
 

 

 

 

 

 

 

 

 

 

 

Testing the Successive Time Window Approach  

with Simulated EEG Data 

 

 

 

 

 

Alexandra Coroiu 

University of Twente 

Rob van der Lubbe, Stéphanie van den Berg 

 

 

23 March 2023 



1 

Abstract 

 

The multiple testing problem arises when trying to interpret electroencephalogram 

(EEG) recordings with no a priori assumptions about the timing or location of the expected 

effect. Noise and data dependencies increase the probability of observing false positives in 

highly dimensional EEG data. Therefore, the family wise error rate (FWER) needs to be 

controlled through appropriate statistical methods. In this study, the performance of the 

successive time window (STW) approach was tested. The specificity, sensitivity, and 

precision of this approach were assessed for identifying effects on visual event-related 

potentials (ERPs). The results of this approach were compared to other popular FWER 

correction methods. The MNE python library was used to create fully synthetic EEG data for 

a Monte Carlo simulation. Different data parameters were used to define EEG datasets for a 

between-condition experiment with visual ERPs from 20 simulated subjects. The data were 

analysed using the STW approach, classic Bonferroni, and a cluster permutation (CP) method. 

Local and global type I, and II error rates (ERs), and the false discovery rate (FDR) were used 

to quantify the performance of these methods. The results of this study show that the STW 

approach leads to a lower local type II ER compared to Bonferroni, but a higher global type I 

ER (FWER) when compared against both other methods. The STW approach and Bonferroni 

provide a similar FDR, with better resolution than the CP method. Therefore, the STW 

approach does not control the FWER as well as the CP and Bonferroni methods, but it can 

provide more sensitivity and precision. The performance of the STW approach can be highly 

improved when some a priori assumptions can be made about the location of an expected ERP 

effect. The critical p-value calculation proposed for the STW approach can be improved by 

adjusting it according to the noise level in rest state baseline EEG data. Future research can 

build on the methodology of this study to further validate statistical methods aimed at solving 

the multiple testing problem in ERP studies.  
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Introduction 

 

Solving the multiple testing problem is important for ensuring proper interpretation of 

electroencephalogram (EEG) recordings in the study of event-related potential (ERP). Noise 

and spatial-temporal dependencies make it difficult to discriminate ERP effects in EEG data 

when there are no a priori assumptions about the location and timing of an effect (Groppe et 

al., 2011a). With so many electrodes and so many time points, a high number of type I errors 

can occur at separate time-space units. These local type I errors increase the (global) family 

wise error rate (FWER) (Luck & Gaspelin, 2017). Various correction methods can be 

employed to tackle the multiple testing problem and reduce FWER. These methods vary in 

their theoretical approach and lead to different results depending on the properties of the 

analysed data (Fields & Kuperberg, 2020; Groppe et al., 2011a). To thoroughly assess the 

performance of these statistical methods, simulation studies can be used to evaluate the 

specificity, sensitivity, and precision of results. Monte Carlo simulations allow the testing of 

statistical methods on a wide range of synthetic EEG data generated based on varying 

parameters (Groppe et al., 2011b). 

 

The Study of Electrical Brain Signals 

EEG is a popular method for recording brain activity. Electrodes are placed at the 

scalp level to capture electrical signals originating from neural sources within the brain 

(Baillet et al., 2001). This method has both advantages and disadvantages. On the one hand, 

EEG recordings result in highly dimensional data: a voltage measurement value is recorded 

for each unique combination of time and space, at a high frequency across multiple 

electrodes. This provides a high temporal resolution (in the order of ms) as the source 

electrical signal quickly travels to electrode sites, and it can be captured with high sampling 

rates. On the other hand, the measurement of electrical signals at the scalp level is highly 

sensitive to the conductivity of tissue located between the neural sources and electrode sites 

(Burle et al., 2015). Tissue volume conduction leads to both spatial smearing1 and temporal 

 

1 Spatial smearing is the spreading of electrical signal from one neural source to a wider area at the 

scalp level. The source signal travels through head tissue which conducts electricity across space. The signal 

does not directly propagate to the corresponding head surface, but also to proximal areas. This results in multiple 

electrodes picking up the electrical signal originating from the same underlying neural source. Furthermore, 

signal from proximal neural sources can blend at the scalp level, resulting in high activation at intermediate 

electrode sites that do not correspond to the original source locations. 
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smearing2 which create dependencies between proximal data points and ultimately reduce the 

spatial and temporal resolution of EEG data. Furthermore, EEG picks up not only electrical 

signals coming from the brain, but also other electrical noise. When the signal-to-noise ratio is 

reduced, it becomes difficult to distinguish the true signal from the noise present in EEG 

recordings. 

EEG recordings can be used to study brain activity in ERP research (Luck, 2005). An 

ERP is the measured electrical brain activity, averaged over trials of the same (class of) 

stimulus event(s). In an experimental setup, ERPs are obtained by recording the brain 

response directly resulting from a sensorimotor or cognitive stimulus presented to 

participants. The source of the resulting ERP is located in the corresponding brain area for the 

stimulus (di Russo et al., 2002, 2003), while the shape (defined by frequency and amplitude), 

timing, and duration of an ERP depend on various properties of the stimulus and internal 

cognitive processes of participants (Key et al., 2005; Rauss et al., 2011; Woodman, 2010). 

Therefore, ERPs can be used to study properties of cognitive processing within the brain, and 

to evaluate the difference between groups of participants or between experimental conditions 

(Baillet et al., 2001). Additionally, ERPs can be used to study brain lateralization3 that arises 

from peripheral stimulus events (di Russo et al., 2002). Regardless of the experimental setup, 

ERP research aims to correctly identify whether an ERP effect is present or not in EEG data, 

and if present, to define the spatial and temporal boundaries of this effect. 

 

The Multiple Testing Problem 

The analysis of EEG recordings in ERP research requires the use of statistical methods 

that can test for ERP effects in the data. When there are a priori assumptions about the 

location and timing of the expected ERP effect, confirmatory methods can be used to analyse 

the EEG data. A priori assumptions can highly reduce the size of EEG datasets (e.g., only a 

few electrodes are selected), and simplify the interpretation of statistical results. If no a priori 

assumptions can be made, exploratory methods need to be employed (Groppe et al., 2011a). 

Then, separate local statistical tests are performed for each data unit (a unique combination of 

 

2 Temporal smearing is the spreading of electrical signal from one time point to the next. EEG 

electrodes can capture the same source signal over several time points across the scalp. Furthermore, signals that 

are close together in time, can blend together and appear as one continuous signal, with a recorded peak that 

represents none of the original source signals. 
3 Lateralization refers to the difference in brain activity between the contralateral and ipsilateral 

hemisphere relative to the stimulus event. ERPs originate from mirrored sources located in both hemispheres. A 

lateral event leads to different ERP patterns in each hemisphere (e.g., a stimulus on the right will lead to stronger 

activation in the left hemisphere). 
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time x space averaged across participants/trials). In the case of exploratory research, the high 

dimensionality of EEG data introduces the multiple testing problem. The multiple testing 

problem is the statistical problem introduced by performing a high number of simultaneous 

tests. Even if each test has a low probability (<5%) of resulting in a false positive (type I 

error), there is a high probability that at least one of these tests will be a false positive. For 

example, in the case of testing EEG rest state data with 1000 separate local tests, 50 of them 

can be expected to result in false positives, which would incorrectly suggest that there is an 

effect in rest state data. 

False positives in EEG analysis are caused by noise and data dependencies. All local 

tests are sensitive to noise, which may lead to significant effects being identified when there 

are actually none. The presence of local type I errors ultimately affects the global test result 

(Luck & Gaspelin, 2017). It increases the probability of potentially identifying a global effect 

in an experimental condition where no activation is expected (e.g., in resting state EEG). 

Furthermore, when activation is present, local tests at proximal time-space units are highly 

correlated due to spatial and temporal smearing (Burle et al., 2015). These data dependencies 

can also negatively impact the global test results (Kim & van de Wiel, 2008). It becomes 

more difficult to identify the precise boundaries of an existing ERP effect. Different 

properties of EEG data might increase data dependencies: electrodes and time windows that 

are closer together pick up correlated signals, and bandpass filtering might increase temporal 

dependencies (Tanner et al., 2015). These data dependencies can lead to false positives in the 

proximity of a true ERP signal. 

 

Family Wise Error Rate Control 

The multiple testing problem can be solved by controlling FWER. The FWER is the 

probability of having at least one false positive (one type I error) result in a “family” of 

simultaneous tests. It represents the probability of concluding that there is a global effect, 

while there is nothing going on. Various statistical methods have been developed to control 

the FWER (Groppe et al., 2011a). The performance of different methods varies according to 

their design (Fields & Kuperberg, 2020; Groppe et al., 2011b). Some methods are only 

focused on reducing the type I error rate to ensure high specificity of results. Specificity 

represents the probability of correctly dismissing noise and artifacts introduced by data 

dependencies. Other methods are also focused on diminishing the type II error rate, to ensure 

higher sensitivity as well. Sensitivity represents the probability of identifying effects that are 

present in the data. There is often a trade-off between specificity and sensitivity. When 
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methods strongly reduce the type I error rate, more false negatives (type II errors) will occur. 

Low sensitivity leads to underestimating the boundaries of ERP effects (e.g., only high 

amplitude peaks can be clearly identified). Methods that aim to only control generalized 

family wise error rate (GFWER) can allow more sensitivity (Groppe et al., 2011a). GFWER 

is the probability of having a number of false positive results in a “family” of tests that is 

higher than an allowed threshold. Lastly, some methods are simply focused on reducing the 

false discovery rate (FDR), to ensure precision in results, instead of controlling the 

(G)FWER. Precision is the probability that identified effects are true. High precision means 

that most positive test results are correct. This can ensure that observed effects are not 

overestimated due to spatial-temporal smearing. 

 

Non-Parametric 

The cluster-based permutation (CP) method is a non-parametric approach for 

controlling the FWER (Maris & Oostenveld, 2007). This method requires three steps: 1) 

select time-space units with t-values larger than a desired threshold; 2) create clusters by 

grouping selected time-space units together based on spatial and temporal adjacency; and 3) 

test the significance of these clusters based on p-values obtained from non-parametric 

permutation tests. The multiple testing problem is solved by reducing the number of tests 

performed: one test per cluster, instead of one per time-space unit. This also solves the 

problem introduced by data dependencies, since correlated time-space units are grouped 

together within the same cluster. However, the weakness of this method is that the EEG 

dataset loses its original spatial-temporal resolution, instead making it more suitable only for 

identifying broadly distributed effects (Fields & Kuperberg, 2020; Groppe et al., 2011a). This 

weakness is often ignored in research and the CP method is regularly misused by making 

statements about specific time-space units within clusters (Sassenhagen & Draschkow, 2019).  

 

Parametric 

One way to preserve the spatial-temporal resolution of EEG data is to evaluate each 

time-space unit separately using a parametric statistical test (Fields & Kuperberg, 2020). 

Although most parametric tests rely on the assumption of independence which does not hold 

for EEG data, with a high number of time-space units, parametric methods can become more 

accurate (Clarke & Hall, 2009). Nevertheless, with a high number of local tests performed, 

appropriate correction methods are needed to balance type I and type II error rates (Luck & 

Gaspelin, 2017). Various correction methods have been postulated over the years to control 
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the FWER in parametric tests. The classic Bonferroni correction (1) calculates the critical p-

value for the local level (α') based on the total number of tests performed. However, this 

method highly reduces the sensitivity of mass univariate testing (Nakagawa, 2004).  

A more recent method for controlling the FWER is the successive time window (STW) 

approach (e.g., Talsma et al., 2001). This method requires two steps: 1) test the significance of 

each time-space unit according to a critical p-value for multiple testing correction 2) adjust 

the significance of each time-space unit according to the successive window criterion. The 

successive time window criterion entails that a time window is considered significant only if 

another adjacent one is significant. A new formula (2) was proposed for calculating the 

corrected critical p-value at the local level (van der Lubbe et al., 2014, 2019). The new critical 

p-value calculation accounts for the comparisons performed between successive time 

windows, which increases the sensitivity of the method. 

 

(1) 𝛼𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖
′ =

𝛼

t ∗ k
 

(2) 𝛼𝑆𝑢𝑐𝑐𝑒𝑠𝑖𝑣𝑒 𝑇𝑖𝑚𝑒 𝑊𝑖𝑑𝑛𝑜𝑤
′ = √

𝛼

(t − 1) ∗ k
 

 
where:  
t is the total number of time windows 
k is the total number of electrodes 

 

Research Goal 

Although the STW approach has been used before, no formal assessment has been 

done for its validity as a FWER control method. The goal of this research is to evaluate the 

validity of the STW approach in an EEG experimental setup with conditions defined by the 

presentation of peripheral (left/right visual) stimuli. Validity is defined by the performance of 

this approach in terms of specificity, sensitivity, and precision. An optimal FWER control 

method should minimize type I errors from rest state data, and it should offer high sensitivity 

and precision when an ERP effect is present. The performance of the STW approach is 

investigated through several research subgoals within this experimental setup.  

