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Abstract 

Climate change is a growing concern and is affecting global food security. To address these 

issues, precision agriculture is emerging as a crucial research field. This field involves 

listening to the plants and meeting their direct needs. Stomata, the microscopic pores in plant 

leaves, play a vital role in regulating gas exchange, enabling the uptake of carbon dioxide and 

the release of oxygen during photosynthesis. The response of stomata to certain stimuli can 

be analysed using a microscope on live plants, with this knowledge better plants can be bread 

based on specific stomatal features. However, counting stomata is currently a time-

consuming task that can be automated with the use of object detection models. The study 

focuses on automating this process using models from the yolov7 family, including small, 

medium, and large models. The study aimed to determine the best model based on various 

training methodologies and tested all models on unseen images from three different species. 

The results indicate that both the yolov7x (large) and yolov7-tiny (small) models performed 

well in detecting stomata. The yolov7x (large) model achieved a precision of 88.9% and 

recall of 75.1% on all test images, and a precision of 98.1% and recall of 95.5% on the most 

trained species, chrysant. On the other hand, the yolov7-tiny (small) model had a precision of 

88.4% and recall of 80.3% on all test images, and a precision of 96.9% and recall of 95% on 

the chrysant test set. However, it is worth noting that the performance of the yolov7x model 

dropped when analysing tomato images, which contained the smallest stomata among all test 

images. Yolov7x proves to be a well capable model for the task of stomata detection, 

especially with chrysant. Future development should focus on increasing performance on 

tomato and cucumber. 
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Chapter 1 – Introduction 

The current climate is changing, the seasons are becoming more extreme. Droughts are more 

occurring on a yearly basis and pose a serious threat for the agricultural sector [1]. For farmers crop 

loss is a serious issue, and food scarcity is becoming a more serious problem. Within 27 year the 

global food production can be downed as much as 18% [2]. 

This project is executed for the 4TU Federation, an initiative from four universities in the Netherlands 

(Delft, Eindhoven, Twente, Wageningen). The main goal of this team is to develop ‘vegetation-

integrated, energy harvesting, autonomous sensors’ [3]. This sensor is a set goal of plantenna to 

address multiple challenges the agricultural sector is facing or will be facing in the future.  

A critical part of this team is to fully analyze and understand plant behavior into microscopic detail. 

One observable aspect of a plants leaf with a microscope are stomata on the leaf’s epidermis (leaf 

surface) [4]. Stomata play a vital role in the gas exchange of a plant and are critical for 

photosynthesis. Understanding and analyzing these processes trough a quantitative manner will 

contribute towards the real goal of the plantenna team. 

To be more precise the project is executed to aid van den Berg in his research. Currently there is a lot 

of research on the stomatal response from different influences, such as drought an Co2 avalability. 

[41]. Van den Berg is also conducting such research and seeks for aid in stomata detection to speed up 

the process. 

The team has already developed a smart microscope system that is able to take images from a life 

leave sample. By simulating a day night cycle, the kinematic behavior of stomata can be analyzed. 

The microscope automatically takes images in a set interval from the leaf’s surface.   As one can 

imagine this creates a gigantic number of images, which all must be annotated by hand by a 

researcher for stomata. This can become a real time-consuming chore [5]. An automated system can 

increase the research output, where only manual checking is needed. In this way stomatal research can 

speed up, and work quicker towards a solution for the emerging environmental changes.  

 

The goal of this project is to create an automated system which can detect stomata. By having such 

system, the researcher can focus again on interpreting and analyzing the results and processes more 

images more easily. The research output can drastically increase, which benefits society, as stomatal 

research gives meaningful insights in the plant’s internal behavior.  

Research questions 

Before the project starts a set of research questions are made. These questions will aid the ‘design’ 

process and set real quantitative goals. The questions are following a certain flow, the first question 

focus on determining the method of use for stomata detection. The second question center more on the 

actual execution of the solution found for the first question. And the final question really focusses on 

possible improvements, where the effect of combining multiple solutions is questioned.  

The research questions are defined as the following: 

- How can existing knowledge on computer vision techniques be used to create a real time 

automatic stomata detection algorithm? 

- Can a deep learning algorithm be made that is able to detect stomata on different plant breeds 

with a precision of 95% 

- Can earlier knowledge of the leaf’s surface reduce the number of false positive detected 

stomata? 
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Chapter 2 - Background research 

2.1 - Stomata 

Understanding what a stoma looks like, what its function is and how it opens is essential, without this 

knowledge manual annotating images is not possible.  

Stomata are one of the most researched parts of a plant. It is universally known that the main function 

of a stoma is to exchange gas from the inside of the leaf to the outside, and vice versa [6]. H2O CO2 

and O2 are exchanged and play a vital role in transpirations, respiration, and photosynthesis.  The gas 

intake and outtake are regulated by the stoma, which is achieved by opening and closing of the two 

guard cells, which form the stoma [7] . stomata are accountable for 95% of the water loss of a plant. If 

a stoma is opened, water can evaporate on the leaf surface which causes a negative pressure inside the 

plant, to return to the steady state, water from the leaf stem and eventually water from the roots will 

replace the evaporated water. This evaporation of water makes it possible for the plant to move water 

and nutrients from its roots via the stem towards its leaves. In other words, stomata control the flow of 

water out of the leaf, which can be beneficial during drought.  

This exchange of gasses is only possible due to the structure of stomata, which are only observable 

with a microscope [4]. Every stoma is built according to the exact same blueprint, two guard cells 

surround the stomatal pore whose shape looks like a tiny sausage. If the ion concentration inside the 

guard cell rises, water starts to flow into these cells. This causes the cells to swell and bend, which 

results in an O shape. Now the stomatal pore is completely exposed, and gases can flow in and out. 

The stomata closes again if the cells start to pump out the ions, which causes the water to leave the 

cells. The guard cells shrink and the overall shape changes more to a letter I. Figure 2–2–1 shows the 

the shape of stomata and the basic functioning. 

 

Figure 2–2–1: Basic functioning of stomata [8] 

 

The shape of a stomata is clearly distinguishable from other neighboring cells. However, the 

differences can still be minimal, especially if a microscope has a different level of magnification. 

Stomata also differ in sizes and shapes between plant species [9] 
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In the biological research field there is one plant specie set as the research benchmark specie which is 

the Arabidopsis [10].  This specie is also known for its recognizable shape and stomatal features. The 

stoma is nicely rounded and opened the shape really comes close to an O. Another specie with a close 

stomatal resemblance to the Arabidopsis is the chrysant. The stoma from this specie shows a close 

resemblance, like shape and size. This specie is mainly used in this project, alongside tomato. The 

stomata from tomato are a few times smaller.  

2.2 - From machine learning to object detection 

This chapter will describe the most important concepts concerning this project. The chapter starts with 

machine learning and how data is processed will be covered. Classification and regression will be 

explained. Eventually the subdomain of Machine Learning namely deep learning will be covered. The 

chapter strives to give enough background information, to ensure readers understand all concepts used 

in this project.  

2.2.1 - Machine learning 

There are a lot of real-world problems that can be solved with a certain step wise algorithm. 

Nonetheless there are also a dozen of problems which cannot be solves with these algorithms. The 

input and the desired output are known, however there are no real algorithms which can reach that 

desired output. For these problems, no code can be written with classical coding methods. Machine 

learning is the field that tackled this problem. By learning and recognizing certain patterns, the desired 

output can be reached. However, for this a lot of data is needed and training is needed to come to the 

desired output. 

To tackle the problems of machine learning a lot of data is needed. This data is sorted in three sets: 

training-, validation- and testing-sets. If you test and validate your algorithm with your training the 

result will of course be always perfect, since it trained wit this data. Therefore, different test and 

validation data is needed to get a fair result of performance. 

2.2.2 - Classification and regression 

For both classification and regression problems the goal is to find the best possible rule or function 

that maps the input into a useful output. For classification this is a discrete value which correspond to 

a certain class. These classes are usually represented with a label. One of the most known 

classifications in the machine learning field is the written MNIST dataset [11] here the images are 

bound to certain labels, which in this case is the actual number on the image.  

 

Figure 2–2: Classification from MNISt dataset 
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A machine learning model which solved a classification problem can be evaluated with different 

values. The most used method is the accuracy, which represents the percentage of right classified 

results from the model. 

 

Another evaluations method is to look at precision and recall. To clarify these concepts a few terms 

are explained a bit more. A model can have multiple results based on what the actual class was. There 

are true positives (TP), which means the input is correctly classified. Then there are false positives 

(FP) here the input is classified as a class that in reality is not that class. The other way around False 

Negative (FN) is when is part of that class but classified as non-class. True negative (TN) is when a 

non-class input is classified as non-class. Figure 2–2–1 gives a visual representation. 

 

 

Figure 2–3: Confusion matrix- precision green – recall yellow 

With this knowledge precision and recall can be calculated with two simple formulas 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision can be written as: The percentage of found instances that are part of this class. And recall as: 

the percentage of all existing instances of a class that is correctly classified. 

However, this brings us the downside of these two metrics, a high precision does not mean a high 

recall. You can prioritize detecting high true positives over false positives, but this means that false 

negatives are not considered. Resulting in a high precision but an overall low recall.  

Therefore, the F1 score exists to find a balance in precision and recall. It is a value that can be 

calculated with precision and recall, which is F1 score. The score is calculated with the following 

formula: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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2.2.3 - Computer vision 

Computer vision is a technology that dates back towards the early years of modern computing. Here 

David Marr [Marr2010] laid the foundations of ‘low-level’ computer vision in 1978. With the focus 

on edge detection and segmentation. Before the exact process of the traditional image processing 

workflow is shown, some characteristics of images are handled.  

Digital Images are in essence a big matrix of values that is passed to the computer which displays it in 

the screen. This matrix can be seen as a function of I(x,y) where I is the pixel intensity and x,y are the 

coordinates of the pixel.   

There are different ways to visualize or save an image, this variation is caused by the actual 

information in the pixel. One can safe only a binary map, which is just a simple one or zero. 

Grayscale is a representation on a single scale from 0-255. And images saved with rgb values have 3 

digits ranging from 0-255. Figure 2–4: RGB representation of an imageFigure 2–4 shows this 

representation 

 

Figure 2–4: RGB representation of an image [12] 

  

 

2.2.3 - Deep learning 

Deep learning is a subdomain of machine learning, which is becoming has become a popular 

approach for machine learning. Deep learning has many closely related definitions, however only one 

will be stated. From [13] deep learning is defined as: “Deep learning is a set of algorithms in machine 

learning that attempt to learn in multiple levels, corresponding to different levels of abstraction. It 

typically uses artificial neural networks. The levels in these learned statistical models correspond to 

distinct levels of concepts, where higher-level concepts are defined from lower-level ones, and the 

same lower-level concepts can help to define many higher-level concepts.”.  

Although there are multiple descriptions there are two clear key aspects: (1) Models consist of 
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multiple layers, which process information nonlinear and (2) Supervised and unsupervised learning of 

features happens at higher, more abstract layers. 

Deep learning is a relatively quite new technology in the field of machine learning. One of the earliest 

breakthroughs in research of deep learning dates to 2006 [6]. From this research the conclusion was 

drawn that there should be more research into deep learning, however the researchers already 

mentioned the success of a multi-layer approach.  

The current success of deep learning can be explained by multiple aspects. Throughout the years 

computational power from computer have drastically improved, speeding up training times. Secondly 

there is a lot of data available, with this digital age, we humans create a lot of data which can be used 

as training input. And finally, advancements made in machine learning overall, better models enable 

more efficient training. Al these aspects contributed to enormous advancements in the technology.  

Deep learning is in essence the implementation of neural networks. A neural network is a simple 

mathematical data transformation in a layered fashion. Every layer in a neural network has a few 

parameters, which are called the weights. These weights will transform the data as it goes through the 

layers, and by changing these weights the network learns. But change in a single weight can have 

influence in all the following layers. Therefore, it is quite hard to calculate the influence of a single 

weight change.  

A so-called loss function if introduced to indicate how well a network is performing. The function 

will consider the network prediction and the target. How bigger the loss function, how further away 

the predictions are from the target. To let the network, learn the weights will be changed to 

minimalize the loss function. The changing of weights is a task for the optimizer, which will 

implement a backpropagation algorithm. See Figure 2–5Learning process from neural network  below 

to see the general process. 

 

Figure 2–5Learning process from neural network [14] 

2.2.4 - Convolutional neural networks 

Convolutional neural networks are the most used deep learning technique in the domain of computer 

vision. Of course, these networks are also applied in other fields, since this paper concerns computer 

vision, the concept will be explained within this domain.  
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2D images need a way to be represented as input for the whole network. This is done by converting 

the image into a 3D tensor. In essence a 2d image has 3 channels namely the R, G and B channels. 

These channels are overlapping for every pixel location, since only together they can form the desired 

color in the pixel.  Figure 2–6 shows a visual representation of a three channel tensor. 

 

Figure 2–6: 4X4X3 RGB Image [15] 

The tensor can be transformed into an array which thereafter can be used as an input for the network. 

In this way global patterns can be recognized. However, this has one downside, when the image 

becomes larger the array size increases, which is not scalable. Additionally, an image can have many 

of the same patterns, a line or curve can be existent on many parts of the picture. Therefore, to solve 

this problem a smaller segment will slide over the tensor. 

The basis of convolutional neural networks is the convolutional operation. As already described an 

image is stored as a 3D tensor, also known as a feature map. A convolutional operation will get this 

feature map as input, and returns an output, which is also a feature map. A second 3D tensor which is 

generally way smaller than the original image tensor, while go trough the feature map. This tensor is 

called kernel or filter. This filter will slide over the full width and length of the feature map, this is 

called stride and is usually equal to a value of 1.   On every location the product of the filter and 

tensor and will be saved on the corresponding location of the feature map. This will create a 2-

dimensional tensor which will indicate where the input will correspond the most to the pattern of the 

filter.  
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Figure 2–7: Movement of kernel trough feature map [15] 

 

By using multiple filters different patterns can be detected. The values of the filter, and thus specific 

patterns will be changed during training, therefore is feature recognition a real training process. There 

is an option to keep the length and width of the feature map the same, which is padding. Padding 

creates extra rows and columns to the filter. 

By having more convolutional operations in sequence, more abstract features can be recognized. After 

every convolutional layer a feature map is generated, which will have information about lines or 

corners. More abstract patterns will be created if these prior convolutional layers are used as input. 

Multiple lines and specific corner can be part of an eye for instance. 

The feature maps are still quite big, and this becomes computational demanding if you are some 

layers deep. Therefore, pooling is introduced, pooling will drastically reduce the computational need. 

