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Management summary

Ahold Delhaize Inbound Logistics (ADIL) acts as an internal supplier of the subsidiaries
of Ahold Delhaize. ADIL serves its internal customers by group-buying the items of
suppliers primarily based in Europe. Ahold Delhaize wants to reduce the overall carbon
emissions. The question arises of how ADIL can reduce the environmental impact of
their logistics, and improve its logistics decision-making.

The objective of this research is as follows:

How can ADIL improve their international freight transportation network consider-
ing different kinds of transportation modes within the transportation network?

Context analysis Most orders from suppliers of ADIL are placed in Europe and also
have the most potential for emission reduction. According to the GLEC framework,
intermodal shipping routes, which include maritime, railway, and inland waterways
transportation, have far less pollution per container per kilometer. Currently, about 50%
of ADIL’s emissions are caused by road transportation, even though road transportation
only accounts for approximately 20% of the total distance travelled. About 40% of the
emissions are caused by maritime shipping which accounts for 80% of the total distance
travelled.

Literature The literature proposes synchromodal transportation as a method to opti-
mize transportation objectives, such as cost and emission. Synchromodal transportation
is a form of intermodal transport that uses flexible services. The aim is to manage the
flow of goods in a transportation network of logistics service providers and reduce total
costs and emissions. Most research considers heuristics in a simulation model, while
some recent papers focus on implementing learning strategies, such as Approximate
Dynamic Programming.

Most studies evaluate stochasticity in transportation, which includes cancelled- and
delayed trips. Often transportation demand and capacity play a more significant role at
the strategic/tactical level. The literature proposes a few studies on the combination of
inventory management and logistics. A few studies evaluate choosing the transportation
mode based on the demand during lead time.

Solution approach We developed a simulation model based on ADIL data, to investi-
gate the trade-offs in cost and carbon emissions and evaluate easy points of improvement.
Furthermore, the simulation model is used to compare a heuristic-based and learning-
based approach. The simulation model includes three modules, of which one is the
inventory management system, the second is a transportation network, and the third
is the transportation decision system. For each supplier, we generate a fixed set of
paths to the warehouse in the Netherlands, which is calculated on the least cost, time,
and emission (each path has a different cost, time, and emission). Each item has a
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stochastic demand. When the inventory falls below the reorder point, the inventory
management module triggers an order of full container loads of the items at the supplier.
Each container is transported on one path of the fixed set of paths from the supplier to
the warehouse in the Netherlands. The transportation decision module, called the order
optimizer, determines the best path to choose, based on a weighted objective function
that minimizes expected costs and emissions. The expected costs are determined by
evaluating different demand observations and transportation delays. In comparison to
this heuristic, we develop and test a learning heuristic for the transportation decision
module. This method employs a neural network to determine the container path.

Results and conclusions The performance of the transportation decision module is
compared with a simple heuristic that does not include expected future lost sales and
inventory costs, but only the direct transportation costs (myopic policy). We evaluate 12
experiments, of which one is road-only transportation. The other 11 experiments each
have a 100%, 90%, 80%, ..., 10%, and 1% cost focus, respectively. The simple heuristic
performed close to the performance of the order optimizer, showing slightly worse
performance with a 100% cost focus, and a high emission focus. Figure 1 shows the Pareto
frontier solutions of the experiments for the simple heuristic and optimization module:
the order optimizer. In the used dataset, an approximate emission reduction of 45% is
possible with a cost increase of 12%, compared to the 100% cost focus experiment. The
RoadOnly experimentwhich only uses road transportation, is significantly outperformed
in carbon emission, while simultaneously leading to a slight cost reduction, by the Pareto
frontier.

Figure 1.: Pareto frontier solutions for different cost factors

The primary modality of intermodal transport is rail transportation. In a full emission
focus experiment, nearly all emissions (close to 90%) are caused by intermodal trans-
portation routes that include rail transportation. Still, about 65% of the emissions are
caused by road transportation, but most of the route’s emissions are released from the
required road sections within the intermodal route.

Within the scope of this research, the learning heuristic tends to show the same perfor-
mance as simple- or complex heuristics. While the learning heuristic tends to give more
consistent results than a simple heuristic, the benefits are not significant.
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Recommendations and future research We propose the following recommendations
to ADIL:

• Evaluate what cost/emission trade-off fits the best to ADIL’s objectives. A reduction
in emissions goes along with a small increase in costs.

• Due to the standardized procedure of transportation for each supplier of ADIL,
implementing a single intermodal transportation path for a supplier is possible.
If ADIL desires to include flexible services, such as synchromodal transportation,
ADIL should review how this can be implemented into its current systems.

• Within the constraints of this research, a complex heuristic or learning heuristic
does not significantly improve the solution for path selection, compared to a simple
heuristic. For that reason, if ADIL desires to implement flexible services, we
recommend startingwith a subset of the transportation routes and simple heuristics
before increasing the scope and investigating more complex solutions.

The following key future research topics result from this research:

• In this research, demand is simulated according to a single distribution based on
actual demand figures. The actual demand can also be simulated with multiple
distributions to accurately cope with promotions, i.e., high peaks in demand. In-
cluding two types of demand seasons, such as a standard- and high-demand season
may provide relevant results in path selection.

• The problem instance of ADIL has a relatively high lost sales cost, compared to the
low holding costs. This results in the optimization model usually preferring more
inventory for a reduced risk of lost sales. Researching the problem to optimize the
ordering process on lost sales costs and complying with warehouse capacity might
be more relevant than the trade-off between holding- and lost sales costs.
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Glossary

Banner Synonym for internal customers of Ahold Delhaize, such as Albert Heijn and
Etos.

Collo The box in which consumer units are stored. A pallet consists of multiple collo’s.

Directed graph A graph consisting of nodes and arcs (connecting nodes), where the
flow of the arcs goes in one direction.

Door-to-door connections A sequence of connections, i.e., transportation services to
transport goods from a supplier to a warehouse.

Flexible services Flexible services, primarily transportation in this report, can be re-
quested on demand at any moment in time. Non-flexible services have fixed or
predefined schedules.

GLEC framework A framework that defined an emission per transportation mode per
Twenty-foot equivalent per kilometer (Smart Freight Centre, 2022).

Heuristic A method to make a decision in an optimization problem, which is often an
approximate but not optimal solution.

Intermodal transportation Moving goods by more than one mode of transport, with a
separate contract for each individual leg of the journey (Containerships, 2020).

Inventory position The physical inventory quantity together with all in-transit quantity
of an item.

Lead time The duration of an activity, e.g., a transportation path.

Lost sales The quantity of demand not met, due to a shortage of physical inventory.

Modal shift Changing a standardized transportation policy (partially) to another trans-
portation mode.

Multimodal transportation Moving goods by more than one mode of transport, under
one contract (Containerships, 2020).

Myopic policy A policy that chooses the decision that improves the objective function
the most.
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Glossary

Order multiple A fixed item quantity, which is often, e.g., a full box, pallet, or truck-load.

Pareto front An efficient frontier of optimal solutions with two or more objectives.

Policy (MDP) In a Markov Decision Process, a policy is the set of decisions to take in all
states of the system.

Post decision state (MDP) The state the Markov Decision Process ends up in after
taking a decision in the current state.

Reinforcement learning A form of machine learning that learns optimal decision-
making in a sequential decision-making simulation.

Reorder point A specific stock level, where if the inventory position drops below this
level, a new order is generated.

State (MDP) In a Markov Decision Process, a state is defined as the characteristics of a
system of a certain moment in time.

Stochasticity A term for uncertainty, which is often modelled with a statistical proba-
bility distribution.

Synchromodal transportation A form of intermodal transport with so-called mode-
free booking flexibility (Rivera & Mes, 2022).

Transportation mode The method to ship a container. The most common methods are
via road, air, rail, maritime, and inland waterways.

Unimodal transportation Delivering goods by a single mode of transport, typically by
road (Eurosender, 2020).

Value function approximation (MDP) A function to approximate the value we assign
to a state.
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1. Introduction

This report elaborates on the research at Ahold Delhaize about the optimization of
sustainability in freight transportation. This chapter describes the problem identification
phase of the research.

First, the context of the research is described in Section 1.1. Section 1.2 elaborates on the
motivation of the research. Section 1.3 gives a description of the problem. Section 1.4
shows the objective of the research. Finally, Section 1.5 splits the research into several
research questions.

1.1. Context description

The research was conducted at Ahold Delhaize located in Zaandam in the Netherlands.
Section 1.1.1 gives a brief summary of the company Ahold Delhaize. Then section
1.1.2 introduces the department within Ahold Delhaize where the research has been
conducted.

1.1.1. Ahold Delhaize

Ahold Delhaize is a large food retail group with its headquarters located in Zaandam, the
Netherlands. With famous brands such as Albert Heijn in the Netherlands, and Delhaize
in Belgium, and Food Lion in the USA, Ahold Delhaize serves multiple markets in several
countries (Ahold Delhaize, 2022a). With a net sales of €75.6 billion in 2021 (€30.1B in
Europe and €45.5B in the USA), Ahold Delhaize is continuously trying to grow in its
local markets (Ahold Delhaize, 2022b).

Ahold Delhaize was formed by the merger between Ahold and the Delhaize Group
in 2016 (Ahold Delhaize, 2022a). With over 150 years of experience, Ahold Delhaize
has grown from a small wholesale grocery business to a large multinational group of
multiple brands. The Ahold Delhaize group combined with its local brands have over
400,000 people employed in nearly 7,500 stores (Ahold Delhaize, 2022a).

1.1.2. Ahold Delhaize Inbound Logistics

Ahold Delhaize Inbound Logistics (ADIL) is a department within the Ahold Delhaize
group, also located in Zaandam. ADIL operates as awholesaler for the internal customers
(also called banners) of Ahold Delhaize and is specialized in the international first mile
(ADIL, 2021). Where banners such as Albert Heijn arrange contracts with suppliers,
ADIL orders, ships, and stores the products in four own warehouses in the Netherlands.
Banners can then request products from ADIL’s warehouses to their warehouses.
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1. Introduction

ADIL’s suppliers are located around the globe, which causes geographically large trans-
portation networks. Lead times therefore may vary between a single week and multiple
months. ADIL has to manage these factors, so its banners can request products with
short lead times. Managing these factors is critical to the core business of ADIL.

ADIL makes use of two operational teams. The first team is responsible for demand
management, which includes forecasting the demand for products for a maximum of 12
months. The second team is responsible for supply management and orders the products
contingent on the forecast.

1.2. Motivation

Climate change is the driving force for people and businesses to become aware of the
environmental impact of operations. Ahold Delhaize is also trying to reduce its impact
on the environment by, e.g., reducing carbon emissions from its operations. By 2050,
Ahold Delhaize wants to achieve a net-zero emission. This means that ADIL also has to
think about reducing its environmental impact.

Besides environmental factors, ADIL follows recent trends and developments in artificial
intelligence (AI). The department is now exploring opportunities for using AI techniques
within its business processes. In the past few years, students have already performed
some research in the field of artificial intelligence within Ahold Delhaize, but in different
types of operations (e.g., warehousing). Now, ADIL wants to explore the potential of AI
to optimize its ordering- and logistics processes, and reduce its carbon emissions while
maintaining its product availability.

1.3. Problem description

As mentioned in the previous section, ADIL needs to reduce carbon emissions within
their operations to achieve the net-zero goal of Ahold Delhaize in 2050. Since ADIL’s
core business is managing the logistics of goods, ADIL’s way to reduce carbon emissions
is to focus on making transportation more sustainable.

The majority of the suppliers of ADIL are located in Europe. The other suppliers are
spread around the world in countries such as China, South Africa, and Chile. Due to the
long geographical distance in the supply chains, products can have long- and varying
lead times. Some products have specific characteristics and requirements such as a shelf
life, which can make the planning of orders quite complex. Currently, the planner is
expected to take into account all these factors, which is difficult to optimize in practice.

ADIL desires to optimize their ordering process which can assist the planners to make
better decisions in their ordering process. In this problem, multiple objectives are relevant
as mentioned in section 1.2. Order optimization includes the control of moving products
in the transportation network and the moment of ordering.
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1.3.1. Problem context

The ordering process of the planners is based on a standardized way of shipping for
every supplier, which simplifies the ordering process. For example, the default method
of shipping of a supplier in Germany might be road transportation, while a supplier in
China uses maritime shipping. However, this can also cause inefficiencies due to not
considering other, more efficient and sustainable options. Currently, ADIL does not know
to what extent they can improve this logistical process by considering other methods of
shipping.

This problem considers multiple constraints and variables. Item characteristics and the
supplier locationmay influencewhat shipping options are allowed and/or available. Also,
warehouses have a finite capacity that limits the amount of storage space. Besides, long-
and varying lead times should be considered within the ordering process. Unexpected
long lead times may cause inventory shortages.

1.3.2. Core problem

The core problem ADIL faces in the problem context is the unawareness of potential
efficiency- and sustainability improvements of other transportation options. ADIL cur-
rently uses trucks as the major mode of transportation within Europe and wants to
explore other methods.

1.4. Objective

Concluding from the problem description, the following research objective has been
defined.

How can ADIL improve their international freight transportation network consider-
ing different kinds of transportation modes within the transportation network?

1.5. Research questions

For executing the research, five sub-questions have been defined related to the problem
statement.

RQ1 What does the current ordering process look like at ADIL?

First, an understanding of the current ordering process has to be defined.
This will be investigated by interviewing the planners and consulting the
ERP system on how decisions are made in the ordering process, related to
creating- and shipping an order.

RQ2 What optimization models does the literature propose about multi-objective
transportation networks, considering multiple modes of transportation?

The literature will be assessed about what modelling techniques are available
to optimize the transportation networks based on multiple objectives, e.g.,
cost and emission.
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RQ3 In what way can the problem be formulated in the case of ADIL?

The model needs to be formulated in terms of sets, parameters, decisions,
constraints, and an objective. This problem formulation should include all
relevant elements for the situation of ADIL. Also, the transportation network
of Europe should be modelled.

RQ4 How should the solution methods, applied to the problem formulation, be
designed?

The problem formulation should be solved with solution approaches such as
heuristics and algorithms. The approach to solving the problem formulation
is described.

RQ5 How do the solutions perform, compared with a simple heuristic?

The performance of the developed heuristic solution(s) can be compared
with a simple heuristic, using a myopic policy, to validate the performance of
the model.

Figure 1.1 shows the structure between the research questions. First, in Chapter 2,
the current ordering process is elaborated with relevant key figures such as emissions
pollution. Then, Chapter 3 shows what literature has been researched about order
optimization, related to transport modelling. Based on the methodology of formulation
transportation networks in literature, Chapter 4 formulates the problem instance in
terms of sets, parameters, and decisive moments. The solution approach to optimize the
problem formulation is described in Chapter 5. Chapter 6 elaborates on the experimental
settings in preparation for the results. Finally, Chapter 7 performs the experiments on
the problem formulation, using the solution approach.

Figure 1.1.: Structure of the research questions.
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2. Context analysis

In this chapter, context analysis is performed to answer research question 1. First, Section
2.1 has worked out the ordering process of ADIL in more detail. Section 2.2 elaborates
further on the method a purchase order is created. Section 2.3 and Section 2.4 show a
summary of the product portfolio and the supplier portfolio, respectively. Section 2.5
shows the division of transportationmodes used by ADIL, whereas Section 2.6 elaborates
on the emissions polluted by transportation. Section 2.7 concludes this chapter with the
main conclusions of the context analysis.

2.1. Ordering process of ADIL

ADIL is specialised in international first mile logistics as mentioned in Section 1.1.2.
Looking at the well-known purchasing process of Weele (2010) in Figure 2.1, ADIL only
takes care of the supplying part of the purchasing process.

Figure 2.1.: Purchasing process (Weele, 2010).

The ordering process of ADIL consists of several activities. The first part is demand
planning, which is done by the demand team. This team of planners is responsible for
the forecast of all product demand for the next 52 weeks. This demand has to suffice
the standard demand of its internal customer, but also promotions, which cause large
demand shocks. This team makes use of a forecasting tool that predicts demand based
on historical data.

The second part is supply planning, which is done by the supply team. The supply of
products is done according to the demand forecast. This includes purchasing the orders,
arranging transportation with third-party suppliers, and monitoring the orders until
they are delivered at one of ADIL’s warehouses. From this point onwards, banners can
order these products from ADIL with their own transportation equipment. Every day, a
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list of inbound- and outbound products is sent to each warehouse about what products
will arrive at the warehouse, and what products will need to be prepared for shipment
to the banner.

2.2. Purchase order creation

Where the demand team creates the demand forecast, the supply team orders based on
the current inventory and the demand forecast. The enterpise resource planning (ERP)
system of ADIL assists the planner in purchasing the products at the right time. The
system calculates the inventory after lead time based on the current inventory, incoming
orders, and demand forecast. If the inventory after the lead time drops below zero, it
will notify the planner to make a purchase order.

Every supplier has one or more products they deliver to ADIL. Figure 2.2 shows the
number of suppliers that deliver how many unique items. When a planner is ordering
a product, the planner will fill one twenty-foot equivalent unit (TEU) container or a
forty-foot equivalent unit (FEU) container or equivalent. Based on the inventory of the
items of a single supplier, the system proposes the number of pallets to order for each
item. This is based on how many weeks forward to order. The planner then is asked to
adjust the number of pallets ordered per item to fully pack one or more full container
loads.