The first five subgoals are defined for assessing the performance of this approach for 

testing different effects in visual ERPs. Subgoal I: Test the performance of the STW approach 

for identifying the absence of signal in EEG data from a (resting state) baseline condition. 

Subgoal II: Test the performance of this approach for identifying the presence of signal in 

EEG data from conditions when a peripheral stimulus is present in the right or left visual 

field. Subgoal III: Test the performance of this approach for identifying the signal difference 

between the two peripheral (left/right) stimulus presentation conditions. Subgoal IV: Test the 
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performance of this approach for identifying the absence of brain lateralization in the (resting 

state) baseline condition. Subgoal V: Test the performance of this approach for identifying the 

presence of brain lateralization from peripherally presented stimuli, as it was used in the 

original study (van der Lubbe et al., 2019). Additionally, subgoal VI: The Bonferroni and the 

CP method are used as benchmark for the performance of the STW approach for all tests used 

to evaluate subgoals I-V.  

Furthermore, two more subgoals are defined for exploring the performance of the 

STW approach in different EEG datasets. Subgoal VII: Explore the influence of different data 

parameters on the performance of the STW approach. Data parameters are introduced to 

determine the signal-to-noise ratio (amplitude, noise level), data dependencies (bandpass 

filtering, electrode density, time window size) and the presence or absence of a priori 

assumptions (location, time interval). It is expected that lower performance is associated with 

lower signal-to-noise ratio, more data dependencies, and a lack of a priori assumptions. 

Subgoal VIII: Explore the influence of the critical p-value calculation on the performance of 

the STW approach across the different data sizes (as resulted from the use of different data 

parameters). Lastly, subgoal IX: Make suggestions for the critical p-value calculation to 

maximize the performance of the STW approach.  

 

Simulation Studies 

With the advance of modelling technology, EEG data can now be artificially generated 

and used for simulation studies. Simulation studies can thoroughly verify the methods that are 

commonly used in EEG data analysis (Fields & Kuperberg, 2020; Groppe et al., 2011b; Luck 

& Gaspelin, 2017). The simulation study by Sassenhagen & Draschkow (2019) shows how 

simulations can be used to highlight pitfalls in the use of current methods. The advantage of 

using simulated EEG data lays in the fact that the location and timing of a simulated source 

signal is known. This simulated signal can be used to check the sensitivity and precision of 

various statistical methods for identifying localized effects. Similarly, simulated rest-state 

baseline EEG data is certain to be empty of any activation that might otherwise arise due to 

internal cognitive processes in participants (Luck, 2005). This baseline data can be used to 

check the FWER control and specificity offered by the statistical methods used for multiple 

testing correction. Therefore, simulated EEG data can be used to assess the performance of 

statistical methods and compare results between them.  

Furthermore, simulation studies also provide the opportunity for testing statistical 

methods under different data parameters. Realistic EEG datasets can be created from scratch 
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with the help of anatomical brain and head models, simulated neural signals, forward 

modelling4 techniques, and artificially generated noise and artefacts (Barzegaran et al., 2019). 

This allows the creation of Monte Carlo simulations that can cover varying parameter values 

and create a wide range of realistic EEG data. For assessing statistical methods used in EEG 

data analysis, the aggregated results across various simulated datasets can provide a more 

realistic estimate of the methods’ performance, compared to simulations that only cover one 

dataset. For example, Monte Carlo simulations have been used to simulate ERP effects of 

different shapes (Groppe et al., 2011b), to introduce variance among subjects (Luck & 

Gaspelin, 2017), or to test methods under varying a priori assumptions (Fields & Kuperberg, 

2020). Additionally, Monte Carlo simulations have been used to observe EEG data 

dependencies under different processing parameters (Burle et al., 2015), or to determine the 

spatial accuracy of EEG (Liu et al., 2002). Therefore, simulated data can be created to cover a 

wide range of data parameters which affect the results of EEG analysis.  

 

  

 

4 Forward modelling is the process of calculating the spread of electrical signal from a neural source to 

the scalp surface. Calculations account for the conductivity of head tissue, resulting in realistic spatial and 

temporal smearing of the source signal. 
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Methods 

 

Monte Carlo simulation was used to evaluate the performance of the STW approach. 

All steps of the project were implemented in Python using libraries for the analysis of 

neurophysiological data. The MNE library was used for simulating, processing, visualizing, 

and analysing the EEG data (Gramfort et al., 2013). Data science libraries were used for the 

advanced scientific computations applied to the data and for visualizing results. The source 

code is publicly available on GitHub, with instructions on how to run the simulation, analyse 

the EEG data and evaluate the results (Coroiu, 2022).  

 

Simulation 

Realistic EEG datasets were fully simulated for a within-participant experiment with 

conditions of peripherally presented visual stimuli. The simulation contains three conditions: 

1) a baseline – no stimulus presented, 2) visual left – stimulus presented in the left visual 

field, and 3) visual right – stimulus presented in the right visual field. Data were simulated for 

20 participants, with 20 trials for each visual stimulus condition separated by the baseline 

resting state condition (see Figure 1).  

 

Figure 1 

Trials Visual Stimulus Presentation Conditions 

 
Note: One (left/right) visual stimulus trial contains the timeframe (-500ms, 

+500ms) around stimulus presentation. The baseline trial corresponds to the 

resting state in between the visual stimulus trials. Each trial amounts to a total 

of 1000ms.  
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The neural activation for the visual stimulus conditions was simulated based on a pre-

defined function that generates synthetic signals. The signal takes the form of a wave with 

amplitude at the scale of microvolts (μV). The shape of the wave is constructed through the 

multiplication of two composite waves (5). The first composite wave (3) is a sinusoid with 

frequency 10 Hz, corresponding to the alpha frequency band. The second composite wave (4) 

is a gaussian function (gf) which defines the latency and duration of the signal. The gaussian 

wave peaks at the desired latency and the area between ± 2.5σ corresponds to a duration of 

200 ms. The resulting synthetic signal resembles the early components of an ERP associated 

with the presentation of a stimulus in the lower visual field (di Russo et al., 2002, 2003; Rauss 

et al., 2011). The simulated ERP contains three main peaks (50 ms apart) associated with the 

visual P1 (C1), N1, and P2 (Key et al., 2005) (see Figure 2). No ERP was introduced in the 

baseline condition. This corresponds to signal of constant amplitude 0.  

 

Figure 2 

Simulated ERP Wave 

 

 

 

 

 

 

 
(3) 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 = sin(2𝜋 ∗ 10) 

(4) 𝑔𝑓 ~ 𝑁(𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 0.04)  

(5) 𝑤𝑎𝑣𝑒 = 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑 ∗ 𝑔𝑓 ∗  𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

 

Note: The timepoint at 0 ms corresponds to the moment of 

stimulus onset. Visual ERP component P1 peaks at 100 ms, 

N1 at 150 ms and P2 at 200 ms. This ERP wave was 

generated with latency = 175 ms and amplitude = 60 μV. 

 

 

Two simulated ERPs were introduced in all visual stimulus trials (one for a 

contralateral and one for an ipsilateral neural source). The simulated ERPs vary according to 

two data parameters: amplitude and latency. These parameters were used with the goal of 

creating realistic experimental data. Firstly, experimental setup and the properties of presented 

stimuli affect attentional processes in participants, and lead to varying ERP amplitude levels 

(Key et al., 2005). Therefore, six different amplitude (μV) pairs were used with different 

values and ratios between contra and ipsilateral activation: (40,20), (60,30), (60,20), (80,40), 

(80,30), (80,20). A different dataset was generated for each amplitude pair (Subgoal VII). For 
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the visual left stimulus condition, the activity is stronger in the right hemisphere 

(contralateral) and weaker in the left hemisphere (ipsilateral), and vice versa for the visual 

right stimulus condition (di Russo et al., 2002, 2003; Rauss et al., 2011). The activity in the 

baseline condition is absent, corresponding to an amplitude of 0 μV. Secondly, the latency of 

the contralateral activity wave was set to 175 ms for all datasets (as in Figure 2). The 

ipsilateral activity has an additional interhemispheric transfer time (IHTT) delay of 15 ms (di 

Russo et al., 2002, 2003). Therefore, the simulated ERP wave for the ipsilateral source is 

defined by a gaussian function with peak at 190 ms. 

Furthermore, differences in cognition influence both amplitude and latency (Key et al., 

2005; Takemura et al., 2020; Woodman, 2010). Therefore, variability was introduced for the 

simulated signal at both the participant and the trial level (see Figure 3a,b). Each participant's 

mean difference from the standard latency and amplitude values is drawn from a normal 

distribution (𝑀𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 0,  𝑆𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 25 𝑚𝑠, and 𝑀𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 0,  𝑆𝐷𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 2.5 𝜇𝑉 ), and 

each trial is drawn from a normal distribution around the participant mean (𝑀𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =

𝑀𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡,  𝑆𝐷𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 25 𝑚𝑠, and 𝑀𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 𝑀𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡,  𝑆𝐷𝑎𝑚𝑝𝑙𝑙𝑖𝑡𝑢𝑑𝑒 = 2.5 𝜇𝑉). The 

participant and trial variability were pre-generated, and the same values were used across all 

simulated datasets.  

The anatomy of simulated participants was based on the default scan of one sample 

subject provided in MNE. Therefore, all participants present the same default source space, 

connectivity, forward model, and conductivity values. First, the simulated activity was 

generated from the left/right superior occipital gyrus, corresponding to a stimulus peripherally 

presented in the lower visual field (di Russo et al., 2003). The specific locations of the activity 

sources in each hemisphere were defined using the default MNE source space data. Second, 

the default MNE average transformation matrix was used to define the propagation of the 

signal across the brain. Then, the forward model was generated using the Boundary Element 

Method (BEM) (Hallez et al., 2007). A standard BEM model was created using the sample 

subject anatomy and MNE default volume conduction coefficients (𝑐𝑏𝑟𝑎𝑖𝑛 = 0.3,  𝑐𝑠𝑘𝑢𝑙𝑙 =

0.006,  𝑐𝑠𝑐𝑎𝑙𝑝 = 0.3). Through the application of the forward model, data was generated for the 

whole head surface using the initial source activity (Figure 4a).  
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Figure 3 

Participant and Trial Level Variability 

a. amplitude  

 
b. latency 

 
Note: The deviation distribution for each participant (numbered 1-20) is composed of 

the individual trial level differences from the standard amplitude and standard latency. 

Amplitude deviation is measured in 𝜇V, while latency deviation is measured in ms. 

 

The final simulated scalp level signal aims to mimic realistic raw EEG electrode 

recordings. To achieve this, noise was added on top of the data (see Figure 4b). First, random 

noise was generated using an ad hoc covariance matrix. The same matrix has been used across 

all simulated datasets. Then, an infinite impulse response (IIR) filter was used to tailor the 

generated noise levels into two parameter values (defined by the linear filter coefficients): 

high noise (𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = [0.1, −0.1,0.02]) and low noise (𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = [0.2, −0.2,0.04]) 

(Bekthi et al., 2022). A different dataset was generated for each noise value. Together with the 

amplitude parameter, the noise parameter determines the signal-to-noise ratios across the 

simulated datasets (Subgoal VII). Finally, for each participant data was simulated for 86 

electrodes, placed according to the extended 10/20 international system (Klem et al., 1999). 

The recordings were simulated for a sampling frequency of 250 Hz, resulting in time windows 

of 4ms. 
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Processing 

The raw data of each participant was processed and prepared for statistical analysis 

(see Table A1 for example). First, the raw data was epoched: the relevant time intervals 

around stimulus presentation were selected (-500 ms before to 500 ms after stimulus onset) 

and baseline (-500ms to stimulus onset) correction was applied (Tanner et al., 2016). The 

application of a band pass filter is another data parameter, as this kind of filtering can 

introduce artifacts within EEG data due to increased temporal dependencies (Tanner et al., 

2015) (Subgoal VII). Datasets were generated with and without the suggested band pass filter 

(0.1-30 Hz). Second, the epoched data was summarized into evoked data. For each 

participant, trial level data points were averaged together to form the time-space units that will 

be used for the statistical analysis. Trial data were averaged separately for each of the three 

experimental condition (baseline, visual right, visual left) (Subgoals I-II). 