Additionally pooling will also ensure that later layers will have information over a bigger portion of 

the input. Pooling will generally be a layer within the network, where the filter behaves like prior 

layers, only the filter will let trough a specific value for a stride (2x2 for example). With this pooling 

the length and width will be halved for this layer. There are multiple types of pooling, like max 

pooling, which only lets trough the maximal value. Another type of is average pooling which takes 

the average value for the stride.Figure 2–8 shows these types of pooling and how it reduces a tensor. 
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Figure 2–8: Types of pooling 

  

Generally, a convolutional neural network will exist from multiple convolutional layers and pooling 

layers which will get features out of the image. These features will eventually end up in an 1D tensor, 

which will be the input for the fully connected layers. These layers will use the found features for the 

classification and regression tasks. Figure 2–9 shows a rough summary of convolutional neural 

networks in one picture. 

 

Figure 2–9: A CNN sequence to classify hand written digits [15] 

 

2.2.5 - Applications and architectures 

In the field of Convolutional neural networks there a dozen of applications. A few examples are object 

detection, translation, speech recognition, automated chatbots, self-driving cars, text and image 
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generation. In short when there is a lot of data available, a network can be trained and can recreate this 

with its own interpretation of the data.  

Every application has its own network approach which works the best for that specific application. 

Therefore, a lot of architectures have been created, which al have their own strengths and weaknesses. 

[26] this website gives a lot of insight in CNN methods a how many papers are written with the 

specific method. A few of these architectures are picked and explained below. 

LeNet [16]: LeNet is one of the first convolution neural network architectures, it was developed by 

YannLeCun. The architecture was created to classify handwritten number and postal codes. Many 

explain convolutional neural networks with the ‘simpler’ LeNet architecture.  

AlexNet [17] :  This architecture is bases on LeNet only this is a way bigger and deeper version. The 

architecture competed in the ImageNetILSVRC challenge [18], where is placed itself first place. 

AlexNet differentiate itself by allowing layers be be connected without any pooling between the 

layers.  

GoogleLeNet [19] : GoogleLeNet is developed by a google employee Christian Szegedy, and won 

the first price in the ImageNetILSVRC challenge [18] from 2014.The architecture was more recourse 

efficient, which meant a wider and deeper network was created with the same computational 

complexity as LeNet. The used method was inception layers also called Inceptionv1, the main idea 

having layers in with which all are connected to a single pooling layer. Later version improved the 

inception method.  

 

Figure 2–10: Google LENET  interception [12] 

 

VGGNet [20]: VGGNet achieved second place in the ImageNetILSVRC challenge [18] from 2014. It 

was developed by Karen Simonyan and Andrew Zisserman. The architecture is built wilt depth as its 

backbone. The original VGGNet has 16 layers (VGG16) and also has a later developed VGG(19) 

which has 19 layers. The idea was that more layers give a better result, which was also the case.  

ResNet [21] : ResNet (Residual Neural Network) won the ImageNetILSVRC challenge [8] [18] from 

2015, and is developed by Kaiming He. This network uses skip connections and batch normalizations, 

it also does not have any fully connected layers at the end.  
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DenseNet [22]: The developers from densenet notices that every CNN became more and more 

deeper, which started to cost more computations. Therefore, they developed a new architecture, which 

connect every layer with any other layer that follows. This feed-forward layering causes the number 

of connections to become 
𝐿(𝐿+1)

2
. This means that for every layer the feature maps from all preceding 

layers are used as an input. 

2.2.6 - Learning and optimalisation 

The above-mentioned networks still need a way to learn. This is generally done by changing weights. 

These weights are changed to minimalize a certain loss function. The most used methods to do this is 

with gradient descent. 

A crucial part of gradient descent is the loss function; therefore this will be briefly explained. In 

essence the loss function is a number which shows how far away the network output lies from its 

target. This is done with the weights assigned to the connections, which can be denoted as 𝑓(𝑥, 𝑊) =

𝑦′ 

Where x is the current input and W are the weights, y’ is the output of the network. 

Consequently, the loss function is the output of a function with the target y and output y’ 

𝑓(𝑦′, 𝑦) = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Since only the only variables in the network are the weights the loss function can be defined as a 

function with its only input as weights 

𝑓(𝑊) = 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

Every operation done in a neural network can be derived, since it is all calculations of a function. This 

means that the derivative of the loss function can be taken. Now the loss function can be simplified 

and can show on a certain point whether it is rising or descending. With this the needed input to let the 

loss function decrease can be derived, in other words Gradient descent. An important aspect of 

gradient descent is the size of steps weights are changed; this is also called the Learning rate. If the 

learning rete is too small, it will take quite a lot of steps to reach the minimal value. Additionally, only 

a local minimum can be found. On the other hand, with too big step the size the global minimum can 

be skipped. Figure 2–11 shows visually what the effects of a bad learning rates are.  

 

 

Figure 2–11: Learning rate pitfalls [23] 
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There are multiple optimisation techniques for Gradient descent. One is with momentum, this 

technique does not only take its current weights into account, but it also concerns prior values. In 

essence this can be seen as a ball rolling down a hill. It picks up momentum, and after reaching the 

bottom, this momentum will shoot the ball a bit up. When this is zero the ball will roll back into the 

lowest point. Another technique is Adagrad, in this technique the learning rate is changed. The 

learning rate will be lower for more occurring characteristics. And for less occurring characteristics 

the learning rate will be increased. One major problem is that if the learning rete get decreased too 

much there will be no learning. This problem is solved by ‘forgetting’ older values. The most used 

optimizer in current techniques is Adam, is uses both Gradient descend momentum and RMSprop. 

This means currently most models have an adaptive learning rate [24].  

The goal of training is to increase the output performance, however too much training can have 

opposite effects. When a model is trained too much it will start to overfit, which means it cannot 

process new data. The goal of the model is to generalise and create concepts of the training data and 

use this knowledge to classify new data.  Therefore, prevention of overfitting is key, otherwise the 

network will not produce a satisfactory result. There are multiple methods to achieve this, a few will 

be discussed below.  

The first method is mostly applicable when the network has a quite high number for trainable 

parameters. When this is the case, the model will easily memorize the target class. Which is not ideal 

for generalizing new data. By reducing the network capacity, the network will be forced to learn the 

patterns that minimalize loss. Doing this too much and the network will start to underfit (the opposite 

of overfitting). 

Another technique is to apply weight regularization to the model. With this method the network will 

not be allowed to get high weight values. This is achieved by making the loss function higher if the 

networks get higher weights.  There are two types of weight regularization: L1 and L2. L1 the added 

loss value is proportional to the absolute values of the weights. With L2 regularisation the added loss 

proportional to the square of the weights. The two types can be used simultaneously. 

The last method called dropout, is the most used method and proofed itself as quite efficient. By 

adding dropout, a random part of a layer’s output will be set to zero.  By changing this randomly the 

network will not learn any non-important features.  The Dropout rate is the percentage of the output 

that will be set to zero. Only during the training phase of the network dropout will set values to zero, 

during the testing phase the output will be proportionally reduced with the dropout rate. 

2.2.7 - Metrics for object detection 

Precision and recall are not the only metrics used in object detection and semantic segmentation. 

Object detection models all produce bounding boxes, these are the boxes where the detected object 

lies within. Semantic segmentation produces masks, which is an overlay of the exact shape of the 

detected object. This means that semantic segmentation is harder as object detection, as the mask 

generally have more complex shapes.  

Intersection over Union and average precision 

Besides only precision and recall there are more important metrics for object detection. This metric is 

created with bounding boxes. The bounding boxes can create a nice metric which shows how well 

boxes are places on the object. This metric is called ‘intersection over union’ or IoU. The IoU is 

calculated according to the following principle: 
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𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑈𝑛𝑖𝑜𝑛, 𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑥𝑒𝑠

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝑡𝑤𝑜 𝑏𝑜𝑥𝑒𝑠
 

 

During training the boxes that are compared are the prediction box (produces by the CNN) and the 

ground truth are compared on their respective IoU level. Figure 2–12 shows a visualisation of the area 

of intersection and the area of union, alongside with a real world example of IoU. 

 

Figure 2–12: Left: bounding box intersection, union and a real world example 

The metric holds such importance in the research field of object detection that this metric is used as to 

‘benchmark’ object detection models, this is always done in combination with Average precision. 

Average precision (AP) combines precision and recall into one metric. The F1 score already does this 

quite nice, but AP is generally seen by the object detection field as more powerful. AP is calculated 

with the precision recall curve. The precision recall curve combines both precision and recall into one 

chart. This is done by plotting precision as a function of recall. Figure 2–13 shows that a ideal pr 

curve drops to 0 when recall is 0. This means that only when recall is 1 precision is 0. A less perfect 

classifier has a more general slope down towards a recall of 1 
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Figure 2–13: Precision and recall curve, levels of classifier [25] 

With this curve the average precision can be calculated. As the average precision is the area 

underneath the pr curve. AP is calculated with the following formula, where AP is the integral of the 

pr function.  

𝐴𝑣𝑎𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝐴𝑃) =  ∫ 𝑝(𝑟)𝑑𝑟
1

0

 

Coco dataset 

The coco dataset [26] is a dataset full of images and their annotations. The dataset has around 80 

classes, ranging from people to utilities, to animals. The coco dataset is the metric used to compare 

every object detection model. When models are presented in their respective papers, the is always an 

evaluation based on the coco dataset. The models are trained and tested, which produces the metrics: 

Precision, Recall, F1 score, AP (average precision) at IoU of 0,5 and AP at IoU of 0,5 up until 0,95. 

By combining the average precision and IoU a strong metric is formed, that evaluates the model on 

precision recall and how well the boxes are placed on the target object. Which in essence is all what 

and object detection or segmentation task needs to do. 
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Chapter 3 - State of the art 

This project is not the first attempt to create a stomata detection algorithm, there have been multiple 

serious attempts before. Each of these attempts use different models, methodologies and datasets. To 

get a better understanding on how to tackle the problem a state-of-the-art analysis is conducted. 

Where multiple things like methods, models, architectures, and performance are summarized.  

3.1 – Conducted research 

M.W da Silva Oliveira et al [27] created an autonomous method to count the number of stomata on a 

microscopic picture. They achieved this by applying more traditional image processing methods. 

Firstly, there was a gaussian filter applied, to reduce the noise. In image processing a gaussian filter 

basically blurs the image. After the filter stomata are detected by finding regional minima, this is 

achieved by grouping pixels with the same intensity where surrounding pixels have a high intensity. 

With 24 images from 5 different species an average precision of 94% was achieved. 

Laga et al. [28] developed a fully autonomous technique to detect stomata. Before the detection takes 

place the images are passed trough a gaussian filter, and transformed into a binary map. This is done 

by either assigning a grayscale value to 0 or 1, values higher than 0.5 were 1 and lower are 0. Then 

the stomata are detected with template matching. By rotating and changing size of the templates most 

stomata could be detected, although the researchers stated that for future work more templates are 

needed.  

Kaue et al. [29]made a stomata detection algorithm with high resolution microscope images. Their 

approach was to first convert the image to RGB to CEILab colour space.  After the image is multiple 

CEILab channels, stomata are detected using Wavelet spot detection, with the focus on spotting black 

spots. After the spot detection a watershed transform is used, this finds a gradient around the black 

spot. With this result a segmentation mask is made. This method achieved precision of 98,34% and a 

recall of 98,24%. 

Casado-García et al [30] noticed that most prior techniques for automatic stomata detecting lack 

generalisation. They score quite well on recall and precision, however according to the authors are not 

ideal for applying these ‘hand tuned’ methods on different species. Therefore, they used the YOLOV3 

algorithm to train a model that can detect stomata from multiple species (yolo is explained later in 

chapter INSERT). The algorithm achieves a f1score of 0.91 with the dataset from trained species.  

In a later work by Meeus et al. [31]models based on convolutional neural networks were used as well. 

Here multiple models were employed, two basic models with three convolutional layers and two 

dense layers, and finally a output layer. The last model was based on the VGG19 architecture where 

some weights were already trained. All parameters were optimised with the Adam learning rule. From 

all trained algorithms the VGG19 scored the best, with an F1 of 0.87,0.89,0.67 on training, validation, 

unseen test sets respectively, with and average accuracy of 94%. 

Song et al [32]  used mask-RCNN to detect and obtain coordinates of stomata. The images used for 

training are mainly from black poplar leaves. These images are also obtained from living plants. The 

program obtained an segmented mask, then extracted the boundary box, fitted an ellipse over the box 

and used this ellipse to gather the parameters. The model manged a precision of 84,7% and a recall of 

69%. 
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From the work of Liang et al  [33] a better insight for living samples is given. The authors conducted 

their experiments with microscope images gathered from living plants. The algorithm is divided into 

two parts, one part is for detection and the other part is segmentation. In their research they used 

Faster R-CNN which is a convolutional neural network for detection of closing and opening stomata. 

The segmentation is done with cv techniques which are based on work from Li et al. [34] . Although 

no quantitative results are given, the qualitative results are promising, especially knowing that this 

setup is comparable to this project.  

Dai et al [35] also developed a detection algorithm on living leaves. In this work the researchers used 

an adapted version of YOLO-X and implemented transfer learning. Al this is done with microscope 

images form living plants. With their implementation of YOLO-X the researchers achieved an 

accuracy of 98.7% and a precision of 95,9%. The only drawback is the fact that the model was trained 

with only one specie.  

3.2 Conclusion 

There has been a lot of earlier research done in the field of stomata detection. Some methods rely on 

traditional image processing, more newer methods use deep learning as their backbone. Deep learning 

is a still continuously developing technique, and this is reflected in the research done as well. A lot of 

different papers all use existing models with custom variations to improve their predecessors.  

From the literature review and state of the art analysis a lot of insights and information is given. 

Stomata detection is something that is feasible with convolutional neural networks, since stomata 

clearly show some features which are trainable and extractable. There is evidence of many successful 

attempts, however many methods do not use the new state-of-the art models. Therefore, in this project 

an attempt is made to use a state-of-the-art model namely yoloV7, and an older already used model on 

the microscopic images that are collected from the setup from the plantenna team. With this a 

comparison can, be made and checked whether newer models indeed improve recognition. 

Additionally, a basic ‘guide’ will be built to improve the training process for the yolo model.   

An after-detection addition to the model will be made with the pre-knowledge of image context. As 

many images are captured throughout a cycle of one specific parts of the leaf’s surface, one could 

state that the number of stomata does not change throughout these images. Therefore, checks can be 

made on stomata existence throughout images of the same surface area.  

If a stoma is found in most images, this is probably a true positive. If stomata are found in only a few 

images, this ‘hit’ can be an indication of a false positive. It is possible to code a filter that will ignore 

these false positives and therefore increase the precision of the overall algorithm. During the project 

the impact of this will be tested alongside overall model performance.  
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Chapter 4 - Mask-Rcnn and YoloV7 

The two models were not selected by coincidence. Mask-Rcnn has been proven to be an effective 

model for stomata detection [36]. On the other hand, YoloV7 [37] was released last summer, and 

research on this model is simply scarce especially for stomata detection. Therefore, understanding 

how this model differentiates itself from other models, and how it generally works is critical. 

4.1 Mask R-CNN 

Mask R-CNN is a product of many iterations of the R-CNN model. R-CNN is a model for object 

detection that was introduced by Girshick et al. [38]. It is the predecessor of Faster R-CNN and was 

one of the first successful approaches to object detection using deep learning. 