Figure 2.2.: The column represents the number of suppliers that deliver between [x, y]
unique items to ADIL.
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2.3. Product portfolio

ADIL has a product portfolio of a few thousand products. These products range from
winery to diapers and shaving needs. The items can be categorised into roughly three
categories, which are winery products, food products, and non-food products. Food
products can have for example different kinds of characteristics than other categories.
For example, certain olives need to be stored in a cooled area below 14 degrees. In Table
2.1 most relevant item characteristics are discussed.

Table 2.1.: Important item characteristics

Characteristic Explanation

Cartons on pallets The number of cartons on a full single pallet.

Pallet type The type of pallet the products are delivered on.

Item dimensions The length, width, and height of a single product. Can
also be expressed as the number of items per layer of a
pallet.

Weight The weight of a collo1.

Temperature zone The temperature zone in which the item should be stored
in inventory, and during transport.

Shelf-life (PT) The number of days after production the product can be
consumed.

2.4. Supplier portfolio

ADIL has suppliers located all around the globe, which makes their supply chains
geographically long. Figure 2.3 shows the expenditure divided per continent of January
2022. The major expenses are made in Europe (about 85%). South America, Asia, and
Africa also have some local suppliers that make up about 15% of the total expenses. This
concludes that most of ADIL’s turnover at suppliers is located in the EU.

1A box in which consumer units are stored.
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Figure 2.3.: Expenditure of ADIL per continent (January 2022).

ADIL does business with suppliers all across Europe. Countries such as the United
Kingdom, Germany, and Italy are the most relevant when it comes to turnover. The
majority of the spending is done with western countries, while also eastern countries
include some suppliers.

2.5. Transportation modes

The transportation industry related to transporting products has 5 common transporta-
tion modes: rail, maritime (sea), road, inland waterways, and air (Eurostat, 2019). Some
parties also make a distinction between short sea- and deep sea shipping (Eurostat, 2022).
ADIL currently makes use of three modes: rail, maritime (short sea & deep sea), and
road.

For overseas suppliers that are located outside Europe, deep-sea shipping is the standard
transportation mode. Within Europe, the transportation mode can differ from road, rail,
and short sea. Currently, only for a limited number of suppliers the rail and short sea
transportation modes are used.

ADIL has done about 16,000 shipments in 2021. A distinction between TEUs and FEUs
is not possible in the data. Figure 2.4 shows the number of containers shipped from
suppliers to the warehouses of ADIL. As the data shows, the majority is shipped by truck.
About 25% is shipped by maritime, and about 10% by rail.
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Figure 2.4.: Number of containers ordered in 2021 by transportation mode.

2.6. Emission

ADIL is trying to identify sustainability improvements with this research. Different
transportation modes also have different emission factors. To compare the different
transportation modes, the carbon emissions are used from the GLEC framework (Smart
Freight Centre, 2022). The GLEC framework has defined intercontinental average carbon
emissions per km per TEU for every transportation mode. Figure 2.5 shows the total
distance travelled by all containers, and its corresponding total emissions polluted by
the transportation modes. The distance is calculated by taking the great-circle distance
in kilometers between the country of origin and destination for all transportation modes.
The total emissions are calculated by multiplying the distance with the relevant average
emission factor for that route. These values are only for routes defined by a transportation
mode.

Figure 2.5.: Estimation of total distance travelled and emissions polluted summed over
all containers in 2021 by transportation mode.
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As Figure 2.5 shows, the majority of the distance travelled is caused by maritime trans-
portation, while the emissions are roughly the same as with the road transportation
mode. This is due to the road transportation mode having a way larger emission factor
than maritime transportation.

2.7. Conclusion

The purchasing process of ADIL is standardized in such a way that the method of
transportation is already determined for every supplier. This simplifies the purchasing
process but reduces flexibility. The ERP system also assists the planner in determining
the quantity of a product to order. The planner can determine at the end what quantity
to purchase of what item.

Most of ADIL’s spend is done in Europe, where most suppliers are located. The goods
from suppliers outside of Europe are transported with maritime shipping. Most shipping
inside Europe is still done via road transportation, which causes the most emissions.
Currently, only a small amount of containers are transported with rail transportation
and no container yet have been transported with inland waterways.
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This chapter elaborates on the literature study to answer research question 2. The
literature will be reviewed on related work on synchromodal transport and optimization
modelling. Table 3.2 shows the division of the subjects. All literature is found in the
scientific database Scopus.

Sustainability becomes an increasingly important topic in transportation. Research has
been done into, e.g., search for alternative fuels (Kokkinos et al., 2022), and evaluation of
electric transportation (Barros et al., 2020). Most studies raise the subject of intermodal-
or multimodal transport (Li & Zhang, 2021; Marzano et al., 2022; Tamannaei, Zarei, &
Aminzadegan, 2021; Tamannaei, Zarei, & Rasti-Barzoki, 2021; Yin et al., 2021). Table 3.1
gives the definition of four common methods of shipping.

Table 3.1.: Types of modality

Term Definition

Unimodal Delivering goods by a single mode of transport, mainly by road
(Eurosender, 2020).

Multimodal Moving goods by more than one mode of transport, under one
contract (Containerships, 2020).

Intermodal Moving goods by more than one mode of transport, with a sep-
arate contract for each individual leg of the journey (Container-
ships, 2020).

Synchromodal A form of intermodal transport with so-called mode-free booking
flexibility (Rivera & Mes, 2022).

Countries are promoting more sustainable modes of transportation such as railways, sea
shipping, and inland waterways (Marzano et al., 2022). Multimodal- and intermodal
transport both refer to using a combination of these transportation modes including
road transportation. The main difference between these two terms is that multimodal
transport is covered by one contract and intermodal transport is covered by multiple
contracts within the journey. Transportation by rail, sea, and inland waterways are
considered more sustainable than transportation by road (Smart Freight Centre, 2022).

Since ADIL wants to improve their sustainability to contribute to the net-zero scenario
(see Section 1.2) related to its transportation, a literature study is performed about
intermodal transport and synchromodal transport. Synchromodal transport is an im-
plementation of intermodal transport where for each order the best method of trans-
portation is chosen. The best method of transportation can be defined as, e.g., the most
cost-advantageous transportation method for that moment in time.
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The study will be divided into four parts. Section 3.1 reviews the literature on syn-
chromodal transport systems and the optimization of synchromodal transport. Section
3.2 summarizes the work done on inventory management in combination with trans-
portation. Section 3.3 shows the modelling of uncertainty in transportation. Section 3.4
searches for learning strategies/learning algorithms to optimize synchromodal transport.
Finally, section 3.5 summarizes themost important relevant literature for the optimization
model.

Table 3.2.: Literature study subjects

Subject Explanation

Synchromodal transport and optimiza-
tion

Synchromodal transport is not a widely re-
searched subject yet, so the relevant available
papers have to be examined.

Inventory management with (synchro-
modal) transport

Explore what literature provides on the combi-
nation of inventory with transportation choices.

Uncertainty/stochasticity in trans-
portation

Review what uncertainty applies to synchro-
modal transport and how to overcome this.

Learning strategies in transportation
models

Review what optimization techniques related to
AI have been applied.

3.1. Synchromodal transport and optimization

Freight transportation creates remarkable negative effects related to emissions, noise,
and congestion (Pamucar et al., 2022). The transportation flow, therefore, requires a
model shift, i.e., from road- to rail transportation, to a more efficient system resulting
in, e.g., fewer costs and emissions (Pamucar et al., 2022; Zhang, Guo, et al., 2022). Just
like multimodal- and synchromodal transport, synchromodal transport makes use of
multiple transportation modes for individual orders to maximize the benefits related to
emissions, costs, and time (Batarlienė & Šakalys, 2021; Larsen et al., 2021; Zhang, Atasoy,
et al., 2022).

synchromodal transport utilizes a transportation network, consisting of different trans-
portation modes between nodes. Xiong and Wang (2014) study such a transportation
network with time windows. Based on the speed and cost factor of a transportation
mode, the total duration and cost are calculated. Xiong and Wang (2014) used a genetic
algorithm in combination with the k-shortest path algorithm to find Pareto-optimal
solutions on cost and duration. Sawadogo et al. (2012) also optimizes an intermodal
transport network to find Pareto-optimal solution on time and costs, but uses multiobjec-
tive shortest path algorithm, together with ant colony optimization (ACO). Abdulkadir
(2018) uses a more simple approach by using Dijkstra’s algorithm for the shortest path
for every objective in the model. The paper uses in total four objectives: distance, time,
carbon dioxide emission, and cost.

Zhang, Guo, et al. (2022) addresses the case of using flexible services in synchromodal
transport, compared to the standard case with only fixed routes. This corresponds
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with what Pfoser et al. (2022) calls ’mode-free’ booking. Zhang, Guo, et al. (2022)
has defined the problem as a mixed integer linear programming (MILP). Due to the
computational complexity, they also defined an adaptive large neighborhood search
(ALNS) as a heuristic to solve the problem. The heuristic is able to achieve an average of
14% cost savings compared to the case with fixed routes in a reasonable time.

Zhang et al. (2021) has developed a route selection model which considers an intermodal
transport network in China, which optimizes on five types of cost. These types are (1)
transportation cost, (2) transit cost, (3) carbon emission cost, (4) time penalty cost, and
(5) damage compensation cost. Three weights have been applied to the cost of these
types (weight 1 to the sum of 1-3 and weight 2, 3 to type 4, 5, respectively). A weight
sensitivity analysis has been performed to the cost objective. An ant colony optimization
algorithm is used as a tool for route selection within the model. The paper uses actual
distances, time delay coefficients, and accident damage coefficients specified for each
node pair.

Rivera and Mes (2016) consider the problem where a network operator may choose the
transportation modes freely based on a synchromodal network with a multi-period hori-
zon. Every day a choice can be made whether to (1) ship a freight to its final destination,
(2) ship a freight to an intermediate terminal, or (3) postpone the transport of freight
based on a multi-period rolling horizon. Rivera and Mes (2016) formulate this problem
as a markov decision process (MDP). Due to the large state space, approximate dynamic
programming (ADP) has been used to solve the MDP heuristically. In Rivera and Mes
(2017), the authors also used ADP in a similar problem setting with a focus only on cost.
They achieved significant cost reductions compared to single-period optimization.

Ambra et al. (2019) makes use of agent-based modeling (ABM) from a decentralized
perspective for synchromodal transport. While most papers focus on a logistics service
provider (LSP), this paper focuses on the cargo owner’s perspective. Besides using
ABM, the model also makes use of a geographic information system (GIS) and discrete-
event modelling. The optimization model includes disruptions and stochastic events
to measure the resilience between different states of the model. Ambra et al. (2019)
achieve cost savings up to 5% and a reduced environmental impact of 16% with their
optimization model. Tao et al. (2017) focuses, just like Ambra et al. (2019), not on
the LSP, but on the cargo owners’ perspective, which is a fourth-party LSP. Tao et al.
(2017) develop a column-generation approach combined with a graph search heuristic
to optimize costs in a transportation network with multiple third-party logistics service
providers, considering different cost policies of the LSPs.

Summary Synchromodal transport is a form of intermodal transport which
uses flexible services. Most papers use the perspective of LSPs that optimizes
the movements of goods through a network of nodes and links. A few papers
focus on creating paths in a network and moving goods according to the
paths. Due to the dynamic environment, most papers’ solution approaches
have to deal with stochastic events and disruptions. The solution approach
often optimizes cost and emissions. The solution approaches, often heuristics,
are tested in a simulation model.
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3.2. Inventory management with transportation

Saldanha (2022) claims the fill rate (percentage of demand fulfilled from available
inventory) is an important metric to set the re-order point of stock keeping units (SKUs).
Setting the re-order point requires assumptions such as a lead time demand that must
follow a certain distribution. Saldanha (2022) has defined a method to set a least-biased
estimate of the re-order point with respect to lead-time demand (LTD) distribution and
the sample size of the LTD.

Lemmens et al. (2019) introduces a simulation study where a comparison between road-
and intermodal transport is presented and evaluated on transport- and inventory costs.
The case makes use of a transportation network consisting of one origin, one terminal
(transhipment point), and one destination. There are two transportation modes from
the origin to the terminal, and from the terminal to the destination. The transportation
modes were by road and intermodal, where intermodal was defined by rail in this case.
Demand at the destination was independently and identically distributed by a binomial
distribution. A base stock policy was chosen as the inventory policy. Lemmens et al.
(2019) evaluated six policies. The best policy was parallel usage and real-time switching
between the two modes in the transportation network, which resulted in the least total
cost, provided that the company has access to intermodal transport infrastructure with
fast and efficient transshipments. In this case, inventory costs increased by 7.6% while
transport costs decreased by 4% compared to the base case (road transportation only). If
no transshipments are available at the terminal, parallel usage of transportation modes
without switching is advised.

Some papers focus on optimizing the distribution from a central hub to multiple depots
without transshipments. Both Ignaciuk (2019) and Stenius et al. (2018) analyse a similar
case with stochastic demand, which is solved with a MILP formulation. Where Ignaciuk
(2019) replenishes the depots with batches, Stenius et al. (2018) makes use of an (R, Q)
replenishment policy.

Summary A few researches have been performed on synchromodal ship-
ping in combination with inventory management. Only basic inventory
policies, such as the (R, Q) replenishment policy, have been evaluated in
combination with transportation. Studies show that dynamically choosing
the transportation mode based on the inventory can reduce total inventory-
related costs.

3.3. Uncertainty/stochasticity in transportation

Pamucar et al. (2022) has developed a fuzzy multi-criteria decision-making model
that uses the ordinal priority approach (OPA) to determine the weight coefficients of
criteria. A predefined set of transportation planning strategies is evaluated on the criteria
to determine the best strategy. To overcome incomplete-, and uncertain information,
Pamucar et al. (2022) uses fuzzy set theory. Where Pamucar et al. (2022) uses fuzzy
logic to assess the expert’s experience, Koohathongsumrit and Chankham (2022) and
Maity et al. (2022) also make use of fuzzy logic but apply it to assess features of certain
paths within their problem situations.
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Delbart et al. (2021) has performed a literature study on planning models with uncer-
tainty within intermodal- and synchomodal shipping. They have defined a total of six
uncertainty types (in order of relevance): transit times, demand, capacity, costs, hub
failures, departure times, and cancellations. A total of 42 articles have been categorized
by planning level (strategic, tactical, operational) and by uncertainty type.

On the strategic level, Delbart et al. (2021) found that most studies investigated the hub
location problem. While some papers proposed exact methods such as linear program-
ming, most papers created (meta)heuristics such as Tabu search, genetic algorithm, and
simulated annealing to avoid poor performance of exact methods. These heuristics often
perform close to optimal.

On the tactical level, Delbart et al. (2021) mentioned two major models: service network
design (SND) and network flow planning (NFP). Both models are for optimally running
a given network. SND determines which arcs/services will be planned in a network
given a set of orders, and NFP determines the routing of the orders through the network.
Demand and transit times are the most commonly researched types of uncertainty for
SND models, while for NFP models capacity and transit times are the most common.
Most papers use scenario generation as a method to calculate robust solutions/mitigate
risks.

On the operational level, Delbart et al. (2021) categorised the papers into two groups:
real-time planning and resource management. Real-time planning includes scheduling
and routing decisions on real-time information, and resource management includes the
allocation or repositioning of resources. Papers dealing with resource management often
focus on fleet management with stochastic demand. Most papers focusing on real-time
planning use rerouting or replanning as a method to deal with uncertainty/risks. Also,
in this case, the majority uses an approximation to solve the problems, varying from a
metaheuristic, matheuristic, or genetic algorithm. For example, Burgholzer et al. (2013)
uses a microsimulation model to optimize an intermodal network with stochastic arrival
times and reduced capacity on links (disruptions). The model can choose to stay on a
disrupted link, move to another link on the same transportationmode, or move to another
link with a different transportation mode. When minimizing travel time, rail- and road
transportation seem to be preferred over inland waterways in case of disruptions.

Summary Uncertainty can be tackled on different levels. On the opera-
tional level, rerouting/replanning is often the method to deal with real-time
stochastic events. On the tactical- and strategic level, scenario generation is
commonly used. Stochastic events are oftenmodelled as delayed, or cancelled
trips, with dynamic capacity and demand.

3.4. Learning strategies in transportation models

To overcome high-dimensional problems, machine learning might be a better approach
to real-life complex problems. As mentioned in Section 3.1, Rivera and Mes (2016) uses
Approximate Dynamic Programming as a learning technique to choose the transport
mode for a freight.
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Ge (2021) makes use of ant colony optimization (ACO) to select the optimal path in
a multimodal network. In this problem instance, only the cost and transport time are
optimized while considering occasionally delayed shipments. Shipping by waterways
was often chosen as the best path due to the low cost. After applying penalty costs for
late deliveries, and inventory costs for early deliveries, a combination of highways and
waterways was often chosen as optimal.

Farahani et al. (2021) proposes a deep reinforcement learning model of the container
allocation problem, where containers are real-time allocated to trucks or trains. The
model is compared to and outperforms a heuristic, stochastic program, and method
considering re-planning. The model has been formulated as an MDP.

Summary Several papers use learning models to determine good policies.
Reinforcement learning is a common method when trying to learn optimal
decisions considering the current state. These models often have the ability
to perform well in complex environments.

3.5. Summary of literature

Synchromodal shipping is the operational activity of choosing the best transport mode
given certain circumstances. Where using only road transportation is quite reliable, using
multiple modes of transportation can be less reliable with more disruptions. Therefore,
the core problem of intermodal-, and thus synchromodal transport, is dealing with uncer-
tainty. The literature considers a variety of optimizationmodels applied to synchromodal
transport, such as heuristics, learning models, and agent-based models.

The field of inventory management in combination with transportation is not widely
researched in the literature. Often basic replenishment policies are combined with the
transportation mode choice. This often leads to little cost reductions.

