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Abstract 
 

The illegal dumping of waste materials presents a significant challenge for environmental 

conservation efforts due to the potential risks it poses to human health and natural habitats. The 

timely localization and disposal of illegal dumping sites can help prevent further contamination of its 

surroundings. Currently, the predominantly used method for detecting illegal dumping sites involves 

manual interpretation of satellite imagery, which is time-consuming, error-prone, and expensive for 

certain communities. To address this issue, there is a need for more efficient and accurate automated 

detection methods using satellite imagery. This study aimed to investigate the viability of Adversarial 

Autoencoder (AAE) models for detecting illegal dumping sites from satellite imagery. Initially, 

experiments were conducted using Generative Adversarial Networks (GANs), including vanilla GAN, 

Wasserstein GAN (WGAN) and Wasserstein GAN with gradient penalty (WGAN-GP). However, the 

study later pivoted towards AAE models, which were found to produce more informative 

embeddings that improved anomaly detection. The AAE model was trained to produce embeddings 

that represent the unique features of each satellite image. These embeddings were then visualized 

using certain techniques, such as dimensionality reduction methods and clustering techniques, to 

better understand the patterns and structure within the data. The results of this study demonstrate the 

promising potential of using AAE models for detecting illegal dumping sites from satellite imagery. 

By providing a more efficient and cost-effective approach to monitoring and identifying potential 

illegal dumping sites, this technology can help promote sustainable environmental management and 

public health. 
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1 Introduction 

 
Many municipalities have designated organizations or landfills for their inhabitants to safely dispose 

of their solid waste in a controlled environment. Proper waste management is critical for people that 

live in urban areas, especially with a 52% urbanization percentage in 2022 [1]. However, illegal waste 

dumping has become an increasingly common threat to humans, animals and the environment [2]. 

Illegal waste dumping can be described as the disposal of trash generated at one location and 

disposed of at another location without legal permission [3]. This could be for instance used 

household garbage, used tires, old mattresses or garden waste in places such as the roadside, forests 

and other non-designated dumping sites. However, at a larger scale, construction and industrial waste 

are especially harmful to the surrounding area, as they can contain toxic substances. This waste then 

gets illegally buried, disposed of at a landfill or burned.  

 This has a severe impact on soil quality, surface water, air quality, wildlife and human 

wellbeing. Due to a lack of access or opportunity to better alternatives, parts of the population are 

forced to live in close proximity to these illegal sites, causing them to develop severe health 

complications, both in the long and short term. Short-term health issues may include respiratory 

diseases, general anxiety, headaches, nausea and eye irritation [2], [4] while long-term exposure to 

illegally dumped waste may lead to specific types of cancer [5], cardiovascular diseases, malignant 

neoplasms and birth defects.  

 In 2015, the UN adopted the Sustainable Development Goals (SDG), one of which being SDG 

12: Responsible Consumption and Production [6]. This SDG addresses the growing problem of 

improper waste management and unlawful toxic and chemical waste disposal among others. It calls 

for environmentally sound waste management to reduce waste released into soil, air or water to 

minimize negative health impacts on humans and the environment. Therefore, in consonance with the 

SDGs, illegal dumping sites must be localized and disposed of responsibly, and the areas affected 

must be restored and redeveloped for them to be safe for flora and fauna.  

 One challenge in the aforementioned statement, however, is often the localization of these 

illegal dumping sites. The GWMO (United Nations Environment Programme and International Solid 

Waste Association) [7] also voiced the need for data on dumping, stating: “availability and reliability 

of waste and resource data are dire, and urgently needs attention”. Due to the dumping sites being 

illegally created, it can take significant amounts of time to discover their precise locations. Therefore, 

to alleviate the grave impact illegal dumping has on its environment, the timely detection of illegal 

dumping sites is crucial. There have been recent advancements in the field of automatic illegal waste 

detection, however, the predominantly used method by municipalities and local governments is still 

manual detection from photos. This process requires expert knowledge and is slow, inaccurate and 

expensive.  

 Therefore, an effective solution is needed to detect illegal dumping sites in order for 

municipalities and local governments to combat this rising problem. There exists a wide range of 

methods and solutions, however, the use of machine learning, in particular deep learning, has proven 

to be effective in extracting waste locations from satellite imagery or aerial imagery [8]. Deep learning 

models have been successfully deployed in the detection of illegal dumping from satellite imagery 

due to their strong image analysis capabilities. Satellite imaging is readily available and has an 

adequate resolution for the intended purpose, therefore this will be the input for the model of focus in 

this solution.  

 This paper explores the possibility of using deep learning techniques to effectively detect 

illegally dumped waste near real-time from satellite imagery. 
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1.1 Research objectives 

Thus, the main objective of this paper is to examine the possibility of using a deep learning model to 

automatically and reliably detect the locations of illegal dumping sites from satellite imagery. The 

main research question is formulated as follows: 

RQ: How can a deep learning model be developed for the purpose of detecting illegal dumping sites 

from satellite imagery? 

In order to answer this question, sub-questions must be formulated. First, we need to know what 

framework or structure is best for this detection task. Furthermore, knowledge is needed on what 

satellite imagery datasets can be used for training purposes and input of the model. This results in the 

following sub-questions: 

SQ1: What deep learning framework is optimal for dumping detection from satellite imagery? 

SQ2: What satellite data will be useful for training and as input for the deep learning model? 

 

1.2 Thesis structure 

In the following chapters, the full process of research, ideation, implementation, training and 

evaluation will be documented. In chapter 2, the conducted background research is recorded. This will 

provide an overview of state-of-the-art deep learning detection models, relevant satellite datasets and 

possibilities for training the model. In chapter 3, the methods and techniques for the development of 

such a model will be outlined. Chapter 4 will document the ideation and design process of the deep 

learning model. Chapter 5 will discuss the realisation, implementation and results of the project. In 

chapter 6, the results of chapter 5 will be evaluated. Chapter 7 will outline the conclusion of the project 

and chapter 8 will discuss the limitations of the project and opportunities for future research.  
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2 Background research 
 

The goal of this background research is to investigate the concept of deep learning, applications of 

deep learning models and existing deep learning models for object detection. Current deep learning-

based solutions for illegal dumping detection will also be explored. 

 

2.1 Background research structure 

This background research will be split up into multiple parts. Firstly, an overview of deep learning 

concepts and detection methods is given. Secondly, types of satellite datasets will be examined along 

with their features and specifications. Thirdly, training data as an input to the deep learning model 

will be discussed, as well as the option of synthetic data generation for training. Fourthly, existing 

studies on dumping detection will be reviewed. Lastly, a brief explanation of Adversarial 

Autoencoders is given. 

 

2.2 Deep learning and applications 

2.2.1 Deep learning 
There are multiple definitions that aim to encompass the concept of deep learning (DL). Marcus [9] 

defines DL as a statistical technique for classifying patterns, based on sample data, using neural 

networks with multiple layers. Cullel-Dalmau et al. [10] and Sarker [11] agree on the definition that 

DL is a subset of artificial intelligence (AI) that aims to mimic the way the human brain works, in 

particular the connections between neurons. Deng et al. [12] provide the most detailed definition, 

writing that deep learning “uses a cascade of multiple layers of nonlinear processing units for feature 

extraction and transformation. Each successive layer uses the output from the previous layer as input, 

learn multiple levels of representations that correspond to different levels of abstraction; the levels 

form a hierarchy of concepts”. This is achieved by making use of several layers in a neural network, as 

Pak et al. [13] added. In this paper, we will use the definition as formulated by Deng et al. [12]. In 

2006, Hinton et al. [14] first proposed the DL algorithm that could process large amounts of data with 

an impressive learning speed compared to existing approaches at the time. DL has become a 

subcategory of AI that has risen in popularity over the past five years due to its efficacy and 

versatility, as observed by Sarker [15]. DL is a commonly used and preferred method in machine 

learning in an attempt to mimic the way connections between neurons in the human brain work.  

 Typically, it makes use of digital ‘neurons’ or nodes, which are connected to other nodes to 

transmit signals. As defined by Cullel-Dalmau et al. [10], these signals consist of a number, where the 

output of the nodes is a nonlinear function of the sum of the inputs. The connections between nodes 

are characterized by weights that dictate how much a signal contributes to the output. Nodes are then 

structured into different layers, which are interconnected as well. In the most basic form, there are 

three types of layers in a DL neural network: the input layer, the hidden layers and the output layer, 

as illustrated in Figure 1. The input layer represents the inputs that the DL model receives, the hidden 

layers are the layers where the values for nodes are calculated and the output node represents the 

summation of the previous layers resulting in an output. The lower layers close to the data input learn 

simple features, while higher layers learn more complex features derived from lower-layer features as 

described by Srivastava et al. [16] and Shinde et al. [17]. In a DL network, more nodes and layers entail 

that the model is able to perform more complex tasks, albeit at a higher computational cost. 
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2.2.2 Applications of deep learning 
As mentioned before, DL neural networks are highly versatile systems which are applied in many 

research areas and aspects of society. There are countless examples of DL being used in a variety of 

fields, four of which will be covered in this section: computing science, healthcare, business 

intelligence and customer service. 

 Firstly, DL supports state-of-the-art applications in computing science research areas. These 

include natural language processing (NLP), computer vision (CV), image analysis, sentiment analysis, 

speech recognition and many more, as summarized by Sarker [11] and Pathak et al. [18]. In 2016, 

Google’s DL-based AlphaGo famously beat one of the strongest players, Lee Sedol, in the ancient 

Chinese strategy game of Go, proving DL’s fast learning capabilities and further popularizing DL to 

the public. Thus, DL shows promising results in fields of study in computing science, but many other 

major research fields are currently exploring the value of DL as well. 

 Secondly, the use of DL in healthcare has also been explored. DL networks have been 

deployed in the detection of breast cancer from images with a 0.966 accuracy score as researched by 

Wang et al. [19]. Prediction of risks in patients based on current clinical status is also a rising topic in 

research. Lui et al. [20] have also obtained state-of-the-art results in early Alzheimer's disease 

diagnoses with a DL model. Furthermore, Tran et al. [21] predicted suicide risks in mental health 

patients and Miotto et al. [22] built a model for the prediction of future diseases from the patient's 

current clinical records. High-level classifications of skin cancer from images have been achieved by 

Cullel-Dalmau et al. [10]. Esteva et al. [23] further proved this technique in skin cancer classification 

reaching dermatologist-level results. This is merely a peripheral overview of recent DL developments 

in healthcare, but this method has promising prospects. 

 Thirdly, DL has also solidified its place in business intelligence, with many of the world’s 

largest companies like Amazon, Netflix, Microsoft, Spotify and Facebook making use of this powerful 

machine learning technique. DL can provide many useful services to companies like the prediction of 

customer purchase behaviour, as demonstrated by Chaudhuri et al. [24]. Furthermore, streaming 

services, e-commerce platforms and social media platforms oftentimes utilize DL to design complex 

recommendation systems that provide users with new relevant content as researched by Da`u et al. 

[25] and Singhal et al. [26]. These recommendations are based on personal collected historical data to 

keep users engaged for longer in the platform.  

 Lastly, DL models have been deployed in intelligent chatbots for customer service. Facebook, 

WhatsApp and Telegram use DL methods to make context-aware messaging chatbots on their 

platforms. [27]–[29] demonstrate the use of DLs with NLP for intelligent chatbots in e-commerce 

among other applications. This underlines the versatility of DL in many, often subtle, aspects of daily 

life. 

Figure 1 The basic structure of a deep learning neural network 
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2.3 CNNs for image analysis 

2.3.1 CNN architecture 
For object detection, Convolutional Neural Networks (CNN) are the predominantly used method in 

DL. The reason for this is mostly its impressive feature extraction. In computer vision, feature 

extraction is a process by which an initial set of data is reduced by identifying key features of the data 

[30]. In traditional models, feature extractors were designed manually for specific tasks. The main 

benefit of the use of CNNs to its predecessors is that they can automatically identify relevant features 

in data, meaning without manual human labelling on what the model should look for. CNNs are also 

strongly optimized for processing 2D input-data structures like images as mentioned by Alzubaidi et 

al. [31]. Accordingly, they are widely used in pattern- and image-recognition problems. 

 In a CNN neural network, the first hidden layer recognizes a set of primitive patterns in the 

input, the second layer detects patterns within the patterns of the first layer, the third layer detects 

patterns of those patterns and so on until it reaches the output layer. Typically, CNNs are composed 

of distinct layers, meaning that more layers give rise to more complexity. This leads to increased levels 

of abstraction, meaning that the model eventually is able to recognize entire objects, such as cats, 

humans, tumours, dumping sites etc.  

