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Management Summary 
We conduct this research at CoolblueBikes (CBB), the bike delivery network of Coolblue, as 
part of the master graduation assignment of the Industrial Engineering and Management 
educational program at the University of Twente.  
 
Problem description 
CBB is an overflow carrier. Therefore, they can select which potential orders they want to 
deliver, and decide which remaining orders they want to outsource to delivery partners (DP). 
Accordingly, they select which potential orders they are going to deliver until all deployed 
capacity is utilized on the operational level. Beforehand, on the tactical level, they mimic this 
operational order selection. Accordingly, they determine how much capacity they need to 
deliver the orders that they are going to select. The capacity is based on the order selection 
and translated to the number of delivery men hours and bike routes. The current order selection 
equals all forecasted potential orders from a subarea of the delivery area. However, this 
subarea is static, i.e., independent of the forecast and the bike route efficiency. 
 
Currently, the costs per order of CBB delivery are higher than the costs per order of DP 
delivery. The CBB delivery costs consist of fixed costs, and variable costs per order, per hour, 
and per kilometre. Straightforwardly, CBB desires to have minimal costs per order. Hence, to 
determine the most cost-efficient capacity to deploy per hub at the tactical level to decrease 
the costs per order of CBB delivery, we answer the main research question: 
 
How should the optimal required capacity of CBB’s hubs be determined such that the 
costs per order of CBB delivery are minimized? 
 
To answer this question, we develop a solution methodology that supports capacity 
deployment decisions at the tactical level in routing problems. Our main goal is to find out what 
number of selected orders defines the capacity optimum given the forecasted potential orders 
per hub, and how robust this optimum is against order uncertainties. Subsequently, we focus 
on finding methods that estimate the delivery costs of a subset of orders, because (exactly) 
evaluating all order combinations is too computationally demanding. Also, we focus on finding 
methods that evaluate the impact of uncertainty on the most cost-efficient order selection.  
 
Solution methodology 
After a current system analysis and a literature review, we propose 1) to develop machine 
learning model(s) that estimate(s) the costs of an order selection, and 2) to analyse the 
operational routing plan, using Monte Carlo simulation, in which machine learning model(s) 
are utilized to support decisions about the most cost-efficient order selection.  
 
1) Development of machine learning models 

We develop the Random Forest Regression (RFR) and Lightweight Gradient Boosting 

Machines (LGBM) models because they are the most suitable machine learning models for 

our problem. We encounter uncertainty in all types of order information from the to-be-

evaluated days. However, we only need to know the number of orders to deliver and not which. 

Therefore, we decide to develop a tactical level machine learning model, for which we do not 

have to assume all order information to make predictions. To obtain (spatial) features that 

describe the solution value, we decide to partition the delivery area into PC4s (the 4 numbers 

of the Dutch postal code) and describe the potential orders on PC4 level. We train, validate 

and test both models on two types of data: generated and historical data. Hence, we simulate 

the order selection of the hub in Hilversum to generate instances. Here, we use the historical 

daily order divisions per PC4, select every day 4 order subsets of different sizes based on the 

nearest neighbour heuristic, solve the vehicle routing problem (VRP) of these orders 

selections, and store the respective features on which we will train the machine learning 
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models. Because there is insufficient historical data per hub to develop both machine learning 

models, we group the historical data based on hub size (small or large).  

 

2) Monte Carlo simulation 

We simulate the operational routing plan to 1) assess the uncertainty in how the potential 

orders are distributed over the PC4s, and 2) validate the solution methodology. The simulation 

consists of 4 phases, which we repeat until both the most cost-efficient number of orders 

selected and the costs per order of the order selection are statistically significant. Hence, we 

can evaluate the robustness of the most cost-efficient order selection.  

1. In Phase 1, we distribute the forecasted potential orders over the PC4s of the delivery area 

based on a PC4 order probability distribution.  

2. In Phase 2, we select the most cost-efficient order subset with the cheapest insertion 

heuristic based on estimated insertion costs. We estimate these costs with a machine 

learning model trained on generated data (1), and a machine learning model trained on 

grouped historical data (2). Additionally, we estimate the insertion costs with the literature 

estimation of Daganzo to benchmark from. To validate our solution methodology, we also 

select orders the same as in the current system, i.e., with the Method ‘Optimal levels’.  

3. In Phase 3, we solve the VRP of each order selection. Hence, we can compare the cost-

efficiency of the retrieved order selections objectively and validate our solution 

methodology. To solve the VRP, we estimate the order volumes and locations. 

4. In Phase 4 we store the metrics belonging to the order selections to evaluate the 

robustness and to learn what method can best be utilized to support CBB with capacity 

deployment decisions.  

Performance 
First, we train, validate and test the machine learning models RFR and LGBM on the generated 
and historical data with 6 tactical-level features. We find that the RFR models have the best 
(out-of-sample) predictive performance and that the model trained on generated data (MAPE: 

8.28%, Adjusted 𝑅2: 0.984, rRMSE: 8.71%, rMAE: 6.17%) outperforms the model trained on 

grouped historical data (MAPE: 9.77%, Adjusted 𝑅2: 0.873, rRMSE: 10.45%, rMAE: 8.64%) 
on all performance metrics. Hence, we decide to utilize these two RFR models in the 
simulation.  
 
Second, we find that the PC4 order distribution can best be estimated with a negative binomial 
distribution.  
 
Third, we test our proposed solution methodology on the hub in Hilversum. We study and 
compare the performance of the 4 order selection methods in 3 experiments: 1) the minimum 
observed potential orders (40), 2) the average observed potential orders (140) and 3) the 
maximal observed potential orders (460). We observe that the three order selection methods 
select significantly more orders than the Method ‘Optimal levels’ with 40 and 140 potential 
orders and that the difference in the number of orders selected of all methods is insignificant 
with 460 orders. Strikingly, the differences in costs per order are never significant. Furthermore, 
we observe that under the current circumstances, all four methods always select a number of 
orders close to the maximal number of orders. 
 
We conduct a sensitivity analysis to validate that our solution methodology selects the most 
cost-efficient number of orders. We learn that if we put more weight on the chosen orders (e.g. 
higher variable costs, increase in distance or lower fixed costs), the most cost-efficient number 
of orders to select is less obvious. Both the difference with current circumstances and the 
mutual difference between Methods Daganzo, RFR (1) and RFR (2) is not significant. 
However, the Method ‘Optimal levels’ is insensitive to cost changes i.e., the order selection is 
independent of the costs, and distance increases. Hence, it is not capable of choosing the 
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most cost-efficient number of orders. Furthermore, we confirmed the value of our solution 
methodology during an experiment with zero fixed costs: it selects the subset of orders based 
on the current costs of delivering orders based on route efficiency, and decreases the costs 
per order between 3.9 % – 18.1 %. 
 
We perform an in-depth analysis to understand the comparable performance of the Methods 
Daganzo, RFR (1) and RFR (2) in the solution methodology. Additionally, we develop an 
operational level RFR to show the difference in performance with all order information 
(operational level) and with uncertainty in all types of order information (tactical level), and thus 
to validate the development and use of the tactical level RFR. We learn that the operational 
level RFR has a very high predictive performance both in the simulation and on the test set. 
Also, we learn that RFR (1) makes similar estimations as the operational level RFR, and thus 
that both models make a similar decision regarding the most cost-efficient order selection. 
Hence, we conclude that the tactical level model is capable of selecting the most cost-efficient 
number of orders to deliver. Furthermore, we learn that the fixed costs per order converge to 
zero when the number of orders selected converges to infinity and that the difference in 
variable costs per order shows an oscillating behaviour converging to zero when the orders 
selected approach the maximal number of potential orders. If we want to make an order 
selection decision based on the travelled distance, the ratio of fixed costs, variable costs, travel 
distance and travel time should be such that the reduction in fixed costs per order is 
overshadowed by the in- or decrease in variable costs per order. Under the current 
circumstances in Hilversum, although the methods underestimate the distances, i.e., they 
evaluate with a haversine distance, the decrease in fixed costs per order overshadows the 
change in variable costs per order. Hence, the order selection decision of the three methods 
is straightforward, and thus comparable: select a number of orders skewed to the maximal 
number of potential orders. 
 
Conclusions and evaluations 
In conclusion, we provide CBB with a valid solution methodology to determine the required 
capacity aligned with the bike route efficiency. Although the difference in costs retrieved from 
these methodologies is not statistically significant with 95% confidence compared to the 
current method, the method is valid, dynamic, robust, easily implementable, and generalizable 
to other hubs, unlike the current method. Additionally, the method indicates the efficiency and 
improvement potential of a hub, and can also be used for order selection and route planning 
at the operational level with 4 small adjustments. Furthermore, we contribute to the literature 
with a methodology that selects the most cost-efficient order subset to determine the delivery 
capacity in routing problems at the tactical level. 
 
We recommend Coolblue the following based on the obtained results: 

1. We recommend implementing the solution methodology for all hubs based on the 

distance estimation of RFR (1). 

2. We recommend running the tool once for every number of forecasted potential orders 

per hub under the current circumstances, and only rerunning when the input 

parameters or current circumstances change. 

3. We recommend storing the input parameters and files in Coolblue’s data warehouse 

BiqQuery and connecting these to the tool such that they are automatically updated. 

4. We recommend implementing the distance estimation and route planning API of CBB 

in the tool to obtain representative distances and bike routes of the CBB planning.  

5. We recommend assigning ownership to the model to ensure its continuity. 

6. We recommend storing the historical potential order information on order level instead 

of PC4 level. 

7. We recommend documenting the current working methods of CBB and storing this 

information in one central place.  



 

vii 
 

 

Table of Contents 

PREFACE III 

MANAGEMENT SUMMARY IV 

FIGURES AND TABLES IX 

ABBREVIATIONS XI 

1 INTRODUCTION 1 

1.1 ABOUT COOLBLUE 1 
1.1.1 COOLBLUEBIKES 1 
1.1.2 ORDER SELECTION 1 
1.2 RESEARCH MOTIVATION 3 
1.2.1 PROBLEM IDENTIFICATION 3 
1.2.2 RESEARCH PROBLEM 4 
1.3 RESEARCH DESIGN 5 
1.3.1 RESEARCH GOAL 5 
1.3.2 RESEARCH QUESTIONS 6 
1.3.3 SCOPE 7 

2 CURRENT SITUATION 8 

2.1 CAPACITY PLANNING PROCESS 8 
2.1.1 STRATEGICAL LEVEL 8 
2.1.2 TACTICAL LEVEL 10 
2.1.3 OPERATIONAL LEVEL 12 
2.1.4 OPERATIONAL ROUTE PLANNING 13 
2.1.5 PROCESS FLOW DIAGRAM 14 
2.2 COSTS PER ORDER 16 
2.3 CONSTRAINTS AND REQUIREMENTS 17 
2.4 CONCLUSIONS 18 

3 LITERATURE REVIEW 19 

3.1 VEHICLE ROUTING PROBLEM 19 
3.2 ORDER SELECTION AND CAPACITY PLANNING 20 
3.2.1 STRATEGIC LEVEL 20 
3.2.2 TACTICAL LEVEL 21 
3.2.3 OPERATIONAL LEVEL 21 
3.2.4 DISCUSSION 22 
3.3 VRP DISTANCE ESTIMATIONS 23 
3.3.1 MATHEMATICAL APPROACHES 24 
3.3.2 MACHINE LEARNING ESTIMATIONS 24 



 

viii 
 

3.4 MONTE CARLO SIMULATION 28 
3.5 CONCLUSIONS AND CONTRIBUTIONS TO THE LITERATURE 28 

4 SOLUTION DESIGN 29 

4.1 PROBLEM DESCRIPTION 29 
4.2 SOLUTION METHODOLOGY 30 
4.3 MACHINE LEARNING TO SUPPORT ORDER SELECTION 31 
4.3.1 FEATURES 32 
4.3.2 MACHINE LEARNING MODELS 33 
4.3.3 TRAINING DATA 35 
4.4 MONTE CARLO SIMULATION 38 
4.4.1 ORDER DIVISION 39 
4.4.2 ORDER SELECTION 40 
4.4.3 SOLVE VRP 41 
4.5 CONCLUSIONS 41 

5 PERFORMANCE 43 

5.1 MACHINE LEARNING TO SUPPORT ORDER SELECTION 43 
5.1.1 HYPERPARAMETERS 43 
5.1.2 PERFORMANCE 43 
5.2 MONTE CARLO SIMULATION 44 
5.2.1 EXPERIMENTAL DESIGN 45 
5.2.2 EXPERIMENTAL RESULTS 46 
5.2.3 SENSITIVITY ANALYSIS 50 
5.3 IN-DEPTH ANALYSIS SOLUTION METHODOLOGY 55 
5.3.1 OPERATIONAL LEVEL RFR MODEL 56 
5.3.2 DISTANCES OF THE ORDER SELECTIONS 58 
5.3.3 COSTS PER ORDER OF THE ORDER SELECTIONS 63 
5.3.4 DISCUSSION 66 
5.4 CONCLUSIONS 66 

6 CONCLUSIONS AND EVALUATIONS 68 

6.1 CONCLUSIONS 68 
6.2 RECOMMENDATIONS 69 
6.3 CONTRIBUTION TO PRACTICE AND THEORY 70 
6.3.1 PRACTICAL CONTRIBUTION 70 
6.3.2 THEORETICAL CONTRIBUTION 72 
6.4 LIMITATIONS AND FURTHER RESEARCH 72 

7 REFERENCES 76 

8 APPENDICES 81 

 

  



 

ix 
 

Figures and tables 
 
Figures 
FIGURE 1 OVERFLOW CARRIER (OORD, 2022). 1 
FIGURE 2 FOUR LEVELS IN THE DELIVERY AREA OF THE HUB IN ROTTERDAM 2 
FIGURE 3 GENERAL CAPACITY PLANNING PROCESS 2 
FIGURE 4 NET PROMOTER SCORE (LEFT) AND COST PER ORDER (RIGHT) OF CBB AND DP 3 
FIGURE 5 PROBLEM CLUSTER 3 
FIGURE 6 CURRENT AND DESIRED SITUATION 5 
FIGURE 7 CAPACITY PLANNING PROCESS 8 
FIGURE 8 DELIVERY AREA OF ALL HUBS 9 
FIGURE 9 ORDER DENSITY LEVEL 3 & 4 9 
FIGURE 10 PERCENTAGE OF POTENTIAL ORDERS OBSERVED IN THE PC4S IN HILVERSUM 10 
FIGURE 11 CAPACITY FORECAST PER HUB IN THE NETHERLANDS PER DAY AND PER WEEK 11 
FIGURE 12 CONTRACT HOURS OF ALL HUBS 12 
FIGURE 13 (IN)ACTIVE BIKES PER HUB 12 
FIGURE 14 UNUSED ROUTES PER WEEK 13 
FIGURE 15 AN EXAMPLE OF A PLANNED BIKE ROUTE IN HILVERSUM 13 
FIGURE 16 PROCESS FLOW DIAGRAM 15 
FIGURE 17 CLASSIFICATION OF ALGORITHMS FOR THE VRP. (KONSTANTAKOPOULOS, GAYIALIS, & KECHAGIAS, 

2020) 23 
FIGURE 18 EXAMPLE OF RANDOM FORESTS WITH 3 DECISION TREES (TIBC, 2023) 26 
FIGURE 19 SOLUTION METHODOLOGY 30 
FIGURE 20 GENERAL PROCESS OF DEVELOPING A MACHINE LEARNING MODEL 32 
FIGURE 21 FLOWCHART DATA GENERATION SIMULATION 36 
FIGURE 22 HISTOGRAM OF THE PERCENTAGE ORDERS SELECTED (LEFT) AND NUMBER OF ORDERS SELECTED 

(RIGHT) 38 
FIGURE 23 HISTOGRAM OF THE PERCENTAGE ORDERS SELECTED (LEFT) AND NUMBER OF ORDERS SELECTED 

(RIGHT) WITH EXTRA GENERATED INSTANCES 38 
FIGURE 24 ORDER DIVISION FLOWCHART 39 
FIGURE 25 PSEUDOCODE ORDER SELECTION HEURISTIC 41 
FIGURE 26 DISTRIBUTION PLOT OF PC4 1211 45 
FIGURE 27 BOXPLOTS ORDER SELECTION WITH 40, 140 AND 460 POTENTIAL ORDERS 48 
FIGURE 28 BOXPLOTS COSTS PER ORDER WITH 40, 140 AND 460 POTENTIAL ORDERS 48 
FIGURE 29 ORDER SELECTION OF METHOD RFR (1) 49 
FIGURE 30 COSTS PER ORDER OF METHOD RFR 1 49 
FIGURE 31 BOXPLOTS ORDER SELECTION WITH ZERO (UPPER LEFT), HALF (UPPER RIGHT), FULL (LOWER LEFT) 

AND ONE AND A HALF (LOWER RIGHT) FIXED COSTS 50 
FIGURE 32 COSTS PER ORDER PER ORDER SELECTION BASED ON THE ESTIMATED VRP DISTANCE OF DAGANZO 

(LEFT), RFR 1 (MIDDLE) AND RFR 2 (RIGHT) 51 
FIGURE 33 BOXPLOTS ORDER SELECTION WITH 50% (LEFT), 100% (MIDDLE) AND 150% (RIGHT) VARIABLE COSTS

 52 
FIGURE 34 BOXPLOTS OF 126, 140 & 154 POTENTIAL ORDERS WITH METHOD RFR (1) 53 
FIGURE 35 BOXPLOTS ORDER SELECTION WITH FACTOR 1 (LEFT), FACTOR 1.2 (MIDDLE) AND FACTOR 1.4 

(RIGHT) TRAVEL DISTANCE. 54 
FIGURE 36 DIFFERENCE IN-DEPTH ANALYSIS AND SOLUTION METHODOLOGY 55 
FIGURE 37 CONVEX HULL (LAURINI, 2017) 56 
FIGURE 38 THE BEARING BETWEEN THE HUB AND AN ORDER (AKKERMANS, 2021) 57 
FIGURE 39 ESTIMATED AND CONSTRUCTED DISTANCE OF THE ORDER SELECTION OF METHODS DAGANZO 

(UPPER LEFT), RFR 1 (UPPER RIGHT), RFR 2 (LOWER LEFT) & OPERATIONAL LEVEL RFR (LOWER RIGHT) 59 
FIGURE 40 THE CONSTRUCTED DISTANCE OF THE ORDER SELECTION OF THE 4 METHODS 60 
FIGURE 41 THE CONSTRUCTED (LEFT) AND ESTIMATED (RIGHT) AVERAGE DISTANCE TRAVELLED PER ORDER OF 

THE 4 METHODS 61 
FIGURE 42 THE SPREAD OF THE POTENTIAL ORDERS OVER THE DELIVERY AREA OF HILVERSUM 62 
FIGURE 43 THE FIXED COSTS PER ORDER PER NUMBER OF ORDERS SELECTED 63 

https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002444
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002445
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002446
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002447
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002448
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002449
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002451
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002452
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002454
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002456
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002457
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002459
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002460
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002460
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002461
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002462
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002463
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002465
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002465
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002466
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002466
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002470
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002471
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002474
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002474
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002475
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002475
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002479
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002480
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002481
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002482
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002482
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002483
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002484
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002484
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002485
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002486


 

x 
 

FIGURE 44 THE ESTIMATED (LEFT) AND CONSTRUCTED (RIGHT) VARIABLE COSTS PER ORDER COMPOSITION OF 
THE ORDER SELECTION OF RFR 1 64 

FIGURE 45 THE CONSTRUCTED COSTS PER ORDER OF THE ORDER SELECTION OF RFR (1) 65 
FIGURE 46 DIFFERENCE IN COSTS PER ORDER PER ORDER SELECTION 65 
FIGURE 47 FEATURE IMPORTANCE RFR WITH EXTRA FEATURES ON HILVERSUM 85 
FIGURE 48 ESTIMATED AND CONSTRUCTED COSTS PER ORDER OF METHODS DAGANZO, RFR (1), RFR (2) AND 

OPERATIONAL LEVEL RFR 101 
FIGURE 49 THE ESTIMATED (LEFT) AND CONSTRUCTED (RIGHT) COST PER ORDER COMPOSITION OF THE ORDER 

SELECTION OF DAGANZO 112 
FIGURE 50 THE ESTIMATED (LEFT) AND CONSTRUCTED (RIGHT) COSTS PER ORDER COMPOSITION OF THE 

ORDER SELECTION OF RFR (2) 112 
FIGURE 51 THE ESTIMATED (LEFT) AND CONSTRUCTED (RIGHT) COSTS PER ORDER COMPOSITION OF THE 

ORDER SELECTION OF THE OPERATIONAL LEVEL RFR 113 
 

Tables 
TABLE 1 ABBREVIATIONS USED IN THIS REPORT XI 
TABLE 2 COSTS PER ORDER INFORMATION 16 
TABLE 3 FEATURES OF THE MACHINE LEARNING MODEL(S) 33 
TABLE 4 THE TO-BE-TUNED HYPERPARAMETERS OF THE RFR AND LGBM MODEL 34 
TABLE 5 HYPERPARAMETERS OF RFR AND LGBM MODELS 43 
TABLE 6 MODEL PERFORMANCES ON GENERATED DATA HILVERSUM 44 
TABLE 7 MODEL PERFORMANCE GROUPED HISTORICAL DATA (SMALL HUBS) HILVERSUM 44 
TABLE 8 HILVERSUM INSTANCES FOR THE MONTE CARLO SIMULATION 46 
TABLE 9 PERFORMANCE MONTE CARLO SIMULATION OF ALL FOUR MODELS 47 
TABLE 10 SUMMARY OF THE SENSITIVITY ANALYSIS 55 
TABLE 11 TERMINOLOGY AND DESCRIPTION 56 
TABLE 12 OPERATIONAL LEVEL FEATURES OF THE RFR MODEL 57 
TABLE 13 HYPERPARAMETERS OPERATIONAL RFR MODEL 58 
TABLE 14 MODEL PERFORMANCE OF THE OPERATIONAL LEVEL RFR MODEL ON GENERATED DATA HILVERSUM

 58 
TABLE 15 PERFORMANCE METRICS OF THE DISTANCE ESTIMATIONS DURING THE ORDER SELECTION 59 
TABLE 16 PERFORMANCE METRICS ON THE TEST DATA SET OF RFR ON HILVERSUM 84 
TABLE 17 PERFORMANCE METRICS ON THE TRAIN DATA SET OF RFR ON HILVERSUM 84 
TABLE 18 PREDICTIVE PERFORMANCE OF THE RFR MODEL ON SMALL HUBS (1/2) 86 
TABLE 19 PREDICTIVE PERFORMANCE OF THE RFR MODEL ON SMALL HUBS (2/2) 86 
TABLE 20 PREDICTIVE PERFORMANCE OF THE RFR MODEL ON LARGE HUBS 86 
TABLE 21 PC4 P-VALUE AND ESTIMATED PARAMETERS NEGATIVE BINOMIAL DISTRIBUTION 87 
TABLE 22 P-VALUES OF THE CHI-SQUARE TEST OF 4 DISCRETE DISTRIBUTIONS 88 
TABLE 23 PERFORMANCE METRICS METHOD ‘OPTIMAL LEVELS’ (1/2) 89 
TABLE 24 PERFORMANCE METRICS METHOD ‘OPTIMAL LEVELS’ (2/2) 90 
TABLE 25 PERFORMANCE METRICS METHOD DAGANZO (1/2) 91 
TABLE 26 PERFORMANCE METRICS METHOD DAGANZO (2/2) 92 
TABLE 27 PERFORMANCE METRICS METHOD RFR (1) (1/2) 92 
TABLE 28 PERFORMANCE METRICS METHOD RFR (2) (2/2) 93 
TABLE 29 PERFORMANCE METRICS METHOD RFR (2) (1/2) 94 
TABLE 30 PERFORMANCE METRICS METHOD RFR (2) (2/2) 95 
TABLE 31 EFFECT IN SIGNIFICANCE BETWEEN METHODS WHILST ASSUMING A NORMAL DISTRIBUTION 97 
TABLE 32 CONSTRUCTED COSTS PER ORDER OF THE METHODS DAGANZO, RFR (1), RFR (2) AND OPERATIONAL 

LEVEL RFR 102 

 

  

https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002487
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002487
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002488
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002489
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002491
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002491
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002494
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002494
https://universiteittwente-my.sharepoint.com/personal/s_l_heesterman_student_utwente_nl/Documents/Master%20thesis%20-Susanne%20Heesterman.docx#_Toc131002504


 

xi 
 

Abbreviations 
 
Table 1 Abbreviations used in this report 

Abbreviation Description 

CBB CoolblueBikes 
CVRP Capacitated vehicle routing problem 

DP Delivery partners 
EBITDA Earnings before interests, taxes, depreciation, and amortization  

EFB Exclusive feature bundling 
FSCVRP Fleet size and composition vehicle routing problem 

GBDT Gradient boosting decision tree  
GOSS Gradient-based one-side sampling 

ID Identifier 
IRP Inventory routing problem 

Km Kilometres 
KPI Key performance indicator 

LGBM Lightweight gradient boosting machines 
MAE Mean absolute error 

MAPE Mean absolute percentage error 
Min Minutes 

NPS Net promoter score 
PC4 The four numeric values of the Dutch postal code 

PC6 The four numeric and two letters of the Dutch postal code 
PRP Production routing problem 

RCCP Rough-cut capacity planning  
RFR Random forest regression 

rMAE Relative mean absolute error 
RMSE Root mean squared error 

rRMSE Relative root mean squared error 
SQL Structured query language 

SVRP Stochastic vehicle routing problem 
TSP Travelling salesman problem 

VRP Vehicle routing problem 
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1 Introduction 
This chapter introduces the context of the research and the background of this research. 
Section 1.1 introduces the organization we conduct the research for. Section 1.2 explains the 
research and Section 1.3 describes the research design.  
 

