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Abstract 

 In the consumption-based society of today, illegally dumped waste constitutes a real issue. 

Illegal dumping comes with several environmental, health, and economic issues and thus should be 

reduced. Additionally, recycling dumped waste would be a great step towards a circular economy. 

Literature suggests that deep learning models, more specifically convolutional neural networks 

(CNNs), trained on high-resolution satellite imagery can be a possible solution to this problem. CNNs 

are successfully used to classify materials or objects on satellite imagery in similar fields. This project 

aims to find out how deep learning models can be used to classify illegally dumped materials on 

satellite imagery. Initially, a few state-of-the-art CNN models are trained to classify between just 

images that have dumping and images that do not. This is done at the hand of over 20.000 manually 

annotated satellite images of Cyprus, where ground truth data was collected. The Inception V3 CNN 

model was able to reach an overall classification accuracy of 83%, where the size of the dataset and 

training time had the largest impact on performance. Then, several CNN models are trained to classify 

two very distinct classes of waste material. This is done at the hand of a much smaller pre-existing 

dataset which is annotated with the required details of less than 600 images. This dataset was used as 

the training data while a subset of the earlier Cyprus dataset was re-annotated and used to evaluate the 

models. Using data augmentation techniques to slightly reduce the limitations of the small dataset, the 

Inception V3 CNN model was able to reach a classification accuracy of only 58%. While the approach 

used in this project does not produce confident performance figures for CNN models at classifying 

illegally dumped waste material, the earlier results and increased performance over different iterations 

of models suggest that with a different approach and implementation of new techniques, CNN deep 

learning models combined with high-spatial resolution satellite imagery might still pose a possible 

solution to illegal waste dumping in the future. 
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1 Introduction 

In the consumption-based society we live in, a considerable amount of waste material is 

generated. In the EU alone, 203.660.000 tons of waste material were generated just in 2020 [1]. Over 

the past decades, the amount of material being disposed of as waste has only been increasing. Not all 

of this waste is properly disposed of through the right channels, however, as illegal dumpings of waste 

materials occur. These illegal dumpings will have definite negative effects on the surrounding 

environment and near communities in various ways. One example of this is the pollution of soil and 

groundwater as shown by Paz et al. [2] critical in agriculture. Also, there are health risks associated 

with living close to a waste-dumping location as found by Singh et al. [3]. Furthermore, illegal 

dumping has a negative impact on tourism, which could be a major problem for many communities 

which rely on tourism as a sizable part of their economies. Due to the large amount of waste material 

and the diversity of the types of materials dumped, it is difficult for governmental bodies and 

institutions to track down and take care of the illegally dumped material through the proper channels. 

 In order for authorities and institutions to deal with illegal dumping spots efficiently and with 

minimal damage to the environment and surrounding communities, the illegally dumped material must 

be located and the type of material properly classified. The classification of dumped waste materials is 

of great importance in making steps closer to a circular economy. The type of material that is dumped 

must be known in order for the authorities to contact the proper institutions to be responsible for the 

cleanup. These institutions are knowledgeable about the recycling process of those specific materials, 

maximizing the amount of material that can be recycled. This circular economy approach to the 

materials also has economic benefits, such as cost savings and new possible business opportunities as 

described by Kobza and Schuster [4]next to the obvious environmental ones. 

 An application of technology needs to be developed to automatically detect the illegal 

dumping grounds' locations and to accurately classify which types of material are dumped. A possible 

solution might be found in the field of Earth Observation (EO). The usage of deep learning in 

combination with Remote Sensing (RS) which is observing earth trough sensors from satellites or 

aircraft, has seen successful implementation in various similar applications, such as land cover 

classification as shown by Kussel et al. [5]  as well as other specific implementations. In this project, 

we will find out how these techniques can be applied to the application of classification of dumped 

waste material. 
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1.1 Research Objectives 

The purpose of this paper is to investigate the application of state-of-the-art deep learning 

classification techniques in combination with satellite imagery to classify waste material in illegal 

waste dumping grounds. Both classifying between satellite images that show dumping and background 

satellite images that do not show any dumping, as well as between different types of waste material on 

satellite images showing dumping. This can be formulated to form the main research question of this 

project as the following: 

RQ: How can deep learning be used for the classification of illegally dumped materials from  

 satellite imagery? 

In order to answer this main research question, we first need to know how to structure a deep 

learning model to work optimally for this specific application as well as know how such a deep 

learning model can be best trained to be accurate in classifying the illegally dumped waste material. 

This can be formulated into the following sub-questions: 

SQ1: Which deep learning models are structured optimally to classify illegally dumped materials? 

SQ2: How can such a deep learning model be trained to perform accurately? 

1.2 Report Outline 

In the following report, the full process of structuring, training, and evaluating a deep learning 

model for the given application will be described. It will be structured like the following. In Chapter 2 

the background research will be outlined. This includes the state-of-the-art of deep learning for image 

classification, as well as satellite imagery. Chapter 3 will outline the approach taken and the methods 

and techniques used in this project. The realization of the project will then be documented in chapter 4, 

after which the evaluation of the proposed solution will be discussed in chapter 5 and the results will 

be shown. Chapter 6 will be discussing limitations as well as possible future directions in this field. 

Finally, Chapter 7 will conclude the report followed by the appendixes and references. 
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2 Background Research 

The aim of this chapter in the project is to get acquainted with previous work in the field as 

well as the state of the art to inform decisions later in the project. First, a literature review regarding 

the state of satellite imagery is conducted. Next, preliminary research was done on the state-of-the-art 

of deep learning models in the field of RS with the use of a literature matrix which can be seen in 

Appendix A. Finally, the training of such models for application in RS is discussed.  

2.1 Satellite Imagery 

In order to effectively apply deep learning techniques to satellite imagery for the purposes of 

classifying illegally dumped materials, we first need to gain an understanding of existing satellite 

imagery datasets and their characteristics. This subchapter consists of an overview of relevant satellite 

datasets and their features. Additionally, the possible combining of satellite datasets will be briefly 

discussed.  

2.1.1 Sensor Types 

There are several different types of satellite sensors that are used to produce satellite datasets 

which all fall into one of two main categories. The first main category of sensors is imaging sensors. 

In the category of imaging sensors, Zhu et al. [6] name the subcategories of optical imaging sensors, 

thermal imaging sensors, and radar imaging sensors. What defines optical imaging sensors according 

to Zhu et al. [6] is that these sensors are able to sense electromagnetic (ER) waves in the visible part of 

the spectrum or waves that have been reflected from the earth's surface. On the other hand, thermal 

sensors operate infrared and microwave ranges. Finally, radar imaging sensors are active sensors in the 

microwave range as defined by Zhu et al. [6]. This means that they first transmit ER waves and then 

sense the reflection.    

 When comparing different satellite datasets for a given purpose, not all types are always 

relevant. Both optical and radar sensors are also mentioned by Kumar and Bhagat [7]. The reason 

Kumar and Bhagat [7] leave out thermal imaging sensors in their paper could be because they focus on 

land-based applications of satellite imaging, in which thermal imaging does not have many 

applications as described by Zhu et al. [6]. Additionally, Kumar and Bhagat [7] describe hyperspectral 

imaging as a separate data type in contrast to Zhu et al. [6] who have sub-categorized hyperspectral 

imagery under optical imagery. Along with hyperspectral Zhu et al. [6] also describe panchromatic 

and multispectral as sub-categories of optical imagery. These sub-categories are differentiated by the 

number of spectral bands and the spectral range in the sensor, which are the two main characteristics 

that differentiate the optical type of satellite imagery datasets.  

 The second main category of sensors is non-imaging type sensors. Zhu et al. [6] state that 

spectroradiometers, radiometers, and laser-based sensors belong in this category. Kumar and Bhagat 
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[7] also briefly describe LiDAR (Light Detection and Ranging) sensor-based datasets, which are laser-

based. According to Zhu et al. [6], the types of datasets in the non-imaging category have no 

significantly land-based applications except for LiDAR. However, LiDAR can only really be used for 

topographic mapping according to Kumar and Bhagat [7] and Zhu et al. [6]. Given our use case for 

satellite imagery, non-imaging-based datasets might not be as useful to us as imaging-based datasets 

when used standalone. 

2.1.2 Characteristics 

There are four important main characteristics of satellite sensors which are reflected on the 

imagery datasets produced using these sensors. Liu [8] uses sensor type, spatial resolution, revisit time, 

and swath size as characteristics to differentiate the different satellites of which datasets are available. 

Sensor type, which was also used by Zhu et al. [6] and Kumar and Bhagat [7] to differentiate between 

satellites, intuitively means which type(s) of sensor(s) the satellite uses to capture data such as the 

types described above. As stated before, when the type of the sensor is optical, the two additional 

characteristics spectral range and the number of spectral bands are important. The spectral range is the 

range of wavelengths of the ER spectrum that a sensor can capture. This range is divided into different 

spectral bands. As defined by Zhu et al. [6], panchromatic-type sensors have a short spectral range and 

just one band, while multispectral sensors have a medium spectral range divided up into several bands. 

Intuitively hyperspectral sensors have a big spectral range divided up into a large number of small 

bands which can go up to a hundred spectral bands. Other characteristics apply to both optical as well 

as other types of satellite imagery sensors. 

 After sensor type, another significant dataset characteristic is spatial resolution. The 

characteristic of spatial resolution is used by Zhu et al. [6], Kumar and Bhagat [7], and Liu [8] as well 

as by Krueger [9] to differentiate satellites. The spatial resolution specifies the size of one pixel from a 

satellite image in relation to real life. This size indicates how small an object can be to still be 

distinguished by sensors as explained by Liu [8], it can vary between kilometers all the way down to 

centimeters. Liu [8] also explains that the revisit time is the amount of time it takes a satellite to 

recapture an exact location again after having just captured it, which is usually somewhere between a 

month and a day. This characteristic is also used by Zhu et al. [6] and Kumar and Bhagat [7]. Then 

there is swath size, which is also used to differentiate satellites by Zhu et al. [6] as well as Krueger [9]. 