Then, the data was prepared separately for two types of analysis. For identifying the 

difference in signal between the visual stimulus presentation conditions, the difference 

between the evoked ERPs from the visual right (vr) and visual left (vl) conditions is computed 

Figure 4  

Simulated EEG Data at the Electrode Level 

a. before adding noise 

 

b. after adding noise 

 
Note: The values for each electrode represent the signal that is present at corresponding 

scalp locations after the application of the forward model. The signal for each electrode is 

measured on an amplitude scale of (± 20𝜇V). The presented time frame (0.5 to 2s) displays 

the first trial (visual right presentation condition) from the raw EEG data of one participant. 

The signal for this trial was generated with an amplitude of (60,20) + 0.209𝜇V, and a 

latency of 175 (after the stimulus presentation event at 1s).  
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at each time-space unit (6). Together, the calculated differences become a fourth experimental 

condition to be tested (Subgoal III). For identifying brain lateralization, the difference 

between hemisphere activation was calculated per electrode pair (e.g., PO7-PO8). The value 

at the ipsilateral electrode was subtracted from the contralateral electrode for each time point 

(7). For calculating lateralization of the baseline (Subgoal IV), the right hemisphere was 

always considered contralateral in this condition. The lateralization values calculated for the 

visual right and visual left conditions (Subgoal V) were averaged into one visual stimuli 

lateralization value for each time-space unit (a unique combination of time x electrode pair) 

(8) (van der Lubbe et al., 2019). Since only matching electrode pairs are used instead of 

separate electrodes, the data prepared for lateralization contains less than half of the total 

number of electrodes in the initial data (midline electrodes are also excluded).  

 
(6) 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = uvr − uvl 

 
(7) 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = ucontra − uipsi 

 

(8) 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  
𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑣𝑟 + 𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛vl

2
 

 

Furthermore, different datasets are prepared for analysis based on additional data 

parameters. The sampling rate (time window size) and electrode density determine the 

number of separate time-space units to be tested, which ultimately affects the global test 

performance (Groppe et al., 2011a) (Subgoal VII). Time points are selected for analysis 

depending on the sampling window size: 4 ms, 12 ms, or 20 ms. Electrodes are selected based 

on the montage density: 32, 64, or 86. Higher sampling rate and higher electrode density can 

lead to an increase in data dependencies as the proximity of separate time-space units 

increases. Two more data parameters are defined by the presence or absence of a priori 

assumptions about the location and time interval of the expected effect (Subgoal VII). These a 

priori assumptions affect the global test performance as well (Fields & Kuperberg, 2020; 

Groppe et al., 2011a). For the location assumption, either all electrodes or only the ones 

associated with the visual field (parietal to occipital electrodes) are selected. For the time 

interval assumption, either the whole post stimulus time period is selected (0 – 500 ms) or a 

constrained time frame where a visual ERP is usually expected (50 – 300 ms) (Key et al., 

2005). 
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Analysis 

Successive Time Window  

Mass univariate parametric testing was implemented using one-sample t-tests. A two-

tailed t-test (𝑑𝑓 = 19) was performed at every time-space unit. For the three experimental 

conditions (baseline, visual right, visual left), the value at each time-space unit was tested 

against zero to check for the presence (or lack) of localized signal. When comparing the 

visual right and visual left conditions, the local test against zero checks whether there is a 

significant difference between the two conditions at each time-space unit (time x electrode). 

When testing for lateralization, the local test against zero checks whether there is a significant 

effect between hemisphere activation at each time-space unit (time x electrode pair).  

For implementing the STW approach, the multiple testing was corrected using the 

critical p-value and then the successive window technique was applied (van der Lubbe et al., 

2019). First, the STW critical p-value was calculated based on the desired global significance 

(α = 0.05) and the number of unique time-space units that were tested in each dataset: 

(𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 − 1) ∗  𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠, or (𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 − 1) ∗  𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒 𝑝𝑎𝑖𝑟𝑠 (for lateralization). 

The number of time-space units depends on the data parameters used to prepare each dataset 

(time window size, electrode density and a priori assumptions). The resulting p-value from 

each local test was compared against the calculated critical p-value. If the p-value of a local 

test was lower than the critical p-value, then the effect was considered significant for that 

time-space unit. Afterwards, the local test results were adjusted based on adjacent time 

windows: a local test was considered significant only if the previous or the next test was also 

significant (see Table A2 for example). 

 

Bonferroni 

Mass univariate parametric testing with the Bonferroni correction was implemented 

similarly to the STW approach. One-sample two-tailed t-tests (𝑑𝑓 = 19) were performed to 

check for significant ERP effects at each time-space unit. The Bonferroni critical p-value was 

calculated based on the desired global significance (α = 0.05) and the number of unique time-

space units that were tested in each dataset. If the p-value of a local test was lower than the 

critical p-value, then the effect was considered significant for that time-space unit. 
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Cluster Permutation 

The CP method (Maris & Oostenveld, 2007) was implemented using the default MNE 

functions. First, a parametric two-tailed t-test (α = 0.05) was performed for each time-space 

unit. Secondly, selected time-space units were used to create clusters based on the spatial and 

temporal dependencies of the data. The spatial dependency of the data was modelled by 

generating an adjacency matrix for the electrodes used in each dataset. The number of 

generated clusters varies across datasets, depending on the data parameters used (time 

window size, electrode density and a priori assumptions). Thirdly, cluster-level statistics were 

calculated by summing the t-statistics of all time-space units in a cluster. P-values for each 

cluster were calculated under the permutation distribution of the largest cluster-level statistic 

among all created clusters. Finally, each cluster was tested for significance (α = 0.05) (see 

Table A3 for example).  

 

Evaluation 

Performance Metrics 

The performance of the statistical methods across the different tests (Subgoals I-V) 

was assessed both at the local and global level (Luck & Gaspelin, 2017). The local level 

measures whether the local test significance results match the expected effect at each specific 

time-space unit. The global level measures whether the global test significance matches the 

expected effect in each test condition. The local and global performance of statistical methods 

was assessed in terms of specificity, sensitivity, and precision. These metrics were evaluated 

as error rates (ERs) (Luck & Gaspelin, 2017), extracted from a confusion matrix (see Table 

1). The type I ER (9) was calculated based on the rate of false positives in all negatives and 

represents the complement of specificity, while the type II ER (10) was calculated based on 

the rate of false negatives in all positives and represents the complement of sensitivity. Each 

confusion matrix was created according to the total number of tests, the expected effect from 

the simulation and the results of the statistical methods (see Table A5 for example). 

 

Table 1 

Confusion Matrix 

Tested Effect 

 Present Not Present 

Significant TP FP 

Not Significant FN TN 

Note: TP = true positives, FP = false positives, FN = false 

negatives, TN = true negatives 
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(9) 𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 +  𝑇𝑁
= 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

 

(10) 𝑇𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 =
 𝐹𝑁 

  𝐹𝑁 +  𝑇𝑃 
= 1 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

 

The local ERs were calculated for each dataset separately (see Table A4 for example). 

A local time-space unit was expected to be significant if its location and time matched the 

simulated ERP. The location corresponds to the visual area (parietal to occipital electrodes) 

and the time interval corresponds to the area between ±1.875σ of the gaussian function used 

to generate the ERP wave (100 - 250 ms). This time interval contains signal that is above the 

introduced noise level (ERP components N1, P2), and should therefore test significant. For 

the local level evaluation, statistics (mean and standard deviation) were used to summarize 

ERs across datasets. The mean local type I ER represents the probability for a time-space unit 

with no effect to test as a false positive, while the mean local type II ER represent the 

probability for a time-space unit with a true present effect to test as a false negative. No local 

evaluation can be performed for the CP method, as it is not possible to make statements about 

the significance of specific data units within a significant cluster (Sassenhagen & Draschkow, 

2019). 

The global ERs are calculated across datasets. With global ERs, the performance of 

the STW approach can be compared not only against the parametric Bonferroni correction but 

also against the non-parametric CP method (Subgoal VI) (Groppe et al., 2011b). Global 

significance for each dataset was assessed based on the local test results. A test was 

considered globally significant if at least one local test/cluster was found significant (Luck & 

Gaspelin, 2017). Because of the successive time window criterion that was previously applied 

for the STW approach, a globally significant test always contains at least two successive local 

time-space units that overstepped the critical p-value. On the one hand, a global test was 

expected to be significant in conditions where an effect was indeed present (in the visual 

left/right conditions, the difference, and the lateralization calculated from the two visual 

stimulus conditions). The global type II ER represents the probability for an experiment to 

result in a false negative for these conditions. On the other hand, no effect is present in 

baseline conditions, therefore the global tests for these conditions are not expected to be 

significant. The global type I ER represents the probability for an experiment to result in a 

false positive for a baseline condition where no effect is present. The global type I ER on 

baseline conditions quantifies how well the methods control for the FWER. 
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Furthermore, for the tests where a global effect is identified, statements about the 

boundaries of the effect(s) can be made based on the significant local tests. However, as not 

all significant local tests correspond to true effects, erroneous statements can be made. These 

mistakes are quantified by the FDR (11). FDR is also used to compare the performance of the 

STW approach against the other methods (Subgoal VI). For the STW approach and 

Bonferroni, locally significant tests can be used to indicate at exactly what time-space units an 

effect is present. A significant time-space unit was considered a false positive if its time and 

location do not correspond to the expected signal. For the CP method, the significant clusters 

can be used to indicate a broader spatial-temporal range where an effect can be found. A 

significant cluster was considered a false positive if it contained no time-space units that 

matched the time and location of the expected ERP effect. Therefore, FDR represents the 

probability for a significant local test to contain no true effects. The lower the FDR, the more 

precise statements can be made about the boundaries of a significant global effect. 

 

(11) 𝐹𝐷𝑅 =  
 𝐹𝑃 

𝐹𝑃 + 𝑇𝑃
= 1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

  

Data Parameters 

The effect of data parameters (independent variables) was evaluated for the 

performance of the STW approach (dependent variable) (Subgoal VII). All data parameters 

used to simulate the different datasets were included in this explorative analysis: amplitude, 

noise, band pass filtering, window size, a priori time interval, electrode density, and a priori 

electrode location. The performance of the STW was quantified by the global and local 

metrics (type I, II ERs and FDR). Data parameters were considered discrete variables, while 

the performance metrics are continuous. Therefore, performance metrics were compared 

between the different discrete values of each data parameter.  

 

Critical P-Value Calculation 

The critical p-value is calculated based on the number of local tests that need to be 

performed. The number of local tests varies across datasets based on the selected parameters 

(window size, electrode density, a priori location and a priori time interval). Ideally the 

critical p-value would correct the local significance of tests in such a way that the STW 

approach would perform optimally for any dataset. Therefore, there should be minimal 

correlation between the dataset size (independent variable) and the performance of the STW 

approach (dependent variables). The relation between these two variables was explored 
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through plots and regression analysis (Subgoal VIII). The performance of the STW was 

quantified by the local and global metrics (type I, II ERs and FDR). Both dataset size and the 

performance metrics were considered continuous variables. 
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Results   

 

The resulting ERP signal can be observed in topographic maps and graphs generated 

from the simulated EEG data. The results of the analysis and evaluation of simulated EEG 

data are summarized to assess the performance of the different statistical methods across 

experimental conditions at the local and global level (subgoals I-VI). The impact of data 

parameters and the critical p-value calculation was evaluated for the STW approach (subgoals 

VII-IX). 

 

Simulation 

The EEG simulation contains a total of 864 datasets, defined by seven different data 

parameters (6 amplitudes values x 2 noise values x 2 bandpass values x 3 window size values 

x 2 time interval values x 3 density values x 2 location values). Each dataset contains data for 

the 20 simulated participants under the three defined experimental conditions. The evoked 

ERP signal for one participant, averaged across 20 trials for each condition, can be seen in 

Appendix B. The baseline condition presents no significant ERP activity, with amplitude 

values staying very low (± 0.5 𝜇𝑉), only displaying a random pattern stemming from the 

added noise (see Figure 5a). The visual stimulus presentation conditions show negative and 

positive voltage changes (± 6 𝜇𝑉) around the visual area (parietal to occipital electrodes) at 

160 ms and 200 ms (post stimulus onset), which match the simulated ERP signal (see Figure 

5b,c). However, the location of the activity across the visual area does not show strong 

lateralization between the left and right hemisphere. These aspects of the simulation are 

controlled by the sample subject anatomy (source space, connectivity, forward model and/or 

conductivity). The location and orientation of the ipsilateral and contralateral source lead to 

the signal propagating towards the centre of the visual area (parietal to occipital electrodes). 

The activation for the visual left condition is especially centred around the midline electrodes. 

