
MSc. Thesis Computer Science

Diversifying Multilayer
Perceptron Ensembles in a
Truly Sparse Context

Peter R.D. van der Wal

Supervisors
dr. Nicola Strisciuglio (committee chair)
dr. Decebal C. Mocanu
dr. Yanqiu Huang

March 10, 2023

Data Management & Biometrics Group
Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science

Abstract—Artificial Neural Networks are state-of-the-art
machine learning models, outperforming their competitors
in many fields. One of the major drawbacks of Artificial
Neural Networks are the long training times as a result of
computationally expensive calculations. Sparse models aim
to remove redundant parameters whilst maintaining good
levels of performance. Ensembles of several weak learners
have shown to be able to outperform individual networks.
Crucial for the performance of the ensemble is the diversity
of the individual subnetworks of which the ensemble is
constructed. The work that has been done on the inter-
section of sparse- and ensemble learning, does not provide
actual benefits in terms of computational overhead as the
sparsity is simulated using binary masks. In this paper,
we propose two algorithms that promote diversity among
individual ensemble members. We implement these two
algorithms for a first-of-its-kind Truly Sparse Ensemble 1.
We demonstrate the performance of the model at several
high levels of sparsity on numerous datasets in terms of
classification accuracy, Floating Point Operations (FLOPs),
and running time. Moreover, we provide insight into the
impact of our two diversification algorithms on the training
trajectory and topological similarity of the subnetworks.
Suggestions for future research are discussed as well.

Index Terms—Artificial Neural Networks, Sparse Neural
Networks, Ensemble Learning, Truly Sparse Networks

I. INTRODUCTION

ARTIFICIAL Neural Networks (ANNs) have grown
to be extremely popular among scholars due to an

exponential increase in machine learning research over
the last few decades [1]. Due to the ever-increasing
amount of available data and growing complexity of
problems, the demanded capability of neural networks
is growing as well. Whereas expanding neural networks
and thus making them more advanced will perhaps
lead to better performance on the training set, networks
will be more prone to overfitting and the computational
overhead becomes so large that training these networks
quickly becomes unfeasible. An architectural method to
improve performance without risking overfitting and sig-
nificantly increasing computational overhead is ensemble
learning [2]. The core idea of ensemble learning is to
combine several weak learners which are computation-
ally cheap to obtain into a strong combined learner which
outperforms its individual members and regularly trained
single models.

Even though deeper neural networks can significantly
reduce the error in training, the number of forward-
and backward passes scales linearly with the number of
layers resulting in undesirable long training times [3].
Moreover, for ANNs with fully-connected neurons, the
number of connections increases quadratically with the

1Code will soon be available on: https://github.com/prdvanderwal/
Diversifying-Truly-Sparse-Ensembles

number of neurons. The resources needed for training
and applying these deep neural networks are thus often
prohibitive [4]. Even the network size of individual
learners can become so large that the time it takes to
train a network quickly becomes unfeasible. In contrast,
it was discovered by [5] that the more neurons a human
brain has, the fewer connections between neurons are
created. Transferring this concept to ANNs showed that
sparse networks could obtain the same level of accuracy
as their dense counterparts [6].

At the intersection of sparsity and ensemble learning,
we find sparse ensembles. Despite the fact that some
work has been done in this field to study the effects of
pre-defined sparsity and pruning weights during training,
little to no practical advantages are obtained as most
sparse training is simulated by masking the weight
matrices with binary masks. This method allows to study
the behavior of sparse ensembles but does not decrease
the computational- or memory overhead. In general,
literature on sparse training has primarily been focused
on the algorithmic aspect of sparsity and is based on
simulating sparsity with binary masks. The reason for
this focus is that almost all specialized deep learning
software frameworks and hardware are optimized for
dense matrix operations [7]. As a result, developing
sparse deep neural networks that are not based on dense
matrix operations is much more complicated than sparse
networks that make use of standard (dense matrix) deep
learning libraries. [8] introduced a truly sparse multilayer
perceptron and showed that it was possible to train a
neural network with more than one million neurons on a
regular laptop without additional GPU support. Together
with hardware improvements, algorithmic and software
developments in the field of truly sparse training are vital
to actually provide faster, energy-efficient, and memory-
efficient deep neural networks.

Within this research, we aim to construct a sparse
ensemble without the overhead of binary masks and want
to target the lack of available literature on subnetwork
diversification in sparse ensembles. Specifically, we ask
ourselves the following two questions:
• RQ1. How can we efficiently construct multilayer

perceptron ensembles in the truly sparse frame-
work?

• RQ2. How can we advantageously make use of
dynamic sparse training properties to improve sub-
network diversity within an ensemble?

Leveraging the insights of both [9] and [10], we
introduce a first-of-its-kind truly sparse ensemble which
is trained on just a single CPU core. Furthermore, we
provide new additional insight into the importance of
subnetwork diversity by proposing two novel algorithms

1

https://github.com/prdvanderwal/Diversifying-Truly-Sparse-Ensembles
https://github.com/prdvanderwal/Diversifying-Truly-Sparse-Ensembles

that increase subnetwork diversity in ensembles. We
mainly focus our efforts on tabular data as this datatype
is well suited for the multilayer perceptron architecture
of our ensemble’s subnetworks. We summarize our con-
tributions below:

• We introduce a first-of-its-kind Truly Sparse Multi-
layer Perceptron Ensemble, further demonstrating
the advantages of the truly sparse framework in
terms of performance, number of Floating Point
Operations, and running time.

• We propose two efficient and effective subnetwork
diversification algorithms for dynamic sparse en-
sembles that can be extended beyond the truly
sparse framework.

• We make a valuable software contribution to the
truly sparse framework that, for the first time,
allows truly sparse networks to be stored and re-
trained.

Our proposed subnetwork diversification algorithms for
dynamic sparse ensembles and our extension of the
truly sparse framework can be considered independent
contributions to the sparse neural network ensemble
learning literature, and the truly sparse training literature,
respectively.

II. RELATED WORK

A. Ensemble Learning

The underlying idea of ensembles is clear; the com-
bination of several weak learners can yield better results
than a singular learner. There is a scala of ensemble
methods to realize this, varying from semi-supervised-
to fully supervised ensemble methods. Literature has
shown that diversity among ensemble members is key
for the effectiveness of ensembles [2] [11] [12] [13]
[14]. The methods to establish diversity in ensembles can
be categorized as either data diversity methods such as
bagging [2] [15] [16] and boosting [17] [18], structural
diversity methods which have different models as base
predictors [2] [11], or parameter diversity methods which
include evolutionary- and cross-over learning [14] [19].

Besides these three main pillars of creating high-
diversity ensembles, other methods include decomposi-
tion of the data (frequently used for time series data)
[11] and ensembles solely based on Negative Correlation
Learning as proposed by [20].

B. Sparsity

Over the last few years, sparse implementations for
several ANN architectures have been introduced among

which Restricted Boltzmann Machines [21], Convolu-
tional Neural Networks [22], and Recurrent Neural Net-
works [23]. An elaborate overview of applications of
sparse learning in the context of deep reinforcement
learning is presented in [24]. The enforced sparsity levels
in literature vary greatly and can range from a moderate
sparsity level of 50% as in [25], to extreme sparsity
levels (>99%) as presented in [26]. Within the field
of sparsity, a distinction between two main approaches
to realize sparsity in an ANN can be made: pruning of
the non-critical connections of the ANN during training
with a dense network as a starting point [27] (dense-to-
sparse training), or a sparsely initialized network which
is either trained with a fixed sparse topology [21] [28]
or a dynamically updating topology by pruning and
regrowing weights during training [29] (sparse-to-sparse
training).

Examples of dense-to-sparse training include the
works of [6], [27], and [30]. However, despite a wide
variety of approaches of dense-to-sparse training meth-
ods, most of these methods have in common that the
computational overhead is equal to, or more than a
regular dense network. An exception is the work of [31],
who gradually increased the sparsity level during training
whilst keeping the total memory overhead less than that
of the dense implementation.

In recent years, the concept of dynamic sparse training
as introduced by [29] has gained a lot of popularity
among scholars. The proposed SET algorithm evolves
an initially sparse topology to a sparse network reaching
high levels of accuracy by pruning weights with a small
magnitude and randomly regrowing the same number
of weights that were just pruned. A big advantage of
methods like the SET procedure [29], among which the
sparse training of RNNs (ST-RNN) as presented by [32],
Sparse Momentum [33], Rigged Lottery (RigL) [34],
Memory-Economic Sparse training [35], and dynamic
reparametrization [36], is that the network is sparsely
initialized in contrast to a method like the lottery ticket
hypothesis by [6] or earlier works like [27]. An alter-
native method was introduced by [37] centered around
trainable masks. This method leaves the original weight
matrix untouched when pruning during training, and
by doing so preserves the historical information about
parameter importance. This, however, comes at the cost
of increased memory overhead.

C. Sparse Ensembles

Some work has been done at the intersection of
ensemble learning and sparsity. Continuing on the work
of [6], [38] used iterative magnitude pruning to create

2

an ensemble where subnetworks were stored at each
iteration of pruning. A more recent work by [25] created
ensemble members by copying a dense parent network
and pruning and tuning each network individually. Yet,
both of these methods apply a dense-to-sparse training
regime, with significant overhead. The work of [10]
presented two methods with no computational overhead
during either training or testing: (Efficient) Dynamic
Sparse Training Ensembles, or (E)DST Ensembles. This
method entails a global exploration phase for a fixed
number of epochs where a large part of the solution
space is explored with a relatively high learning rate.
After the exploration phase, the remainder of epochs is
equally split into M refinement phases, to collect M
subnetworks. During each refinement phase, the current
subnetwork is refined from the previously converged
subnetwork by lowering the learning rate. All new sub-
networks are obtained using the Rigged Lottery (RigL)
method as presented in [34]. This means that the local
solution basin after convergence is escaped by pruning a
large percentage of all the weights. A new subnetwork is
re-initialized by regrowing the same number of weights.
According to [39], the success of a DST method like
RigL is likely the result of improved gradient flow
in early training by regrowing weights based on high-
magnitude gradients, something the Lottery Ticket Hy-
pothesis [6] and the SET procedure [29] on their own
seem to be less effective at. Moreover, [39] showed
that the lottery ticket re-initialization remains within the
same basin in the solution space as the pruning solution,
making the lottery tickets fundamentally limited in their
ability to improve the training of sparse neural networks.
This might be explained by the underlying lack of
diversity in the ensemble as explained in Section II-A.
A more extensive literature review on this matter can be
found in Appendix A.

D. Truly Sparse Training

Little work has been done in the field of ’truly’
sparse training. With truly sparse training we refer to the
training of neural networks where we do not use dense
matrix operations with the matrices mostly containing
uselessly zero-valued weights. Almost all works in the
field of sparse neural network training make use of
binary masked weight matrices, which usually cause
significant computational overhead.

Novel results were presented by [8] and [40] who
created a truly sparse implementation of the SET algo-
rithm for a regular multilayer perceptron and a Denoising
Autoencoder respectively. The work of [8] allowed an
MLP with hundreds of thousands of neurons to be

trained on a regular laptop without GPU support. [9]
continued this work and introduced a parallel training
algorithm for truly sparse networks. To the best of our
knowledge, for all existing literature making use of the
truly sparse framework, it was not possible to store, re-
train, and re-evaluate networks after the cache had been
cleared

III. DIVERSIFYING TRULY SPARSE ENSEMBLES

In this paper, we present a first-of-its-kind Truly
Sparse Ensemble (TSE) at the intersection of truly sparse
training and ensemble learning. At the core of this new
model is our valuable software contribution that, for
the first time, allows truly sparse networks to be stored
and re-trained. On top of our TSE model, we propose
two novel algorithms that increase diversity between
subnetworks in a sparse ensemble. We implement our
two algorithms in the context of a Truly Sparse Ensemble
but they can be adapted for sparse ensembles based on
binary masking as well.