A swath is the width of land that a sensor covers on every pass as made clear by Zhu et al. [6], which 

is usually a few hundred kilometers. Other factors not related to the sensor(s) used to create the dataset 

can factor into the decision on which datasets could be used for the given application such as the costs 

of the dataset as mentioned by Krueger [9], or the access and availability of a dataset as mentioned by 

Kumar and Bhagat [7]. The available datasets have many different characteristics which need to be 

taken into account depending on the use case, some characteristics are more influential than others. 
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When classifying satellite imagery using deep learning such as in this project, different 

characteristics have different influences on the accuracy of the classification. In general, the spatial 

resolution has the greatest effect, and spectral band selection after that, depending on the use case, 

with other characteristics having a relatively low influence on the classification accuracy. Momeni et 

al. [10] found that after changing the classification process, using a higher spatial resolution gave the 

highest rise in the accuracy of classification. This is in line with findings by Chen et al. [11] who also 

found changing the spatial resolution to have the biggest impact, although depending on the landscape 

being classified, higher resolution might not always lead to more accurate classification. After spatial 

resolution Momeni et al. [10] found the spectral band selection to also have a significant impact, 

stating that the spectral band selection must be deliberate as just adding more bands does not always 

result in higher accuracy. In contrast, Yu et al. [12] found the spectral band selection to have a larger 

effect on classification accuracy than spatial resolution supported by Bradter et al. [13] who found that 

using a large number of spectral bands gave the best results. This difference in findings could be due 

to the different landscapes and purpose in the different studies as both Momeni et al. [10] and Chen et 

al. [11] worked on urban landscapes while Yu et al. [12] and Bradter et al. [13] focused on vegetation 

classification. The effect different characteristics have on classification accuracy can differ depending 

on the use case, although the spatial resolution and spectral band selection are the most important 

characteristics. 

 As our objective is to classify dumped waste, it is necessary to use satellite imagery with a fine 

enough spatial resolution so that the waste can be identified, ideally under half a meter. Additionally, 

research in a similar field of urban land cover classification suggests that additional spectral bands can 

possibly enhance classification accuracy. Herold et al. [14] found that after bands in the visual range, 

near-infrared (NIR) and short-wave infrared (SWIR) have great importance for telling apart different 

types of ground cover materials. Additionally, Momeni et al. [15] found that urban land cover 

classification accuracy significantly increases if additional red-edge and NIR bands are included and 

potential improvements can be made by including yellow visible and coastal blue spectral bands.  

2.1.3 Multi-modal learning 

While for a standalone dataset optical imagery is most useful, it is possible to combine 

different types of satellite data, or others gathered through different means, in order to further improve 

the accuracy of classification by a deep learning model. Fang et al. [16] concluded that it is possible to 

improve classification accuracy by combining a high spatial resolution dataset with laser-based 

LiDAR data. Additionally, it was found by Orynbaikyzy [17] that adding radar data as well as optical 

features to the originally used bands results in a higher level of accuracy of classification. 

Orynbaikyzy [17] describe optical features as an additional layer of features that can be extracted from 

existing spectral bands. These optical features allow for an increase in classification accuracy using the 

existing dataset.  
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2.2 Convolutional Neural Networks 

Neural networks (NNs) are a type of deep learning model directly inspired by biological 

neural networks or brains. A NN consists of layers of neurons or nodes that are connected between the 

layers. A schematic of a simple NN is visualized in figure 1. Each neuron can receive an input signal, 

apply a certain weight and bias to the received signal and then output the signal through an activation 

function. With the use of backpropagation and a cost function, changing the weights will allow the 

network to learn to recognize certain desired patterns. Convolutional Neural Networks (CNNs) are a 

type of NN that is particularly useful in learning patterns in images. 

 

Figure 1. NN Diagram. 

CNNs have seen a lot of success in the field of RS in similar applications. As Song et al. [18] 

describe, the advantage of CNNs in image classification is based on a few key characteristics. Firstly, 

the convolutional operation on groups of pixels allows for the extraction of certain abstract features 

from the data which can be used in the classification. Secondly, CNNs have the capability to rapidly 

acquire image information from heaps of data as allowed by the combination of pooling layers in their 

structure. Finally, the sparse connections, weight-sharing and spatial subsampling that characterize the 

simple structure of CNNs allow for more adaptability to the data structure of images.  

 CNNs have been found to be effective for the purpose of image classification in the field of 

RS. Kussel et al. [5] compared the land cover classification performance of a traditional NN as well as 

the Random Forrest (RF) deep learning model which is popular in the field of RS to two different 

CNN structures. It was found by Kussel et al. [5] that in this application the CNNs were able to reach a 

higher percentage of classification accuracy than both the RF and traditional NN deep learning models. 
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In this chapter, the CNN model structure will be investigated and the application of CNNs in the RS 

field will be explored. 

2.2.1 CNN Structure 

Similarly to a regular NN, the structure of a CNN is made up of different components which 

are stacked in layers. These layers are split up between the feature extractor part of the CNN structure 

and the feature classifier part of the CNN. The first part, the feature extractor, takes the input data and 

processes it into a set of features that are present in the input image. Things like lines, textures, or 

patterns. Then the feature classifier part of the CNN decides how to classify the input image based on 

those extracted features. The layers in the feature classifier part are fully connected, like in a deeply 

connected neural network (DNN). However, in the layers in the feature extractor, each neuron is, in 

contrast to in a DNN, only locally connected to a certain area of the previous layer. There are two 

types of layers in the feature extractor: convolutional layers, which give CNNs their name, and 

pooling layers. An image diagram of the structure of a CNN can be seen in Figure 2. 

 

Figure 2. CNN Diagram. 

A convolutional layer, intuitively, performs a convolutional operation which, like stated 

before, works on a small area of the input image defined by the convolutional kernel size. Portilla [19] 

explains that the convolutional kernel is a kind of filter that works as a matrix of different weights that 

are applied to the pixel values of each pixel within the convolutional kernel. The average of the 

weighted inputs forms the output of the convolutional layer at that particular location which, if done 

for the whole image, will form a convoluted image. This can then be used as an input for the next 

convolutional layer to extract complex features with each additional layer as Song et al. [18] describe. 

 A pooling layer, on the other hand, can be used to reduce the computational cost of training 

the network, by subsampling the image. Song et al. [18] explain that the usage of a pooling layer is to 

capture certain features while reducing the input data, so the model can still learn particular features 

effectively at a reduced computational load. Similarly to a convolutional layer, a pooling layer works 
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with a certain kernel size which determines how much of the input data is removed as explained by 

Portilla [19]. A pooling layer does not perform a convolutional operation but instead, a bunch of 

general pooling layers can be used such as maximum, average, and random pooling. These pooling 

layers either take the maximum or average pixel value inside the kernel respectively, while the random 

pooling selects a pixel value based on certain probabilities.  

 Activation and cost functions are also essential in a CNN. The activation as its name makes 

clear, is used to decide if a neuron is activated and thus whether it contributes to the network or not. 

Portilla [19] explains that traditionally this has usually been a Sigmoid function but recently Rectified 

Linear Unit (ReLU) by Hara et al. [20] and Maxout by Goodfellow et al. [21] functions proved more 

popular backed up by Song et al. [18]. The cost or loss function is used to measure the difference 

between a neuron's predicted value and the expected value. A popular cost function suggested by 

Portilla [19] is cross entropy as it allows for faster learning the more ‘off’ the neuron is from the 

expected value. Additionally, Song et al. [18] and Portilla [19] suggest extra additions to the loss 

function like L1 and L2 regularization can be used to prevent overfitting of the model. 

 The fully connected layer in the feature classifier part of the CNN has multiple hidden layers 

of fully connected neurons. This fully connected layer takes the feature images output by the 

convolutional and pooling layers in the form of a one-dimensional vector as an input and maps the 

features to the output layer which finally classifies the data through a classification function such as 

Support Vector Machines (SVMs) or Softmax by [22]. 

2.2.2 Existing CNN Models 

There are many pre-existing CNN models already available in existing literature, each with 

different structures, depths, and features. An overview of popular CNN models from the reviewed 

existing literature has been created in Table 1.  

Model Model depth Structural features 

LeNet [23] 4 layers Simple CNN structure 

AlexNet [24] 7 layers C-layers interconnected 

VGG [25] 19 layers Increased depth, max pooling 

GoogleNet [26] 22 layers Inception modules 

ResNet [27] 34 layers  Skip-connections and batch normalization 

Inception V3/V4 [28]/[29] 48 layers Residual connections, 1 x 1 filters 

DenseNet [30] 5 layers Cross-layer connection 

Table 1. CNN Models Overview. 
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LeNet [23] is the first successful application of a CNN, first designed in 1990 and improved in 

1998 to classify handwriting. This model consists of 2 convolutional layers (C-layers) and 2 pooling 

layers (P-layers) which alternate each other. This was expanded upon with AlexNet [24] which was 

made up of 5 C layers and 3 P layers but this time, not every C-layer was followed by a P-layer. VGG 

or VGGNet [25] was designed to analyze the capability of deeper CNN models, initially created with 

19 layers. GoogleNet [26] was based on a new architecture, made up of 22 Inception layers which 

improved the utilization of computer resources. ResNet [27] is inspired by a 19-layer VGG model but 

expanded to 34 layers with fewer P-layers than the VGG model. ResNet [27] also introduced skip 

connections combined with batch normalization. In later iterations, ResNet [27] was expanded up to 

more than 1000 layers. Inception V3/V4 [28]/[29] expanded on the GoogleNet [26] structure by 

introducing residual connections, accelerating the training process. DenseNet [30] is more applicable 

in applications where a very deep CNN is not able to be properly trained, like when a low amount of 

training data is available. DenseNet [30] offers a dense cross-layer connection, allowing every layer to 

directly connect to all previous layers. A shallower CNN model like this will possibly work well in 

cases where a low amount of training data limits the possible accuracy of a CNN model.  

2.2.3. CNN Models in Remote Sensing 

When adapting existing CNN models to the field of RS, there are some things to consider. 

Satellite imagery includes fine-grain textures and shapes as well as additional spectral information. A 

number of changes can be made to various aspects of a CNN model in order for the CNN model to 

better capture features from satellite imagery and thus increase the classification accuracy. 

 In the field of computer vision where most CNN structures have been developed, the input to 

the model usually consists of an image with RGB (Red, Green, Blue) values. As previously discussed 

however, satellite images sometimes contain information on more spectral bands than just visible light. 

This data more precisely describes the earth's features and can thus be recommended to be included as 

input for an RS CNN. In addition to this, it is also possible to use multisource data, Duarte et al. [31] 

were able to gain 4% of classification accuracy in classifying damaged buildings by combining feature 

images generated from multiple airborne datasets with the ones generated from satellite imagery. 

Meanwhile, utilizing a novel 3-D deep learning model, Hamida et al. [32] used a combination of three 

datasets each with over 100 spectral bands with the addition of spatial data as input, allowing them to 

reach up to 98,4% of groundcover classification accuracy. Additionally, textural features or vegetation 

indices can be extracted from the existing satellite imagery and added to the input of a CNN model as 

additional features. Xia et al. [33] added 4 textural features; mean value, standard deviation, 

consistency, and entropy to RGB images, and significantly improved the classification accuracy of 

vegetation and roads. Also, Pritt and Chern [34] include features from the satellite imagery metadata 

and include those features in the fully connected layer of the model. Overall the addition of more 

spectral, index, textural information, metadata or, multisource data to the satellite imagery input of a 
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CNN model could help the CNN to recognize additional patterns and features allowing for a higher 

level of accuracy in classification. 