From an LSP’s perspective, the uncertainty of intermodal shipping can be dealt with
by generating scenarios including stochasticity to optimally determine the schedules of
transportation. Rescheduling is used to overcome uncertainty on the operational level.
Uncertainty is often modelled as delayed, or cancelled trips, with dynamic capacity and
demand.
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As mentioned in Chapter 1, ADIL desires to improve their sustainability in its transporta-
tion process. The context analysis shows that a high share of shipments is carried out
by road transportation. The literature review shows that intermodal transport causes
fewer emissions over a certain distance. We conclude that the solution direction should
go towards increasing the share of intermodal transport, and subsequently reducing the
share of road transportation, to achieve a reduction in total emissions.

This chapter deals with research question 3 by presenting the problem formulation. First,
the formulation is introduced in Section 4.1. Section 4.2 summarizes the decisions that
can be made in the problem formulation. Section 4.3 shows the MDP formulation of the
problem. Section 4.4 lists the requirements and assumptions of the formulation. Finally,
Section 4.5 concludes this chapter by stating the conclusions of the problem formulation.

4.1. Problem introduction

The problem formulation is elaborated on into three modules, which are the transporta-
tion network, inventory management system, and ordering process. Afterwards, we also
summarize the stochastic parameters of the formulation.

Transportation network

We define a directed graph G as a transportation network, where G = (V , E). The set V
represent the set of nodes (vertices) in the graph, connected by the set of arcs E (edges).
The set of nodes V consists of mutually exclusive subsets warehouses Vwh, transfer points
V tp, and suppliers V s, so V = Vwh ∪ V tp ∪ V s. Each node’s location is determined by the
latitude and longitude coordinates.

Each arc e ∈ E has an origin node and a destination node v ∈ V . Every arc e is assigned a
transportationmethod me ∈ M. Based on the transportationmethod me and the distance
de ∈ Z+ in kilometers, the duration of an arc be ∈ Z+ in hours can be calculated with the
average velocity in km/h of the transportation method fm ∈ Z+, m ∈ M. The emissions
ae ∈ Z+ of arc e in kg CO2 can be calculated with the average emission per kilometer per
container per transportation method gm ∈ R+. The set of arcs E consists of the mutually
exclusive subsets of road transportation E road, rail transportation E rail , inland waterways
transportation E iww, and sea transportation E sea, so E = E road ∪ E rail ∪ E iww ∪ E sea. All
arcs using intermodal transport have fixed scheduled departure times Ze, e ∈ E \ E road.
Arcs using road transportation are flexible, which means these arcs can be scheduled on
request.

In the problem formulation, we may decide to transport goods between nodes via arcs.
To reduce the decision problem of which arcs to use, the transportation network G is
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used to create a fixed set of paths upfront P for each supplier. Each path p ∈ P consist
of a set of nodes Vp and arcs Ep. If we want to transport items from a supplier, we choose
a path p ∈ P on which the items travel.

Inventory management system

We define a set of items I , where each supplier s ∈ S has a mutually exclusive set of
items Is ⊆ I (Is ∩ Is′ = ∅; s, s′ ∈ S ; s 6= s′) which it supplies to ADIL. Each item i has a
physical inventory αit, inventory position βit, demand λit, ordered volume γit, delivered
volume θit, and lost sales ξit in week t ∈ T , and are all expressed in number of collo. The
actual inventory (4.1) at time t is calculated by the actual inventory minus demand and
actually delivered orders of time t− 1. If lost sales occurred, we add the number of lost
sales to the actual inventory to correct for negative inventory. The same applies to the
inventory position (4.2) which uses the ordered volume instead of the delivered volume.
The ordered quantity (4.3) is calculated by the number of pallets ordered ωic of item i
in container c in the current time t, multiplied by the order multiple ui. The delivered
quantity (4.4) is the sum of all pallets ordered, multiplied by the order multiple, of all
placed orders until time t, where the expected arrival time t∗ + b̂p of a container c equals
t, t? < t. The expected arrival time is based on the expected path duration b̂p, which is
further elaborated on later in this section. Each item i has a reorder point wi after which
an order is placed. Note that all figures are expressed on collo, while ωic is expressed in
pallets.

αit = αit−1 − λit−1 + θit−1 + ξit t > 0 ∀i ∈ I (4.1)
βit = βit−1 − λit−1 + γit−1 + ξit t > 0 ∀i ∈ I (4.2)
γit = ∑

c∈Co ,o∈O′t

ωicui t > 0 ∀i ∈ I (4.3)

θit = ∑
o∈O′t? ,t?∈T

∑
c∈Co ,t?+bp=t,p∈P ′o

ωicui t? < t, t > 0 ∀i ∈ I (4.4)

Figure 4.1.: Structure of an order o ∈ O.

Ordering process

In this problem instance, we need to
comply with the demand of each item
i. For this reason, we need to order
units of item i. First of all, items are
ordered in multiples of pallets, which
contain ui ∈ Z+ collo in one pallet.
We transport items by the use of a con-
tainer, which has a certain capacity of
l pallets. We always order a full con-
tainer load (FCL). Items are placed
as pallets in a container c ∈ C. The
amount of pallets placed of item i in
container c is ωic ∈ Z≥0. Note that
different items may be present in a
single container c. Dependent on the
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demand of items, we may order multiple containers at a supplier s at time t. This set of
containers Co ⊂ C at time t is linked to one order o ∈ Ot. Note that order o is always
linked to a single supplier so ∈ S , which means that individual orders are independent.
A container c ∈ Co, o ∈ Ot only may be packed with items Is of supplier so ∈ S .

The structure of order o ∈ O consist of a subset of containers Co ⊂ C (Figure 4.1). A
container c ∈ Co is packed with pallets of a subset of items Iso ⊂ I , so ∈ S and can travel
via one path of the set of paths Po ⊂ P . A path p ∈ Po is based on a subset of nodes
Vp ∈ V and arcs Ep ∈ E . For a path p ∈ P , the parameters distance de, emission ae,
and cost ce can be also calculated through the sums of the parameter values of all edges
e ∈ Ep, e.g., dp = ∑e∈Ep

de, ∀p ∈ P . The parameter path duration be is calculated slightly
differently, according to (4.5). The parameter 2n refers to the transfer time to and from
an intermodal arc.

bp = ∑
e∈Ep

{
be me = road
be + 2n me 6= road

∀p ∈ P (4.5)

We define the subset O′t as the subset of executed orders at time t, where Ot represent
all orders generated at time t, so O′t ⊂ Ot. We also define the set of executed paths P ′
which are the executed paths when scheduling an order.

When an order o ∈ O is created, the order creation date, ready for transport date, and
the required date are determined. The transportation date is determined based on the
order creation date, plus the production time qs of supplier s ∈ S .

Stochastic variables

The demand λit and the path duration delay φp are stochastic variables in this problem
formulation. This means that the demand of all items I at time t is unknown upfront
and becomes known at the end of time t.

The path delay φp is also stochastic. Every arc e ∈ Ep of a path p includes a delay
distribution. When we calculate the expected arrival time of a path, we calculate with
the expected arc delay E(φp). We define the expected path duration as b̂p with (4.5).
The actual path duration is a random observation, defined as b?p, from the probability
distributions φe ∈ Ep and is only used for the physical inventory αit, which is further
elaborated in the model performance evaluation section. The actual path duration b?p
becomes known to the model when the container arrives at time t + b?p.

b̂p = ∑
e∈Ep

(be + φe) ∀p ∈ P (4.6)

Table 4.1 provides an overview of the sets in the formation. Table 4.2 shows the set of
variables that are determined by the solution approach. Table 4.3 shows an overview of
all parameters.
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Table 4.1.: List of all sets in the problem formulation.
Set ID Description
Items i ∈ I Set of items in inventory that need to be replenished by

the model.
Suppliers s ∈ S Set of suppliers of the items in inventory.
Nodes v ∈ V Set of all nodes in graph G.
Arcs e ∈ E Set of all arcs in graph G.
Modes m ∈ M Set of all shipment methods,

M = {sea, rail, road, iww, sea}.
Containers c ∈ C Set of containers loaded with pallets.
Schedules z ∈ Z Set of schedules (departure times) of an arc.
Orders o ∈ O Set of all possible orders that can be generated by the

inventory management system.
Paths p ∈ P Set of all possible paths generated.
Time
horizon

t ∈ T Set of weeks with length h looking forward,
T = {0, 1, . . . , T}.

Table 4.2.: List of all variables in the problem formulation.
Variable ID Description
Inventory αit, βit Physical inventory (αit) and inventory position (βit)

of item i ∈ I at the beginning of week t ∈ T .
Transit inventory γit, θit Ordered volume (γit) and delivered volume (θit) of

item i at the beginning of week t.
Demand λit Actual demand of item i in week t.
Lost sales ξit Lost sales in collo for item i in week t.
Pallet quantity ωic Quantity of pallets of item i in container c.
Arc delay φe The delay of arc e in hours.
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Table 4.3.: List of all parameters in the problem.
Parameter ID Description
Distance de Distance in kilometers of arc e ∈ E .
Emission ae CO2 emissions caused by arc e.
Duration be Duration of arc e in hours.
Mode me Transportation method of arc e.
Mode velocity fm The average velocity of a transportation method m ∈

M in kilometers per hour
Mode emissions gm The average amount of kg CO2 emissions caused by

transportation method m per kilometer per TEU.
Path cost cp Cost of path p in euros (€).
Inventory cost cinv, cls The holding cost cinv

i per pallet per time unit, and the
lost sales cost cls

i per collo.
Production time qs The number of weeks the supplier ss ∈ S requires to

produce an order.
Order multiple ui The number of collo of item i that fit on one pallet.
Reorder point wi The inventory level after which we place a new order

for item i.
Transfer time n The number of hours to transfer a container to and

from an intermodal transport mode.
Capacity l The capacity of a container in number of pallets.
Review period r The review cycle in days in which articles are checked

on their inventory.
Planning horizon h The number of days looking forward to defining the

time horizon T .

4.2. Decision space

This section provides an overview of the decision space in the problem formulation from
Section 4.1. The following decisions are relevant to the problem formulation:

1. For every week t ∈ T , determine if an order o ∈ Ot is executed for item i ∈ I .
2. For every order o ∈ Ot, determine how many containers are used to transport

pallets.
3. For every order o ∈ Ot, determine how many pallets of items Is of supplier s ∈ S

are ordered.
4. For every order o ∈ Ot, determine what the allocation is of the pallets into the

container(s) Co ⊂ C.
5. For every container c ∈ Co, determine what path p ∈ Po will be used to transport

container c.

With a total of five decisions in the problem formulation, the decision space is large. In
Chapter 5 we propose the solution approach that will tackle this problem.
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4.3. MDP formulation

The problem instance can be modelled as a Markov Decision Process. The MDP for-
mulation consists of stages, states, decisions, transitions, and optimality equations. All
elements are elaborated on below.

Stages

The stages of theMDPmodel are set to eachMonday of theweek, which is t = 0, 7, 14, . . . ∈
T . Every time t we get to make one or more decisions about shipping orders. At the
beginning of stage t, we get to make a decision. After making the decision in time t, the
exogenous information arrives.

States

The state of the MDP is determined by the actual inventory αit, and the newly defined
variable incoming orders β?

its for t ∈ T . We define the new variable β?
its as the number

of collo of item i in transit at time t which are expected to arrive at time t + s, i.e., over
s days. This concludes to (4.7). The physical inventory is calculated with the physical
inventory of t− 1 minus the demand λit (reduced by lost sales ξit) plus the in transit
collo with one-time unit left s = 1 at time t − 1. The in-transit orders are calculated
by (4.9) with the in-transit orders at time t− 1 with s + 1 time units left, added by the
executed orders Ot, where the expected path duration b̂p = s.

St = [αit, β?
its]i∈I t ∈ T (4.7)

αit = αit−1 − (λit−1 − ξit) + β?
it−1s s = 1, i ∈ I , t ∈ T (4.8)

β?
its = β?

it−1s+1 + ∑
c∈Co ,b̂p=s,p∈P ′o

ωicui ∀s, i ∈ I , o ∈ O′t, t ∈ T (4.9)

Decisions

During each stage t, a set of orders Ot is generated, which consist of a set of containers
Co and paths Po, o ∈ Ot. For every order o ∈ Ot, we decide to ship it on a certain path.
The new set O′t is defined as the set of orders which is executed at time t, so O′t ⊆ Ot.
All generated orders Ot are executed when generated, so Ot = O′t.

The decision-variable xt ∈ Xt is defined, where Xt is the set of decisions which can be
taken in stage t (4.10). Variable xt is a binary vector which is 1 if container c is shipped
with path p at time t, and 0 otherwise. Constraint (4.11) shows that 1 path is chosen for
each container.

xt = [xcpt]c∈Co ,p∈Po ,o∈Ot ∀t ∈ T (4.10)

∑
p∈Po

xcpt = 1 ∀c ∈ Co, o ∈ Ot, t ∈ T (4.11)

The decision xt needs to be translated to the new sets of executed orders O′ and executed
paths P′. The set of executed orders O′t equal to the generated orders (4.12). The set of
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executed paths P′t is determined by (4.13), which adds a path p ∈ Pt, if path p is chosen
for container c at time t.

O′,πt = Ot (4.12)
P ′,πo =

{
p ∈ Po : xcpt = 1, ∀c ∈ Co

}
∀o ∈ Ot, t ∈ T (4.13)

Exogenous information

As mentioned in the problem introduction (Section 4.1), the problem has two stochastic
variables, which are the demand λit and the arc delay φe, and thus the actual path
duration b?p. The actual demand of an item i at time t becomes known at the end of time
t, i.e. after the decision is chosen. The actual path duration b?p, p ∈ Po, o ∈ Ot becomes
known to the model at time t + b?p, but we already know that b?p ≥ bp. Therefore, the
exogenous information Ωt is a vector of the demand figures (4.14) and paths with an
actual arrival time t.

Ωt = [λit, b?p]∀i∈I ,p∈P ′o ,o∈O′t? ,t?+b?p=t t ∈ T (4.14)

Transition and optimality equations

The transition function SM is shown in (4.15). The current state St is determined by
the transition function SM, based on the previous stage’s state St−1, the decision from
the previous state xt−1, and the exogenous information ωt. The transition function SM

includes the equations (4.7-4.14) in this section.

St = SM(St−1, xt−1, Ωt) (4.15)

The total expected costs over the horizon need to be minimized. To achieve this, a policy
π is defined that takes a decision xπ

t ∈ Xt in all possible states St ∈ S . We try to find
the policy π ∈ Π that minimizes the cost function (4.16) over the entire horizon (4.17).
Note the extra parameter cCO2 in this equation, which equals the cost for causing one
kg of CO2. During each stage t, the cost function consists of (1) the action costs, which
include path- and emission costs, and (2) the state cost, which consists of holding- and
lost sales costs.

Ct(xπ
t ) = ∑

p∈P ′,πo ,o∈O′,πt

(cp + cCO2ap) + ∑
i∈I

(cinv
i αit + cls

i ξit) (4.16)

min
π∈Π

E

[
∑
t∈T

Ct(xπ
t )

∣∣∣∣∣S0

]
(4.17)

The decision xt taken at time t, according to policy π, determines on which path in
P ′,πt a container is executed in (4.17). The MDP formulation is a stochastic, sequential
optimization problem, which is why (4.17) is transformed to (4.18). This formula shows
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that the value function Vt(St) of state St minimizes the direct costs with decision xπ
t

together with the future costs in the next state SM(St, xπ
t , ω).

Vt(St) = min
xπ

t ∈Xt

(
Ct(xπ

t ) + ∑
ω∈Ωt+1

pΩt+1
ω Vt+1(S∗(St, xπ

t , ω))

)
∀St ∈ S (4.18)

MDP problems often suffer from three curses of dimensionality, which makes it hard to
solve these problems to optimality. These curses are (1) the state space, (2) the decision
space, and (3) the transition space. If one or more of these dimensions becomes too large,
it is nearly impossible to calculate the optimal solution.

The curses of dimensionality also apply to this case. Consider a single item with a max
physical inventory αit of 104 units, and a max of 103 in-transit units with a max of 102

release days. If we consider 102 items, the state space S already becomes 104103102102 =

1011 states. Looking at the decision space, i.e., the ordering process, if we consider 102

suppliers, each having 101 items, where we order at max 102 pallets in max 101 containers,
that may travel with one of 101 different paths. The decision space becomes a total of
102101102101101 = 107 decisions at every stage t. Finally, looking at the transition space,
if we consider 102 items, each having on average 102 possible demand observations every
week, and if we execute about 102 containers every week with a time frame of 101 days
the containers may actually arrive, the transition space becomes 102102102101 = 107

possible transitions. This concludes that the curses of dimensionality also apply to this
formulation.

4.4. Assumptions

The problem formulation requires a number of assumptions. The assumptions are split
into two categories. First, the assumptions related to the preparations for the formulation
are stated. Second, the assumptions related to the actual running/optimization of the
model are stated.

Model preparation assumptions

• The transportation network requires a predefined directed graph, consisting of
arcs and nodes.

• The demand distribution statistical parameters per item have to be known.

• A modal change at a transfer node does not result into additional cost or emissions
when creating the fixed set of paths per supplier.

• All items are delivered on euro pallets. The order multiple ui (collo per pallet) of
items delivered on block pallets is multiplied by 0.8, as the capacity of a euro pallet
is 80% of a block pallet.

• In total one warehouse is considered, for which we use the largest warehouse of
ADIL.
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Model optimization assumptions

• The departure times of intermodal arcs are once a week at a fixed moment in time.