A. Truly Sparse Ensemble

Continuing on the work of [8] and [9], we construct
an ensemble of truly sparse multilayer perceptron net-
works. We obtain our ensemble members following the
Efficient Dynamic Sparse Training (EDST) protocol as
presented by [10]. We slightly diverge from the EDST
implementation in [10] as a result of implementing it
in a truly sparse context. Instead of regrowing weights
based on the gradient magnitude when re-initializing a
new subnetwork, we regrow the weights randomly as the
latter would require us to calculate the gradient for all the
weights in the network. During a single training run, we
obtain a total of M sparse subnetworks that collectively
form the TSE. For each subnetwork Si, we define the
predicted probability of the kth output neuron to be
p(aik). We get the final ensemble by stacking the output
of the Softmax activation layer for all M subnetworks

and averaging these probabilities, i.e.,
1

M

∑M
i=1 p(a

i
k).

The final prediction of the ensemble is the argumentative
maximum (argmax) of the averaged probabilities of all
k output neurons. We introduce several novel functional-
ities to the truly sparse framework to realize this, which
among other things, allow networks to be stored and
loaded at a later point in time. All weight matrices are
stored as Compressed Sparse Row (CSR) matrices using
SciPy [41].

B. Subnetwork Diversification

The importance of subnetwork diversity for the per-
formance of an overall ensemble has repetitively been

3

emphasized in literature [2] [11] [12] [13] [14]. We
propose two new algorithms focused on improving sub-
network diversity in an ensemble: Distance EDST and
Disjoint EDST. The novelty of both methods lies in how
we grow new connections when re-initializing a new
subnetwork. In contrast to the original EDST procedure,
for Distance EDST and Disjoint EDST, a subnetwork’s
weights are grown back based on the euclidian distance
to its predecessor or the topological dissimilarity to all
predecessors, respectively. Moreover, we introduce a new
implementation of the EDST refinement phase, focusing
on more than just learning rate reduction.

1) Distance Re-initialization: In contrast to the origi-
nal EDST algorithm, which does not actively try to pro-
mote diversification among subnetworks when regrowing
weights, Distance-EDST (D-EDST) forces the network
to regrow the weights in such a way that the euclidean
distance between the weights of the new subnetwork
and the existing subnetwork, is at least a certain dis-
tance within the solution space. Analysis revealed that
the euclidean distances between the weight matrices
of converged subnetworks and the weight matrices of
newly initialized subnetworks, follow approximately a
Gaussian distribution. See Appendix G for more details.
Given this property, we use a sampled mean and a fac-
tored standard deviation as indicators to find sufficiently
distant weight matrices. An overview of D-EDST can be
found in Algorithm 1.

Our proposed algorithm iteratively finds a sufficiently
distant weight matrix for all the hidden layers in the mul-
tilayer perceptron subnetwork. The minimum euclidean
distance threshold for a generated weight matrix to be

Algorithm 1: Truly Sparse EDST Ensemble with
Distance Re-Initialization

Data: Layer i to k with: Sparse Weight Matrix Wi, global exploration
rate q, and matrix distance coefficient λ

1 for i ← 2 to k − 1 do
2 W ′

i ← PruneSmallestK(|Wi|, q)
3 for l ← 0 to 100 do
4 totalDistance +=
5 CalculateDistance(Wi, W ′

i ∪ RegrowRandomK(q))
6 end
7 µ ← GetAverage(totalDistance)
8 σ ← GetStandardDeviation(totalDistance)
9 currentDistance ← 0

10 iteration ← 0
11 while currentDistance < (µ + λ× σ) do
12 if iteration > maxIterations then
13 Throw Iteration Error and stop training
14 proposedWeights ←W ′

i ∪ RegrowRandomK(q)
15 currentDistance ← CalculateDistance(Wi,

proposedWeights)
16 iteration += 1
17 end
18 Wi ←W ′

i ∪ proposedWeights
19 end

Fig. 1: Boxplot of the impact of the matrix distance
coefficient on the running time for finding a suitably
distant matrix. For each value of λ, we ran 10 iterations
of the Distance Re-Initialization algorithm on the Ges-
ture Phase Segmentation dataset (see Section IV-A) for
a 1000x1000 weight matrix at a sparsity level of 0.96.

accepted as a weight matrix of the new subnetwork is
established by generating 100 random weight matrices
and calculating the mean and standard deviation of the
euclidean distance. We calculate the euclidean distance
using Scikit Learn’s [42] pairwise euclidean distance
method as it is efficient in dealing with sparse data. The
distance between each row vector j in the converged sub-
network’s weight matrix (Wi) and the proposedWeights
matrix (Pi) is calculated as follows:

Distance(W j
i , P

j
i) =√

((W j
i ·W j

i)− 2× (W j
i · P j

i) + (P j
i · P j

i))
(1)

where i is the weight matrix index (layer of the
network), and j the row index. The final euclidean
distance is the total sum of the matrix resulting from
Equation 1.

We select the value of 100 as this was the lowest value
for which the distribution of euclidean distances suffi-
ciently followed a Gaussian distribution (see Appendix
G), making the mean and standard deviation suitable
indicators. Early testing revealed the boundary values
of the coefficient λ after which finding a sufficiently
distant matrix quickly becomes intractable. An overview
of the impact of the chosen value for the matrix distance
coefficient is presented in Figure 1. We observe that
the running time strongly increases for values of the
matrix distance coefficient which are larger than 2.0.

4

Algorithm 2: Truly Sparse EDST Ensemble with
Disjoint Re-Initialization

Data: Layer i to k with: Sparse Weight Matrix Wi and global
exploration rate q

1 for i ← 2 to k − 1 do
2 for j ← 0 to Wi.numRows() do
3 Blockedi.add(tuple(Wi.row[j] , Wi.col[j]))
4 end
5 W ′

i ← PruneSmallestK(|Wi|, q)
6 numWeightsRegrown ← 0
7 iteration ← 0
8 while numWeightsRegrown ̸= K do
9 proposedWeights ← (RegrowRandomK(q) -

numWeightsRegrown)
10 for j ← 0 to Wi.numRows() do
11 if iteration > maxIterations then
12 store(proposedWeights.numRows())
13 break
14 else if tuple(proposedWeights.row[j],

proposedWeights.col[j]) in Blockedi then
15 proposedWeights.delete(j)
16 end
17 W ′

i ←W ′
i ∪ proposedWeights

18 numWeightsRegrown += proposedWeights.numRows()
19 iteration += 1
20 end
21 Wi ←W ′

i ∪ proposedWeights
22 end

Taking into consideration the objective of keeping ad-
ditional computational overhead and running time to a
minimum, we have limited the experiments for the D-
EDST implementation to 1.0, 1.5, and 2.0. Nevertheless,
a fail-safe was integrated into the algorithm for the
unlikely scenario that it is not able to find a fitting matrix.
The integration of this algorithm in the original EDST
procedure can be found in Appendix 3.

2) Disjoint Re-initialization: The Disjoint EDST al-
gorithm focuses on improving topological diversity
among subnetworks when re-growing weights for the re-
initialization of a new subnetwork. Instead of doing this
without care for diversity like the original EDST algo-
rithm, or by finding a more distant weight matrix like we
do for D-EDST, we iteratively regrow weights that are
not part of the final topology of any previous subnetwork.
We do this by saving all the row- and column indices of
the converged final state of the subnetworks and storing
these per layer in a set (datatype). When the new model
is initialized, weights are randomly regrown as long
as they are not in the set of ”blocked” weights of the
previous subnetwork(s). Given that the time complexity
of a look-up in a set is O(1), the computational overhead
of this iterative process is marginal. An overview of
the Disjoint EDST implementation can be found in
Algorithm 2. Important to note is that we make use of
SciPy’s [41] sparse matrix COOrdinate (COO) format
for all weight matrices in this algorithm. This format
stores the row- and column indices for each individual
value. This means that the .row[] and .col[] calls in lines

3 and 14 of Algorithm 2 return one-dimensional vectors
of identical length over which we iterate.

The proposed disjoint EDST algorithm has two vari-
ations: (1) Regular Disjoint EDST (RD-EDST) and (2)
Fully Disjoint EDST (FD-EDST). For the first variation,
the newly grown weights of the new subnetwork are only
disjoint with the weight matrices of all previous subnet-
works when initialized. During the subsequent training
epochs, the network topology of the new subnetwork
dynamically adapts and is able to grow weights that
are in similar locations as previous subnetworks. Given
the high topological sparsity of the subnetworks, we
also propose the second variation where the regrown
weights in the new subnetwork are fully disjoint with
any previous subnetwork. A schematic overview of FD-
EDST can be found in Figure 2. Forcing the networks to
not regrow weights in the topological locations similar
to the final state of previous networks, is done by the
same iterative look-up process within the set of blocked
weights for the regular weight evolution procedure (part
of the SET training regime) as well. Thus, the only
difference between RD-EDST and FD-EDST is step c of
Figure 2. We only apply the disjoint re-initialization to
the weight matrices of the hidden layers. The reason for
this is that all weight matrices are initialized following
the Erd´ós-Rényi distribution as presented in [29]. As a
result, for datasets with a relatively low number of input
features and output classes, the first- and last layer of a
subnetwork are too dense to find disjoint matrices. For
consistency, we also apply the D-EDST algorithm only
to the weight matrices of the hidden layers.

3) Refinement Phase: The original EDST refinement
phase as presented in [10] only lowers the learning
rate to allow the subnetwork to converge to a better
solution. Extending the idea of lowering the learning
rate to reach better convergence, we propose to also
lower both the pruning rate and the frequency with which
the weight evolution procedure is applied (evolution
frequency). The aim of our proposed refinement phase,
the Comprehensive Refinement Phase, is that the network
is able to converge better during the refinement phase as
it trains for more epochs with the same topology and is
disrupted less as a smaller percentage of the weights is
pruned and regrown.

More specifically, after the exploration phase, each
subnetwork will have a two-stepped refinement phase.
In the first step, only the frequency with which we
apply the weight evolution procedure is halved. In the
second step of the refinement phase, we half the learning
rate, pruning rate, and evolution frequency once more.
After a pre-determined amount of epochs, we obtain the
final topology of the subnetwork and enter the cycle of

5

Fig. 2: Schematic overview of the Fully Disjoint EDST (FD-EDST) training procedure. The procedure is visualized
for a single sparse connected layer (SCi) but is applied to all hidden layers. After the initial exploration phase,
we obtain the base subnetwork Si (a). We take this network (b) and start the refinement phase as depicted in (c).
The refinement phase entails that for a selected number of epochs, a small fraction of the weights is pruned and
regrown where the regrown weights are forced to be disjoint with previous subnetworks in their final states (if
applicable). After the refinement phase, we obtain the final state of subnetwork Si (d) which we store for later (f).
In order to obtain a new base subnetwork, we prune a very large fraction of the weights that are the smallest in
magnitude and obtain the network depicted in (e). Subsequently, we regrow the same number of weights disjointly
with all previous subnetworks in their final state and obtain the new subnetwork Si+1. The cyclus b-c-d-e will
now be repeated another M − 1 times to collect M almost fully disjoint subnetworks which we combine into an
ensemble (g).

escaping the solution basin by pruning the network with
a global pruning rate q, regrowing the weights following
either of the implementations above, and resetting the
learning rate, pruning rate, and evolution frequency to
the values of the first step of the refinement phase and
continue training for the next subnetwork. This cycle is
repeated M times to cheaply obtain M subnetworks.

IV. EXPERIMENTAL EVALUATION

In this section, we demonstrate the successful imple-
mentation of the Truly Sparse Ensemble in terms of
accuracy, number of parameters, training Floating Point
Operations (FLOPs), and training time. We compare
our two proposed algorithms with the existing EDST
implementation and several baselines. We evaluate the
effectiveness of our algorithms in terms of diversity
by visualizing the training trajectory and topological
distance.

A. Datasets

We train and evaluate all models on three publicly
available datasets and the tabular benchmark established
by [43], all from different domains. A summary of the
dataset characteristics for the three selected datasets can
be found in Table I. For all ensemble experiments, we
use 20% of the training dataset as a validation set to
evaluate the subnetworks during training and determine
when to save a subnetwork. The original Higgs dataset
has 11000000 samples but we have decided to take a
subset and select the same number of samples as [9].
Even though the focus of this research is on tabular data,
we include one image dataset which makes it slightly
easier to understand what is happening. We normalized
all datasets.

1) CIFAR-10: The CIFAR-10 dataset [44] is a widely
used benchmark dataset, mostly in the field of computer
vision. The dataset consists of 60000 32x32 colour
images in 10 classes, with 6000 images per class. The

6

TABLE I: Summary of datasets used.