 A limitation of using a CNN in RS is that CNNs contain more parameters than more 

traditional, shallow NNs. To accurately train these parameters more training data can ensure a faster 

convergence of the model. In contrast to the field of computer vision, there are few training datasets 

suitable for satellite image classification, let alone a specific application such as waste material 

classification. Therefore, reducing the number of parameters in the model can aid the model to 

converge accurately. A possible solution to this is to reduce the parameters in the fully connected 

layers with the use of a dropout function. According to Portilla [19] this randomly drops certain units 

to prevent overfitting of the model. Pritt and Chern [34] and Kussel et al. [5] both include a dropout 

with 0.6 and 0.5 probability respectively and reach high levels of classification accuracy on 

multispectral satellite imagery. Additionally, Zhong et al. [35] use a global average pooling layer in 

place of a fully connected layer for the classification of features in addition to a dropout function, 

reducing the parameters significantly.  

 Two popular classifier functions in the computer vision field are the Support Vector Machine 

(SVM) and Softmax [22] classifiers. In literature, the Softmax classifier is more prominent in papers 

covering successful classification through satellite imagery, such as in [32], [34], [36], [37]. Although 

the SVM classifier has seen use in similar use cases like by Zhang et al. [38]. Adedeji and Wang [39] 

also use a SVM for waste material classification although they use regular images instead of satellite 

imagery. However, Song et al. [18] argue that these classifiers might be inadequate for the RS field 

due to high noise levels in some cases. Bai et al. [40] used a conventional classifier for this reason. 

 The addition of L1 or L2 regularization as additions to the loss function of a CNN can help 

against model overfitting as it penalizes larger weights in the model as explained by Portilla [19]. This 

is also used by Kussel et al. [5] in land cover classification. 

 Increasing the number of layers of a CNN model can lead to a bump in classification accuracy 

level, however, adding layers to a CNN will also increase the number of parameters which, as 

previously discussed, requires more training data to train effectively. A possible workaround for this is 

to create multiple independent CNN models with different structures and then integrate them which 

can be done in various ways. Pritt and Chern[34] created an ensemble of 4 existing CNN models each 

with its own fully connected layer. Then through the unweighted average of the four different models, 

the classification is decided. This structure helped to classify buildings into 62 classes with an 

accuracy of up to %95 for some classes. Li et al.[37] suggest a different method where differently 

structured CNNs vote on the land use classification resulting in a 94% overall accuracy. The 

combining of various CNN models into a single structure might be a feasible solution to the 

classification of waste materials as a very low amount of training data is available.  
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Parameter initialization and optimization are important parts of any CNN. For parameter 

optimization, traditional parameter optimizers can be used. Both Song et al. [18] and Portilla [19] list 

RMSprop, Adam, Adadelta, Adagrad, and Stochastic Gradient Descent as possible optimizers. 

Parameter initialization is more complex, however. Initialization with random values has a low 

training efficiency and requires a large dataset according to Nogueira et al. [41]. This process might 

result in the most accurate model, however. A different strategy suggested by Nogueira et al. [41] is to 

take an existing model that has already been trained, so the parameters are already developed, and then 

retrain that model to fit it to the specific use case. 

2.3 Training CNN Models 

Like regular neural networks CNN deep learning models rely on a sufficiently large dataset to 

extract and learn features. While it is possible to train a CNN model using a relatively smaller dataset 

there is a large chance of overfitting the model resulting in low classification accuracy when 

evaluating. While some open RS training sets exist, our model will be trained for a highly specific 

purpose for which there is no open-access RS dataset available that fits our criteria. Additionally, there 

is only a low number of labeled images available that show illegal waste dumping. There are however 

ways in which smaller datasets can be augmented, such as the creation of synthetic data and existing 

data augmentation techniques which will be explored in this chapter.  

2.3.1 Data Augmentation 

Since gaining more samples through manual visual interpretation is very inefficient and costs 

resources, methods have been deployed that automatically expand a dataset by applying certain simple 

operations to the pre-existing images in the dataset. Examples of augmentations that have been used 

on remote sensing datasets from literature are rotations at certain degree intervals, mirroring or 

flipping images, random translations, or scaling of the images as used in [31], [34], [36], [42] but also 

operations such as color value shifting, blurring and, brightness adjustment such as used by Pan et 

al.[36] and Padubidri et al. [42]. Furthermore, Zhong et al. [35] developed a novel dataset 

augmentation in which a window of variable size is applied to different parts of scenes in satellite 

images and then sampling from that window. Although sometimes simple, all of these augmentations 

can be used to enlarge datasets for the training CNN deep learning models. 

2.3.2 Synthetic Data 

In addition to augmenting a dataset with the traditional augmentation methods that utilize the 

existing images in a dataset, it is also possible to create entirely new data. For dumped waste detection 

using a CNN, Padubidri et al. [42] generated synthetic training data by assorting 3D models of 

dumped materials into random piles and rendering them on top of a satellite image background. This 

allowed them to greatly increase the size of the training data while they reserved most real-world data 
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for evaluating the model. Additionally, Martinson et al. [43] use a similar method of rendering 3D 

models on top of satellite imagery to create a dataset depicting construction/ marine/ flying vehicles. 

Martinson et al. [43] describe an additional step in which they use a generative adversarial network 

(GAN) to blend the 3D models into the image. The GAN model learned which modifications it could 

make to images were most effective in bringing them closer to a real image. However, they conclude 

that for training purposes, images created without the use of a GAN gave bigger improvements. They 

suggest the GAN is better used for creating validation images. However, to properly train a GAN for 

such a procedure, a significantly large dataset is required. As the application of this project is highly 

specific, we will rely on a small real-world dataset and thus, as proven in a similar application in 

literature, synthetic data generation could have a positive impact on performance, given the application.  
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3 Methods and Techniques 

Firstly, in this chapter, the structure of the project is set out and compared to the Creative 

Technology Design Process. The Creative Technology Design Process was used as an inspiration for 

the structure of this project. However, it was not fully utilized as it does not completely fit the project 

at hand. After this, the approach and the methods and techniques used in the different parts of the 

approach are set out and explained.  

3.1 Design Process 

As this is a graduation project for the bachelor of Creative Technology inspiration was taken 

from the Creative Technology Design Process (CreaTe DP) by Mader and Eggink [44] to guide and 

structure the project. This design process, depicted in figure 3, is split up into four phases. The first 

three phases of which, ideation, specification, and realization, contain both a divergence and a 

convergence phase. In the divergence phase, the design space is open and starts tacking a form, while 

in the convergence phase, a certain solution is reached by narrowing the design space by making 

design solutions. Additionally, the spirals found in different phases of the process allow for many 

iterations while the separation of the phases creates a more guided, clear structure to design by. 

 While this structure is not exactly copied in this particular project, it was the main inspiration 

behind the structure that is used. Central to both the CreaTe DP and this project is the feedback loops 

that allow for easy iteration of prototypes. Specifically, after implementation, the parameters of the 

models are iterated upon. When a model is trained and the performance is evaluated, it will be decided 

which parameters are changed and another iteration of the model is trained. The differences through 

these iterations allow to see the impact that the different parameters have on the performance of the 

models. The iterations of the models and differing results from these model iterations are central to 

understanding and improving the implementation. In contrast to the CreaTe DP however, in this 

project the Ideation and the Realization are much more intertwined. The main part of the ideation and 

specification are done for constructing an approach or methodology in which multiple iterations of 

models can be used to test the effects of different parameters. Main aspects specified here are, how the 

dataset should be structured, how it is annotated, and what data will be used by the models in what 

way. Additionally, ideation and specification takes place between the model iterations where small 

tweaks in the code of the models can already have great differences to the performance. After the 

evaluation of an iteration of the model, a change is ideated and immediately implemented. This leads 

to more experimentation but a less structured approach.  
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Figure 3. Diagram of the Creative Technology Design Process by Mader and Eggink [44]. 
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3.1.1 Ideation and Specification 

In the ideation phase of the CreaTe DP by Mader and Eggink [44] the design question will be 

turned into ideas that will answer the sub-questions. In the case of this project, this means that a 

possible approach to tackle the research questions will be thought of. The approach includes which 

deep learning models fit the implementation at hand and possible methods for training this model to 

perform the given purpose. This ideation end-point can be reached through an iterative creative 

thinking process that includes creative ideation, inspiration by technology, and assembling the 

requirements. For this project, the background research of the literature previously discussed will play 

a large role to this end. Literature on existing solutions to similar problems as well as literature on the 

state of the art in this field will inform the decision-making on potential deep learning models as well 

as learning methods. Different CNN structures and CNN training methods are considered and aspects 

from solutions for similar classification problems will be adapted to form the ideas.  

 In the specification of the CreaTe DP, the idea of the ideation phase will be further and more 

concretely defined into requirements. In this project, this phase is combined with the ideation to 

formulate the approach. Based on the literature but also the needs of the client, and the ideation, a clear 

and structured approach is set out. This approach is used as a plan for realization later in the project. 

These items will be documented in the second subchapter of the Methods and Techniques chapter as it 

will largely be a description of the methods used to implement, test, iterate, and evaluate the models. 

3.1.2 Realization 

In the CreaTe DP, these Ideation and Specification phases are followed by a Realization phase. 

This phase is also present in this graduation project. As the name implies, in the Realization phase of 

the project, the implementation of the various tested iterations are documented. The realization of the 

idea consists of a few parts. Firstly, the training data is prepared and pre-processing is done. This 

includes labeling, splitting training and test data, and formatting. Secondly, the chosen CNN models 

will be implemented and the models will be trained and tested. This phase will be reported on in the 

Realization chapter of this report. 

3.1.3 Evaluation 

The final phase of the CreaTe DP by Mader and Eggink [44] is the Evaluation phase. Again, 

this phase is also present in this project and is documented in the evaluation chapter of this report. 

Here, the performance of the trained models will be reported and evaluated. This evaluation is done at 

the hand of evaluation metrics specified in the evaluation chapter. The implications of these results 

between iterations are also discussed. Finally, the results and implications of the project as a whole are 

set out. 
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3.2 Approach 

To give a structured approach to the project it is decided to split the project into two main 

phases. First, a more simple binary classification is attempted, in order to test the viability of utilizing 

the proposed technologies for the given purpose of classifying illegally dumped waste materials. For 

this binary classification problem models will be trained and tested for the ability to classify between 

two classes of images. One class of image where dumping can be distinguished and one class of 

images where no dumping can be distinguished visually. The results of this more basic classification 

problem will show us if the used CNN models are able to effectively recognize the textural, shape, 

color, and size features of waste dumpings. After this, a more complex classification is attempted in 

which the deep learning models are trained and evaluated on the ability to classify between different 

types of waste materials. For this more complex classification problem, a different method is required 

than for the binary dumping classification.  