 CNNs have multilayer hierarchical structures, typically featuring alternating convolutional 

and pooling layers followed by a fully connected layer. The convolutional layer operates on a small 

area of the original input image. Then there is a feature detector, also known as a kernel or filter which 

will move across fields of the image for the detection of features. This process is called a convolution 

[32]. The output of the convolutional layer goes through an activation function which will result in a 

convolved feature map [33]. More abstract and sophisticated features can be extracted as these feature 

maps will be the input of subsequent convolutional layers. 

 Generally, after the convolutional layer comes the pooling layer. They include the maximum, 

average and random pooling. The maximum and average pooling layers calculate the respective 

maximum and average values of neighbouring neurons, as explained by Song et al. [33]. The random 

pooling layer selects values for neurons based on a particular probability. The goal of the pooling 

layer in a CNN is to capture features in the input received from the previous layer. It is, however, not 

able to locate the precise location of these features. This means that if there is a shift in the input data, 

it will still be able to effectively detect the features as stated by Song et al. [33]. This layer also reduces 

the dimensionality of the feature maps, leading to less computational cost. 

 Lastly, there is the fully connected layer. This fully connected layer features several hidden 

layers which are composed of neurons, where each neuron is also interconnected with the neurons of 

the subsequent layer as laid out by Song et al. [33]. The fully connected layer aims to map the features 

it has received from the convolutional and pooling layers and map them into linear space and 

coordinates with the output layer. Then, the output layer typically uses a classification function to 

output the results of the classification. This classification function is commonly a Softmax function or 

support vector machine (SVM) [33]. 

 Other components that are crucial to the CNN are the activation and loss functions. The 

activation function is a nonlinear function that essentially decides whether a neuron in the network 

should be activated or not. This will dictate whether a neuron’s input is important to the network or 

not. Commonly used activation functions are the Sigmoid, Rectified Linear Unit (ReLU) or Maxout 

functions. The loss function represents the difference between the expected outcome of the model and 

the predicted or detected outcome by the CNN. Typical loss functions include the cross-entropy and 

mean squared error statistics. 
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2.3.2 CNN-based object detection models 
There are different architectures for building a CNN model for object detection. The three most 

accomplished of these CNN detection models are Faster R-CNN, SSD and YOLO. Faster R-CNN is the 

culmination of two of its predecessors: Fast R-CNN and R-CNN. R-CNN (region-based CNN) is a first 

trial towards building an object detection model that extracts features using a pre-trained CNN. Then, 

Fast R-CNN was developed, which was faster than R-CNN, but neglected how region-proposals 

(division of the image in regions) are generated. Ren et al. [34] later solved this with Faster R-CNN, 

which builds a region-proposal network that can generate region proposals. These are then inputted 

into the Fast R-CNN detection model to inspect for objects. When an object is detected, it outputs the 

image with a bounding box (rectangle containing the object) pasted on top of it.  

 SSD (single-shot detection) is a CNN-based object detection method is another method that 

yields impressive results. It does the task of localization and classification of objects in one pass of the 

network. The main benefit of SSD in object detection is that it produces bounding boxes at different 

scales and aspect ratios, which is a shortcoming of similar object detection algorithms. This makes SSD 

more accurate, at the compromise of slower speeds.  

 YOLO (you only look once) is based on the concept that objects within an image can be 

detected and classified at one glance. In object detection, traditional detection systems apply a model 

to an image at multiple locations and scales in the image to compare. Then, high-scoring regions of the 

image, meaning a high possibility of the desired object in the image, are considered detections. What 

makes YOLO different from similar models is that YOLO applies the neural network to the full image 

rather than regions of it. 

 When comparing the three approaches for object detection from satellite imagery, we can look 

at several documented approaches to it. Van Etten [35] used the aforementioned techniques (or slight 

variants) to detect ships and airplanes from satellite images and found that YOLO was the overall 

best-performing technique. Compared to Faster R-CNN and SSD, Van Etten [35] wrote that YOLO 

was by a great amount the fastest and most accurate of the three, with Faster R-CNN showing the 

worst results. Li et al. [36] researched the detection of greenhouses from satellite images, comparing 

the three techniques. They conclude that although YOLO, Faster R-CNN and SSD all show promising 

results, Faster R-CNN and SSD fail to satisfy the accuracy and speed requirements associated with 

high-resolution satellite imagery. Furthermore, Cheng et al. [37] successfully deployed a YOLO model 

for the detection of landslides in China from satellite imagery, with an accuracy of 94.08%. As 

landslides share similar features to dumping sites, this further supports the use of a YOLO model in 

waste detection. Moreover, Liu et al. [38] used a YOLO model for plastic waste detection from regular 

surveillance cameras but stated that their results lead them to believe there is great potential for 

satellite images as well. Therefore, for the use of large-scale images such as satellite imagery, YOLO is 

the best currently available object detection method. 
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2.4 Satellite datasets 

In this section, factors that are important in selecting a satellite dataset will be discussed. The type of 

imaging sensor used, along with other important characteristics, will be addressed. 

2.4.1 Satellite imagery types 
On the topic of satellite datasets, there are several types to consider. For our purposes, Zhu et al. [39] 

distinguish three main types of satellite imagery: satellite images made with optical imaging sensors, 

radar imaging sensors and non-imaging sensors.   

 Firstly, optical imaging sensors. This remote-sensing equipment operates in the visible and 

infrared (IR) ranges. These sensors typically produce panchromatic, multispectral, and hyperspectral 

imagery. Panchromatic images, as explained by Zhu et al. [39], are captured by a sensor that is a 

monospectral channel detector that is sensitive to radiation within a broad wavelength range. The 

resulting image is a grayscale image. Multispectral means that the sensor is sensitive to a few spectral 

bands. Here, the resulting image is a multilayer image containing colour information, as well as 

brightness. Hyperspectral images are captured with sensors that are sensitive to 10 up to 100 spectral 

bands. The result is a set of images, where each image contains one spectral band. According to Zhu et 

al [39], the set of images can be easily used for purposes such as object recognition and material 

identification. Additionally, it is noteworthy that recording more spectral bands corresponds to a 

decrease in resolution. 

 Secondly, radar imaging sensors typically operate in the electromagnetic spectrum. As the 

name suggests, it utilizes radar technology to gather data on targets. An advantage of this imaging 

technique is that it is unaffected by weather such as clouds or fog, as explained by Zhu et al. [39]. 

Furthermore, it is able to measure through water, sand and walls. 

 Thirdly, non-imaging sensors are sensors that record the visible, IR and microwave spectral 

bands. According to Zhu et al. [39], typical non-imaging sensors include radiometers, altimeters, 

spectrometers, spectroradiometers, and LIDAR. However, the applications of these non-imaging 

sensors mainly focus on atmospheric features such as temperature and wind speed, therefore it may 

not be as applicable to this project. 
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2.4.2 Characteristics 
In the context of detecting illegal waste dumping sites, three key factors to consider in satellite 

datasets include spatial resolution, temporal resolution, and environmental factors.  

 Spatial resolution is an essential feature in the detection of illegal waste from satellite imagery. 

Luyendyk et al. [40] define spatial resolution as an area on the ground represented by each pixel of the 

satellite images. This is usually represented by a number of meters, where a lower number represents 

a finer resolution. High spatial resolution satellite imagery can capture smaller features and provide 

more detailed information about the area of interest. In the context of detecting illegal dumping sites, 

high spatial resolution imagery enables the identification of smaller waste dumping sites. 

Additionally, high spatial resolution imagery can reveal specific details about the waste materials 

being dumped, such as the type, quantity, and location of the waste. This information can be used to 

develop targeted efforts to address the issue of illegal dumping in the area. 

 Temporal resolution is also critical for identifying and monitoring illegal dumping sites from 

satellite imagery. Temporal resolution refers to the frequency at which images are captured. Frequent 

image captures allow for the identification of patterns and changes in waste dumping activity over 

time. By analysing satellite imagery over time, we can identify areas where illegal dumping is most 

prevalent and track changes in dumping activity. Temporal resolution is also essential in monitoring 

the effectiveness of interventions aimed towards the culpable parties contributing to illegal dumping. 

 Environmental factors are another critical feature for identifying and monitoring illegal 

dumping sites from satellite imagery. Changes in land use, vegetation health, and surface water 

quality can all be indicators of waste dumping. For example, the presence of barren earth or disturbed 

vegetation may indicate the location of an illegal dumping site. Similarly, changes in vegetation health 

can indicate the presence of waste materials that may be affecting plant growth. Water quality changes 

can also indicate the presence of waste materials that are affecting water ecosystems. By monitoring 

these environmental factors over time, these indicators can hint towards areas where illegal dumping 

is likely occurring and track changes in dumping activity. 
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2.5 Training data 

While there are numerous satellite imagery datasets to choose from, transforming these raw satellite 

images into datasets fit for training a CNN model presents challenges that are not often encountered 

in computer vision problems using ‘regular images’. This requires more pre-processing and other 

techniques in order to curate a representative dataset for the model. In this section, challenges 

encountered by researchers in the field will be discussed, as well as data augmentation, using weakly 

labelled sample data in the dataset and synthetic data. 

2.5.1 Challenges and solutions in satellite data for CNNs 
Large amounts of training data are essential to developing an accurate prediction or detection model. 

However, there is a shortage of adequate remote sensing training data as observed by Song et al. [33]. 

Remote sensing/satellite datasets are more time-consuming to produce than regular computer science 

image datasets. Furthermore, Padubidri et al. [41] also noted that a large portion of the remote sensing 

datasets that are available are biased towards non-dumping-related applications. This is a major 

limitation faced by researchers in this domain. 

 Satellite images are fundamentally different from regular images. They can contain more 

spectral information such as optical imaging, thermal and LIDAR imaging and typically have a far 

greater resolution. Most of the CNN models in existence, however, were developed for the use of 

ordinary images as opposed to satellite imagery. This leads to challenges, as pre-trained models are 

accustomed to objects in front view which take up a large portion of the image, as observed by Song et 

al. [33]. Compare this to satellite imagery, where the model has to detect a tiny object from a large-

scale image at a top-down view.  

 There have been improvements made to CNN models to account for the differing input 

images. Here, the type of dataset used is important, as covered in section 2.4. According to Song et al. 

[33], data augmentation can also greatly help in the training process. Data augmentation is the process 

of supplementing the training set with slightly different copies of images already in the training set. 

Long et al. [42] experimented with rotation, translation and scaling of the training satellite images 

containing oil barrels. After the data augmentation, the authors ended up with 60 times the original 

data as a training source and a detection score of 96.7%. Furthermore, Youssef et al. [43] also used 

augmented data in their remote sensing training set of aircraft classification, increasing their test 

accuracy from 72.4 to 97.2%. This means that using augmented data can effectively be used to improve 

accuracy. 

 Another improvement that can be made to CNNs to use weakly labelled sample data. One of 

the major challenges in creating a satellite imagery dataset, as stated by [44], is the manual annotation 

of the images in the dataset. This process is very labour-intensive, time-consuming and error-prone. 

According to Song et al. [33], weakly labelled training can moderately be used to achieve greater 

accuracy and IoU scores. As accurate sample labelling is a time and labour-intensive process, there are 

also many weakly labelled datasets. This means that the labelling is not complete or not accurate or 

that the data is of low quality. Song et al. [33] state that the inclusion of these weakly labelled images 

improves accuracy in the testing phase as the training set is more representative and extensive. 

Maggiori et al. [45] used a dataset containing errors and mislabelling and finetuned the prediction 

model based on the correctly labelled data. This led to the model having greater accuracy in object 

extraction. As remote sensing/satellite data can be sparse for deep learning purposes, this technique 

can be used to remedy that problem. It should be noted that only moderate use of weakly labelled 

data leads to improved results.  
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2.5.2 Synthetic data 
Due to the lack of sufficient training data, another solution that can alleviate this problem is the use of 

synthetic data for training data. Padubidri et al. [41] explore the use of generating synthetic data to 

compensate for the shortcoming of dumping-related satellite imagery for training purposes. The 

authors use Blender, an open-source 3D modelling software, to produce the synthetic data. Publicly 

available 3D models of dumped objects and garbage were placed randomly on non-dumping satellite 

images. This process was automated via the use of Blender’s Python scripting feature along with 

various add-ons. Generated synthetic data was iteratively tested on the CNN model that the authors 

used, and the synthetic data generation system was finetuned. Ultimately, 2000 synthetic dumping 

satellite images were created. The authors found that the CNN model performed better with the 

synthetic data as opposed to the performance using only authentic dumping satellite imagery. 