Furthermore, given spatial and temporal smearing the two ipsilateral and contralateral sources 

are likely to blend together into one observable signal.  
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Figure 5 

Grand Average Topographic Maps 

a. baseline condition 

 
b. visual left condition

 
c. visual right condition

 
Note: Values for each electrode are averaged over trials. This data was generated under the 

following values for data parameters: (60,20) amplitude, high noise, and no band pass filter 

applied. Negativity is plotted downwards.  

 

The signal at the visual POz electrode captures the presence of the simulated ERP 

wave for the visual left and visual right conditions (see Figure 6). The two main ERP peaks 

(N1, P2) are clearly visible around 175 ms after right/left visual stimulus (vs) presentation for 

both conditions. The smaller P1 component is not as clearly distinguishable from noise 

(especially for the visual left stimulus condition). The signal from the baseline condition 

displays only noise level data. The noise levels observed in the final simulated EEG 

recordings fall within estimations of noise picked up by EEG equipment (0.3 to 2 𝜇𝑉) 

(Teplan, 2002). 
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Figure 6 

Grand Average ERP at the POz electrode 

 

Note: Values for each time point are averaged over trials. This data 

was generated under the following values for data parameters: (60,20) 

amplitude, high noise, no band pass filter applied. Negativity is plotted 

downwards. 

 

Local Type I/II Error Rates  

The performance of the STW approach at the local level shows that the method 

sacrifices a lot of sensitivity when testing separate time-space units (see Table 2). On the one 

hand, the type I ER is low for all conditions (𝑀 < 10%,), especially for the baseline, 

difference, and lateralization conditions (𝑀 < 1%,). The slightly higher type I ER for the 

visual stimulus conditions can be an indication that spatial smearing leads to signal being 

spread to time-space units where it is not expected. On the other hand, type II ER is high (𝑀 ≅

56%) for the visual stimulus presentation conditions, and very high when testing for 

lateralization in visual stimulus conditions (𝑀 = 79.58%) and for signal difference between 

visual stimulus conditions (𝑀 = 98.68%). This shows that the STW approach misses most of 

the expected effects at local time-space units. For comparison, almost all local effects are 

missed regardless of condition (𝑀 > 87%) with the Bonferroni correction. 
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Table 2 

Mean Local Error Rates Across Datasets 

condition metric Bonferroni STW 

baseline  
type I ER 0.0001 0.0021 

type II ER - - 

visual left  
type I ER 0.0062 0.046 

type II ER 0.8761 0.5591 

visual right  
type I ER 0.0065 0.0726 

type II ER 0.8942 0.5673 

difference  
type I ER 0.0002 0.0034 

type II ER 0.9999 0.9864 

lateralization 

baseline 

type I ER 0 0.0031 

type II ER - - 

lateralization visual 

stimuli  

type I ER 0.0006 0.0084 

type II ER 0.9584 0.7941 

Note: Type II ERs are not calculated for the baseline conditions as there 

are no false negatives (there are no local effects expected at any time-

space unit). 

 

Global Type I/II Error Rates 

Comparing the performance of the STW approach and other FWER correction 

methods at the global level shows that they can lead to different results depending on the 

tested condition (see Table 3). All methods correctly detect the (left/right) visual stimulus 

conditions in all datasets (Type II ER = 0%). When testing the lateralization from visual 

stimulus conditions, the global type II ER is very low for the STW and CP method (ER <

2%), but higher for the Bonferroni correction (ER = 14%). The CP and Bonferroni method 

fail to correctly identify the difference between the right and left visual conditions in most 

datasets (Type II ER ≅ 90%). While the Bonferroni method simply has very low sensitivity, 

the results for the CP method can be explained by the lack of visible lateralization in the 

simulated data. Since both the visual left and visual right conditions result in activation closer 

to the centre of the visual area (parietal to occipital electrodes), there is no broadly distributed 

difference between the two signal patterns. This makes it difficult for the CP method to detect 

the effect. As the STW approach is more sensitive to localized effects, this method can more 

easily identify localized differences at the time-space unit level (Type II ER = 21.64%).  

Nevertheless, for the STW approach, the sensitivity to localized effects leads to the 

baseline conditions incorrectly testing significant at the global level in about half the datasets 
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(Type I ER baseline = 51.5%, Type I ER lateralization baseline = 45.25%,). This shows that 

there is a random chance for at least one local type I error. Meanwhile, the Bonferroni and CP 

method test correctly for both baseline conditions at the global level (Type I ERs < 5%). This 

shows that generally, when no global effect is expected, the CP method does not produce any 

significant cluster. Therefore, CP and SWT can both identify a global effect under conditions 

where a general effect is expected, but the STW approach is too sensitive to noise when 

testing baseline conditions at the global level. This shows that the STW approach does not 

provide strict control for the FWER. The Bonferroni method provides the desired FWER but 

sacrifices sensitivity. 

 

Table 3 

Global Error Rates 

condition metric  Bonferroni STW CP 

baseline 
type I ER 0.0162 0.515 0.0347 

type II ER - - - 

visual left 
type I ER - - - 

type II ER 0 0 0 

visual right 
type I ER - - - 

type II ER 0 0 0 

difference  
type I ER - - - 

type II ER 0.897 0.2164 0.9144 

lateralization 

baseline 

type I ER 0.0104 0.4525 0.0281* 

type II ER - - - 

lateralization 

visual stimuli 

type I ER - - - 

type II ER 0.14 0.0116 0.0162 

Note: Type II ERs are not calculated for the baseline condition as there are no false 

negatives (no global effect expected), and type I ERs are not calculated for the other tests, 

as there are no false positives (global effect always expected). 

*Value excludes ten datasets for which no clusters could be formed. 

 

False Discovery Rate 

The rate of false positives in globally significant tests depends on the tested condition 

(see Table 4). For the tests where a global effect has been identified in the visual left/right 

conditions, most units/clusters contain true signal (FDR ≅ 25%). Similarly, for the tests where 

a global lateralization effect has been identified in the visual stimulus conditions, almost all 

units/clusters contain true lateralization (FDR < 10%). However, for the difference between 

conditions, more than half of the significant clusters/units are false positives for the CP 
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(66.22%) and Bonferroni (72.47%) methods. The STW approach performs only slightly 

better, with 43% FDR in significant time-space units. Therefore, all methods can be used to 

make fairly precise statements about the boundaries of an effect in visual stimulus conditions 

and lateralization, but neither can be used to make precise statements about the difference 

between visual stimulus conditions. 

 

Table 4 

Mean FDR Across Globally Significant Datasets 

condition Bonferroni STW CP* 

baseline  - - - 

visual left  0.2093 0.2762 0.2206 

visual right  0.2209 0.3285 0.233 

difference  0.7247 0.437 0.6622 

lat. baseline  - - - 

lat. visual stimuli  0.0543 0.0933 0.0695 

Note: Statistics are calculated based on values from globally significant datasets. FDR is 

not calculated for the baseline condition, as any positive is a false positive (M = 1, SD = 0). 

*For the CP method, the values represent the cluster FDR, compared to Bonferroni and 

STW, where the values represent the data unit FDR 

 

The Impact of Data Parameters 

Tables for the evaluation of each parameter can be found in the Appendix C. 

 

Amplitude 

The amplitude value and ratio between contra and ipsilateral activation affects the 

performance of the STW approach. At the local level, datasets with lower amplitude values 

and ratios have lower type I ER and higher type II ER when testing for the presence of signal 

and lateralization. At the global level, type II ER is almost 30% higher for the smallest 

amplitude datasets: (40,20), (60,30), when testing for the difference between visual stimulus 

conditions. Furthermore, even when differences are identified at the global level, the FDR for 

low amplitude datasets is up to 15% higher. Nevertheless, these datasets also have lower FDR 

for identifying the presence signal in visual stimulus conditions. The lower type I ER and 

FDR could be explained by a possible reduction in spatial smearing associated with a lower 

amplitude source signal. Overall, smaller amplitude values and ratios increase the probability 

of missing effects when these expected effects are small but can also allow more precise 
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results when expected effects are larger. Therefore, the STW approach offers less sensitivity, 

but more precision for low amplitude data.  

 

Noise 

The level of noise also affects the performance of the STW approach. At the local 

level, datasets with higher noise have higher type II ER when testing for the presence of 

signal and lateralization. This could be explained by the application of baseline correction: 

lower parts of the true signal get eliminated if average noise levels from the baseline are close 

to signal levels. Then, only the signal corresponding to the tip of ERP peaks (components N1, 

P2) remain after correction. Interestingly, global type I ER is higher for baseline signal and 

lower for baseline lateralization in high noise datasets. This could be explained by the 

subtraction done for the lateralization between the two hemispheres, which most of the time 

will cancel out high noise values. Furthermore, high noise data leads to lower FDR when 

testing for the presence of signal in visual stimulus conditions. Overall, these results show that 

it is more difficult to identify signal in noisy EEG data, but when signal is identified, the 

results might be more precise (potentially corresponding only to signal peak amplitudes). 

Therefore, the STW approach offers less sensitivity, but more precision for high noise data. 

 

Band Pass 

The application of the band pass filter does not seem to clearly affect the performance 

of the STW approach. No differences can be observed at the local level, either in type I ER, 

type II ER or FDR. However, the datasets where a bandpass filter was applied have a 15% 

higher global type I ER on the baseline condition. This suggests that the bandpass filter leads 

to some small local artefacts being introduced, which increase the probability of “at least one 

significant” time-space unit in each dataset. However, these artifacts are too small to impact 

the performance of the STW approach when signal is present in the data. Since there are no 

differences in conditions where an effect is expected, the dependencies between time points 

introduced by temporal smearing do not seem to impact the performance of STW method for 

this experimental setup. 

 

Time Window Size 

The window size affects the performance of the STW approach. While no clear 

differences can be identified at the local level, the window size greatly affects global 

performance. Global type I ERs on the baseline conditions increases for smaller time 
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windows by two (12ms) to four times (4ms). The FDR for difference and lateralization also 

increases for smaller time windows by up to 20%. This shows that small time windows 

increase the number of local type I errors per dataset. However, the largest time window 

(20ms) can lead to almost 50% higher global type II ER when testing for the difference 

between the visual stimulus presentation conditions. These results show that a larger window 

size can result in true effects being missed. This might be a specific problem for the short 

ERP signal simulated in this study. With peaks that are only 50 ms apart, a window size of 20 

ms makes it likely that time points with peak amplitudes are excluded from analysis. 

Additionally, the successive time window comparison used to adjust local significance might 

easily label peak expected signal as not significant because far apart adjacent time windows 

do not include high enough amplitudes. Therefore, smaller time windows decrease specificity 

and precision, but time windows that are too large (relative to signal frequency) decrease the 

sensitivity of the STW approach. 

 

Time interval 

The a priori assumption for the time interval also affects the performance of the STW 

approach. At the local level, type I ERs are higher when testing for the presence of signal in 

the visual stimulus conditions when a priori time assumptions are made. This can be 

explained by the reduction in the total number of time-space units, which leads to a higher 

critical p-value for local tests. However, global type I ERs stay lower for the baseline 

conditions if time assumptions are made. Furthermore, when testing the difference between 

visual stimulus conditions, FDR is also 17% lower. By exclusively testing a time interval 

where an effect is truly present, the ratio between data containing true signal and data 

potentially containing type I errors increases, which improves FDR. Therefore, making 

assumptions about the time interval of an effect can increase the specificity and precision of 

results for the STW approach. 

 

Electrode Density 

Electrode density affects the performance of the STW approach. Higher electrode 

density leads to higher type II ER at the local level when testing for signal and lateralization 

in visual stimulus conditions. This can be explained by the increase in the total number of 

time-space units, which leads to a lower critical p-value for local tests. At the global level, the 

lowest density datasets (31 electrodes) have up to 12% less type I ER on the baseline 

conditions. This shows that using less electrodes decreases the probability of “at least one 
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local type I error” to occur in baseline conditions. Therefore, the STW approach offers more 

specificity and more sensitivity for low electrode density data. 

 

Electrode Locations 

A priori selection of the electrode location highly impacts the performance of the STW 

approach. At the local level, both higher type II ERs and higher type I ERs are observed if no 

location assumptions are made when testing for signal in the visual stimulus presentation 

conditions. Up to 26% higher type I ER can also be observed at the global level for the 

baseline conditions and FDR is up to 50% higher if no location assumptions are made. By 

exclusively testing an area where an effect is truly present, the amount of type I errors coming 

from other locations is reduced. On the one hand, this helps to reduce the impact of noise and 

spatial smearing on results, but on the other hand it makes it impossible to identify related 

effects in other brain areas if they exist (e.g., pre-frontal activation from attentional 

processes). Therefore, a priori location assumptions increase the specificity, sensitivity, and 

precision of results for the STW results. 