3.2.1 Binary Dumping Classification 

As previously stated, a binary classification between the class of “Dumping” and “No 

Dumping” will be attempted first. This is done through multiple iterations of different models in order 

to reach a level of accuracy that inspires confidence to continue with a more complex classification 

problem. 

3.2.1.1 Dataset 

In order to train CNNs to an acceptable level a significant amount of training and testing data 

is required. In hyper-specific applications such as the classification of dumped waste material the lack 

of such datasets can become a limiting factor. While a large amount of satellite imagery is available, 

the images need to be properly labeled before they can be used for training a CNN. To label and gather 

satellite images, ground truth data is required. The gathering of ground truth and labeling the data is 

usually the most costly and time-consuming part of RS research.  

 For this project, ground truth data and an unlabeled dataset were acquired through the project 

coordinator. Ground truth was gathered on the island of Cyprus by volunteering citizens who recorded 

coordinates of locations where they had found dumping. In total 1016 distinct locations were recorded 

which are represented in figure 4. Now that the coordinates of a large amount of dumping locations 

have been gathered, satellite images from these locations can be captured. Through the google earth 

engine, a time series of 15 images were captured for each of the recorded locations at six-month 

intervals. This means that for every location an image was captured every six months, going back 

seven and a half years. This results in a dataset of over 15.000 images. However, as we have captured 

a time series over a relatively long amount of time, it is possible that some of the images were 

captured before the dumping occurred or after the dumping had been resolved. This means that not all 

of the images are guaranteed to contain dumping. So, manual annotation of the images is necessary.  
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Figure 4. Map of Cyprus showing recorded dumping locations. 

The images retrieved from the google earth engine have a high spatial resolution of around 

0.30 m per pixel. Such high spatial resolution is necessary to be able to recognize waste from satellite 

imagery as usually dumped waste items are smaller than a square meter. A disadvantage of such high 

spatial resolution however is that the images of the given captured area will have a very high pixel 

count, being 6663 by 8192 pixels. This is a problem as such images require a huge amount of 

computational power. Additionally, most CNN models are limited to images of 512 by 512 pixels in 

size. Therefore it is required that the images are cropped. This is done using an automatic batch action 

in Adobe Photoshop. The images are cropped to 512x512 in the center of the images, as can be seen in 

figure 5. This is because the coordinates of the recorded dumping location are at the center of the 

captured image and thus, cropping to the center of the image ensures that the dumping location is not 

cropped out. Additionally, if it is required to balance out the classes after the annotation process, it is 

possible to acquire more images that do not show any dumping by taking croppings from the corners 

of the images. Since the dumping locations are centered in the images the corners should not show any 

dumping. Another advantage of the cropping of the images is that it will ease the manual annotation 

process as it reduces the overall captured area shown in the image. This reduces the area that needs to 

be manually searched for dumping. 
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Figure 5. Original image (Left) and cropped image (Right, enlarged). 

The process of manually annotating the images consists of looking at each of the images and 

spotting whether there is dumping visible on the image or not. Additionally, some of the images are 

filtered out entirely if the cropped area is covered by cloud cover or other artifacts that make the image 

unusable. Since there is a significant amount of images to be annotated and manual annotation is a 

time-consuming task, the annotation of all of the images will be an ongoing process for the first half of 

the project. The annotation will be a process running parallel to the first few iterations of the model. 

This approach has the benefit of showing us how a growing training dataset influences the results of 

the models.  

 After a desired amount of images has been annotated the dataset is split before being used to 

train and test models. This train/ test split is common in deep learning projects and allows for the 

models to be correctly evaluated after training. The test data is kept separate from the training data, 

only being shown to the model after the training has been completed. This allows for the evaluation of 

the models to show how a model performs on entirely new data. In the case of this project, a 

percentage split of 80% train and 20% test is chosen, as this is the norm in the existing literature. This 

split is done using a Python script. 
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3.2.1.2 Model Iterations 

 When a certain initial amount of images have been annotated the models are run. Initially, a 

few different models will be run in the same circumstances with the same amount of data. This allows 

for a comparison of the performance between the different models. The chosen models are ResNet50 

[27], Inception V3 [28], and VGG16 [25]. These particular CNN models have been chosen as they are 

all state-of-the-art models that have proven to be popular and effective in the existing literature. 

Additionally, these models have quite different architectures, allowing us to compare a wide spread of 

model structures. As training and testing models takes time and computational power, the best-

performing model is selected and used for further iterating. This performance is judged with the 

evaluation metrics of accuracy, F-score, and confusion matrixes, as defined in the evaluation chapter. 

Eventually, the other models will also be evaluated again after several changes have been made 

through the iterations to make sure the originally selected model still performs the best under the new 

circumstances. Through the iterations, the parameters that will be experimented with are the size of the 

dataset, the balance of the dataset, and the training time. The models are implemented in Python 

scripts, utilizing the Tensorflow and Keras libraries. They are then run on the University of Twente 

High Performance Computing (HPC) cluster. This is further discussed in the Realization chapter. 

3.2.2 Waste Material Type Classification 

As previously set out, after the binary dumping/ no dumping classification the next part of the 

project focuses on exploring the effectiveness of deep learning models in classifying between different 

types of waste material. A similar approach is taken to the dumping/ no dumping classification 

although a different dataset is also utilized and different parameters are changed between iterations. 

 To make the classification less complex the models will initially be trained and tested to 

classify two types of waste materials. This will allow us to see the viability of using these models for 

such a complex classification task as well as see how the performance might be optimized. If time and 

scope allows for it, the classification of more material types can be explored later. 

3.2.1.1 Dataset 

As previously stated a different dataset is utilized in this more complex classification problem. 

This is because in order to train models to recognize different types of waste material we need images 

that are properly labeled with different types of waste material that are confirmed with ground truth 

data. Unfortunately, the dataset gathered and annotated earlier has not been annotated to this level of 

detail, and neither is there a possibility to do so since no ground truth data is collected on the types of 

material at the dumping sites. The AerialWaste dataset by Torres and Fraternali [45] was selected as a 

subset of this dataset has multi-class annotation. A total of 715 unique images have been labeled with 

waste types and storage types, some being labeled with multiple categories. A list of the different 

categories and the number of images with those labels can be seen in table 2. Note that this list 
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includes some duplicates between the categories and that the dataset also already has a train/ test split. 

As we will initially be classifying between two classes of waste materials, these categories can be 

divided into two overarching classes that resemble certain waste material types intuitively.  

Label Total Images Train Images Test Images 

Rubble/ excavated earth and rocks 294 228 66 

Bulky items 286 242 44 

Fire wood 173 135 38 

Scrap 167 140 27 

Plastics 126 102 24 

Vehicles 53 27 26 

Tires 45 32 13 

Domestic appliances 24 19 5 

Paper 26 21 5 

Sludge-Zootechnical waste-Manure 19 15 4 

Foundry waste 9 8 1 

Stone/marble processing waste 13 12 1 

Asphalt milling 12 9 3 

Corrugated sheets 11 10 1 

Glass 8 6 2 

Heaps not delimited 448 355 93 

Full container 167 113 54 

Big bags 50 31 19 

Full pallets 50 43 7 

Delimited heaps 69 38 31 

Cisterns 35 26 9 

Drums bins 18 16 2 

Table 2. AerialWaste [45] dataset labels. 

While this dataset can be used as training data, to see the viability of this implementation of 

technology in the target area of Cyprus the previously annotated dataset will be used for validating the 

models. However, like stated before, we do not have ground truth data on waste material type for these 

dumping locations. It should however be feasible to manually collect a small set of images for two 

classes based on context clues from the image. For example, a waste dump might be recognized as 

construction waste if it is right next to an actual construction site. This manual process will be difficult 

and time-consuming like the other annotation. However, a small set should be enough for testing data. 

  



28 

 

3.2.1.2 Model Iterations 

For this part of the project, the best-performing model from the previous part will again be 

used. Additionally, the DenseNet [30] CNN model will also be evaluated. This is decided because of 

the much smaller size of the training and testing datasets, for which the broader structure of the 

DenseNet model should be optimized. Like the previous part of the project, A number of iterations of 

the models will be trained and evaluated with tweaked parameters in between. It is then possible to 

evaluate the effect of the changes in these parameters on the performance of the models. Like in the 

previous part, the training time will be changed. Additionally, data augmentation techniques will be 

utilized. These data augmentation techniques might produce interesting results regarding the limitation 

of the smaller dataset. Again the models will be implemented in Python with the Tensorflow and 

Keras scripts and run on the University of Twente HPC cluster.  
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4 Realization 

In this chapter of the project report, the implementation of the methods previously discussed is 

documented. This will include the insights that came up during the implementation as well as how 

tools were used, including the pseudocode of the Python scripts. Additionally, the changes made 

between iterations of the models are further discussed. Again, this chapter is split into two parts, the 

binary dumping/ no dumping classification and the waste type classification. 

4.1 Binary Dumping Classification 

For the first part of the project, the realization consists of the pre-processing of the dataset and 

the actual implementation which are discussed one after another. These “phases” are actually parallel 

running processes, however, and the changes made between iterations shall be discussed afterward. 

4.1.1 Dataset pre-processing 

 As previously stated, the first step of implementing a deep learning project is the pre-

processing of the dataset. Due to the large number of images in the dataset, the work of pre-processing 

was split with a fellow student who would work with the same dataset. This was a helpful strategy for 

making this project feasible within the time constraints of a graduation project. After equally splitting 

the number of images the pre-processing went underway. Firstly, the images were cropped to 512x512 

in the center of the image by using an automatic batch action in Adobe Photoshop. This tool allows 

you to record the changes you make to a single and then automatically apply them to a large size batch 

of similar images. Due to the large number of images and large file sizes of the images before 

cropping they were downloaded from the source in smaller batches. Each batch was then cropped 

before the next batch was downloaded, as hard drive space would allow. After the downloading and 

cropping of the images, the annotation process could start.  

 This annotation process consisted of visually inspecting every image and deciding if there was 

a visually recognizable waste dumping present or not. An example of what such images might look 

like can be seen in figure 6. For some images, this could be particularly hard due to terrain or hardly 

visible differences between images from the same location time series, such as shown in figure 7. The 

images were sorted into two files, each labeled accordingly. In addition to annotating between images 

showing dumping and no dumping, some images came up that could not be used for the training and 

evaluation of the models. This could be due to factors such as cloud cover, extremely dark images, or 

other artifacts. These images were removed from the dataset, a few examples of which can be seen in 

figure 8. Since even after splitting the work, there was still a large number of images to be annotated a 

tool was selected to make the process of sorting the images after visual analysis easier. PhotoSift was 

selected as it allowed for the easy sorting of images into different files with the press of a button. 