R-CNN works by first generating a set of candidate object bounding boxes, or region proposals, in the 

input image. These region proposals are then passed through a convolutional neural network (CNN) to 

extract features from the image. The extracted features are then inserted into a support vector machine 

(SVM) classifier, which predicts the class label and bounding box location for each region proposal. 

Figure 4–1 below shows this process 

 

Figure 4–1: Visualisation of the RCNN pipeline [29] 

One of the main advantages of R-CNN is its ability to perform object detection and semantic 

segmentation in a single model. Semantic segmentation is the task of labeling each pixel in the image 

with a class label, such as "sky," "tree," or "building." R-CNN is able to perform semantic 

segmentation by predicting a class label for each pixel within the region proposal, rather than just for 

the bounding box as a whole. 

On the other hand, R-CNN has several limitations. It is relatively slow, since it requires processing 

each region proposal separately through the CNN, which is computationally expensive. R-CNN also 

requires a large amount of annotated training data. 

 

A newer version of R-CNN was introduced to resolve its shortcomings, which was Faster R-CNN 

[39]. Faster R-CNN uses a region proposal network (RPN) to generate the region proposals, rather 

than using a separate model such as selective search. This makes the model faster than its predecessor, 

because the region proposals are generated on the fly, rather than being pre-computed. Faster R-CNN 

also uses a shared set of CNN features for all the region proposals, rather than processing each 

proposal separately, which further increases efficiency. 
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Faster R-CNN consists of two main components: a region proposal network (RPN) and a Faster R-

CNN detector. The region proposal network is responsible for generating a set of candidate object 

bounding boxes, or region proposals, in the image. These region proposals are then passed to the 

Faster R-CNN detector, which classifies each proposal as an object or background and refines the 

bounding box location. 

To generate the region proposals, the region proposal network first applies a sliding window over the 

input image, at multiple scales and aspect ratios. At each location, the network applies a set of 

convolutional and max pooling layers to extract features from the image. These features are then fed 

into two fully connected (fc) layers: one that predicts the objectness score for each bounding box, and 

another that predicts the bounding box's location and size. The objectness score is a measure of how 

likely it is that the bounding box contains an object. The location and size predictions are used to 

refine the bounding box to better enclose the object. The region proposal network is trained to 

optimize both the objectless score and the bounding box location and size predictions. 

The Faster R-CNN detector is a multi-task network that simultaneously predicts the class labels and 

bounding box locations of the objects in the image. It takes as input the region proposals generated by 

the region proposal network, along with the feature maps extracted from the input image by a 

convolutional neural network (CNN). The Faster R-CNN detector processes the region proposals in 

parallel, using a shared set of CNN features, to predict the class labels and bounding box locations of 

the objects. 

Mask R-CNN is an extension of Faster R-CNN which was introduced in 2017 [36]. It adds an 

additional branch to the Faster R-CNN network that predicts a binary mask for each object. This 

allows Mask R-CNN to perform instance segmentation, which is the task of segmenting individual 

objects within an image and overlay a mask. Instance segmentation is a more challenging task than 

object detection because it requires not only identifying the objects in the image, but also specifying 

its shape. 

The Mask R-CNN network consists of a feature extraction backbone (such as a ResNet), a region 

proposal network (RPN), and a detection head. The feature extraction backbone is responsible for 

extracting features from the input image, which are then passed to the RPN and detection head. The 

RPN generates region proposals similarly to Faster R-CNN. The detection head processes the region 

proposals to predict the class labels, bounding box locations, and masks for the objects in the image. 

The detection head of the Mask R-CNN network consists of several convolutional and fully connected 

layers that are trained to classify the objects and refine the bounding box locations. It also includes an 

additional branch for predicting the object masks. This branch consists of a series of convolutional 

layers that process the feature maps from the feature extraction backbone and produce a mask for each 

object. The mask is a binary image that indicates the pixels that belong to the object. 

4.2 - Yolo, ‘You only look once’ 

Yolo is a model for object detection that was introduced by Joseph Redmon and Ali Farhadi in their 

2016 paper [40]It is a popular choice for object detection tasks as it is fast and accurate. The main 

idea behind yolo is to use a single CNN to directly predict the class labels and bounding box locations 

of the objects in an image. This is done without the need for a region proposal network or separate 
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classification step. This allows yolo to perform object detection in a single pass, rather than in 

multiple stages (Mask-RCNN), which makes the model faster than other models. Hence the 

abbreviation ‘you only look once’ 

Yolo achieves this divides the input image into a grid of cells and predicts the class labels and 

bounding box locations for the objects within each cell. It uses a CNN to extract features from the 

image and predict the class labels and bounding boxes. The CNN is trained to optimize the 

objectiveness scores, which are a measure of how likely it is that a bounding box contains an object, 

and the bounding box locations. 

One of the key features of YOLO is its ability to handle multiple sized objects within the same image. 

This is done by using anchor boxes, which are predefined bounding box shapes that are used to 

represent the different scales of objects in the image. The CNN is trained to predict the class labels 

and bounding box locations for each anchor box, and the final bounding boxes for the objects are 

obtained by adjusting the anchor boxes to fit the objects. This is done by non max suppression, which 

reduces all the prediction bounding boxes into one. This is done based on the IoU with the anchor 

box, and the confidence of a bounding box. Figure 4–2 shows the pipeline of yolo for a detection. 

 

Figure 4–2: A visualisation of the yolo pipeline [31] 

After the first introduction of the yolo model back in 2016, several other iterations have been 

developed. Several iterations are written and developed by different authors, especially not by the 

original author who quit the object detection scene due to ethical concerns. Only a model can call 

itself yolo with the permission of the original creator of the first model.  

• Yolov2: introduced back in 2016 [41], Yolov2 improved upon the original model by using a 

different network architecture and training procedure, resulting in higher accuracy. It also 

introduced the use of anchor boxes for handling multiple scales of objects, as mentioned 

above. 

• Yolov3: introduced in 2018 [42] yolov3 further improved upon yolov2 by using a more 

efficient network architecture and adding features such as multi-scale training, which allows 
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the model to learn to detect objects at different scales. It also introduced the use of residual 

connections, which allow the network to learn more complex features. 

• Yolov4: introduced in 2020 [43] the model made significant improvements to the network 

architecture and training procedure. The model backbone was changed to one requiring less 

connections, resulting in higher accuracy and faster performance. It also introduced mosaic 

data augmentation which combines images. This model was the first model to introduce the 

bag of freebies, which are augmentations that make the model more accurate without 

sacrificing inference speed. 

• Yolo5 [44] introduces in June 2020 improved by using a more efficient network architecture 

and training procedure, resulting in higher accuracy and faster performance. Prior to yolov5 

all yolo models were built in TensorFlow, however yolov5 was the first model developed in 

Pytorch. 

• YoloR [45] released in 2021. The goal of this model was to create a model that can combine 

implicit and explicit knowledge into general representations. This model tries to mimic the 

mind, as we combine pas experiences with current senses to process never seen data. 

• Yolov6 [46] released in 2022 focused on increasing the efficiency and compactness of the 

model, while maintaining high accuracy. The head of the model is decoupled, which means 

there are additional layers separating the boxy form the head.  

• YOLOv7 [37]: introduced in 2022 made further improvements to the network architecture 

and training procedure, resulting in higher accuracy and faster performance. It has an 

optimized architecture and optimised loss function. By focussing on all ‘improvements’ other 

models made the authors managed to create multiple improvements in both the backbone and 

head of the model. The repository also supports instance segmentation and pose estimation. 

YoloV7 was at the time of publishing the fastest and most accurate model. 

Overall, Yolo has undergone significant evolution since its introduction, with each version 

representing an improvement over the previous version in terms of accuracy, speed, and efficiency. It 

remains a popular choice for object detection tasks due to its continuous new load of iterations. The 

Yolo family is currently one of the most popular object detection models. 
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Chapter 5 - Execution - The training process 

 

 

This chapter will focus mainly on the steps taken in the training process. The training process of an 

CNN is not linear, it really is about repeating and testing this process. There is a certain rule in AI, 

and machine learning in general: ‘garbage in – garbage out’ [47]. This means if there are already 

errors within the training data, the resulting CNN will also produce the same nonsense as the input 

data.  Therefore, it is critical to find good performance, and check what can be changed in the training 

dataset and model choice to get the best performance from the CNN.  

 

5.1 - setting up environments 

First start with how the project is made, for both project Anaconda is used. Anaconda is [48] a ready 

to use python environment, which is specifically developed for scientific purposes. This makes it 

possible to create certain python environments. These environments enable us to choose specific 

python versions and install certain libraries. These libraries are only installed within the created 

environment, which means each environment can have its own setup. Additionally, anaconda has a 

some widely used pre-installed IDE’s such as jupyter and Spyder.  

 

For this project two environments are created, (yolov7) and (maskRCNN). These environments have 

different dependencies installed. Of course, the biggest requirements are the ones that come with the 

CNN that is used. For my laptop to be able to train on the graphics card, which is proven to be the 

faster method of training, CUDA is used [49]. This is a package of drivers and loaders that are 

developed by Nvidia. In essence CUDA used the powers of an GPU (Graphics processing unit), these 

devices generally have high processing power and multiple computing cored. This makes it the ideal 

for deep learning, and especially training a CNN.  

 

For the implementation of yoloV7 Pytorch is installed [50]. PyTorch is a versatile and flexible 

machine learning library that provides a wide range of functionalities for both research and 

production. It is widely used for tasks such as deep learning, computer vision, reinforcement learning, 

and generative models. Furthermore, pytorch uses the latest version of cuda, which is supported by 

the graphics card in the laptop that is used for training. For an overview of each library installed in the 

environment see appendix A. 

The second environment has TensorFlow installed. [51] Originally TensorFlow was intended for 

Google’s internal use. TensorFlow uses earlier described tensors, the library enables the coder to 

make computations with these tensors.  

The implementation of maskRCNN was not as easy as expected. The model ‘relatively old’ as the 

computer vision landscape is continuously changing newer and newer models are created every year. 

And every new iteration is an improvement on the previous one. Different libraries, and different 

library versions are used.  

maskRCNN was state-of-the art back in 2017, back when tensorflow was in their 1.- era. Currently 

there is a new and improved version. Tensorflow 2.0 just works slightly different, certain methods are 

changed, they require different inputs ore are overall not used anymore. 

‘just install and use the older version’ is the obvious answer to this problem. However a simple 

solution was not applicable. For the original maskRCNN repo to function, tensoflow 1.0 is a 

requirement, however the graphics card in the laptop used for this project laptop is not supported by 

this version. Therefore, some workaround must be made. Luckily maskRCNN is an open-source 
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project, which enables other developers to look trough and change the code. There is a repo on github 

from the maskRCNN model that luckily supports cuda 2.* this meant that the model could still be 

used.  

One problem again, this repo is also quite dated (2 years old) therefore again some specifics could 

have been changed. Via trail and error changing library versions the environment was eventually 

running the maskRCNN model. This meant that for this model the training could begin. For the 

specific environment file on the requirements overview see appendixINSERT PLEASE. This file 

shows which version of which library is used.  

5.2 – Training dataset 

Stomata detection has been a research topic throughout the years. In prior chapters the conclusion can 

be made that stomata detection using CNN is not something new. Therefore, there should exist 

datasets from stomata. Although there is plenty of research, and thus data, this data is mainly from 

leaf imprints. These imprints are gathered via the nail polish method, shown in the Figure 5–1 

 

Figure 5–1: The nail polish method to gather leaf epidermal prints.  A Nail varnish is applied on the abaxial side of the leaf. 

B The dried varnish is peeled of the leaf. C The peel is mounted on glass for microscopic analysis. D The image captured at 

20X magnific [5] 

This does not mean that these images are useless, as the clear features of stomata are still visible on 

the imprint. Therefore, the dataset will also include the imprints to ‘boost’ the number of images and 

therefore stomata in the overall dataset. The following dataset is used as an initial starting dataset. The 

dataset has multiple classed namely open and close. However, these classes are all remapped into 

‘stoma’.  

Besides the already available dataset another data is created. This dataset only consists of images 

captured by the target hardware, the microscope camera from the platanna team. These images are 

delivered as a stack of images, with a total of 119 images per stack. Although the stack does not 

change that much, the stomata in the images do. Therefore around 22 images of each stack are 

extracted and annotated. 

The stack can be seen as a full day/night cycle, where the stomata open and close. With these images 

the model can be trained on both closed and opened stoma, as these tend to differ. The online found 

dataset mainly shows open stomata, however, also contains closed stomata. This found database 

namely had both open and closed annotation. For the training of the models for this project, these 

open and close classes are overwritten with the class stomata.  

For annotation the online program Roboflow [52][7] is used. Roboflow is an easy-to-use online tool 

for annotation. It has certain key features that make it interesting to use. Such as annotations assist, 

which can load up a model to pre-detect and annotate your data. Furthermore, it can export your 

dataset in different annotation styles. For YOLO the annotation style consists of text accompanied 

with the images. In the text are the locations, width and height of the bounding boxes saved. For 

mask-RCNN the export style is Pascal VOC. Figure 5–2 shows a screenshot of the roboflow interface, 

it the boxes are the currently drawn bounding boxes on the image.  
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Figure 5–2: A example of the roboflow user interface 

Annotation of the stomate was a long and sometimes tedious task. This task is especially hard for 

stomata from the tomato images. These stomata are small, and sometimes look like neighbouring 

cells. In other cases, the other way around was true, where some regions of cells really looked like 

stomata. The chrysant images are a bit easier to detect as these images have clearer stomata within 

them.  

5.3 - Training methodology for yolov7 

YoloV7 is currently the state-of-the art object detection model, by the original authors of yolo. This 

means that there are not many statistics on which model version works the best. Therefore, training 

will be done on different ‘sub’ models of yoloV7. These are the following yoloV7, yoloV7-tiny, 

yoloV7x. yolov7 tiny is the smallest, only being around 12.5mb large. Yolov7x is the largest model 

that is tested, which is around 140mb. Yolov7 (default) is around 75mb large.  

The other variable in this research is the train, validation, and test dataset. As training is a process that 

need large amounts of data. Finding a data setting for optimal training might be a useful asset, as 

training is an energy and time-consuming task, albeit for the training hardware. 

 

A set of different training test and validate datasets is created. The first training set is the ‘default’ set. 

Table 5-I: Table 5 I: images in defrault trainingTable 5-Ishows the train, validate and test distribution 

of the dataset used for the first training. This training will be called the ‘default’. 

Class Total Training Validation Test 

Stoma 1693 1200 394 99 

 100% 71% 23% 6% 
 

Table 5-I: Table 5 I: images in defrault training 
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The second dataset is in the training part a hard copy of the first training dataset. The only difference 

is within the validation part. Here all non-target images are stripped. 

Class Total Training Validation Test 

Stoma 1387 1200 22 99 

 100% 86% 2% 12% 
Table 5-II: Target training dataset 

The final dataset only contains target images in both the training and validations part of the dataset. 