 

Critical P-Value Calculation 

Dataset size is correlated with the performance of the STW approach. At the global 

level, there is lower probability for small datasets to test significant at the global level on 

baseline conditions (see Figure 7a,b). Datasets that contain less than 2000 local tests 

(baseline) or 1000 local tests (lateralization baseline), have a probability lower than 50% to 

test as a global false positive. This probability quickly increases to almost 100% for datasets 

with 4000 (baseline) or 2000 (lateralization baseline) local tests. As expected, there is better 

control for the FWER with smaller datasets. However, smaller datasets (<2000) lead to an 

increased probability of global false negatives when testing for very small difference effects. 

The presence of signal and lateralization can be correctly identified regardless of dataset size. 

Furthermore, dataset size is also positively correlated with FDR (see Figure D1). Datasets 

with less than 2000 local tests (baseline), have higher precision (FDR < 40%) for significant 

global tests on conditions where an effect is present. At the local level, there is no clear 

correlation between data size and the local type I/II ER (see Figures D2-3). The higher critical 

p-value for very small datasets (≲ 1000 local tests) seems to decrease local type II ER (by up 

to 10%), while local type I ER is mostly unaffected. 
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Figure 7 

Global Significance Across Datasets 

a. testing for signal 

 
b. testing for lateralization 

 
Note: Dataset size is measured in the total number of time-space units. For each 

data size the percentage of datasets that test significant was computed per 

condition. In both baseline conditions, the percentage of globally significant 

tests is above the desired value (FWER = 5%). The scatter plot has been fitted 

with a logarithmic regression function. 
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With the current critical p-value calculation, the STW approach leads to 2-30 false 

positive time-space units per dataset (𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 7, 𝑆𝐷𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 6,  𝑀𝑙𝑎𝑡.  𝑏𝑎𝑠𝑒. = 5,

𝑆𝐷𝑙𝑎𝑡.  𝑏𝑎𝑠𝑒. = 4). This is equivalent to a very low local type I ER (𝑀 =  0.4%, 𝑆𝐷 = 0.8%) 

for globally significant baseline conditions tested with the STW approach. Nevertheless, this 

only ensures that the STW approach provides GFWER control: the probability that “at least 

15 type I errors” occur at the local level (𝛼 = 0.05) (see Figure 8). Because of the successive 

time window criterion, the GFWER would ensure that there are no more than seven pairs (15 

÷ 2) of successive units.  

 

Figure 8 

Distribution of False Positive Count in Baseline Conditions Across Datasets 

a. baseline 

 

b. lateralization baseline 

 

Note: The GFWER ensures that only 5% of datasets have at least the number of false 

positives exceeding the 95% quantile (dotted bar). 

 

To ensure strict FWER correction, the critical p-value should be adjusted according to 

the specific dataset to be tested. The datasets where a higher number of local tests was 

performed (> 2000) have a lower critical p-value (see Figure 9). However, this lower critical 

p-value does not seem to be proportionate to the increase in dataset size, therefore global type 

I ER is not properly corrected for in large datasets. Besides the number of tested time-space 

units, the signal-to-noise ratio can affect local and global test results. As it cannot be 

established beforehand how noisy the data is, the critical p-value should be adjusted for each 

dataset separately, such that noise does not test significant. In practice, this can be done by 

first evaluating the baseline rest state condition (which should contain only noise), before 

testing for effects in conditions which are expected to contain signal. A wide range of critical 

p-values can be tested on the baseline, to establish which one is optimal for FWER control. 

To ensure that type II ERs will also stay low, the largest critical p-value (which still controls 

the FWER) should always be selected. Otherwise, too much sensitivity might be sacrificed. 
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Therefore, an iterative process can be used to determine the optimal critical p-value by slowly 

decreasing the value until no more local type I errors occur on the baseline condition (see 

Appendix E).  
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Discussion 

 

This study aimed to validate the STW approach for solving the multiple testing 

problem in ERP research. The performance of the STW approach was quantified through 

specificity, sensitivity, and precision metrics, and compared against existing FWER control 

methods. The study also aimed to explore the impact of data dependencies, a priori 

assumptions, and the signal-to-noise ratio on the performance of the STW approach. Lastly, 

the study aimed to suggest improvements for the calculation of the critical p-value such that 

optimal performance is achieved across varying datasets. 

 

Findings 

The validity of the STW approach was assessed according to the first five subgoals of 

this research. First, although very little type I errors occur at the local level (type I ER < 1%), 

there is a random chance that “at least one type I error” occurs when testing a baseline 

condition (FWER ~ 50%). The STW approach cannot identify the absence of signal or the 

absence of lateralization in baseline data (Subgoal I, IV). Therefore, this method does not 

offer strict FWER control. Nevertheless, it can provide better control for the GFWER: the 

probability that “at least 15 type I errors” occur at the local level. Next, although a lot of local 

effects are missed (type II ER ~ 60%), the STW approach can identify that a signal is present 

in the visual left/right stimulus presentation conditions, and that there is lateralization between 

the two conditions (Subgoals II, V). The identified local effects can be used to determine the 

time and location of the signal (with FDR ~ 30%) and the time and location of lateralization 

(with FDR < 10%). Therefore, the STW approach is a precise statistical method for 

identifying the presence of ERP effects, but it does not offer much sensitivity. Lastly, the 

STW approach can identify that there is a difference between the two visual stimuli 

presentation conditions (global type II ER). However, it cannot determine the precise 

difference (FDR = 43%) because most local effects are missed (type II ER = 98%). Therefore, 

it cannot be validated whether this method can identify the difference between two visual 

stimulus presentation conditions given the data used in this simulation (Subgoal IV). 

For comparison (Subgoal VI), the CP method (Maris & Oostenveld, 2007) can control 

the FWER (<5%) in baseline data, it can identify the presence of signal and lateralization, and 

similar to the STW approach, it cannot identify the difference between visual stimulus 

conditions either. Nevertheless, the two methods are fundamentally very different. On the one 

hand, the CP method is less sensitive to noise at the local level, which leads to better FWER 
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control, but it sacrifices precision. As data resolution gets lost in the cluster forming step, the 

precision within clusters cannot be determined. It cannot be said how many or which time-

space units within a true positive cluster represent true local effects (Sassenhagen & 

Draschkow, 2019). On the other hand, the STW approach is susceptible to the presence of 

some local type I errors because of the high number of tests performed at the time-space unit 

level. However, this method provides higher overall precision. As long as the number of local 

type I errors stays low, the boundaries of an existing effect can be specified at the level of 

time-space units with the STW approach. Additionally, Bonferroni provides FWER similar to 

the CP method, and precision similar to the STW method, however it sacrifices too much 

sensitivity (local type II ER >87%). Therefore, the cluster-permutation method is better at 

identifying whether an effect is present or not, while the STW approach is better at identifying 

the boundaries of an effect. Bonferroni can only identify very high amplitude peaks of ERP 

components. 

Furthermore, the performance of the STW was assessed for various data parameters 

(Subgoal VII). It is not clear whether the application of a mild bandpass filter (0.1, 30 Hz) 

(Tanner et al., 2015) impacted the performance of the STW approach, but all other data 

parameters clearly did. Firstly, a lower signal-to-noise ratio (determined by low amplitude 

values or high noise values) decreases the sensitivity of results and increases precision. This 

suggests that only high amplitude ERP peaks might be identified in data with low signal-to-

noise ratio. Secondly, sensitivity was also lower when window size was larger. Groppe et al., 

(2011a) recommends down sampling EEG data, however this does not improve the 

performance of mass univariate tests if the effect does not span across a wider time range, like 

in the case of early ERP components simulated in this study. However, a window size that is 

too small can decrease both specificity and precision, as more false positives arise. A similar 

effect can be observed for the spatial dimension as well. Lower electrode density increases 

both sensitivity and precision of the STW approach. These results suggest that data with less 

dependencies (lower sampling rate or lower electrode density) is associated with higher 

precision. Lastly, the results of this study support existing findings that even broadly defined a 

priori assumptions increase the performance of mass univariate testing (Fields & Kuperberg, 

2020). Time and location a priori highly increase sensitivity, precision, and specificity of the 

STW approach. A priori location assumptions had by far the greatest impact of all data 

parameters, but they cannot be used in the case of fully exploratory research (Groppe et al., 

2011a).  
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Finally, the calculation of the critical p-value seems to allow too many false positives 

when the number of tested time-space units is high. FWER and FDR are positively correlated 

with dataset size. However, it is not clear if the critical p-value has a strong effect on 

performance, or if the observed correlations are affected by a third variable as well. A priori 

assumptions proved to influence the performance of the STW approach, by focusing testing 

on the time-space units where an effect is indeed expected. Therefore, a priori assumptions 

could influence the relation between the critical p-value calculation and performance metrics 

(global ERs, FDR) as a confounding or moderating variable (see Figure 9). A priori 

assumptions influence both how many local tests are performed, and exactly what time-space 

units are tested.  

 

Figure 9 

The Possible Effect of A Priori Assumptions on the Relation Between the Critical P-

Value Calculation and Performance Metrics 

 

a. confounding 

 

b. moderating 

 

Note: The use of a priori assumptions highly reduces dataset size. The smallest 

datasets, associated with higher performance are defined by the use of a priori 

assumptions. Therefore, the observed correlations between critical p-value (defined 

by dataset size) and performance metrics might be caused (or at least moderated) by 

the use of a priori assumptions. 

 

Finally, to ensure that data size and the signal-to-noise ratio is accounted for, the p-

value should be empirically adjusted based on rest state EEG before testing for ERP effects in 

experimental data. This introduces additional computation steps to the analysis of EEG data, 

but it ensures that the STW approach is tailored to the data at hand. An empirically selected p-

value could improve STW performance and the interpretation of results. By adjusting the p-

value to the noise level in baseline conditions, specificity and precision of results can be 

maximized. However, this does not solve the problem of reduced sensitivity.  
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Contributions to the Field of ERP Studies 

 Based on the results of this study, recommendations can be made for future 

exploratory ERP research. First, the STW approach has the potential of being a valid FWER 

control method for solving the multiple testing problem. If the critical p-value was empirically 

adjusted to the noise level in baseline data, the method could achieve very high specificity and 

precision. With the critical p-value calculation proposed by van der Lubbe et al. (2014, 2019) 

the method cannot ensure strict FWER control, but it yields better precision than the CP 

method (Maris & Oostenveld, 2007) and more sensitivity than the classic Bonferroni 

correction. A researcher should make a choice about which method to use depending on the 

aim of the ERP study, and the type of effect that is expected. The CP method is most suitable 

when the focus is on simply identifying the presence or absence of an effect at the global 

level. Bonferroni is most suitable for identifying high amplitude peaks of ERP components. 

The STW approach sacrifices specificity but can offer the sensitivity and precision needed for 

identifying the boundaries of ERP effects. Furthermore, if broad assumptions can be made 

about the time and especially location of the expected effect, they should be used to improve 

performance of the STW approach. The CP method could be used to first check whether an 

effect is present or not, and then use the STW approach to identify the specific boundaries of 

the effect on a priori selected electrodes from a significant cluster. 

Furthermore, the methodology used in this study can provide a blueprint for extensive 

validation testing. The MNE Python library (Gramfort et al., 2013) proved to be a useful and 

complete tool for creating Monte Carlo simulations to measure the performance of statistical 

methods used in EEG analysis. Firstly, synthetic ERP signal can be freely designed from 

scratch, neural sources can be drawn from sample subject anatomy, and realistic forward 

modelling and noise can be used to generate scalp level EEG data. Secondly, the library 

provides extensive data processing options that allow the creation of a wide range of EEG 

datasets. Researchers can turn to similar methodology to thoroughly validate other existing 

methods under a wide range of data parameters. The methodology of this study can be fully 

reproduced (Paul et al., 2021), and future studies can be run by editing parameters in the 

source code (Coroiu, 2022). 

 

Limitations 

Firstly, this research was limited to comparing parametric methods against non-

parametric methods only at the global level. Since the CP method (Maris & Oostenveld, 

2007) cannot be used to make statements about the significance of individual data units, it is 
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not possible to compare the sensitivity and precision of this method against the STW and 

Bonferroni approach at the local level. The precision calculated for the CP methods only 

measures the cluster-level precision (the number of significant clusters that contain at least 

one time-space unit with true signal). By definition, the precision within a cluster cannot be 

assessed. Sassenhagen & Draschkow (2019) assessed the temporal sensitivity of the CP 

method by taking the earliest time point within a cluster. This study did not extend to 

qualitatively assessing the identified boundaries of ERP effects. The metrics used in this 

research simply provide quantitative measures of error rates, but it is still unknown where 

exactly these errors occur and what specific consequences they have on the interpretation of 

results (e.g., by how much is an ERP effect underestimated?).  