• Production delays at suppliers are not considered, which means an order is always
ready at the transportation date at the supplier’s location.

• Once an order is executed, the planned transportation path takes place and will
not change, regardless of delays.

• Weight of a collo/pallet is not considered a constraint for packing containers.

• All orders are placed on Mondays.

4.5. Conclusion

The problem formulation consists of three modules. First, the transportation network
creates paths for each supplier in Europe. Second, the inventory management system
tracks the inventory of all items and generates orders to create item replenishments to
fulfil future demand. The container optimizer determines the best path to follow for a
container in an order. The objective of the problem formulation is to reduce costs and
emissions.

The problem is modelled as a Markov Decision Process, where the state is defined as the
physical and in-transit inventory per item. The state space, decision space, and transition
space can become large in this problem (curses of dimensionality), which is why the
MDP formulation should be solved approximately with a heuristic approach.
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This chapter presents the approach to the solution design which should be able to make
the right decision regarding packing- and transporting containers to the warehouse of
ADIL. The procedures related to inventory control and transportation path creation are
implemented in the solution design.

The problem formulation showed how we formulated our problem in terms of sets,
parameters, constraints, and variables. In this chapter, we present the solution approach.
We propose the heuristics and algorithms that have been applied in the transportation
network module, inventory management module, and order optimizer module. For the
order optimizer module, we also propose a machine-learning model.

First, Section 5.1 describes the general structure of the solution. The heuristic to generate
paths in the transportation network is discussed in Section 5.2 (module 1). Section 5.3
describes the inventory management and ordering process (module 2). Section 5.4
demonstrates the method to evaluate and choose container-path combinations (module
3). Then, Section 5.5 presents a machine learning approach to solve the container-path
evaluation process of module 3, but now with a machine learning strategy. Finally, the
conclusions follow in Section 5.6.

5.1. Solution approach

As the problem introduction mentions, ADIL desires to reduce their environmental
impact by reducing its carbon emissions. In the context of ADIL, the main focus in
literature is the modal shift from unimodal transport to intermodal transport (see the
introduction of Section 3), since intermodal transport causes on average fewer emissions
per unit of distance travelled. Most of ADIL’s emissions are caused by road transportation
(see Figure 2.5). Therefore, the solution approach aims to decrease total emissions by
reducing road transportation and consequently increasing intermodal transport.

Section 4.2 shows an overview of the decision space of the problem formulation. The
decisions are categorised into three modules in the solution design. These modules are
elaborated in Table 5.1, showing which decision is tackled in which module.
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Table 5.1.: Solution modules.

Module Decision Purpose

Transportation
network

- Create a fixed set of paths for every supplier based
on different objectives.

Inventory
management
system

1, 2, 3, 4 Create orders for items to increase inventory lev-
els to cope with demand. Orders should include
containers packed with pallets containing items.

Order optimizer 5 Evaluate the characteristics and stochasticity of
paths and choose the best path for a container.

Table 5.1 shows that the transportation network module does not include a decision from
the decision space of Section 4.2. That is because the fixed set of paths per supplier can
be created upfront and does not change over time. The inventory management system
tackles most decisions regarding creating orders. The container scheduler determines the
best path choice considering stochastic problem elements. Note that the transportation
network- and inventory management system module are considered in both solution
approaches, but the container scheduler module differs per approach.

This solution design is presented as a step-by-step approach in Figure 5.1. The three
modules from Table 5.1 are linked with one of the eight items in Figure 5.1. The inventory
management system corresponds with box (1.), where the set of orders Ot are generated
at time t. The transportation network extracts the set of paths Po for a supplier so ∈ S at
box (2.). The container scheduler corresponds with box (4.).

The process starts with the inventorymanagement system. Thismodule contains all items
I and suppliers S with their actual inventory αit, inventory position βit, demand/forecast
λit, ordered- γit and delivered volume θit, for all t ∈ T , where t equals one day in the
time horizon. The inventory management system manages the inventory variables of all
items and generates orders Ot at time t to fulfil future demand. The solution approach
for the standard problem formulation operates on a weekly basis, which means orders
are generated on t = {0, 7, 14, . . .}. The orders O are based on full container loads (FCL)
Co, implying a container c ∈ Co is packed at its max capacity lc.

When the inventory management system generates an order o ∈ Ot, the transportation
network G is consulted to determine the top k paths Po. The order o needs to be shipped
from the supplier’s location to the warehouse of ADIL. Based on the transportation
network G, the top k paths will be generated. Each path p ∈ Po may use different
transportation modes m ∈ M and arcs e ∈ E , each having different transportation lead
times bp. Also, paths that use intermodal transportation modes (m 6= road) have to
comply with the set of departure schedules Z of LSPs.

When an order o is generated, the container scheduler will select a path p ∈ Po. Paths
using transportation by water or rail may have a longer duration, and often the total
emission is lower than paths using transportation by road. The order optimizer deter-
mines a path based on a heuristic evaluating different scenarios on the transportation
duration of a path.
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Figure 5.1.: Flowchart of the entire solution approach.

Box (5.) in Figure 5.1 generates
an observation of the path dura-
tion b?p which is the actual path
duration in the performance eval-
uation. Box (6.) places the order
in the inventory position with the
expected path duration, and box
(7.) uses the actual path duration
which is relevant to the actual in-
ventory. If all orders Ot and con-
tainers Co, o ∈ Ot are scheduled,
the time horizon is increased to
t + 1 in box (8.).

The three interacting modules
consist of a number of heuristics
to manage the decisions taken.
Section 5.2 explains the creation
of paths for every supplier, based
on the transportation module.
Section 5.3 elaborates on the
inventory management system
module, and Section 5.4 explains
the container scheduler module
in more detail.

5.2. Path
generation (module 1)

The transportation network mod-
ule is consulted to generate a
fixed set of paths Ps for each sup-
plier s ∈ S which are used for
transporting containers. Since these paths do not change over time, the paths can be de-
termined upfront for each supplier. Three objectives are considered in the development
of paths, which are (1) cost, (2) emission, and (3) time. While in literature distance is
sometimes also used as an objective, it is related to all three objectives and therefore not
considered as an objective in determining paths.

This module is split into two subsections. Section 5.2.1 explains the method used to
generate a path on a directed graph. Then, Section 5.2.2 shows the method how to
generate the top k paths for a supplier.

5.2.1. Path generation

The problem formulation mentioned that the transportation network is modelled as a
directed graph G ← (V , E), where V represents the nodes (i.e., cities), and E represents
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the arcs. A path will be generated with the shortest path algorithm. In this case, ’shortest’
means the lowest total cost, emission, or time of a path.

Dijkstra’s algorithm (Dijkstra, 1959)will be used as the shortest path algorithm. Dijkstra’s
algorithm can determine the shortest path in a directed graph and runs in polynomial
time. The algorithm determines the shortest path based on a source node and a destina-
tion node. The algorithm can run for each objective, which is cost, time, or emission to
calculate the path with the least cost, time, or emission, respectively. Algorithm 1 shows
the outline of Dijkstra’s algorithm.

Algorithm 1 Dijkstra’s algorithm (adapted from Mehlhorn and Sanders (2008)).
Require: graph, origin, destination,
1: for ∀v ∈ graph.vertices do
2: distv ← ∞ . Unknown distance from source to v
3: prevv ← ∅ . Predecessor of v
4: Q← Q ∪ {v}
5: end for
6: while Q 6= ∅ do
7: u← minv∈Q distv

8: Q← Q \ {u} . Remove u in Q
9: if u = target then

10: S← {}
11: while u 6= source do . Construct shortest path
12: S← {u} ∪ S
13: u← prevu

14: end while
15: return S
16: end if
17: for neighbor v of u ∈ Q do . Check all neighbors in Q
18: alt← distu + graph.arcsuv

19: if alt < distv then
20: distv ← alt
21: prevv ← u
22: end if
23: end for
24: end while

5.2.2. Generate a set of k-optimal paths

The optimal path, in theory, might not always be the best path in practice. Besides,
sometimes a trade-off between costs and emissions is the best option. This requires
another method to create paths compared to just calculating the optimal path related to
a certain objective. The k-shortest path algorithm is used to overcome this problem. The
k-shortest path algorithm calculates not only the optimal path, but also the second, third,
and kth optimal path. This algorithm returns the set of k-optimal paths.
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The k-shortest path algorithm does have some shortfalls. To provide an example, Figure
5.2a shows a path created with Dijkstra’s algorithm from a city in France to a city in the
Netherlands. Then the second best path is calculated with the k-shortest path algorithm,
and is displayed in Figure 5.2b. While the second path is different, it is a very slight
adjustment to the first path. If both paths use the same transport modes, path 2 is
less relevant for this case to evaluate, due to the little difference in costs and emissions.
Preferably, a set of adequately different k-optimal paths is returned, focused on using
different intermodal paths.

(a) Path 1. (b) Path 2.

Figure 5.2.: Comparison of two nearly-identical paths

A customised version of the k-shortest path algorithm is presented to be applicable for this
instance. The focus is to create a set of k-optimal paths using various arcs with different
transportation modes. Algorithm 2 shows the customised version of the k-shortest path
algorithm. The algorithm uses Dijkstra’s algorithm (Algorithm 1) to calculate the paths.
After calculating the kth shortest path, the algorithm removes arcs using intermodal
transportation modes for calculating the k+1th shortest path.

To determine the k-shortest paths in this casewith different transportmodes, we introduce
a customised k-shortest path algorithm. In this instance, a comparison of different paths
with different transportation modes has the focus. Therefore, an algorithm is required
that generates different paths with different intermodal arcs. Algorithm 2 shows the
algorithm applied in this case. The algorithm shows the k-optimal paths, where each
path has a different set of intermodal arcs.

Algorithm 2 is able to calculate the k-shortest paths using different intermodal arcs. The
algorithm can be run for all objectives (cost, emission, time). For every supplier in the
simulation model, the k-shortest path is called for every objective. E.g., when k = 3, the
top three paths are calculated for each objective. Paths may appear multiple times in the
top 3 of different objectives. Therefore the final set of paths for a supplier is determined
by the union of all sets.
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Algorithm 2 Customised k-shortest path algorithm.
Require: origin O, destination D, graph G
1: P∗ ← {dijkstra(O, D, G)} . List of k-optimal paths, initialize with optimal
2: for k← 1, . . . , K− 1 do
3: P← {} . Set of possible k-optimal paths
4: arcs← {e ∈ Ep : em 6= road, ∀e ∈ Ep, p ∈ P?}
5: arcs? ← arcs1 × . . .× arcsn . Create Cartesian product of subsets
6: for subset in arcs? do
7: E ← E \ subset
8: P← P ∪ {dijkstra(O, D)}
9: E ← E ∪ subset

10: end for
11: P.sort
12: P? ← P? ∪ {P0}
13: end for
14: return P?

5.3. Inventory management system (module 2)

The inventory management system needs to create orders every week (t = 0, 7, 14, . . .) to
increase inventory to fulfil future demand. This module tracks and predicts the inventory
levels of all items based on incoming orders and demand forecasts.

In total, two heuristics are required. Section 5.3.1 explains the first heuristic which
determines what items are ordered in what quantity. Section 5.3.2 describes the heuristic
that divides the items over the available containers.

5.3.1. Heuristic: Item quantity ordering

Inventory problems are often modelled according to a (r, Q) or (s, S) policy. In these
cases, the points r and s are based on strategies related to safety stock, demand volatility,
and lead times. Also in this case, we make use of a reorder point, which is based on the
expected demand during lead time. The lead time is based on the supplier production
lead time, order horizon, and review period. The Q would be the order multiple, which
is one pallet of an item in this case. Due to the case, we order full containers together
with other items, we may order the order multiple of item i several times, depending on
the demand and inventory of other items. We could therefore describe this case as an
(r,nQ) policy, where we order n times quantity Q if the inventory position falls below the
reorder point r.

When the inventory position βit is expected to go below the reorder point wi, an order
o ∈ Ot is initialized at time t for item i. An order o should at least increase the inventory
position up to the reorder point (5.1).

∑
o∈Ot

∑
c∈Co

ωic ≥ wi − βit ∀i ∈ I , t ∈ T (5.1)
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Equation (5.1) determines the demand forecast with µi per time period. Note that all
generated orders are also executed, so O′t = Ot.

When the required pallets ωi, i ∈ Is are calculated, but the containers are not fully loaded
yet, items with a higher stock turnover rate are preferred to be added to a container. The
inventory management system checks which items are required based on the demand
forecast in the near future. Algorithm 3 shows the outline of this heuristic.

Algorithm 3 Heuristic: Item quantity ordering for a supplier.
Require: so ∈ S , o ∈ Ot, t ∈ T , β

. The variable ωi is used without the container c parameter since the division over
containers is done separately. Note that ωi is different than the reorder point wi.

1: ω ← {} . Order quantity for an item in pallets
2: LT ← qs + h + r . Production time + planning horizon + review period
3: for i ∈ Is do . Calculate minimum ωi to fulfill expected LT demand
4: ωi ← ∑LT(µi)− βit
5: end for
6: for w← LT + 1, . . . , T do . Add pallets until container limit
7: for i ∈ Is do
8: ω∗i ← ∑w(µi)− βit
9: end for

10: if dωi
l e = d

ω∗i
l e then . number of containers is the same

11: ω ← ω∗

12: else . Required number of containers increased
13: Break
14: end if
15: end for
16: for j ∈ (∑i ωi − l) do . Randomly pack final spaces in container
17: i← j mod len(Is)

18: ωi ← ωi + 1
19: end for
20: return O(ω)

5.3.2. Heuristic: Pallet division over containers

Algorithm 3 explained the procedure of how the required number of pallets ωi for item i
are calculated. If the pallets fit into one container, the order consists of a single container
c. If at least two containers are required, an additional decision emerges. With multiple
containers, the ordered quantity can be divided in multiple ways to the containers
(ωi → ωic). A simple heuristic is used to divide the items evenly over the containers.
The overall risk of item shortage reduces with this method. If for example one container
c ∈ Co experiences significant delay during transportation, another container c

′ ∈ Co

containing approximately the same items moves the stock-out day backwards of all items
of a certain supplier so. Algorithm 4 shows the heuristic.
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Algorithm 4 Heuristic: Pallet division over containers.
Require: so ∈ S , o ∈ Ot, t ∈ T , ωi
1: j← 0
2: for i ∈ Is do
3: for k ∈ ωi do
4: c← j mod ∑i

ωi
l . Result sum equals integer number of containers

5: ωic ← ωic + 1
6: j← j + 1
7: end for
8: end for
9: return O(ωic)

5.4. Optimizing container scheduling (module 3)

Where the inventory management system is able to produce weekly orders Ot with
containers filled with pallets, and the transportation network can generate various paths
for a supplier, the actual scheduling of orders/containers can be done in the order
optimizer. The purpose of the container scheduling module is to pair containers with
paths at a low cost and emission. Paths making use of intermodal transportation arcs
have to deal with the departure schedules of LSPs, while road-only transportation paths
are more flexible. Therefore, the set of paths generated for a supplier is prepared with
departure-, and arrival times. The preparation of the paths is explained in Section 5.4.1.
Section 5.4.2 explains the heuristic for the actual pairing of containers and (scheduled)
paths.

5.4.1. Path scheduling preparation

The available departure- and arrival times need to be determined for every path of a
supplier. Each order has an order date, a transportation date, and a required date. The
transportation date is the first departure moment for a container c ∈ Co in the order o.

To calculate the arrival time, the path duration bp is added to the departure time of a path
p. For intermodal arcs, the total duration has to be fitted onto the departure time of an arc
e ∈ Ep, me 6= road. Figure 5.3 shows a case where an order, using intermodal transport,
needs to be scheduled on a path. Between the transport date and the required date, four
departure moments z ∈ Ze, e ∈ Ep are marked for the intermodal arc. Scenarios 1 and 2
make use of the first two departure times, respectively. Scenario 3 departs too late and
therefore arrives after the required date, and should not be chosen as a scheduled path.

The path scheduling process, shown in Figure 5.3, is done for every path p ∈ Po of a
supplier so. All scheduled paths departing after the transportation date and arriving
before the required date are considered. Therefore, an initial set of four paths Po may
result in more scheduled paths P?

o , since a single path may have multiple departure times.
Therefore the set of scheduled paths P?

o consist of the paths p ∈ Po, but p may occur
zero, one, or multiple times. Each path p ∈ P?

o does have a unique path-departure time
combination.
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Figure 5.3.: Path preparation scheduling.

5.4.2. Pairing containers with paths

After preparing the set of paths Po of a supplier into scheduled paths P?
o for every

order o ∈ Ot, the containers Co of order o can be paired with the scheduled paths. This
module makes this decision, which we want to optimize on the objectives (1) costs, (2)
emissions, and (3) time. Each scheduled path p ∈ P?

o now has a total cost, emission, and
departure- and arrival time. We want to evaluate these paths on the stochastic arc delays
φe, e ∈ Ep, p ∈ P?

o .

To evaluate the stochastic demand and stochastic arc delay in our model, scenarios are
generated to calculate the expected arrival time of a path and expected holding and lost
sales costs. We generate for each scenario an observation of the path duration b? and
a total demand observation during the lead time until the order actually arrives. We
include lost sales costs cls for the case the demand is higher than the current inventory
position (inventorywas not sufficient to fulfil demand), and holding costs cinv for arriving
too early. The holding costs are assigned per pallet and lost sales costs are assigned per
collo. Currently, ADIL also pays a fixed amount for each pallet in inventory. Each lost
sales collo is penalized evenly since every missing collo is treated the same.