The resulting distributions is shown in the table below. Trained models with this dataset all have 

transfer at the end of the model name 

Class Total Training Validation Test 

Stoma 234 204 30 99 

 100% 82% 12% 6% 
Table 5-III: Transfer training dataset 

The biggest difference between the datasets is the size and number of images in the dataset. The target 

dataset has a quite low amount of validation images compared to the training images. This might have 

an impact on the overall model performance.   

 

5.4 - Training the default dataset 

The training is carried out on a windows system, using CUDA 11.8 drivers for Windows. The system 

has the following specifications: A Nvidia RTX3070 Laptop GPU (8GB Vram), AMD Ryzen 7 

5800H with Radeon Graphics processor. 16GB of ram 

The models are trained with Python version 3.8 in Anaconda3 for Windows. The environment is the 

earlier described yolov7.  

For the first training sessions the three Yolo models are trained with the following command. Note 

that this command is an example. See appendix INSERT for the full list of commands. Table 5-IV 

shows an overview of training input. The batch size is picked to maximize the GPU memory usage, a 

bigger batch size means that more images can be fed to the GPU in a shorter amount of time. In the 

end the overall training time will therefore be optimal. 

python train.py --workers 2 --device 0 --batch-size 8 --data ./data/data.yaml --img 960 960 --cfg 

./cfg/training/yolov7.yaml --weights yolov7_training.pt --name yolov7-960-default --hyp 

data/hyp.scratch.p5.yaml --epoch 300 

Name weights batch size workers Epoch 

yoloV7-default Yolov7_training.pt 5 2 300 

yoloV7-tiny-default Yolov7-tiny.pt 26 2 300 

yoloV7X-default Yolov7x_training.pt 3 2 150 
Table 5-IV: an overview of input parameters for the train.py file 

During the training of the Yolo CNN weights are changed every epoch, just the same as for every 

other CNN. After each epoch a small test is conducted, this test is done with the validation set, to get a 

fitness value. According to the test the weights are changed again and again, up until the 300th epoch 

is reached. As an input value, batch size has the highest impact on the training time and memory 

needed for training. Figure 5–3 shows two different batch files, with two different batch sizes.  
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Figure 5–3: the left part shows one of the many training batches for yolov7-default. The right side shows the images per 

training batch for yolov7-tiny. The blue boxes with label 0 are the bounding boxes. 

 

With a batch size of 8 it took the model 11,54 hours to reach the finish the 300th epoch. Note that the 

amount of training images is quite high. The time per epoch is around 2 minutes and 38 seconds. The 

table below shows overall training data and the results of the best epoch. This result is based on the 

validation part of the dataset. This is true for each table that will be shown below.  

 

The difference between the validation and train dataset is mainly how Yolo this handles. As seen in 

Figure 5–3 the images in the training batches are overlapping, cropped etc. These all change the 

nature of the image. The validation dataset does not change. Figure 5–4 shows on the left the input 

image with bounding boxes (ground truth). And the right part of the image shows what the prediction 

of the model is. The results are compared to the ground truth, and the following metrics are produced. 

Precision, recall, mAP.05 (ioU of 50%) and mAP 0.95 (ioU of 95%). 

 

 
Figure 5–4: A, ground trugh B, predictions 
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Table 5-V shows these metrics, for the most optimal epoch from the training session for the default 

dataset.  

 

Default 

Name Precision Recall mAP@.5 mAP@0.95 Total 

epoch 

Batch-size Train- time 

yoloV7-

default 
0.94 0.969 0.979 0.7 300 8 11h 54m 

yoloV7-

tiny-default 
0.94 0.961 0.975 0.684 300 26 4h 58m 

yoloV7X-

default 
0.942 0.964 0.979 0.695 150 3 7h 31m 

Table 5-V: A table of the metrics on which yolov7-default is trained and validated(left side). The right part shows the total 

epochs in the training session the batch size and the total training session time. 

The first training session directly shows some promising results. Although the mAP 0.95 is not 

extremely high. The mAP 0.5 reaches around 0.98 which shows that the bounding boxes are placed 

quite nicely around the stomata.  The precision and recall both reach an significantly high value. 

Meaning that only stomata are detected, and that there are barely any misses. From the training 

metrics Figure 5–5 clearly shows that this model is almost starting to over fit. This means that the 

model performance is starting to fall, in most cases the recall or precision will start to reduce as the 

model tries to improve either one of the metrics. The graphs of each epoch results can give an 

meaningful insights, if the model is overfitting. When a model over fits in during the training of 

yoloV7 is does not mean that the best epoch is bad. YoloV7 picks the best epoch based on set metrics, 

which for this project is equally distributed amongst the metrics. 

 

 
Figure 5–5: a. yoloV7 training results b. yoloV7-tiny training results C. yoloV7x training results 

For the second training session only target images made up the validation part of the dataset. 

Although the amount of validation images were small, the training still took long since the test set was 

not changed.  Table 5-VI shows the results op the best epoch, together with the total amounts of 

epochs.  
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Target 

Name Precision Recall mAP@.5 mAP@0.95 Total 

epoch 

Batch-size Train- time 

yoloV7-

target 
0.961 0.962 0.968 0.573 450 5 16h 13m 

yoloV7-

tiny-target 
0.947 0.946 0.959 0.519 450 26 6h 45m 

yoloV7X-

target 
0.954 0.957 0.966 0.548 300 3 13h 43m 

Table 5-VI:  A table of the metrics on which yolov7-target is trained and validated (left side). The right part shows the total 

epochs in the training session the batch size and the total training session time. 

Even though the total amount of epochs is larger then the yoloV7 model the training results do not 

differ that much. In this case all metrics are slightly lower, this can be a result of the difference in 

validation. As seen Table 5-II the validation set has a small fraction of the total image pool, this might 

mean model simply cannot get a fair evaluation of its own performance. And therefore, cannot train as 

targeted as the ‘default’ training. 

 

To fully understand the metrics of each of the best epochs, the full training sessions for each model is 

analysed again. Figure 5–6: A The results for yoloV7. B The results for yoloV7-tiny. C The results for 

yoloV7x shows the all the graphs that result from the training sessions. In comparison to the ‘default’ 

training the target training shows a slower increase for all metrics. The ‘default’ models the metrics 

quickly rise to values of 0,9 (except mAP0.95), the metrics from the target training reach these values 

simply later. In addition, the slope of the curve is less steep, which indicated it took a longer time to 

learn the features of stomata.  

 
Figure 5–6: A The results for yoloV7. B The results for yoloV7-tiny. C The results for yoloV7x 

The next training session is named ‘default-transfer’. The best model that resulted from the default 

training is trained again. Now with transfer learning. Transfer learning is proven to benefit model 

performance according to this paper [42]. Although this paper is focussing on yoloV3, an 

improvement can occur for yolov7 as well 
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Default-Transfer 

Name Precision Recall mAP@.5 mAP@0.95 Total 

epoch 

Batch-size Train- time 

yoloV7-

default-

transfer 

0.977 0.973 0.987 0.631 450 5 3h 10m 

yoloV7-

tiny-default-

transfer 

0.948 0.914 0.959 0.538 450 26 1h 38m 

yoloV7X-

default-

transfer 

0.954 0.968 0.965 0.625 450 3 4h 22m 

Table 5-VII: :  A table of the metrics on which yolov7-default-transfer is trained and validated (left side). The right part 

shows the total epochs in the training session the batch size and the total training session time. 

If the results in Table 5-VII and the original Table 5-V are compared, a clear increase is evident. 

Although mAP0,95 seems to have reduced drastically. This phenomenon can be a result of the change 

in validation images. The validation images for the ‘default’ dataset have way bigger stomata Figure 

5–7 shows the difference, on the left side there are a few clear stomata in the image, which means it is 

way easier for yolo to have a high ioU. The right side of the image clearly shows multiple smaller 

stomata. This makes it for yolo harder to refine good bounding boxes.  

 

 
Figure 5–7: default and target ground truth bounding boxes. 
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This does not mean that the mAP0,95 metric has only decrease during the training, from the start this 

metric was lower in comparison to the best epoch of the default dataset. Figure 5–8 shows the graphs f  

each metric for each epoch during training.  

 

 
Figure 5–8: Default transfer training results A The results for yoloV7. B The results for yoloV7-tiny. C The results for 

yoloV7x 

  

It is obvious that during the ’default’ some metrics already reached a near peak value, this is 

especially true for the yoloV7-tiny model. This model does not benefit the transfer learning for any 

metric, all it does is overfitting. This is obviously shown by the slope of graph B going down.  For 

the other two models the results are more interesting. Both models have an increase in precision, as 

both graphs A and C show. The recall on the other hand shows a slight increase for the first few 100 

epochs and starts to decrease afterwards. Again, this is a sign of over fitting. Besides the recall, both 

mAP0,5 and 0,95 starts to show signs of overfitting. For mAP0,5 around the 100th epoch, and 

mAP0,95 around the 200th epoch. 

Overall, it seems that yoloV7 and yoloV7x have had some benefit with the transfer learning, although 

it is hard to determine since the validation sets have been different.  

 

The fourth and final training session is the transfer learning on the best models of the already trained 

target dataset. As earlier described the transfer dataset only contains target images for validation. In 

essence the target-transfer training session will result in a model only validated on the target images. 

This means the modal only received images from the microscope. 

Table 5-VIII shows a clear increase for every metric. In essence the validation part of the learning 

process is just lengthened with a training set of images that only contains the target. Again yolov7-

tiny shows the smallest increase for all metrics. 
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Target-Transfer 

Name Precision Recall mAP@.5 mAP@0.95 Total 

epoch 

Batch-size Train- time 

yoloV7-

target 
0.961 0.962 0.968 0.573 450 5 16h 13m 

yoloV7-

target-

transfer 

0.972 0.977 0.987 0.645 450 5 3h 04m 

yoloV7-tiny-

target 
0.947 0.946 0.959 0.519 450 26 6h 45m 

yoloV7-

tiny-target-

transfer 

0.952 0.91 0.954 0.543 450 26 1h 20m 

yoloV7X-

target 
0.954 0.957 0.966 0.548 300 3 13h 43m 

yoloV7X-

target-

transfer 

0.975 0.958 0.988 0.642 450 3 4h 1m 

Table 5-VIII: Table 5 VII: :  A table of the metrics on which yolov7-target-transfer is trained and validated (left side). The 

right part shows the total epochs in the training session the batch size and the total training session time 

As for other training sessions, the graph produced by the algorithm is studied further. shows the 

metrics for each epoch during training.  

 
Figure 5–9: : target transfer training results A The results for yoloV7. B The results for yoloV7-tiny. C The results for 

yoloV7x 

The graphs for each model show the same trends as with the ‘default-transfer’ session. Again, the 

yolV7-tiny model (B) does not have an increase in all metrics. To be fair, a few epochs form the 

Recall of B show a higher initial value, however these are the exception. This clearly indicated that 

the tiny model is already overfitting from the start. YoloV7x (C) shows quite an interesting curve, 

there is a big dip around the 10th epoch. All metrics decrease with 10%, however the next epoch the 

values rise slowly again. To continue with C, all metrics decrease over time, after a small rise until the 

150th epoch, for most metrics.  

 

To stay fair, these graphs all have a varying scale, this means that comparing might have been an 

unfair process. However, in appendix C is a set of excel graphs all with the same scale, and all made 

form the output.txt file for each training session and each model. For reference, all graphs are also 

scaled within the last 10% range, to see the curve more precise for the final epochs. 
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From all the trained models the yoloV7x-target-transfer is the most promising. With a total precision 

of 0,975 the models should find only stomata. Additionally, the high recall of 0,958 there are not 

many false negatives. However, some of the models had a different validation and training. Therefore, 

it is only fair to compare all models on a true never seen test dataset.  

 

Figure 5–10 shows an output of the model note that the bounding boxes are quite small, as the model 

resizes the image to 960x960 before detection, and after detection back to the original size. The 

bounding boxes are placed quite well on the stomata. The stomata on the edges also are being 

detected. This is due to the moaisic cut&mix what happens when the training batches are formed. 

 

 
Figure 5–10: Image form a detection done by yoloV7-default 

 

5.4 – Training of Mask-RCNN 

Mask-Rcnn had a rather different approach for training. Mask-Rcnn produces other metrics during 

training, and the training of yoloV7 was a bit more VOORKEUR ENGELS . However mask-rcnn 

was trained with the default training methodology, and the transfer learning methodology. The 

transfer learning training in mask-rcnn had a different type of bounding boxes. Here the bounding 

boxes were changed into masks, this process took some time, and is sadly not that well researched 

within this paper. 

The focus of the project shifted more to creating a more elaborate training and validation method for 

yolov7, which overshadowed mask-rcnn. However, this decision was made with well knowing that 

mask-rcnn is an older model with well documented research on stomata detection.  
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Figure 5–11 shows some nice images from the mask-rcnn model. But I highly recommend not using 

this model anymore, given the added complexity for newer hardware. 

 

Figure 5–11: A detection output from mask-rcnn 

5.4 - Using stacks to increase precision.  
A lot of tests on the models are conducted during this project. False positives occurred now and then, 

which are preferably filtered out when this model is used for actual real-world situations. Therefore, 

there is a need to improve the detections without extra training. 

There is an option to improve this. If the data is presented in a stack there is a possibility to use the 

knowledge of all images collectively to boost the overall performance. This means that for a stack or a 

full set of images one final image with bounding boxes can be made.  

The current inference class of yoloV7 is detect.py [53] this function detects the images fed to the 

algorithm, together with certain pre-sets the user puts in when calling the detect method. There is an 

option to save each detection made on an image in a .txt file, however this is per image, and not per 

stack. Therefore, a list of each bounding box in each image is made. This is done through a 

multidimensional list : [[image[bounding boxes]]]. The bounding boxes are saved in an xyxy manner, 

which means that the xy of the upper left corner, and the xy of the lower right corner is saved. With 

this a rectangle can be made. 

After the whole stack is processed the list is filled with all the bounding boxes for each image. Note 

that this list only contains coordinates so no confidence levels or ioU levels. 

Now the following code is written to filter out non overlapping bounding boxes. For every image, 

loop trough every bounding box. Check for every bounding box if there is another bounding box in 
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any image that overlaps. If they overlap the count. Then only return a list for every bounding box that 

exceeds a minimal amount of overlap (images), and the number of overlaps. See appendix C for the 

created code.  

 

Then the final list is drawn on the first input image as shown in Figure 5–12. The green squares are 

quite thick, as the image does show every bounding box that overlaps. This is happening since the 

model does not predict every bounding box at the exact same location. There are also other green 

boxes shown, which accidently happen to overlap. Therefore, the current code is not robust enough to 

be tested on an increase in precision.  

 

Figure 5–12: Output of the find overlap drawn on a detection 

 

A possible solution for this is to create an augmented non max suppression. Where the images or all 

predictions are fed to that specific method, together with a certain threshold level. The non max 

suppression will again filter out all the overlapping images and return only the predictions/bounding 

boxes for each stoma.
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Chapter 6 – Evaluation of yoloV7 

 

The final part of this Thesis is focussed on testing the models created during the project. The test 

phase is a critical point in the research and creation of a model. Since this is the first moment the 

model will be tested on a real-world case, ideally one with the applied use in mind.  