Dataset Dataset properties
Domain Features Train samples Test samples Classes Weight initialization

CIFAR-10 RGB Images 3072 50000 10000 10 He Uniform
Gesture Phase Segmentation Video Segmentation 50 7898 1975 5 He Uniform
HIGGS Physics particles 28 105000 50000 2 Xavier

classes entail various types of vehicles and animals.
Given that all experiments in this paper are based on
MLPs, we flatten the RGB channels, ending up with an
input size of 3072.

2) Gesture Phase Segmentation: The Gesture Phase
Segmentation dataset (GPS), obtained from the UCI Ma-
chine Learning Repository [45], includes both raw and
processed data from 7 videos with people gesticulating,
with the aim of studying gesture phase segmentation.
After pre-processing (scaling and removing missing val-
ues), we end up with 9873 instances and 50 features.

3) HIGGS: We obtained the HIGGS dataset from the
UCI Machine Learning Repository just like GPS. The
dataset consists of 11000000 samples which were created
using Monte Carlo simulations. All samples belong to
either of the two classes: particle or no particle. We make
use of all 28 features, of which 21 are low-level features
(kinematic measurements) and 7 are high-level features
that were manually derived by physicists. As mentioned
above, we only use 105000 training samples and 50000
testing samples due to constraints in computational ca-
pacity.

Even though MLPs can also be used for data types
like images, a lot of spatial information is lost when the
images are flattened. A convolutional neural network is
generally speaking much better suited to capture such
spatial relations. Tabular data, on the other hand, should
theoretically be an ideal data type for MLPs as no
information is lost and the data can directly be used as
input for the model. Responding to the strong lack of
benchmark tabular datasets (e.g. MNIST and CIFAR for
image recognition), [43] provide a first-of-its-kind tabu-
lar benchmark, consisting of 45 datasets 2. We evaluate
how well our models perform on a collection of datasets
without fine-tuning our model’s hyperparameters. We
test our proposed methods and baselines on 14 numerical
classification tabular datasets, as selected by [43].

2Repository last visited on 28-02-2023. Datasets might be
updated/changed. Link: https://huggingface.co/datasets/inria-soda/
tabular-benchmark

B. Evaluation Metrics

The metrics used to evaluate the performance of the
model are the classification accuracy on the test set, the
number of weights, the number of training FLOPs, and
the training time in minutes. In contrast to most related
work, we do not calculate the number of training FLOPs
theoretically for our truly sparse models. Instead, we
make use of the Performance Application Programming
Interface software [46]. This library provides us with the
interface and methodology for a hardware performance
counter, allowing us to access and process raw CPU data
and extract the actual number of FLOPs performed by
the CPU.

C. Experimental Setup

We constructed all models with three hidden layers,
each consisting of 1000 neurons. For all models, we
applied the Alternated Left ReLU (All-ReLU) activation
function [9] to all layers except for the last layer,
for which we used the Softmax activation function.
Moreover, all models were trained for a total of 350
epochs with a batch size of 128. All ensembles, unless
indicated differently, consist of five submodels. The
training procedure entailed an exploration phase of 100
epochs with a learning rate of 0.1, followed by a two-
stepped refinement phase with a learning rate of 0.1 and
0.05, respectively. The values for these hyperparameters
were selected using a small grid search. As discussed in
Section III-B3, we also halve the frequency with which
we apply an adaptive training step and the number of
weights we prune and regrow during these steps. We use
Stochastic Gradient Descent (SGD) with a momentum
of 0.9 as the optimization method. The initial evolution
frequency with which we perform a topology update
is every two epochs. The selected weight initialization
method differed per dataset and can be found in Table
I. All layers in each network were initialized with the
Erd´ós-Rényi (ER) distribution at a sparsity level of S
as presented in [29]. The hyperparameter ϵ determines
the sparsity level of a model layer. The ER distribution
allocates higher sparsity to the layers with more neurons.
All our sparse models were put under very high sparsity

7

https://huggingface.co/datasets/inria-soda/tabular-benchmark
https://huggingface.co/datasets/inria-soda/tabular-benchmark

constraints of 0.93 and up. For most datasets, we used
varying values of ϵ for our experiments. However, as a
result of the aforementioned ER initialization property,
the sparsity level slightly differs per datatset. For our
dense models, we were not able to run experiments with
a fixed learning rate of 0.01 as presented in [29] due to
the numerical instability of the truly sparse framework.
For HIGGS and the Gesture Phase Segmentation dataset,
we used a fixed learning rate of 0.001 and for CIFAR-
10 we were forced to use an even smaller learning rate,
namely 0.0001. Moreover, we used the regular ReLU
activation function for all dense experiments for the same
reason. In all tables, the overall accuracy of the network
is reported. To allow for reproducibility of the results,
all experiments were run on a single core of a Dell
T60 (remote) server with a 2xSilver-4210 processor. An
overview of all hyperparameter configurations can be
found in Appendix E.

D. Baselines

We consider EDST [10] to be the closest base-
line to our proposed models. However, the origi-
nal EDST model is implemented in PyTorch [47], a
well-established and highly optimized machine learning
framework. Given that a comparison of our models in
terms of FLOPs and running time to a model in PyTorch
yields a distorted impression of the effectiveness of our
algorithms, we instead implement the original EDST in
the truly sparse framework with the minor adjustment
as discussed in Section III-A. We also compare our

proposed methods with a dense MLP, a dense ensemble,
a single SET-MLP [29], and a single static sparse model.
We implement all of these models in the truly sparse
framework to allow for an accurate and fair comparison.

E. Experimental Results

We demonstrate the performance of our proposed
EDST Truly Sparse Ensembles (TSE) by comparing it
to the baseline models described above. We evaluate
the following models: the original EDST TSE (EDST),
Regular Disjoint EDST TSE (RD-EDST), Fully Disjoint
EDST TSE (FD-EDST), and Distance EDST TSE (D-
EDST). An overview of a selection of the experimental
results on the CIFAR-10-, Gesture Phase Segmentation-,
and HIGGS dataset can be found in Tables II, III, and IV.
An overview of all experimental results on these datasets
can be found in Appendix D.

Analyzing Tables II, III, and IV, we distinguish be-
tween the results on the CIFAR-10 dataset and the
Gesture Phase Segmentation- and Higgs datasets due
to the nature of their data types. We observe that for
the CIFAR-10 dataset the original EDST implementation
slightly outperforms our proposed methods. Moreover,
it becomes clear that almost all models at a higher
sparsity level (e.g. 0.98) outperform those trained on a
lower sparsity level. Even though sparse models have
been shown to outperform dense models [10], at these
extremely high levels of sparsity, it is expected that
having some more weights would benefit the network’s
performance. We observe a similar pattern in Table IV.

TABLE II: Summary of experiments of our EDST implementations and baselines on the CIFAR-10 dataset. We
take the single dense model as a reference point for the less intuitive metrics and express the results for the other
models as a fraction (...x) of the result of the dense model.

Architecture Model Sparsity Results
Accuracy [%] Weights [#] Train Flops [#] Train time [min]

3072-1000-1000-1000-10 Single Dense Model - 57.0 5,085,010 2.18e14 ∼ 693.1
EDST 0.98 62.8 0.08x 0.03x ∼ 138.3

0.97 62.0 0.16x 0.05x ∼ 178.3
0.95 61.8 0.24x 0.08x ∼ 290.9

RD-EDST (ours) 0.98 61.6 0.08x 0.03x ∼ 119.7
0.97 61.5 0.16x 0.05x ∼ 230.1
0.95 61.6 0.24x 0.08x ∼ 275.7

FD-EDST (ours) 0.98 61.3 0.08x 0.03x ∼ 135.2
0.97 60.7 0.16x 0.05x ∼ 231.3
0.95 60.6 0.24x 0.08x ∼ 312.9

D-EDST (λ = 1.5) (ours) 0.98 62.6 0.08x 0.03x ∼ 121.5
0.97 61.0 0.16x 0.05x ∼ 225.0
0.95 61.9 0.24x 0.08x ∼ 282.3

SET-MLP 0.97 59.2 0.03x 0.05x ∼ 216.4
Single Static Sparse Model 0.97 57.1 0.03x 0.05x ∼ 206.4
Dense Ensemble - 61.0 5.00x 5.00x ∼ 3234.2

8

TABLE III: Summary of experiments of our EDST implementations and baselines on the Gesture Phase
Segmentation dataset.We take the single dense model as a reference point for the less intuitive metrics and express
the results for the other models as a fraction (...x) of the result of the dense model.

Architecture Model Sparsity Results
Accuracy [%] Weights [#] Train Flops [#] Train time [min]

50-1000-1000-1000-5 Single Dense Model - 54.9 2,058,005 1.71e13 ∼ 60.0
EDST 0.98 71.8 0.12x 0.04x ∼ 16.8

0.95 72.2 0.25x 0.07x ∼ 24.6
0.93 72.5 0.37x 0.11x ∼ 33.0

RD-EDST (ours) 0.98 71.8 0.12x 0.04x ∼ 17.1
0.95 72.6 0.25x 0.07x ∼ 31.1
0.93 72.9 0.37x 0.11x ∼ 53.1

FD-EDST (ours) 0.98 71.6 0.12x 0.04x ∼ 18.1
0.95 74.2 0.25x 0.07x ∼ 36.9
0.93 75.3 0.37x 0.11x ∼ 74.0

D-EDST (λ = 1.5) (ours) 0.98 72.0 0.12x 0.04x ∼ 16.2
0.95 73.4 0.25x 0.07x ∼ 25.7
0.93 73.5 0.37x 0.11x ∼ 32.2

SET-MLP 0.95 60.4 0.05x 0.07x ∼ 25.6
Single Static Sparse Model 0.95 67.4 0.05x 0.07x ∼ 22.7
Dense Ensemble - 54.0 5.00x 5.00x ∼ 299.9

TABLE IV: Summary of experiments of our EDST implementations and baselines on the HIGGS dataset. We take
the single dense model as a reference point for the less intuitive metrics and express the results for the other models
as a fraction (...x) of the result of the dense model.

Architecture Model Sparsity Results
Accuracy [%] Weights [#] Train Flops [#] Train time [min]

28-1000-1000-1000-2 Single Dense Model - 57.1 2,033,002 2.28e14 ∼ 709.6
EDST 0.98 53.1 0.12x 0.04x ∼ 241.6

0.95 53.1 0.25x 0.07x ∼ 330.1
RD-EDST (ours) 0.98 64.3 0.12x 0.04x ∼ 222.7

0.95 63.5 0.25x 0.07x ∼ 316.5
FD-EDST (ours) 0.98 64.0 0.12x 0.04x ∼ 229.1

0.95 63.7 0.25x 0.07x ∼ 339.2
D-EDST (λ = 1.5) (ours) 0.98 64.5 0.12x 0.04x ∼ 232.0

0.95 63.5 0.25x 0.07x ∼ 343.0
SET-MLP 0.95 54.3 0.05x 0.07x ∼ 332.1
Single Static Sparse Model 0.95 53.1 0.05x 0.07x ∼ 315.4
Dense Ensemble - 60.4 5.00x 5.00x ∼ 3561.5

We consider an in-depth analysis of the sparsity-accuracy
trade-off in sparse ensembles to be out of the scope of
this research, for which reason we leave this to future
work.

For the two tabular datasets we observe that for almost
all variations, the two proposed algorithms consistently
outperform the original EDST implementation and all
other baselines without any significant additional over-
head in terms of training FLOPS and training time.
Interestingly, the best-performing method is different for
either dataset and sparsity level. Dataset characteristics
such as the number of features, initialization method,
and the number of target classes, most likely affect
the effectiveness of our proposed methods on each

dataset. Neither varying the number of subnetworks in
the ensemble nor the depth or width of the ensemble
showed significant differences between the proposed
methods (see Appendix G). FD-EDST was the only
model that benefited from an increase in the number
of subnetworks. The results in Tables III, and IV show
us that the proposed algorithms and variations improve
overall ensemble performance on the two selected tab-
ular datasets. Yet, further research is required to get a
better understanding of the underlying relation between
the dataset characteristics and the individual proposed
methods. Experiments at lower sparsity levels were not
possible due to the numerical instability of the truly
sparse framework.