1.1 About Coolblue  
Coolblue is a fast-growing e-commerce company that was founded in Rotterdam in 1999 by 
Pieter Zwart, Paul de Jong, and Bart Kuijpers. They aim to be an exemplary company in the 
field of customer-centric entrepreneurship and to be profitable. Coolblue measures these goals 
with the net promoter score (NPS), i.e., a customer loyalty metric (Fisher & Kordupleski, 2018), 
and the earnings before interests, taxes, depreciation, and amortization (EBITDA) respectively. 
To maintain a company with a leading customer journey, they have a constant goal of 
becoming “a little bit better every day” and “to do anything for a smile”. Coolblue opened 20 
physical stores and expanded their service by launching their delivery services 
Coolbluedelivers in 2016 and Coolbluebikes in 2018 (Coolblue, 2022).  
 
Currently, Coolblue operates both physically and online in the Netherlands, Belgium, and 
Germany. Here, it offers a wide range of consumer electronics. Additionally, it sells solar 
panels, charging stations, and home office stores, and it offers renewable energy solutions. 
 

1.1.1 CoolblueBikes 
Coolbluebikes (CBB) is the bike delivery network of Coolblue. It services Coolblue’s package 
deliveries in metropolitan areas and has mainly the goal to contribute to the leading customer 
journey. Currently, CBB has 22 hubs with a predefined delivery area. They deliver packages 
to roughly 1.3 million customers every year. The packages that can be delivered by CBB have 
to meet size, weight, and location restrictions (Coolblue, 2022). CBB refers to the packages 
that meet the restrictions as potential orders. 
 
CBB is an overflow carrier. This means that they do not have to deliver all potential orders. 
Therefore, CBB can select the potential orders they want to deliver and which they want to 
outsource. Delivery partners (DP) like PostNL deliver the remaining (potential) orders. Figure 
1 illustrates this logic. Coolblue uses the key performance indicator (KPI) costs per order to 
distinguish how beneficial delivery with CBB and delivery with DP is. The lowest costs per 
order are the most attractive. Furthermore, CBB measures customer satisfaction with the NPS. 
 

1.1.2 Order selection 
CBB selects the potential orders that they want to deliver by filtering these orders in two 
sequential processes, which we explain in Section 1.1.2.1 and Section 1.1.2.2. On the 
operational level, they select which potential orders they are going to deliver. Beforehand, they 
determine how much capacity they need to deliver the orders that they are going to select. 
Thus, they mimic the order selection to plan capacity. 
 

Figure 1 Overflow carrier (Oord, 2022). 
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1.1.2.1 Capacity planning 

CBB selects the potential orders they want to deliver per hub. Each hub has a predefined 
delivery area. The delivery area is geographically divided into four fixed subareas, known as 
delivery levels, shown in Figure 2. Every CBB hub has four delivery levels. CBB delivers a 
selection of all the potential orders, and thus not necessarily all the potential orders in the 
delivery area. Therefore, CBB determines per hub which (aggregation of) level(s), and thus in 
which parts of the delivery area, they always plan to deliver in (Figure 3, Step 1). For example, 
in Rotterdam, they always plan to deliver in Levels 1, 2, and 3. CBB refers to this aggregation 
of levels as the ‘optimal’ delivery levels. Note that these delivery levels are not necessarily 
optimal in mathematical terms.  
 

CBB forecasts the demand only for the ‘optimal’ delivery levels (Figure 3, Step 2). Hence, they 
determine the required capacity (Figure 3, Step 3) based on the demand in the ‘optimal’ 
delivery levels. Next, they adjust the hub capacity to this required capacity (Figure 3, Step 4) 
by hiring a number of delivery men such that in theory, they can deliver all the demand in the 
‘optimal’ delivery levels.  
 
Two days before the delivery date, they try to align the capacity with the demand forecast 
(Figure 3, Step 5). They do this to maximize their capacity utilization. When the forecast is 
higher than expected, they can decide to decrease the ‘optimal’ delivery levels and vice versa. 
In the case of Rotterdam, they can anticipate on a higher forecast by decreasing the ‘optimal’ 
delivery levels to Levels 1 and 2 and on a lower forecast by increasing to Levels 1, 2, 3, and 
4. This results in the final aggregation of level(s) CBB is going to deliver in, known as the active 
delivery area. Figure 3 summarizes this capacity planning process. We refer to Section 2.1 for 
a more exhaustive explanation of the (steps of the) capacity planning. 

 

1.1.2.2 Route planning 

The day before the delivery day, CBB fills the bike routes chronologically, i.e., on the ordering 
time of the customer, with orders in the active delivery area until the routes are full based on 
capacity and maximal time per route. The route planning is subject to the capacity determined 
in the capacity planning process. DP deliver the remaining orders and all the orders outside 
the final delivery area.  

Figure 2 Four levels in the delivery area of the hub in Rotterdam 

Figure 3 General capacity planning process 



 

3 
 

 

1.2 Research motivation 
Although CBB focuses on high customer satisfaction (NPS), they should also be cost-efficient 
(EBITDA). Therefore, the orders selected to be delivered should obtain high customer 
satisfaction and have low costs per order. Figure 4 shows that currently, the NPS of CBB is 
higher than DP as is desirable. Undesirably,  Figure 4 also shows that the relative1 average 
costs per order of CBB are higher than the relative costs per order of DP. This stresses that it 
is currently financially more attractive to outsource delivery to DP. Therefore, the current 
method to select orders results in too high costs per order.  
 

1.2.1 Problem identification 
To investigate how we can decrease the costs per order, we create a problem cluster to identify 
the cause-and-effect relationships that lead to the core problem(s) (Heerkens & van Winden, 
2017). Figure 5 shows the problem cluster.  

                                                
1 We display relative (%) costs in this report due to confidentiality. We refer to Appendix K for the costs in € to which 
all costs in this report are compared. 

Figure 5 Problem cluster 

Figure 4 Net promoter score (left) and cost per order (right) of CBB and DP 
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High costs per order (1) 
The costs per order currently consist of more than 70% of variable costs. The variable costs 
(2) are expenses that change in proportion to how many orders are delivered. They increase 
if CBB delivers more and decrease when CBB delivers less (Kenton, 2022). The high variable 
costs are caused by a high biker salary (3) and high vehicle maintenance costs (4). The biker 
salary is the salary of the delivery men of CBB. These costs are too high because the bike 
routes are inefficient (6) in terms of orders delivered per hour. The biker salary costs per hour 
and the maintenance frequency of the vehicles stay the same when CBB delivers fewer orders 
per hour. Therefore, the same costs are divided over fewer orders, which increases the 
variable costs per order. 
 
The following three core problems are the causes of the inefficient bike routes (6). 
 
Sub-optimal capacity planning (10) 
The current capacity planning (10) uses delivery levels, i.e., subareas of the delivery area, to 
determine how many orders CBB plans to deliver (7) and in which parts of the delivery area to 
deliver (8). The number of orders equals the entire forecast of the ‘optimal’ delivery levels, 
which CBB translates to capacity (5). Therefore, CBB determines its capacity based on a 
multitude of full delivery levels and assumes that it is always better to deliver in an entire 
delivery level. Also, the delivery levels are static, i.e., CBB always plans the capacity with the 
same ‘optimal’ delivery levels. However, capacity determination based on the optimal orders 
and area to deliver in depends on many variables, such as the number of orders, location of 
the orders, etc. Therefore, the (order selection in the) capacity planning is not aligned with bike 
route efficiency (6). 
 
Sub-optimal route planning algorithm (11) 
CBB uses a sub-optimal route planning algorithm (11). CBB fills the bike routes chronologically 
with orders from the active delivery area until the routes are full based on time or capacity. 
Therefore, it happens that orders that make less efficient tours are delivered by CBB (6), simply 
because they were ordered at an earlier time by the customer. To minimize this inefficiency, 
i.e., such that they exclude orders that are further away, CBB works with delivery levels. CBB 
can only deliver orders within the levels of the active delivery area (8). Contradictory, this 
excludes orders located in the inactive delivery area, which possibly could make more efficient 
routes because orders in the inactive delivery area might give smaller detours than orders in 
the active delivery area.   
 
To improve this, CBB started with a project where they can cherry-pick the orders. The orders 
are chosen from the entire delivery area, i.e., independent of the levels. This project shows 
already improvement potential in route efficiency and is currently in the implementation phase. 
Therefore, we leave it out of scope for this research. 
 
Forecast deviates from reality (9) 
The required capacity (5) is determined based on the number of orders CBB plans to deliver 
(7). These are equal to the entire forecast of the optimal delivery levels. Therefore, if the 
forecast deviates from reality, the required capacity planned is not representative of the actual 
order demand. 
 
The forecasting team tries to minimize the forecasting error. Together with Coolblue, we decide 
to leave the order forecast out of scope because we expect to gain more profit from an 
improved capacity planning. 
  

1.2.2 Research problem 
The problem identification of Section 1.2.1 brings us to the research problem (10) according 
to the rules of Heerkens & van Winden (2017): 
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The current capacity planning of CBB results in too high costs per order. 
 
A tool or model that dynamically determines the most cost-efficient capacity helps to overcome 
this problem. This research investigates the current capacity planning and advices on how to 
adjust the capacity such that the costs per order are minimal. 
 

1.3 Research design 
This section formulates the research goal and the corresponding (sub)-research questions.  
 

1.3.1 Research goal 
We formulate the research objective as follows: 
 
Develop a model or tool that determines the most cost-efficient capacity to deploy per 
hub based on the forecasted potential orders. 
  
We visualize this research objective in Figure 6. It shows that in the desired situation we 
dynamically determine the most cost-efficient capacity to deploy aligned with route efficiency 
and based on the forecasted potential orders instead of the use of static, predetermined 
‘optimal’ delivery levels. Note that CBB refers to these levels as optimal. The required capacity 
is based on the order selection and translated to the number of delivery men hours and bike 
routes. This research objective results in the following main research question: 
 
How should the optimal required capacity of CBB’s hubs be determined such that the 
costs per order of CBB delivery are minimized?  
 

 
This research aims to achieve the research objective by answering the research question. We 
answer the research question by providing insight into the following aspects: 
 

- Analyse the current determination of the chosen capacity (number of delivery men 

hours and bike routes) and understand which variables impact the costs per order. 

- Provide insight into the similarities and gaps between the current situation at CBB and 

the available literature. 

- Show how these gaps can be covered for CBB with the proposed model or tool.  

- Describe how the model or tool determines the most cost-efficient capacity per hub, 

how robust this capacity decision is, and how this can be used in the capacity planning 

process. 

Figure 6 Current and desired situation 
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Note that this research focuses only on capacity planning and not on the operational route 
planning or forecasting, although they do interact. The capacity planning is subject to the 
forecast. The route planning is subject to the capacity planned. 
 

1.3.2 Research questions 
To answer the main research question, we define research questions and corresponding sub-
research questions. We assign each research question to a chapter, such that they structure 
this research.  
 
Chapter 2 – Current situation 
1. What is the current situation of CBB? 

a) How is the current capacity planning process organized? 
b) Which costs and variables impact the costs per order? 
c) What are the constraints and requirements for the model or tool? 

 
We describe the current situation in Chapter 2. We identify the main activities to plan capacity 
and how CBB determines how many orders they plan to deliver. Also, we analyse on which 
variables the costs per order are dependent. This information gives an understanding of the 
current system of CBB, such that we can identify improvement opportunities. Lastly, we 
research what constraints and requirements the model or tool that determines the deployable 
capacity should suffice. We obtain answers to these questions via interviews with employees 
and data analysis. 
 
Chapter 3 – Literature review 
2. Which methods that decide upon the most cost-efficient capacity in routing problems are 

proposed in the literature? 
a) What type of routing problem do we encounter? 
b) How can a subset of orders be selected to determine capacity in routing problems? 
c) What solution methods can be applied to estimate the costs of our routing problem? 
d) How can we validate the results? 

 
We review the literature in Chapter 3. To determine the most cost-efficient capacity to deploy, 
we should learn how we can estimate the costs of a routing problem given a selection of orders 
and how we can create cost-efficient order selections. Hence, we translate the studied problem 
to theoretical problems and identify the similarities and gaps. Furthermore, we review the 
problem-solving approaches and discuss which methods are applicable to our studied 
problem. Finally, we determine how we can validate the results of the model or tool that advises 
on the capacity to deploy. 
 
Chapter 4 – Solution design  
3. How can we develop a capacity model or tool for CBB that dynamically determines the 

most cost-efficient delivery capacity to deploy? 
a) What steps of the methodology need to be taken? 
b) What is the order selection logic of the capacity model or tool? 
c) How do we determine the costs of an order selection? 

 
In Chapter 4, we design a methodology that supports capacity deployment decisions at the 
tactical level in routing problems. Hence, the capacity model determines the order selection 
with minimal costs per order. We elaborate on the steps of the methodology that need to be 
taken, the order selection logic of the capacity tool and the determination of the costs of the 
orders selected.  
 
Chapter 5 – Performance 
4. What is the performance of the proposed model or tool and the respective improvement? 

a) How does the capacity decision from the solution methodology perform? 
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b) How does the performance of the solution method differ from the current situation? 
c) How sensitive is the capacity decision? 

 
We test the performance of the proposed model in Chapter 5. We validate our results with a 
case study, by comparing our proposed models based on historical numbers of forecasted 
potential orders with the current situation. We conduct a sensitivity analysis to analyze the 
effect of changes in input variables on the capacity decision.  
 
Chapter 6 – Conclusions and recommendations 
Lastly, we present our conclusions, theoretical and practical contributions, recommendations 
and limitations and suggestions for further research in Chapter 6. 
 

1.3.3 Scope 
This research focuses on the tactical capacity planning of CBB in the Netherlands. Hence, we 
focus on how to determine the most cost-efficient delivery capacity for CBB. Note that this 
excludes the creation of the forecast. Therefore, we consider the potential order forecast 
method and the respective forecasting inputs as fixed. The same holds for the consecutive 
steps once the required capacity is determined, like the final capacity scheduling. Also note 
that this research does not focus on the operational route planning, although this does interact 
with capacity planning. The planned capacity is input for the route planning, as it plans the 
routes subject to the capacity planned. 
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2 Current situation 
This chapter describes the current situation at CBB. Section 2.1 elaborates on the current 
capacity planning process and identifies the improvement opportunities. Next, Section 2.2 
introduces the costs per order and explains what variables the costs per order depends. 
Section 2.3 lists all constraints and requirements for CBB delivery relevant to a capacity model. 
Lastly, Section 2.4 concludes the chapter. 
 

2.1 Capacity planning process 
We elaborate on the capacity planning process of CBB to explain how the capacity is currently 
determined. We divide the current capacity planning process into three planning levels: 
strategical, tactical and operational. Figure 7 shows the main activities of the capacity planning 
process per level.  

Figure 7 Capacity planning process 

 

2.1.1 Strategical level 
The strategical level addresses structural, long-term decision-making on a typical planning 
horizon of 1 to 5 years. It considers capacities that take a long time to change, either to acquire 
new capacity or to reduce capacity levels (Olhager, Rudberg, & Wikner, 1999). Hence, CBB 
addresses these decisions by determination of hub opening or closing, the selection of the 
delivery area per hub and their respective levels.  
 
Hub opening/closing (1) 
CBB bases the decision of hub opening or closing on a business case. They use historical 
data to determine the expected number of orders and the associated costs. Hence, they decide 
to open a hub based on the following criteria: 
 

1. The expected costs per order of the CBB hub are at most the costs per order of DP. 
Note that the expected costs take into account the possible increase in customer 
satisfaction. 

2. The hub location is attractive enough to find delivery men. 
 
The business case includes the expected growth in demand for the coming years. Therefore, 
all the current 22 hubs have sufficient capacity to handle all orders, even if the demand 
increases.  The current expectation is that the demand for the hubs in the Netherlands will not 
grow significantly in the coming years.  
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Selection delivery area (2) 
When CBB decides to open a new hub, they select the delivery area in postal codes based on 

the distance to the hub, order density (𝑜𝑟𝑑𝑒𝑟𝑠/𝑘𝑚2), safety and accessibility. The hub is 
located roughly in the centre of the delivery area. Figure 8 shows the delivery areas of all 22 
hubs. Each hub is visualized with a different colour.  

 
Levels (3) 
Next, CBB divides the found delivery area into 4 levels. They order the postal codes manually 
based on the distance to the hub, order density and on practical experience. This is mostly 
done by logical thinking and not with mathematical logic. Level 1 includes roughly the best 50% 
of the postal codes in terms of the shortest distance to the hub, highest order density and high 
practicability, Level 2 the following 20%, Level 3 the next 20% and Level 4 the final 10%.  

 
Afterwards, CBB determines what aggregation of levels are the ‘optimal levels’ to deliver in. 
This is done with an analysis, where they estimate the costs per order with the historical route 
efficiency (number of orders delivered per hour) per level and expected volume per level based 
on the current costs. The aggregated levels with the lowest costs per order are the optimal 
levels to deliver in with CBB. Based on experience, CBB can decide to deviate from these 
optimal delivery levels. The sum of the forecasted orders from the postal codes belonging to 
the ‘optimal levels’ is equal to the total forecast of the hub. Based on this forecast, CBB plans 
the required capacity.   
 
In Rotterdam, the ‘optimal levels’ are Levels 1, 2 and 3. Therefore, Level 4 is not included in 
the forecast as explained in Section 1.1.2.1. We analyze the data to find if it is indeed 
straightforward based on the order density to exclude Level 4. Figure 9 shows the order density 

Figure 9 Order density level 3 & 4 

Figure 8 Delivery area of all hubs 
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of Levels 3 and 4 of the hub in Rotterdam. On several days, for example in September and 
November, the order density is higher in Level 4 than in Level 3. The orders in Level 4 are 
excluded from CBB delivery. However, it could be preferable to determine if it is more cost-
efficient to visit areas with a high order density outside the ‘optimal levels’ instead of cycling to 
orders within the ‘optimal levels’ in a low order density area. Therefore, it might be interesting 
to determine where and how much to deliver based on the dynamic forecast instead of the 
static ‘optimal levels’. 
 

2.1.2 Tactical level 
The tactical level connects the strategical and operational levels. It addresses decisions 
regarding optimal resource allocation for a few weeks or months ahead. This middle-term 
planning horizon provides flexibility to anticipate uncertainties and changes (Hans, Herroelen, 
Leus, & Wullink, 2005). Accordingly, CBB determines a forecast, decides on their required 
capacity and adjusts their hub capacity on this.  
 
Forecast demand (4) 
Given the ‘optimal levels’ per hub, CBB determines the number of expected potential orders 
located in these levels. Based on historical data, they generate a list of orders sufficing the 
size, weight, volume, delivery moment and level restrictions. Next, the forecasting department 
modifies the number of potential CBB orders from the last 14 days based on trends, season, 
advertising and manual adjustments. This gives a forecast of potential orders located in the 
‘optimal levels’ of each hub. For example, in Rotterdam, these are all forecasted potential 
orders located in Levels 1, 2 & 3. 
 
Note that this forecast is only a number of all the expected orders in the ‘optimal’ delivery area, 
i.e., it does not provide any specific information on order location. We analyze the historical 
data to find out if a more detailed forecast, e.g. on PC4 level (the area belonging to the 4 
numbers of the Dutch postal code), might be interesting. We list the PC4s and order this list 
by the daily number of potential orders observed in the PC4. We find that for example in 
Hilversum in February 2023, 31 of the 45 PC4s were in the top 10 of PC4s with the most 
potential orders, from which 8 PC4s were only observed once or twice in this top 10. Even in 
the top 5, we observe 22 PC4s. This indicates that it is not straightforward to predict in which 
PC4s the most potential orders will be. Furthermore, we analyze if the PC4s always have the 
same percentage of orders relative to the total number of potential orders. Figure 10 shows 
that these percentages fluctuate a lot, and thus that it might not be representative to distribute 
the forecast of potential orders over the PC4s with a fixed proportion. However, it does show 
that the percentages of all PC4s are roughly in the same range (0.01% – 0.11%), meaning that 
although there is no clear daily pattern per PC4, the orders are approximately proportionally 
spread over the PC4s.  
 

 
Figure 10 Percentage of potential orders observed in the PC4s in Hilversum 
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CBB uses a rolling forecast that is updated every day. Every week, they revise the forecast for 
the coming 4 to 16 weeks to determine the hub capacity. Hence, they include the latest 
information which comes closer to actual requirements as the moment of ordering approaches 
(Huang, Hsieh, & Farn, 2011). 
 
Required capacity (5) 
CBB plans to deliver all the orders located in the ‘optimal levels’ and thus the forecast of the 
potential orders located in the ‘optimal levels’. They translate this number of orders into the 
required capacity. Hence, they divide the number of orders by the historical average number 
of orders CBB delivers per hour. Subsequently, CBB determines how many delivery men hours 
are necessary weekly on a bike. Also, they determine the total delivery men hours, which 
include the depot hours and expected shrinkage hours such as those related to illness and 
training. Subsequently, for the total biking hours, CBB determines the total number of bike 
routes they need on the peak day, i.e., the day with the highest number of orders, to ensure 
these routes can be cycled. The historical averages are static and not updated with new routing 
information.  
 
We analyze the long-term forecast to find out if CBB is subject to forecast patterns. Figure 11 
shows the long-term forecast of bikes for the hubs in The Netherlands per day and per week. 
It suggests that the weekly capacity necessary for the optimal levels does not fluctuate a lot 
and that there is a strong daily pattern. Although there is a clear daily deviation, CBB uses the 
same routing information for all days to determine the daily (and weekly) capacity forecast. 

 
 
Adjust hub capacity (6) 
CBB adjusts their capacity of delivery men hours based on min-max contracts and the 
recruitment targets are adjusted to that. Weekly, they revise the forecast for the coming 4 to 
16 weeks and adjust their recruitment target accordingly. More specifically, they align the 
cumulative minimum contract hours with the lowest demand forecast to prevent overcapacity. 
This gives the flexibility to plan the delivery men on their minimum or maximum hours. When 
they are still in shortage of delivery men, they recruit new people. With an average outflow of 
10% per month, CBB never experienced a significant excess of delivery men. 
 
We analyze the capacity availability in delivery men hours to learn if currently sufficient capacity 
is planned. Figure 12 shows the total hours needed by all hubs in the past months compared 
to the total minimum and maximum contract hours of all hubs. It shows that the minimum 
contract hours did not exceed the hours needed to deliver in the ‘optimal levels’. Therefore, 
CBB should not have had overcapacity if they have scheduled their capacity right. Contrary, 
the hours needed exceeded the maximal contract hours in multiple months. This indicates that 
CBB did not have sufficient capacity to deliver all orders in the optimal levels, which they 
believe would have been most cost-efficient.   