Secondly, the simulated signal was limited to the earlier components of the visual 

ERP. These components are associate with an attentional (orienting) effect (di Russo et al., 

2003) and low-level processing of visual stimuli (Key et al., 2005; Woodman, 2010). These 

components are also characterized by shorter peaks, making the effect in the EEG data much 

more localized in time. In contrast, the later ERP components, associated with higher level 

processing (e.g., stimuli recognition) (Key et al., 2005; Woodman, 2010), have a much longer 

duration. Introducing later visual ERP components can change the performance of statistical 

methods. For example, the CP method is expected to be more suitable if the effect is broadly 

distributed over time (Groppe et al., 2011a).  

Thirdly, it is not clear how to simulate fully synthetic and realistic EEG noise. The 

noise in this study was simulated based on the examples provided by MNE (Bekthi et al., 

2022). However, other methods exist in the literature. Most commonly, real noise was 

obtained from experimental recordings of participants in resting state (Fields & Kuperberg, 

2020; Groppe et al., 2011b). With this approach, a synthetic ERP is added on top of existing 

EEG data. However, when testing the FWER control, it is crucial to be certain that the 

recorded data does not contain any real ERP signal. To simulate baseline EEG data from 

scratch, other, more complex methods can be employed for creating realistic EEG noise (e.g., 

Barzegaran et al., 2019). As EEG noise is not fully understood, the noise simulated in this 

study cannot be clearly validated. 

Lastly, this research was limited to the anatomy of one subject. The source location 

and tissue conductivity were based on the MNE sample head data. The locations of the 

ipsilateral and contralateral source were very close together. Therefore, the simulated EEG 

data in all the 20 simulated subjects presented reduced lateralization. This highly influenced 

the results when testing the difference between right/left visual stimulus presentation 
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conditions. The activation patterns from the two conditions were very similar, making it 

difficult for all methods to distinguish between them. Furthermore, Woodman (2010) 

highlights that individual differences in ERP arise from differences in brain tissue. In this 

study, some variation was introduced in the source signal for each simulated participant by 

modifying the generated ERP wave, however more realistic variation between participants 

can only be introduced by using different head models. Additionally, differences in IHTT 

delay between participants were observed in previous research (Moes et al., 2007), but not 

modelled in this simulation.  

 

Recommendations for Future Research 

The multiple testing problem can be considered a binary classification problem. 

Statistical methods for EEG data analysis used in ERP research aim to classify each data unit 

(or cluster) under one of two labels: signal or noise. Therefore, validation studies in this field 

can benefit from the methodology used in validation studies in the field of machine learning. 

Existing simulation studies used for assessing the performance of FWER methods (Fields & 

Kuperberg, 2020; Groppe et al., 2011b) are focused on concepts from classical hypothesis 

testing: type I and type II error rates. However, other metrics can be used to quantitatively 

assess how well a method performs in discriminating signal from noise. The traditional 𝐹1 

score can be a much more useful metric for assessing the balance between sensitivity and 

precision. Accuracy should not be used, as it is not guaranteed that the number of data units 

containing signal is equal to the number of data units containing noise. Additionally, the 

Matthews correlation coefficient (Chicco & Jurman, 2020) has been recently proposed as a 

better alternative to the 𝐹1 score for imbalanced data.  

Qualitative assessment can be performed for comparing the performance of the STW 

approach to other existing methods. Future research can focus on evaluating how well 

statistical methods estimate the onset and offset of an ERP, and how well they can localize the 

effect in space. Sassenhagen & Draschkow (2019) highlight that different implementations of 

the cluster-permutation method offer varying degrees of precision for the spatial and temporal 

dimension of results. Additionally, future research could evaluate how precisely statistical 

methods can identify the separate ERP components. An important aspect to investigate is how 

spatial and temporal smearing affects the identification of ERP components, as the signal 

coming from different ERP peaks can blend at the scalp level (Burle et al., 2015). 

The proposed critical p-value baseline adjustment can be tested using the data and 

metrics from this study. The calculated critical p-value will depend on the noise level present 
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in baseline conditions. With high noise datasets it might sacrifice too much sensitivity, 

behaving similarly to Bonferroni. Future research can evaluate how the noise level and critical 

p-value affect the performance of the STW. For visualization, Receiver Operating 

Characteristic (ROC) curves could be used to plot the binary classification ability of the STW 

window as the critical p-value varies. Additionally, interaction effects between the different 

data parameters can be assessed in future research. This can help determine how big the effect 

of data size and dependencies (defined by time window size and electrode density) is 

compared to the effect of using a priori assumptions. 

The STW approach relies on the assumption of data independence, which is not 

correct. Underlying properties of the data are not accounted for in the parametric tests 

performed for this method. Data dependencies introduced by spatial and temporal smearing at 

the scalp level (Burle et al., 2015) can decrease the precision of results. Furthermore, data 

dependencies exist at the participant and trial level (latency and amplitude for the simulated 

EEG data in this study). However, trial level variation gets lost with averaging of data points 

into time-space units per participant, and participant level variation gets lost with the 

parametric test performed. Bayesian statistical methods that factor in all these data 

dependencies might prove more suitable for identifying the presence and boundaries of ERP 

effects in EEG data (Wu et al., 2016). The performance of Bayesian methods can be evaluated 

in future research following the same simulation methodology. 

More extensive Monte Carlos simulations can be created using a wider range of data 

parameters and data parameter values. For example, the same research could be performed for 

peripheral auditory stimulus conditions, such that the source dipole signal would be located 

more laterally within the brain. ERPs of various durations (containing components of different 

shapes) can be simulated, to evaluate the performance of methods in recognizing broader 

effects. Realistic EEG data can be simulated using real baseline noise, or other computational 

techniques for generating synthetic noise. Furthermore, with different head models, the 

performance of the STW approach and other methods can be assessed for testing differences 

between participant groups.  

 

Conclusion 

This study evaluated the performance of the STW approach against the CP method 

and the Bonferroni correction for identifying ERP effects. Both the CP method and 

Bonferroni offer better FWER control, but the STW approach can offer more sensitivity and 

precision for identifying ERP effects. Even if they are broadly defined, a priori assumptions 



39 

about the location of the expected effects should be used as they can improve the performance 

of the STW approach. In a fully exploratory setting, the CP method could be used to define a 

priori assumptions about an effect before using the STW method. For better FWER control, 

the critical p-value could be adjusted according to baseline data. To evaluate the performance 

of the STW in identifying the boundaries of ERP effects, qualitative assessment of the results 

should be performed. Furthermore, the field of ERP research could benefit from using newer 

techniques like Bayesian methods that can account for data dependencies or using metrics 

from machine learning to assess the performance of statistical methods. Lastly, future 

research can use the methodology of this study to create simulated EEG data and evaluate the 

performance of mass univariate statistical methods under more data parameters. 
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Glossary 

 

This glossary summarizes the definitions of statistical metrics used to evaluate the 

performance of statistical methods employed in this study (see Table 5). 

 

Table 5 

Glossary of Statistical Metrics 

Term Definition 

False Discovery Rate 

(FDR) 

the rate of false positives in all positive (significant) results 

false negative or  

type II error  

a test which was expected to be positive (effect present), but 

resulted negative (no significant effect) 

false negative rate or 

type II error rate  

the rate of false negatives in all tests expected positive (effects 

present); the probability of missing an effect 

false positive or  

type I error 

a test which was expected to be negative (effect not present), but 

resulted positive (significant effect) 

false positive rate or 

type I error rare 

the rate of false positives in all tests expected negative (effects 

not present); the probability of identifying a “bogus effect”  

Family Wise Error Rate 

(FWER) 

the probability of having at least one false positive result in a 

“family” of simultaneous tests; the rate of tested datasets which 

contain at least one false positive data units/clusters 

Generalized Family 

Wise Error Rate 

(GFWER) 

the probability of having at least p false positive results in a 

“family” of simultaneous tests; the rate of tested datasets which 

contain at least p false positive data units/clusters (with p є N, p < n, 

where n is the total number of data units/clusters in the dataset) 

global type I error a dataset which was expected to be negative (conditions with no 

effects present: baseline data) but resulted positive (there was at 

least one significant data unit/cluster in the dataset) 

global type I error rate the rate of false positive datasets in all datasets expected negative 

(conditions with no effects present: baseline data); equivalent to 

FWER 

global type II error a dataset which was expected to be positive (conditions where 

effects are present: right/left visual stimulus, difference, 

lateralization), but resulted negative (there was no significant 

data unit/cluster in the dataset) 

global type II error rate the rate of false negative datasets in all datasets expected positive 

(conditions where effects are present: right/left visual stimulus, 

difference, lateralization) 

local type I error a data unit which was expected to be negative (time and location 

do not correspond to a true effect), but resulted in a positive (a 

significant effect at this combination of time and space) 

local type I error rate the rate of false positive data units in all data units expected 

negative (time and location do not correspond to a true effect) 



41 

local type II error a data unit which was expected to be positive (time and location 

correspond to a true effect), but resulted in a positive (no 

significant effect at this combination of time and space) 

local type II error rate the rate of false positive data units in all data units expected 

positive (time and location correspond to a true effect) 

precision the rate of true positives in all positive results; the complement of 

FDR (the lower the FDR, the higher the precision) 

resolution the number of units used to represent the dataset; EEG temporal 

resolution is determined by the sampling rate (time window size), 

while EEG spatial resolution is determined by electrodes density 

(the number of electrodes used); the cluster-based permutation 

method reduces the initial resolution of EEG data to the number 

of formed clusters 

sensitivity the rate of true positives in all tests expected positive; the 

complement of type II error rate (the lower the type II ER, the 

higher the sensitivity) 

specificity the rate of true negatives in all tests expected negative; the 

complement of type I error rate (the lower the type I ER, the 

higher the specificity) 
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Appendix A  

Example Processing, Analysis and Results Data 

 

Table A1 

Example of Prepared Data  

part time (ms) electrode voltage (µV) 

1 0 C3 0.185332 

1 0 C4 0.570573 

1 0 CP3 0.456645 

1 0 CP4 0.074455 

1 0 CPz -0.42881 

1 0 Cz -0.16973 

1 0 F3 1.353519 

1 0 F4 -0.27631 

1 0 F7 0.586506 

1 0 F8 0.415466 

1 0 FC3 0.713648 

1 0 FC4 0.690223 

1 0 FCz 0.615512 

1 0 FT7 0.532583 

… … … … 

20 500 F8 -0.54578 

20 500 FC3 -0.54716 

20 500 FC4 0.282355 

20 500 FCz 0.871459 

20 500 FT7 0.470344 

20 500 FT8 0.517057 

20 500 Fp1 -0.63602 

20 500 Fp2 -0.34879 

20 500 Fpz 0.814388 

20 500 Fz -0.19965 

20 500 O1 0.844423 

20 500 O2 0.452424 

20 500 Oz 0.337198 

20 500 P3 -0.85392 

20 500 P4 0.605701 

20 500 P7 -0.62579 

20 500 P8 -0.41356 

20 500 Pz 0.990291 

20 500 T7 0.536308 

20 500 T8 -0.91903 

20 500 TP7 -0.11419 

20 500 TP8 -1.83971 

Note: For each participant, an amplitude value was stored 

for every time-space unit. These participant level values 

were obtained by averaging data across trials. The data 

here was prepared for testing the visual left condition 



47 

 

Table A2 

Example Analysed Data with the Successive Time Window Approach  

time (ms) electrode p-val crit. p-val crit p-val reject window reject 

… … … … … … 

144 Fpz 0.011706 0.004365 FALSE FALSE 

156 Fpz 0.00615 0.004365 FALSE FALSE 

168 Fpz 0.004139 0.004365 TRUE FALSE 

180 Fpz 0.049426 0.004365 FALSE FALSE 

192 Fpz 0.713878 0.004365 FALSE FALSE 

… … … … … … 

108 POz 0.961938 0.004365 FALSE FALSE 

120 POz 0.142793 0.004365 FALSE FALSE 

132 POz 0.003601 0.004365 TRUE TRUE 

144 POz 0.001023 0.004365 TRUE TRUE 

156 POz 0.000026 0.004365 TRUE TRUE 

168 POz 0.000109 0.004365 TRUE TRUE 

180 POz 0.03771 0.004365 FALSE FALSE 

… … … … … … 

Note: A two-tailed t-test was performed at each time-space unit using the calculated critical 

p-value for the prepared dataset (here window size = 12 ms, electrode density = 64, no a 

priori assumptions, testing condition = visual left). The results of the t-test were then 

corrected based on the successive time window criterion. The results in the final column 

represent the significance for each time-space unit. 

