseudo-polynomial time, with a time complexity of O(N2M2zM), where N denotes the number of
intervals, M the number of operational levels, and zM the maximum charging rate of the device. Simu-
lation results also showed that when increasing the minimum run-time R the calculation time decreases.

For Problem m1EVC we defined the concept of a block and of a configuration, to represent the mini-
mum run-time constraint in a feasible solution, where a configuration codifies which sets of consecutive
intervals charge at the same rate in this solution. We proved that given a configuration we can ef-
ficiently calculate an optimal charging solution. Using this result we developed a first algorithm for
Problem m1EVC, which enumerates all potentially optimal configurations and calculates the best so-
lution for each one. This algorithm is slow since a large number of configurations must be enumerated.
Also its memory requirements are relatively high. Both of these properties make it not very suitable
for the Profile Steering framework.

Secondly, we developed an alternative approach, using the same concept of configurations and their
associated optimal charging solution. This second algorithm is a local search approach, which ap-
proximates the optimal solution of a problem instance by iteratively searching the neighbourhood of a
certain candidate configuration. We defined neighbourhood operations based on the specific structure
of the problem. In simulations the algorithm showed a fast performance, also with larger instances, as
opposed to the exact approach. We see that the neighbourhood structure was well-chosen, as neigh-
bours are close-by in their charging solution, and therefore a local search approach lends itself well to
this problem. We do observe that there are local minima that sometimes prevent the algorithm from
reaching the optimal solution. We also see that the choice of initial configuration can influence both
the speed of convergence and whether or not the algorithm converges to a local minimum. When using
a randomized initialisation we see that multiple runs of the local search algorithm can successfully
solve the problem of local minima, also for the more difficult instances.

We developed two different approaches to calculate the gain of each neighbour of a candidate solution
in the local search algorithm. The first approach uses a known exact method to calculate the optimal
charging solution for each configuration, an approach named the waterfilling algorithm. The second
approach is an estimation, which uses the set of active blocks in an initial guess of the charging solution,
and then increases or decreases the charge of these blocks to reach the required charge. In simulations
we see that the performance of the two methods is comparable in terms of solution quality. Estimating
the gain results in a slight improvement in the speed of the algorithm compared to the exact method.

49

To calculate the optimal charging solution for a configuration we use the waterfilling algorithm, which
is described in Section 3.2.2. This algorithm exploits the fact that the optimal charging solution for a
given configuration can be characterized by a single value, namely the so-called optimal fill level. In
our local search approach we applied a slightly different version of the waterfilling algorithm, where
the fill level of the current candidate configuration is used as the starting point to calculate the optimal
fill level for each neighbour. This adjustment is motivated by the expectation that these values are
generally close for neighbours. Simulation results show that this is indeed the case when we compare
this method to the traditional waterfilling algorithm. We also proved that there are circumstances
in which two configurations actually have an equal optimal fill level, in Result 6.2. When this is the
case we do not have to apply the water filling algorithm to calculate the gain and thereby we save
calculation time. In simulations we observed that this property is indeed likely to occur and therefore
using this property is a significant improvement in the performance of the local search algorithm in
terms of calculation speed.

Finally, we implemented a second version of the local search algorithm, based on the concept of
simulated annealing. In simulated annealing there is a possibility to jump to a neighbouring state even
if the gain of this state is negative. We see that our simple simulated annealing implementation does
not yet for this problem mitigate the issue that local minima pose.

8.2 Discussion

In this section we discuss some of the limitations of this research as well as give several recommenda-
tions for potential future research directions.

In In our first algorithm we enumerate the set of configurations we use to solve Problem m1EVC to
optimality. Because this set grows large fast with an increasing number of intervals N , the algorithm
is not scalable to larger instances. Secondly, the way in which the configurations are enumerated now
requires a lot of memory. Both of these limitations of the algorithm could potentially be improved
upon. In particular, there may be ways to limit the set of considered configurations further. Related
to this is also the question how the size of the set of configurations may be expressed in terms of N
and R, and whether this set grows exponentially with N .

Secondly, the initial model for Problem m1EVC presented in (8) defines both a minimum positive
run-time and a minimum idle time, denoted by R1 and R0 respectively. We assumed for this research
that R1 = R0. An interesting follow-up question is how much more difficult the problem becomes
when this assumption is removed. We can already observe that the definition of a configuration as
used in this work is not directly applicable to this more general case, because there is no longer one
single minimum run-time R.

In a similar vein we have in this research considered a specific objective for the optimisation, namely
the objective of flattening the load on the energy grid using the cost function f(x) =

∑
t(xt + pt)

2.
Some of our results are no longer true when different objective functions are considered, for example
the earlier mentioned function f where each term has its own weight coefficient. Future research could
therefore look into solution methods for the m1EVC model with a quadratic or convex cost function,
and whether any extension of the methods presented here is still possible in that case.

It remains an open question whether Problem m1EVC is NP-hard or not. We have neither managed
to prove that it is within the scope of this research, nor have we been able to develop an optimal
polynomial-time approach. We do deem it relatively likely that the problem is NP-hard, due to the
difficulties we have encountered within this research in the characterization of an optimal solution.