Padubidri et al. [41] obtained precision and recall scores of 0.98 and 0.90 respectively with a basic 

CNN model.  

 [44] also examines the possibility of combining synthetic data with real data to improve 

detection results in satellite imagery. The authors state that synthetic data can offer limitless 

customization. Any specification can be accommodated as the synthetic data is purpose-built. The 

authors [44] built this model in order to achieve more accurate vehicle detection from satellite 

imagery. They used 3D models of city blocks in the game development software Unity, along with 

randomized buildings and roads, crosswalks and bus lanes and even small imperfections such as road 

oil spills. Furthermore, they configured the option to change the time of day, cloud cover and intensity 

of the sun. The authors found that by using a combination of this synthetic data with the real dataset, 

superior results were achieved with respect to only using synthetic data or only using real data. This 

shows that there is great potential in the method of synthetic data for training and testing purposes. 
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2.6 Related work 

Thus far, a few studies have attempted to automate the illegal waste dumping detection process 

utilizing deep learning or another method in machine learning. In [46], the authors use multi-spectral 

satellite images from the WorldView and GeoEye-1 satellites. Then, they use a CNN with a U-Net 

structure with multiple variations to detect landfills on multiple pre-trained models. The paper also 

puts forward a high-resolution landfill dataset which may be useful during this project for training 

purposes. Devesa et al. [47] use multi-spectral satellite imagery from the Sentinel-1 earth observation 

mission, with a 10m spatial resolution. Then, the authors also use the CNN-based U-Net segmentation 

model to detect and classify Argentinian urban solid waste. The authors use the evaluation metric of 

Intersection over Union (IoU) to assess the results. This metric is a commonly used method to quantify 

the overlap of the ground truth area and the predicted masked area in a percentage. Devesa et al. [47] 

achieved an IoU of 0.673 using RGB, IR, and certain shortwave IR (SWIR) bands as input for their 

model.  

 Another approach used by Silvestri et al. [48] is the maximum likelihood estimation algorithm 

(MLE) for the detection of dumped waste, in particular buried waste. They utilized high-resolution 

multispectral satellite images from the IKONOS dataset to detect areas where the soil is bare or 

vegetation is sparse. According to the authors, the presence of stressed or scarce vegetation is a good 

indicator to infer buried waste locations. They also underline the importance of GIS in their project as 

an auxiliary data source. GIS (Geographic Information System) is a type of database containing 

geographic data combined with powerful software tools for managing, analysing, and visualization 

purposes. 

 Furthermore, the use of drones for illegal waste detection has also been explored. Youme et al. 

[49] explore the use of drones at varying altitudes ranging from 5-30m for waste detection in West 

Africa. The drones, equipped with an L1D-20c RGB colour camera, have a very high spatial resolution 

of up to a few centimetres and are convenient for fast configuration of shutter speed, ISO and GPS 

coordinates. After the data acquisition through the drones, an SSD algorithm is used for the actual 

waste detection, with varying IoU scores up to 0.64. Mager et al. [50] also conducted a feasibility study 

on the use of drones for this purpose. They used drones equipped with cameras featuring a 2cm 

spatial resolution flying at a 50m altitude to gather data about their region of interest. Thereafter, they 

used GIS software (ArcGIS) to manually map the types of waste observed in the drone imagery. 

 Research has also been done on non-aerial imagery for the use of waste detection. Dabholker 

et al. [51] use hundreds of images from security cameras which locally run a CNN model (AlexNet & 

GoogleNet) to localize and identify the type of (domestic) garbage found. The model can distinguish 

between certain classes such as electronics, matrasses or furniture, achieving varying results 

depending on the class, ranging between a 0.7 and 0.95 accuracy score. Furthermore, Anjum et al. [52] 

make use of scene images in public and residential areas. They then input these images into a deep 

CNN model which can produce a segmented image with masks for garbage and non-garbage. The 

authors obtained a score of 4.1 on a 5-point scale on their survey of 500 collected images. 

 A table containing several studies in this area along with their techniques and findings can be 

found in Appendix A. 
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2.7 Adversarial Autoencoders 

In this project, an approach that was later explored is the use of anomaly detection for the detection of 

illegal waste dumping from satellite imagery, explained further in section 4.2. Two common 

techniques used for anomaly detection are the generative adversarial network and adversarial 

autoencoder models. Adversarial autoencoders are a relatively new approach, which utilizes certain 

concepts of autoencoder models and generative adversarial network models. First, the latter two 

networks will be explained, followed by an explanation of adversarial autoencoders. 

 

2.7.1 Autoencoders 
An autoencoder (AE) is an unsupervised neural network introduced by Hinton et al. [59] and was 

traditionally used for feature learning and dimensionality reduction [60]. Its main goal is to 

reconstruct its original input as closely as possible. The autoencoder consists of an encoder and a 

decoder. The encoder is trained to map the input data to a code, or latent variable, and the decoder 

reconstructs the original data based on the code received from the encoder [59]. A diagram of this 

structure is depicted in Figure 2. An optimal autoencoder would perform as close to perfect 

reconstruction as possible, with "close to perfect" defined by the reconstruction quality function 𝒅, 

which it will try to optimize.  

 The autoencoder cannot directly copy the input, rather it must copy approximations of the 

input data. To enforce this, the code space 𝒁 typically has a lower dimensionality than input space 𝑿, 

compressing the data [59]. This way, the model can also be used for the dimensionality reduction of 

data, such as images. Dimensionality reduction can improve performance on tasks such as 

classification or anomaly detection and can make data more interpretable.     

 

Figure 2 Architecture of an Autoencoder 
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2.7.2 Generative Adversarial Networks 
A Generative Adversarial Network (GAN) is a system of two neural networks competing in an 

adversarial manner. The framework consists of two models that are trained concurrently, the 

generator and the discriminator.  

 The generator receives a dataset, after which its purpose is to generate new data as close to the 

input data, starting with random noise. Conversely, the discriminator is trained to differentiate 

between real and synthetic data samples. The networks are trained in an adversarial fashion, in which 

the generator tries to produce samples that are indistinguishable from real samples, and the 

discriminator tries to correctly classify the generated samples as fake.  

 Over a large training period, the generator will generate samples with such similarity to the 

real data that the discriminator cannot reliably distinguish the real images from the generated images. 

Thereafter, the discriminator can be discarded and a generator capable of generating images close to 

the inputted dataset remains. GANs can be used for data generation, such as generating faces [61], 

text-to-image translation [62], style transfer and upscaling low-resolution images to high-resolution 

images [63], but also anomaly detection [58], [60], [64], [65], which will be elaborated on in section 

5.2.1. A diagram of the architecture of a GAN model is given in Figure 3.  

 

 

Figure 3 Architecture of a GAN [66] 
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2.7.3 Adversarial Autoencoders 
The Adversarial Autoencoder (AAE) is an approach introduced by Makhzani et al. [67] that combines 

Autoencoders with Generative Adversarial Networks. An AAE is comprised of an encoder, decoder, 

generator and discriminator. In an AAE, the encoder component of the AE is trained to produce latent 

codes that are similar to the noise input of the GAN. The generator component is then trained to 

produce new samples from the latent codes. The discriminator component is trained to differentiate 

between the synthetic samples generated by the generator and real samples. This results in the 

generator producing synthetic samples that are similar to real samples, while the encoder preserves 

the structural properties of the input data in the latent codes. 

 Furthermore, the encoder is trained to map the input data to a probability distribution that is 

similar to the prior distribution. The encoder is trained to minimize the divergence between the 

encoded distribution and the prior distribution. This encourages the encoder to produce latent codes 

that are similar to the noise input and to preserve the most important features of the input data in the 

latent codes [67]. The AAE is trained by training the encoder, generator, and discriminator in parallel. 

This results in a model that can produce new samples that are similar to the input data and preserves 

the structure of the input data in the latent codes. 

 Figure 4 shows the architecture of an AAE. In this figure, 𝒙 is the input data, 𝒒(𝒛|𝒙) is the 

encoding distribution and 𝒙 is the latent representation as an output of the encoder. In the generator 

component, 𝒑(𝒛) is the prior distribution that we want to impose on the codes [60]. 𝒒(𝒛) is given by 

𝑞(𝑧) = ∫ 𝑞(𝑧|𝑥) 𝑝𝑑(𝑥) 𝑑𝑥
𝑥

 where 𝑝𝑑(𝑥) is the data distribution. 

 

 

 

 

 

 

Figure 4 Architecture of an Adversarial Autoencoder 
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2.7.4 Adversarial Autoencoders for anomaly detection 
The goal of anomaly detection is to identify observations in a dataset that significantly deviate from 

the remaining observations [68]. In most cases of anomalies, it is not feasible to construct a 

representative dataset of possible forms of anomalies, as they vary significantly in nature [64]. 

Therefore, a more appropriate approach is to construct a training dataset of the normal observations, 

in this case, satellite images that do not contain dumping. Then, a model processes new data, and 

when it deviates significantly enough from the learned model (an image containing dumping), it can 

be classified as an anomaly. 

 Autoencoder networks such as adversarial autoencoders have shown superior performance 

over other models when given the task of anomaly detection in high-dimensional data such as images. 

The idea behind AAEs for anomaly detection is that normal data points will have a higher likelihood 

under the encoded distribution produced by the encoder, compared to anomalous data points. During 

the training phase, the AAE learns to encode normal data points into latent codes that are similar to 

the prior distribution. This prior distribution is chosen to be the multivariate Gaussian distribution in 

this case.  

 During the detection phase, the AAE is used to encode new data points into latent codes. The 

likelihood of each data point under the encoded distribution produced by the encoder is then 

calculated. Data points with lower likelihoods are considered as an anomaly. The threshold for 

determining the anomaly can be selected based on the distribution of the likelihoods of the normal 

data points. This way, AAEs can be used to detect anomalous data points that are different to the 

normal data points in terms of the encoded distribution [60]. This is different from traditional methods 

such as reconstruction-based methods that rely on the reconstruction error to detect anomalies. AAEs 

can detect anomalies that are not only dissimilar to the normal data points in terms of reconstruction 

but also in terms of the encoded distribution.  

 Additionally, AAEs can also be used for semi-supervised anomaly detection, where a small 

amount of labelled anomalous data is used to fine-tune the model, making it more robust to detect 

anomalies. One such model is the GANomaly, which combines features of the AE and GAN very 

similarly to the AAE [69].  
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3 Methods and techniques 
 

This chapter will cover the methods and techniques used in the design process of the illegal dumping 

detection system. First, an overview will be given of the Creative Technology Design Process. Next, 

the CRISP-DM standard process will be discussed, a more data science-oriented approach to the 

design process. Both these techniques will serve as an underlying architecture for the project. 

 

3.1 Creative Technology Design Process 

To answer the research questions posed in section 1.1, a solid design approach is needed. This project 

will use the Creative Technology Design Process by Mader & Eggink [53]. This approach is an 

iterative design process, meaning that a prototype will be built, evaluated and improved upon in a 

cyclical fashion. The process consists of four phases: the ideation phase, specification phase, realisation 

phase and evaluation phase. 

 Firstly, in the ideation phase, a problem statement is formulated, and relevant information or 

required knowledge is acquired. Inspiration for the ideation phase may come from existing solutions 

or other related work identified in chapter 2. In this project, this involves looking at relevant or similar 

existing solutions, examining their methods and results and determining what would be good 

approaches to this problem. This can involve multiple concepts, as per the Creative Technology 

Design Process [53]. 

 The specification phase is where the multiple ideas from the ideation phase are built and 

evaluated. Project requirements are formulated based on the acquired knowledge from the ideation 

phase [53].  In the realisation phase, a functional model is built according to the requirements set in 

the specification phase. Lastly, in the evaluation phase, the model built in phase 3 is tested based on 

users, target audience, or in our case the test dataset. Conclusions are made about the design and 

potential improvements or adjustments are explored.  

 This process is a cyclical process, meaning it would be possible to return to previous phases 

during the design process. For instance, when the feasibility of the design turns out to be questionable, 

it would be possible to return to the ideation phase. An overview of this design process can be seen in 

Figure 5.  
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Figure 5 The Creative Technology Design Process [53] 
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3.2 CRISP-DM  

A commonly used standard process in data science is the CRISP-DM model, which stands for Cross-

Industry Standard Process for Data Mining. This methodology, introduced by Chapman et al. [54] 

aims to standardize the data mining process across industries. The CRISP-DM process consists of six 

sequential phases: business understanding, data understanding, data preparation, modelling, 

evaluation and deployment. The following section will provide additional information regarding the 

steps involved in the CRISP-DM process model, as described by [55].  