Another helpful feature of the PhotoSift tool is the accelerated loading of the images, which allows 



30 

 

fast scrolling through the dataset without any loading hiccups. Overall the manual annotation took 

about a month for the whole dataset. During this process, iterations of the models were already being 

trained on different sizes of the dataset. After the full annotation is completed, the dataset consists of 

10.505 images in the “Dumping” class and 4.212 images in the “No Dumping” class. 

 

Figure 6. An image showing dumping (Left) and an image showing no dumping (Right). 

 

Figure 7. Two images from the same location with difficult terrain, one with dumping (Left). 
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Figure 8. Two images deemed unusable. 

Since there is a big difference between the number of images that show dumping and that do 

not show dumping new images are created to add to the “No Dumping” class. This is done by using 

the previously acquired full-sized satellite images and cropping sections of 512x512 out of the corners 

of the images, again using Adobe Photoshop automated batches. Since the coordinates of the dumping 

locations are in the center of the images, the corners should not contain dumping. 6.293 additional 

images are acquired through this process, ending up with 10.505 “Dumping” and 10.505 “No 

Dumping” images in the final iteration of the dataset. 

 When a certain amount of images are annotated for a certain iteration, the train/ test split is 

performed before the dataset is used. As previously set out, the split was realized through a small 

Python script with the use of a library called “splitfolders”. This library has an easy function for 

splitting as well as allowing for a “seed” to be input. This makes sure that the split is done in the same 

way every time and thus, reducing the variance between iterations of the models. The script can be 

seen in Appendix B. After annotation and splitting, the dataset will have a file structure as can be seen 

in table 3. 

Dataset   

 Train (80%)  

  Dumping 

  No_Dumping 

 Test (20%)  

  Dumping 

  No_Dumping 

Table 3. Dataset file structure.  
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4.1.2 Model Implementation 

As previously discussed multiple different iterations of multiple CNN models are trained and 

evaluated. Fortunately, the implementations for these different models and the iterations between them 

are nearly identical based on code. Python is used to realize the models and by using the TensorFlow 

library with the addition of the Keras library, the models can be easily loaded. Thanks to these 

libraries the different models are easy to implement and do not have to be coded from scratch. 

Additionally, these libraries allow for the importing of pre-trained weights which allows for a faster 

converging of the model. This is beneficial, especially in cases where the dataset is smaller. While a 

script of one of the models is included in Appendix C as an example, the pseudocode of what these 

scripts look like can be seen in table 4. Of note here is that the final classification layer added on line 

24 of the pseudocode has only a single node and a sigmoid activation function, this is because we are 

doing a binary classification. Another point of interest is that when compiling the model, on line 25 of 

the pseudocode, the desired evaluation metrics can be selected. In the case of this project, the 

evaluation metrics are accuracy, precision, recall, and the necessary components for a confusion 

matrix. These components are the true positives, the false positives, the true negatives, and the false 

negatives. These evaluation metrics will be further discussed in the evaluation chapter of this project. 

Finally, the batch size, which can be changed in line 26 of the pseudo-code is set to 16 for this project. 

This parameter determines the number of images that pass through the model at a time during training.  
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Line Pseudocode 

1 Import the relevant libraries and utilities 

2 Import chosen model from Tensorflow and Keras library 

  

3 Create “prepare dataset” function 

4 Create array for training images 

5 Create array for training labels 

6 Get a path to dataset directory 

7 For all the images in the directory: 

8 - Load the image 

9 - Convert image to right format 

10 - Add image to image array 

11 - Add label to label array 

12 Return training images and training label arrays 

  

13 “No Dumping” training data equals what “prepare dataset” function returns for  

“No Dumping” file directory 

14 “Dumping” training data equals what “prepare dataset” function returns for  

“Dumping” file directory 

15 Training dataset equals a combination of  

“No Dumping” training data & “Dumping” training data 

  

16 “No Dumping” test data equals what “prepare dataset” function returns for 

 “No Dumping” file directory 

17 “Dumping” test data equals what “prepare dataset” function returns for  

“Dumping” file directory 

18 Test dataset equals a combination of  

“No Dumping” training data & “Dumping” test data 

  

19 Load chosen model with pre-trained weights 

20 Remove last layer 

21 Add flattening layer 

22 Add densely connected layer 

23 Add dropout layer 

24 Add final classification layer  

  

25 Compile the model with selected evaluation metrics 

26 Train and evaluate model with given parameters 

Table 4. Pseudocode of the used Python script. 

In order to meet the high computational and storage needs that are required to run the prepared 

scripts, the University of Twente HPC cluster was utilized. This cluster allows students to access far 

greater computing power than what they might be able to access personally. Even with access to these 

powerful resources, some of the models took over 24 hours to train and evaluate. This is a good 

indication of how computationally heavy these types of deep learning models can be. For accessing 

the server and submitting tasks, the tool Windows Terminal was used while for uploading the dataset 
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and scripts to the server, WinSCP was used. Since the University of Twente HPC cluster the Slurm 

workload manager software to schedule the tasks and divide resources a Slurm job script needs to be 

created. This script tells the Slurm workload manager which scripts to run and what resources are 

required. Fortunately, an almost identical Slurm job script could be used for the different models, an 

example of which can be seen in Appendix D. For the purpose of this project, 16 processing cores are 

requested, each coming with 7 gigabytes of working memory. Additionally, 2 graphics processing 

units (GPUs) are requested. After several iterations of the dataset, these GPUs were specifically 

requested to be Nvidia Titan-Xs. This is because using lower-grade GPUs resulted in memory issues 

with a certain size of the dataset. 

4.1.3 Iterations 

 Many iterations of training and evaluating models are realized. In this subchapter, I will be 

setting out these iterations. The performance of these different iterations will be later discussed in the 

evaluation chapter of the report. In this first part of the project, the main difference between these 

iterations is the size of the dataset. The first iteration is more like a test to see if the implementation 

can run successfully. This “test run” is a ResNet50 model [27] and the dataset consisted of only 1.380 

images. After this “test run” is completed successfully a comparison of the three previously selected 

models is done. The ResNet50 [27], Inception V3 [28], and VGG16 [25] CNN models are trained and 

evaluated on a dataset of now 10.220 images. After this, the best-performing model is used for further 

iterations, which is the Inception V3 model [28]. The next iteration is just the Inception V3 model [28] 

on a dataset of 13.780 after which another two iterations are realized with the same model and dataset 

except that this time a “class weight” parameter is added to the model. This parameter, which can be 

added to the model for training at line 26 of the pseudocode, allows giving more weight to a class with 

fewer images to balance the effect the classes have on the model training. As the extra “No Dumping” 

images have not yet been generated, adding this parameter could yield improved performance. For the 

first of these two iterations, the difference between the number of images was approximated while for 

the second it was calculated exactly. The next iteration is another increase in dataset size, to 14.717 

images which is the whole of the dataset annotated. For the next iteration, again, just the Inception V3 

model [28] is used, and this time the additional “No Dumping” images have been added, for a total 

dataset of 21.010 images. Additionally, the number of epochs is increased to 3 from the default 1 in 

previous iterations. This parameter can also be changed at line 26 of the pseudocode and represents the 

number of times that the model will go through the entire dataset while training. Intuitively, a larger 

number of epochs should increase the performance. For the penultimate iteration, the number of 

epochs is increased to 5, and all three of the models are trained and evaluated again. Finally, the best-

performing model is iterated on a final time by increasing the number of epochs to 10, allowing us to 

see if the performance will rise significantly or if the model has reached its limit.  
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4.2 Waste Material Type Classification 

As previously stated it is decided to train and validate the models to classify between two 

classes of waste material types to make the classification problem less complex. To make sure that the 

manual annotation of these two classes from the previous dataset is viable, two waste very distinct 

waste material types are selected. The classes “Construction waste” and “Regular trash” should have 

textural and contextual features that differ greatly from each other, allowing for more easy manual 

annotation as well as a less complex task for the deep learning models. 

 Like the previous part, the realization of this part of the project consists of data pre-processing 

and model implementation. Again, these processes run parallel and the differences between iterations 

will be discussed. 

4.2.1 Dataset pre-processing 

 As set out previously, the AerialWaste dataset from Torres and Fraternali [45] is used for the 

training dataset. As shown above, in table 2, a subset of the images in this dataset have been labeled 

with various waste type categories. In order to fit this dataset to the selected classes of “Construction 

waste” and “Regular trash” an intuitive selection of the categories is made to fit with each of the 

overarching classes. The division of categories and the number of images related to this can be seen in 

table 5. It is important to note again that some images have multiple labels and thus there are 

duplicates between the categories, the penultimate row of the table shows the number of images with 

these duplicates removed. Additionally, the AerialWaste dataset [45] includes images from the google 

earth engine, the worldview-3 satellite mission, and the AGEA airborne photography campaign. Since 

the images from the AGEA campaign are aerial photography and have a higher spatial resolution than 

the testing images, they should also be removed from the dataset. The last row of table 5 shows the 

number of images left. Note that since our own dataset is used for testing the models, both the training 

and testing parts of the AerialWaste dataset [45] are combined and used for training. Also, the images 

have been cropped centrally to 512 by 512 pixels using the same method in Adobe Photoshop. 

Construction waste Class Regular trash Class 

Label Nr. of images Label Nr. of images 

Rubble/excavated earth and rocks 294 Scrap 167 

Stone/marble processing waste 13 Plastic 126 

Asphalt milling 12 Domestic appliances 24 

Corrugated sheets 11 Paper 26 

Full Container 167 Big bags 50 

Full pallets 50 Drums bins 18 

Total 547  411 

Total no duplicates 456  283 

Total no duplicates and no AGEA 338  260 

Table 5. Division of categories from AerialWaste Dataset [45].  
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 For the testing dataset for this waste material type classification problem, the manually 

annotated dataset previously utilized is used again. Since such distinct classes have been chosen it 

should be feasible to manually annotate a small number of images for both of the classes. The selected 

classes for this classification problem should also be recognizable from contextual information and the 

landscapes seen in the images. The “Regular trash” can be recognized by urban surroundings and 

small piles, while the “Construction waste” is very likely if the dumping is located right next to a 

construction site. An additional contextual clue to recognize construction is by utilizing the time series. 

If a building is present in one image but not in another image from the same location but at a different 

time, this might suggest that the building has been constructed or demolished between images and thus 

indicating construction. Like the previous annotation process, the manual selection was complex and 

time-consuming. In the end, from the 10.505 images with visible dumping sites, 100 distinct images 

were selected. 50 images in the “Construction waste” class and 50 images in the “Regular trash” class. 

An example from each of the classes can be seen in figure 9. 

 

Figure 9. An image showing construction waste (Left) and an image showing regular trash (Right). 