 

 

Table A3 

Example Analysed Data with the Classic Bonferroni Correction  

time (ms) electrode p-val crit. p-val crit p-val reject 

… … … … … 

144 Fpz 0.011706 0.0000186 FALSE 

156 Fpz 0.00615 0.0000186 FALSE 

168 Fpz 0.004139 0.0000186 FALSE 

180 Fpz 0.049426 0.0000186 FALSE 

192 Fpz 0.713878 0.0000186 FALSE 

… … … … … 

108 POz 0.961938 0.0000186 FALSE 

120 POz 0.142793 0.0000186 FALSE 

132 POz 0.003601 0.0000186 FALSE 

144 POz 0.001023 0.0000186 FALSE 

156 POz 0.000026 0.0000186 FALSE 

168 POz 0.000109 0.0000186 FALSE 

180 POz 0.03771 0.0000186 FALSE 

… … … … … 

Note: A two-tailed t-test was performed at each time-space unit using the Bonferroni 

critical p-value for the prepared dataset (here window size = 12 ms, electrode density 

= 64, no a priori assumptions, testing condition = visual left). The results in the final 

column represent the significance for each time-space unit.  
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Table A4 

Example Analysed Data with the Cluster Permutation Method 

cluster data units p-val crit. p-val significant 

1 [[12, 'T9']] 1 0.05 FALSE 

2 [[36, 'AF8']] 1 0.05 FALSE 

3 [[36, 'PO4'], [48, 'PO4']] 1 0.05 FALSE 

4 [[36, 'Pz']] 1 0.05 FALSE 

… … … … … 

14 

[[228,'CP1'], [192,'CP2'], [204,'CP2'],  

[216, 'CP2'], [240, 'CP3'], [204, 'CP4'],  

[204, 'CP5'], [216, 'CP5'], [228, 'CPz'], 

[240, 'CPz'], [252, 'CPz'], [204, 'Iz'],  

[216, 'Iz'], [228, 'Iz'], [240, 'Iz'], [204, 'O1'], 

[216, 'O1'], [228, 'O1'], [240, 'O1'], [204, 'O2'], 

[216, 'O2'], [228, 'O2'], [240, 'O2'], [252, 'O2'], 

[204, 'Oz'], [216, 'Oz'], [228, 'Oz'], [240, 'Oz'], 

[204, 'P1'], [216, 'P1'], [228, 'P1'], [240, 'P1'], 

[204, 'P2'], [216, 'P2'], [228, 'P2'], [240, 'P2'], 

[204, 'P3'], [216, 'P3'], [228, 'P3'], [240, 'P3'], 

[252, 'P3'], [204, 'P4'], [216, 'P4'], [228, 'P4'], 

[240, 'P4'], [252, 'P4'], [204, 'P5'], [216, 'P5'], 

[228, 'P5'], [240, 'P5'], [252, 'P5'], [204, 'P6'], 

[216, 'P6'], [228, 'P6'], [204, 'P7'], [216, 'P7'], 

[240, 'P7'], [192, 'P8'], [204, 'P8'],  

[204, 'PO3'], [216, 'PO3'], [228, 'PO3'],  

[240, 'PO3'], [204, 'PO4'], [216, 'PO4'],  

[228, 'PO4'], [240, 'PO4'], [216, 'PO7'],  

[228, 'PO7'], [204, 'PO8'], [216, 'PO8'],  

[228, 'PO8'], [204, 'POz'], [216, 'POz'],  

[228, 'POz'], [240, 'POz'], [204, 'Pz'], [216, 'Pz'], 

[228, 'Pz'], [240, 'Pz']] 

0.001953 0.05 TRUE 

… … … … … 

41 [[36, 'AF4']] 1 0.05 FALSE 

42 [[48, 'C4'], [48, 'C6'], [60, 'C6']] 0.996094 0.05 FALSE 

43 [[48, 'CPz'], [60, 'CPz'], [72, 'CPz']] 0.984375 0.05 FALSE 

44 [[48, 'F7']] 1 0.05 FALSE 

… … … … … 

Note: Data units with significant t-values were clustered according to temporal and spatial 

proximity. A p-value was calculated for each created. Clusters with p-values smaller than the 

critical p-value are considered significant. The results presented here come from a dataset 

prepared with window size = 12 ms, electrode density = 64, no a priori assumptions, testing 

condition = visual left. 



 

 

Table A5 

Example Results Successive Time Window Approach 
window 

size  

time 

a priori 

electrode 

density 

location 

a priori 
condition crit p-val total positives 

global 

significant 
TP FP TN FN 

Type I 

ER 

Type II 

ER 

4 TRUE 86 TRUE baseline 0.005324 1764 0 FALSE 0 0 1764 0 0 0 

4 TRUE 86 TRUE visual right 0.005324 1764 345 TRUE 337 8 692 727 0.011429 0.683271 

4 TRUE 86 TRUE visual left 0.005324 1764 346 TRUE 346 0 700 718 0 0.674812 

4 TRUE 86 TRUE difference 0.005324 1764 7 FALSE 5 2 698 1059 0.002857 0.995301 

4 TRUE 86 FALSE baseline 0.003038 5418 14 FALSE 0 14 5404 0 0.002584 0 

4 TRUE 86 FALSE visual right 0.003038 5418 419 TRUE 300 119 4235 764 0.027331 0.718045 

4 TRUE 86 FALSE visual left 0.003038 5418 430 TRUE 289 141 4213 775 0.032384 0.728383 

4 TRUE 86 FALSE difference 0.003038 5418 12 FALSE 3 9 4345 1061 0.002067 0.99718 

4 TRUE 64 TRUE baseline 0.00664 1134 0 FALSE 0 0 1134 0 0 0 

4 TRUE 64 TRUE visual right 0.00664 1134 274 TRUE 263 11 439 421 0.024444 0.615497 

4 TRUE 64 TRUE visual left 0.00664 1134 254 TRUE 254 0 450 430 0 0.628655 

4 TRUE 64 TRUE difference 0.00664 1134 10 FALSE 6 4 446 678 0.008889 0.991228 

4 TRUE 64 FALSE baseline 0.003521 4032 13 FALSE 0 13 4019 0 0.003224 0 

4 TRUE 64 FALSE visual right 0.003521 4032 320 TRUE 232 88 3260 452 0.026284 0.660819 

4 TRUE 64 FALSE visual left 0.003521 4032 341 TRUE 211 130 3218 473 0.038829 0.69152 

4 TRUE 64 FALSE difference 0.003521 4032 7 FALSE 3 4 3344 681 0.001195 0.995614 

4 TRUE 31 TRUE baseline 0.00996 504 0 FALSE 0 0 504 0 0 0 

4 TRUE 31 TRUE visual right 0.00996 504 128 TRUE 116 12 188 188 0.06 0.618421 

4 TRUE 31 TRUE visual left 0.00996 504 119 TRUE 119 0 200 185 0 0.608553 

… … … … … … … … … … … … … … … 

Note: The confusion matrix values and subsequent performance metrics (type I, II ER, FDR) are calculated for each dataset according to the 

results of the different analysis method. A dataset is defined by the data parameters used to simulate and process the synthetic EEG recordings. 

Confusion Matrices are calculated per condition.



 

 

Appendix B 

ERP visualisation 

 

Figure B1 

Topographic Map for Participant 1 

a. baseline condition 

 
b. visual left condition

 
c. visual right condition

 
Note: Values for each electrode are averaged over trials. This data was generated 

under the following values for data parameters: (60,20) amplitude, high noise, and no 

band pass filter applied. Negativity is plotted downwards. 
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Figure B2 

Average ERP at the POz electrode for Participant 1 

 

Note: Values for each time point are averaged over trials. This data 

was generated under the following values for data parameters: (60,20) 

amplitude, high noise, no band pass filter applied. Negativity is plotted 

downwards.  
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Appendix C 

The Impact of Data Parameters on Performance Metrics 

 

Observed differences between parameter values (𝑣 ) have been highlighted for local 

level type I/II ERs (𝑣𝑖 − 𝑣𝑗 > 5%), global level type I/II ERs ( 𝑣𝑗 − 𝑣𝑗 > 10%), and for FDR 

(𝑣𝑖 − 𝑣𝑗 > 10%). 

 

Amplitude 

 

Table C1 

Mean Local ERs by Amplitude Value 

condition metric  (40, 20) (60, 30) (60, 20) (80, 40) (80, 30) (80, 20) 

baseline  
type II ER - - - - - - 

type I ER 0.0028 0.0025 0.0009 0.0011 0.0029 0.002 

visual left  
type II ER 0.5968 0.5743 0.5576 0.5536 0.5397 0.5328 

type I ER 0.0273 0.0379 0.0463 0.0471 0.0554 0.0622 

visual right  
type II ER 0.6028 0.5856 0.5632 0.5611 0.5536 0.5377 

type I ER 0.0447 0.0615 0.072 0.08 0.0837 0.0936 

difference  
type II ER 0.9959 0.9855 0.9946 0.9714 0.9819 0.9888 

type I ER 0.0023 0.0035 0.0026 0.0041 0.005 0.003 

lateralization 

baseline 

type II ER - - - - - - 

type I ER 0.0025 0.0034 0.0024 0.0038 0.0047 0.0016 

lateralization 

visual stimuli  

type II ER 0.8791 0.7837 0.8419 0.7885 0.7521 0.719 

type I ER 0.0051 0.0062 0.0093 0.0135 0.0075 0.0089 

Note: Type II ERs are not calculated for the baseline conditions as there are no false 

negatives (there are no local effects expected at any time-space unit). 
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Table C2 

Global ERs by Amplitude Value 

condition metric (40, 20) (60, 30) (60, 20) (80, 40) (80, 30) (80, 20) 

baseline  
type II ER - - - - - - 

type I ER 0.5972 0.3681 0.5764 0.5208 0.6111 0.4167 

visual left 
type II ER 0 0 0 0 0 0 

type I ER - - - - - - 

visual right 
type II ER 0 0 0 0 0 0 

type I ER - - - - - - 

difference 
type II ER 0.3681 0.3542 0.1528 0.3125 0.0833 0.0278 

type I ER - - - - - - 

lateralization 

baseline 

type II ER - - - - - - 

type I ER 0.4444 0.4167 0.4444 0.5208 0.4931 0.3958 

lateralization 

visual stimuli  

type II ER 0.0694 0 0 0 0 0 

type I ER - - - - - - 

Note: Type II ERs are not calculated for the baseline condition as there are no false 

negatives (no global effect expected), and type I ERs are not calculated for the other 

tests, as there are no false positives (global effect always expected). 

 

Table C3 

Mean FDR by Amplitude Value 

condition (40, 20) (60, 30) (60, 20) (80, 40) (80, 30) (80, 20) 

baseline - - - - - - 

visual left 0.2115 0.2801 0.2597 0.3169 0.3061 0.2829 

visual right 0.2469 0.3275 0.3176 0.3701 0.3558 0.3531 

difference 0.6667 0.5429 0.3814 0.3514 0.4528 0.3114 

lat. baseline - - - - - - 

lat. visual stimuli 0.0975 0.0993 0.0808 0.0956 0.0926 0.0941 

Note: Statistics are calculated based on values from globally significant 

datasets. FDR is not calculated for the baseline condition, as any positive 

is a false positive (M = 1, SD = 0). 
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Noise 

 

Table C4 

Mean Local ERs by Noise Value 

condition metric high low 

baseline  
type II ER - - 

type I ER 0.0024 0.0017 

visual left  
type II ER 0.5911 0.5272 

type I ER 0.0298 0.0623 

visual right  
type II ER 0.606 0.5287 

type I ER 0.0436 0.1016 

difference 

 

type II ER 0.9888 0.984 

type I ER 0.0024 0.0045 

lateralization 

baseline 

type II ER - - 

type I ER 0.0025 0.0037 

lateralization 

visual stimuli  

type II ER 0.8247 0.7634 

type I ER 0.0047 0.0121 

Note: Type II ERs are not calculated for the baseline conditions 

as there are no false negatives (there are no local effects expected 

at any time-space unit). 

 

Table C5 

Global ERs by Noise Value 

condition metric high low 

baseline  
type II ER - - 

type I ER 0.5694 0.4606 

visual left  
type II ER 0 0 

type I ER - - 

visual right  
type II ER 0 0 

type I ER - - 

difference  
type II ER 0.2546 0.1782 

type I ER - - 

lateralization 

baseline 

type II ER - - 

type I ER 0.4005 0.5046 

lateralization 

visual stimuli  

type II ER 0.0231 0 

type I ER - - 

Note: Type II ERs are not calculated for the baseline condition as there are no 

false negatives (no global effect expected), and type I ERs are not calculated for 

the other tests, as there are no false positives (global effect always expected). 
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Table C6 

Mean FDR by Noise Value 

condition high low 

baseline - - 

visual left 0.232 0.3204 

visual right 0.2711 0.3859 

difference 0.4275 0.4456 

lat. baseline - - 

lat. visual stimuli 0.0787 0.1075 

Note: Statistics are calculated based on values 

from globally significant datasets. FDR is not 

calculated for the baseline condition, as any 

positive is a false positive (M = 1, SD = 0). 