Section 5.4 discusses Problem m1BC, which we described in (9). This problem considers the charging

50

of a bidirectional battery, which results in cumulative constraints that are not present in Problem
m1EVC. We concluded that our approach to Problem m1EVC does not extend to solve this problem
as well. But perhaps a similar solution method is possible, where the structure of the minimum run-
time constraint is used similarly to what is done in this research for Problem m1EVC.

We defined four neighbourhood operations for the local search algorithm. One of these operations, the
split operator, currently defines a much smaller set of neighbours than the other three operators when
it is applied in an iteration. This is because the split operator only splits each of the largest blocks
in a configuration to define a neighbour. In the worst-case this results in only one neighbour of the
current candidate solution. On the other hand the other three operators all consider every feasible
pair of blocks in the candidate solution to define a neighbour, naturally resulting in a larger pool of
neighbours to consider. This imbalance could be improved upon by defining the split operator in a
different manner.

We presented a simple simulated annealing approach in this research. One easy method to make such
an approach more sophisticated and effective would be ’restarts’, where the result of one simulated
annealing run is used as the starting configuration for another run. Alternitively the state with the
best objective can be stored for some iterations, and can be selected again if no better candidate is
found in the meantime.

We note that another phenomenon that can cause faster battery wear in the charging of an EV is
fast charging (charging at high charging rates), mentioned for example in [Trippe et al., 2014]. There
may be possibilities to extend the models presented in this research to also limits charging at these
extremely high rates and thus reduce battery ageing further.

Finally, we conclude this section by noting that an interesting follow-up question is how the solution
quality of this newly defined problems relate to the old problem, EVC, and how much the difference
in quality may depend on certain behaviour of the problem instance.

51

References

[Aalst, 2006] Aalst, M. K. V. (2006). The impacts of climate change on the risk of natural disasters.
Disasters, 30(1):5–18.

[Barbato and Capone, 2014] Barbato, A. and Capone, A. (2014). Optimization models and methods
for demand-side management of residential users: A survey. Energies.

[Bienstock and Mattia, 2007] Bienstock, D. and Mattia, S. (2007). Using mixed-integer programming
to solve power grid blackout problems. Discrete Optimization, 4(1):115–141.

[Carrion and Arroyo, 2006] Carrion, M. and Arroyo, J. M. (2006). A computationally efficient mixed-
integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power
Systems, 21(3):1371–1378.

[Cenedese et al., 2019] Cenedese, C., Fabiani, F., M. Cucuzzella, J. M. A. S., Cao, M., and Gram-
matico, S. (2019). Charging plug-in electric vehicles as a mixed-integer aggregative game. In 2019
IEEE 58th Conference on Decision and Control (CDC).

[Chen et al., 2014] Chen, N., Tan, C. W., and Quek, T. Q. S. (2014). Electric vehicle charging in
smart grid: Optimality and valley-filling algorithms. IEEE Journal of Selected Topics in Signal
Processing, 8(6).

[Eglese, 1990] Eglese, R. (1990). Simulated annealing: a tool for operational research. European
Journal of Operational Research, 46:271–281.

[Esther and Kumar, 2016] Esther, B. P. and Kumar, K. S. (2016). A survey on residential demand
side management architecture, approaches, optimization models and methods. Renewable and Sus-
tainable Energy Reviews, 59:342–351.

[Falkner, 2016] Falkner, R. (2016). The paris agreement and the new logic of international climate
politics. International Affairs, 92(5):1107–1125.

[Gerards and Hurink, 2016] Gerards, M. E. T. and Hurink, J. L. (2016). Planning of on/off devices
with minimum run-times. In Proceedings of the 2016 IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), pages 1–6. IEEE Power Electronics Society.

[Hemavathi and Shinisha, 2022] Hemavathi, S. and Shinisha, A. (2022). A study on trends and devel-
opments in electric vehicle charging technologies. Journal of Energy Storage, 52.

[Hoogsteen et al., 2017] Hoogsteen, G., Molderink, A., Hurink, J., Smit, G., Kootstra, B., and Schur-
ing, F. (2017). Charging electric vehicles, baking pizzas, and melting a fuse in lochem. CIRED -
Open Access Proceedings Journal, 2017:1629–1633.

[Hoogsteen et al., 2016] Hoogsteen, G., Molderink, A., Hurink, J. L., and Smit, G. J. M. (2016).
Generation of flexible domestic load profiles to evaluate demand side management approaches. In
2016 IEEE International Energy Conference (ENERGYCON), pages 1–6. IEEE Power & Energy
Society.

[IEA, 2022] IEA (2022). Global ev outlook 2022. Technical report, IEA.

[Jebaraja and Iniyan, 2006] Jebaraja, S. and Iniyan, S. (2006). A review of energy models. Renewable
and Sustainable Energy Reviews, 10:281–311.