9

(a) EDST (b) Regular Disjoint EDST (c) Fully Disjoint EDST (d) Distance EDST (λ = 1.5)

Fig. 3: t-SNE projection of the training trajectories of three subnetworks discovered by various EDST implemen-
tations on the Gesture Phase Segmentation dataset. The diamonds and stars represent the start and end of each
subnetwork respectively. The sparsity level is S = 0.95.

TABLE V: Aggregated results of experiments on 14 numerical classification datasets from the tabular data benchmark
[43]. The Best Performing Model (BPM) metric represents the number of times that a model got the highest
classification accuracy of all models.

Dataset Epsilon (ϵ) Model BPM [#] Total training time [min]

Aggregated - Single Dense Model 0 ∼ 2011
datasets 20 EDST 2 ∼ 827

RD-EDST (ours) 2.33 ∼ 899
FD-EDST (ours) 2.33 ∼ 1010
D-EDST (λ = 1.5) (ours) 6.33 ∼ 823
SET-MLP 1 ∼ 820
Single Static Sparse Model 0 ∼ 789

- Dense Ensemble - -

F. Aggregated Results

In order to test how well our proposed methods
perform without dataset-specific fine-tuning, we evaluate
all models on the numerical classification benchmark for
tabular data [43]. For the training of all models, we used
the same configuration as described in Section IV-C. For
all sparse models, we used an ϵ of 20 for the Erd´ós-
Rényi initialization of the weight matrices. The actual
sparsity level differs per dataset as it is dependent on the
number of input features. In Table V, the frequency of
the best-performing model and total training time on the
numerical classification benchmark for tabular data [43]
is presented. For more details on the individual datasets,
please refer to Appendix H. From Table V, we observe
that for 11 out of 14 datasets, one of our proposed meth-
ods achieves the highest classification accuracy, with D-
EDST reaching the highest classification accuracy most
frequently. Both disjoint implementations have a slight
overhead in terms of running time but remain far below
the running time of a single dense model. Evaluating a
dense ensemble on all 14 datasets proved to be infeasible

due to the time it would take to do a single experiment.
Extrapolating the observed multiplicative factor for the
running time in minutes from Tables II, III, and IV,
it would take nearly 170 hours for a single run for a
Dense Ensemble. The results in Table V confirm that
our proposed diversification algorithms positively impact
overall ensemble performance even when applied to a
wide range of tabular datasets.

G. Training Trajectory

In order to get a better understanding of the effective-
ness of the two proposed algorithms and their variations
(RD-EDST, FD-EDST, and D-EDST), we use t-SNE [48]
to visualize the training trajectories of our submodels in
the solution space. We do this by saving the Softmax
output on the test data for each epoch and reducing the
dimensionality to 2D using t-SNE. Figure 3 gives an
overview of the different training trajectories of the three
subnetworks on the Gesture Phase Segmentation dataset.
We observe that the trajectories of the subnetworks of the
original EDST implementation (3a) seem fairly random

10

and often have shared trajectories. For Figure 3b, we
see that the training trajectory of a new subnetwork is
dissimilar to the previous networks and that the model is
somewhat able to maintain this difference in direction.
For Figure 3c, we observe that throughout every refine-
ment phase for each subnetwork, the trajectories remain
separated, indicating the effectiveness of the algorithm
to obtain disjoint networks. The random and shared
trajectories visible in Figure 3d were to be expected
as there is no regularization in place for the model to
take a different trajectory direction besides random re-
initialization (in terms of topological similarity). It is
important to note that the distance between points does
not tell us much per se. A lot of information might
be lost in the dimensionality reduction as t-SNE is not
guaranteed to preserve global distances.

H. Topological Distance between Subnetworks

Building on the findings of [49], we visualize the topo-
logical distance between subnetworks for each proposed
method. We evaluate the effectiveness of our proposed
algorithms by visualizing the topological distance be-
tween a converged subnetwork and the succeeding sub-
network that has just been re-initialized with one of our
algorithms. For the original EDST implementation and
for each of our proposed methods, we train 10 indepen-
dent subnetworks for a duration of one exploration phase
and one refinement phase. We subsequently store the
converged topologies and re-initialize all subnetworks
with one of our methods. In Figure 4, a visualization of

the topological distances between the converged subnet-
works and re-initialized subnetworks is presented. From
the values on all the color scales it becomes immediately
clear that the topologies of all the models are very
dissimilar given that all scores are in the upper region
of 0.8 (a value of 1 represents complete dissimilarity).
This is however to be expected as we are dealing with
extremely sparse networks. It is thus very likely that
the topologies differ greatly to start with and that the
margins of topology difference with varying methods
are thus relatively small. Nevertheless, we observe from
Figures 4b and 4c that disjoint re-initialization yields a
more distant subnetwork topology from its predecessor
compared to regrowing the weights without considering
subnetwork diversity as is done in the original EDST
(figure 4a). We also see that the Distance EDST algo-
rithm (Figure 4d) consistently yields topologies that are
closer to each other compared to the original implemen-
tation. Given that the Distance EDST implementation
focuses on increasing the euclidean distance between
subnetworks in the solution space (weight values) and
not necessarily the distance between topologies, it is
not strange that the topologies are not more distant than
the original EDST implementation. Yet, the phenomenon
that D-EDST actually yields subnetworks that are topo-
logically closer to their predecessors compared to the
original EDST implementation is surprising. A possible
explanation could be that an effective way of finding a
distant matrix would be for the new subnetwork to have
a negative weight in the same location its predecessor
had a positive weight and the other way around. As the

(a) EDST (b) Regular Disjoint EDST (c) Fully Disjoint EDST (d) Distance EDST (λ = 1.5)

Fig. 4: Heatmap representing the topological distance (NNSTD [49]) between the second layer of thoroughly trained
subnetworks (x-axis) and the second layer of subnetworks that were obtained directly following re-initialization (y-
axis) using various EDST implementations on the Gesture Phase Segmentation dataset. wi(i = 0, 1, ..., 9) represent
10 independently trained and evaluated subnetworks. Note, the heatmap in (d) has a different color scale. A topology
similarity value of 0 means that the networks are identical, whilst a value of 1 means that the models’ topologies
are completely different. The sparsity level is S = 0.95.

11

TABLE VI: Ablation study on the impact of the Comprehensive Refinement phase on CIFAR-10, the Gesture Phase
Segementation (GPS) dataset, and HIGGS dataset.

Model Comprehensive Results
Refinement CIFAR-10 Acc. [%] GPS Acc. [%] HIGGS Acc. [%]

RD-EDST (ours) No 62.1 71.2 63.7
Yes 61.5 72.6 63.5

FD-EDST (ours) No 61.0 73.9 63.5
Yes 60.7 74.2 63.7

D-EDST (λ = 1.5) (ours) No 62.3 71.7 63.5
Yes 61.0 73.4 63.5

resulting euclidean distance is higher for this instance
than for regrowing a weight somewhere the subnetwork’s
predecessor did not have a weight, our iterative process
of finding a distance matrix might unintentionally give
a slight preference for subnetworks with a more similar
topology.

We further provide visualizations of the topologi-
cal distance between converged subnetworks that were
trained on CIFAR-10, the Gesture Phase Segmentation
dataset, and the HIGGS dataset in Appendix I. For
the Gesture Phase Segmentation dataset we observe
that for our proposed methods the topologies of the
converged subnetworks are less distant than for the
original EDST implementation. This might also be an
explanation for the relatively small positive difference
in classification accuracy between our proposed methods
and the original EDST implementation on the Gesture
Phase Segmentation Dataset. We want to emphasize that
the goal of our diversification methods is not to just
create subnetwork diversity in terms of topology, but
also diversity in functionality (i.e. what a subnetwork
actually predicts). Moreover, we use the relatively new
NNSTD [49] metric to measure the topological distance
between our subnetworks which might still have some
undiscovered limitations. Also, this metric does not
factor in other diversity characteristics such as the values
of the weights, and is thus not an absolute indicator of
diversity.

I. Ablation Study Refinement Phase
Next to our two proposed diversification algorithms,

we also suggest reducing the number of weights we
prune and regrow during the SET procedure and the
frequency with which we apply the topology update
(evolution frequency) during the refinement phase. We
hypothesized that this would allow the network to con-
verge better. In this section, we present the results of
the ablation study on the impact of this change in the
refinement phase. Specifically, we compare the refine-
ment phase as discussed in [10] where only the learning

rate is halved during the two-stepped refinement phase,
to our proposed Comprehensive Refinement Phase. As
elaborated on in Section III-B3, we only halve the
evolution frequency during the first part of the refinement
phase, and halve the learning rate, the fraction of weights
we prune and regrow, and the evolution frequency once
more, in the second part of our refinement phase. The
results of the ablation study can be found in Table VI.

From Table VI we observe that for the tabular datasets,
our proposed refinement phase is predominantly benefi-
cial. Similar to the results presented in Section IV-E,
the results on CIFAR-10 deviate from those on the
tabular datasets. For CIFAR-10, all models achieved
better performance with just the learning rate reduction.
We did not observe any significant difference in terms
of FLOPs and running time for the ablation experiments
(see Appendix J). Further experiments are required to
get a better understanding of the difference in behavior
when our models are trained and evaluated on an image
dataset instead of tabular data. We leave this to future
work.

V. CONCLUSION AND FUTURE WORK

This research proposes two novel algorithmic methods
to improve subnetwork diversity for ensembles in a truly
sparse context. At the intersection of truly sparse training
and ensemble learning, we successfully create a first-of-
its-kind truly sparse multilayer perceptron ensemble. To
realize this, we make a valuable software contribution
that, for the first time, allows truly sparse networks to be
stored and re-trained. With a main focus on tabular data,
the learning capabilities of the truly sparse ensemble
were evaluated on numerous tabular datasets and the
CIFAR-10 image dataset for improved intuition. Our
two proposed algorithms introduce a new perspective on
subnetwork diversification in dynamic sparse ensembles
where the novelty of both methods lies in how we grow
new connections when re-initializing a new subnetwork.
The effectiveness of our diversification methods is as-
sessed in terms of classification accuracy and additional

12

insights are derived by visualizing the topological simi-
larity and training trajectory of the subnetworks.

Our diversification algorithms are centered around
increased parameter- and topological diversity when re-
initializing a new subnetwork. We increased parameter
diversity by re-initializing subnetworks in such a way
that the euclidian distance between the weights of the
new subnetwork and the existing subnetwork is more
than the minimum threshold distance in the solution
space. Alternatively, we introduced a novel constraint
for our dynamic sparse training procedure where newly
initialized subnetworks are- and remain disjoint with
all preceding subnetworks. We found that for both the
Gesture Phase Segmentation- and HIGGS dataset, and
for the newly introduced tabular data benchmark [43],
our proposed methods outperform practically all baseline
models without almost any computational overhead in
terms of Floating Point Operations and running time.
All models in this paper were trained and evaluated on
a single CPU core.

Limitations. All experiments presented in this paper
were model implementations in the truly sparse network.
Due to the numerical instability of the network, the
range and variety of experiment configurations were
quite limited. As a result, we were, for example, not able
to test the effectiveness of our diversification methods at
lower levels of sparsity. Moreover, we implemented our
baseline models in the truly sparse framework to allow
for a better comparison with our proposed models. This,
however, makes comparing our results to other non-truly
sparse training literature difficult. Also, the number of
metrics on which we evaluated our models were limited
and additional metrics could have provided additional
insights and a deeper understanding.

The experiments presented in this paper have provided
novel insights into sparse ensemble diversification and
contributed to the further development of the truly sparse
framework. Nevertheless, more experiments should be
conducted to get a better understanding of our diversifi-
cation algorithms in varying settings such as lower spar-
sity levels and other datasets. It would also be interesting
to evaluate the effectiveness of our proposed algorithms
in the setting of sparse models that are based on binary
masking. The numerical instability of the truly sparse
framework should be tackled as it is currently a limiting
factor for model development and experimentation with
the truly sparse framework.