 From earlier chapters it is stated that the testing images should be never-seen images. By having 

never seen images the detections are a true result of feature detection. This means a new set of images 

has been annotated from the microscope images. The species are tomato, chrysant and a new one 

cucumber. To fully test how each model performs a test will be performed on all possible test 

datasets, ranging from full to only cucumber.  

After the testing an evaluation will be done. The evaluation will firs observe trends amongst models, 

state these observations. The best performing model can be selected from the list by simply looking at 

the model with the highest metrics. However, there are possibly more interesting effects of training on 

different models. Therefore, a statistical analysis will be done to statistically validate observations 

made. 

 

6. 1 - Test set up 

To be more precise, a set of 9 stacks are collected, a stack is a set of images all taken from the same 

part of the leaf surface, only at a different moment in time. The three species all have 3 stacks. From 

each stack 11 images were extracted, the images ranged from open to close stomata. Additionally, the 

images were also selected on clearness, as some images were out of focus, or not aligned. To ensure a 

fair stack representation the images taken were roughly evenly spread throughout the stack, this meant 

that for example with a total stack length of 119, every 12th image was selected. 

The stacks have images that were never seen by the model, this means that if the model just trained to 

recognise the fed training images, it would be noticeable, and the overall performance of the model 

should be lower. If the model truly learned the features of stomata, the performance should be almost 

the same for validation tests after each training epoch.  

 

After the image collection the images were annotated using roboflow [52]. Since the images were 

pure test images, no augmentations are needed, as the test should represent the real-world use case. 

The annotated images are all tagged within roboflow to make sure specific species can be filtered out 

afterwards. With this different test on different species can be made.Figure 6–1 below shows the three 

species for the test dataset, from left to right: Tomato, chrysant, cucumber. There is a clear noticeable 

difference amongst stomata between images. The chrysant clearly has the biggest stomata. The 

stomata in cucumber images are a bit more rectangular, and finally the stomata from the tomato 

images are small.  
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Figure 6–1:The three species, from left to right: chrysant, tomato, cucumber 

After the images were annotated the testing could begin. During the training chapter is described 

multiple models reached via multiple methods were trained. By performing a test on the models, a 

true performance metric can be created, and models can be compared. By comparing the models, the 

research questions will be answered.  

Yolov7 has a specific function in the file test.py to test the images, after each test the metrics are 

shown in the Terminal. Each test creates additional charts, that show how the model performs on 

different confidence levels. It also shows a final, precision recall curve, which really indicated how 

good or poor a model is. The first sets of tests are on the different training methods.  

During testing some interesting results rolled out, the full test dataset gave results that were worse 

during validation. The results were observable lower, after looking at the number of labels per plant 

species, a revealing discovery was made. The tomato has 2007 which might be impactful as well. 

Therefore, the test will be performed on multiple tests set, to see if this impact is significantly 

impacting the results of the tests. Each test set has an excluded specie, or only exists of 1 specie 

overall.  This created the following test setup, where each model, each training method, and each 

test_set is tested. Resulting in 3*4*6 (72) datapoints. Table 6-I shows the full test setup 

Model_type Training method Test_data Images Labels 

3 4 6 
  

YoloV7 Default All 99 3701 

YoloV7-tiny Target No_sl 66 1694 

YoloV7X Default- transfer No_Kom 66 3065  
Target - transfer Only_CH 33 1058   

Only_Kom 33 636 
  

Only_SL 33 2007 

Table 6-I: Test design for evaluation 

The table below shows results of the tests, note that both the full test dataset (left) and the no sl test 

dataset is shown(right). For the table with the full results see appendix D. The boxplots shown in this 

chapter are only from AP0,5 and/or AP0,95. The full set of boxplots for all metrics are found in 

appendix E 

ALL 
    

No 

SL 

    

Default P R Map0.

5 

mAP0.9

5 

 
P R Map0.

5 

mAP0.9

5 

Yolov7 0,88

3 

0,79

9 

0,858 0,399 
 

0,97

3 

0,87

4 

0,927 0,479 

Yolov7-tiny 0,88

4 

0,80

3 

0,874 0,403 
 

0,94

1 

0,87

7 

0,921 0,474 
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Yolov7-x 0,88

9 

0,75

1 

0,837 0,394 
 

0,96

5 

0,91

1 

0,947 0,501 

          

Target P R Map0.

5 

mAP0.9

5 

 
P R Map0.

5 

mAP0.9

5 

Yolov7 0,86

8 

0,71

3 

0,791 0,361 
 

0,94

4 

0,81

8 

0,893 0,463 

Yolov7-tiny 0,86

2 

0,79 0,837 0,378 
 

0,92

4 

0,85

8 

0,9 0,467 

Yolov7-x 0,90

4 

0,72 0,818 0,377 
 

0,97

3 

0,83

2 

0,91 0,471 

          

Default-

Transfer 

P R Map0.

5 

mAP0.9

5 

 
P R Map0.

5 

mAP0.9

5 

Yolov7 0,87

5 

0,72

7 

0,801 0,375 
 

0,94 0,78 0,86 0,455 

Yolov7-tiny 0,87

9 

0,81 0,882 0,415 
 

0,94

4 

0,87

8 

0,932 0,482 

Yolov7-x 0,85

9 

0,70

7 

0,77 0,348 
 

0,90

7 

0,76

6 

0,848 0,437 

          

Target-

Transfer 

P R Map0.

5 

mAP0.9

5 

 
P R Map0.

5 

mAP0.9

5 

Yolov7 0,86

4 

0,77

5 

0,822 0,366 
 

0,96

2 

0,76

9 

0,834 0,439 

Yolov7-tiny 0,85

3 

0,80

6 

0,847 0,397 
 

0,94

1 

0,85

2 

0,906 0,476 

Yolov7-x 0,87

4 

0,75

8 

0,83 0,377 
 

0,90

7 

0,76

6 

0,848 0,437 

 

6.2 – The best possible training method 

Let’s start this descriptive analysis with finding the best training method from the 4 proposed 

methods. As the data has many independent variables the analysis needs to be split up, otherwise 

creating, and analysing data visualisations is near impossible. To get fair comparison boxplots and 

heatmaps are made, to analyse the data distributions and the means. The boxplot Figure 6–2 shows the  

mAP at 0,5 ioU and mAP 0,95 at ioU per training method, note that this boxplot contains all test data 
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entries. 

  

Figure 6–2: Boxplot of AP 0,5 and 0,95 per training method 

The figure Figure 6–2 shows a clear higher median for the Default training method, this is the case for 

both metrics. With a higher median the assumption that all values are higher in the default training 

compared to the other training methods. The whole box, thus 50% of the values from default is higher 

compared to the other boxed. The highest value (peak of the whisker) is slightly the highest in the 

default training, although target training is close 2nd to default training. These observations lead to the 

final assumption that there is some indication that the default training method proves to be the best 

training method for the test dataset 

6.4 - The most optimal model 

The next step to determine the best model is to see which model performed the best overall. There are 

two approaches possible. The first approach is to look at each model individually, and not group/fiter 
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on a specific training method. The second approach is to group/filer on training method. Both 

approaches will be executed, to completely understand the results of all tests. 

The first approach will look at the boxplots of each model, there will be no filtering or grouping. This 

means that all training methods and all test sets are included. Figure 6–3 contains the mAP at 0,5 ioU 

and mAP 0,95 at ioU per training model. 

 

Figure 6–3: Boxplot of AP 0,5 and 0,95 per model 

Each box plots some interesting things. The median of yolov7-tiny is in both plots higher than the 

other models. The box itself is also reaching higher than the other models. This indicated that on 

average yolov7-tiny scores better on AP then the other yolo model. However, looking at the top of the 

whiskers another interesting result can be observed. The yolov7x models seems to score the best for 

both AP metrics. The model has quite a high variance, as the bottom of the whisker is not visible on 



44 
 

this image. This can indicate that on average the yolov7-tiny model generalises better, which means 

that it learns more general stomata features. And on the other the bigger yolov7x model learns more 

specific features, which impacts its performance, if exceptional cases are presented. 

The second approach will look at the boxplots of the test results grouped by learning method. By 

grouping this variable, the effect of the training method on individual model performance can be 

observed. Again, the plot is made with the AP0,5 and AP0,95.  

 

Figure 6–4: Boxplot of AP0,5 for  test result grouped by model 

 

Figure 6–5: Boxplot of AP0,95 for test result grouper per training method 
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We start with observing the images in general. In Figure 6–4 and Figure 6–5the model yolov7-tiny 

shows indications of the highest average, this is also reflected in this image. Throughout each training 

method the boxes for yolov7-tiny model all are all constantly on the same relative height. With the in 

the targeted training the box even surpasses the other models. The median form the yolov7-tiny model 

at an AP of 0,5 is in all cases the highest. In the cart from AP 0,95 this is not the case. Here the 

median is only the highest for the cases with target and target transfer as training method. Again, this 

observation indicates the prior stated finding, yolov7-tiny is better in generalizing. The model scores 

for each training method consistently average, which is not the case for the yolov7x and v7 models. 

Again, v7x shows the highest variance in the charts.  

The whiskers reveal quite an interesting observation. The highest value for yolov7x is within the 

default training, all the other training types show a lower peak value. These peak values are even 

lower then yolov7-tiny and in some cases the lowest of the three models. From this the earlier 

observation that yolov7x is possibly the best model starts to score a bit worse. If the best models are 

selected on pure performance, then yolov7x is still a good competitor.  

5.5 - Analysis of impact of plant species. 

In all the prior showed graphs the data still covers all the testing datasets. However, the test dataset 

also had an influence on model performance, as it is still an independent variable. Therefore, a series 

of observations will be made on the different test_sets. First, we start with a general observation. 

Figure 6–6 is the boxplot of all test results by test_set, note that the this contains all training methods 

and all models.  

 

Figure 6–6: Boxplot of AP 0,95 per test_set 

A quick observation can be made from the image, the only chrysant dataset has the highest average 

precision. The median is the highest from each test dataset. The scores from all set are varying a lot, 

this is also the case for only cucumber. Therefore, it can be assumed that this variance in all is mainly 

caused by the only cucumber test set. Figure 6–6 does not show the impact of each model. Therefore 

Figure 6–7 is made. 
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Figure 6–7: Boxplot of AP0,5 per test_set grouped by model 

The figure does give an insight full overview of what each model scores for average precision 0,5 at 

each test set for every training method. From this some new observations can be deducted and 

combined with earlier images some stronger assumptions are created. First start with the earlier 

observation of yolov7-tiny performing quite well on average. In IMG INSERT yolov7-tiny again 

scores on average quite high, in some cases even the highest. For all, no cucumber, and only tomato 

the model scores the highest. The median is even well above the whiskers of yolov7x. This again 

strengthens the assumption that on average yolov7-tiny scores the best. 

Yolov7x on the other hand does have some interesting whiskers (top values). Without tomato the 

model seems have the highest score on average precision. This is also the case for cucumber. 

However, cucumber does have quite a high variance for yolov7x. From  

The three species are shortly covered to observe and reason results for each specific specie. 

5.5.1 - Observations chrysant 
This specie shows the best performance, for almost every training method. Yolov7x on default 

training is has the highest performance, with a mAP 0,5 of 0,975 and 0,95 of 0,523. The precision and 

recall are also well above 0,95. Again yolov7-tiny score quite high on average for every training 

method. The high scores are truly phenomenal, however not entirely surprising. The models all have 

trained quite a lot on the chrysant, the used dataset contained this specie explicitly. Additionally, this 

specie is generally known for its recognisable stoma shape, and therefore the most trained on/ 

benchmarked specie within this research field.  

If the model is picked that performed the best on this specie, yolov7x would be the best candidate. 

The model has both a high precision, recall and average precision for both IoU levels.  
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ONLY CH 
     

Default P R F1 Map0.5 mAP0.95 

Yolov7 0,975 0,94 0,95718 0,952 0,497 

Yolov7-tiny 0,969 0,95 0,959406 0,961 0,499 

Yolov7x 0,981 0,955 0,967825 0,975 0,523       

Target P R F1 Map0.5 mAP0.95 

Yolov7 0,973 0,926 0,948918 0,961 0,497 

Yolov7-tiny 0,979 0,937 0,95754 0,965 0,506 

Yolov7x 0,981 0,944 0,962144 0,968 0,501       

Default transfer P R F1 Map0.5 mAP0.95 

Yolov7 0,968 0,909 0,937573 0,946 0,506 

Yolov7-tiny 0,978 0,945 0,961217 0,967 0,498 

Yolov7x 0,955 0,892 0,922426 0,93 0,48       

      

Target transfer P R F1 Map0.5 mAP0.95 

Yolov7 0,98 0,915 0,946385 0,95 0,513 

Yolov7-tiny 0,976 0,945 0,96025 0,969 0,511 

Yolov7x 0,952 0,904 0,927379 0,937 0,498 

Table 6-II: Test results for only chrysant 

5.5.2 - Observations cucumber 

From all the test images cucumber was a never seen plant species. The result of this is quite visible for 

all the different models. All models show a high variance in Figure 6–7 and this specie has the lowest 

median. 

  

Figure 6–8:  Scatterplot of mAP0,95 grouped by training method, coloured by model and filtered on only_sl 
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This scatterplot from Figure 6–8shows how each training method influenced each model on the 

cucumber dataset. Again the default in combination with yolov7x seems to be the best pick, as it 

scores on average precision quite nicely. The scatterplot reveals that the high variance as seen in 

Error! Reference source not found. is caused by both the target trained models. 

ombining observations one can argue that the default trained models generally generalise more on 

stomata shape, and less on the specific features from the stack images. This statement can be backed 

up by the drop for all models after transfer learning, where the stack images were used for training 

and validation.  

Overall cucumber scores respectively well, albeit that for the targeted learning the performance is 

relatively low. This shows that other species can be recognised, with a clear drop in performance as 

this drop in performance is visibly there.  

5.5.3 - Observations tomato 

There is a clear increase in all metrics between the tests with and without the tomato images. For each 

training method and each model there is a clear increase in precision recall mAP0,5 and mAP0,95. 

This is quite an interesting result with multiple possible reasons, since tomato is in the training dataset 

the argument that this specie is never seen cannot be made. Figure 6–7 further indicated the difference 

between the ALL and No_sl test dataset. In this figure the only_sl also indicates that the tomato 

images are clearly reducing the performance of all models.  

 

- The tomato images are not fairly represented 

This is true for the default dataset, where a lot of images are form chrysant stomata, as these 

are the most recognisable and well-studied stomata. For the other training methods however, 

there were 3 sets of tomato images in the training set, with the additional given images with 

tomato are small. 