Figure 11 Capacity forecast per hub in the Netherlands per day and per week 



 

12 
 

Figure 12 Contract hours of all hubs 

The current bike capacity ranges from 2 bikes in small hubs such as Essen in Germany to 16 
bikes in larger hubs like Amsterdam in The Netherlands as shown in Figure 13. This capacity 
is enough to cover the highest demand peak. Therefore, CBB sets the non-necessary bikes to 
inactive, such that they have no maintenance costs for them. The inactive bikes can be used 
if bikes are broken down or if there is high demand. They have 0 to 4 inactive bikes per hub. 
In the exceptional case that the current bike capacity is insufficient, CBB can rent extra bikes. 

 
 

2.1.3 Operational level 
The operational level schedules detailed activities and their respective timing (Hans, 
Herroelen, Leus, & Wullink, 2005). It controls the execution and optimal timing of the operations 
within a planning horizon ranging from even less than one day to a week. Accordingly, CBB 
aligns their capacity with the forecast and schedules the activities. 
 
Align capacity and forecast (7) 
Every week, the planning team of CBB tries to schedule their capacity as close to the forecast 
as possible. This is dependent on the required capacity, expected shrinkage and availability of 
delivery men and deployable bikes.  
 
Based on the schedule, CBB compares the scheduled daily capacity with the expected forecast 
per aggregated level(s). When the forecast is higher than expected, they can decrease the 
optimal levels. This can be done until two days before the delivery day, due to the current 
carrier assignment and packaging system in the warehouse. If the forecast is lower than 
expected, they can increase the ‘optimal levels’. This can be done until one day before the 
delivery day. This results in the final aggregation of level(s) CBB is going to deliver in, known 
as the active delivery area. CBB in- or decreases the ‘optimal levels’ to prevent overcapacity 

Figure 13 (In)active bikes per hub 
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because the route planning algorithm only receives orders from the levels included in the active 
delivery area. CBB does not deal with the consequences of undercapacity, since they 
outsource all remaining orders to DP. 
 
We analyse the historical data to find out how well the capacity and forecast is aligned on the 
operational level. Figure 14 shows the number of unused routes, i.e., the available and planned 
capacity that was not utilized, per week for all 22 hubs. This means that CBB had delivery men 
and bikes scheduled to deliver orders, but did not deploy them. Hence, CBB had overcapacity 
in terms of delivery men. CBB must pay for all scheduled delivery men, even if they were not 
utilized. 
 

 

2.1.4 Operational route planning 
The day before the delivery day, CBB fills the available bike routes given the number of delivery 
men hours and bikes. When an order is placed, both eligible for CBB delivery and located in 
the active delivery area, their route planning algorithm determines 1) if the order still can be 
delivered based on bike capacity and route time, and if so, 2) in which route the order will be 
delivered. The planned orders in the routes can still switch from a route if this results in a more 
efficient route. This process repeats until all capacity, i.e., time and volume, is utilized. The 
travel time of a route is determined based on the actual distance, i.e., taking road works and 
actual bike roads into account, and the actual speed that can be cycled at specific parts of the 
route. Note that the time at which an order is placed is important in this process. If an order 
relatively far away fits in a route, such as Orders 13 & 14 shown left in Figure 15, the order is 
planned. However, if later orders are placed that are relatively close to, e.g., the already 
planned orders in the route, they are cancelled because all capacity is already utilized. Hence, 
once an order is planned, it cannot be cancelled anymore in the current route planning. DP 
deliver the cancelled orders and all the orders outside the active delivery area.  
 

 
Figure 15 An example of a planned bike route in Hilversum 

Figure 14 Unused routes per week 
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2.1.5 Process flow diagram 
We create a process flow diagram to visualize the capacity planning process and to understand 
the relations between steps. Figure 16 shows the diagram. We also include the route planning 
process in the process flow diagram, to show how it interacts with capacity planning.  Note that 
CBB determines the routing data statically, so they do not update it with new routing data. We 
include the routing data in the diagram to show the relation with capacity planning.  
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Figure 16 Process flow diagram 
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2.2 Costs per order 
To determine how we can minimize the costs per order, we first need to understand what 
variables it depends on. The costs per order consist of two types of cost; fixed costs and 
variable costs per order. For each type, we explain how the costs are made up, what the 
relation with the number of orders is to define the costs per order and on what variables the 
costs are dependent. We only include costs that are not subject to interests, taxes, depreciation 
and amortization, to be in line with the profit measure (EBITDA) of Coolblue. 
 
Fixed costs 
Fixed costs are independent of the number of orders. They must be paid by a company, 
independent of any specific business activity (Hayes, 2022). The fixed costs per order are 
dependent on the order volume. A volume increase usually means that we can divide the same 
fixed costs over more orders. This results in a decrease in the fixed costs per order. Hence, 
when the number of orders converges to infinity, the fixed costs per order converge to zero. 
Note that the price agreements for these costs are fixed and therefore we do not consider 
these as influenceable variables.  
 
Variable costs 
The variable costs change in proportion to the volume. CBB has three types of variable costs: 
variable costs per order, variable costs per hour and variable costs per kilometre. The total 
variable costs increase when the number of orders increase (more travel time, more travel 
distance and more orders). We cannot influence the price agreements of these variable costs 
per order, per hour and per kilometre. For example, the hourly salary costs of the bikers are 
fixed. However, the respective variable costs per order depend on how efficiently and 
effectively the capacity is utilized (Yu-Lee, 2002). The more efficiently and effectively CBB 
works, the more they obtain from the price investment and thus the less variable costs per 
order they have. For example, if CBB delivers more orders with the same number of delivery 
men, fewer salary costs will be passed on towards the orders. However, the relation between 
the total variable costs per order and the number of orders to deliver is currently unknown.  
 
Table 2 summarizes our findings of all the costs per order per hub in the Netherlands. We 
make a distinction between the type of cost, the respective sub-costs (per unit if applicable), 
the influenceable variables, the month(s) from which we retrieve the cost value and the cost 
division among the hubs. We refer to Appendix A for the definitions and explanations of the 
sub-costs. The table shows what variables we need to consider when determining the most 
cost-efficient capacity. Also, it shows from which period we retrieve the cost value to use in our 
analysis. We distinguish between the average cost value of the most representative month, 
December 2022, and the average cost value of 2022. We assume 30 working days per month, 
i.e., CBB delivers 7 days a week, to account for public holidays. Furthermore, it presents how 
the costs are divided among the hubs. Costs might be hub specific, averaged over all hubs, 
divided based on the hub size or a combination of the latter two.  
 
Table 2 Costs per order information 

Type of 
costs 

Sub-costs 
Influenceable 

variable(s) 
Month(s) 

Cost division 
among the hubs 

Fixed 
costs 

Housing Order volume 2022 Hub specific 

Office salary Order volume Dec. 2022 
Hub size (50%) and 
average of all hubs 

(50%) 

Hub lead Order volume Dec. 2022 Hub specific 

Linehaul Order volume 2022 Hub specific 

Other operating expenses Order volume 2022 Hub size 

Variable 
costs 

Biker salary (hour) Route efficiency Dec. 2022 Average of all hubs 

Vehicle maintenance (km) Route efficiency 2022 Average of all hubs 
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Fraud/theft (order) - 2022 Average of all hubs 

Recruitment (order) - 2022 Average of all hubs 

Allocated customer 
service costs (order) 

- 2022 Average of all hubs 

Allocated costs process 
returns (order) 

- 2022 Average of all hubs 

Other staffing costs (hour) Route efficiency Dec. 2022 Average of all hubs 

 

2.3 Constraints and requirements 
CBB cannot deliver every order at every moment at every location. Therefore, we list all 
constraints and requirements of CBB delivery and how we should use this in our research. 
 

- Size, weight, volume 
The orders CBB delivers are subject to size, weight and volume restrictions. This 
influences the order forecast and route efficiency. Therefore, we should filter the orders 
that do not suffice these restrictions when determining the total number of potential 
orders.  
 

- Delivery safety 
Some addresses are safe during the day, but unsafe during the evening. Likewise, 
some addresses are less reachable, or considered unsafe during winter, whilst not in 
summer. CBB does not want to risk the safety of their delivery men. Therefore, they 
include only safe and reachable postal codes in the evening and/or winter routes, which 
influences the order forecast and route efficiency. Therefore, we should include these 
adjustments when determining the total number of potential orders.  
 

- Time span  
CBB aligns the hub and required capacity for a 16-week period. They check this 
alignment, which includes the peak day, every week. Therefore, we should determine 
the most cost-efficient capacity on a daily and weekly level for a time span of 16 weeks. 
 

- Hub 
Every hub has its predefined delivery area. This area is fixed. The area characteristics 
like the number of inhabitants differ. Therefore, the bottleneck of the hub can be 
different at every hub. Consequently, we should analyze each hub individually to 
determine what the most cost-efficient capacity level is.   
 

- Dynamism 
Coolblue is a dynamic company, changing its work routines often to improve or to adapt 
to growth. The determination of the most cost-efficient capacity should comply with this 
dynamism. It must be able to determine the optimal capacity also with changing 
parameters, for example, obtained from changing costs.  
 

- Model output 
CBB defines the required capacity as the number of delivery men hours and the number 
of bikes necessary to deliver the desired orders. The goal of the model is to find the 
weekly required capacity at the tactical level, which is evaluated on daily basis to 
consider peak days. Although on the operational level, CBB deploys and pays for full 
tours, i.e., the maximal time of a tour (see Section 2.1.2), they do not define the required 
capacity as the number of bike tours. This would imply rounding the daily delivery 
hours, which gives a distorted view of the weekly available work. Accordingly, the 
chance of overfitting is high when deciding at the tactical level the exact number of 
tours necessary at the operational level, i.e., the point forecast is still likely to deviate. 
Furthermore, CBB wants to be able to express the capacity relative to the potential 
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order forecast. Hence, CBB wishes the daily number of orders to deliver as model 
output.    

 
- Postal codes 

Currently, the system is designed such that CBB can only in- or decrease the delivery 
area with a multiple of subareas. CBB defines these subareas as the area belonging 
to the PC4. Therefore, we should design a tool that is at least able to translate the 
capacity advice to PC4s. 

 

2.4 Conclusions 
This chapter introduced the current situation of CBB. We explained the current capacity 
planning process, and how the deployable capacity depends on the number of forecasted 
potential orders and the static ‘optimal’ delivery levels. We showed how the operational route 
planning depends on the deployed capacity. Next, we explained that the costs per order consist 
of fixed costs, and variable costs per order, per hour, and per kilometre. Lastly, we introduced 
the constraints and requirements of the capacity tool. Hence, we should ensure that the tool is 
dynamic, that the deepest level of detail is on PC4 level, and that it finds the optimal daily 
number of orders to deliver.  
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3 Literature review 
This chapter reviews the literature in the area of vehicle routing problems, order selection and 
capacity planning, and simulation. Section 3.1 introduces the vehicle routing problem and the 
fleet size planning problem. Next, Section 3.2 elaborates on the integration of order selection 
and capacity planning, to learn how a subset of orders can be selected to decide upon capacity 
deployment under routing considerations. Section 3.3 describes methods to obtain the solution 
value of a vehicle routing problem and Section 3.4 introduces Monte Carlo simulation. Finally, 
Section 3.5 concludes this chapter and states the contribution to the literature. 
 

3.1 Vehicle routing problem  
The vehicle routing problem (VRP) is concerned with finding the optimal route(s) to visit all 
customers with a restricted number of vehicles starting and ending at the depot (Caric & Gold, 
2008). Caric & Gold state that the most common objective is to minimize the transportation 
costs related to these routes. Furthermore, they argue that the transportation cost can be 
improved by reducing the total travelled distance and by reducing the number of required 
vehicles. 
 
We formulate the capacitated VRP (CVRP) with maximum trip duration constraint based on 
Bodin, Golden, Assad & Ball (1983) to understand the problem structure, i.e., the optimal 
capacity to deploy depends on the routes and the respective transportation costs. The binary 
decision value 𝑥𝑖𝑗

𝑣  (see Constraint 3-7) assumes a value of 1 if there is a route going from 

customer 𝑖 to customer 𝑗 with vehicle 𝑣, for 𝑖, 𝑗 ∈ 𝑁 and 𝑣 ∈ 𝑉. 
 
 

min ∑ ∑ ∑ 𝑑𝑖𝑗 ∗ 𝑥𝑖𝑗
𝑣

𝑉

𝑣=1

𝑁

𝑗=1

𝑁

𝑖=1
 3-1 

Subject to: 
∑ ∑ 𝑥𝑖𝑗

𝑣
𝑉

𝑣=1

𝑁

𝑗=1,𝑗≠𝑖 
= 1     (𝑖 = 2, … , 𝑁)  3-2 

 
∑ 𝑥𝑖𝑝

𝑣
𝑁

𝑖=1
− ∑ 𝑥𝑝𝑗

𝑣 = 0
𝑁

𝑗=1
     (∀ 𝑣 ∈ 𝑉, 𝑝 = 1, … , 𝑁) 3-3 

 
∑ ∑ 𝑘𝑖 ∗ 𝑥𝑖𝑗

𝑣
𝑁

𝑗=1

𝑁

𝑖=1 
 ≤  𝐾  (∀ 𝑣 ∈ 𝑉) 3-4 

 
∑ ∑ 𝑠𝑖 ∗ 𝑥𝑖𝑗

𝑣
𝑁

𝑗=1

𝑁

𝑖=1 
+ ∑ ∑ 𝑡𝑖𝑗

𝑣 ∗ 𝑥𝑖𝑗
𝑣 ≤

𝑁

𝑗=1

𝑁

𝑖=1 
 𝑇     (∀ 𝑣 ∈ 𝑉)         3-5 

 𝑦𝑖
𝑣 −  𝑦𝑗

𝑣 +  𝑁 ∗ 𝑥𝑖𝑗
𝑣 ≤ 𝑁 − 1     (∀ 𝑣 ∈ 𝑉, (𝑖, 𝑗) ∈ 𝑁: 𝑖 ≠ 𝑗)  3-6 

 𝑥𝑖𝑗
𝑣 ∈ {0,1} , 𝑦𝑖

𝑣 ∈ ℝ≥0,   𝑦𝑗
𝑣 ∈ ℝ≥0, (∀ (𝑖, 𝑗) ∈ 𝑁, 𝑣 ∈ 𝑉) 3-7 

 

The objective function 3-1 minimizes the distance travelled by all vehicles. Constraint 3-2 
ensures that every customer is visited exactly once. Constraint 3-3 guarantees route continuity, 
i.e., if a vehicle arrives at a customer, it should also depart from this customer. Constraint 3-4 
ensures that every vehicle carries at most their capacity 𝐾 and Constraint 3-5 is the maximum 

trip duration 𝑇 constraint. This considers the travel time 𝑡𝑖𝑗
𝑣 and stop time 𝑠𝑖 of all the 

customers. Constraint 3-6 is a subtour elimination constraint. Finally, Constraint 3-7 displays 
the nonnegativity constraints.  
 
VRP fleet size 
The total number of vehicles in a VRP is known as the VRP fleet size. The solution of the VRP 
shows the number of vehicles required: for every route a vehicle is necessary. The traditional 
VRP assumes that a fixed number of similar vehicles are available. Contrary, there are 
variations of the VRP that choose the vehicles to deploy. For example, the fleet size and 
composition vehicle routing problem (FSCVRP) chooses a number of vehicles in the fleet from 
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a pool of different types of vehicles (Gheysens, Golden, & Assad, 1986). Gheysens, Golden, 
& Assad explain that this problem decides upon the composition of a fleet of vehicles and 
constructs an associated set of routes for these vehicles that deliver goods to a set of 
customers with known demands. Here, the objective is to minimize the sum of the fixed costs 
arising from vehicle acquisition, and variable costs originating from the delivery routing. 
However, in many real-world situations, the set of customers, their location and their demand 
are uncertain (Gendreau, Laporte, & Seguin, 1996). Hence, the VRP becomes a stochastic 
VRP (SVRP) (Berhan, Beshah, Kitaw, & Abraham, 2014). Accordingly, List et al. (2003) 
propose a solution to the fleet sizing problem when there is uncertainty in future order 
information. They trade-off the fleet ownership costs, fleet operating costs and penalty costs 
when demand is not met at the requested time. They focus on a robust solution to the fleet 
sizing problem in terms of good performance under a wide variety of order uncertainty. 
Couillard (1993) designs a decision support system to plan fleet size and mix under 
uncertainty. This system generates fleet size and mix alternatives based on the order forecast, 
evaluates them and selects the best alternative. Furthermore, Shyshou, Gribkovskaia and 
Barcelo (2010) generate real-world scenarios to solve the fleet size planning problem. Here, 
they model possible scenarios of the VRP concerning the uncertainty, i.e., they evaluate 
multiple possible scenarios with different customer sets, locations and demands. Next, they 
assess the optimal number of vehicles to deploy based on these scenarios. A more long-term 
fleet size planning decision in delivery routing problems is whether to maintain a private 
delivery fleet, employ external carrier services, or combine both options (Pilcher, 1990). Pilcher 
argues that this decision differs from the decision on how to serve a particular day’s deliveries, 
because for this the order information, such as the exact location, is known with greater 
certainty. To solve this problem, she proposes to divide the delivery area into sectors with a 
random number of delivery locations and determine the costs of assigning a sector to a private 
or external fleet.  
 

3.2 Order selection and capacity planning 
We review the literature regarding order selection and capacity planning to understand how 
orders can be selected, how capacity can be planned, and how order selection is integrated 
into capacity planning. A selection of orders can be made for several reasons at several 
decision levels. Hence, various hierarchical planning models distinguish the strategic, tactical 
and operational decision levels to break down capacity planning into more manageable parts 
(De Boer, 1998).  
 
This section introduces the three hierarchical planning levels. Furthermore, we describe 
several order selection and capacity planning methods for each decision level, stemming from 
VRP literature and other research fields to benchmark from. We focus mainly on the methods 
at the tactical and the operational level since order selection is hardly discussed at the strategic 
level. This literature review will provide insight into the similarities and gaps between our 
research problem and the research problems discussed in the literature. 
 

3.2.1 Strategic level 
According to the framework of Hans et al. (2005), strategic capacity management addresses 
the strategic resource planning. A long-term plan is made that guides an organization towards 
its business goals. The objective is to determine the organization’s global resource capacity 
levels (De Boer, 1998). Often, planners attempt to devise a master plan that represents an 
optimal solution for the forecasted conditions (Mierzejewski, 1998). Based on this optimal 
solution, organizations determine when and by how much the capacity levels should change 
to fulfil the forecasted demand (Olhager, Rudberg, & Wikner, 1999). Generally, these 
capacities take a long time to change, such as modifying a transportation network or choosing 
a (new) hub location (SteadieSeifi, Dellaert, Nuijten, Van Woensel, & Raoufi, 2014). 
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3.2.2 Tactical level 
Tactical planning is a middle-level activity connecting strategic planning and operations control 
(Bushuev, 2014). The main goal is to allocate resources such as capacity over a medium-
range planning horizon. Order selection given the capacity determined on the strategical level 
is a typical tactical level activity in traditional manufacturing and project environments (Hans, 
Herroelen, Leus, & Wullink, 2005) (Brahimi, Aouam, & Aghezzaf, 2015). Here, a rough-cut 
capacity planning (RCCP) can help to make such order acceptance decisions by simulating 
an initial plan (De Boer, 1998). Boer explains that the method determines if the orders can be 
completed in time and with the available capacity. Usually, the goal is to make a plan that fits 
all orders with the fixed capacity. If impossible, organizations can decide to temporarily extend 
capacity with for example overtime or postpone the due dates of customers. This flexibility in 
time and capacity supports planning in making a trade-off between expected delivery 
performance and the expected costs of exploiting flexibility by using non-regular capacity (De 
Boer, 1998). However, we do not determine the minimal (extra) capacity to fit all orders within 
a time frame, but we select a subset of orders to determine capacity. Additionally, we cannot 
postpone due dates, because every rejected order is immediately outsourced to DP.  
 
Lin & Chang (2008) present an order selection method with limited production capacity. They 
prioritize the orders and maximize the total production quantity when the order demand 
exceeds capacity. However, like much literature, this model has the underlying assumption 
that more orders are preferable. Even when there is sufficient capacity to fulfil the entire set of 
orders, Brahimi, Aouam & Aghezzaf (2015) state that it is not always optimal to accept all the 
orders. They argue that the revenue from an additional order should at least offset the variable 
production cost plus the shadow prices of the capacity constraints that take into account 
workload. Geunes, Romeijn & Taaffe (2002) identify this order selection flexibility. They state 
that the organization must determine the most profitable set of orders to fulfil, given a set of 
orders for production along with fixed plus linear production costs and variable holding costs 
in every period. Their solution model, however, assumes that orders can be held in inventory, 
while we outsource (the delivery of) all unselected orders. Also, the production costs are linear, 
while we should take the efficiency of delivery/production into account, i.e., we do not assume 
a linear relation between the number of orders and the variable costs. In addition, order 
selection is executed to optimally use the fixed capacity instead of determining the optimal 
capacity based on the most profitable set of orders. 
 
A simulated initial plan is also used in delivery time slot management literature. For instance, 
Herandez, Gendrau & Potvin (2017) use estimates of demand and stop time in each postal 
code zone to construct a tactical routing plan, i.e., an approximation of the operational routing 
plan. Here, a heuristic selects the most profitable time slots for each zone. Klein et al. (2018) 
approximate the opportunity costs of selecting a customer with a mixed integer linear 
programming model that maximizes the expected profit. These applications use historical data 
to predict customer information like demand and geographical location. They consider multiple 
combinations of routes by approximating the costs of adding a customer to a route of a time 
slot. However, all customers must be served in the given time slots, while we have to select a 
subset of customers to serve. Cleophas & Ehmke (2014) do select a subset of customers. 
They use vehicle routing procedures to decide whether to accept or reject sequentially 
processed fictitious requests in delivery tours for a given fleet of vehicles. However, they use 
the DYN algorithm as proposed by Ehmke & Campbell (2014), which aims to maximize the 
number of orders delivered instead of the profit obtained from a subset of delivered orders.  
 

3.2.3 Operational level 
Decisions on the operational level deal with short-term operational and scheduling problems 
(Bushuev, 2014). Within a given time frame, the goal is to schedule all the work given the 
assigned workload and available (capacity) resources (Hans, Schutten, & Maan-Leeftink, 
2021). SteadieSeifi et al. (2014) distinguish this activity into itinerary planning problems, i.e., 
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the online, real-time optimization of routes and/or schedules and offline resource allocation. 
The scheduling of the delivery men and the routes they will travel, i.e., a VRP solution, are 
examples of resource allocation. Some VRP variants explicitly require some form of customer 
(order) selection or prioritization (Akkerman & Mes, 2022). These variants integrate order 
selection and route planning.  
 
The inventory routing problem (IRP) combines the decision on when to replenish the 
customers’ inventories, how much product to deliver, and in which way to route the vehicles 
that execute the delivery (Mes, Schutten, & Perez-Rivera, 2014). Hence, the customers to 
replenish are selected ensuring that all customers do not experience a stock-out (Bertazzi, 
Savelsbergh, & Grazia-Speranza, 2008). Customers are selected based on a heuristic like 
cheapest insertion (Mes, Schutten, & Perez-Rivera, 2014), or by prioritizing big orders or 
lowest storage first (Roldán, Basagoiti, & Coelho, 2016). Although capacity decisions are 
made, i.e., replenishing can be advanced if it is advantageous, the main objective of the 
problem is the routing and not capacity determination.  
 