Our proposed algorithms regrow weights during re-
initialization with the mere focus to increase subnetwork
diversity. The recent works of [10], [34], and [39],
have demonstrated the high effectiveness of regrowing
weights based on gradient magnitude. This poses a

challenge for truly sparse ensemble learning. In order to
regrow weights based on gradient magnitude, the gradi-
ents for a dense matrix need to be computed, defying the
benefit of a truly sparse network. Given the success of
gradient-based re-growing of weights in sparse ensem-
bles, future research should investigate alternatives for
truly sparse training. Other training configurations that
are worth exploring include the use of different heuristics
for the reduction of hyperparameters like the evolution
frequency and learning rate, during the refinement phase.
A possible alternative could be to use cosine annealing
as presented by [34].

Quantifying subnetwork diversity remains compli-
cated as it is a multifaceted problem, and includes,
but is not limited to, topology- and parameter diversity.
Future efforts could be focused on the development of
a new, more comprehensive diversity metric that could
encompass the aforementioned two metrics, but also
other metrics like the Kullback-Leibler Divergence- [50]
and Prediction Disagreement between subnetworks as
presented in [10].

To conclude, within this work, two novel effective
ensemble diversification methods have been introduced
and a state-of-the-art truly sparse ensemble was suc-
cessfully designed and implemented by extension of the
truly sparse framework. Yet, the success of the truly
sparse framework and potential future introduction of
actual faster, and memory-efficient neural networks, will
greatly depend on the further development of designated
sparse hardware platforms and software libraries.

ACKNOWLEDGEMENT

I am extremely grateful to dr. Decebal Mocanu for
his guidance, positive attitude, and extensive feedback
which helped me greatly to determine the course of
this research and overcome several challenges along the
way. Our weekly meetings have kept me motivated and
inspired throughout the entire process. I also wish to
thank dr. Nicola Strisciuglio and dr. Yanqui Huang for
their refreshing perspective and valuable input.

REFERENCES

[1] T. G. Dietterich, “Machine-learning research,” AI magazine,
vol. 18, no. 4, pp. 97–97, 1997.

[2] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A
survey on ensemble learning,” Frontiers of Computer Science,
vol. 14, no. 2, pp. 241–258, Apr. 2020. [Online]. Available:
http://link.springer.com/10.1007/s11704-019-8208-z

[3] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger, “Deep
networks with stochastic depth. arxiv 2016,” arXiv preprint
arXiv:1603.09382.

[4] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep
neural networks,” CoRR, vol. abs/1902.09574, 2019. [Online].
Available: http://arxiv.org/abs/1902.09574

13

http://link.springer.com/10.1007/s11704-019-8208-z
http://arxiv.org/abs/1902.09574

[5] S. Herculano-Houzel, B. Mota, P. Wong, and J. H. Kaas,
“Connectivity-driven white matter scaling and folding in primate
cerebral cortex,” Proceedings of the National Academy of Sci-
ences, vol. 107, no. 44, pp. 19 008–19 013, 2010.

[6] J. Frankle and M. Carbin, “The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks,” Feb. 2018.
[Online]. Available: https://openreview.net/forum?id=rJl-b3RcF7

[7] G. Sokar, Z. Atashgahi, M. Pechenizkiy, and D. C. Mocanu,
“Where to Pay Attention in Sparse Training for Feature
Selection?” Oct. 2022. [Online]. Available: https://openreview.
net/forum?id=xWvI9z37Xd

[8] S. Liu, D. C. Mocanu, A. R. R. Matavalam, Y. Pei,
and M. Pechenizkiy, “Sparse evolutionary deep learning
with over one million artificial neurons on commodity
hardware,” Neural Computing and Applications, vol. 33,
no. 7, pp. 2589–2604, Apr. 2021. [Online]. Available:
https://link.springer.com/10.1007/s00521-020-05136-7

[9] S. Curci, D. C. Mocanu, and M. Pechenizkiyi, “Truly sparse
neural networks at scale,” arXiv preprint arXiv:2102.01732,
2021.

[10] S. Liu, T. Chen, Z. Atashgahi, X. Chen, G. Sokar, E. Mocanu,
M. Pechenizkiy, Z. Wang, and D. C. Mocanu, “Deep ensembling
with no overhead for either training or testing: The all-round
blessings of dynamic sparsity,” in ICLR, 2022.

[11] Y. Ren, L. Zhang, and P. Suganthan, “Ensemble Classification
and Regression-Recent Developments, Applications and Future
Directions [Review Article],” IEEE Computational Intelligence
Magazine, vol. 11, no. 1, pp. 41–53, Feb. 2016, conference Name:
IEEE Computational Intelligence Magazine.

[12] O. Sagi and L. Rokach, “Ensemble learning: A
survey,” WIREs Data Mining and Knowledge Dis-
covery, vol. 8, no. 4, p. e1249, 2018, eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1249. [On-
line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
widm.1249

[13] A. Chandra and X. Yao, “DIVACE: Diverse and Accurate En-
semble Learning Algorithm,” in Intelligent Data Engineering
and Automated Learning – IDEAL 2004, ser. Lecture Notes in
Computer Science, Z. R. Yang, H. Yin, and R. M. Everson, Eds.
Berlin, Heidelberg: Springer, 2004, pp. 619–625.

[14] S. Chen, R. Zhao, and H. Fu, “Ensemble diversity enhancement
based on parameters evolution of base learners,” in 2021 33rd
Chinese Control and Decision Conference (CCDC), May 2021,
pp. 5887–5893, iSSN: 1948-9447.

[15] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, Aug. 1996. [Online]. Available: https:
//doi.org/10.1007/BF00058655

[16] G. Webb and Z. Zheng, “Multistrategy Ensemble Learning:
Reducing Error by Combining Ensemble Learning Techniques,”
Knowledge and Data Engineering, IEEE Transactions on,
vol. 16, pp. 980–991, Sep. 2004.

[17] Y. Freund and R. Schapire, “Experiments with
a New Boosting Algorithm,” undefined, 1996.
[Online]. Available: https://www.semanticscholar.org/paper/
Experiments-with-a-New-Boosting-Algorithm-Freund-Schapire/
68c1bfe375dde46777fe1ac8f3636fb651e3f0f8

[18] Y. Freund and R. E. Schapire, “A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting,” Journal of Computer and System Sciences, vol. 55,
no. 1, pp. 119–139, Aug. 1997. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S002200009791504X

[19] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Ba-
tra, “Why m heads are better than one: Training a diverse
ensemble of deep networks,” arXiv preprint arXiv:1511.06314,
2015.

[20] Y. Liu and X. Yao, “Ensemble learning via negative
correlation,” Neural Networks, vol. 12, no. 10, pp. 1399–
1404, Dec. 1999. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0893608099000738

[21] D. C. Mocanu, E. Mocanu, P. H. Nguyen, M. Gibescu, and A. Li-
otta, “A topological insight into restricted boltzmann machines,”
Machine Learning, vol. 104, no. 2-3, pp. 243–270, 2016.

[22] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky,
“Sparse convolutional neural networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition,
2015, pp. 806–814.

[23] S. Narang, G. F. Diamos, S. Sengupta, and E. Elsen,
“Exploring sparsity in recurrent neural networks,” CoRR, vol.
abs/1704.05119, 2017. [Online]. Available: http://arxiv.org/abs/
1704.05119

[24] L. Graesser, U. Evci, E. Elsen, and P. S. Castro, “The state of
sparse training in deep reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2022, pp. 7766–7792.

[25] T. Whitaker and D. Whitley, “Prune and Tune Ensembles: Low-
Cost Ensemble Learning With Sparse Independent Subnetworks,”
Mar. 2022, arXiv:2202.11782 [cs]. [Online]. Available: http:
//arxiv.org/abs/2202.11782

[26] M. Cho, A. Joshi, and C. Hegde, “ESPN: Extremely Sparse
Pruned Networks,” in 2021 IEEE Data Science and Learning
Workshop (DSLW), Jun. 2021, pp. 1–8.

[27] E. Karnin, “A simple procedure for pruning back-propagation
trained neural networks,” IEEE Transactions on Neural Networks,
vol. 1, no. 2, pp. 239–242, Jun. 1990, conference Name: IEEE
Transactions on Neural Networks.

[28] S. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg, “Pre-
defined sparse neural networks with hardware acceleration,”
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 2, pp. 332–345, 2019.

[29] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu,
and A. Liotta, “Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network science,” Nature
communications, vol. 9, no. 1, pp. 1–12, 2018.

[30] Y. LeCun, J. Denker, and S. Solla, “Optimal brain
damage,” in Advances in Neural Information Processing
Systems, D. Touretzky, Ed., vol. 2. Morgan-Kaufmann, 1989.
[Online]. Available: https://proceedings.neurips.cc/paper/1989/
file/6c9882bbac1c7093bd25041881277658-Paper.pdf

[31] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the
efficacy of pruning for model compression,” Oct. 2017.

[32] S. Liu, I. Ni’Mah, V. Menkovski, D. C. Mocanu, and
M. Pechenizkiy, “Efficient and effective training of sparse
recurrent neural networks,” Neural Computing and Applications,
vol. 33, no. 15, pp. 9625–9636, Aug. 2021. [Online]. Available:
https://rdcu.be/cegM5

[33] T. Dettmers and L. Zettlemoyer, “Sparse networks from
scratch: Faster training without losing performance,” CoRR, vol.
abs/1907.04840, 2019. [Online]. Available: http://arxiv.org/abs/
1907.04840

[34] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging
the lottery: Making all tickets winners,” in International Confer-
ence on Machine Learning. PMLR, 2020, pp. 2943–2952.

[35] G. Yuan, X. Ma, W. Niu, Z. Li, Z. Kong, N. Liu, Y. Gong,
Z. Zhan, C. He, Q. Jin et al., “Mest: Accurate and fast memory-
economic sparse training framework on the edge,” Advances in
Neural Information Processing Systems, vol. 34, pp. 20 838–
20 850, 2021.

[36] H. Mostafa and X. Wang, “Parameter efficient training of deep
convolutional neural networks by dynamic sparse reparameteriza-
tion,” in International Conference on Machine Learning. PMLR,
2019, pp. 4646–4655.

[37] J. LIU, Z. XU, R. SHI, R. C. C. Cheung, and H. K.
So, “Dynamic sparse training: Find efficient sparse network
from scratch with trainable masked layers,” in International
Conference on Learning Representations, 2020. [Online].
Available: https://openreview.net/forum?id=SJlbGJrtDB

[38] S. Kobayashi, S. Kiyono, J. Suzuki, and K. Inui, “Diverse Lottery
Tickets Boost Ensemble from a Single Pretrained Model,” in
Proceedings of BigScience Episode #5 – Workshop on

14

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=xWvI9z37Xd
https://openreview.net/forum?id=xWvI9z37Xd
https://link.springer.com/10.1007/s00521-020-05136-7
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1249
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1249
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655
https://www.semanticscholar.org/paper/Experiments-with-a-New-Boosting-Algorithm-Freund-Schapire/68c1bfe375dde46777fe1ac8f3636fb651e3f0f8
https://www.semanticscholar.org/paper/Experiments-with-a-New-Boosting-Algorithm-Freund-Schapire/68c1bfe375dde46777fe1ac8f3636fb651e3f0f8
https://www.semanticscholar.org/paper/Experiments-with-a-New-Boosting-Algorithm-Freund-Schapire/68c1bfe375dde46777fe1ac8f3636fb651e3f0f8
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S0893608099000738
https://www.sciencedirect.com/science/article/pii/S0893608099000738
http://arxiv.org/abs/1704.05119
http://arxiv.org/abs/1704.05119
http://arxiv.org/abs/2202.11782
http://arxiv.org/abs/2202.11782
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://rdcu.be/cegM5
http://arxiv.org/abs/1907.04840
http://arxiv.org/abs/1907.04840
https://openreview.net/forum?id=SJlbGJrtDB

Challenges & Perspectives in Creating Large Language Models.
virtual+Dublin: Association for Computational Linguistics, May
2022, pp. 42–50. [Online]. Available: https://aclanthology.org/
2022.bigscience-1.4

[39] U. Evci, Y. Ioannou, C. Keskin, and Y. Dauphin, “Gradient
Flow in Sparse Neural Networks and How Lottery Tickets Win,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 36, no. 6, pp. 6577–6586, Jun. 2022, number: 6.
[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/
view/20611

[40] Z. Atashgahi, G. Sokar, T. van der Lee, E. Mocanu, D. C.
Mocanu, R. Veldhuis, and M. Pechenizkiy, “Quick and robust
feature selection: the strength of energy-efficient sparse training
for autoencoders,” Machine Learning, pp. 1–38, 2022.