With the scenarios, the time dimension is evaluated and expressed in expected costs. This
leaves the model with two objectives: expected cost and emission. The expected total
cost is the sum of the path cost, expected inventory cost, and expected lost sales costs. A
weighted sum model is performed on the expected costs and emissions (Triantaphyllou,
2000). Every path gets a score calculated according to (5.2).
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scorep = weightc · c′p +weighta · a′p ∀p ∈ P?
o , o ∈ Ot , where (5.2)

c′p = 1−
E[cp]− min

p∈P?
o

(E[cp])

max
p∈P?

o

(E[c])− min
p∈P?

o

(E[c])
∀p ∈ P?

o , o ∈ Ot , and (5.3)

a′p = 1−
ap − min

p∈P?
o

(ap)

max
p∈P?

o

(a)− min
p∈P?

o

(a)
∀p ∈ P?

o , o ∈ Ot , so (5.4)

p? = argmax
p∈P?

o

(
scorep

)
∀o ∈ Ot . (5.5)

The path with the highest score p? is chosen as the best for the container to travel (5.5).
Then the expected delivery date of this container c ∈ Co is scheduled, whereafter the
next container c

′ ∈ Co is scheduled.

5.5. Container scheduling: Learning heuristic

TheMDP formulation is a model based on sequential decision-making under uncertainty,
where the model is in a state St ∈ S , takes a decision xπ

t ∈ X π
t , according to a policy

π ∈ Π, after which the exogenous information Ωt arrives. Based on the transition
function SM, the model ends in a different state St+1. In this problem case, we use a
supervised learning approach to fit a neural network that approximates the future cost.
A neural network is able to learn to make the right decisions in a complex environment.
We consider this problem instance as a complex environment, due to the two stochastic
variables arc delay and demand, and where decisions made now have an impact at a
later point in time.

The value function approximation, i.e. neural network, calculates the expected future
costs of a post-decision state. The neural network takes the post-decision state Sx

t as the
input vector and calculates the value function approximation V̄x

t (S
x
t ) according to the

neural network, see Figure 5.4. The post-decision state is the state the model ends up in
directly after a decision is taken. As mentioned in Section 4.3, the state St consists of the
physical inventory αit and the in-transit inventory β?

its.

The state space contains all physical- and in-transit inventories for all items I . If we
include all items of all suppliers, the entire state space would be too large as input for
such a neural network. Besides, each supplier has different characteristics and items have
different demand distributions. Since every order o ∈ O is independent and connected
to one supplier s ∈ S , we want to train a neural network for one supplier only. This
consequently also reduces the state space. For example, the given state space consists of
5 different items with a physical inventory, and an in-transit inventory with max s = 50.
This lead to the input vector of the state St with 5 + 5 · 50 = 255 nodes, where the first 5
nodes represent the physical inventories, and the other 250 nodes represent the in-transit
inventory of item i with release days s.
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Figure 5.4.: VFA neural network example with the post-decision state as the input.

To further generalize the state space, we sum inventories with release days s to weeks,
so we reduce the state space of β?

its with a factor 7. Now the parameter s represents the
number of weeks until the in-transit inventory is expected to arrive.

Decision space

The VFA can evaluate the expected future cost of a post-decision state. We want to
evaluate all post-decision state values Vt(Sx

t ) of each post-decision state Sx
t we may end

up in after taking decision xt ∈ Xt. The decision set Xt is the set of scheduled paths P ′o,
after which we choose one path for a container. The post-decision state with the minimal
decision cost summed with the expected future costs is chosen as the best decision (5.6),
where the cost function is given by (4.16).

xπ
t = arg min

xt∈Xt
(Ct(xπ

t ) + Vt(Sx
t )) (5.6)

Training

Since we use supervised learning, the network needs to be trained with a large dataset,
that consists of the rewards earned in a post-decision state. We use the order optimizer
module to make the decision in a given state and save the corresponding reward. After-
wards, we train the neural network on this large dataset. To evaluate the performance of
the neural network, we perform a simulation, where the neural network determines the
decision.

5.6. Conclusion

The problem formulation is solved using multiple heuristics. The transportation network
is utilized to create optimal paths using Dijkstra’s algorithm, regarding costs, time, or
emission. A customised k-shortest path algorithm creates a subset of k-optimal paths for
each supplier s ∈ S . When executing an order o, each container c ∈ Co has to be executed
on a path p ∈ Po.

The inventory management system creates an order for a supplier s when the inventory
position of item i of supplier s falls below the reorder point. The packing of a container
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is done according to a heuristic where items with a higher stock turnover rate have a
higher priority.

The order optimizer schedules paths on departure times Ze of arcs e ∈ E and evaluates
possible scenarios of arc delays and demand observations. The path with the best score,
related to a weighted scoring method on expected cost and emission, is chosen as the
best path. The performance of the model is measured on the total emissions and costs,
related to executing paths, holding inventory, and having lost sales.

For the learning heuristic, we use a supervised learning approach, where the expected
future cost of a post-decision state is calculated with a value function approximation
that uses a neural network. The optimal decision is chosen as the decision with the
lowest direct costs, plus the expected future cost of the post-decision state. The neural
network will be fitted for a single supplier since the ordering process for each supplier
is independent. We train the neural network on a large dataset, generated by the order
optimizer heuristic.
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This chapter elaborates on the experimental setup of the three modules mentioned in
the solution design. First, Section 6.1 introduces the general settings of the problem
formulation. Then, Section 6.2 shows the construction of the transportation network
nodes and arcs. Section 6.3 explains the settings used in the inventory management
system. Section 6.4 describes the settings used when combining containers with paths
in the order optimizer module. Section 6.5 shows the experimental settings related to
the learning heuristic approach. Section 6.6 explains how the performance of the model
is evaluated. Section 6.7 shows the setup of experiments for both the order optimizer
and learning heuristic. Finally, Section 6.8 concludes this chapter by elaborating on the
conclusions of the experimental settings.

6.1. General settings

The set of nodes V and arcs E can be found in Table A.1 and Table A.2 in appendix A,
respectively. The parameters such as distance and duration of arcs can also be found in
appendix A. The list of items and suppliers, including attributes of these sets are not
presented in this report, due to confidentiality.

Table 6.1 shows the size of the sets used in the optimization model. The establishment
of the set of items, for example, is elaborated on in this chapter. The sets of orders
O, containers C, paths P , and arc departure times Z are generated by the model, and
therefore not specified in this chapter.

Table 6.1.: Model sets.
Set ID Count Description
Items i ∈ I 944 items
Suppliers s ∈ S 177 suppliers
Nodes v ∈ V 284 nodes, of which 1 warehouse, 106 transfer

nodes, and 177 suppliers
Arcs e ∈ E 181 arcs (excluding arcs connecting suppliers).
Modes m ∈ M 4 shipment methods,

M = {road, rail, iww, sea}.
Time
horizon

t ∈ T 350 days (50 weeks)

Table 6.2 shows the parameter settings of the optimization model. The transportation
velocity of road transportation is significantly higher than intermodal transport but has
a 3 to 4 times higher rate of CO2 emission. The review period r is set to 7 days, and the
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planning horizon h to 14 days. Note that the production time qs is supplier dependant,
and the order multiple is item dependent. For every path generation objective, k= 3
paths are generated, which results in a maximum of 9 paths per supplier. For a detailed
explanation of the choice of k = 3, see Appendix B. Also, we assumed that the holding
cost is significantly lower with €0.19 euro per pallet per day than the lost sales cost of
€5.00 for every collo.

Table 6.2.: Model parameter settings.
Parameter ID Value Unit of measurement
Mode velocity1 fsea 20 km/h

frail 25 km/h
froad 60 km/h
fiww 11 km/h

Mode emissions2 gsea 0.160 kg CO2 per container per km
grail 0.170 kg CO2 per container per km
groad 0.750 kg CO2 per container per km
giww 0.260 kg CO2 per container per km

Mode cost3 csea € 0.95 euro per container per km
crail € 1.27 euro per container per km
croad € 1.32 euro per container per km
ciww € 0.66 euro per container per km

Transfer time n 2 hours
Production time qs [7, 63] days [min, max]
Review period r 7 days
Planning horizon h 14 days
Order multiple ui [20, 1296] collo per pallet [min, max]
Capacity l 33 (euro)pallets per 45ft container
Optimal paths k 3 k-optimal paths per objective
Scenarios - 1,000 number of scenarios generated per

path
Holding cost cinv

i € 0.19 euro per pallet per day
Lost sales cost cls

i € 5.00 euro per collo

6.2. Transportation network (module 1)

This section defines the transportation network, which is used to create paths. First, the
road transportation network is defined by the TEN-T core network, which is further
elaborated in Section 6.2.1. Afterwards, the intermodal network is created by copying a
set of intermodal transportation paths from RouteScanner.com. This is further elaborated
in Section 6.2.2. Finally, Section 6.2.3 elaborates on the set of warehouses and suppliers
used in the transportation network.

1Mode velocity determined according to Macharis et al. (2011).
2Mode emissions determined according to Smart Freight Centre (2022).
3Fictive cost values are assumed.
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6.2.1. Road transport

Containers are continuously shipped through a large transportation network to transport
goods inside and outside Europe. European countries try to optimize their infrastructure
to move goods efficiently. The European Commission has started TEN-T projects in the
last two decades to identify and improve the main corridors for transporting freight and
passengers within EU countries (European Commission, 2020). These corridors include
road-, rail-, inland waterways-, and sea shipping. An overview of the main corridors in
the EU can be found in Figure 6.1.

Figure 6.1.: TEN-T Core Network Corridors. Each colour represents one of the nine
corridors. While all corridors include road transportation, most corridors
also include rail transportation.

The TEN-T core network can be used as the basis of the transportation network G for
shipping by road. The transportation network, modelled as a directed graph G is defined
with nodes V and arcs E . Therefore, the set of nodes V of graph G is set to the nodes/cities
of the TEN-T core network. The set of arcs E now consists of the set of arcs by road E road

of the TEN-T core network. The graph of road transportation arcs is shown in Figure 6.2.

The distances of the arcs are calculated by using the OpenStreetMap API4 on the latitude
and longitude coordinates of the nodes V to get actual distances de of arc e ∈ E . The
duration be is based on the model velocity fm of the transportation mode m ∈ M.

6.2.2. Intermodal transport

Section 6.2.1 defined the TEN-T core network as a directed graph G that consists of
the cities V and arcs E . Currently, only the road transportation arcs E road have been

4See http://project-osrm.org/docs/v5.5.1/api/#nearest-service
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Figure 6.2.: TEN-T core network in the transportation model. This figure shows all road
transportation arcs, all transfer points, and the ADIL warehouse located in
the Netherlands.

defined. In this section, intermodal arcs are created for graph G. For the transportation
network, a predefined set of intermodal arcs in Europe are used. These arcs have been
chosen based on schedules of RouteScanner5. RouteScanner has been founded by the
Port of Rotterdam to combine intermodal schedules of LSPs and provide door-to-door
connections for containers on request (RouteScanner, 2022). The paths that RouteScanner
provides are focused on intermodal shipping and choose the most CO2 neutral option.
The emission of the connections of RouteScanner is provided and compared with road-
only transportation. The intermodal arcs can be based on rail-, inland waterway-, or sea
shipping. Therefore, the set of arcs is extended with the intermodal arcs and becomes
E = E road ∪ E rail ∪ E iww ∪ E sea.

We select for every country about 2-4 routes (from RouteScanner) that depart in this
country, to Rotterdam. Preferably, the departure location of different routes should be
spread across the country and be close to the locations of ADIL’s suppliers. The routes
are chosen based on popular routes, i.e., the routes should have multiple providers that
offer this route. Besides, all routes include no transfers.

For most European countries in the TEN-T core network, several intermodal paths have
been defined for major cities. All of these paths lead to Rotterdam, since Rotterdam is
one of the largest ports in Europe, and thus has many intermodal routes that meet here.
Besides, it is relatively close to the warehouses of ADIL. Figure 6.3 shows the selection
of intermodal routes used from RouteScanner. Most eastern- and central European
countries make use of rail transportation, and countries such as Spain, Italy, and France
have one or more routes by sea. The intermodal transportation network does not include

5See https://www.routescanner.com/
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inland waterway arcs. Inland waterway transport is not yet well developed in intermodal
transport, and RouteScanner does not provide a wide selection of inland waterway arcs.
Figure 6.4 shows the origins of the shipments in a year of ADIL. Note that the departure
locations of the intermodal network in Figure 6.3 are partially based on the shipment
origin locations.
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Figure 6.3.: The set of intermodal arcs (maritime, rail, and inland waterways) in the
transportation network.

Intermodal arcs are based on scheduled departure times Ze of LSPs and cannot be used
on request, unlike arcs by road. In the simulation, a random moment of time during a
week is generated for every arc. This moment of time is the same for everyweek and is the
departure moment of the arc e. The duration be and emissions ae of an intermodal arc are
based on the numbers of RouteScanner. RouteScanner makes use of the GLEC framework
for calculating CO2 emissions in transportation. The distance de of an intermodal arc for
rail- and inland waterways shipping is estimated by the rail calculator of the European
Commission6 and by the sea route & distance calculator of Ports.com7.

6.2.3. Warehouses and suppliers

Graph G now contains all road-transportation arcs, together with a subset of intermodal
arcs, E and cities V of the TEN-T Core Network. The next step is to add the warehouses
of ADIL and the suppliers to the network.

ADIL hasmultiplewarehouses in theNetherlands but prioritises a singlewarehouse. This
warehouse stores the largest part of ADIL’s goods. For simplicity, only this warehouse
is considered in the optimization model and will represent the destination of all paths
created. The warehouse is connected to the five closest cities in the network with road
transportation arcs.
6See Rail calculator
7See http://ports.com/sea-route/
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Figure 6.4.: Origins of the European shipments in 2021 of ADIL.

The suppliers of ADIL are also added to the transportation network. Based on the latitude
and longitude coordinates, the suppliers S are located in the network. When a path is
generated for a supplier s, the supplier is added to the set of nodes V and is connected
to the three closest nodes via road transportation with arcs E?s . The distance de, e ∈ E ? of
an added road transportation arc is approximated with the great circle distance, which
calculates the distance between two points on a sphere. This distance de is multiplied by
a factor 1.3 to get a better approximation of the actual distance via road. When another
supplier s′ 6= s is considered, the previous supplier s and connecting arcs E?s , are removed
from the graph G.

6.3. Inventory management system (module 2)

The set of suppliers S is filtered on the supplier’s location sincewe only consider suppliers
in Europe. The set of items I is filtered on demand characteristics, which means the item
should have historical demand in 2022. Finally, items without a known supplier and the
other way around, are also excluded from the set of items.

Parameters such as the order multiple ui are set to the number of collo of item i that
fit on one euro pallet. The mean demand µi and demand standard deviation σi of item
i is calculated on historical data of the first half of 2022, which is expressed in weekly
figures, for each item i ∈ I .

One of the stochastic parameters of the model is the demand λit, which is simulated
according to the negative binomial distribution with parameter ri and pi (6.1, 6.2, 6.3)
(Axsäter, 2015). This requires the mean demand µi, and standard deviation σi of each
item i ∈ I . The demand is simulated on the weekly basis, which means every Monday
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of the week a demand sample is generated, t = 0, 7, 14, . . .. The demand forecast for
horizon h is calculated with the expected demand µi, so the expected demand for h
weeks is ∑h µi.

λit ∼ NB(ri, pi) ∀i ∈ I , t ∈ T (6.1)

pi = 1− µi

σ2
i

∀i ∈ I (6.2)

ri = µ
(1− pi)

p
∀i ∈ I (6.3)

The reorder point wi is determined such that it should cover 98% of the demand distribu-
tion during the production lead time, order horizon, and review period. To calculate the
98th percentile, the demand distribution with a production lead time of, e.g., 3 weeks,
equals the sum of 3 times the demand distribution. Since the negative binomial distribu-
tion is a sequence of Geometric distributions, (6.5) shows how this can be reduced to
NB(3ri, pi). Equation (6.6) shows how the reorder point is calculated of the cumulative
density function F(r, p). We take the 98%th percentile of the distribution, which means
we are 98% certain that the distribution is less than the reorder point.

LetXi ∼ Geometric(p), X ∼ NB(r, p) , then (6.4)
3

∑
1

X =
3

∑
1
(X1 + . . . + Xr) = X1 + . . . + X3r = NB(3r, p) (6.5)

wi =
∫ 0.98

0
F(r, p) (6.6)

6.4. Order optimizer (module 3)

As mentioned in Section 4.3, all three curses of dimensionality apply to our case, which
means we cannot solve the MDP exactly. For this reason, we use a heuristic approach
with machine learning, since we try to learn to make better decisions.

The container scheduler uses the stochastic parameter arc delay φe to evaluate scenarios
of the total path duration. The arc delay will be simulated according to the exponential
distribution, so φe ∼ Exp. We use the assumption that an arc with a high duration also
experiences a larger expected average delay, than arcs with a lower duration. For this
reason, the arc delay is based on the planned arc duration be. The arc delay is calculated
according to (6.7). Note how the expected duration of an arc b̂e can be reduced to
(1 + jm)be, according to (6.8). We can calculate the expected value of the exponential
distribution, which is equal to 1/λ.