Likewise, the production routing problem (PRP) jointly optimizes production, inventory and 
transport routing planning decisions by integrating a lot-sizing problem to determine production 
amounts and a VRP to determine delivery routes (Díaz-Madroñero, Peidro, & Mula, 2015). 
Díaz-Madroñero, Peidro, & Mula (2015) stress that such problems should correspond with and 
be solved at the tactical decision level as well, to more accurately and better synchronize the 
two planning processes (Amarim, Belo-Filho, Toledo, Almeder, & Almada-Lobo, 2013). 
However, in most of these cases, transportation is considered a product distribution resource 
(i.e., supplement to production planning) (Lagemann & Meier, 2014) instead of the source to 
determine the (production) capacity on. 
 
Another variant that selects a subset of customers to serve is the vehicle routing problem with 
profits (VRPP). Here, the decision should be taken which customers to serve and how to 
cluster these customers in different routes and order the visits in each route (Archetti, Grazia-
Speranza, & Vigo, 2014). This method may leave cost-unattractive customers unvisited 
(Akkerman & Mes, 2022) and can for example be applied when unprofitable customers are 
outsourced if the total demand is greater than the whole capacity (Chu, 2005). In this case, 
Chu (2005) selects the customers with the highest outsourcing costs until all capacity is 
satisfied. Kim, Li & Johnson (2012) propose an augmented large neighbourhood search 
method to solve the VRPP. They construct an initial solution based on a greedy heuristic, 
where they select the next feasible customer with the smallest distance divided by reward. 
Afterwards, three improvement algorithms perturb the initial solution to find the solution with 
the highest profit. In both solution approaches, customer selection is executed to optimally use 
the fixed capacity instead of determining the optimal capacity based on the most profitable set 
of customers. 
 

3.2.4 Discussion 
In summary, most literature focuses on scheduling as many orders as possible given the fixed 
capacity, instead of determining the most profitable subset of orders to determine capacity on. 
However, the need for optimal order selection independent of the capacity is recognized by, 
e.g., Brahimi, Aouam & Aghezzaf (2015)  and Geunes, Romeijn & Taaffe (2002).  
 
Although order selection is discussed for a different purpose, i.e., to optimally use the 
predetermined capacity instead of determining the optimal capacity based on the most 
profitable set of orders, the logic can still be used as inspiration. At the tactical level, an initial 
plan is established to determine the feasibility and costs of the selected orders. This plan is an 
approximation of the operational plan. It is determined based on estimates and assumptions 
of order information, usually based on historical information. Next, it selects the subset of 
orders with the best solution value, e.g., the cost of production in manufacturing or the tour in 
routing. At the operational level, several VRP variants select orders based on the costs of the 
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solution value belonging to the subset of orders. Most of the time, a heuristic constructs a 
solution. Often, all order information is known at this decision level and therefore, the (route) 
costs result from explicit routing decisions.  
 
We further discuss the approximation of the VRP distance in Section 3.3. Also, we discuss the 
simulation of the operational routing plan, i.e., a tactical routing plan, in Section 3.4. 
 

3.3 VRP distance estimations 
VRPs are NP-hard (Konstantakopoulos, Gayialis, & Kechagias, 2020), and can therefore not 
be solved to optimality in polynomial times (Dantzig & Ramser, 1959). The algorithms to solve 
the VRP are categorized into exact and approximate methods as presented in Figure 17. Here, 
the approximate methods are further distinguished into heuristics and metaheuristics. To limit 
computational complexity, several options for exact and approximate methods exist. Options 
are to decompose the problem into smaller sub-problems (Lalla-Ruiz & Voß, 2020), to balance 
intensification and diversification such that one finds a feasible solution in an acceptable 
timescale with metaheuristics (Yang, Deb, & Fonf, 2013), or to reduce the decision space with 
priority rules (Doan, Bostel, & Hà, 2021). However, when many combinations of order subsets 
must be computed, these methods are still quite time-consuming. 

 
Alternatively, estimating the unknown solution value of the problem, prior to solving, can help 
to reduce the decision space by excluding unattractive customer subsets according to 
Akkersman & Mes (2022). They argue that it can help solve logistic problems where it is 
necessary to select a subset of customers to serve, e.g., when there is insufficient capacity or 
when it is allowed to leave cost-unattractive locations unvisited. They state that the number of 
possible subsets, with subset size r, from a set of customers with size n, equals n!/r!(n − r)!. 
Hence, approximation models can help make customer selection decisions when there is high 
demand on computational times. 
 
Much of the existing literature considers the (variable) costs of a VRP tour to be roughly 
equivalent to the total travelled distance (Nicola, Vetschera, & Dragomir, 2018). The variable 
costs mostly originate from the travelling time of each route (Konstantakopoulos, Gayialis, & 
Kechagias, 2020). As a result, variable costs are affected by the length and duration of the 
route. Therefore, estimating the total travelled distance of a subset of orders can be used to 
estimate the respective (variable) costs. 

Figure 17 Classification of algorithms for the VRP. (Konstantakopoulos, Gayialis, & Kechagias, 2020) 
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We distinguish between two types of VRP estimation methods prior to solving. Section 3.3.1 
elaborates on mathematical approaches and Section 3.3.2 on machine learning estimations. 
 

3.3.1 Mathematical approaches 
Various studies have been done towards the mathematical approaches of the optimal solution 
value, i.e., total travelled distance, of a VRP. Beardwoord, Halton & Hammersley (1959) 
propose one of the first approximation models. They show that for the most basic VRP version, 
the travelling salesman problem (TSP), the total travelled distance asymptotically converges 

to c√𝑁𝐴 when N→∞ for a set of 𝑁 customer in the convex area with surface area 𝐴, where c is 
a constant. Afterwards, many authors identify the need to include the shape of the area or the 
distance between customers. Chien (1992) modifies the area into the smallest area covering 
all customers. Also, he includes distance measures between customers and the depot. Hindle 
& Worthington (2004) consider the customer distribution. Contrary, Çavdar & Sokol (2015) 
develop a customer distribution-free approximation that can make predictions when the 
distribution of the customers' coordinates is unknown. Basel and Willemain (2001) 
demonstrate that the optimal tour length of a set of TSP instances can be predicted with the 
standard deviation of random tour lengths. Here, they start with an empty tour and randomly 
select an eligible stop until the tour is complete. They repeat this random tour generation, and 
once sufficient random tours are generated, they define the relation between the standard 
deviation of the length of these random tours with the (known) optimal tour length. Kou, Golden 
& Poikonen (2022) extend this relationship and reveal the asymptotic linear relationship 

between the standard deviation and the √𝑁𝐴 predictor discovered by Beardwoord, Halton & 
Hammersley (1959). In further research, they enhance the estimation ability of their model by 
also considering the mean of random feasible solutions (Kou, Golden, & Poikonen, 2023). 
  
Webb (1968) was the first to consider the CVRP. He studied the correlation between total 
travel distance and the distance between the customers and the depot. Daganzo (1987) 
developed a well-known estimation of the CVRP, which takes the capacity of the vehicles into 
account. Given N customers, an area of A, an average distance r between customers and the 
depot and maximal Q customers that can be served by a vehicle, he estimates the tour length 
with Equation 3-8:  
 

𝐶𝑉𝑅𝑃 (𝑁) =  
2𝑟𝑁

𝑄
+ 0.57√𝑁𝐴 
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Based on this estimation, Robusté, Estrada & López-Pita (2004) propose adjustments to 
include the shape of the area, i.e., square, rectangular, circular and elliptic zones. Furthermore, 
Figliozzi (2008) studied six approximations of the average VRP tour length when there is 
variability in the number, level and locations of customer demands. The best-proposed 

approximation is 𝑉𝑅𝑃 = 𝑘𝑙 ∗
𝑁−𝑀

𝑁
∗ √𝐴𝑁 + 𝑘𝑏 ∗ √

𝐴

𝑁
+  𝑘𝑚 ∗ 𝑀, where N is the number 

customers, A the area, M the number of vehicles, and where the coefficients of these 
independent variables are estimated by linear regression.  
 

3.3.2 Machine learning estimations 
Instead of using mathematical approaches, also machine learning models have been utilized 
to approximate the VRP distance. Here, the literature refers to features instead of independent 
variables that describe the dependent variable, i.e., the VRP distance. Arnold and Sörensen 
(2019) use data mining techniques to classify the relation of VRP features with the solution 
value. Kwon, Golden & Wasil (1995) define estimators of the optimal TSP tour length using 
linear regression and neural networks, which produce reasonably good estimates. Nicola, 
Vetschera & Dragomir (2018) describe the VRP with features such as distances, capacities 
and demands. Hence, with the use of forward stepwise selection and backward stepwise 
regression, they select the features that estimate the total travelled distance. They achieve 
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good approximations and outperform previous models. Akkerman (2021) uses random forests 
and neural networks to predict the final routing distance. In further research, Akkerman & Mes 
(2022) use more distinct methods of linear regression, random forest regression, and neural 
networks to approximate the VRP distance. The use of these methods and the inclusion of 
additional features improve the distance predictions compared to Nicola, Vetschera & 
Dragomir (2018) and Figliozzi (2008).  
 
We elaborate on the machine learning models random forests regression in Section 3.3.2.1 
and lightweight gradient boosting machines in Section 3.3.2.2, as we find in Section 4.3.2 that 
these models have the best performance on our data. Section 3.3.2.3 explains how to assess 
the model performance of the models. Both models are regression models that estimate the 
relationships between one or more independent variables and a quantitative dependent 
variable with a set of statistical techniques. The machine learning literature calls the 
independent variables, the features and the dependent variable, the response.  
 

3.3.2.1 Random forests regression 

Random forests regression (RFR) is a supervised machine learning algorithm that combines 
multiple decision trees to predict quantitative responses. A decision trees algorithm builds a 
tree-like model of decisions and their possible consequences based on the training data 
(James, Witten, Hastie, & TIbshirani, 2021). According to James, Witten, Hastie, & TIbshirani 
(2021), the process of building a regression decision tree consists of roughly two steps.  
1. Divide the feature space, which consists of all possible feature values, into distinct and 

non-overlapping regions. To do so, the algorithm first selects a feature from the dataset 

that best separates the data into distinct groups based on their response. This feature is 

used as the root node of the tree, i.e., the node that starts the decision tree. The algorithm 

then splits the datasets into data subsets based on the values of the selected features, 

creating intermediate nodes and more specific regions. Each final region represents a 

branch or path in the tree, and each path leads to a leaf node representing the response. 

The algorithm recursively applies the same process to each subset of data until a stopping 

criterion is met. This criterion can be based on a pre-specified maximum depth of the tree, 

a minimum number of data points per leaf node, or other criteria.  

2. To make a prediction for a new data point, the algorithm traverses the tree from the root 

node to a leaf node, following the path based on the values of the input features. The 

prediction is then the mean of the response values in the region.  

The goal of a decision tree algorithm is to find regions that minimize the difference between 
the predictions and the response values of the training data. Decision trees tend to overfit the 
data when the tree is too deep or complex and possibly, poorly generalize on unseen data. 
 
RFR builds multiple decision trees to create a predictive model. Contrary to the traditional 
decision tree, a random sample of 𝑚 features from the total set of 𝑝 features is chosen as 

model features. Usually √𝑝 features are used per split (James, Witten, Hastie, & TIbshirani, 

2021). The splits are repeated until the decision tree reaches the leaf node, i.e., the response. 
The random forest model trains multiple random decision trees to create a forest of decision 
trees. To make a prediction for a new data point, the algorithm feeds the data point through 
each decision tree and determines the average of each tree to obtain strong, final predictions 
(Breiman, 2001). The construction of the (trees in the) final random forest depends on the 
hyperparameters. These are selected before training an RFR model, and determine the 
behaviour of the model. Common RFR hyperparameters are the maximal number of features 
considered for splitting in a decision tree, the minimum number of data points per leaf in a 
decision tree, the number of decision trees in the forest and the maximal depth of each decision 
tree. Figure 18 shows an example of a Random Forest with three decision trees and a maximal 
depth of three nodes from the root node to the leaf nodes in the tree. 
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The main advantage of RFR is that it can handle high-dimensional data with many features 
and can capture complex nonlinear relationships between features and the response variable. 
Additionally, RFR is robust to overfitting, meaning it can generalize well to unseen data (James, 
Witten, Hastie, & TIbshirani, 2021). 
 

3.3.2.2 Lightweight gradient boosting machines 

Lightweight gradient boosting machines (LGBM) is a highly efficient gradient boosting decision 
tree algorithm proposed by Ke et al. (2017). A gradient-boosting decision tree (GBDT) 
algorithm combines the predictions of multiple weaker models based on training data, to create 
a stronger overall model. The trees grow sequentially: each tree is grown by utilizing 
information obtained from previously grown trees (James, Witten, Hastie, & TIbshirani, 2021). 
Again, James, Witten, Hastie, & TIbshirani (2021) distinguish roughly two steps to build a 
gradient-boosting decision tree.  
1. Fit a decision tree on the training data. Subsequently, evaluate the errors and train another 

decision tree on these errors. Then, in every iteration, the algorithm fits the gradient of the 

loss function, i.e., the error measure, to update the model such that the loss function is 

minimized (Ke, et al., 2017). The gradient is the derivative of the loss function concerning 

the predicted response value. This means that the algorithm focuses on the examples that 

were incorrectly predicted by the previous models and tries to improve the predictions for 

those examples in the next iteration. To control the rate at which the boosting learns, the 

algorithm adds the gradient multiplied with a learning rate of typically 0.01 or 0.001 to the 

current parameters of the model. The algorithm repeats the error evaluation and training 

of decision trees on these errors. 

2. To make a prediction for a new data point, the algorithm combines the predictions of all 

weak models by taking their weighted sum. Each tree’s weight is determined by its 

contribution to the overall performance of the model.  

The goal is to minimize the loss function by adjusting the parameters of the decision tree. The 
iterative algorithm can be prone to overfitting if the number of trees or iterations is too large, or 
if the models are too complex. Also, Ke et al. (2017) state that, for every feature, all data 
instances need to be scanned to estimate the information gain of all the possible split points. 
Therefore, their computational complexities will be proportional to both the number of features 
and the number of instances, which can be very time-consuming.  
 
LGBM reduces the number of data instances and the number of features, and thus the training 
speed and memory consumption of GBDT. For data reduction, Ke et al. (2017) use the 
technique Gradient-based One-Side Sampling (GOSS) to select only the most important data 
points. The larger the gradient of the loss function, the more the data points contribute to the 
learning process. Hence, GOSS keeps the data instances with larger gradients and randomly 

Figure 18 Example of Random Forests with 3 decision trees (TIBC, 2023) 
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samples what data instances with smaller gradients to keep, to retain the accuracy of the 
estimation. For the reduction in the number of features, they use Exclusive Feature Bundling 
(EFB) which bundles the mutually exclusive features into a single feature. According to Ke et 
al. (2017), mutually exclusive features never have a nonzero value at the same time.  
 
LGBM uses a histogram-based algorithm to identify the optimal split points, i.e., the regions, 
and the number of features that are considered per split in the decision tree. Hence, it creates 
a histogram of each feature and divides it into discrete bins. A higher number of bins allows a 
more detailed data splitting and can improve the model accuracy, but also increases the 
computational time. However, instead of splitting all the data, Ke et al. (2017) use GOSS to 
select only the data points with the highest gradients for splitting. When the decision tree is fit, 
the next steps of the gradient boosting decision tree algorithm as described above are 
executed. However, the gradient of the loss function is only computed for the data points with 
the highest gradients obtained from GOSS. To make a prediction for a new data point, LGBM 
traverses the decision tree and sums up the predicted values of the leaf nodes.  
 

3.3.2.3  Model performance  

Various performance metrics exist to assess the predictive performance of a machine learning 
model. These metrics quantitatively evaluate how well the predications match the observed 
data (James, Witten, Hastie, & TIbshirani, 2021). The three most popular error measures are 
the root mean squared error (RMSE), the mean absolute error (MAE) and the mean absolute 
percentage error (MAPE) (Botchkarev, 2019). The RMSE assesses the error magnitude and 
penalizes large errors through the square. The MAE measures the average error without 
under- or overprediction consideration. The MAPE represents the average absolute error 
relative to the observed data. The disadvantage of the RMSE and MAE is that interpretation is 
harder when the magnitude of the response can vary. Relative errors can provide a better 
interpretation of how well the evaluated forecasting method performs compared to another 
method (Chen, Twycross, & Garibaldi, 2017). The three relative error performance metrics are 
given by: 
 
 

𝑟𝑅𝑀𝑆𝐸 (%) =  
√

1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖)2𝑛

𝑖=1

𝐴𝑐𝑡𝑢𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∗ 100%  
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𝑟𝑀𝐴𝐸(%) =  

1
𝑛

∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖|𝑛
𝑖=1

𝐴𝑐𝑡𝑢𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅
∗ 100% 
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𝑀𝐴𝑃𝐸 (%) =

1

𝑛
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙𝑖 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

𝐴𝑐𝑡𝑢𝑎𝑙𝑖
| ∗ 100%

𝑛

𝑖=1
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Additionally, 𝑅2 is a well-known statistical measure of fit that indicates the proportion of 
variance of a response that is explained by predictors in a regression model (Ferando, 2021). 

Thus, an 𝑅2 of 1 means that all observed variation can be explained by the predictors. The 𝑅2 

increases when more predictors are added to the model. The adjusted 𝑅2 modifies for this. 
Hence, it prevents overfitting and ensures that models with a different number of predictors 

can be compared (James, Witten, Hastie, & TIbshirani, 2021). The 𝑅2 and the adjusted 𝑅2 are 
calculated by Equation 3-12 and Equation 3-13 respectively: 
 
 

𝑅2 = 1 −  
∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖)2𝑛

𝑖=1

∑ (𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑛
𝑖=1

 3-12 
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𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 −  

(1 − 𝑅2)(𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 − 1)

𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒 − 𝑁𝑟. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 − 1
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3.4 Monte Carlo simulation 
Simulation is a technique that uses computers to imitate real-world processes (Law, 2015).  
Subsequently, simulation is used to evaluate a process, e.g., order delivery, numerically and 
to gather data to estimate the desired true characteristics of the process.  
 
A Monte Carlo simulation is a sampling-based simulation, in which a stochastic problem or 
calculation is solved multiple times, to estimate the probability distribution of the result 
(Heijungs, 2020). The simulation is suitable for systems that are static and do not involve time 
evolution (Lawson & Leemis, 2008). Hence, the passage of time during a simulation run does 
not play a significant role. The entities, i.e., the objects or actors that are simulated, in the 
Monte Carlo simulation do not influence each other and are thus independent of each other. 
Typically, the inputs of the simulation are unknown and therefore based on random number 
generators and probability distributions (Law, 2015). The output distribution is then used to 
inform decision-makers about the characteristics of the result, such as the mean value, the 
standard deviation and quantiles (Heijungs, 2020). Hence, a Monte Carlo simulation is used 
to understand the impact of uncertainty (Kenton, 2022) and to assess the robustness of the 
output. 
 

3.5 Conclusions and contributions to the literature 
This chapter reviewed the literature regarding vehicle routing problems and ways to find the 
optimal solution value, order selection and capacity planning, and simulation. First, we 
introduced the capacitated vehicle routing problem with maximal trip duration constraint. 
Second, we found that little to no research has been done towards tactical capacity 
determination based on the delivery outsourcing of unprofitable orders. Order selection, if 
done, usually has the goal of optimally using the predetermined capacity instead of determining 
the optimal capacity based on the most profitable set of orders. Additionally, many methods 
assume that all order information is known when order selection decisions are made. Third, 
we elaborated on exact and approximate methods to solve VRPs, as well as estimations of the 
solution value prior to solving. The total distance travelled is roughly equivalent to, and thus a 
good estimate of, the variable VRP costs. Furthermore, we showed the potential of machine 
learning to support order selection under routing considerations. Lastly, we introduced the 
Monte Carlo simulation. This method could provide insight into the variety and robustness of 
the most cost-efficient order selection because the order selection with minimal costs per order 
given the total number of forecasted potential orders is dependent on uncertain order 
characteristics (e.g., order division).  
 
In summary, we contribute to the existing literature with a methodology that selects the most 
cost-efficient order subset to determine delivery capacity at the tactical level. This contribution 
includes: 

1. An application of distance estimation, prior to solving, to support order selection 

decisions to determine the capacity to deploy. 

2. An application of machine learning model(s) to estimate the variable costs of a VRP. 

3. The provision of insight into the dependencies of several features concerning the VRP 

distance. 

4. A general method based on information known at the tactical level instead of estimated 

or assumed information such as exact order locations. 

5. A method that takes variability and stochasticity into account and assesses the 

robustness of the optimal order selection given stochastic input sources. 
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4 Solution design 
This chapter proposes a solution design that supports capacity deployment decisions at the 
tactical level in routing problems. We illustrate our solution methodology on the hub in 
Hilversum. Section 4.1 describes the problem context and Section 4.2 proposes the solution 
methodology to address the problem. Next, Section 4.3 describes the development of machine 
learning models to support order selection decisions. Section 4.4 elaborates on the Monte 
Carlo simulation that evaluates the robustness of the order selection with minimal costs per 
order given the total number of forecasted potential orders. Finally, Section 4.5 concludes the 
chapter. 
 

4.1 Problem description 
We aim to find the required capacity of CBB’s hubs that gives minimal costs per order based 
on the forecasted potential orders of the hub’s delivery area. We decide to determine the 
required capacity based on the daily number of orders to deliver as required by CBB, to ensure 
that our solution is easily implementable in the current system (see Section 2.1). Hence, the 
problem consists of finding the hub’s most cost-efficient order selection per day based on the 
total number of forecasted potential orders. This implicates making two decisions: choosing 
how many orders to select and how to estimate the costs of an order selection. 
 
Order selection 
Order information such as location and volume is unknown at this stage, i.e., we consider a 
tactical level problem where we encounter uncertainties. To be more precise, we determine 
the required capacity for 4 to 16 weeks ahead (see Section 2.1), whilst CBB strives to deliver 
the placed order the next working day. Hence, there is uncertainty in all types of order 
information from the to-be-evaluated days.  
 
The forecasted potential orders are the orders of the entire delivery area of a CBB hub that 
CBB predicts to be eligible for CBB delivery. The delivery area consists of a set of subareas 

indicated by 𝐴, partitioned by the numeric values of the postal codes (PC4). Every delivery 
area has one hub from which each 𝑣 ∈ 𝑉 delivery bikes and each 𝑚 ∈ 𝑀 delivery men depart, 

where the number of 𝑣 and 𝑚 that depart is equal, to deliver each 𝑛 ∈ 𝑁 orders. We consider 
an infinite capacity of the number of delivery bikes and delivery men hours, such that we can 
determine the most cost-efficient number to deploy independent of the current available 

capacity. Each bike tour is constrained by the bike capacity 𝐾 and the maximal tour time 𝑇.  
 
Costs per order 
The costs consist of fixed costs independent of the order selection and variable costs that are 
dependent on the order selection as discussed in Section 2.2. The total fixed costs are always 
the same, and the fixed costs per order decrease when the number of orders increases. Hence, 
these costs converge to zero when the numbers of orders converge to infinity.  
 
The total variable costs consist of a cost per hour, per kilometre and per order. They increase 
when the number of orders increases (more travel time, more travel distance and more orders). 
However, the relation between the variable costs per order and the number of orders is still 
unknown. These costs might increase or decrease when the number of orders increases, 
depending on the total cost increase of the travel time and the travel distance relative to the 
number of orders. We obtain a decrease in costs per order when the decrease in the fixed 
costs per order is greater than the increase in the variable costs per order, or when both the 
fixed and the variable costs per order decrease. Therefore, we obtain a (local) costs per order 
minimum when after a decrease, an increase is observed. 
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4.2 Solution methodology 
We develop a solution methodology that supports capacity deployment decisions at the tactical 
level in routing problems. We choose to analyze the operational routing plan, using Monte 
Carlo simulation, to make decisions about the most cost-efficient capacity to deploy. Here, we 
mimic a delivery day, choose which orders to deliver this day based on the lowest estimated 
costs per order, and determine how much capacity is necessary to deliver these orders. We 
propose to develop a machine learning model that supports the order selection decision by 
estimating the costs per order of the selected orders. Accordingly, the solution approach 
consists of two main steps:  
1) Develop machine learning model(s) that estimates the costs of an order selection.  

2) Build a Monte Carlo simulation, in which the machine learning model(s) are utilized to 

support order selection decisions.  