[41] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
land, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson,
W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones,
R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore,
J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro,
F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors,
“SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[42] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[43] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-
based models still outperform deep learning on typical tabular
data?” Oct. 2022. [Online]. Available: https://openreview.net/
forum?id=Fp7 phQszn

[44] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian
institute for advanced research).” [Online]. Available: http:
//www.cs.toronto.edu/∼kriz/cifar.html

[45] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[46] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting
performance data with papi-c,” in Tools for High Performance
Computing 2009, M. S. Müller, M. M. Resch, A. Schulz, and
W. E. Nagel, Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010, pp. 157–173.

[47] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic
differentiation in pytorch,” 2017.

[48] L. v. d. Maaten and G. Hinton, “Visualizing Data using
t-SNE,” Journal of Machine Learning Research, vol. 9,
no. 86, pp. 2579–2605, 2008. [Online]. Available: http:
//jmlr.org/papers/v9/vandermaaten08a.html

[49] S. Liu, T. V. der Lee, A. Yaman, Z. Atashgahi, D. Ferraro,
G. Sokar, M. Pechenizkiy, and D. C. Mocanu, “Topological
insights into sparse neural networks,” in Joint European confer-
ence on machine learning and knowledge discovery in databases.
Springer, 2020, pp. 279–294.

[50] S. Kullback and R. A. Leibler, “On information and sufficiency,”
The annals of mathematical statistics, vol. 22, no. 1, pp. 79–86,
1951.

[51] G. Brown, J. Wyatt, R. Harris, and X. Yao, “Diversity Creation
Methods: A Survey And Categorisation,” Information Fusion,
vol. 6, pp. 5–20, Mar. 2005.

[52] T. K. Ho, “The random subspace method for constructing
decision forests,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 8, pp. 832–844, Aug. 1998,
conference Name: IEEE Transactions on Pattern Analysis and
Machine Intelligence.

[53] ——, “Random decision forests,” in Proceedings of 3rd interna-

tional conference on document analysis and recognition, vol. 1.
IEEE, 1995, pp. 278–282.

[54] L. Breiman, “Random Forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, Oct. 2001. [Online]. Available: https:
//doi.org/10.1023/A:1010933404324

[55] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep
neural networks for image classification,” in 2012 IEEE confer-
ence on computer vision and pattern recognition. IEEE, 2012,
pp. 3642–3649.

[56] Z.-H. Zhou, “Ensemble Learning,” in Machine Learning, Z.-H.
Zhou, Ed. Singapore: Springer, 2021, pp. 181–210. [Online].
Available: https://doi.org/10.1007/978-981-15-1967-3 8

[57] D. H. Wolpert, “Stacked generalization,” Neural Networks,
vol. 5, no. 2, pp. 241–259, Jan. 1992. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0893608005800231

[58] J. Moreira, C. Soares, A. Jorge, and J. Sousa, “Ensemble Ap-
proaches for Regression: A Survey,” ACM Computing Surveys,
vol. 45, pp. 10:1–10:40, Nov. 2012.

[59] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas,
“Predicting parameters in deep learning,” in Advances in neural
information processing systems, 2013, pp. 2148–2156.

[60] S. Dieleman and B. Schrauwen, “Accelerating sparse restricted
boltzmann machine training using non-gaussianity measures,” in
Deep Learning and Unsupervised Feature Learning (NIPS-2012),
2012.

[61] G. Sokar, E. Mocanu, D. C. Mocanu, M. Pechenizkiy, and
P. Stone, “Dynamic sparse training for deep reinforcement learn-
ing,” Proceedings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence, 2022.

[62] S. Bibikar, H. Vikalo, Z. Wang, and X. Chen, “Federated dy-
namic sparse training: Computing less, communicating less, yet
learning better,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 6, p. 6080–6088, 2022.

15

https://aclanthology.org/2022.bigscience-1.4
https://aclanthology.org/2022.bigscience-1.4
https://ojs.aaai.org/index.php/AAAI/article/view/20611
https://ojs.aaai.org/index.php/AAAI/article/view/20611
https://openreview.net/forum?id=Fp7__phQszn
https://openreview.net/forum?id=Fp7__phQszn
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://archive.ics.uci.edu/ml
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-981-15-1967-3_8
https://www.sciencedirect.com/science/article/pii/S0893608005800231
https://www.sciencedirect.com/science/article/pii/S0893608005800231

APPENDIX A
EXTENDED RELATED WORK

A. Ensemble Learning

Even though the underlying idea of ensembles is clear; the combination of several weak learners can yield better
results than a singular learner, there is a scala of ensemble methods to realize this, varying from semi-supervised-
to fully supervised ensemble methods. Literature has shown that diversity among ensemble members is key for
the effectiveness of ensembles [2] [11] [12] [13] [14]. The methods to establish diversity in ensembles can be
categorized as either data diversity, structural diversity, or parameter diversity. This corresponds with the three
ensemble diversity technique categories described by [51]: methods affecting the starting point in hypothesis space,
methods impacting the set of accessible hypotheses, and methods which alter the traversal of the hypothesis space,
respectively.

A data diversity-driven and widely used supervised ensemble method is bootstrap aggregating, commonly referred
to as bagging [2] [15] [16]. Bagging is a method which increases the data diversity of the base predictors in an
ensemble by training the individual learners on replicates of the original training set which are constructed by
means of bootstrapping: drawing samples with replacement. Each separate learner casts a prediction vote which
are merged to a final prediction. A frequently used method to merge singular votes to a final vote is the intuitive
majority-voting scheme. In line with findings for ensembles in general, literature repetitively showed the importance
for high diversity among the predictors for bagging specifically as well [2] [12] [15]. The suitability of bagging for
deep neural networks was challenged by [19] who found that random initialization was preferred over bagging due
to the large parameter space and the need for a large training set. Even though a bootstrapped subset commonly
contains the same number of instances as the original dataset [12], the subset approximately leaves out about 37% of
the instances as a result of duplicates of the same instance within the bootstrapped subset [15] [19]. Yet, [15] found
that increasing the size of the subsets to be twice the size of the original dataset, now only leaving out around 14%
of the instances, did not improve the accuracy of the total network. Other data diversity focused ensembles include
types of boosting, such as Adaptive Boosting (AdaBoost) [17] [18], and the random subspace method [52]. Whereas
bagging creates replicates of the original dataset using bootstrapping, AdaBoost focuses on samples that have been
misclassified by iteratively adjusting the weights of those samples [2] [17]. The random subspace method creates
n decision trees, each with a randomly selected subset of features. All samples are projected into this subspace for
the particular decision tree by setting the values in all other dimensions to the same value (usually zero). By doing
so we in essence create n weak predictors (decision trees) which collectively outperform a singular decision tree
which has all features included [52] [53]. Combining bagging and random subspace selection, in this context often
also referred to as feature bagging, results in the state-of-the-art Random Forest network [11] [54]. Here, n random
decision trees composed of a randomly selected subset of features (feature bagging) are trained on a bootstrapped
subset, usually the size of the original dataset (data bagging).

Creating structural diversity in an ensemble can be done by having different model types as base predictors
[2] [11]. These models can vary from simple mathematical models like linear regression to complex deep neural
networks like convolutional neural networks, forming heterogeneous ensembles. The output of these individual
predictors can be merged to a final vote using a method like majority voting. As presented in [55], parallel
convolutional neural networks whose outputs were averaged for a final prediction, outperformed a single network.
The researchers promoted ensemble diversity even further by creating replicates of the same training set by means of
distortion, warping, and addition of noise. Different ensemble members were subsequently trained on the differently
altered trainsets. There is however a paradoxical relation between the diversity of ensemble members and the overall
accuracy of the ensemble as a whole. Both the accuracy of individual base learners and the diversity among them
heavily impact the performance of the total ensemble. Yet, the more accurate the ensemble members are, the more
similar they are likely to be. To find the optimal solution in this trade-off, [13] proposed the DIVACE algorithm
which regularizes the training of individual ensemble members by penalizing the similarity between the models
using a correlation function on top of the regular learning objective of accuracy optimization. The penalty function
in this work is taken from [20]. The use of a correlation penalty is in line with findings as presented [56] entail that
the generalization ability of an ensemble is dependent on the independence of the ensemble members. Despite the
good results that are obtained with simpler merging methods like majority-voting schemes, averaging, or a winner-
takes-all heuristics, [57] proposed a more advanced method of merging the predictions of individual ensemble:

16

stacked ensembles. Here, the output of the individual predictors is used as the input for the so-called meta-learer,
the overarching predictor. We refer to an ensemble as homogeneous if for all ensemble members in the ensemble
the same learning algorithm is used [58]. An ensemble with homogeneous ensemble members but a meta-learner
with a different learning algorithm is considered a heterogeneous ensemble. In general, heterogeneous ensembles
are expected to have higher levels of diversity [16] [58], which has shown to be crucial for the effectiveness of
ensembles. Commonly, the training set for a stacked ensemble is split where one part is used to train the individual
ensemble members, and the other (unseen) part is used to subsequently train the meta-learner [57].

Increasing diversity through parameter evolution is less common than the two aforementioned methods. Some
parameter evolution methods are presented in [14] which include generating a ’child’ base learner from two existing
’parent’ base learners which achieve high accuracy, crossover operations between two base learners, and mutations
of randomly selected parameters in the network. Similar to crossover operations, [19] found that parameter sharing
between ensemble members, in the form of TreeNets, can outperform an ensemble with isolated base learners. The
reason for this being that sharing of low-level weights allows each weight to be updated by multiple branches.
Moreover, they found that the use of an ensemble-aware loss function where the gradient of the loss of the total
ensemble is only back-propagated through the ensemble member with the lowest error for that sample yielded
higher ’oracle’ a. Here, the oracle accuracy is the accuracy of the most confident ensemble member, similar to the
previously mentioned winner-takes-all scheme.

Besides these three main pillars of creating high-diversity ensembles (data-driven diversity, structural diversity,
or parameter-evolution diversity), other methods include decomposition of the data (frequently used for time series
data) [11] and ensembles solely based on Negative Correlation Learning as proposed by [20].

B. Sparsity

With Artificial Neural Networks finding their origin biology, it does not come as a surprise that scholars turn to
biological neural networks for inspiration to improve these state-of-the-art methods even further. It was discovered
by [5] that the more neurons a brain has, the fewer connections between neurons are created. Transferring this
concept to ANNs showed that sparse networks could obtain the same level of accuracy as its counterpart [6]. This
is in line with findings by [59] who discovered the redundancy of many of the connections in a dense network.
Moreover, it was shown in [60] that many connections are valued very close to zero after training. Removing
redundant weights from ANNs in a smart way seems thus a promising solution to scale deep networks.

Over the last few years, sparse implementations for several ANN architectures have been introduced among which
Restricted Boltzmann Machines [21], Convolutional Neural Networks [22], and Recurrent Neural Networks [23].
The enforced sparsity levels in literature vary greatly and can range from a moderate sparsity level of 50% as in
[25], to extreme sparsity levels (>99%) as presented in [26]. Within the field of sparsity, a distinction between two
main approaches to apply sparsity to an ANN can be made: pruning of the non-critical connections of the ANN
during training [27] where a dense network is the starting point (dense-to-sparse training), or a predefined level of
sparsity with which an ANN is initialized after which the network is trained with a fixed topology [28] [21] or with
a dynamically updated topology by pruning and regrowing weights during training [29] (sparse-to-sparse training).

1) Dense-to-sparse training: Examples of dense-to-sparse training include the works of [6], [27], and [30]. The
earlier work of [27] was an initial attempt of combining the advantages of a larger neural network (i.e. being able to
solve more complex problems), with those of a smaller neural network (less computational overhead and less prone
to overfitting). In this work, a dense network was reduced by calculating the sensitivity of the global error to the
inclusion/exclusion of each individual neuron. Sorting the neurons in order of smallest impact on the global error,
the dense network was pruned up to the desired level by removing the neurons which least affected the global error.
Finding a subnetwork within a dense network which equals- or even out performs a dense network was described
by [6] as finding a ’winning lottery ticket’. The proposed method initializes a dense network in which a winning
lottery ticket is found by iterative magnitude pruning which in turn is re-initialized and re-trained. Even though the
re-training of the pruned network is significantly faster than the original, the computational overhead of the initial
dense network should not be overlooked, especially when considering extremely large networks. Despite a wide
variety of approaches of dense-to-sparse training methods, all have in common that the computational overhead is
equal or more than a regular dense network.