1. Business understanding focuses on understanding the objectives and requirements of the project. 

An overview of the available and required information will be given. This knowledge will lead to 

a data mining problem definition and a preliminary plan in order to achieve the established 

objectives. 

2. Data understanding starts with data collection, followed by activities to get familiar with the data. 

Data types should be identified, along with the number of rows and columns in the data. In the 

context of this project, it would mainly contain satellite imagery. Furthermore, data could be 

visualized and a statistical analysis of the quality of the data could be conducted. 

3. Data preparation is the third phase in the process which covers the activities necessary to create 

the final dataset. This includes a selection of a dataset, relying on certain inclusion/exclusion 

criteria. Then the data is cleaned, constructed and integrated.  

4. Modelling is when the actual model is built. This entails a choice of algorithm/model, the 

implementation of said algorithm, a system built for testing the model and lastly, the actual model 

is developed. 

5. Evaluation is the fifth phase. In this phase, the model built in phase 5 is evaluated critically 

against the business objectives and problem definition determined in phase 1. If there as aspects of 

the model that do not meet certain expected results, in which case the cycle may be repeated to 

make adjustments or corrections to either the algorithm or the dataset.  

6. Deployment is the phase a project enters if the results of the evaluation phase are satisfactory in 

light of the set objectives. In this last phase, a plan is made for the deployment of the model, next 

to plans for the monitoring and maintenance thereafter. Lastly, a final report should be made 

concluding the results of the implementation. 

 

A diagram of the CRISP-DM process model and the relations between the phases can be Figure 6. 

Using the CRISP-DM model as a guideline in the coming steps of this project will be advantageous in 

providing an overview in organizing the data science project, as well as a clear view of progress for 

supervisors and stakeholders. 
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Figure 6 Diagram of CRISP-DM, by Kenneth Jensen 

 

3.3 Approach  

In this project, the Creative Technology Design Process and CRISP-DM will be utilized to create a 

comprehensive approach to detect illegal dumping. 

 Firstly, the Creative Technology Design Process will be applied to generate novel and creative 

ideas that will aid in the development of the deep learning model. The ideation will take place, 

wherein ideas for the model will be generated. These ideas will be analysed based on feasibility and 

potential effectiveness before being implemented. Here, principles of CRISP-DM will also be applied, 

keeping the data in mind when making these decisions. Additionally, testing will be conducted at 

every stage of the process to ensure that the model is performing adequately. 

 Secondly, the CRISP-DM process will be utilized to guide the data mining process. The 

process will begin with the initial data collection phase, wherein a dataset will be constructed. The 

next phase will be data preparation, wherein the data will be pre-processed and transformed for use 

in the model. This will likely involve manual annotation of the data in order for it to be suitable for a 

model. The modelling phase will come next, wherein various deep learning models will be evaluated 

and compared for their effectiveness in detecting illegal dumping sites. As this process is cyclical, 

changes to the data and/or the model can be made during this phase. As deployment to real use-cases 

falls outside of the scope of this project, the deployment phase of CRISP-DM is left out.   

 Overall, utilizing principles of both the design-oriented Creative Technology Design Process 

and the data-oriented CRISP-DM process will ensure a thorough approach to detecting illegal 

dumping from satellite imagery using deep learning. 
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4 Ideation 

4.1 Dataset 

The dataset that will be used is a dataset provided to use by the project coordinator containing satellite 

images of known locations of illegal dumping on the island of Cyprus. The data consists of 1016 

citizen-reported dumping points across the country, demonstrated in Figure 7. Then, Google Earth 

Engine was used to create the dataset from the various locations, with 15 acquisition points for each 

location. Every 6 months, an image was captured of each location, going back 7,5 years in time. As 

Google Earth Engine allows for satellite imagery in time-series, some of the acquisition points may 

represent the environment prior to the initiation of waste deposition, at the time when waste material 

is disposed of or being disposed of, and potentially after clean-up efforts have been made. This entails 

that not every image in the ~15.000 image dataset necessarily contains dumping. Consequently, this 

means that this image dataset must be annotated, to allow for reliable training. The images will be 

sorted into two categories: dumping and non-dumping.  

 

Figure 7 Map of reported dumping sites in Cyprus 
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4.1.1 Cropping and annotation 
The images from the original dataset possess a very high resolution, with dimensions of 6663x8192 

pixels. This high resolution exceeds the computational capacity of many machine learning models. 

Additionally, the manual annotation process for these images may also be affected due to the larger 

file sizes, potentially leading to a longer annotation process and decreased accuracy in the annotated 

data. Therefore, the images require cropping to a lower dimension to simplify the annotation process 

and reduce computational cost in the neural networks. The images are cropped to a 512x512 pixel size 

via a Python script provided in Appendix B. This 512x512 dimension is consciously chosen as most 

machine learning models support image sizes up to 512x512. Due to the way the dataset was created 

in Google Earth Engine, we know that the centre of the image represents the exact dumping location. 

Therefore, the cropping was done on the centre of the original image, as displayed in Figure 8. This 

size of patch still covers a large area of land and is fit to visually confirm whether the image contains 

dumping or not.  

 After cropping, the images were sorted into the two categories of dumping vs. non-dumping. 

The sorting process was made conducive by the use of the Image-Sort application [56]. During the 

sorting process, some images were discarded as unusable due to the land being completely obstructed 

by a cloud or images with exposure errors. Additionally, some images showed artefacts of the Google 

Earth Engine UI. Examples of these unusable images can be seen in Figure 9. The resulting final 

dataset to be used contained 9417 dumping images and 4212 non-dumping images.  

 

Figure 8 Original and cropped image 

Figure 9 Unusable images 
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4.2 Possible approaches 

During the ideation phase of this project, different approaches to illegal dumping detection were 

discussed. As mentioned in the state-of-the-art in chapter 2, the predominantly used approach is a 

CNN with a large dumping dataset and a large non-dumping dataset. The preliminary approach after 

the background research was to train a CNN model with YOLO architecture for this task. However, 

the YOLO models require a training dataset with images where the bounding box is already given. 

The current dataset does not support this, and there are no available YOLO-supported datasets with 

dumping vs. non-dumping satellite images.  

 In this project, we therefore ultimately decided to take a different, novel approach to this 

detection task. As CNNs are the more straightforward strategy, we wanted to explore different 

approaches and models. A selection of the approaches considered will be covered in the following 

section. 

4.2.1 Time-series LSTM 
One approach to address this problem is by utilizing a Long Short-Term Memory (LSTM) network. 

LSTMs are a type of Recurrent Neural Network (RNN) that are specifically designed to handle 

sequential data and retain memory of past inputs. The LSTM network is able to capture the temporal 

dependencies present in the time-series data, as also demonstrated by [57]. In a time-series model, the 

LSTM network would be trained on the historical data, which would include a series of dumping and 

non-dumping images. The network would then make predictions based on the current state and the 

information it has retained from previous inputs. In this case, the prediction would be whether a given 

image in the time-series is a dumping image or not.  

 By using an LSTM network, we can determine the point in time when dumping occurs by 

tracking the predictions made by the network. As the LSTM network processes each image in the 

time-series data, it would generate a probability score indicating whether the image is a dumping 

image or not. The point in time when the network's prediction crosses a certain threshold would 

correspond to the point when dumping occurs. 

 Given the dataset that we used, this ultimately did not seem a fitting choice for this problem. 

This is due to the fact that the 15 acquisition points for each location would not prove to be a clear 

time-series, as assumed initially. For instance, out of the fifteen images captured for each location, 

oftentimes dumping would occur in some images, disappear again and then reappear in the following 

images. These small variations may cause unreliability in a trained model. Additionally, there are 

images in a location where I, as a human interpreter of the images, know that a certain image contains 

dumping based on the context of the previous image and the next image containing dumping. 

However, due to strong shadows, clouds, disturbances or insufficient resolution, no dumping can 

clearly be seen in the image without the context of the surrounding images. These images were 

classified by me as non-dumping, but this raises concerns about whether this kind of data will be 

suitable for this approach.   
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4.2.2 Anomaly detection 
Anomaly detection is generally understood to be the identification of rare items, events or 

observations which deviate significantly from the majority of the data and do not conform to a well-

defined notion of normal behaviour. Anomaly detection has applications in many domains including 

cyber security, medicine, computer vision, statistics, neuroscience, law enforcement and financial 

fraud, to name only a few [58].  

 In our case, we can use anomaly detection to see which images contain dumping and which 

do not. The norm would be the non-dumping images, while the dumping images would be 

considered anomalous. Through anomaly detection, a model will be given a dataset containing only 

non-dumping images, leading the model to learn how the norm is represented. When this trained 

model is consequently presented with a new dataset containing a subset of the non-dumping images 

and the dumping images, the model will detect the dumping images as anomalies as they fall outside 

what the model has learned to be the norm [58].  

 This would be a more fitting approach to the detection problem, thereby now treating it as an 

anomaly detection problem. Given the data, it would seem that the dataset is better suited for 

anomaly detection tasks. Furthermore, anomaly detection models are significantly lighter and require 

less training and data to output meaningful results. Possible approaches to anomaly detection would 

be statistical techniques, GANs, RNNs or adversarial autoencoders to name a few. Due to the high 

dimensionality of the data, statistical techniques will not provide sufficient insightful results, and 

RNNs would require a time-series dataset which is not optimal as discussed in the section above. 

Therefore, approaches that will be explored feature GANs and adversarial autoencoders.   
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5 Realisation 
Following the Creative Technology Design Process, this chapter represents the realisation phase of the 

design process. In this section of the report, the process of the implementation is documented, starting 

with the tools used, dataset creation, the choice of model and any alterations to the initial planning 

will be discussed. 

5.1 Tools 

For this project, the high-level programming language Python was used. Among data scientists, 

Python is popular due to its simplicity, readability and versatility. It has a vast collection of machine 

learning and data science libraries, such as PyTorch, TensorFlow, Keras and Scikit-learn. These 

libraries offer a wide range of algorithms, tools and frameworks for developing machine-learning 

solutions. 

 As for the choice of machine learning frameworks, PyTorch was chosen because of its 

flexibility in implementation. It is easier to make code modifications in the model and is more suited 

to atypical or exotic machine-learning approaches than other frameworks. 

 Scikit-learn was also used as it supports many useful tools for statistical modelling and other 

machine learning model. This library was mostly used for data pre-processing and data analysis.  

 The machine used to run these experiments was an 8th generation Intel Core i5-8250U CPU 

with 8GB RAM and Intel UHD Graphics 620. 

 

5.2 Generative Adversarial Network  

5.2.1 GANs for anomaly detection  
As briefly explained in section 4.2.2, GANs are a suitable approach to generating new data samples 

based on a given dataset. To reiterate, a GAN is comprised of two networks, a generator and a 

discriminator. The generator receives a dataset, after which its purpose is to generate new data as 

close to the input data. The discriminator receives either real data, sampled from the actual data 

distribution or a synthetic, ‘fake’ sample from the generator. The discriminator then tries to 

differentiate the generated data from the real data. These two networks are trained in an adversarial 

manner, where each network becomes more skilled at its respective task over iterations of the training 

process. For generative purposes, as mentioned in section 2.7.2, the discriminator is discarded, 

whereafter a generator remains which can create new and truthful images based on its input.  

 This GAN architecture can also be used for anomaly detection. Once the GAN has been 

trained on non-dumping images, it can be used for anomaly detection by evaluating the likelihood of 

an instance being generated from the normal data [70]. Instances with low likelihood scores are 

considered to be anomalies, as they are considered to be significantly different from the normal data. 

This approach has been shown to be effective in a number of studies, with results that are on par with 

or superior to traditional anomaly detection methods in some cases, as discussed by Deecke et al. [70].  

5.2.2 Vanilla GAN implementation 
The implementation process started with the development of a vanilla GAN, which is the simplest 

form of the model, using the tools described in section 5.1. The GAN was constructed using sequential 

dense layers. To test the generative capabilities of the GAN, the model was trained on the MNIST 

handwritten digits dataset. This is a benchmark dataset in computer vision containing 10.000 scanned 

handwritten digits, and in this case, will be used to train the model. The GAN will take this dataset as 

an input and will output new handwritten digits, where it will try to create new data samples as 

closely as possible to the handwritten digits.  
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 Initially, the vanilla GAN showed poor and noisy results which did not seem to converge over 

more epochs. A batch normalization layer was added, which improves the stability of the network. 