Figure 19 shows the full, high-over solution approach and the general steps that should be 
taken. It displays the relation of the machine learning models with the Monte Carlo simulation. 
We decide to develop two types of machine learning models: trained on generated data (1) 
and trained on historical data (2), on which we further elaborate in Section 4.3.3. These 
developed machine learning models are input for the Monte Carlo simulation.  
 
The goals of the Monte Carlo simulation are 1) to understand the impact of uncertainty in the 
order distribution over the delivery area on the most cost-efficient order selection, and 2) to 
validate and compare the most cost-efficient order selection chosen by the machine learning 
models with the orders selected by the current system and a literature approach to benchmark 
from. The simulation consists of four phases. In Phase 1, we distribute the forecasted potential 
orders over the delivery area. Next, we select the most cost-efficient order subset with the 
machine learning models in Phase 2. Additionally, in Phase 2, we select orders based on a 
literature approach, and we select all orders from the PC4s located in the ‘optimal levels’ as 
done in the current system (see Section 2.1). Note that the latter two methods do not need to 
be developed because we can simply retrieve them from the literature and CBB. In Phase 3, 
we solve the VRP of the order selections for comparison and validation purposes. In Phase 4, 

Figure 19 Solution methodology 
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we store the performance metrics to be able to evaluate the robustness of the most cost-
efficient order selection and to learn what method can best be utilized to support CBB with 
capacity deployment decisions. We repeat these four phases until both the most cost-efficient 
number of orders and the costs per order of this order selection are statistically significant. 
Multiple simulation runs account for the uncertainty observed in for example the division of 
orders over the delivery area. Hence, if we run the simulation sufficient times, we retrieve an 
average value of the order selection and costs per order with a specified confidence level (see 
Section 5.2.1.2). Note that Phases 3 and 4 are for validation and comparison purposes 
because the most cost-efficient order selections are the output of Phase 2.  
 
The motivation for this solution methodology is nine-folded: 
 
Machine learning 

1) The use of machine learning estimations prevents solving the VRP for all possible 

combinations to find the subset with the lowest costs per order. This is very computationally 

demanding compared to estimating with a machine learning model, and might even be 

considered an infeasible option. 

2) When we exploit a machine learning model, we do not necessarily need all detailed order 

information to determine the distance contrary to solving a VRP. Hence, we can utilize the 

available tactical-level information to describe the VRP. 

3) According to the literature, there is a high potential in exploiting machine learning models 

to predict a VRP distance and/or costs. 

Monte Carlo simulation 

4) A Monte Carlo simulation provides the possibility to mimic the route planning. Therefore, 

we can establish an initial routing plan, on which we can determine the costs of an order 

selection as suggested in the literature. These costs are necessary to determine what 

number of orders selected is most cost-efficient. 

5) The simulation of the route planning also allows the alignment of the order selection 

decision with the bike route efficiency as required (see Section 1.2), because we choose 

the orders in the initial plan with the lowest costs per order, i.e., with the least distance per 

order and thus the highest route efficiency.  

6) When we simulate the route planning, we can desirably base the order selected in the initial 

plan on the total number of forecasted potential orders (see Section 1.2). This number can 

be the input of the simulation and indicates how many orders can be maximally selected.  

7) The output of the Monte Carlo simulation is the number of orders to deliver, which is directly 

implementable in the current capacity planning and desired by CBB.  

8) The Monte Carlo simulation allows evaluation of the most cost-efficient order selection 

based on unknown and/or stochastic inputs that are common at the tactical level (e.g., 

order distribution over the delivery area). Hence, we can assess the robustness of the most 

cost-efficient order selection.  

9) A Monte Carlo simulation is suitable for our routing problem because the passage of time 

does not play a significant role. The evaluated delivery day is independent of any other 

delivery day because the orders and capacity of the evaluated day cannot be shifted. 

According to the two main steps of the solution methodology, Section 4.3 elaborates on the 
consecutive steps to develop the machine learning models, and Section 4.4 motivates the 
approach and choices of each phase of the Monte Carlo simulation. 
 

4.3 Machine learning to support order selection  
The goal of the order selection is to select the most cost-efficient subset of orders. To 
determine the costs of an order selection, we should know (an estimation of) the travel time in 
hours, the travel distance in kilometres and the number of orders selected as explained in 
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Section 2.2 and Section 4.1. Hence, we propose to develop a machine learning model that 
tries to predict the VRP distance based on features.  
 
Figure 20 depicts the general process of developing a machine learning model. This section 
explains this process, and thus the steps we are going to take to develop the machine learning 
models to support order selection. Accordingly, Section 4.3.1 elaborates on the choice of the 
features. Next, Section  4.3.2 motivates the choice of two machine learning models that we 
are going to develop and their respective hyperparameters. Afterwards, Section 4.3.3 explains 
how we obtain two types of data sets. Hence, the combination of two machine learning models 
and two types of data sets results in four machine learning models to evaluate.  

 

4.3.1 Features 
Features are independent variables that describe the dependent variable in a machine learning 
model. Hence, we use features to estimate the distance of the VRP, i.e., the response. We 
decide to only consider features of which the values are known when selecting the orders to 
determine capacity at the tactical level. This may give a general tool applicable at the tactical 
level for capacity decision-making without assuming all order information. The known features 
are the total number of forecasted potential orders, the total number of selected orders and the 
spatial features of the delivery area.  
 
Including only these known features, means excluding many features considered in the 
literature, such as inter-customer driving time and characteristics of the customer locations. 
However, these literature features were often considered for operational models, i.e., where 
these feature values were known or could be determined. Also, we do not assume like 
Daganzo (1987), Robusté et al. (2004) and Figliozzi (2008) that the number of necessary 
routes or vehicles is known a priori, since we want this information as the output of the model. 
The inclusion of unknown features would imply assuming their values. In that case, the model 
would be trained on these values, and therefore more prone to overfitting and to create bias. 
Also, there are way more operational than tactical level features to utilize, which could make 
the model unnecessarily complex. Therefore, we decide to exclude unknown features from our 
model. 
 
In the end, we are interested in predicting the costs of delivering an extra order independent 
of order location, to determine how much required capacity, i.e., delivery men hours and bike 
routes, to deploy. We do not have to determine the sequence in which we are going to serve 
the orders, and we can only speculate about their location and volume. Therefore, we group 

Figure 20 General process of developing a machine learning model 
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orders together into zones like Hernandez, Gendreau & Potvin (2017) to obtain spatial features 
that might describe the solution value. Based on historical data and the experience of Coolblue, 
we use the numeric values of the postal codes (PC4) to partition the delivery area.  
 
Table 3 shows the features used in the machine learning model. We have relatively few 
features (6) compared to the data (8798 generated data points, and 10160 (small hubs) / 5579 
(large hubs) historical data points), on which we further elaborate in Section 4.3.3). Therefore, 
the chance of overfitting and redundant data, and the computational time to train the model 
are relatively low. Note that Feature 6 can be interpreted as a term related to the distance 
between customers (Figliozzi, 2008). Furthermore, we decide to exclude the number of 
selected orders per PC4 as a feature based on the predictive performance. The inclusion of 
e.g., 45 features, one for every PC4 in Hilversum, introduces extra noise and decreases the 
accuracy of the model. The model becomes more complex with 51 instead of 6 features, and 
tends to overfit the data. We elaborate on this noise in Appendix B. Also, we decide to exclude 

the feature √Total area / Selected orders introduced by Figliozzi (2008), since it is directly 

correlated with Feature 6.  
 
Table 3 Features of the machine learning model(s) 

Number Feature Description 

1 Potential orders 
The number of potential orders in the entire 

delivery area 

2 Selected orders 
The number of selected orders in the entire 

delivery area 

3 Total area 
The total area in km2 of the PC4s from the 

selected orders 

4 Average distance to the hub 
The average distance in km from the centroid of 

the PC4s from the selected orders to the hub 

5 Variance distance to the hub 
The variance in km from the centroid of the PC4s 

from the selected orders to the hub 

6 √Total area ∗  Selected orders 

The square root of the total area in km2 of the 
PC4s from the selected orders multiplied by the 
number of selected orders in the entire delivery 

area 

 

4.3.2 Machine learning models 
We use the Python Lazy Predict library (Pandala, 2022) to understand which machine learning 
models fit our dataset. We refer to Section 4.3.3 for more information on the dataset. We want 
to predict the quantitative distance of the VRP (dependent variable) with features (independent 
variables), and therefore perform a regression analysis (James, Witten, Hastie, & TIbshirani, 
2021). We found that the simplest regression model, linear regression, is not a valid method 
for the dataset. Specifically, we observe that the residuals do not follow a normal distribution 
and are heteroscedastic, meaning that the underlying assumptions to utilize a linear regression 
model are not met.  
 
We find that decision tree-based models, which are capable of handling non-linear relations, 
are most suitable for our dataset, i.e., have the highest predictive performance. Therefore, we 
consider the highest scoring models random forest regression (RFR) and lightweight gradient 
boosting machines (LGBM) for the rest of this study. Other high-scoring models are histogram 
gradient boosting regression, gradient boosting regression and extra trees regression. The first 
two work quite similarly to LGBM, i.e., gradient-boosting decision trees, and the latter is a 
variation of random forest regression. Hence, we expect no significant difference between 
these models, and we decide to only evaluate RFR and LGBM. We choose to train and test 
the models in Python with the Scikit-Learn (Scikit-learn, 2023) and the LightGBM (Microsoft 
Corporation, 2023) libraries respectively. For both models, we use the bootstrapping method 
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as a resampling technique with out-of-bag samples to more accurately fit the data. This means 
that for each decision tree, we randomly draw data samples with replacement from the training 
data, on which we then build the decision tree. We test the performance on the data that is 
never sampled, i.e., the out-of-bag sample. 
 

4.3.2.1 Hyperparameter tuning 

Hyperparameters in machine learning models are parameters that are selected before training 
the algorithm. The machine learning model utilizes these hyperparameters to effectively learn 
the optimal parameters that accurately predict the dependent variable from the features 
(independent variables). Hence, they directly control the behaviour of the training algorithm 
and have a significant effect on the predictive performance of the machine learning models 
(Wu, et al., 2019).  
 
For RFR, we decide to optimize the maximal number of features for splitting. This 
hyperparameter influences the generalization error and is often seen as the most important 
hyperparameter of RFR (Wright & Ziegler, 2017). Furthermore, we choose to tune the stopping 
criterium: the minimum number of data points per leaf node. To balance model performance 
with run time, we set the number of trees to 200 for both models as done in comparable 
research (Akkerman & Mes, 2022). We decide to let the trees grow to full depth because we 
only have a limited set of features.  
 
For LGBM, we decide to optimize the maximal number of bins to bucket the features for LGBM, 
which controls the number of features considered per split (see Section 3.3.2.2). Hence, this 
hyperparameter is important as discussed with RFR. Also, we tune the learning rate, as this 
controls the step size at each iteration at which the algorithm converges to the final model. The 
maximal number of leaves controls the complexity of the model and should be tuned together 
with the maximal tree depth, often is suggested that the maximal number of leaves is equal to 

2𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑡𝑟𝑒𝑒 𝑑𝑒𝑝𝑡ℎ (Microsoft Corporation, 2023). Additionally, an iterative learning process can 
be more prone to overfitting than averaging randomly constructed models such as RFR does, 
hence we decide to tune both the maximal number of leaves and the maximal tree depth. 
Again, we consider 200 trees in the forest. 
 
We tune the hyperparameters on the (unseen) validation set to find a set of optimal values. 
We use Bayesian optimization with 5-fold cross-validation with the Scikit-Learn and Scikit-
Optimize Python libraries (Head, Kumar, Nahrstaedt, Louppe, & Shcherbatyi, 2021) and select 

the hyperparameters belonging to the models with the best 𝑅2. For more information on this 
optimization and its implementation, we refer to Akkerman & Mes (2022). Table 4 summarizes 
the hyperparameters and the value decisions. 
 
Table 4 The to-be-tuned hyperparameters of the RFR and LGBM model 

Model Hyperparameter Description Value  

RFR 

Maximal number features 
for splitting 

The number of features to consider when 
looking for the best split. 

To be tuned 

Minimum number of data 
points per leaf node 

The minimum number of data required to 
be at a leaf node. 

To be tuned 

Number of trees The number of trees in the forest. 200 

Maximal tree depth The maximum depth of the tree. Full depth 

LGBM 

Maximal number of bins 
The maximum number of bins to bucket 

the feature values. 
To be tuned 

Learning rate The rate at which the model is updated. To be tuned 

Maximal tree depth The maximum depth of the tree. To be tuned 

Number of leaves Maximal number of leaves in one tree. To be tuned 

Number of trees The number of trees in the forest. 200 
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4.3.3 Training data 
To develop a regression model, we need to obtain training data. We decide to distinguish 
between two types of training data; historical data and generated data. We use both types of 
data to make separate machine learning models, to learn what data can best be utilized to 
support CBB with capacity deployment decisions. We split the obtained training data into 
training, test and validation sets, with respectively 80%, 10%, and 10% ratio. We use the 
training set to fit the parameters to the machine learning model, the validation set to tune the 
hyperparameters of the model and the test set to evaluate the fitted model on the training set. 
Hence, the use of the validation set ensures that the hyperparameters are trained on unseen 
data, which prevents overfitting and a biased evaluation, and increases the generalizing 
capability. 
 

4.3.3.1 Historical data 

CBB collects data of the delivery process since the start of each hub. This data consists of 
mainly two tables. The first table stores all potential orders, i.e., the primary key is the order 
identifier (ID). It contains information such as the order- and delivery date and time, the country, 
the allocated hub, the PC4 in which the order is located, and binary values if the order suffices 
the constraints for CBB delivery (see Section 2.3). This table should be used to determine the 
total daily number of potential orders eligible for CBB delivery. The second table stores all tour 
information, i.e., the primary key is the tour ID. It contains tour information like the hub from 
which the tour departs, the delivery date and the total tour distance. Also, it includes the stops 
of the tour, which is described by most importantly the sequence number of the stop in the 
tour, the planned and realized arrival time at the stop, the planned and realized time to the next 
stop, and the address of the stop.  
 
Unfortunately, the hubs only have been open for roughly two years. Because one day equals 
one data point, resulting in +/- 730 data points before data preparation, we have insufficient 
data to develop an RFR and LGBM model per hub. Therefore, we decide to group hubs 
together based on hub size in consultation with CBB and make individual hub predictions with 
the aggregated model. We discriminate between small and large hubs, as we find that the 
spatial features and bike routes are most comparable with this distinction. We prepare the data 
in Coolblue’s data warehouse BiqQuery (SQL) by deleting observations with missing values, 
test or fun tours that are not representative (e.g., tests with longer maximal bike time or present 
delivery at Sinterklaas to employees’ children), observations with old volume restrictions 
(causing, e.g., different inflow and route utilization), and by adjusting the data when the hub 
has moved (e.g., the distance to the hub should be to the old hub instead of the new hub). 
Afterwards, we obtain a sufficiently large data set of 10,160 and 5,579 entries respectively.  
 
The main advantage of grouping the data is the generalization and implementation of the 
solution methodology. Hence, only 2 machine learning models (one for small hubs and one for 
large hubs) have to be developed to support capacity deployment decisions at all hubs. This 
is a way less exhaustive process than data generation for every hub as explained in Section 
4.3.3.2. The disadvantage is that in a shared model, hub-specific spatial features emerge less, 
such as the location of, e.g., a forest in the delivery area and customer distributions. However, 
the purpose of the model is to support capacity deployment decisions. Therefore, deviation of 
the distance estimation model does not necessarily influence the capacity decision, if the 
model always proportionally under- or overestimates the actual distance.  
 
Furthermore, historical data can be biased. For example, it might not be representative, i.e., 
over- or underrepresented observations, or consist of manual adjustments based on human 
logic that are not readily apparent during data analysis. Therefore, the data should contain 
sufficient variability to be able to make proper predictions. By comparing the performance of 
the models with historical and generated data, we can conclude about the practicality of the 
model with historical data.  
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4.3.3.2 Generated data 

To ensure that the model can decide upon the optimal capacity and does not only mimic the 
historical decision, we also generate data. This filters out the bias and logic of for example the 
human planners of Coolblue. Hence, we obtain an additional data set, on which we train, test 
and validate the RFR and LGBM models.  
 
We simulate the order selection of the hub in Hilversum to generate instances. We build and 
run this simulation for data generation in Python 3.9. Figure 21 displays the 4 phases of the 
data generation based on the historical potential orders per PC4 of Hilversum suitable for bike 
delivery. In line with those phases, Section 4.3.3.2.1 elaborates on the order division, Section 
4.3.3.2.2 on the order selection, Section 4.3.3.2.3 on solving the VRP and Section 4.3.3.2.4 
on storing the features. Furthermore, Section 4.3.3.2.5 explains how we ensure sufficient order 
selection variability. 

Figure 21 Flowchart data generation simulation 

4.3.3.2.1 Order division 

Historically, we know the daily number of potential orders per PC4. Therefore, we use almost 

5 years of available, historical PC4 order divisions to create instances (1759 days: 24-01-2018 

– 12-12-2022). Hence, we simulate the exact same 1759 days with the exact same number of 

orders per PC4. This way, we automatically filter out all orders that were unsafe to deliver or 

did not suffice the size restrictions (see Section 2.3). Furthermore, we ensure representative 

order divisions by using historically observed order divisions. We prepare this datafile in 

Coolblue’s data warehouse BiqQuery. 

 

Because we cannot match the historical potential orders with the actual addresses, we decide 

to randomly draw a customer location from a list with an address in the corresponding PC4 

inspired by Cleophas & Ehmke (2014). Therefore, we first create a list with 50 addresses per 

PC4. Each address contains the street, house number, postal code (PC4 and PC6), latitude 

and longitude. 50 Addresses should suffice because we observed a maximum of 30 potential 

orders per PC4 per day and a minimal of 96 distinct order addresses per PC4. First, we prepare 

the historical order data stored in BiqQuery (e.g., remove typing errors of the customers). 

Afterwards, we randomly filter one random address per full postal code (PC6), i.e., the four 

numbers and two letters of the postal code. This way the addresses are spread throughout the 

entire delivery area. We randomly filter 50 addresses of the address list containing unique 

PC6s. For the 5 PC4s with less than 50 PC6s, we randomly duplicate PC6s in case we select 

a higher number of orders in a PC4 then the number of PC6s that belong to that PC4.  

4.3.3.2.2 Order selection 

The generated data set should contain all kinds of order selection decisions to train models 

that make proper predictions. Hence, we should select a different number of orders per day to 

ensure enough order selection variability. Therefore, we decide to categorize the selected 

orders relative to the potential orders every day into 4 categories, i.e., 2.6 - 25%, 25 - 50%, 50 

- 75%, and 75 - 100%. Note that the first category starts at 2.6% instead of 0.0% to ensure we 

never choose only one order and always can solve a VRP. This 2.6% results from the minimum 
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number of 40 potential orders observed, i.e., 
1 𝑜𝑟𝑑𝑒𝑟

40 𝑜𝑟𝑑𝑒𝑟𝑠
= 2.5%, thus with 2.6% the minimum 

number of orders selected is 2. Every simulated day, we randomly draw a percentage in the 

range from every category, which results in four percentages. We translate these percentages 

to a number of orders based on the total number of potential orders, e.g., 40% of 140 potential 

orders is 56 orders to be selected. 

 

We start with an empty solution and select orders based on the nearest neighbour heuristic. 

This relatively simple heuristic, i.e., select the next closest customer (here order), is a well-

known heuristic in VRP literature. We choose this heuristic because it assumes making an 

order selection with approximately minimal costs since the (variable) costs in a VRP are 

assumed to be roughly equal to the distance (Nicola, Vetschera, & Dragomir, 2018) (Daganzo, 

1987) (Figliozzi, 2008). To determine which order is the closest, we first have to determine the 

distance between orders. We use the latitudes and longitudes stored in the historical address 

list of the simulated day for this and convert this list to a distance matrix with the haversine 

formula in Python (Rouberol, 2022). This formula returns the distance between two points on 

a sphere, like the earth, and it is therefore representative. Unfortunately, we do not have 

access to the real distance as determined by CBB’s planning algorithm. Therefore, we base 

the nearest neighbour decision on the haversine distance instead of the actual distance. We 

stop selecting orders when we reach the number of orders based on the categories. Therefore, 

we obtain 4 order selections per simulated day.   

 

4.3.3.2.3 Solve VRP 

To obtain the total daily distance travelled to deliver the selected orders, we solve the VRP for 

the 4 daily order selections. To solve this problem with limited bike capacity, we need the 

volume of the orders. Because we can also not match the historical potential orders with the 

historical order volume, we decide to estimate the order volume based on historical data. The 

orders eligible for CBB delivery suffice a maximal volume constraint. Hence, to include this 

constraint and because we did not find a significant fit on a theoretical distribution, we use the 

empirical probability distribution function of the order volume based on historically observed 

orders in Hilversum.  

 

We use the current state-of-the-art Python algorithm of Vidal (2022) to solve the VRP with the 

maximal trip duration and bike capacity of each order selection. This is an open-source 

implementation of the hybrid genetic search specialized to the CVRP. 

 

4.3.3.2.4 Store the respective features 

Based on the solution to the VRP, we calculate and store the features belonging to the 4 order 

selections. Hence, we obtain 1759 days * 4 order selections = 7036 generated instances as 

input for the training, validation and testing of the machine learning models. Because this 

number is more than sufficient to develop RFR and LGBM, it is acceptable to let the number 

of generated instances depend on the amount of historical data. 

 

4.3.3.2.5 Order selection variability 

After the data is generated, we observe that indeed the order selection percentages are 

roughly equally spread. However, we also find that we only observe a limited number of 

observations with more than 150 orders selected. This is because the average observed 

number of potential orders is 140, and therefore, on average, less than 140 orders are selected 

in the simulation. Figure 22 displays both observations. 
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Because we also want that our model makes a proper prediction when more than 150 or even 

200 orders are selected, we decide to generate some extra instances. Hence, now we filter 

the days with more than 150 and 200 potential orders from the 1759 days. We find 581 

observations with more than 150 potential orders and 300 observations with more than 200 

potential orders. Again, we execute the 4 abovementioned steps. However, we now define two 

instead of four categories of the selected orders relative to the potential orders every day, i.e., 

70 - 85% & 85 - 100%. Hence, we ensure that the number of orders selected is high and that 

the percentage of orders selected is not completely unbalanced. This results in (581 + 300) * 

2 = 1762 extra instances, and 7036 + 1762 = 8798 final instances as input for the training, 

validation and testing of the machine learning models. Figure 23 shows the histogram of both 

the percentage of orders selected relative to the total number of potential orders and the 

histogram of the number of orders selected. We observe more observations with a relatively 

high percentage, and with more than 150 and 200 orders. Thus, we created a balance between 

the percentage and the absolute number of orders selected to ensure sufficient order selection 

variability in the data set.  

 

 

4.4 Monte Carlo simulation 
This section describes the Monte Carlo simulation. We use this simulation model to advise 
Coolblue on the robustness of the order selection with minimal costs per order given the total 
number of forecasted potential orders. The order selection might vary because there is 
uncertainty about how the orders are distributed over the PC4s. Hence, the simulation of 
multiple scenarios from the PC4 order division stochasticity gives an estimate of the overall 
performance of the most cost-efficient order selection in realistic settings (Juan, Faulin, 
Grasman, Rabe, & Figureira, 2015). Furthermore, an additional purpose of this simulation 
model is to compare the proposed methods’ estimated costs per order of an order selection 

Figure 22 Histogram of the percentage orders selected (left) and number of orders selected (right) 

Figure 23 Histogram of the percentage orders selected (left) and number of orders selected (right) with extra 
generated instances 
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with each other and with the current situation. Hence, we stochastically evaluate the solutions 
proposed by the different methods. Section 4.4.1, Section 4.4.2 and Section 4.4.3 elaborate 
on the first three phases of the model, respectively, as shown in Figure 19. Finally, Section 4.5 
concludes the chapter. 
 