4.2.2 Model Implementation 

 Since the approach in this part of the project is largely the same as the previous part, the 

Python script used in the previous part of the project can be quickly adapted to work in this new 

classification problem. However, the AerialWaste dataset [45] that is used for the training data comes 

in a proprietary format and requires some bundled Python utilities to filter and extract the images. 

Additional code is added to the beginning of the script to adapt to this. A representation of the 

additional code is shown as pseudocode in table 6. This pseudocode replaces lines 13 to 15 of the 

pseudocode seen in table 4.  
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Line Pseudocode 

1 Import AerialWaste dataset utilities 

  

2 Load list of training images from AerialWaste dataset  

with desired “Construction waste” categories using utility 

3 Load list of test images from AerialWaste dataset  

with desired “Construction waste” categories using utility 

4 Create list of “Construction waste” training images from both lists  

  

5 Load list of training images from AerialWaste dataset  

with desired “Regular trash” categories using utility 

6 Load list of test images from AerialWaste dataset  

with desired “Regular trash” categories using utility 

7 Create list of “Regular trash” training images from both lists  

  

8 “Construction waste” training data equals what “prepare dataset” function returns for  

“Construction waste” training images list 

9 “Regular trash” training data equals what “prepare dataset” function returns for  

“Regular trash” training images list 

10 Training dataset equals a combination of  

“Construction waste” training data & “Regular trash” training data 

Table 6. Pseudocode for loading the AerialWaste dataset as training data. 

 For some iterations of models in this classification problem, data augmentation techniques are 

implemented. With the use of the TensorFlow and Keras libraries, data augmentation techniques can 

easily be added to the existing script. This is done through a so-called “data generator” which only 

adds a single line of code before training and evaluating the model. This line of code creates a “data 

generator” with the desired data augmentation techniques selected. Then the “data generator” is 

selected as one of the parameters in line 26 of the pseudocode seen in table 4. An example script with 

both the added code for the AerialWaste dataset and the data augmentation techniques can be found in 

Appendix E. 

 The iterations in this part of the project are again run on the University of Twente HPC cluster. 

For this purpose, the same basic Slurm job script can be used.  

4.2.3 Iterations 

 As the Inception V3 model [28] performed the best in the previous classification problem, it is 

used again here in most of the iterations although two other models are also evaluated. Other than this, 

the differences between the iterations consist of the number of epochs used, the batch size, and the 

data augmentation techniques used. 

 The first iteration realized was the Inception V3 model [28] with 10 epochs. However, this 

iteration was conducted before the AGEA images were filtered out. The second iteration is conducted 

with the same parameters but this time the AGEA images are filtered out. For the next iteration, the 
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number of epochs is increased to 25 to try and increase model performance. For the next iterations, 

again with the Inception V3 model [28], data augmentation techniques are implemented to try and 

reduce the limitation of the small dataset size. The data augmentation techniques used are rotation of 

the images as well as vertical and horizontal flipping. These techniques for this iteration are relatively 

mild in changing the images and are selected as they do not have any effect on the textural features 

that might be present. This allows us to build up the augmentation techniques later on. This iteration 

was “repeated” but this time the number of epochs are increased again to 30. With the same data 

augmentation techniques and the number of epochs, the DenseNet CNN model [30] was evaluated. 

This allows us to directly compare this broad structured model to the more traditionally deep Inception 

model.  

 For the next iteration, we are going back to the Inception model again. This time the number 

of epochs was increased dramatically to 50 epochs. Increasing the number of epochs allows us to see if 

the limitations of the other parameters in the current setup are a limiting factor or if the performance 

still increases just by increasing the training time. In the following iteration, we change up these 

parameters by increasing both the number of data augmentation techniques used and using somewhat 

more drastic augmentation techniques. The techniques used in this iteration are again rotation and flips 

but additionally, width and height shifts, brightness shifts, shearing, zooming, and channel shifts are 

used. Like before, it is attempted to find the limitations of these augmentation techniques in the 

following iterations. One iteration is evaluated where the number of epochs is increased even further 

to 75 and another iteration for which the batch size is doubled from the 16 used in all other iterations 

in this project to 32. In the final iteration, a significantly different structured deep learning model is 

evaluated. The ResNet Feature Pyramid Network (FPN) model was used by the creators of the 

AerialWaste dataset, Torres and Fraternali in [45], with good performance. By evaluating this model 

with the methods and dataset used in the project, limitations can be identified as compared to using 

just the AerialWaste data for both training and testing.  
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5 Evaluation 

In this chapter of the project report, the evaluation metrics of all iterations of both of the 

classification problems in this project are documented. The performance of the different iterations is 

also discussed and compared at the hand of some data visualizations.  

5.1 Evaluation Metrics 

For the purpose of evaluating a deep learning model after training, there are several possible 

metrics to choose from. These different metrics indicate the performance of the models in different 

ways. The most common and intuitive performance metric is the overall accuracy. This metric 

indicates the percentage of (test) images that the model has correctly predicted the label of. This metric 

is useful for quickly gauging the performance of models as well as for communication of performance 

to an audience. Because of these reasons, this metric is chosen as the main performance metric in this 

project. Other metrics have also been used between iterations, namely the F-score and confusion 

matrixes. The F-score is the harmonic mean of two other metrics, precision and recall. The precision 

tells us how many of the images that are predicted to show dumping by the model actually show 

dumping, while recall tells us how many of the images that actually show dumping are predicted to 

show dumping by the model. The F-score can be used similarly to accuracy. The final metric used was 

the confusion matrix. This is a 2 by 2 matrix showing the true positives, false positives, true negatives, 

and false negatives. This means that for the testing data, the confusion matrix tells how many dumping 

images are predicted right, how many are predicted wrong, how many non-dumping images are 

predicted right, and how many are predicted wrong. 

5.2 Binary Dumping Classification 

 To easily compare the performance of the iterations from the dumping/ no dumping 

classification, table 7 is compiled. The table shows the test accuracy for all of the iterations as well as 

the parameters that change between the different iterations. Additionally, figure 10 visually sets out 

the test accuracy of the different models as compared to the size of the dataset. 

 What strikes from these results, especially iterations 2A, B, and C and 8A, B, and C, is that the 

Inception V3 model performs significantly better than the other models evaluated in this classification 

problem. This is unexpected as in the existing literature the ResNet family of CNN models seems the 

be the most popular. Curiously, between iterations 2A and 8A, the performance of the ResNet50 

model actually dropped significantly. I am unsure as to what the reason for this performance drop 

could be, although this could be an outlier. Something that becomes clear from both table 7 and figure 

10 is that increasing the dataset also significantly increases the model accuracy. This is expected. 

Additionally, it seems that having a “balanced” dataset is also beneficial to the model's performance. 

This is most noticeable between iterations 3, 4, and 5, where the dataset is balanced by changing the 
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class weights. It is also noticeable how increasing the number of epochs, or training time, can have a 

positive influence on the accuracy. This can be seen in iterations 7, 8B, and 9.  
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1 ResNet50 1.380 1 40% Test run 

2A ResNet50 10.220 1 72%  

2B Inception V3 10.220 1 76%  

2C VGG16 10.220 1 72%  

3 Inception V3 13.780 1 72%  

4 Inception V3 13.780 1 75% Class weight approximated 

5 Inception V3 13.780 1 79% Class weight calculated 

6 Inception V3 14.717 1 77% Class weight calculated 

7 Inception V3 21.010 3 80% Extra “No Dumping” images generated 

8A ResNet50 21.010 5 62% Extra “No Dumping” images generated 

8B Inception V3 21.010 5 82% Extra “No Dumping” images generated 

8C VGG16 21.010 5 77% Extra “No Dumping” images generated 

9 Inception V3 21.010 10 83% Extra “No Dumping” images generated 

Table 7. Binary Dumping Classification Results.

Figure 10. Model test accuracy and Dataset size. 
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 Overall, the increased performance of the model after increasing the size of the dataset, 

balancing out the dataset, and increasing the training time of the model was expected from preliminary 

research and existing literature. The performance metrics of the final iteration which can be seen in 

table 8 show that there is definite merit to the usage of CNN models with this type of satellite imagery 

for the classification of dumping sites. This indicates that CNN models are able to learn to recognize 

the textural, contextual, and color features of dumping locations on high spatial resolution RGB 

satellite imagery. 

Accuracy 0,8268 

Precision 0,8376 

Recall 0,8372 

F-score 0,8374 
 

Test data Predicted  

“No Dumping” 

Predicted  

“Dumping” 

Actual “No Dumping” 1647 374 

Actual “Dumping” 375 1929 
 

 

Table 8. Performance metrics iteration 9. 

 

5.2 Waste Material Type Classification 

 For the second classification problem of the project, the waste material classification, the same 

evaluation metrics are used. In this classification problem, next to the accuracy indicating the 

performance of the models, the confusion matrixes also gave some helpful insights.  

 The accuracy of the different iterations has been set out in table 9. This time both the training 

and testing accuracy are included as there is a significant difference between them and I feel that the 

comparison between them can lead to more insights. Additionally, batch size and data augmentation 

techniques are also included in the table as these change between some of the iterations. Furthermore, 

the training and test accuracy are visually set out over the iterations that implement the Inception V3 

model in a graph in figure 11. 

 What is immediately noticeable from the performance metrics in table 9 is the stark difference 

between the training and testing accuracy. A theory as to why this could be is that the training and 

testing dataset are not gathered with the same process, so, logically, there are differences between the 

training and testing data. An example of this is that the training data is captured from a wide range of 

areas and terrains, while the testing dataset is limited to Cyprus. Furthermore, the categories of the 

training dataset are intuitively divided between the two classes of waste, however, the original 

categories might not accurately represent the same textural and contextual features as the classes they 

are assigned to. This also accounts partially for the difference between the training and testing data. It 

can be noticed in figure 11 however, that over the iterations up until iteration 7, the training and test 

accuracy are getting closer together until finally being equal in iteration 7, which is also the best-

performing iteration based on test accuracy and F-score.   
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1 Inception V3 10 16 71% 55% None 

2 Inception V3 10 16 67% 50% None 

3 Inception V3 25 16 70% 54% None 

4 Inception V3 25 16 56% 50% Rotation, Flipping 

5 Inception V3 30 16 58% 54% Rotation, Flipping 

6 DenseNet 30 16 58% 52% Rotation, Flipping 

7 Inception V3 50 16 58% 58% Rotation, Flipping 

8 Inception V3 50 16 58% 50% Rotation, Shifts, Brightness, Shearing, 

Zooming, Channel shift, Flipping 

9 Inception V3 50 32 57% 50% Rotation, Shifts, Brightness, Shearing, 

Zooming, Channel shift, Flipping 

10 Inception V3 75 16 56% 50% Rotation, Shifts, Brightness, Shearing, 

Zooming, Channel shift, Flipping 

11 ResNetFPN 50 16 57% 50% Rotation, Shifts, Brightness, Shearing, 

Zooming, Channel shift, Flipping 

Table 9. Binary Dumping Classification Results. 