This normalizes the inputs for each layer of the network, preventing too small or large value, 

improving performance in the generator and discriminator. The image below is the result of a run of 

200 epochs with a batch size of 32. 

 

Figure 10 Vanilla GAN, 200 epochs, batch size of 32 

These outputs were an improvement upon the first iterations, but the results were not satisfactory for 

a simple dataset like the MNIST dataset. The batch size was then increased to 64, and below is the 

result for 400 epochs: 

 

The results obtained from the vanilla GAN still display a significant level of noise, which is 

inadequate for the desired purpose. Furthermore, in other runs of the same model, there was evidence 

for mode collapse. This is a phenomenon in GAN training where the generator creates a specific 

subset of samples, as opposed to a variety of unique samples, as it has learned that that specific 

sample is successful at ‘fooling’ the discriminator and thus continues only generating that type. This is 

a common problem in GAN training, and the next section will explore a variation of the vanilla GAN 

that remedies this problem.  

Figure 11 Vanilla GAN, 400 epochs, batch size of 64 
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5.2.3 WGAN with gradient penalty 
After the insufficient results from the vanilla GAN, a WGAN was implemented. The WGAN, or 

Wasserstein loss GAN, implemented here uses convolutional layers instead of dense layers as seen in 

the vanilla GAN. One of the key differences between a WGAN and a traditional GAN is the loss 

function used to evaluate the performance of the generator and discriminator. In a traditional GAN, 

the loss function is a binary cross-entropy, which is based on the idea of minimizing the difference 

between the generated data and real data. In a WGAN, as proposed by Arjovsky et al. [71], the loss 

function is based on the Wasserstein distance, which measures the difference between the generated 

and real data distributions. 

 The use of the Wasserstein distance in WGANs has several advantages over traditional GANs. 

For example, the Wasserstein distance is a well-defined and continuous metric, which makes it easier 

to optimize the generator and discriminator during training [71]. Additionally, the Wasserstein 

distance provides a more stable training process, which may lead to improved results.  

 In addition to this, gradient penalty was included in the WGAN, a concept introduced by 

Gulrajani et al. [72]. The main idea behind gradient penalty is to add a regularization term to the loss 

function that punishes the discriminator for having a high gradient magnitude. During training, it is 

possible for the discriminator to become too powerful, resulting in a highly fluctuating loss function 

that is difficult to optimize. This can lead to training instability and slow convergence. The gradient 

penalty term helps to alleviate this problem by penalizing the discriminator for having a high gradient 

magnitude [72]. The image below is the output of the model after 1500 epochs with a batch size of 64. 

 

Figure 12 WGAN with gradient penalty, 1500 epochs, batch size 64 

 

Visually, this is an improvement over the experimental results from the vanilla GAN. The synthetic 

samples inhibit significantly less noise than the previous model, and over larger training periods, 

some of the samples can clearly be recognized as digits.  

 However, as the MNIST handwritten digit dataset features 28x28 pixel images and our dataset 

features 512x512 pixel images, the dumping dataset might pose a serious computational challenge for 

this model. The results obtained in Figure 12 were obtained after two days of training, and with 

results that are still unreliable and unrecognizable at times, this approach proved lacking for our 

purposes. The results raise concerns about whether a dataset with images almost 20 times in size will 

be an improvement in performance, as well as training times which were already long on this dataset. 
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5.3 Adversarial Autoencoder 

After evaluating the results from the previous models, more research was done on what kind of 

anomaly detection model could be a better candidate for our purpose. The adversarial autoencoder 

was a fitting contender, as it allows for more manipulation of latent space for anomaly detection. To 

achieve this, the AAE must first learn the data distribution of the satellite images. This model can then 

learn high-level features of the structure of the images or the dimensions that are most informative in 

an observation out of the multi-dimensional data distribution. Conversely, the model can also learn 

lower-level features that contribute less to the overall image structure, such as the texture of lands, 

pastures, etc.. As dumping disturbs the ‘normal’ land textures, the aim is to detect changes in the 

satellite imagery texture. Because an AAE outputs the latent space, this allows for great flexibility in 

detecting anomalous images. Furthermore, in contrast to certain GAN models which also output the 

latent space, the AAE does so without the need for full GAN training. This immensely speeds up the 

process of tuning hyperparameters in the model and running it.    

 Furthermore, the GAN generator would likely map the processed dumping images to the 

dense areas of the latent space distribution, which would be problematic. The dumping images would 

then be considered probable images (thus not anomalous), and low probability-based anomaly 

identification would no longer be possible. On the other hand, this phenomenon would likely happen 

with an AAE model as well, however, AAE models allow for greater control over the latent space, 

which could prove beneficial in the process of interpreting and manipulating the output of the model. 
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5.3.1 New dataset  
As the initial planning was to use a CNN or GAN model, large amounts of data were a requirement 

for reliable and adequate results. For an AAE, the dataset might look different from the dataset 

created earlier, which features two large categories of dumping vs. non-dumping satellite imagery.  

 First, a dataset was created featuring ~10.000 satellite images of buildings and ~5.000 images 

of pastures, which were obtained from the Google Earth Engine. This dataset will be used for training 

purposes only, letting the model learn about the type of imagery, textures of the land, features of 

buildings etc.  

 Then, a subset of the dumping dataset was created, which features only the images that depict                                   

this dumping most clearly. This dataset will be used to infer the encodings. From each location in the 

dumping dataset, one representative image was selected that inhibits the most apparent instance of 

dumping from among the 15 images at that location. The resulting dataset of the most apparent 

dumping consisted of ~1.000 images, with each image corresponding to one of the ~1.000 dumping 

locations. When distinguishing between the dumping and non-dumping images, this dataset helps the 

model recognize the most prevalent examples of dumping, eliminating most edge cases which could 

potentially lead to ambiguity or interfere with the model's ability to accurately distinguish between 

normal and anomalous instances. Due to the nature and architecture of the AAE, ~1.000 anomalous 

images are sufficient. In the same manner, a subset of non-dumping images was created for the same 

purpose as the images with the most apparent dumping.  

 However, this non-dumping dataset must meet certain requirements for the model to be 

reliable and to avoid overfitting. Firstly, the non-dumping data must come from the same data 

distribution as the dumping dataset, thus the same type of area or land patch that the dumping 

images were captured from. Secondly, the non-dumping images must contain a roughly similar 

landscape as the dumping images. The dumping imagery that was captured features mostly rural or 

agricultural areas, meaning that the non-dumping image dataset must also display this type of 

environment. Thirdly, it is imperative to ensure that the images used for training are not taken at the 

exact same location as the images depicting instances of dumping. Utilizing identical locations and 

framing for both the dumping and non-dumping images could result in a dataset where the model is 

exposed to both images of a location with and without evidence of dumping. This could result in 

overfitting, as the model would become overly familiar with the features present in both the dumping 

and non-dumping images. 

 In order to adhere to the specified requirements, I chose to process the original satellite images 

by re-cropping them. As previously mentioned, the presence of dumping in an image can typically be 

identified at its centre. Consequently, by extracting 512x512 segments from the corners of the original 

6663x8192 pixel image, new non-dumping images can be generated that maintain the same data 

distribution and approximate landscape as the dumping image, while avoiding the use of the same 

location. Therefore, using the same bulk cropping script as before, sections from the bottom right and 

top left were cropped in order to create the new non-dumping dataset, as depicted by the red 512x512 

pixel squares in Figure 13. This resulted in a ~4.700 image dataset. 



34 
 

 

5.3.2 Model implementation 
Thereafter, the AAE model was developed according to the architecture displayed in Figure 4 using 

the tools listed in section 5.1. The model was trained on the ~10.000 building imagery and ~5.000 

pasture imagery datasets. After training, the encoder can now be used to infer the encodings, or 

embeddings, from the new dumping and non-dumping datasets. The trained encoder can now 

generate truthful and representative embeddings for each image in the dataset.  

 The embeddings are created for each of the dumping and non-dumping images following a 

multivariate Gaussian distribution. Each image is expressed in 512 embeddings of size 256 numbers 

with every embedding group being a multivariate normal distribution. Now that these 512 

embeddings are created for each of the ~1.000 dumping images and ~4.700 non-dumping images, the 

goal is to identify differences between the embeddings and techniques to discriminate between them.  

 

 

 

 

Figure 13 Bottom right and top left re-cropping of the original image 
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5.4 Processing embeddings in latent space 

Having obtained the embeddings for both dumping and non-dumping images, various methodologies 

can now be used to differentiate between these two classes within the latent space. In this section, 

Principal Component Analysis was applied to the embeddings, reduced in dimensionality and 

clustered using the k-means algorithm and the t-SNE technique. 

5.4.1 Principal Component Analysis 
Principal Component Analysis (PCA) is a widely-used mathematical technique in the field of machine 

learning and computer vision. It is a dimensionality reduction method that aims to transform high-

dimensional data into a low-dimensional representation while preserving as much of the variance in 

the data as possible [73]. The objective of PCA is to find the most significant features, referred to as 

"principal components", that capture the greatest variation in the data.  

 In the context of the embeddings, PCA can be used to reduce the dimensionality of the 

embeddings, making it easier to visualise and differentiate between the dumping and non-dumping 

embeddings. By applying PCA to the embeddings, the number of dimensions is reduced, while 

preserving the relationships between the data points. This can reveal patterns or clusters in the data 

that correspond to the different categories. The resulting visualization can be used to determine which 

features or components in the lower-dimensional space are most useful for discrimination between the 

two categories. 

 After the PCA has been applied to the embeddings, the plan is to cluster and visualize them in 

2-dimensional space using the k-means clustering algorithm. The k-means algorithm itself will be 

explained in the next section, but the required data input shape for k-means is                      

(n_samples, n_features), where n_samples is the number of samples, and n_features is the 

number of features in the input data. The number of features must be consistent across all samples. 

Therefore, we must process the embeddings such that it adheres to this data shape. 

 As mentioned before, each image is now represented as 512 embeddings of size 256 numbers. 

The goal is now to see which of the 512 embeddings correspond to depictions of dumping in an 

image. We want to apply PCA to each embedding separately, to compress them. To do this, first, we 

must create embedding groups. This means that, for all of the 512 embeddings, we want to gather the 

256-dimensional vector for each embedding over all of the images of one category. The embedding 

groups (in this case, the dumping embedding groups) are created following the pseudocode below. 

The code returns 512 groups corresponding to each embedding group. 

Line  

1 Initialize an empty list called groups 

2 For each of the 512 embeddings: 

3            Initialize an empty list called observations 

4            For each image in embeddings_dumping_images: 

5                       Retrieve embedding for the current image and store in a variable called embedding 

6                       Add embedding to the observations list 

7            Add the observations list to the groups list 

8 Return groups 

Figure 14 Pseudocode for creating the (dumping) embedding groups   
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This results in a multi-dimensional array with the following shape:  

512 × # 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 × 256 

Next, PCA was applied to each of the embedding groups. The algorithm iterated over the embedding 

groups and applied PCA with 4 components, whereafter the resulting shape is then:  

512 × # 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 × 4 

Then, as we need two dimensions instead of three for the next step (k-means algorithm), the 

dimensionality is reduced further by flattening the embeddings. Flattening is defined as reducing a 

multi-dimensional array into a one-dimensional array. In this case, we need to reduce the first (512) 

and third (4) dimensions into one dimension (512 x 4 = 2048). This was done using the reshape() 

function provided by NumPy as can be seen in Figure 15. Here, the reduced_embeddings variables 

represent the embeddings after PCA. 

Line  

1 flattened_embeddings_d = 
reduced_embeddings_d.reshape(reduced_embeddings_d.shape[1], -1) 

2 flattened_embeddings_nd = 
reduced_embeddings_nd.reshape(reduced_embeddings_nd.shape[1], -1)  

Figure 15 Flattening embeddings code 

The resulting shape is now:  

# 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 × 2048 

This means that each image is expressed by a 2048-dimensional vector. This is done for both the 

dumping and dumping embeddings and the results are combined using NumPy’s concatenate() 

function for n-dimensional arrays. The final shape of the reduced and concatenated embeddings is 

now: 

(# 𝑜𝑓 𝑑𝑢𝑚𝑝𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒𝑠 + # 𝑜𝑓 𝑛𝑜𝑛_𝑑𝑢𝑚𝑝𝑖𝑛𝑔 𝑖𝑚𝑎𝑔𝑒𝑠) × 2048 

Now, the data is in the form of (n_samples, n_features), where the number of dumping and non-

dumping images combined is the number of samples and each one is represented by a 2048-

dimensional vector, the number of features. The data is now significantly reduced in dimension and 

adheres to the input data shape for the next step, the k-means algorithm. 
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5.4.2 K-means clustering algorithm 
The k-means algorithm is a clustering algorithm commonly used in machine learning and computer 

vision. The goal of the k-means algorithm is to divide a set of data points into a specified number of 

clusters (k) in such a way that the points in each cluster are as close to each other as possible, and as 

far away from the points in other clusters as possible. The k-means algorithm works by initializing k 

random centroids and then iteratively assigning each data point to the nearest centroid, updating the 

centroids to be the mean of all the points assigned to them, and repeating these steps until 

convergence and the data is clustered [74]. 