φe ∼ Exp
(

jm
1
be

)
,where m = em ∀i ∈ I (6.7)
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b̂e = E [be + φe] = E
[

be + Exp
(

jm
1
be

)]
= be + E

[
Exp

(
jm

1
be

)]
= be + jmE

[
Exp

(
1
be

)]
= be + jm ∗

1
1
be

= be + jmbe = (1 + jm)be

∀e ∈ E (6.8)

Equation (6.7) shows an additional factor jm, which is determined per transportation
method. For example, intermodal transport might be more vulnerable to delay, so we
might decide to set jmaritime > jroad. Table 6.3 shows the values for jm during the simulation.
We chose to make road transportation the most reliable with an average delay of 0.2
times the initial duration, and sea transportation the least reliable with an average delay
of 0.4 times the initial duration. The general assumption is jroad < jrail , jiww < jsea

Table 6.3.: Average delay factor of transportation modes.
Transportation mode Average delay factor jm
Sea (maritime) 0.4
Rail 0.3
Road 0.2
Inland waterways 0.3

6.5. Container scheduling: Learning heuristic

The learning heuristic of the container scheduler makes use of a supervised learning
approach, which heuristically tries to approximate the future costs of the post-decision
state. The value function approximation (VFA) uses a neural network to approximate
these values. The neural network consists of 5 layers, which are the input layer, three
hidden layers, and the output layer. The input layer consists of the post-decision state
Sx

t , and the output layer consists of a single node that represents the expected future
cost Vt(Sx

t ) of the post-decision node. There are three hidden layers, each consisting of
16 hidden nodes. Each node of the hidden layer is activated with the RELU activation
function. The output layer/node uses a sigmoid activation function. The learning rate
for the neural network is set to 0.05, which means we update the neural network with
5% of the observed values.
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6.6. Model performance evaluation

Figure 6.5.: Performance measurement of
the model.

The performance of the problem formu-
lation is evaluated on three types of cost:
(1) path execution costs, (2) holding costs,
and (3) lost sales costs. The path execution
costs are calculated when a path p ∈ Po is
chosen for a container c ∈ Co. The holding-
and lost sales costs are calculated on the ac-
tual inventory αit for ∀i ∈ I , t ∈ T . Thus,
while the formulation works with the in-
ventory position, the performance of mea-
sured on the actual inventory (see Figure
6.5).

The objective is to minimize the total costs
(6.9) and emissions (6.10). The total costs
can be calculated by (6.9). The total
costs exist of path costs cp for all executed
paths P ′, and the holding costs per pal-
let cinv

i and the lost sales cost cls
i per collo,

summed over the whole time horizon T
and items I . Equation 6.9 shows the ob-
jective of problem formulation.

min ∑
p∈P ′

cp + ∑
it
(cinv

i
αit

ui
+ cls

i ξit) (6.9)

min ∑
p∈P ′

ap , where ap = ∑
e∈Ep

ae (6.10)

6.7. Experiment setup

This section elaborates on the experiment setup for the results in Chapter 7. First,
Section 6.7.1 shows the experiments for the order optimizer heuristic. Then, Section 6.7.2
elaborates on the experiments of the learning heuristic.

6.7.1. Order optimizer

Table 6.4 shows the parameters that are going to be evaluated with different settings.
In this case, we have three parameters which are the cost weight, the emission weight,
and the arc delay scenarios. The first experiment has a full focus on costs during normal
transport delay. During each following experiment, the focus will shift with 10% towards
an emission focus. Eventually, we do the same experiments, but now with a 200% and
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300% delay scenario. Table 6.5 shows the set of experiments, including a Road Only
experiment to compare costs and emissions. This results in a total of 36 experiments.

Table 6.4.: Set of experimental parameters.
Parameter Experiment range Explanation
weightc [1.00, 0.90, 0.80, . . . , .01] Cost weight for evaluating paths.
weighta 1−weightc Emission weight for evaluating paths.
jm [100%, 200%, 300%] Arc delay factor.

Table 6.5.: Set of experiments to evaluate.

# Experiment Parameter Explanation

1 Road Only - Use road transportation only, i.e.,
the fastest path.

2 - 12 Pareto frontier weightc,weighta Evaluate the total costs and emis-
sions with different focuses.

13 Road Only,
200% delay

200% jm Use road transportation only, i.e.,
the fastest path with 200% delay.

14 - 24 Pareto frontier,
200% delay

weightc,weighta,
200% jm

Evaluate the total costs and emis-
sions with different focuses with
200% delay.

25 Road Only,
300% delay

300% jm Use road transportation only, i.e.,
the fastest path with 300% delay.

26 - 36 Pareto frontier,
300% delay

weightc,weighta,
300% jm

Evaluate the total costs and emis-
sions with different focuses with
300% delay.

All experiments run for a length of 70 weeks, of which 20 weeks is the warm-up period.
The demand is equal in each experiment, i.e., generated with common random numbers.
Each experiment has four replications, with a 10% significance factor based on the
sequential procedure of Law (2015). See Appendix C for a more elaborate explanation
of the warm-up period and the number of replications.

6.7.2. Learning heuristic

This section elaborates on the results of the learning strategy. We will run the learning
strategy for two instances since we run the learning strategy only for a single supplier.
Table 6.6 shows the two instances, with their country of origin, number of items, and
production days. These two instances were selected to achieve results from two perspec-
tives: (1) Supplier 1 with a few items, and a relatively low production lead time, and (2)
Supplier 2 with more items and a relatively high production lead time.
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The neural network is trained on a large dataset, generated by the order optimizer
heuristic. We train the neural network on the data set and perform simulations. A
simulation does use the neural network for calculating the best decision.

Table 6.6.: Supplier instances for the learning strategy.
Instance Country Number of items Production lead time
Supplier 1 France 2 21 days
Supplier 2 Spain 4 49 days

We perform all experiments with a different CO2 cost factor, which are {0.0, 0.5, 1.0}.
This means that a model is trained with a full cost focus, and two models are trained
with an increasing cost for emissions. First, we demonstrate the learning process of an
experiment with the CO2 cost factor = 0, so a full cost focus experiment. Figure 6.6
shows the training process of this experiment. We use 10 replications and a simulation
period of 200 weeks (excluding the warm-up period) to increase the accuracy since
we only observe a single supplier. After learning about 500,000 decisions, the model
shows a decrease in the total cost and seems to give consistent results after. Although
the decrease in total costs is only approximately €2,000 (-2.9%), we assume the model is
sufficiently trained after about 500,000 iterations. Therefore, all other experiments are
trained with 500,000 iterations.

Figure 6.6.: Training process of Supplier 1 with 100% cost focus.

6.8. Conclusion

The TEN-T project has been used as the basis for creating the transportation network
in Europe. The core network, consisting of cities and corridors, is used to define the
road transportation arcs. The intermodal arcs are based on schedules of RouteScanner,
which provides door-to-door connections, mainly consisting of intermodal transportation
methods. The intermodal transportation arc provide often arcs with low emission with
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a high duration and road transportation the other way around. While intermodal arcs
have to comply with departure times, road transportation arcs are flexible and can be
requested on demand.

The stochastic demand of items is simulated according to a negative binomial distribution,
and a random observation is generated each Monday of the week. The arc delay variable
is simulated according to an exponential distribution. The exponential distribution is
based on the initial distribution of the arc.

The VFA of the post-decision state is approximated with a neural network. The input of
the neural network equals the physical- and in-transit inventory, grouped by week. The
three hidden layers each consist of 16 nodes.

We evaluated three experimental parameters, which are the cost weight, emission weight,
and arc delay factor. We calculated Pareto optimal solutions by evaluating a 100%, 90%,
80%, ..., 10%, 1% cost focus, together with a Road Only experiment, which results in
12 experiments. Each set of experiments is performed with a 100%, 200%, and 300%
arc delay factor, which results in a total of 36 experiments. For the learning heuristic,
we evaluate different CO2 cost values and compare the performance with the simple
heuristic and order optimizer.
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Chapter 5 presents the heuristics and solution approaches that solve the problem formu-
lation from Chapter 4. Chapter 6 provides the general settings of the solution approach.
This chapter presents the experimental results. All experiments are programmed with
Python. Note that a single simulation may require about 1 hour to run on a single laptop.
For this reason, all simulations have been calculated in parallel on a server with 72 cores.

First, Section 7.1 validates the model performance by comparing it with a simple heuristic.
Section 7.2 analyses the experimental results by a Pareto-graph. Section 7.3 elaborates on
the total emissions per country for each experiment. Section 7.4 shows the performance
of the learning strategy. Section 7.5 shows the sensitivity analysis of the cost parameters
in the optimization model. Finally, Section 7.6 concludes this chapter by presenting the
conclusions of the results.

7.1. Model validation

First, the model is validated by comparing the results with a simple heuristic. This simple
heuristic uses the same model, but does not include expected holding-, and lost sales cost
when evaluating paths. It only uses the direct path costs and emissions as evaluation
parameters, which makes it a myopic policy. Figure 7.1 shows the 12 experiments defined
in Table 6.5, where the blue line shows the performance of the order optimizer module
and the orange line shows the performance of the simple heuristic.

Figure 7.1.: Pareto frontier of the experiments with 100% delay factor is the simple heuris-
tic and order optimizer.
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Figure 7.1 shows that both performances are relatively close to each other. Where the
simple heuristic performs slightly better with a higher cost weight, the order optimizer
performs slightly better with a higher focus on emission. The order optimizer is able
to achieve a lower total cost with a 90% or higher cost focus. In both cases, the Road
Only experiment performs worse than the Pareto frontier. The Road Only experiments,
demonstrated with the squares in Figure 7.1, have the same total costs and emissions
and perform worse than 80%, 90%, and 100% cost focus experiments. The Road Only
experiment is dominated by all other experiments on total emission.

The little difference between the performance of the simple heuristic and the order
optimizer module may be explained due to the expected cost calculation of the order
optimizer module. The expected cost calculation is a heuristic that tries to calculate the
expected costs for over 10 or more days, depending on the lead time. During these 10+
days, previously placed orders may be late or demand might be high, causing lost sales
which change the inventory position. Summarizing, it may be quite difficult to calculate
the expected costs, due to the many different events that may happen after taking a
decision. For this reason, the order optimizer module may be close to the performance
of the simple heuristic, or even slightly worse.

7.2. Pareto frontier

This section elaborates on the results of the experiments defined in Table 6.5. In total
36 experiments have been performed, each with 4 replications. First, we elaborate on
the total cost and emission in a Pareto graph of all 36 experiments. Figure 7.2 shows the
Pareto frontier of the 36 experiments. The dark blue line shows the standard case with
the standard delay distribution. This line shows that the order optimizer module with a
100% delay distribution performs better than the other two cases with a 200%- and 300%
delay distribution, in total costs and emissions.

Figure 7.2.: Pareto frontier 36 experiments, based on a cost-emission scale.

With a full emission focus, all three cases end up with approximately 2,750 tons of CO2
emissions and a slightly higher cost for the cases with a higher delay distribution. If we
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look at the standard case, we have about €4.8 million kg of CO2 and about €12.2 million
euro as the total cost. We can reduce the total emission by 43% to a level of 2.75 million
kg, by increasing the total costs by approximately 10% to a level of €13.5 million in the
case of a 40% cost focus. Table 7.1 shows each experiment the comparison in terms of
total costs and emissions, for all three transport delay cases.

Figure 7.3 shows the total costs split per cost category. Most costs (about 80-85%) are
path costs, which are for executing containers on paths. The holding costs are themajority
of the other costs, with little costs in lost sales. The little cost in lost sales is likely due to
the high reorder point that covers 98% of the demand distribution.

Figure 7.3.: Cost distribution of the experiments in the base case.

As the focus shifts towards a more emission focus, the total costs gradually go up.
These costs are primarily present in the path costs that also gradually go up since more
sustainable paths sometimes are more expensive and may require some detour. Also, the
lost sales costs are slightly increasing, due to taking more risk in transport lead times of
intermodal paths. This may be solved for example by increasing the reorder point. The
Road Only experiment shows that the total cost is close to the 100% cost focus experiment.

Figure 7.4 shows the number of containers transported per transport method. In total,
all experiments ship about 6,600 containers. In the Road Only experiment, all containers
are transported via unimodal road. As the emission focus increases up to 50%, more
containers are transported via intermodal rail paths. About 1,000 containers remain
using unimodal road since the suppliers of these containers are likely to be nearby to the
Netherlands. Therefore, these containers are not viable for intermodal transport.
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Table 7.1.: Experiment values comparison of costs and emissions. The change percentage
is calculated by comparing it with the 100% cost focus experiment.

Experiment Total costs
(*€1,000)

Chg
(%)

Emissions
(*1,000 kg)

Chg
(%)

Base case (100% of original delay distribution)
Road only € 12,401 + 1.0% 5,937 + 23.5%
100% Cost € 12,273 4,808
90% Cost € 12,478 + 1.7% 4,191 - 12.8%
80% Cost € 12,728 + 3.7% 3,586 - 25.4%
70% Cost € 12,857 + 4.8% 3,317 - 31.0%
60% Cost € 12,981 + 5.8% 3,179 - 33.9%
50% Cost € 13,285 + 8.3% 2,926 - 39.1%
40% Cost € 13,461 + 9.7% 2,808 - 41.6%
30% Cost € 13,492 + 9.9% 2,792 - 41.9%
20% Cost € 13,648 + 11.2% 2,760 - 42.6%
10% Cost € 13,665 + 11.3% 2,757 - 42.7%
1% Cost € 13,715 + 11.8% 2,753 - 42.7%
Case: 200% of original delay distribution
Road only € 12,473 + 0.8% 5,947 + 17.3%
100% Cost € 12,380 5,068
90% Cost € 12,625 + 2.0% 4,215 - 16.8%
80% Cost € 12,898 + 4.2% 3,532 - 30.3%
70% Cost € 13,018 + 5.2% 3,352 - 33.9%
60% Cost € 13,156 + 6.3% 3,230 - 36.3%
50% Cost € 13,502 + 9.1% 2,968 - 41.4%
40% Cost € 13,644 + 10.2% 2,867 - 43.4%
30% Cost € 13,700 + 10.7% 2,799 - 44.8%
20% Cost € 13,864 + 12.0% 2,768 - 45.4%
10% Cost € 13,862 + 12.0% 2,761 - 45.5%
1% Cost € 13,907 + 12.3% 2,758 - 45.6%
Case: 300% of original delay distribution
Road only € 12,473 + 0.8% 5,950 + 20.7%
100% Cost € 12,380 4,930
90% Cost € 12,625 + 2.0% 4,475 - 9.2%
80% Cost € 12,898 + 4.2% 3,930 - 20.3%
70% Cost € 13,018 + 5.2% 3,318 - 32.7%
60% Cost € 13,156 + 6.3% 3,112 - 36.9%
50% Cost € 13,502 + 9.1% 2,963 - 39.9%
40% Cost € 13,644 + 10.2% 2,829 - 42.6%
30% Cost € 13,700 + 10.7% 2,811 - 43.0%
20% Cost € 13,864 + 12.0% 2,772 - 43.8%
10% Cost € 13,862 + 12.0% 2,765 - 43.9%
1% Cost € 13,907 + 12.3% 2,761 - 44.0%
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Figure 7.4.: Number of containers transported split per transport method for each exper-
iment of the base case.

As the emission focus gets above 50%, some intermodal rail transportation is replaced by
maritime transportation, with 300 containers being shipped via maritime with a 99%
emission focus.

Figure 7.5 shows the same transport method categories as Figure 7.4, but now shows
the total emission related to the executed paths in the experiments. For example, the
Road Only experiment shows a high total emission, since road transportation has a larger
emission factor per unit of distance. As the focus shifts towards an emission focus, the
total CO2 emissions go down to about 2.75 million kg.

Figure 7.5.: Total emission per experiment split per main transport method.

With an emission focus of 50% or higher, almost all emissions are caused by intermodal
rail transportation. Note that intermodal rail transportation includes the emission from
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road transportation travelling from the supplier to the departure railway station, and
from the arrival railway station to the warehouse. The small portion of unimodal road
transportation in the 50%emission focus or higher is not relevant to explore for intermodal
transport, since these suppliers are likely to be close to the warehouse.

Finally, Figure 7.6 shows the same data as Figure 7.5, but an extra split in intermodal
transport. The shaded area in rail transportation and maritime is the emission caused
by road transportation for driving towards- and from a railway station. This shows that
about 60% of the intermodal rail transportation emission is caused by road transportation,
and only about 40% of the emissions is actually from rail transportation. In the 99%
emission focus experiment, still, approximately 65% of the total emissions are polluted
by road transportation but are not reducible to a lower minimum.

Figure 7.6.: Total emission per experiment split per single transport mode.

7.3. Country analysis

In this section, the results related to the total emissions split per country are elaborated.
Figure 7.7 shows the total emissions per country for the experiments: Road Only, 100%,
80%, ..., 20%, 1% cost focus. The countries Italy and Spain are the two countries with
the most emissions. That is likely due to the high volume done with suppliers in these
countries, together with the large distance to the warehouse in the Netherlands. Portu-
gal is the third country with the most emissions, also due to the large distance to the
warehouse. Countries such as Belgium, Germany, and the Netherlands do not have a lot
of emissions, due to the short distance to the warehouse.

The experiments with a higher emission focus (e.g., lower cost focus) show a lower total
emission. Spain is able to reduce the total emissions by close to 60% with the 60% or
lower cost focus experiment. The total emissions in Italy also dropped significantly with
a higher emission focus, compared to the Road Only or 100% cost focus experiment.
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Figure 7.7.: Total emissions per country per experiment.

Figure 7.8 shows the reduction in total emissions for each country, compared to the
Road Only experiment. In these cases, Portugal and Italy achieved the most reduced
emissions. For the suppliers in Belgium, it did not make a difference what experiment
was performed, a single path for each supplier was the most economic, and sustainable
option according to the optimization model. Summarizing, for the southern countries in
Europe, an emission reduction of 60% to 70% is possible with a large impact on the total
emissions, and for the less distant countries in Europe, an average reduction of 30% is
achievable with less impact on the total emissions.