- The drawn bounding boxes are not correct 

This can be a valid reason. The stomata are small on the tomato images, Figure 6–9 shows 

how small. As a nonprofessional biologist, it is hard to successfully find all stomata, and also 

only find stomata. Together with the fact that there are more stomata in tomato images in 

comparison to other images, one can state this assumption must be considered.   

 

Figure 6–9: A 4x zoomed segment of tomato image from microscope 
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- Tomato has small stomata, therefore hard to detect.  

From all reasons the fact that the stomata in the tomato images are small is quite evident. 

However besides hard to find, there is another flaw. The Yolo models might have a direct 

influence on this as well. During training the images are all compressed to a square of 

960x960, this is done to reduce the computational load. The GPU used was only limited to 

use this resolution, therefore all images were trained on a smaller scale then the ‘real’ input 

resolution. When the stomata in the image are already small, a compression will even further 

reduce the pixel count of a single stomata. Figure 6–10 below shows the direct effect of this 

compression on a stoma in a tomato image.  

 

Figure 6–10: Left side original input image, right side the image cropped by yolo 

 

5.7 – Statistical analysis 

Prior parts of this chapter only focussed on observations. The observations made are statistically 

proven yet. This chapter will attempt to test if model has influence on the test results, and if training 

method has influence on test results.  

The results from the test sessions are not all dependent on each other. This means that precision and 

recall are independent. However, both AP metrics are dependent both on precision and recall but also 

dependent on IoU. This created a quite complex situation, since there are also 3 different independent 

variables, namely model, training method and test_set. First, we do a three-way factorial ANOVA on 

precision and recall.  

To be able to perform an ANOVA test certain assumptions must be met. From a descriptive analysis 

in spss the only the dependent variables are tested.  The first test of normality without setting any 

independent variables already showed something concerning, as there is already a slight indication of 

no normal distribution. The 2nd test on normality with model set as an dependent variable already 

showed that the distribution was not normal as seen in Table 6-III 
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Tests of Normality 

 

Model 

Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

Precision yolov7 ,173 24 ,063 ,902 24 ,024 

yolov7-

tiny 

,148 24 ,190 ,941 24 ,173 

yolov7x ,086 24 ,200* ,954 24 ,332 

recall yolov7 ,089 24 ,200* ,970 24 ,667 

yolov7-

tiny 

,149 24 ,181 ,934 24 ,119 

yolov7x ,130 24 ,200* ,956 24 ,358 

ThmAP0.

5 

yolov7 ,095 24 ,200* ,963 24 ,510 

yolov7-

tiny 

,096 24 ,200* ,955 24 ,342 

yolov7x ,113 24 ,200* ,950 24 ,273 

mAP0.95 yolov7 ,102 24 ,200* ,958 24 ,391 

yolov7-

tiny 

,113 24 ,200* ,952 24 ,302 

yolov7x ,099 24 ,200* ,967 24 ,592 
Table 6-III: Normality test with model as independent variable 

The test on normality is not met, which means that for each model there is no normal distribution. 

Which makes is impossible to do an ANOVA as one of the assumptions is violated. Therefore, a non-

parametric test is used. This however means that the statistical significance is weaker if the null 

hypothesis is rejected.  The non-parametric test used is the Kruskal-Wallis test.  The tables below 

show the tests output from spss in grouped by model, training method and test_set 

Test Statisticsa,b 

 Precision recall mAP0.5 mAP0.95 

Kruskal-Wallis H ,016 3,666 3,134 1,890 

df 2 2 2 2 

Asymp. Sig. ,992 ,160 ,209 ,389 
a. Kruskal Wallis Test 

b. Grouping Variable: Model 

 

 

Test Statisticsa,b 

 Precision recall mAP0.5 mAP0.95 

Kruskal-Wallis H 2,606 3,934 4,457 2,100 

df 3 3 3 3 

Asymp. Sig. ,456 ,269 ,216 ,552 
a. Kruskal Wallis Test 

b. Grouping Variable: Training_method 
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Test Statisticsa,b 

 Precision recall mAP0.5 mAP0.95 

Kruskal-Wallis H 57,977 46,969 51,954 58,056 

df 5 5 5 5 

Asymp. Sig. <,001 <,001 <,001 <,001 
a. Kruskal Wallis Test 

b. Grouping Variable: TestData 

 
The first Kruskal-Wallis H test showed that there was no statistically significant difference in 

precision, recall, mAp0,5 and mAP0,95 between the different models. 

The second Kruskal-Wallis H test showed that there was no statistically significant difference in 

precision, recall, mAp0,5 and mAP0,95 between the different training methods. 

The third Kruskal-Wallis H test showed that there is statistically significant difference in precision, 

recall, mAp0,5 and mAP0,95 between the test methods. 

This means that there is only a significant differenct between the test_sets. There is no significant 

difference on model and training_method. Therefore the observations made are purely observations 

and not statistically proven. 

5.6 - Evaluation - to conclude 

The statistical analysis concluded that the differences between models and training methods are not 

significant, this can potentially be solved by performing more tests with different stacks. For now, the 

observations are discussed but note no statistical significance is proven.  The boxplots presented in 

this chapter aid the evaluation of the tests performed on each model. With the made assumptions 

throughout this chapter one can pivot towards a certain model in the selection of the models. Before a 

specific model is labelled as the ‘perfect’ one the observations made are listed below.  

- The default training generally is the best training method. 

- Yolov7-tiny scored high on AP0,5 and AP0,95 on average. 

- Yolov7x has the highest AP for an ioU 0,5 and 0,95 with default training and chrysant as test 

set. 

- Yolov7x with default training scores the best on cucumber. 

- Tomato reaches the limits of yolo, especially for yolov7x. 

Defining the best model can be done on multiple ways. One way is to simply look at the best 

performance for all dataset and conclude that is the best possible model. However, one can also argue 

that differences are amongst the stomata, especially with the tomato stomata, as the size does vary a 

lot compared to cucumber and chrysant. 

With the first methodology the preferred model is yolov7-tiny training with default training. This 

model scored consistently average for every test_set. YoloV7x trained with the default dataset is the 

picked model with the second way of reasonig, the model scores perfectly for chrysant, and relatively 

nice for cucumber, with the only weakness tomato. 

In the end, incorporating tomato negatively impacted the overall performance of the model, hence the 

second approach proved to be the most effective and should be adopted. The yolov7x model learned 

the stomata shape the best, and different more smaller shapes are simply harder for yolov7 overall.
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Chapter 7  - Conclusion 

Precision agriculture is a relative and important topic. Climate change is changing the environment, 

resulting in more precise and sensor driven agriculture. If it is known what exactly a plant needs, or a 

plant can be bread to specifically live in a certain environment, the emerging problem of food 

production in the world could be solved. Automatic stomata detection can speed up current research. 

Stomatal behaviour, and stomatal density and other aspects are still not fully understood. However, 

they are certainly a key aspect of precision agriculture, therefore understanding stomata is of the 

upmost importance. Detecting stomata by hand is currently a repetitive and time-consuming task if 

this can be sped up, the research output of this field can drastically increase.  

The landscape of object detection has changed significantly throughout the last years, there has been a 

paradigm shift from computational modals towards deep learning methods. Deep learning combines 

the need for human feature extraction and classifiers into one automated pipeline. Currently there are 

automated programs that can detect and count stomata, however these are still in development.  

The first research question is: How can existing knowledge on computer vision techniques be used to 

create a real time automatic stomata detection algorithm? 

From the first chapters it is found that with yoloV7 real time stomata detection is possible, as YoloV7 

has fast and accurate inference. Additionally, the mask_rcnn model is used, however this model had 

no real evaluation due to time constraints. 

The second part of this project explored the trainability and usability of YoloV7 for stomata detection, 

all to answer the second research question: Can a deep learning algorithm be trained that is able to 

detect stomata on different plant breeds with a precision of 95%? 

YoloV7 is currently the state-of-the-art model therefore, a more elaborate training and testing method 

was developed. Object detection with convolutional neural networks seems like a daunting task. With 

a structured and well though workflow this task is possible. The workflow ranges from data collection 

to model evaluation. The collected data should be as diverse as possible, where image count and 

difference between images is a key detail. For this research an open-source image library is used for 

the default targeted training. The models are also trained on additional images gathered directly from 

the microscope. 

With the dataset used from roboflow in combination with the images form the microscope a yolov7 

model can detect stomata with a high precision.  

The default dataset and training from this project has a strong indication to be the best method. This is 

mainly caused by the number of different images within the dataset; this enables the model to clearly 

extract key stomatal features. In combination with the targeted images in the dataset, the model can 

get a strong understanding of the microscope images. 

During this project multiple yoloV7 models are trained and tested and evaluated. The evaluation of 

each model is done with a test set containing never seen images from three different species. Chrysant 

and tomato, are the species that were used during training. Tomato was a never seen specie presented 

to the model in the test dataset. 

There are two good competitors for the best model. Both models are trained with default training. For 

a more average model that scores well on all test images, the yolov7-tiny model is the most optimal.  

Table 7-I shows the scores for the two models. 
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All P R F1 Map0.5 mAP0.95 

Yolov7-tiny 0,884 0,803 0,842 0,874 0,403 

Yolov7-x 
 

0,889 0,751 0,814 0,837 0,394 
 

Only CH 
     

Yolov7-tiny 0,969 0,95 0,959 0,961 0,499 

Yolov7-x 
 

0,981 0,955 0,968 0,975 0,523 
 

Only Kom 
    

Yolov7-tiny 0,896 0,748 0,815 0,833 0,425 

Yolov7-x 
 

0,938 0,84 0,886 0,895 0,462 
 

Only tom 
     

Yolov7-tiny 0,816 0,76 0,787 0,825 0,33 

Yolov7-x 
 

0,788 0,74 0,763 0,776 0,298 

Table 7-I: Test results for default training 

The final research question was not answered during this project. Due to time constraints and the 

amount of testing conducted on the yolov7 models, the task of combining stack images is not finished. 

However, there is a method which is developed that filters out certain bounding boxes, but not robust 

enough for testing. By counting the overlap and only save the overlapping bounding boxes some false 

positives can already be filtered out. With an altered nom max suppression this method can become 

more robust, and suitable for testing.  

6.2 - Discussion & future research 

The project really showed some direct influences of different training methodologies. Training has a 

real influence on refining your model, as the perfect training in combination with the perfect model 

can really squeeze out the last bit of possible improvement.  

One of the reasons why the test dataset scored lower than the training is the difference in data, and 

overall data availability. With the stack structure the model receives quite repetitive images, although 

they are not entirely similar the bounding box density is not uniformly distributed throughout the 

whole dataset. YoloV7 luckily uses the cut mix manner to create unique training images. Future 

research should try to test the influence of increasing the amount of truly different stacks. There may 

be no influence at all, which means that the models trained in this project are on peak performance on 

the targeted images.  

During this project the focus was more on object detection rather than segmentation. Yolov7 does 

have segmentation possibilities. Future research can create a model that is able to segment, based on 

the default training methodology created by this project. There is a version of the microscope dataset 

that contains masks, therefore some annotation steps can be skipped. 

The tomato images reduced model performance drastically for all types of training. yoloV7 is known 

for bad detections on small images, in addition with the rescaling this can indicate that the limit of the 

model is reached with the tomato images. Future research can consider using Slicing Aider Hyper 

inference [54], for the tomato images. This reintroduces a sliding box to the inference. In essence the 

image is cut into multiple images, and all inferenced on their own. From the github page this method 

seems to increase detection of smaller objects relatively well.  

In this project yoloV7 is used, at the start of this project up until the beginning of the year this model 

was the state-of-the-art. Currently yoloV8 [55] is released, this model is from the same authors as 

yoloV5. yoloV5 is created with a more business driven approach, where usability is a key aspect, this 

model has many tools developing and training yoloV5. YoloV8 has this same approach since it is 

made by the same authors. Yolov8 claims to have a higher score on the coco dataset (a widely 
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accepted test to validate a created model). Ease of deployment is something that yoloV7 does not 

have, therefore future research can focus on re-doing the default training on yoloV8 and compare 

results. 

The yolov7 models will all be handed over to Tom together with a small GUI. The GUI can be 

developed further to also accept segmentation models, since yolov7 does support this. Additionally, 

there a future project can refine the method to increase overall accuracy even more. And add possible 

functionality to the GUI. 
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Chapter 9 - Appendices 

Appendix A: Conda environments 

Yolov7 

name: yolov7_mask 

channels: 

  - pytorch 

  - nvidia 

  - conda-forge 

  - defaults 

dependencies: 

  - alabaster=0.7.12=pyhd3eb1b0_0 

  - arrow=1.2.3=py39haa95532_0 

  - astroid=2.11.7=py39haa95532_0 

  - atomicwrites=1.4.0=py_0 

  - attrs=22.1.0=py39haa95532_0 

  - autopep8=1.6.0=pyhd3eb1b0_1 

  - babel=2.9.1=pyhd3eb1b0_0 

  - backcall=0.2.0=pyhd3eb1b0_0 

  - bcrypt=3.2.0=py39h2bbff1b_1 

  - beautifulsoup4=4.11.1=py39haa95532_0 

  - binaryornot=0.4.4=pyhd3eb1b0_1 

  - blas=1.0=mkl 

  - bleach=4.1.0=pyhd3eb1b0_0 

  - brotlipy=0.7.0=py39h2bbff1b_1003 

  - ca-certificates=2022.12.7=h5b45459_0 

  - certifi=2022.12.7=pyhd8ed1ab_0 

  - cffi=1.15.1=py39h2bbff1b_0 

  - chardet=4.0.0=py39haa95532_1003 

  - charset-normalizer=2.0.4=pyhd3eb1b0_0 

  - cookiecutter=1.7.3=pyhd3eb1b0_0 

  - cryptography=38.0.1=py39h21b164f_0 

  - cuda=11.7.1=0 

  - cuda-cccl=11.7.91=0 

  - cuda-command-line-tools=11.7.1=0 

  - cuda-compiler=11.7.1=0 

  - cuda-cudart=11.7.99=0 

  - cuda-cudart-dev=11.7.99=0 

  - cuda-cuobjdump=11.7.91=0 

  - cuda-cupti=11.7.101=0 

  - cuda-cuxxfilt=11.7.91=0 

  - cuda-demo-suite=11.8.86=0 

  - cuda-documentation=11.8.86=0 

  - cuda-libraries=11.7.1=0 

  - cuda-libraries-dev=11.7.1=0 

  - cuda-memcheck=11.8.86=0 
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  - cuda-nsight-compute=11.8.0=0 