 The k-means algorithm can be used to group the embeddings into clusters based on their 

similarity. By consequently observing the resulting cluster, we can identify clusters that correspond to 

the different dumping and non-dumping categories. The number of clusters is a hyperparameter in 

this algorithm, initially k = 2, so two clusters were chosen corresponding to the two categories. Scikit-

Learn allows us to initialize the centroids using k arrays. The means for the two embedding categories 

were computed and used for the initial centroid positions. As mentioned before, this is typically done 

randomly, however, as we can already calculate the means, this allows us to hint the algorithm 

towards the two clusters.  

 Next, the k-means was conducted on the concatenated embeddings of the dataset. As the 

embeddings have been processed such that it is in the form of (n_samples, n_features), the 

concatenated set of embeddings can be used as is. In Figure 16, the implementation is shown. Scikit-

Learn’s KMeans() function is used here, the amount of clusters is specified, the means of the dumping 

and non-dumping clusters are used for the centroid initialization and the k-means is conducted on the 

concatenated set of embeddings. Furthermore, the variable y_kmeans stores the cluster assignments 

for each data point and centers stores the cluster centers, which can now be used for visualization. 

Line  

1 kmeans = KMeans(n_clusters=2, init=[d_means, nd_means]).fit(embeddings_concat) 

2 y_kmeans = kmeans.predict(embeddings_concat) 

3 centers = kmeans.cluster_centers_ 

Figure 16 k-means clustering implementation 

The resulting scatterplot can be seen below. In the graph, the two clusters are displayed in a 

scatterplot, where the red stars are the two centroids.  

 

Figure 17 k-means clustering scatterplot with k=2 
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As can be observed in the plot, there is no clear separation between the two categories. Upon further 

inspection, it became clear that of the ~1.000 dumping embeddings, 94% of the data points belonged 

to cluster 2 (yellow), however, from the ~4.700 non-dumping data points, 93% also belonged to cluster 

2. Ideally, we want a more clear separation, not two clusters where a significant majority of all data 

points belong to one cluster.  

 As mentioned before, the k argument in k-means is a hyperparameter, therefore it can be 

tweaked to obtain different results. There is a method to determine the optimal number of clusters for 

the k-means algorithm. A popular technique is the ‘elbow method’. This concept uses inertia, which is 

a measure of the sum of squared distances between each data point and the centroid of its assigned 

cluster. In the elbow method, the inertia of the clusters is plotted as a function of the number of 

clusters. Then, the elbow point is selected in the plot as the optimal number of clusters in the k-means. 

The elbow point is characterized by a notable decrease in the rate of change of inertia, indicating that 

further increasing the number of clusters beyond that point would not result in a significant 

improvement in the quality of the clustering. In Figure 18, the elbow plot can be seen, however, there 

is no apparent elbow or significant drop-off in the inertia. This may be an indicator that the data is not 

well-separable with this technique. 

 

Figure 18 Elbow plot 
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Another method that we can use to get the optimal number of clusters is by using the silhouette score. 

This is a measure of the quality of the clustering in k-means using the Euclidean distance. It provides a 

measure of how well each data point is assigned to its own cluster, compared to other clusters. The 

silhouette score ranges from -1 to 1, with a score of 1 indicating a strong, well-defined cluster 

structure, and a score of -1 indicating a poor clustering structure. A higher silhouette score should 

mean that the data is more well-clustered with the corresponding k-value. A graph showing the 

silhouette scores for a range of numbers of clusters can be seen in Figure 19. 

 

From this plot, we can see that the optimal number of clusters is 3. Previously, the means of the two 

embedding categories were used for centroid initialization. However, as we now have more than two 

clusters, this is no longer possible. Instead, the k-means++ algorithm is used, which is an improved 

technique on centroid initialization over random initialization. k-means++ is also built into the Scikit-

Learn module and can simply be implemented like so:  KMeans(n_clusters=3, init=’kmeans++’). 

The k-means scatterplot with k=3 can be seen in Figure 20 below. 

Figure 20 k-means clustering with k=3 

Figure 19 Silhouette score plot 
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It can be observed that the data is still not well-separated, the cluster centres were situated in close 

vicinity to one another, the data points do not show clear separation and the majority of the data 

points are assigned to the same single cluster. More experiments were conducted with k-values 4, 6, 8 

and 10, and the resulting visualizations can be found in Appendix C. These results did not show 

significant improvement in the clustering, as hypothesized by the results of the elbow plot. 

 

5.4.3 t-SNE 
t-SNE (t-distribution Stochastic Neighbourhood Embedding) is an alternative dimensionality 

reduction technique used for the visualization of high-dimensional datasets. This method is based on 

minimizing the divergence between two probability distributions. One distribution represents the 

high dimensional data points and the other the low dimensional map. The low-dimensional map is 

randomly initialized, and through an iterative optimization process, point locations are updated to 

group similar data points and separate different data points [75].  

 The resulting low-dimensional representation, typically 2 or 3 dimensions, can reveal patterns 

and relationships in the data that may not be apparent in higher-dimensional space. In particular,       

t-SNE has proven useful in exploring and visualizing complex datasets where traditional visualization 

techniques may not work optimally. For instance, PCA is highly affected by outliers in the dataset, 

whereas t-SNE can manage outliers more robustly [75]. Therefore, experiments were done with t-SNE, 

as the k-means algorithm did not show well-separated clusters, independent of the number of 

clusters. 

 When applying t-SNE on the concatenated sets of embeddings, 2 components were chosen, as 

we want to map the clusters in 2D space. Scikit-Learn provides a function, TSNE(), that was used for 

this implementation. The exact lines used can be seen in the figure below. The fit_transform() 

function was used on the data as it can scale the data and also learn the scaling parameters of the data. 

 

Line  

1 tsne = TSNE(n_components=2) 

2 tsne_result = tsne.fit_transform(embeddings_concat) 

Figure 21 t-SNE implementation code 
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A scatterplot is the resulting clusters can be seen in Figure 22. This result is less sporadic in its 

clustering, in contrast to the k-means plot. There is still overlap, the two clusters both populate the 

centre of the plot. However, on the outside ring, the blue cluster dominates, perhaps proving effective 

for a circular classification boundary. The blue cluster represents the dumping embeddings, while the 

green cluster represents the non-dumping embeddings. 

 

Figure 22 t-SNE scatterplot 

 

5.5 Alterations to initial planning 

During the background research phase of the project, the preliminary plan was to train a CNN model 

with a YOLO architecture. The dataset did, however, not allow for the data requirements for YOLO 

training, so an alternative model was to be selected. This also meant that the use of synthetic data was 

no longer relevant. Next, time-series LSTM and anomaly detection models were considered, where 

anomaly detection seemed to be the better approach to this problem. Experiments were done on a 

vanilla GAN, WGAN and WGAN-GP, however, the plan was thereafter altered again to go forward 

with an AAE model.  
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6 Evaluation 
 

In this chapter, we evaluate the performance of the AAE model, compare it to other approaches, and 

discuss its generalizability. We also analyse the strengths and weaknesses of the AAE model in order 

to gain insights into the effectiveness of this approach for detecting dumping. Through this 

evaluation, the goal is to contribute to the development of more effective and efficient methods for 

detecting illegal dumping. 

 

6.1 AAE performance 

The performance of the AAE was evaluated by visualizing the embedding generated by the encoder in 

the model, using dimensionality reduction and clustering techniques k-means and t-SNE.  

 K-means clustering was initially used to separate the embeddings into two clusters 

corresponding to dumping and non-dumping sites. However, this technique showed poor results, as 

the clustering did not effectively separate the two classes, with some dumping sites being clustered 

with the non-dumping sites and vice versa. Thereafter, more experiments were done with a range of 

k-clusters, with similar performance. This poor separation could be due to the fact that the AAE model 

generates continuous embeddings, which are difficult to cluster into discrete classes.  

 In order to visualize the embeddings in a more effective manner, t-SNE was used to reduce 

the dimensionality of the cluster into two dimensions. t-SNE is a powerful technique that can provide 

insights where traditional dimensionality reduction techniques fail. The t-SNE visualization showed 

more promising results, as there was significantly less overlap between the two clusters. Due to the 

circular mapping of the t-SNE clusters, an oval-shaped boundary can be used as a decision boundary 

for the classification of dumping vs. non-dumping, with some margin of error due to the overlapping 

of some data points.  

 Overall, while the k-means clustering visualization showed poor performance, the t-SNE 

visualization indicated that the AAE model was effective to some degree in generating embeddings 

that separate dumping and non-dumping sites. However, the fact that some overlap still existed 

between the clusters suggests that the AAE model could benefit from further refinement. It is also 

possible that other methods for visualizing and analysing the embeddings (further discussed in 

chapter 8), may yield further insights into the performance of the AAE model. Furthermore, it would 

be interesting to experiment with larger datasets, to see how it affects the performance in the 

clustering. 
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6.1.1 Images on decision boundary 
Earlier, an oval-shaped decision boundary was proposed, but to test this, it might be useful to inspect 

some images that are on this boundary. From the scatterplot, random data points were manually 

selected that are visually in between the dumping and non-dumping clusters. In Figure 23, an image can 

be seen that was identified by the t-SNE tool to be non-dumping. However, upon inspecting the 

image, it is clear to see why the t-SNE algorithm was irresolute and mapped this image close to the 

dumping images. There is a cloud in the top centre of the image, with a colour and texture that could 

also represent dumping. This cloud can be very similar to some of the dumping sites present in the 

dataset, however, it correctly classified this as non-dumping, although the image is equivocal to the 

algorithm to a certain degree.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Non-dumping image on decision boundary (cloud) 
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In Figure 24, we can see another image that was in the decision boundary. Similarly to the previous 

image, this image also does not contain dumping, however, this time the image was clustered with the 

dumping images. Likely, the algorithm had difficulty categorizing this image as it contains a body of 

water, with reflections that look familiar to dumping on the satellite images. The white disturbances 

make it seem much like scattered waste, but after analysing the other acquisition points for this 

location, it can be said with certainty that this is a lake and not a dumping site.  

 

Figure 24 Non-dumping image on decision boundary (body of water) 

Lastly, Figure 25 is an image on the decision boundary grouped with the non-dumping images, while it 

was, in fact, a dumping image. The image is low-resolution and it is not immediately discernible 

whether there is dumping in the image or not. In the context of the other images of this location in 

time-series, this image was classified as a dumping image, however, this may not be as unequivocal 

when viewed in isolation. There are small white dots to be seen in the image which are the dumping 

instance, but it is an image in which it is difficult to say definitively. The resolution of the image is 

low, and the quality of the image itself is degraded. The algorithm's classification of the image near 

the dumping and non-dumping boundary reflects the inherent difficulty in differentiating between 

these two categories on edge cases like the images discussed here. 

Figure 25 Dumping image on decision boundary (lacking resolution) 
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6.2 Comparison to other approaches 

6.2.1 CNN  
CNNs are a popular approach for image classification and object detection tasks and are often used in 

remote sensing and environmental applications. In contrast, the AAE is a more novel and less 

researched approach to image classification. 

 One advantage of CNNs is that they are well-suited to image classification tasks, as they can 

effectively learn and extract features from images. CNNs have been proven effective in many studies 

for similar applications and are a well-researched topic. However, CNNs often require large amounts 

of labelled data for training, which can be a limiting factor in some applications. 

 An advantage of the AAE model is that it is able to learn a more compact and abstract 

representation of the images than CNNs, which can be useful in cases where storage and computation 

resources are limited, for example in less fortunate communities that deal with illegal dumping. The 

embeddings generated by the AAE model can also be visualized and analysed in a variety of ways, 

which can provide insights into the performance of the model and the underlying structure of the 

data. It also allows for more control over the latent space from the model, making the model more 

flexible. 

 However, it should be noted that the AAE model also has some limitations. For example, the 

AAE model may be more difficult to train and optimize than CNNs and may require more specialized 

knowledge and expertise. This approach requires more time to finetune the model and interpret its 

results.  