Figure 7.8.: Emission reduction per country, compared to the Road Only experiment.
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7.4. Order optimizer module: Learning heuristic

Figure 7.9 shows the performance for the Supplier 1 instance of the three strategies, which
are the simple heuristic, order optimizer, and the learning strategy. All experiments
are performed for the three different CO2 cost values. The blue icons with a full cost
focus perform relatively well on the total cost. The simple heuristic outperforms both
solutions in terms of costs, whereafter the learning strategy and order optimizer follow,
respectively. Note that the cost differences are relatively small with all solutions being in
a range between €69,000 and €71,000.

Figure 7.9.: Comparison of different strategies in terms of costs and emissions of the
Supplier 1 instance.

The simple heuristic solutions tend to be sensitive to extreme results because all simple
heuristic solutions eighter have high costs and low emissions, or have low costs and high
emissions. For example, the order optimizer with a CO2 cost value > 0 is close to the
best solutions found in terms of a cost/emission trade-off. The learning heuristic is less
sensitive to extreme results than the simple heuristic. In this case, the learning heuristic
performs similarly/better with a CO2 cost value of 0 or 0.5, but performs worse with a
cost value of 1, compared to the simple heuristic and order optimizer.

Figure 7.10 shows the same comparison as Figure 7.9, but now for the Supplier 2 instance.
The simple heuristic and order optimizer seems to achieve about the same solutions,
except for the CO2 cost = 0.5. The solutions do seem to follow a clear pattern that shows
an increasing cost and decreasing emission when the CO2 cost value increases. The
learning heuristic solutions with a CO2 cost value of 0 and 1 tend to be on the Pareto
frontier line. However, these solutions do deviate a lot from the order optimizer and
simple heuristic solutions. This might conclude that the learning heuristic leads to
different results (not particularly better) than the simple heuristic and order optimizer,
which often have similar performance.
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Figure 7.10.: Comparison of different strategies in terms of costs and emissions of the
Supplier 2 instance.

7.5. Sensitivity analysis

Table 7.2 shows the parameters for the sensitivity analysis. First, an analysis is performed
on an increased risk of transportation delay, with 200% and 300% of the original delay.
Afterwards, an analysis is performed on holding- and lost sales costs, each with a 50%
decrease, and increase.

Table 7.2.: Sensitivity analysis parameters.
Parameter Experiment range Explanation
cinv [50%, 100%, 150%] Unit cost for keeping a pallet in inventory.
cls [50%, 100%, 150%] Unit cost for lost sales.

Figure 7.11 shows the sensitivity performed on the base case of Section 7.2. For this
analysis, only the Road Only, 100%, 80%, ..., 20%, and 1% cost-focus experiments have
been performed. As expected, increasing the cost factors also increases the total costs.
The same applies to reducing the cost factor parameters.

The red- and green lines seem to be deviating more than the orange- and blue lines,
which means that the change in holding costs seems to have a larger impact on the total
cost than the difference in lost sales cost. This follows from the fact that the total inventory
costs are much larger than the total lost sales costs.

7.6. Conclusion

We conclude this chapter by summarizing the model validation, Pareto frontier, country
analysis, learning heuristic, and sensitivity analysis.

58



7. Results

Figure 7.11.: Pareto of Different delay distributions.

Model validation We compared the performance of the order optimizer module with
a simple heuristic, using a myopic policy. The performance of both heuristics was quite
similar, where the order optimizer tends to perform slightly better with a high emission
focus, and the simple heuristics performs slightly better with a high cost focus. For this
reason, we assume that the expected cost calculation of the order optimizer to not be
significantly better than a simple heuristic.

Pareto frontier A 100% cost focus during normal delay settings results in a total cost
of €12.2 million euro and a total emission of 4.8 million kg of CO2. Shifting the focus
to reducing emissions gradually results in higher costs and lower emissions. The 99%
emission focus experiment results in €13.7million euro and 2.7million kg of CO2, which is
an 11.8% cost increase and a 42.7% emission reduction. Increasing the delay distribution
to 200% or 300% results in overall more costs and emissions, due to taking less risk in
transport, accepting higher emissions, and having more delayed freight.

The path execution costs make up the majority of the total cost, with approximately
80% to 85%. The holding costs are about 10% to 15% of the total cost, and the lost sales
costs are < 5% of the total cost. Increasing the focus on emission results in higher path
execution costs together with a slight increase in lost sales costs. The holding costs stay
approximately the same.

Rail transportation is the primary choice for intermodal transport in the optimization
model. When the emission focus is larger than 50%, also maritime shipping is chosen for
some shipments but stays a small portion of the total intermodal routes. The majority
(approximately 65%) of the emissions with a 50% emission focus or larger is caused by
road transportation. A small portion of the 65% is used for unimodal transportation.
The majority is polluted for driving from- and to ports and railway stations.

Country analysis Spain and Italy have the highest potential for emission reduction,
due to the large volume of goods ordered from suppliers in these countries, and the
large distance towards the warehouse of ADIL. Portugal is also a relevant country for
emission reduction, due to the large distance to the warehouse. Its emissions may reduce
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by close to 70% compared to the Road Only experiment. Due to the less volume, it
has less potential for emission reduction than Spain and Italy. Countries like Belgium,
Germany, and the Netherlands have little influence on the total emissions.

Learning heuristic The learning heuristic tends to perform relatively similarly to the
simple heuristic and order optimizer module. The learning heuristic seems to be less
sensitive to extreme results than the simple heuristic, though the difference is relatively
small. In general, the learning heuristic performs just as well as the order optimizer and
simple heuristic.

Sensitivity analysis Changing the holding cost parameter has a larger impact on the
cost values, than changing the lost sales cost parameters. This is likely primarily due to
the larger total inventory cost compared to the lost sales cost.
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In this chapter, we present the conclusions and recommendations based on this research
to provide an answer to the research objective. First, the conclusions are presented in
Section 8.1. The conclusions start with answering all sub-questions, after which the
main conclusions follow. Section 8.2 shows the recommendations, resulting from the
conclusions. Section 8.3 elaborates on the limitations of this research. Finally, Section 8.4
mentions a number of possible future research topics, that follow from this research.

8.1. Conclusions

The research started by defining the problem statement, objective, and research questions.
The core problem is the unawareness of potential efficiency- and sustainability improve-
ments in the transportation process of ADIL. Due to the high share of road transportation,
ADIL wants to explore potential efficiency and sustainability improvements within their
ordering process. This leads to the following objective:

How can ADIL improve their international freight transportation network
considering different kinds of transportation modes within the transportation

network?

Context analysis Inbound transportation is done bymultiple logistics service providers
for ADIL. For each part of Europe, a standard transportation method is defined in the
system for standardization purposes. When a planner creates an order, the logistics ser-
vice provider directly receives an order for the moment the products need to be shipped
from the supplier to the warehouse. Orders include one or multiple transportation units,
often trailers for European suppliers, that are loaded with pallets. To maximize efficiency,
only full container loads are ordered.

While ADIL has suppliers all around the globe, most of its volume is done in Europe,
primarily in Spain and Italy. Most of ADIL’s products from European suppliers are
ordered in trailers and are shipped by road transportation. The total distance travelled by
road is a relatively small portion (<20%) of the total distance travelled, but does account
for at least 50% of the total emissions. Other transportation methods, such as maritime,
account for the majority of the total distance travelled but have less total emissions. That
is because intermodal transportation modes have lower emissions per kilometer than
road transportation. For this reason, to reduce the total emission, we want to reduce the
distance travelled by road.

Problem formulation We formulate our problem by using an inventory model that
incorporates all items of ADIL. Every week, orders are generated that consist of one
or multiple containers. We may decide what items with what quantity we place in a

61



8. Conclusions and recommendations

container. Afterwards, we decide how the containers are transported in a large European
transportation network. We generate a fixed set of paths from the supplier to the ware-
house, after which we choose one path that the container will travel. Our model includes
two stochastic parameters, which are the weekly item demand and transportation delay.

Solution approach For each supplier, we generate a fixed set of paths upfront in
the transportation network, using a k-shortest path algorithm, considering multiple
objectives. Each path is calculated according to Dijkstra’s algorithm, which finds the
shortest path in a graph. We also use an inventory management system that creates
replenishment orders for items, grouped in containers. Containers are filled using a
heuristic algorithm that adds pallets based on the demand forecast. Eventually, we
execute each generated container on one path of the supplier’s set of paths.

We determine the expected costs of choosing a path for a container, by calculating the
expected lost sales- and holding cost together with the path execution cost. Based on the
weight criteria costs and emissions, a score is calculated for each path. The path with
the highest score (i.e., lowest emission/cost) is chosen as the best path. We also train a
learning heuristic on the path selection model, to evaluate whether the weighted scoring
method or learning heuristic performs better.

Experimental settings The transportation network is based on the core network of the
TEN-T project of the European Commission, which has defined the major transportation
network in Europe. Cost figures are based on assumptions and emission figures are
based on the GLEC framework. Intermodal routes are extracted from RouteScanner’s
schedules from the major cities in Europe.

Results A simple heuristic is evaluated with both the order optimizer and the learning
heuristic to validate the model and evaluate the performance. The simple heuristic
tends to perform close to or as well as the order optimizer and learning heuristic. A
total emission reduction of about 45% is achievable, also resulting in a cost increase of
approximately 12%. Based on a trade-off between costs and emissions, a Pareto optimal
solution may be determined. Increased transportation delay results in slightly higher
costs. The primary transportation mode for intermodal transport is by rail according to
the optimization model. This is likely due to suppliers not being close to ports to ship by
maritime and due to the experimental settings of the model.

8.1.1. Main conclusions

Cost/emission tradeoff ADIL can improve their international freight transportation, by
increasing their intermodal transport to reduce overall emissions by up to approximately
45%, and subsequently accepting a cost increase of up to approximately 12%, compared
to the 100% cost focus experiment.

Primary intermodal transportation mode The primary modality to transport items is
rail transportation in Europe. Maritime shipping is the most sustainable transportation
method, which occurs in the experimenting with a relatively high emission focus.

Countries with large emission reduction potential Suppliers in countries in Southern
Europe are relatively attractive for using intermodal transport, due to the high volume of
goods and the large distance to the warehouse of ADIL. Countries nearby the warehouse
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like Belgium and Germany are less attractive for intermodal transport, due to their short
distance to the warehouse.

Heuristics versus learning strategy The use of the learning heuristic for path selection
for ADIL in the constraints of this research is less valuable, due to no- to little better
performance compared to the simple heuristic and order optimizer. The simple heuristic
sometimes performs nearly aswell and sometimes better compared to the order optimizer
or a learning heuristic.

Preference for stockpiling The holding cost factor for ADIL is relatively low, compared
to the relatively high lost sales cost. The algorithm therefore always preferred to order
earlier to mitigate risks and increase inventory. Further research should focus on the
optimal use of warehouse capacity to reduce lost sales costs, instead of a cost trade-off
between holding- and lost sales costs.

System standardisation Due to the standardised procedures in the systems of ADIL,
intermodal transport is relatively easy to implement. The case of synchromodal transport
using flexible services is more difficult, due to having the option to choose between
different paths. Currently, ADIL’s systems are built in such a way that each item has one
transportation route. For this reason, if ADIL desires to use synchromodal transport, it
should further investigate in what manner this can be implemented into its systems.

8.1.2. Contribution to literature and practice

This research combines different types of solution approaches from the literature. Below,
the key topics are explained that contribute to literature and practice:

• Container packing combined with inventory management While the topic of
inventory management together with transportation management has not been
widely researched, this research proposes a solution approach for dealing with
inventory management of items, together with transportation path selection, in-
cluding the container filling procedure. The previous topics together with the
container-filling procedure are one of the contributing elements of this research.

• Pareto optimal solutions Most transport selection problems in logistics focus on
optimizing the movement of goods in a large logistics service provider network.
This research focuses on the cargo owner’s perspective andprovides a cost/emission
Pareto frontier with different cost- and emission focuses. Based on this optimization
model, the company can determine what trade-off to make between costs and
emissions.

• Path selection learning heuristic The learning heuristic for path selection of this
research also provides a contribution to literature, since most papers focus on arc
selection in a service logistics provider’s network. This research proposes a learning
heuristic for selecting the transportation path from a cargo owner’s perspective.
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8.2. Recommendations

Based on the conclusions, we propose the following recommendations to ADIL:

• Cost/emission trade-off selection This research provides an overview of the
possible cost increase together with the potential emission decrease, with Pareto
frontier solutions. If ADIL desires to reduce their emissions, ADIL can determine
to what extent they want to increase costs in order for an emission reduction. We
recommend exploring to what extent ADIL wants to reduce their emissions, to
evaluate what cost increase might be applicable.

• Flexible services system implementation To increase the share of intermodal
transport, ADIL needs to evaluate how flexible transportation services can be
implemented into their systems, due to their current standardized procedure.
Also, an evaluation of to what extent the current logistics service providers can
provide intermodal services in Europe is required to be able to increase the share
of intermodal transport.

• Path selection The order optimizer calculating expected costs in this research
was able to slightly outperform a simple heuristic, only in specific cases. Also, the
learning heuristic was not able to significantly outperform the simple heuristic and
the order optimizer. For this reason, it is not necessary to develop a sophisticated
procedure that determines the optimal transportation path for a specific container.

• Warehouse capacity This research tries to find the balance between lost sales
and holding costs. Due to the large lost sales cost and low holding cost, the model
often prioritises transporting the items as early as possible. A relevant topic to
research might be to minimize the lost sales cost related to warehouse capacity.
Instead of focusing on holding costs, we choose the transportation path based on
the available warehouse capacity.

8.3. Research limitations

This research is performed on a broad topic and has a large set of parameters. For
this reason, it makes the research sensitive for all design choices made. We list a set of
limitations related to this research.

• Inventory management heuristics The inventory management system mod-
ule uses two heuristics to determine the order quantity of each item, and how to
distribute the items in one or more containers. The choice for the use of a single
heuristic for the two subproblems limits the research related to packing the con-
tainers with different methods. Evaluating different container packing algorithms
might lead to different results.

• Path creation This research reduces the problem formulation related to the
transportation network by creating a fixed set of paths for each supplier. This
resulted in a reduced decision space, which made it easier to make a decision.
Consequently, this also limits the potential for the optimization algorithm to make
the best decision.
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• Intermodal arcs and departure times For the experimental settings, a selection of
intermodal arcs have been made which the model may use. Increasing the number
of intermodal arcs may increase the usage of intermodal transport. Also, the
assumption of arcs departing once a week may influence the choice of intermodal
transport.

8.4. Future research

This researchwas conducted for ADIL to explore the possibilities for intermodal transport
to reduce total emissions, and to explore the use of sophisticated heuristics, such as
machine learning, in choosing transportation paths. This research acts as a starting point
for further research into transportation path selection, transportation and inventory
management control, and the use of machine learning for transportation selection. Below,
a summary is shown with possible future research topics that follow from this research.

• Demand seasons Retailers such as the subsidiaries of Ahold Delhaize use pro-
motions to attract customers to their stores. These promotions cause high demand
shocks. This research considers these promotions as noise and uses a single demand
distribution for each item for the entire horizon. Considering, e.g., a standard- and
high season with different demand distributions would be interesting to explore
what transportation methods would be selected in what conditions.

• Multiple Transportation unit types Transportation has different types of trans-
portation units, like containers, and trailers. Each type has different capacities,
characteristics, and transportation prices. Training a model into choosing what
transportation unit type is the best option for a supplier is also interesting. The
same applies to different pallet types, and, e.g., if stackability applies to a certain
item. In this research, we assumed a single pallet type and container type for
simplicity. For this reason, considering multiple transportation unit types might
be future research.

• Different reorder points In this research, reorder points were determined on a
certain percentage of the demand distribution. A different approach would be to
learn what reorder point is relevant for each transportation path.

• Warehouse capacity constraint The lost sales costs for Ahold Delhaize are rel-
atively high and holding costs are relatively low. This leads to the model nearly
always preferring to order as early as possible. Placing pallets in inventory at low
costs is oftenmore rewarding than higher lost sales. For this reason, an optimization
model focusing on warehouse capacity constraints might be more relevant. Then
the focus becomes to reduce the lost sales by making optimal use of the available
warehouse capacity.

• Order horizon In this research, a fixed order horizon of three weeks was used to
generate different scheduled paths that use intermodal arcs. Having a lower order
horizon leads to better predictable demand, but fewer choices in scheduled paths.
Experimenting with different order horizon values might lead to relevant results.
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• Intermodal paths This research used a fixed set of intermodal paths, each having
one fixed departure moment per week. More research about what intermodal
paths are available for a small set of LSPs, including their departure moments,
might lead to more realistic results.

• Dynamic arc prices In reality, the price of transport is based on multiple param-
eters, such as availability, capacity, and demand. This research assumed a fixed
price for transport during the entire time horizon. Researching the behaviour of
path selection with dynamic pricing might be an interesting future research topic.
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A. List of all nodes and arcs

This appendix shows the data sets of all nodes and arcs used in the optimization model.
Table A.1 shows the list of all nodes, and Table A.2 shows the list of all arcs.