 What can also be noticed from both table 9 and figure 11 is that over the first few iterations, 

the training accuracy drops. The drop from the first to the second iteration can be explained by the 

filtering out of the AGEA images from the training dataset, which further reduces the already small 

dataset. The further drop in training accuracy seems to be at the introduction of data augmentation 

techniques. These are unexpected results since the data augmentation should somewhat reduce the 

limitation of a small dataset. The reduction in accuracy from adding data augmentation is countered 

with an increase in the number of epochs, however, also allowing the test accuracy to match the 

training accuracy and leading to the best-performing iteration of this complex classification problem. 

Adding additional data augmentation techniques seems to confuse the models, reducing the test 

accuracy to a meager 50%. If we take a look at the confusion matrix of one of these models, such as 

table 10. We can see that the addition of these data augmentations has confused the model to the point 

where it predicts all of the test images to be in the same class, resulting in 50% accuracy. This 

suggests that there is a balance to be struck in the utilization of data augmentation techniques to find 

the best performance. A possible reason for this behavior is that these “more extreme” data 

augmentation techniques further increase the differences between training and testing data. 

 Iterations 9 and 10 show that this dataset limitation cannot be overcome by increasing the 

batch size or the number of epochs. Finally, the implementation of other models such as DenseNet and 

ResNetFPN does not improve the performance. 
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Figure 11. Inception V3 train and test accuracy. 

Test data Predicted  

“Construction waste” 

Predicted  

“Regular trash” 

Actual  

“Construction waste” 

50 0 

Actual  

“Regular trash” 

50 0 

Table 10. Confusion matrix Inception V3 model iteration 8. 

 

Overall, the performance metrics of iteration 7 which are shown in table 11 indicate that there 

might be an implementation possible, where a CNN model could learn to distinguish some classes of 

waste material with this type of satellite imagery. Unfortunately, the approach and methods used in 

this project do not produce convincing performance metrics. This could be caused by several different 

factors, the limited dataset being one of them. Possible future directions to this classification problem 

will be discussed in the discussion & future work chapter. 
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Accuracy 0,5800 

Precision 0,7857 

Recall 0,2200 

F-score 0,8374 
 

Test data Predicted  

“Construction waste” 

Predicted  

“Regular trash” 

Actual  

“Construction waste” 

47 3 

Actual  

“Regular trash” 

39 11 

 

 

Table 11. Performance metrics iteration 7. 
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6 Discussion & Future Work 

 In this chapter, the limitations of the process and the approach of this graduation project are 

discussed. Additionally, some possible future directions in this field are set out. The goal of this is to 

gain a better understanding of this project's place in the research field. 

6.1 Limitations 

A limitation in the methodology of the project, mainly the second half, is the non-availability 

of a big dataset, which includes labels for waste material types. This absence of annotated data limited 

the results achieved within the time limitations and scope of this graduation project. Although, if 

planned differently the significant difference between training and testing data in the latter half of the 

project could maybe have been avoided or reduced. Ideally, a new dataset with these types of 

annotations would be created. However, creating a dataset annotated with such granularity also 

requires more granular ground truth data and can be costly and time-consuming.  

 Another oversight in the methodology of the project is the neglect of a potentially useful 

aspect of the gathered dataset. The time series of 15 images for each recorded dumping location could 

have been incorporated into the methodology of the project. Potentially, the models could have learned 

to recognize certain temporal features to better classify certain waste types, such as the construction 

waste previously discussed. Additionally, using more than one image per time series in the dataset 

might have diluted the dataset, although the increase in the size of the dataset was very beneficial to 

the classification performance. 

 A big limitation of this project was the time constraint. While a project cannot move on 

eternally, especially a graduation project, I feel like some parts of the project took up a significant part 

of the allotted time. Namely the processing of the datasets, implementing the models, and waiting for 

models to finish training. This is of course the nature of this type of project and these are integral parts 

of the process. However, I feel that with more time, more experimentation could have been done, 

leading to different results.  

 Another limitation of the process of the project was the usage of the University of Twente 

HPC cluster. While the project would not have been possible in a realistic time frame without using an 

HPC solution, a lot of time was lost trying to get the implementation to work. From learning to write a 

Slurm script to properly installing all of the required correct versions of libraries and utilities. An 

additional limitation was the remote nature of the HPC cluster. Especially switching between datasets 

and troubleshooting the Python scripts took a lot of extra time because of this. 
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6.2 Future Directions 

 Since deep learning models such as the CNN models used in this project need a lot of data to 

be trained effectively, acquiring a big enough dataset can become a limiting factor for projects in this 

field. Especially for hyper-specific applications such as illegal waste dumping classifications 

collecting ground truth and image datasets can be a costly and time-consuming process. Unfortunately, 

not a lot of data exists for this specific application. The limitations of a dataset can be reduced by the 

application of data augmentation techniques as previously discussed. One powerful data augmentation 

technique not utilized in this project is synthetic data. By rendering 3D models of the desired subject, 

such as heaps of waste material, on top of satellite imagery, new data can be generated that imitates 

real images. These images can then be used to enhance and extend existing datasets. This technique 

has seen success, such as in works by Padubidri et al. [42] and Martinson et al. [43]. 

 Another possible future research direction in this field could be the usage of multispectral or 

even hyperspectral satellite imagery. Some materials show more recognizable features in frequency 

bands outside of the visible spectrum. The utilization of these additional spectral bands can allow deep 

learning models to better classify the materials that are more recognizable in an expanded spectral 

range. Both Momeni et al. [15] and Herold et al. [14] found that including some additional bands 

increases performance in urban ground cover classification. A current limitation of this technology 

however is that high spatial resolution data in these additional bands is not widely available. 

 Other types of satellite data might also be useful if combined with high spatial-resolution 

satellite imagery, such as LiDAR height maps. Additionally, other classified maps could be 

incorporated, such as groundcover or road network maps. These features add contextual information 

that could unveil certain features that a deep learning model could learn to recognize. 

 Finally, aerial photography could be used instead of satellite imagery. The benefit of aerial 

photography is that the images are usually in an extremely high spatial resolution which can allow 

CNN models to recognize more features. This could be especially helpful for classifying material or 

objects with such fine granularity or size as dumped waste. The downsides of aerial photography are 

that it can be expensive and time-consuming to obtain such data, and there is not yet a lot of coverage. 

Although, through future advancements in technology, publicly available satellite imagery might reach 

a fine enough spatial resolution for this purpose. This would make the use of aerial photography 

unnecessary.  
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7 Conclusion 

The goal of this graduation project is to answer the main research question, namely, how can 

deep learning be used for the classification of illegally dumped materials from satellite imagery? The 

motivation behind this research question is that by answering it, we can come closer to a solution for 

reducing, cleaning up, and recycling waste sites where waste materials have illegally been dumped. 

This problem should be solved as waste dumping comes with definite negative environmental effects 

such as pollution and diseases. Additionally, tourism and other economic factors can be negatively 

impacted. Recycling dumped waste will also bring society closer to a circular economy, which is 

necessary to continue to live with the luxuries of modern life. Deep learning models combined with 

satellite imagery have the potential to be part of a solution.  

 We can answer this research question in a structured manner by answering sub-questions 

derived from it. The first one being: which deep learning models are structured optimally to classify 

illegally dumped materials?  

 Preliminary research gives a hint towards the answer to this question. Existing literature shows 

that state-of-the-art convolutional neural networks perform very well in similar tasks. In order to see 

whether these CNN models can be adapted to the application at hand, several different CNN models 

are first trained to classify between satellite images that show visible waste dumping or no visible 

waste dumping. After evaluating a few iterations, the Inception V3 CNN model performed the best out 

of all tested CNN models with an overall accuracy of 83%. This performance suggests that CNN 

models are capable of learning to recognize the textural, contextual, and color features of waste dumps. 

Now, the Inception V3 and some other CNN models are trained to classify between two very distinct 

classes of waste materials, construction waste, and regular trash. Here the Inception V3 model again 

performs the best out of the tested deep learning model, reaching an overall accuracy of 58%. With the 

methodology used in this project, the CNN models do not perform well enough at classifying different 

classes of waste material to confidently say that they are the best deep model structure for the given 

application. However, there is an indication that with a different approach, CNN models, especially if 

structured like the Inception V3 model, could possibly be updated to classify illegally dumped waste 

material.  

 To fully answer the research question another sub-question should also be answered. This 

second sub-question is: how can such a deep learning model be trained to perform accurately? 

 preliminary research suggests that the most important part of training a deep learning model 

successfully is the dataset. In this project, a dataset of over 15.000 high satellite images with a spatial 

resolution of around 0.30 m per pixel, is manually annotated and additional images are generated. This 

dataset has images with and without dumping and the images are labeled as such. As this process took 

quite a long time, there was a chance to see through several iterations how the size of the training 

dataset affected the performance of the models. As expected, the larger the dataset got, the better the 
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models performed. Additionally, when the dataset is more balanced, meaning that the number of 

images in the different classes is similar or smaller classes are given more weight, the performance 

also increased. Finally, as is also suggested in existing literature, increasing the time, or the number of 

epochs, that the model is trained for also increases the classification performance. When the 

classification problem becomes more complex to classify between types of waste material, the 

granularity of the dataset will need to adapt to this. As data that is annotated with precise categories of 

waste is rare, the dataset used for training the models was greatly reduced to less than 600 images. 

This resulted in far worse classification performance. Data augmentation techniques can be utilized to 

slightly compensate for a smaller dataset, although they should be carefully considered and not 

overused if the original dataset is already so small. An additional limitation of the low availability of 

images annotated with high granularity in this project is that a different dataset is used for evaluation, 

resulting in a big disparity between the training and testing accuracy of the models. With moderate 

data augmentation usage and increased training time, this disparity is reduced. 