6.2.2 GAN 
Another popular approach that was discussed is anomaly detection, a research topic where GANs are 

widely deployed. One advantage of GANs is that they can generate highly realistic images by learning 

to mimic the distribution of the training data. However, GANs are often more difficult to train and 

stabilize than AAEs and can suffer from mode collapse (as seen in the vanilla GAN) and other issues.  

 Comparatively, the AAE is more stable during training and is easier to train than the GAN. 

AAEs and GANs both similarly allow for control over latent space, however, the AAE does so without 

the need for full GAN training. GANs are computationally heavy models as compared to AAE. The 

GAN model would likely have worked as effectively as the AAE, but due to the fact that GANs are 

heavy models that can show issues in training and the long training phase, an AAE would be the 

better choice.  
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7 Conclusion 
 

The goal of this project was to automatically detect illegal dumping from high-resolution satellite 

imagery. Illegal dumping is a pervasive issue that has a significant negative impact on the 

environment, wildlife, and human health. Dumping can contaminate the environment, leading to 

degradation in soil, surface water and air quality. Furthermore, the presence of illegal waste not only 

disrupts the natural balance of ecosystems but also poses severe health risks to local populations. In 

addition to ecological consequences, illegal dumping also has significant implications for human 

health. The toxic substances present in waste materials can contaminate groundwater, which is a 

primary source of drinking water for many communities. Inhaling or ingesting these toxins can cause 

serious health problems.  

 It is important to develop an effective method for detecting illegal dumping to minimize its 

ecological and public health impacts. Currently, this is mostly done manually, which is slow, 

expensive and inaccurate. Therefore, an automated solution was needed to detect illegal dumping in 

near real-time. 

 

7.1 Research findings 

The aim of this project was to develop a system for the detection of illegal dumping in high-resolution 

satellite imagery. Initially, a CNN-based model was considered for this purpose. However, it was later 

decided to explore alternative approaches, with a focus on anomaly detection. The chosen approach 

involved the implementation of a vanilla GAN on the MNIST dataset, which yielded poor results. The 

generated digits displayed a significant level of noise and little resemblance to the input dataset.  

 The experiment was then repeated with a WGAN, as well as a WGAN with gradient penalty 

(WGAN-GP), which resulted in significantly improved outcomes. The digits were less noisy and 

samples could be recognized as digits. However, there were concerns about the performance of these 

models on larger images from the dataset, prompting the decision to pivot towards an AAE approach. 

 The AAE model was implemented, trained, and deployed. Subsequently, embeddings were 

generated for a new dataset, and these embeddings were analysed in the latent space. Several 

techniques were employed to improve the separation of the embeddings, including PCA and 

clustering using k-means. However, poor separation was observed, prompting the application of t-

SNE, which resulted in a better outcome. There was less overlap in the clusters and the clusters were 

more clearly defined compared to the k-means clusters. In the t-SNE scatterplot, a circular 

classification boundary might be useful in determining which embeddings correspond with dumping 

and no-dumping images.  

 However, there was still an overlap in the clusters generated by both the k-means and t-SNE 

clustering algorithms. This could mean that the data is not well-separable or well-suited for clustering. 

This would also indicate that, superficially, the patterns that define whether an image contains 

dumping or not is not as clear as initially assumed. Therefore, a more complex analysis would be 

needed, or a different approach to the pre-processing of the embeddings. 

   

Approach Hyperparameters 

Vanilla GAN - Batch size 32, 200 epochs 
- Batch size 64, 400 epochs 

WGAN-GP - Batch size 64, 1500 epochs 

AAE k-means - k-means clustering with 2, 3, 4, 6, 8 and 10          
clusters 

AAE t-SNE - t-SNE in 2D space  
Figure 26 Brief overview of the experiments performed in chapter 5 
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7.2 Answer to research questions 

In this section, the research questions posed in section 1.1 will be addressed. The sub-questions will be 

addressed first, followed by an examination of the main research question. 

7.2.1 Sub-questions 
To offer a concluding answer to the main research question, it is essential to address the sub-questions 

first. The sub-questions are formulated as follows: 

SQ1: What deep learning framework is optimal for dumping detection from satellite imagery? 

Detection of illegal dumping from satellite images is an important problem that requires an effective 

model. In this section, I argue that AAEs are a suitable modelling approach for this problem based on 

experiments. AAEs are trained to learn a low-dimensional representation of input images called 

embeddings. These embeddings capture the important characteristics of an image, allowing for more 

effective anomaly detection. 

 In the case of illegal dumping detection, specific embeddings can be used to determine 

whether an image contains evidence of illegal dumping. By training the AAE on a dataset of both 

normal and anomalous satellite images, it can learn to produce embeddings that accurately capture 

the differences between the two types of images. These embeddings can then be used for classification 

after processing and analysis of the data.  

One advantage of using AAEs for this problem is that they are less prone to overfitting than 

traditional CNNs. CNNs can sometimes learn to recognize specific visual patterns that are only 

present in the training data, leading to overfitting and poor generalization to new data. Furthermore, 

AAEs actually learn subtle features as well, such as land textures. This helps the model, as dumping 

also disturbs these lower-level features.  

 Concluding, CNNs have been proven to work well on detection problems such as satellite 

detection, however, AAEs boast features that may improve the quality of detection and allow for more 

control over the model and require significantly less computational cost.  

SQ2: What satellite data will be useful for training and as input for the deep learning model? 

There were quite some ambivalent images in the original dumping dataset, creating challenging cases 

for the model and requiring more pre-processing of the images. For example, images could contain 

artefacts of the Google Earth Engine UI as a result of exporting. A more suitable dataset could be a 

dataset containing merely the raw satellite images. Furthermore, there are numerous examples of the 

image quality being degraded such as in Figure 25, or exposure errors where the distortions in the 

image were grave enough for it to be unusable. Moreover, many images were discarded as unusable 

due to a cloud or strong shadows obstructing the dumping site, however, this is of course natural in 

satellite datasets. 

 Lastly, the content of the images was also ambiguous at times. If images were difficult to 

categorize for human interpreters, then this challenge is amplified for a machine-learning model. As 

mentioned, in many images it was nearly impossible to see whether the image contains dumping or 

not, which likely impacted the model’s performance. It is noteworthy that, if applied to real cases of 

dumping detection in municipalities, these nuances and vague edge cases will inevitably occur as 

well. 

 Therefore, the used dataset from Google Earth Engine is deemed insufficient for the purpose 

of exploring whether the AAE model can be used for illegal dumping detection. The images used 

produced embeddings which were meaningfully interpretable to a certain degree, but using a 

different higher-quality or paid satellite imagery illegal dumping dataset is recommended. This can 

minimize sensor errors, artefacts and ambiguous images and improve the reliability of the model. 
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7.2.2  Main question 
With the sub-questions answered, the main research question of this thesis can now be answered. 

RQ: How can a deep learning model be developed for the purpose of detecting illegal dumping sites 

from satellite imagery? 

Although experiments with CNNs for the purpose of detecting illegal dumping from satellite imagery 

have been successful, in this project it is also demonstrated how an AAE can be utilized for this 

purpose. Compared to CNNs, the proposed AAE-based approach is characterized by its capacity to 

learn a more efficient and interpretable latent space that can capture meaningful concepts relevant to 

the task at hand. In addition to its ability to learn effective embeddings, the proposed approach 

exhibits unique features that distinguish it from traditional CNNs and enhance its overall 

performance.  

 To approach this problem, a dataset must be created, pre-processed and annotated based on 

the desired target categories. From this dataset, a subset must be created displaying only the most 

apparent instances of dumping. The AAE must be developed and trained and given two datasets, one 

anomalous and one normal dataset, from which it infers embeddings corresponding to each image in 

the dataset. These embeddings can then be processed using techniques such as PCA, k-means and t-

SNE to expose patterns in the data that can be used to differentiate between dumping and non-

dumping satellite imagery. 

 Concluding, AAEs are a new and innovative approach to anomaly detection that combine 

concepts of multiple models in a novel manner. As dumping detection from satellite imagery using an 

AAE model is not yet researched, this state-of-the-art research proves the viability of this approach in 

this field. While further research in this area is needed, the current study provides evidence to support 

the effectiveness of utilizing AAE models for detecting anomalies in satellite imagery. 
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8  Discussion 
 

In this chapter, reflection on the limitations of the research and exploring future directions for this 

work will be discussed. The limitations of the methodology and models used will be critically 

assessed. We will also discuss potential opportunities for future research and the implications of this 

work for the field of deep learning for dumping detection from satellite images. Ultimately, this 

discussion will aim to provide a transparent and truthful assessment of the research, while also 

highlighting the potential for future innovation and improvement. 

 

8.1 Limitations   

In this section, limitations encountered in the design process and implementation of the illegal 

dumping detection model will be discussed. Specifically, potential shortcomings in the research 

process will be identified and provide a discussion of the impact of these limitations on the reliability 

and generalizability of our findings. By acknowledging these limitations, the goal is to provide a more 

comprehensive understanding of the research. 

 The first limitation was the importance of iterative model selection in the project. I initially 

used a GAN model but found it difficult to train, computationally expensive, and produced poorly 

generated samples. By exploring other models, including the AAE, I found that the AAE was better 

suited for this task, producing more meaningful embeddings and better results than the GAN model. 

In retrospect, I should have pivoted towards the AAE sooner, emphasizing the importance of iterative 

model selection and experimentation in these kinds of machine learning projects. Moreover, in the 

end, the GAN models were only trained and tested on the MNIST images, rather than the actual 

dumping and non-dumping images from the dataset.  

 One limitation in the annotation process was the bias in the categorization of dumping vs. 

non-dumping. As the annotators had a time-series of all acquisition points of a location, the context 

may have given an advantage that the model did not have. For example, when presented with a series 

of clear dumping images, I was more inclined to classify a less clear dumping image as dumping as I 

was subconsciously aware that there is, in fact, dumping in that location. I have tried to negate this by 

being objective in the annotation for a single isolated image, but this bias has undoubtedly played a 

part in the annotation process. 

 Hardware limitations also affected parts of this project. In section 5.1, the tools and hardware 

used throughout this project were specified, however, especially when experimenting with GANs, I 

noticed that the training process was computationally costly. In addition to GANs being 

computationally heavy models, this could perhaps be solved by running the experiments on a faster 

CPU. Ultimately, this partly affected the realisation process as GANs were also deemed to be 

computationally too costly for this purpose (near real-time detection).  

 Time constraint was a limitation in this project. This led to a limited analysis of the produced 

embeddings by the AAE. Only nearing the end stages of this project, the embeddings were properly 

processed and visualized to potentially observe patterns. Had time not been a factor, further analysis 

of the embedding could have been done, potentially exposing patterns and specific embeddings 

leading to a meaningful classification of dumping vs. non-dumping. 

 Lastly, due to the fact that an AAE model has never been deployed for the specific task of 

dumping detection, in particular not with high-resolution satellite imagery, there were few references 

in literature as AAEs are a relatively new concept. At times, it was difficult acquiring relevant 

resources to develop this model and process its embeddings, as there is no state-of-the-art for this 

specific task. 
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8.2 Strengths and weaknesses 

To neatly summarize certain strengths and weaknesses of the AAE approach I encountered, the 

following list is created: 

 

Strengths 

• Unique approach 

The use of an AAE model for this specific purpose has not been researched yet. This is a 

unique and novel approach, that will hopefully spark more research into AAE models. 

• Data efficiency 

The AAE model can work with relatively small datasets, as it can learn to generate 

representative and truthful embeddings to be used for anomaly detection from a small set of 

examples. Furthermore, the AAE requires significantly less training time as compared to 

similar models. 

• Control over latent space 

This approach allows for much control over the latent space from the model. This allows for 

more interpretability of the results in a more compressed and simplified representation of the 

data while preserving the most important features. 

 

Weaknesses 

• Accessibility 

The interpretation of the embeddings generated by the model requires experts with domain 

knowledge of deep learning and autoencoder models and an understanding of how to 

interpret latent space. This may limit the accessibility when deploying the model. 

• Sensitivity to hyperparameters 

The model has a number of hyperparameters that must be chosen carefully in order to achieve 

good performance. These hyperparameters include the size and structure of the encoder and 

decoder networks, the length of the training phase, and the learning rates for the generator 

and discriminator. Tuning these hyperparameters can be a time-consuming and 

computationally expensive process. 