  - cuda-nvcc=11.7.99=0 

  - cuda-nvdisasm=11.8.86=0 

  - cuda-nvml-dev=11.7.91=0 

  - cuda-nvprof=11.8.87=0 

  - cuda-nvprune=11.7.91=0 

  - cuda-nvrtc=11.7.99=0 

  - cuda-nvrtc-dev=11.7.99=0 

  - cuda-nvtx=11.7.91=0 

  - cuda-nvvp=11.8.87=0 

  - cuda-runtime=11.7.1=0 

  - cuda-sanitizer-api=11.8.86=0 

  - cuda-toolkit=11.7.1=0 

  - cuda-tools=11.7.1=0 

  - cuda-visual-tools=11.7.1=0 

  - cudatoolkit=11.3.1=h59b6b97_2 

  - debugpy=1.5.1=py39hd77b12b_0 

  - decorator=5.1.1=pyhd3eb1b0_0 

  - defusedxml=0.7.1=pyhd3eb1b0_0 

  - diff-match-patch=20200713=pyhd3eb1b0_0 

  - dill=0.3.6=py39haa95532_0 

  - docutils=0.18.1=py39haa95532_3 

  - entrypoints=0.4=py39haa95532_0 

  - flake8=4.0.1=pyhd3eb1b0_1 

  - freetype=2.12.1=ha860e81_0 

  - glib=2.69.1=h5dc1a3c_2 

  - gst-plugins-base=1.18.5=h9e645db_0 

  - gstreamer=1.18.5=hd78058f_0 

  - icu=58.2=ha925a31_3 

  - idna=3.4=py39haa95532_0 

  - imagesize=1.4.1=py39haa95532_0 

  - importlib_metadata=4.11.3=hd3eb1b0_0 

  - inflection=0.5.1=py39haa95532_0 

  - intel-openmp=2021.4.0=haa95532_3556 

  - intervaltree=3.1.0=pyhd3eb1b0_0 

  - ipykernel=6.15.2=py39haa95532_0 

  - ipython_genutils=0.2.0=pyhd3eb1b0_1 

  - isort=5.9.3=pyhd3eb1b0_0 

  - jedi=0.18.1=py39haa95532_1 

  - jellyfish=0.9.0=py39h2bbff1b_0 

  - jinja2=3.1.2=py39haa95532_0 

  - jinja2-time=0.2.0=pyhd3eb1b0_3 

  - jpeg=9e=h2bbff1b_0 

  - jsonschema=4.16.0=py39haa95532_0 

  - jupyter_client=7.4.7=py39haa95532_0 

  - jupyter_core=4.11.2=py39haa95532_0 

  - jupyterlab_pygments=0.1.2=py_0 

  - keyring=23.4.0=py39haa95532_0 
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  - lazy-object-proxy=1.6.0=py39h2bbff1b_0 

  - lerc=3.0=hd77b12b_0 

  - libcublas=11.11.3.6=0 

  - libcublas-dev=11.11.3.6=0 

  - libcufft=10.9.0.58=0 

  - libcufft-dev=10.9.0.58=0 

  - libcurand=10.3.0.86=0 

  - libcurand-dev=10.3.0.86=0 

  - libcusolver=11.4.1.48=0 

  - libcusolver-dev=11.4.1.48=0 

  - libcusparse=11.7.5.86=0 

  - libcusparse-dev=11.7.5.86=0 

  - libdeflate=1.8=h2bbff1b_5 

  - libffi=3.4.2=hd77b12b_6 

  - libiconv=1.16=h2bbff1b_2 

  - libnpp=11.8.0.86=0 

  - libnpp-dev=11.8.0.86=0 

  - libnvjpeg=11.9.0.86=0 

  - libnvjpeg-dev=11.9.0.86=0 

  - libogg=1.3.5=h2bbff1b_1 

  - libpng=1.6.37=h2a8f88b_0 

  - libprotobuf=3.20.1=h23ce68f_0 

  - libsodium=1.0.18=h62dcd97_0 

  - libspatialindex=1.9.3=h6c2663c_0 

  - libtiff=4.4.0=h8a3f274_2 

  - libuv=1.40.0=he774522_0 

  - libvorbis=1.3.7=he774522_0 

  - libwebp=1.2.4=h2bbff1b_0 

  - libwebp-base=1.2.4=h2bbff1b_0 

  - libxml2=2.9.14=h0ad7f3c_0 

  - libxslt=1.1.35=h2bbff1b_0 

  - lxml=4.9.1=py39h1985fb9_0 

  - lz4-c=1.9.3=h2bbff1b_1 

  - markupsafe=2.1.1=py39h2bbff1b_0 

  - matplotlib-inline=0.1.6=py39haa95532_0 

  - mccabe=0.7.0=pyhd3eb1b0_0 

  - mistune=0.8.4=py39h2bbff1b_1000 

  - mkl=2021.4.0=haa95532_640 

  - mkl-service=2.4.0=py39h2bbff1b_0 

  - mkl_fft=1.3.1=py39h277e83a_0 

  - mkl_random=1.2.2=py39hf11a4ad_0 

  - mypy_extensions=0.4.3=py39haa95532_1 

  - nbclient=0.5.13=py39haa95532_0 

  - nbconvert=6.5.4=py39haa95532_0 

  - nbformat=5.7.0=py39haa95532_0 

  - nest-asyncio=1.5.5=py39haa95532_0 

  - nsight-compute=2022.3.0.22=0 

  - numpy=1.23.3=py39h3b20f71_0 
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  - numpy-base=1.23.3=py39h4da318b_0 

  - numpydoc=1.5.0=py39haa95532_0 

  - onnx=1.12.0=py39h1f835cd_0 

  - openssl=1.1.1s=h2bbff1b_0 

  - packaging=21.3=pyhd3eb1b0_0 

  - pandocfilters=1.5.0=pyhd3eb1b0_0 

  - paramiko=2.8.1=pyhd3eb1b0_0 

  - parso=0.8.3=pyhd3eb1b0_0 

  - pcre=8.45=hd77b12b_0 

  - pexpect=4.8.0=pyhd3eb1b0_3 

  - pickleshare=0.7.5=pyhd3eb1b0_1003 

  - pillow=9.2.0=py39hdc2b20a_1 

  - pip=22.2.2=py39haa95532_0 

  - pluggy=1.0.0=py39haa95532_1 

  - ply=3.11=py39haa95532_0 

  - poyo=0.5.0=pyhd3eb1b0_0 

  - ptyprocess=0.7.0=pyhd3eb1b0_2 

  - pycodestyle=2.8.0=pyhd3eb1b0_0 

  - pycparser=2.21=pyhd3eb1b0_0 

  - pydocstyle=6.1.1=pyhd3eb1b0_0 

  - pyflakes=2.4.0=pyhd3eb1b0_0 

  - pylint=2.14.5=py39haa95532_0 

  - pyls-spyder=0.4.0=pyhd3eb1b0_0 

  - pynacl=1.5.0=py39h8cc25b3_0 

  - pyopenssl=22.0.0=pyhd3eb1b0_0 

  - pyparsing=3.0.9=py39haa95532_0 

  - pyqt=5.15.7=py39hd77b12b_0 

  - pyqt5-sip=12.11.0=py39hd77b12b_0 

  - pyqtwebengine=5.15.7=py39hd77b12b_0 

  - pyrsistent=0.18.0=py39h196d8e1_0 

  - pysocks=1.7.1=py39haa95532_0 

  - python=3.9.15=h6244533_0 

  - python-dateutil=2.8.2=pyhd3eb1b0_0 

  - python-fastjsonschema=2.16.2=py39haa95532_0 

  - python-lsp-black=1.2.1=py39haa95532_0 

  - python-lsp-jsonrpc=1.0.0=pyhd3eb1b0_0 

  - python-lsp-server=1.5.0=py39haa95532_0 

  - python-slugify=5.0.2=pyhd3eb1b0_0 

  - pytorch=1.11.0=py3.9_cuda11.3_cudnn8_0 

  - pytorch-cuda=11.7=h67b0de4_0 

  - pytorch-mutex=1.0=cuda 

  - pywin32-ctypes=0.2.0=py39haa95532_1000 

  - pyzmq=23.2.0=py39hd77b12b_0 

  - qdarkstyle=3.0.2=pyhd3eb1b0_0 

  - qstylizer=0.1.10=pyhd3eb1b0_0 

  - qt-main=5.15.2=he8e5bd7_7 

  - qt-webengine=5.15.9=hb9a9bb5_4 

  - qtawesome=1.0.3=pyhd3eb1b0_0 
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  - qtconsole=5.3.2=py39haa95532_0 

  - qtpy=2.2.0=py39haa95532_0 

  - qtwebkit=5.212=h3ad3cdb_4 

  - requests=2.28.1=py39haa95532_0 

  - rope=0.22.0=pyhd3eb1b0_0 

  - rtree=0.9.7=py39h2eaa2aa_1 

  - setuptools=65.5.0=py39haa95532_0 

  - sip=6.6.2=py39hd77b12b_0 

  - six=1.16.0=pyhd3eb1b0_1 

  - snowballstemmer=2.2.0=pyhd3eb1b0_0 

  - sortedcontainers=2.4.0=pyhd3eb1b0_0 

  - soupsieve=2.3.2.post1=py39haa95532_0 

  - sphinx=5.0.2=py39haa95532_0 

  - sphinxcontrib-applehelp=1.0.2=pyhd3eb1b0_0 

  - sphinxcontrib-devhelp=1.0.2=pyhd3eb1b0_0 

  - sphinxcontrib-htmlhelp=2.0.0=pyhd3eb1b0_0 

  - sphinxcontrib-jsmath=1.0.1=pyhd3eb1b0_0 

  - sphinxcontrib-qthelp=1.0.3=pyhd3eb1b0_0 

  - sphinxcontrib-serializinghtml=1.1.5=pyhd3eb1b0_0 

  - spyder=5.3.3=py39haa95532_0 

  - spyder-kernels=2.3.3=py39haa95532_0 

  - sqlite=3.39.3=h2bbff1b_0 

  - text-unidecode=1.3=pyhd3eb1b0_0 

  - textdistance=4.2.1=pyhd3eb1b0_0 

  - three-merge=0.1.1=pyhd3eb1b0_0 

  - tinycss=0.4=pyhd3eb1b0_1002 

  - tinycss2=1.2.1=py39haa95532_0 

  - tk=8.6.12=h2bbff1b_0 

  - toml=0.10.2=pyhd3eb1b0_0 

  - tomli=2.0.1=py39haa95532_0 

  - tomlkit=0.11.1=py39haa95532_0 

  - torchaudio=0.11.0=py39_cu113 

  - torchvision=0.12.0=py39_cu113 

  - tornado=6.2=py39h2bbff1b_0 

  - typing-extensions=4.3.0=py39haa95532_0 

  - typing_extensions=4.3.0=py39haa95532_0 

  - tzdata=2022f=h04d1e81_0 

  - ujson=5.4.0=py39hd77b12b_0 

  - unidecode=1.2.0=pyhd3eb1b0_0 

  - urllib3=1.26.12=py39haa95532_0 

  - vc=14.2=h21ff451_1 

  - vs2015_runtime=14.27.29016=h5e58377_2 

  - watchdog=2.1.6=py39haa95532_0 

  - wcwidth=0.2.5=pyhd3eb1b0_0 

  - webencodings=0.5.1=py39haa95532_1 

  - whatthepatch=1.0.2=py39haa95532_0 

  - wheel=0.37.1=pyhd3eb1b0_0 

  - win_inet_pton=1.1.0=py39haa95532_0 
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  - wincertstore=0.2=py39haa95532_2 

  - wrapt=1.14.1=py39h2bbff1b_0 

  - xz=5.2.6=h8cc25b3_0 

  - yaml=0.2.5=he774522_0 

  - yapf=0.31.0=pyhd3eb1b0_0 

  - zeromq=4.3.4=hd77b12b_0 

  - zlib=1.2.13=h8cc25b3_0 

  - zstd=1.5.2=h19a0ad4_0 

  - pip: 

    - absl-py==1.3.0 

    - altgraph==0.17.3 

    - antlr4-python3-runtime==4.9.3 

    - asttokens==2.1.0 

    - astunparse==1.6.3 

    - auto-py-to-exe==2.27.0 

    - black==22.3.0 

    - bottle==0.12.23 

    - bottle-websocket==0.2.9 

    - cachetools==5.2.0 

    - click==8.1.3 

    - cloudpickle==2.2.0 

    - colorama==0.4.6 

    - contourpy==1.0.6 

    - cycler==0.11.0 

    - cython==0.29.32 

    - eel==0.14.0 

    - executing==1.2.0 

    - fairscale==0.4.12 

    - filelock==3.8.0 

    - flatbuffers==23.1.4 

    - fonttools==4.38.0 

    - future==0.18.2 

    - fvcore==0.1.5.post20220512 

    - gast==0.4.0 

    - gevent==22.10.2 

    - gevent-websocket==0.10.1 

    - google-auth==2.14.1 

    - google-auth-oauthlib==0.4.6 

    - google-pasta==0.2.0 

    - greenlet==2.0.1 

    - grpcio==1.50.0 

    - h5py==3.7.0 

    - huggingface-hub==0.10.1 

    - hydra-core==1.2.0 

    - importlib-metadata==5.0.0 

    - iopath==0.1.9 

    - ipython==8.6.0 

    - keras==2.11.0 



65 
 

    - kiwisolver==1.4.4 

    - libclang==15.0.6.1 

    - markdown==3.4.1 

    - matplotlib==3.6.2 

    - mypy-extensions==0.4.3 

    - oauthlib==3.2.2 

    - omegaconf==2.2.3 

    - opencv-python==4.6.0.66 

    - opt-einsum==3.3.0 

    - pandas==1.5.1 

    - pathspec==0.10.2 

    - pefile==2022.5.30 

    - platformdirs==2.5.4 

    - portalocker==2.6.0 

    - prompt-toolkit==3.0.32 

    - protobuf==3.19.6 

    - psutil==5.9.4 

    - pure-eval==0.2.2 

    - pyasn1==0.4.8 

    - pyasn1-modules==0.2.8 

    - pycocotools==2.0.6 

    - pydot==1.4.2 

    - pygments==2.13.0 

    - pyinstaller==5.7.0 

    - pyinstaller-hooks-contrib==2022.15 

    - pytz==2022.6 

    - pywin32==305 

    - pyyaml==5.1 

    - requests-oauthlib==1.3.1 

    - rsa==4.9 

    - scipy==1.9.3 

    - seaborn==0.12.1 

    - stack-data==0.6.1 

    - tabulate==0.9.0 

    - tensorboard==2.11.0 

    - tensorboard-data-server==0.6.1 

    - tensorboard-plugin-wit==1.8.1 

    - tensorflow==2.11.0 

    - tensorflow-estimator==2.11.0 

    - tensorflow-intel==2.11.0 

    - tensorflow-io-gcs-filesystem==0.29.0 

    - termcolor==2.1.0 

    - thop==0.1.1-2209072238 

    - timm==0.6.11 

    - tqdm==4.64.1 

    - traitlets==5.5.0 

    - werkzeug==2.2.2 

    - whichcraft==0.6.1 
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    - yacs==0.1.8 

    - zipp==3.10.0 

    - zope-event==4.6 

    - zope-interface==5.5.2 
 

Mask-rcnn enviroment 

name: mask-rcnn 

channels: 

  - defaults 

dependencies: 