 

 

Band Pass  

 

Table C7 

Mean Local ERs by Band Pass Value 

condition metric FALSE TRUE 

baseline  
type II ER - - 

type I ER 0.0011 0.003 

visual left  
type II ER 0.568 0.5503 

type I ER 0.0443 0.0477 

visual right  
type II ER 0.5682 0.5665 

type I ER 0.0703 0.0749 

difference  
type II ER 0.9863 0.9864 

type I ER 0.0032 0.0037 

lateralization 

baseline 

type II ER - - 

type I ER 0.0033 0.0029 

lateralization 

visual stimuli  

type II ER 0.7997 0.7884 

type I ER 0.007 0.0098 

Note: Type II ERs are not calculated for the baseline 

conditions as there are no false negatives (there are 

no local effects expected at any time-space unit). 
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Table C8 

Global ERs by Band Pass Value 

condition metric FALSE TRUE 

baseline  
type II ER - - 

type I ER 0.4491 0.581 

visual left  
type II ER 0 0 

type I ER - - 

visual right  
type II ER 0 0 

type I ER - - 

difference  
type II ER 0.2315 0.2014 

type I ER - - 

lateralization 

baseline 

type II ER - - 

type I ER 0.4606 0.4444 

lateralization 

visual stimuli  

type II ER 0.0231 0 

type I ER - - 

Note: Type II ERs are not calculated for the baseline condition 

as there are no false negatives (no global effect expected), and 

type I ERs are not calculated for the other tests, as there are no 

false positives (global effect always expected). 

 

Table C9 

Mean FDR by Band Pass Value 

condition FALSE TRUE 

baseline - - 

visual left 0.2751 0.2773 

visual right 0.321 0.336 

difference 0.41 0.4629 

lat. baseline - - 

lat. visual stimuli 0.0779 0.1084 

Note: Statistics are calculated based on values 

from globally significant datasets. FDR is not 

calculated for the baseline condition, as any 

positive is a false positive (M = 1, SD = 0). 
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Window Size 

 

Table C10 

Mean Local ERs by Window Size Value (s) 

condition metric 0.004 0.012 0.02 

baseline  
type II ER - - - 

type I ER 0.0035 0.0016 0.0011 

visual left  
type II ER 0.5691 0.5061 0.6022 

type I ER 0.0542 0.0503 0.0336 

visual right  
type II ER 0.5716 0.5296 0.6008 

type I ER 0.0727 0.0803 0.0647 

difference  
type II ER 0.9849 0.983 0.9912 

type I ER 0.0052 0.0037 0.0014 

lateralization 

baseline 

type II ER - - - 

type I ER 0.0042 0.0027 0.0023 

lateralization 

visual stimuli  

type II ER 0.8063 0.7765 0.7994 

type I ER 0.0119 0.0068 0.0066 

Note: Type II ERs are not calculated for the baseline conditions 

as there are no false negatives (there are no local effects expected 

at any time-space unit). 

 

Table C11 

Global ERs by Window Size Value (s) 

condition metric 0.004 0.012 0.02 

baseline  
type II ER - - - 

type I ER 0.8819 0.4618 0.2014 

visual left  
type II ER 0 0 0 

type I ER - - - 

visual right  
type II ER 0 0 0 

type I ER - - - 

difference  
type II ER 0.0104 0.1424 0.4965 

type I ER - - - 

lateralization 

baseline 

type II ER - - - 

type I ER 0.7882 0.3785 0.191 

lateralization 

visual stimuli  

type II ER 0 0 0.0347 

type I ER - - - 

Note: Type II ERs are not calculated for the baseline condition as there are no 

false negatives (no global effect expected), and type I ERs are not calculated for 

the other tests, as there are no false positives (global effect always expected). 
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Table C12 

Mean FDR by Window Size Value (s) 

condition 0.004 0.012 0.02 

baseline - - - 

visual left 0.3007 0.2824 0.2455 

visual right 0.3356 0.341 0.3089 

difference 0.5075 0.4282 0.3133 

lat. baseline - - - 

lat. visual stimuli 0.1551 0.0701 0.0533 

Note: Statistics are calculated based on values from 

globally significant datasets. FDR is not calculated 

for the baseline condition, as any positive is a false 

positive (M = 1, SD = 0). 

 

 

Time Interval 

 

Table C13 

Mean Local ERs by Time Interval Value (a priori) 

condition metric FALSE TRUE 

baseline  
type II ER - - 

type I ER 0.0017 0.0024 

visual left  
type II ER 0.5769 0.5413 

type I ER 0.0262 0.0658 

visual right  
type II ER 0.579 0.5557 

type I ER 0.037 0.1082 

difference  
type II ER 0.9893 0.9834 

type I ER 0.0022 0.0047 

lateralization 

baseline 

type II ER - - 

type I ER 0.0025 0.0036 

lateralization 

visual stimuli  

type II ER 0.8064 0.7817 

type I ER 0.0043 0.0126 

Note: Type II ERs are not calculated for the baseline 

conditions as there are no false negatives (there are no 

local effects expected at any time-space unit). 
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Table C14 

Global ERs by Time Interval Value (a priori) 

condition metric FALSE TRUE 

baseline  
type II ER - - 

type I ER 0.5694 0.4606 

visual left  
type II ER 0 0 

type I ER - - 

visual right  
type II ER 0 0 

type I ER - - 

difference  
type II ER 0.2477 0.1852 

type I ER - - 

lateralization 

baseline 

type II ER - - 

type I ER 0.4907 0.4144 

lateralization 

visual stimuli  

type II ER 0.0116 0.0116 

type I ER - - 

Note: Type II ERs are not calculated for the baseline condition 

as there are no false negatives (no global effect expected), and 

type I ERs are not calculated for the other tests, as there are no 

false positives (global effect always expected). 

 

Table C15 

Mean FDR by Time Interval Value (a priori) 

condition FALSE TRUE 

baseline - - 

visual left 0.2742 0.2782 

visual right 0.3214 0.3356 

difference 0.5268 0.3541 

lat. baseline - - 

lat. visual stimuli 0.1 0.0866 

Note: Statistics are calculated based on values 

from globally significant datasets. FDR is not 

calculated for the baseline condition, as any 

positive is a false positive (M = 1, SD = 0). 
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Electrodes Density 

 

Table C16 

Mean Local ERs by Electrodes Density Value (nr. electrodes) 

condition metric 31 64 86 

baseline  
type II ER - - - 

type I ER 0.003 0.0018 0.0014 

visual left  
type II ER 0.5337 0.5444 0.5993 

type I ER 0.0534 0.0443 0.0404 

visual right  
type II ER 0.5488 0.5488 0.6044 

type I ER 0.0866 0.069 0.0622 

difference  
type II ER 0.9805 0.9895 0.989 

type I ER 0.0044 0.0034 0.0025 

lateralization 

baseline 

type II ER - - - 

type I ER 0.0044 0.0027 0.0021 

lateralization 

visual stimuli  

type II ER 0.7619 0.7916 0.8287 

type I ER 0.0146 0.0067 0.004 

Note: Type II ERs are not calculated for the baseline conditions 

as there are no false negatives (there are no local effects expected 

at any time-space unit). 

 

Table C17 

Global ERs by Electrodes Density Value (nr. electrodes) 

condition metric 31 64 86 

baseline  
type II ER - - - 

type I ER 0.4688 0.5382 0.5382 

visual left  
type II ER 0 0 0 

type I ER - - - 

visual right  
type II ER 0 0 0 

type I ER - - - 

difference  
type II ER 0.2465 0.2118 0.191 

type I ER - - - 

lateralization 

baseline 

type II ER - - - 

type I ER 0.3819 0.4722 0.5035 

lateralization 

visual stimuli  

type II ER 0.0069 0.0139 0.0139 

type I ER - - - 

Note: Type II ERs are not calculated for the baseline condition as there are no 

false negatives (no global effect expected), and type I ERs are not calculated for 

the other tests, as there are no false positives (global effect always expected). 
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Table C18 

Mean FDR by Electrodes Density Value (nr. electrodes) 

condition 31 64 86 

baseline - - - 

visual left 0.3037 0.2714 0.2535 

visual right 0.3624 0.3186 0.3045 

difference 0.399 0.4783 0.4321 

lat. baseline - - - 

lat. visual stimuli 0.1301 0.0866 0.063 

Note: Statistics are calculated based on values from 

globally significant datasets. FDR is not calculated for 

the baseline condition, as any positive is a false positive 

(M = 1, SD = 0). 

 

 

Electrodes Location 

 

Table C19 

Mean Local ERs by Electrodes Location Value (a priori) 

condition metric FALSE TRUE 

baseline  
type II ER - - 

type I ER 0.0014 0.0028 

visual left  
type II ER 0.5909 0.5274 

type I ER 0.0835 0.0086 

visual right  
type II ER 0.5869 0.5478 

type I ER 0.0957 0.0495 

difference  
type II ER 0.9912 0.9815 

type I ER 0.0023 0.0046 

lateralization 

baseline 

type II ER - - 

type I ER 0.0027 0.0034 

lateralization 

visual stimuli  

type II ER 0.816 0.7721 

type I ER 0.0053 0.0115 

Note: Type II ERs are not calculated for the baseline conditions 

as there are no false negatives (there are no local effects expected 

at any time-space unit). 
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Table C20 

Global ERs by Electrodes Location Value (a priori) 

condition metric FALSE TRUE 

baseline  
type II ER - - 

type I ER 0.5949 0.4352 

visual left  
type II ER 0 0 

type I ER - - 

visual right  
type II ER 0 0 

type I ER - - 

difference  
type II ER 0.2546 0.1782 

type I ER - - 

lateralization 

baseline 

type II ER - - 

type I ER 0.5856 0.3194 

lateralization 

visual stimuli  

type II ER 0.0139 0.0093 

type I ER - - 

Note: Type II ERs are not calculated for the baseline condition as 

there are no false negatives (no global effect expected), and type 

I ERs are not calculated for the other tests, as there are no false 

positives (global effect always expected). 

 

Table C21 

Mean FDR by Electrodes Location Value (a priori) 

condition FALSE TRUE 

baseline - - 

visual left 0.5327 0.0197 

visual right 0.5653 0.0917 

difference 0.6364 0.2561 

lat. baseline - - 

lat. visual stimuli 0.1401 0.0467 

Note: Statistics are calculated based on values from 

globally significant datasets. FDR is not calculated 

for the baseline condition, as any positive is a false 

positive (M = 1, SD = 0). 
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Appendix D 

Performance Metrics Across Datasets 

 

Figure D1 

Mean FDR per dataset size 

a. testing for signal 

 
b. testing for lateralization 

 
Note: Dataset size is measured in the total number of time-space units. 

The average FDR is calculated for every dataset size. FDR increases 

with dataset size. The scatter plot has been fitted with a logarithmic 

regression function. 
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Figure D2 

Mean Local Type II ER per dataset size 

a. testing for signal 

 
b. testing for lateralization 

 
Note: Dataset size is measured in the total number of time-space units. 

The average local type II ER is calculated for every dataset size. Type II 

ER does not seem to be strongly correlated dataset size. Very small 

datasets (<1000 units) have up to 10% lower type II ER. The scatter plot 

has been fitted with a logarithmic regression function. 
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Figure D3 

Mean Local Type I ER per dataset size 

a. testing for signal 

 
b. testing for lateralization 

 

Note: Dataset size is measured in the total number of time-space units. 

The average local type I ER is calculated for every dataset size. Type I 

ER does not seem to be strongly correlated with dataset size. The scatter 

plot has been fitted with a logarithmic regression function. 
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Appendix E 

Pseudocode for determining the optimal critical p-value for one dataset based on 

baseline data 

 

data ← load(prepared_baseline_data); 

critical_p_value ← calculate(0.05, data.nr_windows, data.nr_electrodes); 

step ← 0.001; 

 

optimal ← False; 

 

while not optimal: 

results ← analyse(data, critical_p_value); 

metrics ← evaluate(results); 

local_type_I_ER ← metrics.local_type_I_ER; 

 

if local_type_I_ER is 0: 

 optimal ← True; 

else: 

critical_p_value ← critical_p_value – step; 

 

optimal_critical_p_value ← critical_p_value; 
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