• Novelty 

The fact that this is a relatively new approach may also be a limiting factor for the use of such 

models. There are few studies available in literature that explore the possibility of similar 

domains, meaning that there are few reference points when developing these models. 
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8.3 Future work 

In this section, opportunities for improvement and future research are given. Given the scope of the 

project, along with the abovementioned limitations, parts of the AAE model and the resulting 

embeddings could be improved upon in the future.  

 

8.3.1 Modelling  
One promising area for exploration is the refinement and optimization of the AAE model. For 

instance, modifications to the AAE architecture, such as incorporating attention mechanisms [76] or 

other neural network modules, could potentially improve the performance of the model. This could 

lead to better embeddings being generated which capture the key features of the data more 

representatively. 

 Furthermore, an additional feature to potentially implement in the model would be to give a 

(limited) time-series for each image that it has to classify as an anomaly or not. As seen in the edge 

cases discussed in section 6.1.1, context is sometimes needed in images where it is difficult to 

categorize them. Providing the model with one or two images surrounding the image in the time-

series may improve the accuracy of the anomaly detection.  

8.3.2 Hyperparameters 
The hyperparameters of the model could also be tuned more, potentially leading to different results. 

For example, in the AAE network, hyperparameters such as the batch size, learning rate, latent space 

size, adversarial loss weight, activation functions and the number of encoder and decoder layers could 

be finetuned for this specific purpose. Moreover, as the AAE learns to map data to a prior distribution, 

experiments can be done using different distributions for the data. 

8.3.3 Generalizability 
The generalizability of the model is a crucial aspect to be evaluated. One potential concern would be 

whether the AAE can effectively learn and generalize the hidden patterns of dumping in the context 

of different regions, land types and dumping given the limited size and diversity of the training 

dataset that was used.  

 The generalizability of a model can be affected by several factors. For instance, the complexity 

of the data, variability of the image features, dataset size and configuration of the model can all 

influence how well the model generalizes to other scenarios.  

 In this case, the model was trained on a specific dataset of satellite images displaying 

buildings and pastures. The model was then given the task to infer embeddings from a new dataset, 

namely the dumping dataset. This dataset displays different landscapes and features but is from the 

same data source (Google Earth) with the same data distribution. The results of the visualization are 

optimistic about a certain degree of generalizability of the model, but more research must be done 

using entirely different datasets with other data distributions. Furthermore, different model 

architectures and other configurations of hyperparameters must be explored to observe their impact 

on the performance of the model. 
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 After the development of this model and analysing its generated embeddings for this specific 

dataset, it could be useful to test on different datasets. This could test the generalizability of the model 

further. For example, the model could be trained and deployed on more diverse ranges of (anomaly) 

datasets, such as:  

• Medical imagery 

• Abnormalities in network traffic 

• X-ray security screening  

• Manufacturing inspection 

• Environmental monitoring (oil spills, deforestation) 

• Autonomous vehicle vision (accidents, damage to roads) 

 

8.3.4 Satellite imagery type 
More research involving different satellite data such as rear-infrared and other hyperspectral satellite 

data must be done. This is due to the fact that different spectral bands can capture different types of 

information about the environment being imaged. For instance, some spectral bands may be sensitive 

to specific features that dumping inhibits in the satellite data, which can expose more hidden details of 

dumping. By including a wider range of spectral bands in the imagery, the model may be better able 

to detect anomalous features or patterns that might be missed with a more limited set of bands. 

   

8.3.5 Alternative visualisation techniques 
The visualization experiments conducted in this research mainly feature dimensionality reduction and 

clustering techniques, however, other visualization techniques could bring different insights into the 

hidden structures of the embeddings.  

 For example, saliency maps could be used, which are maps that highlight the areas of an 

image that are most important for the classification decision. This way, regions of the image most 

relevant the detecting anomalies can be visualized. Similarly, Grad-CAM (Gradient-weighted Class 

Activation Mapping) generates heatmaps over regions of the image that emphasize what the model is 

most sensitive to. These maps also visualize the most relevant areas for anomaly detection. 

 Additionally, Self-organizing maps (SOMs) are a type of neural network that can be used to 

create low-dimensional maps of high-dimensional data, which can be used to identify clusters and 

anomalies in the data. This method is optimized for high-dimensional data and can learn a mapping 

from the input data to the output map. This can be utilized to visualize the embeddings in the context 

of the original data, allowing for a better understanding of the underlying structure of the data. 

Likewise, Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP), could 

be a useful tool in exposing relationships in the embeddings. 

 Lastly, in the process of dimensionality reduction, all techniques inevitably encounter some 

degree of information loss. Therefore, instead of mapping the data into two-dimensional space, three-

dimensional space visualization should also be explored. This could preserve more of the original 

data, and lead to insights previously unobtainable in the lower dimensionality. For example, the t-

SNE method allows for visualization in three-dimensional space, which could potentially reveal more 

of the underlying structure of the normal and anomalous data. 
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Appendix A 
 

 

 

Figure 1 Table of state-of-the-art approaches 

 

Title Authors Purpose Description Model used Imagery type 
Spatial 
resolution 

Performance 
metric Scores 

Datasets used 
for training 

Synthetic 
data used Auxiliary data 

Mapping illegal 
waste dumping 

sites with neural-
network 

classification of 
satellite imagery 

Maria Roberta 
Devesa & 

Antonio Vazquez 
Brust 

Create 
comprehensive 

map of potential 
locations of 
illegal waste 

dumping sites  

Identify dumping 
site locations 

and track 
evolutions over 

time using neural 
network 

classification of 
satellite imagery 

of Argentina 

U-net CNN Satellite images 
(RGB, SWIR-1, 
SWIR-2, NIR, 

normalized diff 
SWIR bands) 

10m Intersection over 
Union 

0.675 (using 
RGB-NIR-SWIR-

NDSW) 

Georeferenced 
locations of 

known illegal 
waste dumps  

    

Learning to 
Identify Illegal 

Landfills through 
Scene 

Classification in 
Aerial Images 

Rocio Nahime 
Torres  & Piero 

Fraternali 

Prove feasibility 
of applying 

convolutional 
neural networks 

for scene 
classification in 
this scenario to 

optimize the 
process of waste 
dumps detection 

 Study the 
application of 
convolutional 

neural network 
(CNN) scene 
classification 
models for 

landfill detection 
in aerial images 

Binary CNN 
classifier,  

ResNet50 + FPN 
model 

Orthophotos 
(RGB 

aerophotogram
metry survey) 

20cm  Average 
precision 

0.94 ≈3000 images 
with ≈33% 

positive samples 
(AGEA) 

    

Detecting 
landfills using 
multi-spectral 

satellite images 
and deep 
learning 
methods 

Anupama 
Rajkumar, Tamas 

Sziranyi & 
Andras Majdik 

High resolution 
Landfill dataset 

created from 
satellite images 

and applying 
suitable deep 

learning 
methods to 

detect landfills 

Using satellite 
imagery along 
with modern 

deep 
learning 

methods to 
detect landfills 
using semantic 
segmentation 

Fully 
Convolutional 

Network and U-
Net combination 

WorldView and 
GeoEye satellite 

images  
grayscale 

panchromatic 
image, rasterized 

multispectral 
image with high 

spectral 
resolution (upto 

8 bands)  

30cm Accuracy 0.830 (using 
UNet-ResNet34) 

High resolution 
multi-spectral 

satellite images 
from WorldView-
3, WorldView-2 
and GeoEye-1 

satellite missions 

    

Deep Learning 
and Remote 

Sensing: 
Detection of 

Dumping 
Waste Using 

UAV 

Ousmane 
Youme, 

Theophile Bayet, 
Jean Marie 
Dembele & 
Christophe 

Cambier 

Train a detection 
model for finally 

set up a 
monitoring and 

planning tool 
that can help 

municipality to 
control the 
problem of 
clandestine 

waste dumps 

Automatic 
solution for the 

detection of 
clandestine 

waste 
dumps using 

unmanned aerial 
vehicle (UAV) 
images in the 

Saint Louis area 
of Senegal, West 

Africa 

CNN SSD Drone with  L1D-
20c RGB color 

camera (5472 X 
3648) 

A few 
centimeters 

Intersection over 
Union 

0.64 UAV images split 
up intro training 

and test sets 

    

Accurate 
Detection of 

Illegal Dumping 
Sites Using 

High Resolution 
Aerial 

Photography and 
Deep 

Learning 

Andreas 
Kamilaris, Chirag 

Padubidri & 
Savvas 

Karatsiolis 

Develop a 
method for 

detection and 
reporting illegal 
dumping sites 

from high-
resolution 
airborne 

images based on 
deep learning 

Automatically 
detect  sources 
of illegal waste 

as fast as 
possible using 
deep learning 
and synthetic 
training data 

CNN 
classification 
model with 

residual block 
classification 

model 

Multi-resolution 
and multi-modal 
optical remote-

sensing 
dataset (high 

resolution RGB) 

11920 × 12020 Precision and 
recall 

0.98 and 0.90 2.000 synthetic 
dumping images 

    

A method for the 
remote sensing 
identification of 

uncontrolled 
landfills: 

formulation and 
validation 

S. Sivestri & M. 
Omri 

Introduce and 
validate a 

method that 
uses remotely 

sensed 
information and 

a geographic 
information 

system (GIS) to 
identify 

unknown 
landfills over 
large areas 

Remote sensing 
is for the first 

time applied to 
explore an area 

of more 
than 10 000 km2 
with the aim of 

identifying 
possible 

contaminated 
sites 

Maximum 
Likelihood 
Estimation 

IKONOS satellite 
data 

1m N/A N/A Satellite data   Distributed 
geographical 

information and 
NIRGB 

From Illegal 
Waste Dumps to 

Beneficial 
Resources Using 

Drone 
Technology and 
Advanced Data 
Analysis Tools: 

AFeasibility 
Study 

Adi Mager & 
Vered Blass 

Demonstrate the 
feasibility of 
mapping and 
analyzing the 

contentsof illegal 
waste dumpsites 
using drones and 
remote sensing 
techniques in 

order to 
estimatetheir 

circular 
economy. 

The pilot results 
suggest that it is 

feasible to 
identify 

valuablematerial
s left on the 

ground in the 
form of 

unattended, 
illegally disposed 

waste. 

N/A Drone (GNSS 
RTK) remote 

imaging 

2cm N/A N/A Michnaf 
Company aerial 

mapping, Google 
Maps  

    

Garbage 
localization 

based on weakly 
supervised 

learning in Deep 
Convolutional 

Neural Network  

 Mohd Anjum & 
M. Sarosh Umar 

 A garbage 
detection and 

localization 
system is 

proposed based 
on Convolutional 
Neural Network, 

which is 
trained on 

images labeled 
as garbage or 
non-garbage 

This article 
introduces an 

automated 
method for 
detecting 

the illegal dumps 
of garbage using 

deep 
convolution 

neural 
network. 

Deep CNN model Scene images Not mentioned Custom 
overlapping 

metric 

4.1 (on scale of 
0-5) 

Garbage Image 
Dataset (GIDset). 

Contains 
large number of 

images for 
garbage and 
non-garbage 

classes.  

    

Figure 27 Table summarizing related works 
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Appendix B 
 

 

 

 

 

 

 

 

1. import os.path 
2. from PIL import Image 
3.   
4. PATH = r"D:\uncropped" 
5. OUTPUT_PATH = r"D:\cropped\\" 
6. dirs = os.listdir(PATH) 
7.   
8. old_width, new_width = 6663, 8192   # Raw image size:     6663 x 8192px 
9. new_dim = 512                       # Desired image size: 512 x 512px 
10.   
11.   
12. def crop(): 
13.     for index, item in enumerate(dirs): 
14.         full_path = os.path.join(PATH, item) 
15.         if os.path.isfile(full_path): 
16.             img = Image.open(full_path) 
17.   
18.             # Calculate new dimensions 
19.             left = int((old_width - new_dim) / 2) 
20.             top = int((new_width - new_dim) / 2) 
21.             right = int((old_width + new_dim) / 2) 
22.             bottom = int((new_width + new_dim) / 2) 
23.   
24.             # Crop center of the image and save to output directory 
25.             im_crop = img.crop((left, top, right, bottom) 
26.             im_crop.save(OUTPUT_PATH + item, quality=100) 
27.   
28.   
29. if __name__ == '__main__': 
30.     crop() 

Figure 28 Python centre-cropping script 
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Appendix C 

 

 

Figure 29 k-means clustering with k=4 

 

 

 

Figure 30 k-means clustering with k=6 
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Figure 31 k-means clustering with k=8 

 

 

 

Figure 32 k-means clustering with k=10 
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