  - ca-certificates=2022.10.11=haa95532_0 

  - certifi=2022.9.24=py38haa95532_0 

  - libffi=3.4.2=hd77b12b_6 

  - openssl=1.1.1s=h2bbff1b_0 

  - pip=22.3.1=py38haa95532_0 

  - python=3.8.15=h6244533_2 

  - setuptools=65.5.0=py38haa95532_0 

  - sqlite=3.40.0=h2bbff1b_0 

  - vc=14.2=h21ff451_1 

  - vs2015_runtime=14.27.29016=h5e58377_2 

  - wheel=0.37.1=pyhd3eb1b0_0 

  - wincertstore=0.2=py38haa95532_2 

  - pip: 

    - absl-py==1.3.0 

    - alabaster==0.7.12 

    - anyio==3.6.2 

    - argon2-cffi==21.3.0 

    - argon2-cffi-bindings==21.2.0 

    - arrow==1.2.3 

    - astunparse==1.6.3 

    - attrs==22.1.0 

    - babel==2.11.0 

    - backcall==0.2.0 

    - beautifulsoup4==4.11.1 

    - bleach==5.0.1 

    - cachetools==5.2.0 

    - cffi==1.15.1 

    - charset-normalizer==2.1.1 

    - colorama==0.4.6 

    - comm==0.1.2 

    - cycler==0.11.0 

    - cython==0.29.32 

    - debugpy==1.6.4 

    - decorator==5.1.1 

    - defusedxml==0.7.1 

    - docutils==0.19 

    - entrypoints==0.4 



67 
 

    - fastjsonschema==2.16.2 

    - fonttools==4.38.0 

    - fqdn==1.5.1 

    - gast==0.3.3 

    - google-auth==2.15.0 

    - google-auth-oauthlib==0.4.6 

    - google-pasta==0.2.0 

    - grpcio==1.51.1 

    - h5py==2.10.0 

    - idna==3.4 

    - imageio==2.22.4 

    - imagesize==1.4.1 

    - imgaug==0.4.0 

    - importlib-metadata==5.1.0 

    - importlib-resources==5.10.1 

    - ipykernel==6.19.2 

    - ipyparallel==8.4.1 

    - ipython==7.34.0 

    - ipython-genutils==0.2.0 

    - ipywidgets==8.0.3 

    - isoduration==20.11.0 

    - jedi==0.18.2 

    - jinja2==3.1.2 

    - jsonpointer==2.3 

    - jsonschema==4.17.3 

    - jupyter-client==7.4.8 

    - jupyter-core==5.1.0 

    - jupyter-events==0.5.0 

    - jupyter-server==2.0.1 

    - jupyter-server-terminals==0.4.2 

    - jupyterlab-pygments==0.2.2 

    - jupyterlab-widgets==3.0.4 

    - keras==2.4.3 

    - keras-preprocessing==1.1.2 

    - kiwisolver==1.4.4 

    - markdown==3.4.1 

    - markupsafe==2.1.1 

    - matplotlib==3.5.3 

    - matplotlib-inline==0.1.6 

    - mistune==2.0.4 

    - nbclassic==0.4.8 

    - nbclient==0.7.2 

    - nbconvert==7.2.6 

    - nbformat==5.7.0 

    - nest-asyncio==1.5.6 

    - networkx==2.8.8 

    - nose==1.3.7 

    - notebook==6.5.2 
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    - notebook-shim==0.2.2 

    - numpy==1.18.5 

    - oauthlib==3.2.2 

    - opencv-python==4.6.0.66 

    - opt-einsum==3.3.0 

    - packaging==22.0 

    - pandocfilters==1.5.0 

    - parso==0.8.3 

    - pickleshare==0.7.5 

    - pillow==9.3.0 

    - pkgutil-resolve-name==1.3.10 

    - platformdirs==2.6.0 

    - prometheus-client==0.15.0 

    - prompt-toolkit==3.0.36 

    - protobuf==3.20.3 

    - psutil==5.9.4 

    - pyasn1==0.4.8 

    - pyasn1-modules==0.2.8 

    - pycocotools-windows==2.0.0.2 

    - pycparser==2.21 

    - pygments==2.13.0 

    - pyparsing==3.0.9 

    - pyrsistent==0.19.2 

    - python-dateutil==2.8.2 

    - python-json-logger==2.0.4 

    - pytz==2022.6 

    - pywavelets==1.4.1 

    - pywin32==305 

    - pywinpty==2.0.9 

    - pyyaml==6.0 

    - pyzmq==24.0.1 

    - qtconsole==5.4.0 

    - qtpy==2.3.0 

    - requests==2.28.1 

    - requests-oauthlib==1.3.1 

    - rfc3339-validator==0.1.4 

    - rfc3986-validator==0.1.1 

    - rsa==4.9 

    - scikit-image==0.16.2 

    - scipy==1.4.1 

    - send2trash==1.8.0 

    - shapely==1.8.5.post1 

    - six==1.16.0 

    - sniffio==1.3.0 

    - snowballstemmer==2.2.0 

    - soupsieve==2.3.2.post1 

    - sphinx==5.3.0 

    - sphinxcontrib-applehelp==1.0.2 
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    - sphinxcontrib-devhelp==1.0.2 

    - sphinxcontrib-htmlhelp==2.0.0 

    - sphinxcontrib-jsmath==1.0.1 

    - sphinxcontrib-qthelp==1.0.3 

    - sphinxcontrib-serializinghtml==1.1.5 

    - tensorboard==2.11.2 

    - tensorboard-data-server==0.6.1 

    - tensorboard-plugin-wit==1.8.1 

    - tensorflow==2.3.0 

    - tensorflow-estimator==2.3.0 

    - termcolor==2.1.1 

    - terminado==0.17.1 

    - testpath==0.6.0 

    - tifffile==2021.11.2 

    - tinycss2==1.2.1 

    - tornado==6.2 

    - tqdm==4.64.1 

    - traitlets==5.7.0 

    - uri-template==1.2.0 

    - urllib3==1.26.13 

    - wcwidth==0.2.5 

    - webcolors==1.12 

    - webencodings==0.5.1 

    - websocket-client==1.4.2 

    - werkzeug==2.2.2 

    - widgetsnbextension==4.0.4 

    - wrapt==1.14.1 

    - zipp==3.11.0 
 

Appendix B: Training curves for every model 
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Appendix C: Code for improving precision with stacks 

def overlaps_withxyxy(box1, box2): 

   # Extract the coordinates of the bounding boxes 

  x1_1, y1_1, x2_1, y2_1 = box1 

  x1_2, y1_2, x2_2, y2_2 = box2 

 

  # Check if the bounding boxes overlap 

  return  not (x1_1 > x2_2 or x2_1 < x1_2 or y1_1 > y2_2 or y2_1 < y1_2) 

 

def find_overlapping_boxes(boxes, min_overlap): 

  # Create a dictionary to store the overlaps for each bounding box 

  overlaps = {} 

  # Then, we iterate over all images and all bounding boxes in each image 

  for image in boxes: 

    for box in image: 

      # Convert the bounding box coordinates to a tuple 

       

      box_tuple = tuple(box) 

      # Initialize the overlap count for this bounding box 

      overlaps[box_tuple] = 0 

      # For each bounding box, we check if it overlaps with any other box in 

the other images 

      for other_image in boxes: 

        if other_image != image: 

          for other_box in other_image: 

            if overlaps_withxyxy(box, other_box): 

              # If it does, we increment the overlap count for that box 

              overlaps[box_tuple] += 1 

 

  # Finally, we return all bounding boxes that have at least the minimum 

number of overlaps 

  return [box for box, overlap in overlaps.items() if overlap >= min_overlap] 

 
 

In the main detect method 

overlapping_boxes = find_overlapping_boxes(totalImg,110) 

    for path, img, im0s, vid_cap in dataset: 

        totalImg.append([]) 

        #im0s = torch.from_numpy(img).to(device) 

        #im0s /= 255.0  # 0 - 255 to 0.0 - 1.0 

        for box in overlapping_boxes:  

            #box_list = list(box) 

            x1, y1, x2, y2 = box 

            #box_list[0] = box_list[0]*im0s.shape[0] 

            #box_list[1] = box_list[1]*im0s.shape[1] 

            #box_list[2] = box_list[2]*im0s.shape[1] 
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            #box_list[3]=  box_list[3]*im0s.shape[0] 

            #print(box_list) 

            #x,y,w,h = box_list 

             

            #plot_one_box(box_list, im0s, label='stomata_overlap', 

color=colors[int(cls)], line_thickness=1) 

            cv2.rectangle(im0s, (x1, y1), (x2, y2), (0, 255, 0), 2) 

        im0s = cv2.resize(im0s, (1330, 1150))     

        cv2.imshow('Overlapping Boxes', im0s, ) 

 

        # To wait for a key press before closing the window, use the 

cv2.waitKey function 

        cv2.waitKey(0) 

        return 
 

Appendix D: All test results 

Model Training_method TestData Precision recall F1 mAP0.5 mAP0.95 

yolov7 default All 0,883 0,799 0,84 0,858 0,399 

yolov7-tiny default All 0,884 0,803 0,84 0,874 0,403 

yolov7x default All 0,889 0,751 0,81 0,837 0,394 

        

yolov7 target All 0,868 0,713 0,78 0,791 0,361 

yolov7-tiny target All 0,862 0,790 0,82 0,837 0,378 

yolov7x target All 0,904 0,720 0,80 0,818 0,377 

        

yolov7 default-transfer All 0,875 0,727 0,79 0,801 0,375 

yolov7-tiny default-transfer All 0,879 0,810 0,84 0,882 0,415 

yolov7x default-transfer All 0,859 0,707 0,78 0,770 0,348 

        

yolov7 target-transfer All 0,864 0,775 0,82 0,822 0,366 

yolov7-tiny target-transfer All 0,853 0,806 0,83 0,847 0,397 

yolov7x target-transfer All 0,874 0,758 0,81 0,830 0,377 

        

yolov7 default no_sl 0,973 0,874 0,92 0,927 0,479 

yolov7-tiny default no_sl 0,941 0,877 0,91 0,921 0,474 

yolov7x default no_sl 0,965 0,911 0,94 0,947 0,501 

        

yolov7 target no_sl 0,944 0,818 0,88 0,893 0,463 

yolov7-tiny target no_sl 0,924 0,858 0,89 0,900 0,467 

yolov7x target no_sl 0,973 0,832 0,90 0,910 0,471 

        

yolov7 default-transfer no_sl 0,940 0,780 0,85 0,860 0,455 

yolov7-tiny default-transfer no_sl 0,944 0,878 0,91 0,932 0,482 

yolov7x default-transfer no_sl 0,907 0,766 0,83 0,848 0,437 

        

yolov7 target-transfer no_sl 0,962 0,769 0,85 0,834 0,439 
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yolov7-tiny target-transfer no_sl 0,941 0,852 0,89 0,906 0,476 

yolov7x target-transfer no_sl 0,907 0,766 0,83 0,848 0,437 

        

yolov7 default no_kom 0,876 0,798 0,84 0,859 0,392 

yolov7-tiny default no_kom 0,870 0,825 0,85 0,885 0,401 

yolov7x default no_kom 0,868 0,787 0,83 0,858 0,392 

        

yolov7 default only_ch 0,975 0,940 0,96 0,952 0,497 

yolov7-tiny default only_ch 0,969 0,950 0,96 0,961 0,499 

yolov7x default only_ch 0,981 0,955 0,97 0,975 0,523 

        

yolov7 default only_kom 0,905 0,821 0,86 0,876 0,453 

yolov7-tiny default only_kom 0,896 0,748 0,82 0,833 0,425 

yolov7x default only_kom 0,938 0,840 0,89 0,895 0,462 

        

yolov7 default only_sl 0,802 0,743 0,77 0,790 0,321 

yolov7-tiny default only_sl 0,816 0,760 0,79 0,825 0,330 

yolov7x default only_sl 0,788 0,740 0,76 0,776 0,298 

        

yolov7 target no_kom 0,870 0,736 0,80 0,804 0,357 

yolov7-tiny target no_kom 0,864 0,804 0,83 0,858 0,380 

yolov7x target no_kom 0,852 0,765 0,81 0,826 0,371 

        

yolov7 target only_ch 0,973 0,926 0,95 0,961 0,497 

yolov7-tiny target only_ch 0,979 0,937 0,96 0,965 0,506 

yolov7x target only_ch 0,981 0,944 0,96 0,968 0,501 

        

yolov7 target only_kom 0,870 0,646 0,74 0,748 0,404 

yolov7-tiny target only_kom 0,862 0,712 0,78 0,771 0,390 

yolov7x target only_kom 0,920 0,690 0,79 0,799 0,428 

        

yolov7 target only_sl 0,805 0,637 0,71 0,698 0,264 

yolov7-tiny target only_sl 0,796 0,745 0,77 0,782 0,294 

yolov7x target only_sl 0,770 0,713 0,74 0,737 0,286 

        

yolov7 default-transfer no_kom 0,854 0,807 0,83 0,842 0,385 

yolov7-tiny default-transfer no_kom 0,873 0,826 0,85 0,888 0,409 

yolov7x default-transfer no_kom 0,875 0,782 0,83 0,824 0,375 

        

yolov7 default-transfer only_ch 0,968 0,909 0,94 0,946 0,506 

yolov7-tiny default-transfer only_ch 0,978 0,945 0,96 0,967 0,498 

yolov7x default-transfer only_ch 0,955 0,892 0,92 0,930 0,480 

        

yolov7 default-transfer only_kom 0,865 0,656 0,75 0,738 0,381 

yolov7-tiny default-transfer only_kom 0,857 0,792 0,82 0,854 0,457 

yolov7x default-transfer only_kom 0,730 0,541 0,62 0,580 0,237 
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yolov7 default-transfer only_sl 0,795 0,752 0,77 0,769 0,302 

yolov7-tiny default-transfer only_sl 0,818 0,761 0,79 0,822 0,345 

yolov7x default-transfer only_sl 0,837 0,719 0,77 0,747 0,303 

        

yolov7 target-transfer no_kom 0,856 0,831 0,84 0,866 0,381 

yolov7-tiny target-transfer no_kom 0,875 0,808 0,84 0,867 0,398 

yolov7x target-transfer no_kom 0,868 0,817 0,84 0,863 0,389 

        

yolov7 target-transfer only_ch 0,980 0,915 0,95 0,950 0,513 

yolov7-tiny target-transfer only_ch 0,976 0,945 0,96 0,969 0,511 

yolov7x target-transfer only_ch 0,952 0,904 0,93 0,937 0,498 

        

yolov7 target-transfer only_kom 0,855 0,568 0,68 0,623 0,309 

yolov7-tiny target-transfer only_kom 0,860 0,712 0,78 0,781 0,412 

yolov7x target-transfer only_kom 0,772 0,586 0,67 0,669 0,329 

        

yolov7 target-transfer only_sl 0,796 0,787 0,79 0,797 0,287 

yolov7-tiny target-transfer only_sl 0,778 0,778 0,78 0,790 0,324 

yolov7x target-transfer only_sl 0,821 0,779 0,80 0,811 0,317 
 

Appendix E: Test boxplots 
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