[Khalid et al., 2022] Khalid, M., Ahmad, F., Panigrahi, B. K., and Al-Fagih, L. (2022). A comprehen-
sive review on advanced charging topologies and methodologies for electric vehicle battery. Journal
of Energy Storage, 53:105084.

52

[Kuyper et al., 2018] Kuyper, J., Schroeder, H., and Linnér, B.-O. (2018). The evolution of the unfccc.
Annual Review of Environment and Resources, 43:343–368.

[Mohanty et al., 2022] Mohanty, S., Panda, S., Parida, S. M., Rout, P. K., Sahu, B. K., Bajaj, M.,
Zawbaa, H. M., Kumar, N. M., and Kamel, S. (2022). Demand side management of electric vehicles
in smart grids: A survey on strategies, challenges, modeling, and optimization. Energy Reports,
8:12466–12490.

[Nykamp et al., 2015] Nykamp, S., Rott, T., Dettke, N., and Kueppers, S. (2015). The project ”elche”
wettringen: storage as an alternative to grid reinforcements - experiences, benefits and challenges
from a dso point of. In International ETG Congress 2015; Die Energiewende - Blueprints for the
new energy age, pages 1–6.

[Patriksson, 2008] Patriksson, M. (2008). A survey on the continuous nonlinear resource allocation
problem. European Journal of Operational Research, 185:1–46.

[Patriksson and Strömberg, 2015] Patriksson, M. and Strömberg, C. (2015). Algorithms for the contin-
uous nonlinear resource allocation problem–new implementations and numerical studies. European
Journal of Operational Research, 243:703–722.

[Pörtner et al., 2022] Pörtner, H.-O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E.,
Begum, R. A., Betts, R., Kerr, R. B., and Biesbroek, R. (2022). Climate change 2022: Impacts,
adaptation and vulnerability. IPCC Sixth Assessment Report.

[Rachid et al., 2023] Rachid, A., El Fadil, H., Gaouzi, K., Rachid, K., Lassioui, A., El Idrissi, Z., and
Koundi, M. (2023). Electric vehicle charging systems: Comprehensive review. Energies, 16(1).

[Schoot Uiterkamp et al., 2018] Schoot Uiterkamp, M. H. H., van der Klauw, T., Gerards, M. E. T.,
and Hurink, J. L. (2018). Offline and online scheduling of electric vehicle charging with a minimum
charging threshold. In 2018 IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm), pages 1–6.

[Siano, 2014] Siano, P. (2014). Demand response and smart grids—a survey. Renewable and Sustain-
able Energy Reviews, 30:461–478.

[Strbac, 2008] Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy,
36(12):4419–4426.

[Trippe et al., 2014] Trippe, A. E., Arunachala, R., Massier, T., Jossen, A., and Hamacher, T. (2014).
Charging optimization of battery electric vehicles including cycle battery aging. In IEEE PES
Innovative Smart Grid Technologies, Europe, pages 1–6.

[van der Klauw, 2017] van der Klauw, T. (2017). Decentralized Energy Management with Profile Steer-
ing: Resource Allocation Problems in Energy Management. University of Twente.

[Winston, 2003] Winston, W. L. (2003). Introduction to Mathematical Programming: Applications
and Algorithms. Duxbury Resource Center.

[Young et al., 2013] Young, K., Wang, C., Wang, L. Y., and Strunz, K. (2013). Electric vehicle battery
technologies. Electric vehicle integration into modern power networks, pages 15–56.

53

	Introduction
	Problem Statement/Research Question

	Background
	Energy Management
	Profile Steering
	EV Charging
	A Minimum run-time

	The Problem
	Terms and Definitions
	The Simple Models
	Continuous Charging Variable
	The Waterfilling Algorithm
	Discrete Charging Levels

	The Minimum Run-time
	The New Models
	Discrete and Fixed Charging Value
	Continuous and Fixed Charging Value
	Continuous and Free Charging Value

	Choice of Problems

	Discrete EVC with Minumum run-time
	On/Off Device
	The Graph Representation
	The On/Off Graph
	Expanding the Graph

	The Dynamic Programming Algorithm
	Improvements on the Run-time
	Battery Charging
	Conclusion

	EVC with Minumum run-time
	Definitions
	Analysing the Problem
	Comparison to EVC and mEVC
	Proof of Concept

	A First Algorithm for m1EVC
	To Find an Optimal Configuration
	The Algorithm

	Battery Charging
	Evaluation and Conclusion

	Local Search
	Overview
	The Neighbourhood of a Configuration
	The Neighbourhood Operations
	Connectivity

	Calculation of the Gain
	Exact Gain Calculation
	Estimating the Gain

	The Local Search Algorithm
	Conclusion
	Appendix: Flow Equality of Configurations
	A First Result
	A Generalised Result

	Results
	Testing Parameters
	dm1EVC Dynamic Program
	m1EVC Exact Algorithm
	m1EVC Local Search Algorithm
	Initialization
	Local Minima
	Random Initialization
	Equality of Fill Levels
	Midpoint Waterfilling
	Gain Estimation
	Simulated Annealing

	Conclusions and Recommendations
	Conclusion
	Discussion