4.4.1 Order division 
One simulation run is equivalent to one day because we want to find the daily required capacity 
as explained in Section 2.3 and Section 4.1. The input of the simulation run is the daily number 
of forecasted potential orders. However, the order locations and even the order division over 
the PC4s are unknown and should be estimated to make a VRP distance prediction. In line 
with the features (see Section 4.3.1), we decide to estimate the number of potential orders per 
PC4 because this allows describing the order selection based on spatial PC4 characteristics. 
Additionally, it is the deepest level of detail CBB works with. The division of orders over the 
PC4s influences the travel time and distance of an order selection, and thus the most cost-
efficient subset of orders.  
 
To determine how the orders are divided over de PC4s, we estimate the distributions based 
on historically observed orders per PC4. We choose among the possible discrete probability 
distributions Poisson, binomial, geometric and negative binomial, and compare the goodness-
of-fit values to determine which one represents reality (the best). Similarly, as with the data 
generation, we use almost 5 years of available, historical PC4 order divisions (24-01-2018 – 
12-12-2022). We decide to plot the histogram of the 𝑁 observed data points per PC4 with 𝐵 
bins of the size of 1 order because we want to know the probability belonging to observing a(n) 
(multitude of) order(s). We estimate the sample parameters of the theoretical distributions per 

PC4 from the observed data. Next, we make 𝐵 predictions per PC4 with the density distribution 
functions dpois, dbinom, dgeom, dnbinom in RStudio fitted on their estimated parameters. 
Finally, we compare the predictions with the observations. We compute the p-value of the Chi-

square goodness-of-fit test with 𝐵 − 1 degrees of freedom with chisq.test in RStudio, and 
compare this with a significance level of 0.05.  
 
Once fitted, we randomly draw a number of orders per PC4 based on the discrete probability 
distributions. To ensure the sum of all drawn orders is equal to the total number of forecasted 
potential orders, we normalize the drawn orders with the normalizing factor, i.e., the total 
number of forecasted potential orders divided by the sum of all drawn orders. Hence, we 
ensure that the orders are randomly, but proportionally spread over the PC4s as observed in 
Section 2.1.2. Because the orders are most likely no discrete values after normalization, we 
round them to the nearest integer and randomly add or subtract one order from a PC4 until the 
sum of the orders is equal to the total forecasted potential orders. Figure 24 depicts this order 
division process. We run multiple Monte Carlo simulations to account for the stochasticity of 
the PC4 order division. 

Figure 24 Order division flowchart 
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4.4.2 Order selection  
The second phase is selecting orders from the order division. The goal is to select the most 
cost-efficient subset of orders, i.e., with the lowest costs per order. Instead of solving the VRP 
to find the related costs per order of an order subset, whilst assuming necessary information 
such as order locations, we predict the solution value based on known features as explained 
in Section 4.3.  
 
Order selection heuristic 
We use the cheapest insertion heuristic on PC4 level to decide upon the order selection. We 
choose this heuristic because 1) it assumes inserting the order with the minimal increase in 
costs, which is in line with finding the order selection with minimal costs per order, and 2) it is 
not extremely computationally demanding, which is beneficial when the number of potential 
orders is large and when order selections have to be made repeatedly during several 
simulation runs. This heuristic starts with an empty solution and adds the order to the current 
order selection that minimizes the increase in distance. Since the (variable) costs in a VRP are 
assumed to be roughly equal to the distance (Nicola, Vetschera, & Dragomir, 2018) (Daganzo, 
1987) (Figliozzi, 2008), the heuristic, therefore, assumes to make an order selection with 
minimal costs increase. Because we only know the orders on PC4 level, see Section 4.1, we 
evaluate the distance increase on PC4 level. Hence, no additional order information, i.e., order 
location and volume, is necessary to perform this heuristic. Once a new order is added, we 
determine the costs per order of the current order selection based on the distance estimation. 
 
Distance estimation methods 
We decide to compare multiple distance estimation methods to approximate the distance 
increase when adding an order to the selection: machine learning model(s) trained on 
generated data (see Section 4.3.3.2), machine learning model(s) trained on historical data (see 
Section 4.3.3.1), and the Daganzo estimation (1987) shown in Equation 3-8 to benchmark 
from. We choose the Daganzo estimation because it is most in line with the features known at 
the tactical level and it does not include the number of vehicles to deploy, which we desire as 
output instead of input of the model. Hence, the Daganzo estimation requires the least 
additional assumptions or uncertainty, compared to e.g., Figliozzi (2008), enabling a more 
reliable comparison between the distance estimation methods. The only assumption we make 
is the estimation of the maximal number of Q customers a vehicle can serve, which we estimate 
by dividing the total vehicle capacity by the average order volume of the evaluated day. 

Furthermore, we define N as the number of orders selected, A as the total area in 𝑘𝑚2 of the 
PC4s from the selected orders, and r as the average distance from the centroid of the PC4s 
from the selected orders to the hub in the Daganzo estimation. 
 
Order selection algorithm 
Figure 25 displays the pseudocode of the order selection algorithm. We use this algorithm for 
all distance estimation models and explain it based on the lines of Figure 25. The order 
selection algorithm starts with an empty solution (Line 1) and determines the costs per order 
of the order selection when adding a new order until there are no forecasted potential orders 
left (Line 2). Hence, in every iteration we temporarily add an order of a PC4 (Line 7) that still 
contains potential orders to the current order selection (Line 6), calculate the features 
belonging to this order selection (Line 8) and estimate the distance increase (Line 9). We store 
the distance and the order of the PC4, if the distance increase is smaller than the lowest 
distance increase (Lines 10 – 13). Then, we remove the temporarily selected order from the 
PC4 (Line 14) and repeat the same steps until all PC4s are evaluated (Line 5). Once all PC4s 
are evaluated, the order of the PC4 with the shortest distance increase is added to the current 
order selection (line 18), and removed from the current potential orders (Line 17).  
 
The subset with the lowest costs per order, determined by the distance estimation and the total 
number of selected orders, is the final order selection (Lines 23 – 24). We compare all subset 
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sizes, i.e., we do not stop adding orders when the costs per order increase, to prevent stopping 
at a local minimum for the costs per order.  
 

CHEAPEST INSERTION  
1 Initialize Features, Selectedorders = 0, minCPOindex = -1, Orderselection = [], CurrentPotentialorders 

= list with potential orders per PC4 
2 while (∑ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑜𝑟𝑑𝑒𝑟𝑠𝑃𝐶4𝑠

𝑖=1 [𝑖] > 0) do 
3  Set shortestDistance = ∞, shortestDistancePC4 = -1 
4  Selectedorders += 1 
5  for (all PC4’s in PC4list) do 
6   if (CurrentPotentialorders[PC4] > 0) then  
7    Orderselection[PC4] += 1 
8    calculate features of temporarily adding 1 order of PC4 to Orderselection 
9    estimate the respective CVRP distance 
10    if (distance < shortestDistance) then  
11     shortestDistance = distance, shortestDistancePC4 = PC4 
12     store Features 
13    end if 
14    Orderselection[PC4] -= 1 
15   end if 
16  end for 
17  CurrentPotentialorders[shortestDistancePC4] -= 1 
18  Orderselection[shortestDistancePC4] += 1 
19  calculate costs per order of Orderselection 
20  store costs per order of Orderselection 
21  update Features of Orderselection 
22 end while 
23 minCPOindex = min(costs per order).index 
24 select Orderselection[1:minCPOindex,] 
25 return Orderselection 

Figure 25 Pseudocode order selection heuristic 

4.4.3 Solve VRP 
To validate and compare our solution method(s), we solve the VRP of the final order selections 
and determine the respective costs per order. To solve the VRP, we need some additional 
order information. Like the order division over the PC4s, this additional information is uncertain 
and influences the distance of the VRP.    
 
First, we need order locations. Again, we use the list of 50 addresses per PC4 including their 
latitude and longitude based on historical data (see Section 4.3.3.2), draw for every order in 
the final order selection a random address from this list with the corresponding PC4, and 
convert this list to a distance matrix with the haversine formula in Python (Rouberol, 2022). 
Second, we need the order volume. Again, we use the empirical distribution function of the 
order volume based on historically observed orders in Hilversum, because it takes the maximal 
volume constraint into account (see Section 4.3.3.2). We run multiple Monte Carlo simulations 
to account for the randomness of these inputs, and during every run, we use the same location 
and volume values for each method. 
 
Finally, we use the current state-of-the-art Python algorithm of Vidal (2022) to solve the VRP 
with the maximal trip duration of each order selection as introduced in Section 4.3.3.2. Although 
this is not equivalent to the routing planning mechanism CBB utilizes, it gives a good indication 
of the potential of the model(s) and enables a valid comparison between the order selection 
methods. 
 

4.5 Conclusions 
This chapter introduced the problem context that consists of finding the hub’s most cost-
efficient order selection per day based on the total number of forecasted potential orders. Also, 
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we proposed the solution methodology to address this tactical routing problem. We decided to 
simulate the operational routing plan to make decisions about the most cost-efficient order 
selection with a Monte Carlo simulation. We proposed to utilize machine learning models to 
support order selection decisions. Accordingly, we introduced the tactical level features, the 
suitable machine learning models (random forest regression and lightweight gradient boosting 
machines), the hyperparameters of both models and how we obtain training data to develop 
the models. We decided to use two types of training data (generated and historical) to learn 
what data can best be utilized to support CBB with the order selection decision. 
 
Furthermore, we explained the four steps of the simulation. First, we distribute the orders over 
the PC4s of the delivery based on a discrete probability distribution. Second, we decide upon 
the most cost-efficient order selection with the cheapest insertion heuristic, where we estimate 
the insertion costs with the machine learning models trained on generated data and trained on 
historical data. Additionally, we estimate the insertion costs with the heuristic of Daganzo 
(1987) to benchmark from, and we select orders with CBB’s current order selection method for 
comparison purposes. Third, we solve the VRP of the final order selections for validation 
purposes and fourth, we store the metrics.  
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5 Performance 
This chapter implements the solution methodology and assesses its performance. We illustrate 
the solution methodology on the hub in Hilversum and compare the order selection 
performance of the machine learning models with the current method, i.e., the use of ‘optimal’ 
delivery levels explained in Section 2.1, and the Daganzo estimation. Section 5.1 elaborates 
on the predictive performance of the machine learning models to support the order selection 
decision. Next, Section 5.2 elaborates on the experiments of the Monte Carlo simulation in 
which the machine learning models are utilized to select orders. This simulation indicates the 
robustness of the order selection. Section 5.3 provides an in-depth analysis of the performance 
to validate the solution methodology. Finally, Section 5.4 concludes the chapter. 
 

5.1 Machine learning to support order selection 
This section shows the findings and performance of the machine learning models that we will 
utilize to support order selection. First, Section 5.1.1 shows the tuned hyperparameters of the 
four models. Second, Section 5.1.2 elaborates on the performance of the models.  
 

5.1.1 Hyperparameters 
We tune the hyperparameters of RFR and LGBM as chosen and described in Section 4.3.2.1. 
We distinguish between the machine learning models based on generated data (1) and 
grouped historical data (2). Table 5 summarizes the tuned hyperparameters and their 
respective optimal values per model. We use those values to fit the machine learning models.  
 
Table 5 Hyperparameters of RFR and LGBM models 

Model Hyperparameter Value (1) Value (2) 

RFR 
Maximal number features for splitting 2 2 

Minimum number of data points per 
leaf node 

1 1 

LGBM 

Maximal number of bins 255 130 

Learning rate 0.070091 0.105513 

Maximal tree depth 856,269 958,969 

Number of leaves 18 10 

 

5.1.2 Performance 
We fit the generated training data (1) and historical grouped training data (2) on the RFR and 
LGBM model with the Scikit-Learn (Scikit-learn, 2023) and the LightGBM (Microsoft 
Corporation, 2023) libraries. Table 6 shows the performance on the test dataset of the literature 
estimation of Daganzo and the two regression models trained and tested on the generated 
data. Likewise, Table 7 shows the performance of the models trained on the grouped historical 
data and tested on (unseen) Hilversum data. Note that Table 6 compares the 3 daily distance 
estimations with the generated daily distance (see Section 4.3.3.2), and Table 7 with the 
observed distance in the historical data (see Section 4.3.3.1). Appendix C shows the 
performance of the grouped data, both the aggregated model of the small and large hubs, on 
all hubs. We compare the models with four performance metrics, the mean absolute 

percentage error (MAPE), the 𝑅2 adjusted for the number of features, the root mean squared 
error relative to the mean of the target value (rRMSE) and the mean absolute deviation relative 
to the mean of the target value (rMAE).  
 
We observe in Table 6 that the two regression models outperform the literature estimation on 
all performance metrics. The predictions of the Daganzo estimation are reasonable, but not 

perfect. It explains more than half of the variance by the inputs, but still an adjusted 𝑅2 of 0.603 
is not very high. The MAPE and rMAE show that the model deviates with relatively large values 
from their intended targets. Furthermore, the rRMSE shows that there are relatively large 
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outliers. This performance can be explained by the assumption made for the capacity and the 
area. We used the expected order volume to determine the number of orders a vehicle could 
serve. Additionally, multiple vehicles can serve the same PC4, and the area from the served 
PC4s is not necessarily the smallest possible area containing all served orders as assumed 
by Daganzo (1987).  
 
The RFR is the best-performing model, with a slightly better performance than LGBM. Both 

have a high adjusted 𝑅2, and the MAPE, rRMSE and rMAE are small enough for distance 
prediction. The performance of both models is comparable to the operational level RFR and 

LGBM of Akkerman & Mes (2022), with a somewhat higher adjusted 𝑅2 and a lower MAPE, 
rRMSE and rMAE, and slightly worse than Nicola, Vetschera & Dragomir (2018) and the best 
model (6) of Figliozzi (2008). This indicates that with the tactical level information, a 
performance comparable with the operational level information can be achieved. 
 
Table 6 Model performances on generated data Hilversum 

Generated data (1) Daganzo Random Forest Light GBM 

MAPE 42.14 % 8.28 % 10.08 % 

Adjusted 𝑹𝟐 0.603 0.984 0.982 

rRMSE 44.74 % 8.71 % 10.19 % 

rMAE 35.47 % 6.17 % 7.26 % 

 
Similarly, we observe in Table 7 that both regression models on the grouped historical data 

outperform the Daganzo estimation. Striking is that the adjusted 𝑅2 of the literature estimation 
is negative, meaning that the model tends to be less accurate than the mean. Furthermore, 
the difference between the two regression models is even smaller. We observe that the 
regression models on the generated data set (1) have a better performance than the grouped 
historical data set (2). We can explain this difference by the fact that the first models are trained 
on Hilversum-specific instances, while the second models are trained on ten different small 
hubs, including Hilversum.  
 
Table 7 Model performance grouped historical data (small hubs) Hilversum 

Historical data (2) Daganzo Random Forest Light GBM 

MAPE 26.16 % 9.77 % 9.54 % 

Adjusted 𝑹𝟐 - 0.011 0.873 0.863 

rRMSE 28.27 % 10.45 % 11.56 % 

rMAE 26.11% 8.64 % 8.55 % 

 
We decide to continue with the literature estimation of Daganzo as a benchmark, and with the 
best-performing machine learning models RFR trained both on generated data (1) and 
grouped historical data (2) for the remainder of this research. We will compare these methods 
with the order selection obtained from CBB’s current method, i.e., the use of the ‘optimal’ 
delivery levels. From now on, we refer to the order selection methods as Method ‘Optimal 
levels’, Method Daganzo, Method RFR (1), and Method RFR (2). 
 

5.2 Monte Carlo simulation 
We perform a Monte Carlo simulation to 1) assess the robustness of the order selections 
retrieved from the different order selection methods, and 2) compare the performance of the 
current heuristic, i.e., the use of the ‘optimal’ delivery levels, the Daganzo estimation and the 
machine learning models. For the first reason, we evaluate the effect of uncertainty in the PC4 
order division. For the second, we account for the randomness in the assumed order volumes 
and order locations that were necessary to solve the VRP, and thus to compare the methods. 
Section 5.2.1 elaborates on the experimental design, Section 5.2.2 on the experimental result, 
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and Section 5.2.3 on the sensitivity analysis. We built and run this simulation model in Python 
3.9 on a laptop with an Intel Core i7-10750H CPU processor of 2.60GHz with 32 GB RAM.  
 

5.2.1 Experimental design 
This section elaborates on the experimental design of the Monte Carlo simulation. Section 
5.2.1.1 estimates the parameters of the PC4 order division. Section 5.2.1.2 explains the 
number of replications necessary to obtain statistically significant results and Section 5.2.1.3 
elaborates on the experiments to be conducted.  
 

5.2.1.1 PC4 Order division 

We start with the estimation of the PC4 order distribution that is the (main) source of 
stochasticity in the simulation. To find the discrete probability distribution belonging to a PC4, 
we first plot the observed data (green) against the Poisson, binomial, geometric and negative 
binomial distributions (errred) to inspect the fit. Figure 26 shows an example of such a plot for 
PC4 1211 in Hilversum that follows a negative binomial distribution. Likewise, we find that 36 
of the 45 PC4s in Hilversum follow a negative binomial distribution based on a significance 
level of 0.05. The other 9 PC4s have no significant relation with all four distributions, based on 
the Chi-Square goodness of fit test with a significance level of 0.05. Therefore, we decide to 
use the empirical distribution for these PC4s in our simulation. We refer to Appendix D for the 
Chi-Square p-values and the estimated parameters of the PC4s.  

 
Figure 26 Distribution plot of PC4 1211 

 

5.2.1.2 Number of replications 

We determine the number of replications to obtain the required precision based on Law (2015). 
We decide that the result is statistically significant with an error of 2.5% and a confidence 
interval of 95% for the number of orders selected. Hence, we first run the typical 1000 
replications for a Monte Carlo simulation (Heijungs, 2020) with the instances from Section 
5.2.1.3. Afterwards, we execute the sequential procedure and determine per replication if the 
result is statistically significant.  
 
We find that we need to conduct 7 replications to get statically significant results. However, we 
decide to perform 10 replications to decrease the influence of random number streams and 
obtain more statistically significant results. 
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5.2.1.3 Experiments 

CBB wants to know the most cost-efficient capacity to deploy based on the total potential 
orders. Hence, we should decide how many orders to deliver and the model should be able to 
cope with different potential order volumes. Therefore, we simulate the order selection with the 
minimum observed potential orders (40), the average observed potential orders (140) and the 
maximal observed potential orders (460). We compare the performance with the metrics costs 
per order and the most cost-efficient number of orders selected. 
 
Table 8 summarizes the instances of the four alternative methods for the Monte Carlo 
simulation for the hub in Hilversum. For every instance, we distinguish the value, by which 
method the instance is required (during which simulation phase), and how the data is 
partitioned. We refer to Method ‘Optimal levels’ as A, Method Daganzo as B, Method RFR (1) 
as C and Method RFR (2) as D. Note that we set the number of vehicles to infinity such that it 
will never be a limiting factor, to ensure the model advises about the optimal capacity to deploy. 
Furthermore, we determine the number of orders a vehicle can serve for the Daganzo 
estimation by dividing the vehicle capacity by the average order volume of that day.  
 
Table 8 Hilversum instances for the Monte Carlo simulation 

Instances  Value Method Data partition 

Potential orders (40,140,460) A,B,C,D Hub 

Order division ~ Negative Binomial (s, p)  
~ Empirical distribution 

A,B,C,D PC4 

Order locations ~ Random A,B,C,D (solve VRP) Order 

Order volume ~ Empirical distribution A,B,C,D (solve VRP) Order 

Vehicle capacity 160000 cm3 A,B,C,D (solve VRP) Bike 

Number of bikes ∞ A,B,C,D (solve VRP) Hub 

Duration limit 206.08 minutes A,B,C,D (solve VRP) Bike 

Stop times Static B,C,D (order selection), 
A,B,C,D (solve VRP) 

PC4 

Bike speed 18.8 km/h B,C,D (order selection), 
A,B,C,D (solve VRP) 

Hub 

Fixed costs 4373.5 % B,C,D (order selection), 
A,B,C,D (VRP costs) 

Hub 

Variable costs/order 9.8 % B,C,D (order selection), 
A,B,C,D (VRP costs) 

CBB 

Variable cost/hour 289.5 % B,C,D (order selection), 
A,B,C,D (VRP costs) 

CBB 

Variable cost/km 2.1% B,C,D (order selection), 
A,B,C,D (VRP costs) 

CBB 

Optimal levels 1, 2, 3 A (order selection) Hub 

 

5.2.2 Experimental results 
We report the order selection and costs per order of Method ‘Optimal levels’, Method Daganzo, 
Method RFR (1), and Method RFR (2).  Table 9 shows the median (Q2) and the inter quartile 
range (Q1-Q3) to indicate the spread of the results. We verified the results with CBB’s capacity 
specialist. We report the median and inter quartile range of the distance, travel time, necessary 
time, number of routes, number of postal codes and the orders deliver per hour belonging to 
the experiments in Appendix E. 
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Table 9 Performance Monte Carlo simulation of all four models 

Number 
potential 
orders 

Metric 
‘Optimal levels’  Daganzo RFR (1) RFR (2) 

Q2 Q1-Q3 Q2 Q1-Q3 Q2 Q1-Q3 Q2 Q1-Q3 

40 

Order 
selection 

38 38 - 39 40 40 - 40 40 40 - 40 40 40 - 40 

Costs per 
order (%) 

168.2 
163.2 -
169.8 

165.2 
163.6 -
166.7 

166.7 
165.2 - 
167.0 

165.2 
163.6 -
166.7 

140 

Order 
selection 

133 
132 -
134 

140 
137 - 
140 

137 
135 - 
140 

140 
140 - 
140 

Costs per 
order (%) 

68.6 
68.0 – 
69.7 

68.7 
68.5 – 
691 

69.1 
68.7 – 
69.3 

68.5 
68.2 – 
69.3 

460 

Order 
selection 

439 
438 -
446 

454 
439 - 
460 

451 
436 - 
460 

438 
433 - 
450 

Costs per 
order (%) 

40.9 
40.7 – 
41.0 

40.8 
40.5 – 
41.0 

40.8 
40.6 – 
41.2 

41.0 
40.6 – 
41.5 

 
We observe that for 40 potential orders, Methods Daganzo, RFR (1) and RFR (2) select exactly 
the same number of orders in the interquartile range. This stresses that the maximal number 
of orders gives the lowest costs per order according to these methods. The costs per order of 
Method RFR (1) are slightly higher than Method Daganzo and Method RFR (2), indicating that 
the minimum order selection size differs, which resulted in higher costs per order. The range 
of the costs per order is the smallest with Method RFR (2) and the largest with Method ‘Optimal 
levels’.  
 
With 140 potential orders, we again see that Methods Daganzo, RFR (1) and RFR (2) select a 
higher number of orders ((skewed to) 140) than Method ‘Optimal levels’. However, where we 
observe no variation with Method RFR (2), somewhat variation and the same median with 
Method Daganzo, we observe more variation and a different median with Method RFR (1). 
Strikingly, there is no intuitive relation between the number of orders selected and the costs 
per order in this experiment. Method ‘Optimal levels’ gives the second-best median of costs 
per order, although it selected the least orders. This shows that the order selection heuristic 
applied to Methods Daganzo, RFR (1) and RFR (2) does not necessarily lead to the lowest 
costs per order, although the difference is only a few cents. 
 