17

2) Sparse-to-sparse training: In contrast, a sparse-to-sparse training regime starts with a sparsely initiated network
which is subsequently trained. The odds of the randomly sparsely initialized network to be one of the subnetworks
which can equal- or even outperform its dense counterpart, is very slim. A network should thus be able to train
and evaluate many different topologies during training. In recent years, the concept of dynamic sparse training as
introduced by [29] has gained a lot of popularity among scholars. The proposed SET algorithm evolves an initially
sparse topology to a sparse network reaching high levels of accuracy by pruning weights based on magnitude and
randomly regrow the same amount of weights that were just pruned. This method achieved better performance than
its dense counterparts or static sparse neural networks that were trained from scratch [29]. The effectiveness of
adaptive sparse connectivity was confirmed by [49] who were able to visualize the topological optimization process
of SET. The usage of the SET procedure has expanded beyond the networks as demonstrated by the original authors
and alternative applications such as deep reinforcement learning as presented by [61] are out there. A more elaborate
overview of applications of sparse learning in the context of deep reinforcement learning is presented in [24]. A
big advantage of methods like the SET procedure [29], among which the sparse training of RNNs (ST-RNN) as
presented by [32], Sparse Momentum [33], Rigged Lottery (RigL) [34], Memory-Economic Sparse training [35],
and dynamic reparametrization [36], is that the network is sparsely initialized in contrast to the aforementioned
methods like the lottery ticket hypothesis by [6] or earlier works like [27]. Improving efficiency even further,
[62] proposed the federated dynamic sparse training protocol which entailed applying a dynamic sparse training
procedure on C distributed Clients which where trained on samples of the original dataset. [37] proposed a method
including trainable masks, leaving the original weight matrix untouched when pruning during training, and by doing
so preserving the historical information about the parameter importance.

C. Sparse ensembles

At the intersection of ensemble learning and sparsity some work has been done. Continuing on the work of
[6], Kobayashi et al. used iterative magnitude pruning to create an ensemble where a subnetwork was stored at
each iteration of pruning [38]. A more recent work by [25] created ensemble members by copying a dense parent
network and prune and tune each network individually. Both of these methods however, are dense-to-sparse training
regimes, meaning that the potential benefit of sparse ensembles in terms of computational overhead is not achieved.
The earlier discussed work of [62] in the field of Federate learning could be considered a successful sparse-to-
sparse ensemble with a meta-learner. All individual submodels are remotely, but sparsely, trained and updated. A
recently published work by [10] presented two methods with no computational overhead during either training
or testing. The first method, Dynamic Sparse Training (DST) Ensemble, initializes each sparse ensemble member
network and subsequently trains this network using the Rigged Lottery method as presented in [34]. The second
proposed method, Efficient Dynamic Sparse Training (EDST) Ensemble, initializes only one sparse network, hence
the efficiency. This network is initially trained using a relatively large learning rate, exploring a large range of the
parameter solution space (exploration phase). Subsequently, the network is refined from the previous network using
a smaller learning rate. Once the network has converged, the current state is stored as a subnetwork. The bassin
in the solution space in which the network converged is escaped by pruning a large percentage of the weights
with the lowest magnitude (refinement phase). The refinement phase is repeated for a predetermined number of
iterations, collecting M free tickets. [39] found that the success of a DST method like RigL is likely the result
of improved gradient flow in early training by regrowing weights based on high magnitude gradients. The SET
procedure seemed to be less effective at this. They also found that the Lottery Ticket Hypothesis as presented by
[6] does not improve gradient flow in earlier or later training stages. Moreover, they showed that the lottery tickets
initialization remains within the same basin in the solution space as the pruning solution, making the lottery tickets
fundamentally limited in their ability to improve training of sparse neural networks [39]. This might be explained
by the resulting lack of diversity in an ensemble as explained in Section A-A.

Most research in the field of sparse training is mostly focused on studying the effect of sparsity in artificial neural
networks. However, even though the effects of sparsity are successfully captured, practical application to reduce the
computational overhead is mostly neglected: the sparsity in most networks is enforced by applying binary masks
to the weight matrices. The reason for this mostly being the lack of sparse linear algebra support.

18

D. Truly Sparse Training

Little work has been done in the field of ’truly’ sparse training. With truly sparse training we refer to the training
of neural networks where we do not use dense matrices which mostly contain uselessly zero-valued weights. Almost
all work in the field of sparse network makes use of binary masked weight matrices which still cause significant
computational overhead.

Novel results were presented by [8] who created a truly sparse implementation of the SET algorithm for Multi-
Layer Perceptrons. The impact of a truly sparse implementation versus a mask-enforced sparse network becomes
evident as the truly sparse implementation allows an MLP with hundreds of thousands of neurons to be trained
on a regular laptop without GPU support. [9] continued on this work and introduced a parallel training algorithm
for truly sparse networks and a new method called Importance pruning to reduce the number of parameters even
further.

19

APPENDIX B
DISTANCE IMPLEMENTATION ALGORITHM

Algorithm 3: Truly Sparse EDST Ensemble with Distance Re-Initialization
Data: Layer i to k with: Sparse Weight Matrix Wi, prune rate p, global exploration rate q, evolution frequency e,

and matrix distance coefficient λ
1 %Initialization
2 model ← initialize Truly Sparse MLP (TS-MLP)
3 for i ← 0 to k do
4 Wi ← ErdosRenyInit(Wi)
5 bi ← ZeroVector()
6 end
7 globalExploration ← CalculateGlobalPruningEpochs(numEpochs)
8 %Training
9 for epoch ← 0 to numEpochs do

10 model.train step()
11 if epoch % e == 0 then
12 model.SET weight evolution(p)
13 if epoch in globalExploration then
14 for i ← 0 to k − 1 do
15 if i == 0 then
16 Wi.SET weight evolution(q)
17 else
18 W ′

i ← PruneSmallestK(|Wi|, q)
19 for l ← 0 to 100 do
20 totalDistance +=
21 CalculateDistance(Wi, W ′

i ∪ RegrowRandomK(q))
22 end
23 µ ← GetAverage(totalDistance)
24 σ ← GetStandardDeviation(totalDistance)
25 currentDistance ← 0
26 iteration ← 0
27 while currentDistance < (µ + λ × σ) do
28 if iteration > maxIterations then
29 Throw Iteration Error and stop training
30 proposedWeights ←W ′

i ∪ RegrowRandomK(q)
31 currentDistance ← CalculateDistance(Wi, proposedWeights)
32 iteration += 1
33 end
34 Wi ←W ′

i ∪ proposedWeights
35 end
36 end

20

APPENDIX C
DISJOINT IMPLEMENTATION ALGORITHM

Algorithm 4: Truly Sparse EDST Ensemble with Disjoint Re-Initialization
Data: Layer i to k with: Sparse Weight Matrix Wi, prune rate p, global exploration rate q, and evolution frequency

e
1 %Initialization
2 model ← initialize Truly Sparse MLP (TS-MLP)
3 for i ← 0 to k do
4 Wi ← ErdosRenyInit(Wi)
5 bi ← ZeroVector()
6 Blockedi ← ∅
7 end
8 globalExploration ← CalculateGlobalPruningEpochs(numEpochs) %Training
9 for epoch ← 0 to numEpochs do

10 model.train step()
11 if epoch % e == 0 then
12 model.SET weight evolution(p)
13 if epoch in globalExploration then
14 for i ← 0 to k − 1 do
15 if i == 0 then
16 Wi.SET weight evolution(q)
17 else
18 for j ← 0 to Wi.numRows() do
19 Blockedi.add(tuple(Wi.row[j] , Wi.col[j]))
20 end
21 W ′

i ← PruneSmallestK(|Wi|, q)
22 numWeightsRegrown ← 0
23 iteration ← 0
24 while numWeightsRegrown ̸= K do
25 proposedWeights ← (RegrowRandomK(q) - numWeightsRegrown)
26 for j ← 0 to Wi.numRows() do
27 if iteration > maxIterations then
28 store(proposedWeights.numRows())
29 break
30 else if tuple(proposedWeights.row[j], proposedWeights.col[j]) in Blockedi then
31 proposedWeights.delete(j)
32 end
33 W ′

i ←W ′
i ∪ proposedWeights

34 numWeightsRegrown += proposedWeights.numRows()
35 iteration += 1
36 end
37 Wi ←W ′

i ∪ proposedWeights
38 end
39 end

21

APPENDIX D
EXPERIMENTAL RESULTS CIFAR-10, GP & HIGGS

TABLE VII: Summary of experiments of our EDST implementations and baselines on the CIFAR-10 dataset. We
take the single dense model as a reference point for the less intuitive metrics and express the results for the other
models as a fraction (...x) of the result of the dense model.

Architecture Model Sparsity Results
Accuracy [%] Weights [#] Train Flops [#] Train time [min]

3072-1000-1000-1000-10 Single Dense Model - 57.0 5,085,010 2.18e14 ∼ 693.1
EDST 0.98 62.8 0.08x 0.03x ∼ 138.3

0.97 62.0 0.16x 0.05x ∼ 178.3
0.95 61.8 0.24x 0.08x ∼ 290.9

RD-EDST (ours) 0.98 61.6 0.08x 0.03x ∼ 119.7
0.97 61.5 0.16x 0.05x ∼ 230.1
0.95 61.6 0.24x 0.08x ∼ 275.7

FD-EDST (ours) 0.98 61.3 0.08x 0.03x ∼ 135.2
0.97 60.7 0.16x 0.05x ∼ 231.3
0.95 60.6 0.24x 0.08x ∼ 312.9

D-EDST (λ = 1.0) (ours) 0.98 62.5 0.08x 0.03x ∼ 119.7
0.97 61.8 0.16x 0.05x ∼ 173.8
0.95 61.6 0.24x 0.08x ∼ 287.9

D-EDST (λ = 1.5) (ours) 0.98 62.6 0.08x 0.03x ∼ 121.5
0.97 61.0 0.16x 0.05x ∼ 225.0
0.95 61.9 0.24x 0.08x ∼ 282.3

D-EDST (λ = 2.0) (ours) 0.98 62.2 0.08x 0.03x ∼ 121.8
0.97 61.6 0.16x 0.05x ∼ 223.8
0.95 61.5 0.24x 0.08x ∼ 277.2

SET-MLP 0.97 59.2 0.03x 0.05x ∼ 216.4
Single Static Sparse Model 0.97 57.1 0.03x 0.05x ∼ 206.4
Dense Ensemble - 61.0 5.00x 5.00x ∼ 3234.2

22

TABLE VIII: Summary of experiments of our EDST implementations and baselines on the Gesture Phase
Segmentation dataset.We take the single dense model as a reference point for the less intuitive metrics and express
the results for the other models as a fraction (...x) of the result of the dense model.

Architecture Model Sparsity Results
Accuracy [%] Weights [#] Train Flops [#] Train time [min]

50-1000-1000-1000-5 Single Dense Model - 54.9 2,058,005 1.71e13 ∼ 60.0
EDST 0.98 71.8 0.12x 0.04x ∼ 16.8

0.95 72.2 0.25x 0.07x ∼ 24.6
0.93 72.5 0.37x 0.11x ∼ 33.0

RD-EDST (ours) 0.98 71.8 0.12x 0.04x ∼ 17.1
0.95 72.6 0.25x 0.07x ∼ 31.1
0.93 72.9 0.37x 0.11x ∼ 53.1

FD-EDST (ours) 0.98 71.6 0.12x 0.04x ∼ 18.1
0.95 74.2 0.25x 0.07x ∼ 36.9
0.93 75.3 0.37x 0.11x ∼ 74.0

D-EDST (λ = 1.0) (ours) 0.98 72.7 0.12x 0.04x ∼ 16.6
0.95 73.4 0.25x 0.07x ∼ 25.3
0.93 73.3 0.37x 0.11x ∼ 32.5

D-EDST (λ = 1.5) (ours) 0.98 72.0 0.12x 0.04x ∼ 16.2
0.95 73.4 0.25x 0.07x ∼ 25.7
0.93 73.5 0.37x 0.11x ∼ 32.2

D-EDST (λ = 2.0) (ours) 0.98 72.2 0.12x 0.04x ∼ 16.8
0.95 73.9 0.25x 0.07x ∼ 25.1
0.93 73.7 0.37x 0.11x ∼ 33.1

SET-MLP 0.95 60.4 0.05x 0.07x ∼ 25.6
Single Static Sparse Model 0.95 67.4 0.05x 0.07x ∼ 22.7
Dense Ensemble - 54.0 5.00x 5.00x ∼ 299.9

TABLE IX: Summary of experiments of our EDST implementations and baselines on the HIGGS dataset. We take
the single dense model as a reference point for the less intuitive metrics and express the results for the other models
as a fraction (...x) of the result of the dense model.