 Overall, to answer the main research question as a whole, CNN models can perform well with 

the classification of high spatial resolution satellite imagery. The results of the project suggest that the 

CNN model is able to be trained to recognize the features of waste dumping with fairly good 

performance when trained with a decently sized and well-balanced dataset. The CNN models have not 

performed well with the classification of waste material types with the used approach. This could 

partially or totally be due to a severely limited dataset as data annotated in sufficient granularity is 

very limited. Data augmentation techniques can slightly compensate for this if used precisely. 
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Appendix A: Literature matrix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Literature matrix used in preliminary research.  
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Appendix B: Dataset spitting script 

import splitfolders as sf 

 

input_folder = "C:/…/Dataset_unsplit" 

output = "C:/…/Dataset_split" 

sf.ratio(input_folder, output=output, seed=42, ratio=(.8, .2)) 

Figure 13. Python script to perform train/ test split. 
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Appendix C: Model implementation script 

#import libraries 

import numpy as np 

import glob 

import tensorflow as tf 

 

#import utilities 

from tensorflow.keras.preprocessing.image import load_img, img_to_array 

from tensorflow.keras import Model, layers 

from tensorflow.keras.optimizers import RMSprop 

 

#import model 

from tensorflow.keras.applications.inception_v3 import InceptionV3 

 

def prepare_dataset(path, label):   #create function for loading dataset 

    x_train = [] 

    y_train = [] 

    all_images_path = glob.glob(path + '/*.jpg') 

    for img_path in all_images_path:    #load all images in given path 

        img = load_img(img_path, target_size=(512, 512)) 

        img = img_to_array(img) 

        img = img / 255.0 

        x_train.append(img) 

        y_train.append(label) 

    return np.array(x_train), np.array(y_train) 

 

#load classes and label training data with function 

trainX_no_dumping, trainY_no_dumping = 

prepare_dataset("dataset/train/No_Dumping/", 0) 

trainX_dumping, trainY_dumping = prepare_dataset("dataset/train/Dumping/", 

1) 

 

#concatenate training datasets 

x_train = np.concatenate((trainX_no_dumping, trainX_dumping), axis=0) 

y_train = np.concatenate((trainY_no_dumping, trainY_dumping), axis=0) 

 

#load classes and label test data with function 

testX_no_dumping, testY_no_dumping = 

prepare_dataset("dataset/val/No_Dumping/", 0) 

testX_dumping, testY_dumping = prepare_dataset("dataset/val/Dumping/", 1) 

 

#concatenate test datasets 

x_test = np.concatenate((testX_no_dumping, testX_dumping), axis=0) 

y_test = np.concatenate((testY_no_dumping, testY_dumping), axis=0) 

 

#load model 

pretrained_model = InceptionV3(input_shape=(512, 512, 3), 

                               include_top=False, 

                               weights='imagenet') 

for layer in pretrained_model.layers: 

    layer.trainable = False 

 

#replace last layers 

last_layer = pretrained_model.get_layer('mixed10') 

last_output = last_layer.output 

 

x = layers.Flatten()(last_output)            #add flatten layer 

x = layers.Dense(1024, activation='relu')(x) #add densly connected layer 

x = layers.Dropout(0.2)(x)                   #add dropout layer 
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x = layers.Dense(1, activation='sigmoid')(x) #final classification layer 

model = Model(pretrained_model.input, x) 

 

#compile model 

model.compile(optimizer=RMSprop(learning_rate=0.0001), 

              loss='binary_crossentropy', 

              metrics=['acc',           #select evaluation metrics 

                       tf.keras.metrics.Precision(), 

                       tf.keras.metrics.Recall(), 

                       tf.keras.metrics.TruePositives(), 

                       tf.keras.metrics.TrueNegatives(), 

                       tf.keras.metrics.FalsePositives(), 

                       tf.keras.metrics.FalseNegatives()] 

              ) 

 

#train and evaluate model 

model.fit(x_train, y_train,     #select model parameters 

          batch_size=16, 

          epochs=1, 

          class_weight={0: 1, 1: 1}, 

          validation_data=(x_test, y_test), 

          shuffle=True) 

Figure 14. Python script implementing CNN model. 
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Appendix D: Slurm job script 

#!/bin/bash 

#SBATCH -J ClassifyJob  # job name 

#SBATCH -c 16            # number of cores 

#SBATCH --gres=gpu:2    # number of gpus 

#SBATCH -p main         # partition 

#SBATCH --constraint=avx2 # additional request 

#SBATCH --constraint=titan-x # additional request 

#SBATCH -o outfile.out      # send stdout to outfile 

#SBATCH -e errfile.err       # send stderr to errfile 

#SBATCH --time=2-00:00  # maximum time limit 

 

# display node name 

echo "nodename :" 

hostname 

 

# check if gpu are assigned, if not create empty list 

if [ -z "$CUDA_VISIBLE_DEVICES" ]; then 

  export CUDA_VISIBLE_DEVICES="" 

fi 

# display which gpu's we are allowed to use 

echo "CUDA_VISIBLE_DEVICES = '"$CUDA_VISIBLE_DEVICES"'" 

 

# load nvidia cuda toolkit 

module load nvidia/cuda-11.2 

 

# run task 

echo "Starting script: " 

python3 Script.py 

Figure 15. Slurm job script. 
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Appendix E: Updated model implementation script 

#import libraries 

import numpy as np 

import glob 

import tensorflow as tf 

 

#import utilities 

from utils import dataloader 

from tensorflow.keras.preprocessing.image import load_img, img_to_array 

from tensorflow.keras import Model, layers 

from tensorflow.keras.applications.inception_v3 import InceptionV3 

from tensorflow.keras.optimizers import RMSprop 

from tensorflow.keras.preprocessing.image import ImageDataGenerator 

from tqdm import tqdm 

 

#variables 

train_list ="training.json" 

test_list ="testing.json" 

dataset_root ="Cropped" 

source_list = ["WV3", "GE"] 

no_dumping = [] 

emptyList = [] 

dumping_const = [] 

dumping_trash = [] 

 

#create lists of construction waste images using utility 

data_multilabel_construction = dataloader.ClassificationDataset(train_list, 

dataset_root=dataset_root, binary=False, 

                                                                classes=[1, 

12, 13, 14, 17, 19]) 

data_multilabel_construction += dataloader.ClassificationDataset(test_list, 

dataset_root=dataset_root, binary=False, 

                                                                 classes=[1, 

12, 13, 14, 17, 19]) 

 

#check if images are from google earth engine or worldview-3 

for img in tqdm(data_multilabel_construction): 

    if img["source"] in source_list: 

        dumping_const.append(img["name"]) 

 

#create lists of regular trash images using utility 

data_multilabel_trash = dataloader.ClassificationDataset(train_list, 

dataset_root=dataset_root, binary=False, 

                                                         classes=[4, 5, 8, 

9, 18, 22]) 

data_multilabel_trash += dataloader.ClassificationDataset(test_list, 

dataset_root=dataset_root, binary=False, 

                                                          classes=[4, 5, 8, 

9, 18, 22]) 

 

#check if images are from google earth engine or worldview-3 

for img in tqdm(data_multilabel_trash): 

    if img["source"] in source_list: 

        dumping_trash.append(img["name"]) 

 

#print the amount of images in training data 

print("Amount of images construction", len(dumping_const)) 

print("Amount of images trash", len(dumping_trash)) 
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def prepare_dataset(path, label, AerielDataset, list_of_labels): 

    x_train = [] 

    y_train = [] 

    all_images_path = glob.glob(path + '/*.jpg') 

    if AerielDataset:                       #if from Aerialwaste dataset 

        for img_path in all_images_path:    #load all images in given path 

            split_path = img_path.split("/") 

            imagelabel = split_path[-1].split(".") 

            if (imagelabel[0] + '.png') in list_of_labels: 

                img = load_img(img_path, target_size=(512, 512)) 

                img = img_to_array(img) 

                img = img / 255.0 

                x_train.append(img) 

                y_train.append(label) 

    else:                                   #if from regular dataset 

        for img_path in all_images_path:    #load all images in given path 

                img = load_img(img_path, target_size=(512, 512)) 

                img = img_to_array(img) 

                img = img / 255.0 

                x_train.append(img) 

                y_train.append(label) 

    return np.array(x_train), np.array(y_train) 

 

#load classes and label training data with function 

trainX_const, trainY_const = prepare_dataset("Croppedjpg/", 0, 1, 

dumping_const) 

trainX_trash, trainY_trash = prepare_dataset("Croppedjpg/", 1, 1, 

dumping_trash) 

 

#concatenate training datasets 

x_train = np.concatenate((trainX_const, trainX_trash), axis=0) 

y_train = np.concatenate((trainY_const, trainY_trash), axis=0) 

 

#load classes and label test data with function 

testX_const, testY_const = prepare_dataset("Test_Classes/Class_Construct/", 

0, 0, emptyList) 

testX_trash, testY_trash = prepare_dataset("Test_Classes/Class_Trash/", 1, 

0, emptyList) 

 

#concatenate test datasets 

x_test = np.concatenate((testX_const, testX_trash), axis=0) 

y_test = np.concatenate((testY_const, testY_trash), axis=0) 

 

#load model 

pretrained_model = InceptionV3(input_shape=(512, 512, 3), 

                               include_top=False, 

                               weights='imagenet') 

for layer in pretrained_model.layers: 

    layer.trainable = False 

 

#replace last layers 

last_layer = pretrained_model.get_layer('mixed10') 

last_output = last_layer.output 

 

x = layers.Flatten()(last_output)            #add flatten layer 

x = layers.Dense(1024, activation='relu')(x) #add densly connected layer 

x = layers.Dropout(0.2)(x)                   #add dropout layer 

x = layers.Dense(1, activation='sigmoid')(x) #final classification layer 

model = Model(pretrained_model.input, x) 
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#compile model 

model.compile(optimizer=RMSprop(learning_rate=0.0001), 

              loss='binary_crossentropy', 

              metrics=['acc',           #select evaluation metrics 

                       tf.keras.metrics.Precision(), 

                       tf.keras.metrics.Recall(), 

                       tf.keras.metrics.TruePositives(), 

                       tf.keras.metrics.TrueNegatives(), 

                       tf.keras.metrics.FalsePositives(), 

                       tf.keras.metrics.FalseNegatives()], 

              run_eagerly=True) 

 

#create data generator 

datagen = ImageDataGenerator( #select augementation techniques 

    featurewise_center=False, 

    samplewise_center=False, 

    featurewise_std_normalization=False, 

    samplewise_std_normalization=False, 

    zca_whitening=False, 

    zca_epsilon=1e-06, 

    rotation_range=90, 

    width_shift_range=10.0, 

    height_shift_range=10.0, 

    brightness_range=[0.2, 1.2], 

    shear_range=0.5, 

    zoom_range=0.2, 

    channel_shift_range=20.0, 

    fill_mode='nearest', 

    cval=0.0, 

    horizontal_flip=True, 

    vertical_flip=True, 

    rescale=None, 

    preprocessing_function=None, 

    data_format=None, 

    validation_split=0.0, 

    interpolation_order=1, 

    dtype=None) 

 

#fit and run data generator 

datagen.fit(x_train) 

generator_datagen = datagen.flow(x_train, y_train, batch_size=32, 

shuffle=True) 

 

model.fit_generator(generator_datagen, #select model parameters 

                    steps_per_epoch=len(x_train) // 32, 

                    epochs=50, 

                    class_weight={0: 1, 1: 1.19}, 

                    validation_data=(x_test, y_test)) 

Figure 16. Updated Python script implementing CNN model. 
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