With 460 potential orders, we find that the costs per order inter quartile ranges get smaller, the 
difference between the methods’ costs per order gets smaller, and the order selection inter 
quartile ranges get wider and tend less towards the number of potential orders. Hence, we 
need relatively more orders to slightly improve the costs per order. Remarkable is that Method 
RFR (2) selects the least orders, whereas with 40 and 140 orders it selected the maximal 
number of orders.  Furthermore, note that Method ‘Optimal levels’ in the three experiments 
always finds the lowest observed costs per order. Again, this might imply that the order 
selection heuristic applied to Methods Daganzo, RFR (1) and RFR (2) does not necessarily 
lead to the lowest costs per order 
 
We conduct a paired t-test with 95% confidence and find that with 40 and 140 potential orders 
the difference in costs per order is for no method combination significant. For the order 
selection difference, we conduct a Wilcoxon Signed-Rank Test (Rey & Neuhäuser, 2011) with 
95% confidence because we cannot assume a normal distribution, see Figure 28. We explain 
the choice for the Wilcoxon Signed-Rank Test, the assumptions of, and the difference between 
this test and the paired t-test in Appendix F. The difference in order selection with Method 
‘Optimal levels’ is significant for Methods Daganzo, RFR (1) and RFR (2), but the mutual 
difference is not significant. With 460 potential orders, the difference between all the order 
selections and the costs per order is not significant. Figure 27 and Figure 28 visualize the 
respective boxplots. 
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In general, Method Daganzo tends to select more orders. Surprisingly, the performance of 
Method Daganzo is comparable to both Method RFR (1) & RFR (2), despite the worse 
predictive performance observed in Section 5.1.2. This indicates that the predictive importance 
is not very important under the current costs. Method RFR (2) tends to perform worse, i.e., 
relatively higher costs per order, when the number of potential orders increases. This is 
probably due to fewer observations of many potential orders in the training data and 
overestimation in the distance of the model, i.e., the distance is not based on the haversine 
distance with which the VRP is solved. However, the difference in costs per order is not 
significant with methods that select more orders. Method RFR (1) seems to have a wider 
spread in order selection, possibly because the training data includes more variety in order 
selection with a similar distance. We can explain the comparable performance of Method 
‘Optimal levels’ by the fact that CBB manually optimized this area for the current costs and that 
it seems optimal for the hub in Hilversum to select at least 90% (Levels 1, 2 & 3, see Section 
2.1.2) of the orders from the delivery area.  
 

5.2.2.1 Analysis per number of potential orders 

To obtain a better insight into the behaviour of the methods subject to the number of potential 
orders, we decide to run the model for a range of 20 to 680 potential orders with steps of 20. 
We report only one method, Method RFR (1), because the results of the four methods are 
similar. Figure 29 and Figure 30 show the spread order selection and costs per order for the 
range of potential orders.  We observe that with more potential orders, the costs per order are 
still decreasing. Apparently, the costs per order converge towards a lower limit. This means 
that we need more potential orders to obtain a subset of orders with the lowest possible costs 
per order. Furthermore, we notice that the spread of order selection gets wider when the 
number of potential orders increases. When we have less than roughly 100 potential orders, 
for the model it is obvious that the order selection size should be (close to) maximal with the 
current costs (range of maximal 5 orders difference). This indicates that no matter the order 
division over the PC4s, it is always interesting to deliver (close to) 100 orders to account for 
the fixed costs. Afterwards, we observe more order selection variation, which indicates the 
trade-off between the fixed costs and variable costs, resulting from the randomness of the PC4 
order division. Hence, even though the costs per order have not reached a definite limit yet, 
because it is limited to the number of potential orders, selecting all potential orders does not 
necessarily lead to the lowest costs per order due to the random order division over the PC4s. 
Although the number of orders selected is less obvious, the inter quartile range of the costs 

Figure 28 Boxplots costs per order with 40, 140 and 460 potential orders 

Figure 27 Boxplots order selection with 40, 140 and 460 potential orders 
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per order is small and tends to get smaller when the number of potential orders increases. We 
report the median and inter quartile range of the distance, travel time, necessary time, number 
of routes, number of postal codes and the orders deliver per hour of all methods, belonging to 
the experiments, in Appendix E. 
 

 
Figure 29 Order selection of Method RFR (1) 

 
Figure 30 Costs per order of method RFR 1 
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5.2.3 Sensitivity analysis 
We conduct a sensitivity analysis to learn if our solution methodology is valid. We observed 
that under the current circumstances, the order selection choice is trivial for all four methods: 
select a number of orders close to the maximal number of orders. To validate that our solution 
methodology selects the most cost-efficient order selection, we analyse the performance of 
the methods when circumstances change. Hence, this sensitivity analysis assesses how 
sensitive the most cost-efficient order selection is to changes in the input variables. We analyse 
variability in costs, forecast and route efficiency. We illustrate the effect on 140 forecasted 
potential orders in Hilversum. To compare the difference in order selection, we conduct a 
Wilcoxon signed-rank test with 95% confidence. To compare the difference in costs per order, 
we conduct a paired t-test with 95% confidence. 
 

5.2.3.1 Costs 

In the analysis, we used the current fixed and variable costs. However, these costs are subject 
to change due to e.g., inflation and new contracts. Furthermore, these costs are the driver for 
the decision of what order selection is the most cost-efficient. Hence, we expect the order 
selection choice of our solution methodology to be different when the costs change. Therefore, 
Section 5.2.3.1.1 tests the impact of changes in the fixed costs and Section 5.2.3.1.2 the 
impact of changes in the variable costs.  
 

5.2.3.1.1 Fixed costs 

First, we analyse the results with zero, half, full and one-and-a-half fixed costs. Figure 31 
shows the boxplots of the order selection belonging to these fixed costs.  

 
Zero fixed costs 
Clearly, with zero fixed costs Methods Daganzo, RFR (1) & RFR (2) choose significantly fewer 
orders than with full fixed costs. Method ‘Optimal levels’ shows a similar order selection. This 
stresses that the Method ‘Optimal levels’ is not a valid order selection method: it chooses the 
same number of orders independent of the costs per order. Additionally, it shows that Methods 
Daganzo, RFR (1) & RFR (2) base their order selection decision on the costs per order. 
Straightforwardly, the costs per order of all methods differ significantly with zero fixed costs 
compared to full fixed costs.  
 
Furthermore, Methods Daganzo, RFR (1) & RFR (2) choose significantly fewer orders than 
Method ‘Optimal levels’. Again, this shows the value of our solution methodology compared to 

Figure 31 Boxplots order selection with zero (upper left), half (upper right), 
full (lower left) and one and a half (lower right) fixed costs 
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the current system. The order selection of Method RFR (2) is significantly larger than Method 
Daganzo & RFR (1). This is because, with a few orders selected, Method RFR (2) 
overestimates the distance, resulting in higher variable costs. Figure 32 shows how it takes 
Method RFR (2) roughly 10 selected orders to observe similar curve behaviour as Methods 
Daganzo & RFR (1). Hence, the minimum of Method RFR (2) is around 24 orders whilst around 
7 and 8 for Methods Daganzo and RFR (1). However, the difference in costs per order of the 
four methods is not significant. This is probably due to the low costs in general since we only 
consider variable costs.   
 

 
This experiment confirms the value of our methodology: it selects the subset of orders based 
on the current costs of delivering orders based on route efficiency, and decreases the costs 
per order between 3.9 % – 18.1 % compared to the current situation. Furthermore, it shows 
that Methods Daganzo and RFR (1) have a comparable performance. Although one might 
have expected the RFR (1) to outperform the Daganzo estimation, the similar performance 
could partly be explained by the similar features used. Both use the number of selected orders, 

the average distance to the hub and √total area ∗ selected orders to describe the distance. 
These feature values are determined the same, i.e., on PC4 level, for both methods. 
Additionally, the Daganzo estimation uses the maximal number of customers that can be 
served by a bike to describe the distance, and the RFR (1) uses the number of potential orders, 
the total area and the variance of the distance to the depot to describe the distance.  
 
Half-fixed costs 
With half, instead of full fixed costs, the inter quartile range is wider, less skewed to the number 
of potential orders and the minimum value is lower for all methods. This indicates that the order 
selection choice is less obvious than with full fixed costs, and the role of the PC4 order division 
is more important. However, the most cost-efficient order selection decision is comparable with 
full fixed costs. Accordingly, the difference in order selection between half and full fixed costs 
is not statistically significant. This indicates that the half-fixed costs still overrule variable costs 
per order, and thus the order selection decision. Straightforwardly, the costs per order of all 
methods differ significantly with half fixed costs compared to full fixed costs.  
 
Similarly, as with full fixed costs, the order selection and the respective costs per order of 
Method ‘Optimal levels’ differ significantly compared to Method Daganzo & RFR (2). However, 
the order selection of Method ‘Optimal levels’ is not significantly lower than Method RFR (1), 
even as the costs per order. We can motivate this by the wider spread of Method RFR (1), and 
more overlap in the interquartile range of Method ‘Optimal levels’ & RFR (1). The mutual 
difference of the Methods Daganzo, RFR (1) & RFR (2) is not significant in terms of order 
selection and costs per order. Now, the lowest costs per order median are obtained from 
Method ‘Optimal levels’ (53.4%), followed by Method RFR (1) (53.9%), Method Daganzo 
(€54.0%) and Method RFR (2) (€54.2%). This might indicate that the order selection logic, i.e., 
cheapest insertion, does not always find the order selection with the least costs per order. 
 
 

Figure 32 Costs per order per order selection based on the estimated VRP distance of Daganzo (left), RFR 1 
(middle) and RFR 2 (right) 
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One-and-a-half-fixed cost 
With one-and-a-half-fixed costs, Method Daganzo & RFR (1) have a stronger preference for 
140 selected orders than with full fixed costs. Method RFR (2) behaves similarly, and the only 
difference for Method ‘Optimal levels’ comes from the randomness in order distribution. The 
difference in order selection for each method compared to the full fixed costs is not significant 
with 95% confidence. Again, this implies that the order selection decision is trivial; all orders 
should be selected to account for the fixed costs. Straightforwardly, the costs per order of all 
methods differ significantly with one-and-a-half-fixed costs compared to full fixed costs 
because of the rise in fixed costs. 
 
Comparably with full fixed costs, the difference in order selection of Method ‘Optimal levels’ 
compared to Methods Daganzo, RFR (1) & RFR (2) is significant, but not in costs per order. 
Their median costs per order (84.2%, 84.4% & 84.5% respectively) are lower than the optimal 
levels (85.0%) that select fewer orders. Hence, this stresses that the choice for all (140) orders 
is necessary to account for the fixed costs. The difference between these costs is not 
significant. Also, the difference between Method Daganzo, RFR (1) & RFR (2) is not significant 
in terms of both order selection and costs per order.  
 
We can conclude that there is no high impact on the order selection with 140 potential orders 
when the fixed costs in- or decrease by 50% because all orders should be selected considering 
the relatively high fixed costs. Furthermore, we observe that the Method ‘Optimal levels’ is 
insensitive to cost changes, i.e., the order selection choice is similar independent of the costs, 
although the difference in costs per order is not statistically significant.   
 

5.2.3.1.2 Variable costs 

Second, we examine the results when the variable costs in- or decrease by 50%. Figure 33 
visualizes the impact of the order selection with 140 potential orders when the variable costs 
change. 
 

  
Figure 33 Boxplots order selection with 50% (left), 100% (middle) and 150% (right) variable costs 

Half variable costs 
We find that with half the variable costs, the order selection is quite similar to the case when 
there is a 50% increase in fixed costs. This shows that with 140 potential orders, it always 
seems worthwhile to select (almost) all orders. Similarly, the difference in order selection of 
the individual methods with half and full variable costs is not significant.  
 
The difference in order selection of Method ‘Optimal levels’ compared to Methods Daganzo, 
RFR (1) & RFR (2) is significant, and the mutual difference of the latter is not. The difference 
in costs per order of Method ‘Optimal levels’ (53.4%), Method Daganzo (54.0%), Method RFR 
(1) (53.9%) and Method RFR (2) (54.2%) is with no combination significant.  
 
One-and-a-half-variable costs 
When the variable costs increase by 50%, we observe a comparable outcome with the 
experiment of half-fixed costs. It is now less obvious for Method Daganzo, RFR (1) & RFR (2) 
to select all potential orders compared to full variable costs, because it is relatively, to the fixed 
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costs, expensive to deliver an extra order. The difference in order selection compared to full 
variable costs is insignificant, and as expected the costs are significantly increased. 
 
Strikingly, Method ‘Optimal levels’ has the smallest order selection and lowest median costs 
per order of 86.6% compared to 87.8% (Method Daganzo), 87.6% (Method RFR (1)) & 87.9% 
(Method RFR (2)). Hence, the three methods tend to select more orders than optimal and thus 
might underestimate the distance belonging to the order selection. Again, this might indicate 
that the order selection logic, i.e., the cheapest insertion heuristic, can be improved as 
discussed with half fixed costs. This costs per order difference of all methods is not significant. 
The order selection of Method ‘Optimal levels’ differs significantly with Method Daganzo & RFR 
(2), but strikingly not with Method RFR (1). This explains the second-lowest median costs of 
Method RFR (1). There is not enough evidence to state that the order selection of Method 
Daganzo, RFR (1) & RFR (2) differ.  
 
Again, we can conclude that there is no high impact on the order selection when the variable 
costs in- or decrease by 50%. Thus, the fixed costs also overrule the variable costs when they 
in- or decrease by 50%. 
 

5.2.3.2 Forecast 

The input of our model is the total number of forecasted potential orders. However, this forecast 
is likely to deviate from the actual order demand. Coolblue defined a marge of +/- 10% forecast 
error to be acceptable. Hence, to test the effect of deviation on the forecast, we show the 
impact on the most cost-efficient order selection with +/- 10% orders. Figure 34 shows the 
results with 126 (90%), 140 (100%) and 154 (110%) potential orders. We only report Method 
RFR (1) trained on generated data, because all methods have similar results. 

Figure 34 Boxplots of 126, 140 & 154 potential orders with Method RFR (1) 

Figure 34 stresses two things. First, the sensitivity of the most cost-efficient order selection 
and the number of forecasted potential orders. We observe that all boxplots do not overlap. 
Again, the order selection is skewed to the maximal number of potential orders. We conduct a 
paired t-test and Wilcoxon signed rank test and find that the difference in respectively the costs 
per order and order selection is significant. Hence, the results are sensitive when the forecast 
deviates +/-10% with 140 forecasted potential orders. We learn from Figure 29 and Figure 30 
that the order selection pattern is the same until at least 680 potential orders. However, the 
difference in costs per order gets smaller when the number of potential orders increases. This 
might lead to an insignificant difference in costs per order when the forecast deviates +/- 10%.   
 
Second, it stresses the importance of an accurate forecast. The decision of how much capacity 
to deploy will be different depending on the forecast, as well as the cost savings. When we 
assume 140 potential orders what turned out to be 154 potential orders and consequently 
decide to select 137 orders (see Figure 34, Order selection 140), we could have saved around 
69.1% - 65.3% = 3.8% per order (see Figure 34, Costs per order 140 & 154). The other way 
around, we would have overcapacity equivalent to delivering 137 – 124 = 13 orders (see Figure 
34, Order selection 126 & 140). 
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5.2.3.3 Route efficiency 

The model determines the route efficiency (orders per biked hour) based on the total haversine 
distance. This spherical distance does not account for actual roads, as well as possible detours 
and road disruptions. To understand how this impacts the robustness of the most cost-efficient 
order selection, we compare the performance of this haversine distance with a distance 
increase of factors 1.2 and 1.4.   
 
We observe in Figure 35 that RFR 1 is most sensitive to changes in distance and selects fewer 
orders when the distance increases. However, for every method, the order selection is not 
significantly different with factors 1, 1.2 and 1.4, although it is more expensive to travel to an 
(extra) order. Straightforwardly, the costs per order increase for all methods because the travel 
costs increase. The difference in costs per order of the methods stays insignificant with 95% 
confidence with the distance factors 1, 1.2 and 1.4. Hence, the most cost-efficient order 
selection is insensitive to changes in route efficiency with the current costs. 
 

  
Figure 35 Boxplots order selection with factor 1 (left), factor 1.2 (middle) and factor 1.4 (right) travel distance. 

5.2.3.4  Discussion 

In the sensitivity analysis, we only saw during the experiment with zero fixed costs that our 
solution methodology did not choose an order selection close to the maximal number of 
potential orders. However, we did observe that the most cost-efficient order selection became 
less obvious when we put more weight on the selected orders, i.e., the variable costs, instead 
of the fixed costs. These observations stress two things; 1) that our solution methodology is 
capable of selecting the most cost-efficient order selection, i.e., it does not always select an 
order selection close to the maximal number of potential orders, and 2) that the fixed costs 
currently overrule the variable costs.  
 
Table 10 summarizes the results of the sensitivity analysis, which presents for every 
intervention the median of the order selection and the costs per order per method. The method 
with the most cost-efficient order selection is highlighted in light blue. We observe that Method 
Daganzo outperforms the other methods most often. When Method RFR (1) or RFR (2) 
outperforms Method Daganzo, we see that the order selection median is the same or deviates 
only one order. Only when we have zero fixed costs, we find that the costs per order differ 
relatively much from the best-performing method, although not significantly. The spread, and 
thus the uncertainty, of the most cost-efficient order selection increases when there is more 
focus on the travel distance, with e.g., less fixed costs, more variable costs or an increase in 
distance. The order selection of the three methods is robust against route efficiency, i.e., 
distance, increases with factor 1.2 or 1.4, but differs significantly when the forecast in- or 
decreases by 10%. We learned that Method RFR (2) overestimates the costs per order, i.e., 
distance, when at most 10 orders are selected. This flaw can be neglected as the difference in 
costs per order is not statistically significant and in practice, we will most likely not encounter 
a situation where CBB delivers less than 10 orders. Furthermore, we observed that the Method 
‘Optimal levels’ is insensitive to cost changes and distance increases, as it always selects 
roughly the same median order selection (range 130 - 133). This stresses the static, one-
situation optimization of this method. Hence, it is not a valid method to select the most cost-
efficient order selection. Lastly, we observed that the Method ‘Optimal levels’ always finds the 
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lowest observed costs per order in one of the simulation runs. In combination with the 
outperformance of Method ‘Optimal levels’ when we put more weight on the variable costs per 
order, this might indicate that the order selection logic does not always find the order selection 
with the least costs per order.  

 
In general, we found that the current method ‘Optimal levels’ is not capable of choosing the 
most cost-efficient order selection. Our solution methodology with all three distance 
estimations can select the most cost-efficient order selection, validated by the experiment with 
zero fixed costs. However, the performance of the methods Daganzo, RFR (1), and RFR (2) 
is, unlike their predictive performance, comparable. 
 

5.3 In-depth analysis solution methodology 
To validate our solution methodology and to understand the comparable performance of the 
Methods Daganzo, RFR (1), and RFR (2), we perform an in-depth analysis. The similar 
performance is striking since their predictive performance was not similar. Therefore, we 
decide to analyze the predictive performance during the simulation. In the simulation, we 
currently estimate the distance of an order selection every time an order is added (Simulation 
Phase 2), and only solve the VRP for the order selection with the minimal estimated costs per 
order (Simulation Phase 3). To compare all the distance estimations with the actual distances, 
we decide to both estimate the distance and solve the VRP with the VRP solver in Python (see 
Section 4.4.3) every time an order is added to the order selection. Hence, we retrieve the 
estimated distance and the actual, constructed distance. Note that we estimate the distance 
of the order selections with the Daganzo estimation, RFR (1) and RFR (2), and construct the 
distance of these three order selections with the VRP solver. Accordingly, we can assess how 
much the estimated distance deviates from the constructed distance. This gives insight into 
the predictive performance of the methods. Additionally, the comparison of the constructed 
distances of each method shows what method obtains the order selection with the least 
distance, and thus what method actually chooses the most cost-efficient order selection. Figure 
36 visualizes our solution methodology and the in-depth analysis, and thus the difference 
between the two. Note that we here divided the selection of the most cost-efficient subset of 
orders of Phase 2 into three steps (a, b, c). We build and run this in-depth analysis in Python 
3.9. We report the results of 460 forecasted potential orders because this displays the 
differences the most clearly. 

Figure 36 Difference in-depth analysis and solution methodology 

Table 10 Summary of the sensitivity analysis 
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Additionally, we develop an operational level RFR model that estimates the VRP distance to 
1) show the value of a machine learning model such as RFR over a mathematical approach 
such as the Daganzo estimation, 2) show the difference in performance when we have all order 
information (operational level) and when we have uncertainty in all types of order information 
(tactical level), and 3) validate the development of our tactical RFR models, because we 
develop the operational RFR model with the exact same steps. We perform the 
abovementioned in-depth analysis also with the operational level RFR model.       
 
Accordingly, Section 5.3.1 elaborates on the development of the operational level RFR model. 
Next, we conduct the in-depth analysis. Section 5.3.2 discusses the estimated and constructed 
distances of the orders selected by Methods Daganzo, RFR (1), RFR (2) and the operational 
level RFR to assess the predictive performance in the simulation, and the sequential order 
selection choice. Subsequently, Section 5.3.3 examines the costs per order of these order 
selections to understand how the costs per order affect the most cost-efficient order selection 
choice. Lastly, Section 5.3.4 discusses the findings of the in-depth analysis. Table 11 
summarizes the terminology used in this section for clarification purposes.  
 
Table 11 Terminology and description 

Terminology Description 

Estimated distance The estimated distance of Daganzo / RFR (1) / RFR (2) 
/ the operational level RFR 

Constructed distance The constructed distance by the VRP solver in Python 

Tactical level models Daganzo, RFR (1), RFR (2) 

Operational level model The operational level RFR 

 

5.3.1 Operational level RFR model 
We develop the operational level RFR model similarly as the tactical level RFR models. Hence, 
Section 5.3.1.1 discusses the features, Section 5.3.1.2 the training data, Section 5.3.1.3 the 
hyperparameters, and Section 5.3.1.4 the predictive performance. Again, we illustrate the 
performance on the hub in Hilversum.  
 

5.3.1.1 Features 

The main difference between the operational and the tactical level RFR model is the order 
information available. At the tactical level, we have uncertainty in all types of order information. 
Therefore, we decided to describe the VRP distance with spatial features on PC4 level in 
Section 4.3.1. At the operational level, we usually know all the order information, e.g., location 
and demand. Thus, we can describe the VRP distance with this order information.  
 
We decide to rephrase the set of tactical level features to operational level features because 

now we can describe those features in more detail. Accordingly, the total area in km2 of the 

PC4s from the selected orders, becomes the smallest area in km2 that contains all selected 
orders, i.e. the convex hull (Features 3 & 6). Figure 37 gives an example of a convex hull. 
Likewise, the average and variance of the distance of the centroid of the PC4s from the 
selected orders to the hub become the average and variance of the distance of the selected 
orders to the hub (Features 4 & 5).  

Figure 37 Convex hull (Laurini, 2017) 
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Additionally, we expand the set of features with operational level features. We choose to 
include the same features that Akkerman & Mes (2022) exploited after feature selection. Table 
12 summarizes the 13 features of our operational level RFR model. The bearing 𝛽 between an 
order and the hub, used in Feature 13, is the angle between the line connecting the two points 
and the north-south line of the earth (Akkerman & Mes, 2022). Figure 38 illustrates the bearing 

𝛽. We use the Python library Scipy.spatial (Scipy , 2023) to determine the area and perimeter 
of the convex hull of all selected orders, and the library Statistics (Statistics, 2023) to determine 
the variance. For further information about the features and their determination, we refer to 
Akkerman & Mes (2022). 
 
Table 12 Operational level features of the RFR model 

Number Feature Description 

1 Potential orders 
The number of potential orders in the entire 

delivery area 

2 Selected orders 
The number of selected orders in the entire 

delivery area 

3 Total hull area 
The total convex hull area in km2 of the 

selected orders 

4 Average distance to hub 
The average distance in km from the selected 

orders to the hub 

5 Variance distance to hub 
The variance in km from the selected orders to 

the hub 

6 √Total hull area ∗ Selected orders 

The square root of the total convex hull area in 

km2 of the selected orders multiplied by the 
number of selected orders in the entire delivery 

area 

7 Total volume The total volume in cm3 of the selected orders 

8 Total volume / Capacity 
The total volume cm3 of the selected orders 

divided by the bike capacity 

9 Average volume The average volume cm3 of the selected orders 

10 Hull perimeter 
The perimeter of the convex hull of the 

selected orders 

11 Average distance between orders 
The average distance in km between the 

selected orders 

12 Total distance to hub 
The sum of the distance in km from the hub to 

the selected orders 

13 Variance bearing to hub 
The variance of the bearings between the 

selected orders and the hub 

 

5.3.1.2 Training data 

We decide to generate data to develop the operational level RFR model. We use the exact 
same approach as discussed in Section 4.3.3.2, including the steps to ensure the order 
selection variability (see Section 4.3.3.2.5). The only difference is that the features stored in 

Hub 

Figure 38 The bearing between the hub and an order (Akkermans, 2021) 

Order 
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Phase 4 (see Figure 21) are now the operational level features, instead of the tactical level 
features.   
 