Architecture Model Sparsity Results
Accuracy [%] Weights [#] Train Flops [#] Train time [min]

28-1000-1000-1000-2 Single Dense Model - 57.1 2,033,002 2.28e14 ∼ 709.6
EDST 0.98 53.1 0.12x 0.04x ∼ 241.6

0.95 53.1 0.25x 0.07x ∼ 330.1
RD-EDST (ours) 0.98 64.3 0.12x 0.04x ∼ 222.7

0.95 63.5 0.25x 0.07x ∼ 316.5
FD-EDST (ours) 0.98 64.0 0.12x 0.04x ∼ 229.1

0.95 63.7 0.25x 0.07x ∼ 339.2
D-EDST (λ = 1.0) (ours) 0.98 64.4 0.12x 0.04x ∼ 229.0

0.95 63.6 0.25x 0.07x ∼ 319.4
D-EDST (λ = 1.5) (ours) 0.98 64.5 0.12x 0.04x ∼ 232.0

0.95 63.5 0.25x 0.07x ∼ 343.0
D-EDST (λ = 2.0) (ours) 0.98 64.2 0.12x 0.04x ∼ 238.9

0.95 63.7 0.25x 0.07x ∼ 322.5
SET-MLP 0.95 54.3 0.05x 0.07x ∼ 332.1
Single Static Sparse Model 0.95 53.1 0.05x 0.07x ∼ 315.4
Dense Ensemble - 60.4 5.00x 5.00x ∼ 3561.5

23

APPENDIX E
EXPERIMENT HYPERPARAMETERS

Given the very limited availability of literature implementing the truly sparse framework, we mostly used the same
configuration of hyperparameters as presented in [9]. For all training, we used Stochastic Gradient Descent with a
momentum of 0.9 and a weight decay of 0.0002. In contrast to the works of [9] and [29], we use a slightly lower
dropout rate of 0.2 as our experiments concern very sparse networks. An overview of the main hyperparameters
can be found in Table X. We used the Alternated Left ReLU activation for all layers except the last layer to which
we applied the Softmax activation function. For the Gesture Phase Segmentation dataset, no value for the slope of
the negative side of the input of the Alternated left ReLU (α) was available in literature. We thus selected a neutral
value of 0.5. For the aggregated datasets we instead applied the regular Rectified Linear Unit activation function as
selecting a single value for α for all datasets yielded relatively poor overall performance. All models were trained
with a batch size of 128. The learning rate η and evolution frequency e varied for the EDST Ensembles as a result
of the refinement phases. Here, the evolution frequency refers to how often, once every e epochs, we do a topology
update. For the dense models, we initially planned to run all experiments with a fixed learning rate of 0.01 as
presented in [29]. However, due to the numerical instability of the truly sparse framework, we had to decrease this
learning rate and used a fixed learning rate of 0.001 for HIGGS and the Gesture Phase Segmentation dataset. Due
to the high number of input features for CIFAR-10, we were forced to use a fixed learning rate of 0.0001. All
ensembles, except for those in Section IV-G, consist of 5 subnetworks.

TABLE X: Table of hyperparameters used for the experiments.

Experiment Dataset Architecture Hyperparameters
η e A α Weight init.

EDST Ensembles CIFAR-10 3072x1000x1000x1000x10 0.1 - 0.05 2-4-8 All-ReLU 0.75 He Uniform
Gesture Phase Segmentation 50x1000x1000x1000x5 0.1 - 0.05 2-4-8 All-ReLU 0.5 He Uniform
HIGGS 28x1000x1000x1000x2 0.1 - 0.05 2-4-8 All-ReLU 0.05 Xavier
Aggregated datasets ...x1000x1000x1000x2 0.1 - 0.05 2-4-8 ReLU - He Uniform

Baseline Ensembles CIFAR-10 3072x1000x1000x1000x10 0.01 2 All-ReLU 0.75 He Uniform
Gesture Phase Segmentation 50x1000x1000x1000x5 0.01 2 All-ReLU 0.5 He Uniform
HIGGS 28x1000x1000x1000x2 0.01 2 All-ReLU 0.05 Xavier
Aggregated datasets ...x1000x1000x1000x2 0.01 2 ReLU - He Uniform

Dense Models CIFAR-10 3072x1000x1000x1000x10 0.0001 - ReLU - He Uniform
Gesture Phase Segmentation 50x1000x1000x1000x5 0.001 - ReLU - He Uniform
HIGGS 28x1000x1000x1000x2 0.001 - ReLU - Xavier
Aggregated datasets ...x1000x1000x1000x2 0.001 - ReLU - He Uniform

24

APPENDIX F
EUCLIDEAN DISTANCE DISTRIBUTION AFTER GLOBAL PRUNING

In this appendix, we visualize the distribution of the euclidean distance between converged subnetworks and
randomly newly re-initialized networks. More specifically, we calculate the euclidean distance between the weight
matrix of a converged subnetwork’s hidden layer and the weight matrix after pruning- and regrowing 80% of the
weights. If we define Wi to be the hidden layer of the converged subnetwork, W ′i as the matrix we get after pruning
80% of the weights (based on magnitude), and W random

i as the random weights we regrow to replace the pruned
weights, we obtain the weight matrix of the newly initialized subnetwork Wnew

i as follows: Wnew
i = W ′i∪W random

i .
Here, we randomly generate 10, 100, or a thousand Wnew

i weight matrices and visualize the euclidean distance to
Wi for CIFAR-10, the Gesture Phase Segmentation dataset, and HIGGS. It becomes clear from Figures 5, 6, and 7
that the distribution of euclidean distances starts approximating a gaussian distribution from around 100 iterations.

(a) Ten iterations (b) Hundred iterations (c) Thousand iterations

Fig. 5: Visualization of the euclidean distance distribution on CIFAR-10.

(a) Ten iterations (b) Hundred iterations (c) Thousand iterations

Fig. 6: Visualization of the euclidean distance distribution on the Gesture Phase Segmentation dataset.

(a) Ten iterations (b) Hundred iterations (c) Thousand iterations

Fig. 7: Visualization of the euclidean distance distribution on the HIGGS dataset.

25

APPENDIX G
SUBNETWORK COUNT, DEPTH, AND WIDTH

We evaluated the various models on the Gesture Phase Segmentation dataset for a varying number of subnetworks,
hidden layers, and number of neurons per hidden layer. Figure 8 provides an overview of the obtained results. For
the experiments, we used the same configuration as described in Section IV-C unless indicated differently. The
results presented in Figure 8a were obtained by varying the number of subnetworks in the ensemble but keeping
all other hyperparameters, including the total number of epochs, the same. This means that with an increase in
the number of subnetworks, the number of training epochs per subnetwork decreases. We observe in Figure 8a
that there seems to be a slight decreasing trend in terms of accuracy for all models except FD-EDST. Yet, more
experiments are required to determine the validity of this observation.

For Figures 8b and 8c, we see that the pattern of the relation between the depth and width of the subnetworks,
and test accuracy, is almost the same for all implementations. This might suggest that the networks suffer from
poor generalization and/or overparameterization independent of the diversification method.

(a) (b) (c)

Fig. 8: Lineplots of the performance of all the models in terms of classification accuracy on the Gesture Phase
Segmentation test set with a varying number of submodels (8a), hidden layers (8b), and number of neurons per
hidden layer (8c).

26

APPENDIX H
AGGREGATED DATASETS

For all datasets, the models were initialized with the He Uniform initializer, and an 80-20 train-split was used to
obtain separate sets for training and evaluation. An overview of the data properties for all datasets can be found in
Table XI. All datasets were transformed to binary classification problems by [43]. Given our computational- and
time constraints, the HIGGS- and covertype datasets were removed from the original collection of datasets due to
their sizes.

TABLE XI: Summary of aggregated datasets

Dataset Dataset properties
Features Samples [#]

Bank Marketing 7 10578
Bioresponse 419 3434
California 8 20634
Credit 10 16714
Default-of-credit-card-clients 20 13272
Diabetes130US 7 71090
Electricity 7 38474
Eye Movements 20 7608
Heloc 22 10000
House16 16 13488
Jannis 54 57580
MagicTelescope 10 13376
MiniBooNE 50 72998
Pol 26 10082

27

APPENDIX I
FINAL SUBNETWORK TOPOLOGY

We visualize the topological distances between the converged subnetworks. We do this for CIFAR-10 (9), the
Gesture Phase Segmentation dataset (10), and the HIGGS dataset (10). The topological distances of the subnetworks
of our proposed models that were trained on the Gesture Phase Segmentation dataset are smaller than the original
implementation. Further research is required to discover why this only happens for this particular dataset. For the
other two datasets, the topological distance of the converged subnetworks is similar to the original implementation.

(a) EDST (b) Regular Disjoint EDST (c) Fully Disjoint EDST (d) Distance EDST (λ = 1.5)

Fig. 9: Topological distance of converged subnetworks that were trained on CIFAR-10.

(a) EDST (b) Regular Disjoint EDST (c) Fully Disjoint EDST (d) Distance EDST (λ = 1.5)

Fig. 10: Topological distance of converged subnetworks that were trained on Gesture Phase Segmentation dataset

(a) EDST (b) Regular Disjoint EDST (c) Fully Disjoint EDST (d) Distance EDST (λ = 1.5)

Fig. 11: Topological distance of converged subnetworks that were trained on HIGGS.

28

APPENDIX J
ABLATION STUDY COMPREHENSIVE REFINEMENT

In this appendix, we present all the results from the ablation study into the impact of our Comprehensive
Refinement phase, including the number of training Floating Point Operations and total training time in minutes.
From Table XII we see that our Comprehensive refinement phase does not cause any computational overhead in
terms of training FLOPs. The training times differ for some models but this applies both to the runs with just
learning rate reduction and our proposed Comprehensive Refinement phase. We assume that these differences are
the result of the stochastic nature of the regrowing process of the SET procedure [29].

TABLE XII: Ablation study Comprehensive Refinement phase on CIFAR-10, the Gesture Phase Segmentation (GPS)
dataset, and HIGGS dataset.

Dataset Model Comprehensive Results
Refinement Accuracy [%] Train Flops [#] Train time [min]

CIFAR-10 RD-EDST (ours) No 62.1 1.15e13 ∼ 222.1
Yes 61.5 1.15e13 ∼ 230.1

FD-EDST (ours) No 61.0 1.15e13 ∼ 251.2
Yes 60.7 1.14e13 ∼ 231.3

D-EDST (λ = 1.5) (ours) No 62.3 1.15e13 ∼ 210.2
Yes 61.0 1.15e13 ∼ 225.0

Gesture Phase RD-EDST (ours) No 71.2 1.27e12 ∼ 31.7
Segmentation Yes 72.6 1.26e12 ∼ 31.1

FD-EDST (ours) No 73.9 1.27e12 ∼ 57.4
Yes 74.2 1.26e12 ∼ 36.9

D-EDST (λ = 1.5) (ours) No 71.7 1.28e12 ∼ 26.4
Yes 73.4 1.28e12 ∼ 25.7

HIGGS RD-EDST (ours) No 63.7 1.65e13 ∼ 338.3
Yes 63.5 1.65e13 ∼ 316.5

FD-EDST (ours) No 63.5 1.65e13 ∼ 358.3
Yes 63.7 1.65e13 ∼ 339.2

D-EDST (λ = 1.5) (ours) No 63.5 1.65e13 ∼ 319.0
Yes 63.5 1.65e13 ∼ 343.0

29