ID Type City Country Latitude Longitude
0 transfer Amsterdam Netherlands 52.3667 4.8833
1 transfer Rotterdam Netherlands 51.9225 4.4792
2 transfer Utrecht Netherlands 52.0908 5.1222
3 transfer Zeebrugge Belgium 51.3166 3.2044
4 transfer Antwerp Belgium 51.2206 4.4003
5 transfer Gent Belgium 51.0536 3.7253
6 transfer Brussels Belgium 50.8333 4.3333
7 transfer Liege Belgium 50.6328 5.5722
8 transfer Luxembourg Luxembourg 49.6168 6.1246
9 transfer Calais France 50.9481 1.8564

10 transfer Lille France 50.6278 3.0583
11 transfer Le Havre France 49.4900 0.1000
12 transfer Paris France 48.8566 2.3522
13 transfer Metz France 49.1203 6.1778
14 transfer Nantes/Saint-

Nazaire
France 47.2890 -2.2210

15 transfer Tours France 47.2436 0.6892
16 transfer Dijon France 47.3167 5.0167
17 transfer Bordeaux France 44.8400 -0.5800
18 transfer Toulouse France 43.6045 1.4440
19 transfer Lyon France 45.7600 4.8400
20 transfer Montpellier France 43.6119 3.8772
21 transfer Perpignan France 42.6986 2.8956
22 transfer Marseille France 43.2964 5.3700
23 transfer Nice France 43.7034 7.2663
24 transfer Strasbourg France 48.5833 7.7458
25 transfer Kiel Germany 54.3233 10.1394
26 transfer Bremerhaven Germany 53.5500 8.5833
27 transfer Bremen Germany 53.1153 8.7975
28 transfer Hamburg Germany 53.5500 10.0000
29 transfer Rostock Germany 54.0833 12.1333
30 transfer Osnabrück Germany 52.2816 8.0507
31 transfer Hannover Germany 52.3744 9.7386
32 transfer Magdeburg Germany 52.1278 11.6292
33 transfer Berlin Germany 52.5167 13.3833
34 transfer Frankfurt/Oder Germany 52.3504 14.5489
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ID Type City Country Latitude Longitude
35 transfer Düsseldorf Germany 51.2241 6.7644
36 transfer Cologne Germany 50.9422 6.9578
37 transfer Frankfurt Germany 50.1194 8.6675
38 transfer Dresden Germany 51.0500 13.7400
39 transfer Mannheim Germany 49.4878 8.4661
40 transfer Würzburg Germany 49.7953 9.9389
41 transfer Nuremberg Germany 49.4539 11.0775
42 transfer Stuttgart Germany 48.7761 9.1775
43 transfer Regensburg Germany 49.0167 12.0833
44 transfer Passau Germany 48.5667 13.4667
45 transfer Munich Germany 48.1372 11.5755
46 transfer Prague Czechia 50.0649 14.4637
47 transfer Basel Zwitserland 47.5541 7.5911
48 warehouse - Netherlands - -
49 transfer A Coruna Spain 43.3650 -8.4100
50 transfer Gijón Spain 43.5333 -5.7000
51 transfer Bilbao Spain 43.2569 -2.9236
52 transfer Vitoria Spain 42.8469 -2.6716
53 transfer Valladolid Spain 41.6529 -4.7284
54 transfer Zaragoza Spain 41.6568 -0.8794
55 transfer Tarragona Spain 41.1187 1.2453
56 transfer Barcelona Spain 41.3879 2.1699
57 transfer Valencia Spain 39.4702 -0.3768
58 transfer Madrid Spain 40.4167 -3.7003
59 transfer Murcia Spain 37.9835 -1.1299
60 transfer Cartagena Spain 37.6057 -0.9913
61 transfer Antequer-

a/Bobadilla
Spain 37.0194 -4.5629

62 transfer Cordoba Spain 37.8847 -4.7791
63 transfer Seville Spain 37.3826 -5.9963
64 transfer Huelva Spain 37.2500 -6.9500
65 transfer Algeciras Spain 36.1275 -5.4539
66 transfer Porto Portugal 41.1502 -8.6103
67 transfer Aveiro Portugal 40.6333 -8.6500
68 transfer Lisbon Portugal 38.7206 -9.1423
69 transfer Sines Portugal 37.9574 -8.8613
70 transfer Szczecin/Swinou-

jscie
Poland 53.4169 14.5323

71 transfer Gdynia/Gdansk Poland 54.5168 18.5419
72 transfer Poznan Poland 52.2400 16.9167
73 transfer Lódz Poland 51.7591 19.4586
74 transfer Warsaw Poland 52.2333 21.0167
75 transfer Wroclaw Poland 51.1167 17.0333
76 transfer Ostrava Poland 49.8408 18.2909
77 transfer Katowice Poland 50.2667 19.0167
78 transfer Kraków Poland 50.0689 19.9425
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ID Type City Country Latitude Longitude
79 transfer Brno Czechia 49.1921 16.6132
80 transfer Ostrava Czechia 49.8408 18.2909
81 transfer Innsbruck Austria 47.2627 11.3947
82 transfer Wels/Linz Austria 48.1566 14.0244
83 transfer Salzburg Austria 47.8005 13.0444
84 transfer Graz Austria 47.0696 15.4382
85 transfer Klagenfurt Austria 46.6237 14.3076
86 transfer Novara Italy 45.4480 8.6152
87 transfer Turin Italy 45.0667 7.7000
88 transfer Milan Italy 45.4636 9.1881
89 transfer Genova Italy 44.4111 8.9328
90 transfer Verona Italy 45.4333 10.9833
91 transfer Udine Italy 46.0667 13.2333
92 transfer Venice Italy 45.4346 12.3389
93 transfer Bologna Italy 44.5075 11.3514
94 transfer Ravenna Italy 44.4157 12.1966
95 transfer Ancona Italy 43.6171 13.5160
96 transfer La Spezia Italy 44.1000 9.8167
97 transfer Livorno Italy 43.5500 10.3167
98 transfer Rome Italy 41.8906 12.4943
99 transfer Naples Italy 40.8400 14.2525

100 transfer Bari Italy 41.1259 16.8721
101 transfer Taranto Italy 40.4692 17.2401
102 transfer Gioia Tauro Italy 38.4333 15.9000
103 transfer Augusta Italy 37.2492 15.2326
104 transfer Palermo Italy 38.1167 13.3667
105 transfer Vienna Austria 48.2041 16.3781

Table A.1.: Set of all nodes.
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Arc
ID

From
ID

To
ID

Transport
method

ID

Distance
(km)

Duration
(h)

Emission
(kg CO2)

Transfers

0 0 1 3 73 2 55 0
1 0 2 3 43 1 32 0
2 1 2 3 59 1 44 0
3 1 4 3 98 2 74 0
4 2 30 3 220 4 165 0
5 3 5 3 71 2 53 0
6 4 5 3 60 1 45 0
7 4 6 3 48 1 36 0
8 4 7 3 121 3 91 0
9 5 6 3 62 2 47 0

10 6 7 3 98 2 74 0
11 7 36 3 123 3 92 0
12 8 6 3 213 4 160 0
13 9 10 3 110 2 83 0
14 10 5 3 75 2 56 0
15 10 6 3 109 2 82 0
16 10 12 3 220 4 165 0
17 11 12 3 197 4 148 0
18 12 13 3 332 6 249 0
19 12 15 3 258 5 194 0
20 13 8 3 65 2 49 0
21 13 39 3 197 4 148 0
22 15 14 3 272 5 204 0
23 15 16 3 438 8 329 0
24 15 17 3 334 6 251 0
25 16 13 3 271 5 203 0
26 17 18 3 245 5 184 0
27 18 20 3 243 5 182 0
28 18 21 3 205 4 154 0
29 19 16 3 193 4 145 0
30 20 19 3 304 6 228 0
31 20 21 3 157 3 118 0
32 20 22 3 169 3 127 0
33 22 19 3 315 6 236 0
34 22 23 3 200 4 150 0
35 24 13 3 163 3 122 0
36 24 39 3 135 3 101 0
37 25 26 3 266 5 200 0
38 25 28 3 99 2 74 0
39 26 27 3 62 2 47 0
40 27 31 3 126 3 95 0
41 28 27 3 123 3 92 0
42 29 33 3 222 4 167 0
43 30 36 3 215 4 161 0
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Arc
ID

From
ID

To
ID

Transport
method

ID

Distance
(km)

Duration
(h)

Emission
(kg CO2)

Transfers

44 31 30 3 142 3 107 0
45 32 31 3 147 3 110 0
46 33 28 3 283 5 212 0
47 33 32 3 153 3 115 0
48 33 34 3 104 2 78 0
49 33 38 3 193 4 145 0
50 35 1 3 223 4 167 0
51 35 2 3 196 4 147 0
52 35 36 3 40 1 30 0
53 36 37 3 190 4 143 0
54 37 39 3 80 2 60 0
55 37 40 3 122 3 92 0
56 39 42 3 134 3 101 0
57 40 31 3 366 7 275 0
58 41 33 3 435 8 326 0
59 41 40 3 108 2 81 0
60 41 43 3 107 2 80 0
61 42 45 3 220 4 165 0
62 43 44 3 123 3 92 0
63 45 41 3 172 3 129 0
64 45 43 3 124 3 93 0
65 19 1 2 855 66 150 0
66 47 39 3 260 5 195 0
67 47 42 3 266 5 200 0
68 47 44 3 581 10 436 0
69 46 1 2 911 22 165 0
70 33 1 2 695 43 155 2
71 37 1 2 455 24 85 0
72 37 1 8 455 56 135 0
73 42 1 2 631 36 115 0
74 22 1 2 1165 120 205 0
75 11 1 1 621 43 70 0
76 12 1 2 443 120 80 0
77 47 1 2 679 18 130 0
78 16 47 3 258 5 194 0
79 24 47 3 140 3 105 0
80 2 48 3 51 1 38 0
81 4 48 3 128 3 96 0
82 7 48 3 177 3 133 0
83 35 48 3 151 3 113 0
84 30 48 3 221 4 166 0
85 17 52 3 335 6 251 0
86 51 52 3 65 2 49 0
87 52 53 3 238 4 179 0
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Arc
ID

From
ID

To
ID

Transport
method

ID

Distance
(km)

Duration
(h)

Emission
(kg CO2)

Transfers

88 52 54 3 261 5 196 0
89 21 56 3 194 4 146 0
90 55 56 3 96 2 72 0
91 54 55 3 233 4 175 0
92 55 57 3 256 5 192 0
93 54 58 3 316 6 237 0
94 53 58 3 191 4 143 0
95 53 50 3 316 6 237 0
96 53 49 3 440 8 330 0
97 58 62 3 394 7 296 0
98 62 61 3 115 2 86 0
99 62 63 3 143 3 107 0

100 63 64 3 95 2 71 0
101 61 65 3 184 4 138 0
102 60 61 3 383 7 287 0
103 60 59 3 51 1 38 0
104 58 69 3 664 12 498 0
105 68 69 3 160 3 120 0
106 68 67 3 253 5 190 0
107 66 67 3 75 2 56 0
108 33 70 3 143 3 107 0
109 70 72 3 276 5 207 0
110 34 72 3 181 4 136 0
111 72 75 3 166 3 125 0
112 71 74 3 443 8 332 0
113 72 74 3 327 6 245 0
114 72 73 3 220 4 165 0
115 73 74 3 138 3 104 0
116 75 80 3 237 4 178 0
117 75 77 3 196 4 147 0
118 77 80 3 89 2 67 0
119 77 78 3 80 2 60 0
120 78 74 3 291 5 218 0
121 38 46 3 150 3 113 0
122 46 79 3 204 4 153 0
123 46 80 3 371 7 278 0
124 79 80 3 172 3 129 0
125 43 46 3 269 5 202 0
126 44 46 3 224 4 168 0
127 44 82 3 95 2 71 0
128 82 83 3 113 2 85 0
129 45 81 3 144 3 108 0
130 84 85 3 137 3 103 0
131 85 91 3 161 3 121 0
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Arc
ID

From
ID

To
ID

Transport
method

ID

Distance
(km)

Duration
(h)

Emission
(kg CO2)

Transfers

132 105 84 3 194 4 146 0
133 105 82 3 198 4 149 0
134 105 79 3 137 3 103 0
135 87 19 3 306 6 230 0
136 87 86 3 97 2 73 0
137 86 88 3 52 1 39 0
138 47 86 3 366 7 275 0
139 23 89 3 194 4 146 0
140 88 89 3 144 3 108 0
141 89 96 3 105 2 79 0
142 96 97 3 99 2 74 0
143 93 97 3 200 4 150 0
144 90 92 3 121 3 91 0
145 90 93 3 146 3 110 0
146 92 93 3 154 3 116 0
147 90 88 3 157 3 118 0
148 93 94 3 78 2 59 0
149 94 95 3 166 3 125 0
150 98 93 3 380 7 285 0
151 99 98 3 228 4 171 0
152 99 100 3 263 5 197 0
153 100 101 3 96 2 72 0
154 99 102 3 443 8 332 0
155 103 102 3 194 4 146 0
156 57 59 3 220 4 165 0
157 57 58 3 355 6 266 0
158 66 53 3 401 7 301 0
159 61 63 3 162 3 122 0
160 54 57 3 312 6 234 0
161 81 90 3 270 5 203 0
162 91 92 3 130 3 98 0
163 83 45 3 145 3 109 0
164 73 77 3 217 4 163 0
165 103 104 3 240 4 180 0
166 51 1 1 1747 58 170 0
167 57 1 1 3782 144 385 0
168 68 1 1 2403 95 240 0
169 56 1 2 1397 87 300 1
170 90 1 2 1216 19 210 0
171 86 1 2 1042 24 190 0
172 99 1 1 5142 192 525 0
173 102 1 1 5101 264 515 0
174 100 1 2 1896 67 335 0
175 72 1 2 956 65 160 0
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A. List of all nodes and arcs

Arc
ID

From
ID

To
ID

Transport
method

ID

Distance
(km)

Duration
(h)

Emission
(kg CO2)

Transfers

176 71 1 1 1964 120 260 1
177 71 1 2 1277 71 250 1
178 77 1 2 1203 31 225 0
179 80 1 2 1250 64 200 0
180 105 1 2 1162 64 205 0
181 82 1 2 999 44 175 0

Table A.2.: Set of all arcs.
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B. K-optimal path specification

In the problem formulation, we create a fixed set of paths for every supplier. Based on
the transportation network, the fixed set of paths is determined for each supplier. In
the experiments, we choose a k = 3, which means that for every objective: time, cost,
emission, top 3 paths are generated, and the union is taken of this set. This means that
for k = 3, 32 = 9 paths are generated at maximum.

In the experiments, we have 177 suppliers, which results in 177 sets of paths. Figure B.1
shows the count of the number of paths per supplier. E.g., about 100 suppliers have a set
of 4 fixed paths to choose from. This means that of the maximum 9 generated paths, the
union equals 4 paths, which are the most important paths.

Figure B.1.: Count of the set of paths size.

If we investigate a single supplier with different experiments in Figure B.2, we see that
a supplier in most experiments often prefers a single path, except during the full cost
focus. For this reason, we conclude that k = 3 is sufficient for all suppliers to create a
sufficiently diverse set of paths.
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B. K-optimal path specification

Figure B.2.: Count of different paths for a specific supplier during several experiments.
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C. Warm-up period and replications
analysis

Warm-up period

The inventory management system starts as an empty system with no inventory. There-
fore, the system requires at least a warm-up period of 12 weeks, which is the sum of
the maximum production lead time, 9 weeks, and the planning horizon, 3 weeks. This
means that the demand starts in week 13. This way, the system has sufficient time to
determine the first set of orders to fill the system.

Figure C.1 shows the number of orders placed each week. In the first week, all orders
are placed such that the safety stock is satisfied for each supplier. the demand start is
week 13, after which the number of orders starts to stabilize. Also, Figure C.2 shows that
the costs stabilize after 12 weeks. We include an extra margin of 8 weeks to be sure the
system is stable, which results in a total warm-up period of 20 weeks.

Figure C.1.: Number of orders placed in a specific week, where the demand starts in
week 13.

Replications

To gain an estimate of the number of replications, the sequential procedure of Law (2015)
is used. We apply a maximum error of γ = 0.1, which leads to a corrected target value
γ′ = γ

1+γ = 0.0909. When the relative error becomes lower than the corrected target
value γ′, we have sufficient replications.

We use two KPIs to evaluate the number of replications, which are the total cost and total
emission per experiment. We perform six 100% cost focus experiments and assume the
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C. Warm-up period and replications analysis

Figure C.2.: Total cost, also split per cost category, per week during a simulation run.

relative error of the results is approximately the same across other experiments. Table
C.1 shows the results for the number of replications.

Table C.1.: KPI evaluation for the number of replications.
Exp KPI Running

avg
Running var Tvalue CIHW1 delta

Cost KPI
1 13,258,963 - - - - -
2 12,344,799 12,801,881 417,847,991,723 6.31 2,885,902 0.2254
3 12,087,558 12,563,773 379,010,061,986 2.92 1,037,876 0.0826
4 13,886,487 12,894,452 690,066,337,062 2.35 977,472 0.0758
5 12,059,787 12,727,519 656,882,920,297 2.13 772,707 0.0607
6 12,275,412 12,652,168 559,573,159,903 2.02 615,373 0.0486
Emission KPI
1 5,312,563 - - - - -
2 5,148,344 5,230,454 13,483,939,981 6.31 518,419 0.0991
3 4,738,302 5,066,403 87,479,669,641 2.92 498,625 0.0984
4 5,218,754 5,104,491 64,122,486,561 2.35 297,964 0.0584
5 4,550,937 4,993,780 109,376,215,749 2.13 315,306 0.0631
6 4,557,146 4,921,008 119,275,847,591 2.02 284,110 0.0577

Table C.1 shows that for the cost KPI, at least 3 replications are required, and for the
emission KPI, 4 replications are required. For that reason, all experiments will be run
with 4 replications.

1Confidence Interval Half Width.
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