Again, we split the data into a train, validate and test set with a respective 80%, 10%, and 10% 
ratio. We train and test the models in Python with the Scikit-Learn (Scikit-learn, 2023), see 
Section 4.3.2, and tune the hyperparameters on the validation set using Bayesian optimization 
with 5-fold cross-validation with the Scikit-Learn and ScikitOptimize Python libraries (Head, 
Kumar, Nahrstaedt, Louppe, & Shcherbatyi, 2021), see Section 4.3.2.1. 
 

5.3.1.3 Hyperparameters 

We tune the hyperparameters of RFR as chosen and described in Section 4.3.2.1. Note that 
we again set the number of trees in the forest to 200 and let the trees grow to full depth, similar 
to the tactical level RFR model. Table 13 summarizes the tuned values of the hyperparameters. 
 
Table 13 Hyperparameters operational RFR model 

Hyperparameter Value 

Maximal number features for splitting 7 

Minimum number of data points per leaf node 1 
 

5.3.1.4 Predictive performance 

We fit the generated data on the RFR model as described in Section 4.3.2. Table 14 displays 
the performance metrics. We observe that this operational level RFR model slightly 

outperforms the tactical level RFR (1) model (MAPE: 8.28%, Adjusted 𝑅2: 0.984, rRMSE: 
8.71%, rMAE: 6.17%). However, the rRMSE of the tactical level RFR (1) model is slightly better 
(8.71% compared to 8.77%). Furthermore, the operational level RFR model more obviously 

outperforms the tactical level RFR (2) model (MAPE: 9.77%, Adjusted 𝑅2: 0.873, rRMSE: 
10.45%, rMAE: 8.64%).  
 
Table 14 Model performance of the operational level RFR model on generated data Hilversum 

Performance metric Value 

MAPE 6.78 % 

Adjusted 𝑅2 0.986 

rRMSE 8.77 % 

rMAE 5.89 % 
 

5.3.2 Distances of the order selections 
We perform the in-depth analysis and retrieve the estimated distances from the Daganzo 
estimation, RFR (1), RFR (2) and the operational level RFR, and the respective constructed 
distances. Section 5.3.2.1 elaborates on the predictive performance of the methods to 
understand how the estimations deviate from the constructed distances. Section 5.3.2.2 
elaborates on the capability of choosing the orders with the least distance increase to 
understand the order selection choices.  
 

5.3.2.1 Predictive performance 

We elaborate on the predictive performance to understand how accurate the estimated 
distances are compared to the constructed distances in the simulation. Table 15 shows the 
mean (µ) and 95% confidence interval (95% CI) of the computed performance metrics of the 
distance estimations. Clearly, the operational RFR model has a very good performance, and 
thus can make accurate predictions in both the simulation and on the test set. This shows that 
the development of the operational RFR model, and therefore also the development of RFR 
(1) and RFR (2), is valid. Furthermore, we observe that the operational RFR model makes 
better predictions than the tactical level models. This stresses that estimations improve when 
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there is more order information available. The operational RFR explains on average 22.7% 
more than the similar model with tactical-level features (RFR (1)). 
 
Furthermore, we find that the mutual predictive performance of all three tactical level models 
indeed differs. Surprisingly, the Daganzo estimation seems to perform the best, and thus better 
than observed in Section 5.1.2. RFR (1) outperforms RFR (2), which is in line with the observed 
predictive performance. Also, we observe that the confidence interval width of the tactical level 
models is wider than the operational level model. This is caused by the difference in order 
information. The tactical level models only know the number of orders located in a PC4 and 
therefore make predictions based on an average order in a PC4, whilst the operational level 
model makes predictions based on the exact order location and volume. Hence, the tactical 
level model chooses from what PC4 an order is added and the operational level model chooses 
what order to add. Because the tactical level models assign a random address to the chosen 
PC4 for validation purposes (see Section 4.4.3), the address could be both representative or 
an outlier for the PC4. The address choice determines how accurate the prediction is, and thus 
the random choice causes more spread in the performance metrics. 
 

Table 15 Performance metrics of the distance estimations during the order selection 

Performance 
metric 

 

Daganzo RFR (1) RFR (2) Operational RFR 

µ 95% CI µ 95% CI µ 95% CI µ 95% CI 

MAPE 20.55 
[19.16, 
21.94] 

33.02 
[30.73, 
35.31] 

46.42 
[41.76, 
51.09] 

19.87 
[9.71, 
30.02] 

Adjusted 𝑅2 0.794 
[ 0.764, 
0.823] 

0.756 
[ 0.696, 
0.815] 

0.598 
[ 0.506, 
0.690] 

0.983 
[ 0.975, 
0.991] 

rRMSE 27.13 
[ 24.53, 
29.72] 

32.06 
[28.22, 
35.90] 

39.96 
[34.60, 
45.32] 

9.16 
[7.47, 
10.84] 

rMAE 19.76 
[ 17.76, 
21.76] 

28.34 
[25.23, 
31.45] 

34.06 
[29.39, 
38.73] 

6.65 
[5.15, 
8.15] 

 

To understand the predictive performance and the respective deviations better, we show the 
estimated and constructed distance of the order selections made during a simulation run by 
the Daganzo estimation, RFR (1), RFR (2), and the operational level RFR in Figure 39. In 
these graphs, we indeed observe different behaviour of the four estimations. 

Figure 39 Estimated and constructed distance of the order selection of methods Daganzo (upper left), RFR 1 

(upper right), RFR 2 (lower left) & operational level RFR (lower right) 
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The Daganzo estimation first underpredicts the actual distance and starts to overpredict from 
95 selected orders. Clearly, this estimation is not properly aligned with the situation of CBB, 
because it does not mimic the constructed distance. The estimation seems to be reasonable 
at the beginning, but the larger the number of orders, the larger the difference between the 
estimated and actual distance. Additionally, first underpredicting and afterwards overpredicting 
is undesirable, because this gives a distorted view of the minimal distance increase.  
 
Method RFR (1) underpredicts the distance. The prediction is quite accurate at the beginning, 
but afterwards, it starts to more obviously underpredict. Although the estimated distance curve 
rises at a different number of orders than the constructed distance curve, in general, it does 
seem to resemble the constructed distance.  
 
Method RFR (2) overpredicts the distance. The overprediction can be explained by the fact 
that the distance in the training data of RFR (2) is the real-life distance and not the haversine 
distance. The real-life distance accounts for actual roads and possible road disruptions, and 
therefore is larger than the haversine distance. From around 251 orders selected, the 
difference between the estimated and actual distance tends to get larger when the number of 
selected orders increases. Additionally, it also does not really mimic the curve behaviour of the 
constructed distance. This could imply that the training data did not contain sufficient variability, 
i.e., observations with ≥ 251 orders selected. Also, it could imply that the actual distance gets 
larger if more orders are selected, due to for example the selection of orders in more sparsely 
populated and vast areas, which is not properly reflected in the haversine distance.   
 
The operational level RFR seems to be very close to the actual distance, as expected by the 
performance metrics. This shows the potential of machine learning models in the estimation of 
VRP distance: it explains 18.9% more than the mathematical approach of Daganzo. 
 

5.3.2.2 Order selection capability 

We elaborate on the order selection capability to explain the most cost-efficient order selection 
choice made. The distance travelled drives the most cost-efficient order selection choice 
because the distance is reflected in the variable costs. Hence, the method that obtains the 
order selection with the least distance, has the highest capability to select the most cost-
efficient order selection. Figure 40 compares the constructed distances of the four methods. 
Straightforwardly, the four methods converge into the same distance, as in the end all the 
(same) 460 orders are selected. It shows that the operational level RFR obtains the order 
selection with the smallest distance all the time, and hence with the lowest costs per order (see 
Appendix I). Therefore, it selects the orders the smartest, i.e., with the least distance. This 
again stresses the advantage of knowing and utilizing order information. Furthermore, it shows 
that Method RFR (1) obtains 74.13% of the time the smallest distance from the tactical level 
models. Hence, it chooses the orders with the actual least distance. This is in line with the best 
tactical level predictive performance observed in Section 5.1.2. Method RFR (2) performs 

Figure 40 The constructed distance of the order selection of the 4 methods 
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slightly better than the Method Daganzo. Therefore, the RFR models outperform the Daganzo 
estimation in order selection capability.  
 
To understand not only the variable costs but also the variable costs per order, we display the 
average distance travelled per order. Figure 41 shows the constructed and estimated average 
distance travelled per order of the four methods. The constructed distance travelled per order 
shows what method obtained the most cost-efficient order selection and the estimated distance 
travelled per order shows their distance estimation per number of orders selected. Again, we 
see that the operational level RFR obtains the lowest constructed average distance travelled 
per order. Method Daganzo has the highest constructed average travelled distance per order, 
and thus selects less favourable orders compared to the RFR methods. Accordingly, we 
observe that Method Daganzo retrieves an average travelled distance of maximal 3.2 times 
the distance found by the operational level RFR, whereas this is 2.3 times for Method RFR (1) 
and 2.7 for Method RFR (2). Note that the distance difference of the methods is wider at the 
beginning, because the distance increase is divided over fewer selected orders. Furthermore, 
we observe with the tactical level methods more sharp fluctuations than with the operational 
level method in the constructed distances. The tactical level methods only have order 
information on PC4 level. Therefore, they select an order based on the PC4. The actual 
location of this order is randomly drawn from an address list (see Section 4.4.3) once the order 
is selected, and could be the most remote corner of the PC4. Hence, we observe a sharp rise 
in average travelled distance if we select this order. Afterwards, the tactical level method 
usually selects orders from the same PC4, and thus relatively close orders. Therefore, the 
average travelled distance usually decreases again after a sharp rise.  

 
Although the constructed average distance travelled per order of the operational level RFR is 
lower than the tactical level methods, we see in Figure 41 that the distance estimations of the 
tactical level RFR (1) and the operational level RFR are similar. This means that both methods 
make a similar decision regarding the most cost-efficient order selection. The estimated and 
constructed distance of RFR (1) differ because the orders within a PC4 are randomly chosen, 
and not based on the lowest distance increase as RFR (1) was trained on. This explains the 
different predictive performances observed in the simulation (Section 5.3.1.4) and on the test 
set (0). Therefore, the RFR (1) is capable of selecting the most cost-efficient number of orders 
to deliver, but not necessarily the most cost-efficient orders. Hence, this validates the use of a 
tactical level RFR to determine the most cost-efficient number of orders to deliver. Note that 
RFR (2) mimics the operational level RFR, but with an upward shift of around 300 meters. This 
indicates the potential of RFR (2) if it is evaluated on real-life distances instead of the haversine 
distance. The Daganzo estimations are close to the operational level RFR estimations when 
less than 30 orders are selected, but afterwards, it overpredicts the distance. Hence, it is more 
expensive to select an extra order, which gives a distorted view of these costs and thus of the 
most cost-efficient number of orders to select. 

Figure 41 The constructed (left) and estimated (right) average distance travelled per order of the 4 methods 
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Furthermore, we observe in Figure 41 that the average distance travelled per order first 
decrease, and after the observed minimum tend to increase. The decrease followed by the 
increase in the average distance travelled per order is caused by the ‘smart’ order selection. 
First, the orders are selected that are closest to the hub. To deliver the first order, the delivery 
man has to cycle back and forth to the hub. For the second order, the delivery man has to 
cycle from the hub to the first order, from the first order to the second order, and from the 
second order to the hub. Because the second order selected is close to the first order, i.e., with 
the least increase in distance, the average distance travelled per order usually decreases as 
shown in Figure 41. Hence, cycling back and forth from the hub can be seen as the initial 
investment. Accordingly, all orders close by are selected, which are typically the orders from 
the hub’s surrounding PC4s. 
 
Figure 42 shows an example of how all the potential orders are spread over the entire delivery 

area of Hilversum. Here, the orange house is the hub. Because the hub is located in the middle 

of the densely populated metropolitan area of Hilversum, the PC4s surrounding the hub usually 

observe the most potential orders per km2, simply because it has the most inhabitants per 

km2. Therefore, the average distance travelled per order can become quite small: in this 

example, the minimum of the average distance travelled per order is 259 meters with 49 

selected orders with the operational level RFR. Hence, it is very efficient to deliver the 

surrounding orders of the hub. 

 
After these 49 orders, we observe that, in general, the average distance travelled per order 
increases. This is because 1) the area in which CBB cycles increases, and thus the average 
distance between the hub and the selected orders, and 2) these additional areas, in which 
CBB now also cycles, are more sparsely populated compared to the city of Hilversum, where 
the hub is located and thus where CBB initially cycles. However, Figure 41 does not only show 
increases, but also decreases. This is a result of the order clusters as observed in Figure 42. 
To deliver the orders in such a cluster, a delivery man first has to cycle to the cluster. Again, 
this can be seen as an initial investment, i.e., it results in a (temporary) sharp rise in average 
distance travelled per order (see, e.g., 113 selected orders in Figure 41). Once arrived, the 
extra distance to deliver an additional order in the cluster is usually small. If this extra distance 
is smaller than the current average travelled distance per order, the latter decreases when the 
order is selected. Hence, we observe multiple decreases in the average travelled distance per 
order. Because of the distance that has to be cycled to the cluster, and because the clusters 
usually have fewer inhabitants than the cluster in which the hub is located, i.e., a lower order 

Figure 42 The spread of the potential orders over the delivery area of Hilversum 
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density, it is unlikely that the minimum average travelled distance per order (259 meters with 
49 selected orders) is reached again. Therefore, the average travelled distance per order 
increases after the observed minimum. Note that the distance in- or decrease is not always 
clearly visible in the graph, because it is divided over all selected orders.  
 
In general, Figure 40 and Figure 41 show the value of using machine learning models over a 
literature approach such as Daganzo. These models are capable of selecting the orders that 
increase the overall distance the least. Also, the figures show that the order selection methods 
obtain difference distances for the same number of orders selected. Furthermore, we validated 
the use of a tactical level RFR model to determine the most cost-efficient number of orders to 
deliver. 
 

5.3.3 Costs per order of the order selections 
Although the order selections differ in terms of in distance to deliver the selected orders, the 
four methods make a comparable decision. This is caused by the comparable costs per order 
per number of selected orders. Therefore, Section 5.3.3.1 and Section 5.3.3.2 explain the 
behaviour of the fixed and variable costs per order of the order selections respectively. Finally, 
Section 5.3.3.3 elaborates on the total costs per order. 
 

5.3.3.1 Fixed costs per order 

Figure 43 shows the fixed costs per order per number of orders selected. As anticipated, we 
see that the fixed costs per order decrease the most with the first selected orders and converge 
to zero. Hence, it is most interesting to select the maximal number of orders based on the fixed 
costs per order only. Note that the fixed costs are independent of the distance estimation, and 
therefore, they are the same for the operational and all the tactical level methods.  

 

5.3.3.2 Variable costs per order 

Figure 44 shows the estimated and constructed variable costs per order of the order selection 
made by RFR (1). We refer to Appendix J for the graphs of the other three methods. The graph 
displays the variable costs per order, variable costs per kilometre per order and variable costs 
per hour per order, stacked per order selection. Straightforwardly, the variable costs per order 
are 9.8% per order for any order selection. Therefore, the fluctuations are caused by the 
variable costs per order per hour, and per kilometre, mostly visible in the costs per hour due 
to the higher price (the price per kilometre is only 0.73% of the price per hour). Hence, the 
fluctuations are caused by the travel time and the distance of the selected orders. Note that 
the time and distance are not 100% correlated, as the travel time includes the time to travel 
the average distance per order and the stop time per order.  

Figure 43 The fixed costs per order per number of orders 
selected 
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We observe that the variable costs per order per hour and per kilometre mimic the average 
travelled distance per order (see Figure 41). To illustrate, the minimum of the constructed 
distance and costs are both at 64 selected orders. However, where the average distance 
travelled per order more than doubles from 64 to 460 selected orders, the variable costs per 
order per hour only increase by 10.3% from 64 to 460 selected orders. The stop time per order 
accounts for this. Every order always has a stop time that is reflected in the variable costs per 
hour, independent of the time to travel the average distance per order. Hence, the variable 
costs per hour per order increase with the increase in time to cycle the average distance 
travelled per order relative to the sum of the average stop time per order and the time to travel 
the average distance per order.   
 
Also, we find that the constructed variable costs per order have more sharp rises than the 
estimated variable costs per order. Hence, RFR (1) underestimates variable costs, i.e., 
distance increases, mostly obtained from delivering to an additional PC4. The sharp rise is a 
direct cause of the random address drawn from the PC4 as explained in Section 5.3.2.2.  
 
Furthermore, we observe in Figure 44 that the difference in variable costs per order gets 
smaller when the number of selected orders increases. This is because the extra distance and 
time to deliver an additional order is divided over all selected orders. Hence, the difference in 
variable costs per order converges to zero. Therefore, the order selection choice is more 
important when not all orders are selected. 
 

5.3.3.3 Costs per order 

To understand how the fixed and variable costs per order influence the total costs per order, 
and thus the order selection choice, we analyse their behaviour simultaneously. Figure 45 
shows the total costs per order of the order selection of RFR (1). We only display the costs per 
order belonging to the constructed distances, because the estimated distances show a 
comparable result. We observe that the costs per order decrease in general. In this particular 
run, the minimal costs per order are 4.09% when 460 orders are selected. Note that we 
observed an interquartile range of 436 – 460 selected orders, see Section 5.2.2, and thus that 
the most cost-efficient order selection choice is not always obviously 460 orders. Also, we 
observe that the ratio of fixed and variable costs per order changes. First, the majority of the 
costs per order consist of fixed costs per order, and as more orders are selected, the ratio 
revolves around. Lastly, we observe some local minima, e.g., when 69 or 318 orders are 
selected, indicated with a circle in Figure 45. 

Figure 44 The estimated (left) and constructed (right) variable costs per order composition of the order selection of 
RFR 1 
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Figure 46 displays the difference in fixed costs per order and variable costs per order of the 
constructed distances of Methods Daganzo, RFR (1), RFR (2) and the operational level RFR. 
The costs per order decrease if the decrease in fixed costs per order is larger than the increase 
in variable costs per order. Straightforwardly, the costs per order decrease if both the fixed and 
variable costs per order decrease. We observe that indeed in some cases, e.g., when 69 or 
318 orders are selected, the increase in variable cost per order is larger than the decrease in 
the fixed costs per order, and thus that the costs per order increase. This increase is temporary 
because the sum of the costs per order decreases from these local minima (e.g., 69 or 318 
orders) to the maximal number of selected orders (here 460) is larger than the respective sum 
of the costs per order increases. The minimum would be a global minimum if the sum of the 
increases is larger than the sum of the decreases. This is the case in other runs, where less 
than 460 orders were selected, and thus where the minimum costs per order was not observed 
at 460 orders (see Section 5.2.2). Note that the costs per order increase more with the tactical 
level models than with the operational level model due to the less smart order selection choice. 
 

 
Because the sum of all the costs per order decreases in Figure 46 is larger than the sum of all 
the costs per order increases, the costs per order decrease in general. Broadly speaking, the 
decrease in fixed costs per order overrules the in- or decrease in variable costs per order. 
Although sometimes the costs per order increase as a result of cycling to a cluster and/or 

Figure 45 The constructed costs per order of the order selection of RFR (1) 

Figure 46 Difference in costs per order per order selection 
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adding an order from a new PC4, the reduction in fixed costs per order of selecting all the 
orders in the cluster or PC4 is still greater than the increase in variable costs per order resulting 
from the respective extra travelled distance. Accordingly, the choice to select (almost) all 
potential orders, when we observe the maximal number of potential orders, is trivial with the 
current fixed costs.  
 

5.3.4 Discussion 
To make an order selection decision based on the variable costs per order, i.e., the estimated 
distance of the four methods, the fixed costs should be sufficiently low that the reduction in 
fixed costs per order is overshadowed by the in- or decrease in variable costs per order. 
Currently, the fixed costs per order overrule the fluctuations in variable costs per order. Hence, 
the fixed costs are a dominant factor, and it is straightforward to select the maximal number of 
orders. Therefore, we observe that Methods Daganzo, RFR (1) and RFR (2) select a similar 
number of orders. Even with half fixed costs or one and a half variable costs, the fixed costs 
still overrule. The most cost-efficient order selection decision becomes less obvious as we 
reach the maximal number of potential orders (460). Here, the only reason to deviate from the 
maximal number of orders is the order division (over the PC4s) as observed in Section 5.2.2.1. 
However, the number of orders selected was still close to the total number of potential orders. 
Additionally, the fixed costs per order difference with, e.g., 300 to 301 orders is around only 
0.1%, which explains why the observed impact in costs per order of the order selections in 
Section 5.2.3 is not significant. 
 
Because RFR (1) underestimates the distance, and thus the variable costs per order, even 

lower fixed or higher variable costs are necessary to have an impact on the order selection 

with the order selection methodology. Hence, underestimation means that more orders might 

be selected than is most cost-efficient. Oppositely, overestimation of the distance causes more 

spread in the order selection, which explains the spread in the observation of Method RFR (2) 

with an increase in variable costs or a decrease in fixed costs (see Section 5.2.3.1). 

5.4 Conclusions 
This chapter showed the performance of the solution methodologies. First, we showed that the 
RFR and LGBM machine learning models can predict the distance of an order selection 
accurately and that the models trained on the generated data outperform the models trained 
on the historical data.  
 
Second, we found that the number of orders per PC4 can often be described with a negative 
binomial distribution. We elaborated on the experimental design and discussed the 
experimental results. Hence, we found no significant difference in the most cost-efficient order 
selection found by Methods Daganzo, RFR (1) and RFR (2). We observed that the solution 
methodology is capable of selecting the most cost-efficient number of orders, and that the 
three methods are dynamic and robust against changes in costs or distance increases in the 
current situation, unlike the current order selection method.  
 
Third, we conducted an in-depth analysis to understand the comparable performance of 
Methods Daganzo, RFR (1) and RFR (2). Additionally, we developed an operational level RFR 
model to validate the development of, and compare the performance with the tactical level 
models. We found that the tactical level RFR (1) is capable of selecting the most cost-efficient 
number of orders to deliver because it makes similar predictions as the operational level RFR. 
Hence, it can accurately estimate the distance belonging to the most cost-efficient number of 
orders. We found that the fixed costs per order converge to zero when the number of orders 
selected converges to infinity. Similarly, we found that the difference in distance per order, and 
thus the difference in variable costs per order, converges to zero when the number of orders 
selected converges to the maximal number of orders. Therefore, we learned that if we desire 
to make an order selection decision based on the variable costs per order, i.e., the estimated 
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distance, the fixed costs should be sufficiently low that the reduction in fixed costs per order is 
overshadowed by the in- or decrease in variable costs per order. Alternatively, the variable 
costs should be sufficiently low, or the increase in travel distance and time should be 
sufficiently large to enhance the same effect. We conclude that with the current circumstances, 
it is straightforward for Methods Daganzo, RFR (1) and RFR (2) to select a number of orders 
close to the maximal number of orders.  
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6 Conclusions and evaluations 
This chapter answers the main research question and concludes the research in Section 6.1. 
Section 6.2 states the recommendations based on this research for Coolblue. Furthermore, 
Section 6.3 elaborates on the practical and scientific contributions of this research and Section 
6.4 states the limitations and recommendations for further research.  
 

6.1 Conclusions 
To determine the most cost-efficient capacity to deploy per hub at the tactical level based on 
the forecasted potential orders to decrease the costs per order of CBB delivery, we answer the 
main research question: 
 
How should the optimal required capacity of CBB’s hubs be determined such that the 
costs per order of CBB delivery are minimized? 
 
The required capacity is based on the order selection and translated to the number of delivery 
men hours and bike routes. We analysed the current situation and concluded that order 
selection is equal to all forecasted potential orders from a subarea of the delivery area. 
However, this subarea is static, i.e., independent of the forecast and the bike route efficiency. 
 
We developed a solution methodology to determine the number of orders to deliver from a 
CBB hub with minimal costs per order. The development of this methodology consists of 2 
main steps: 
 
1) Develop machine learning model(s) that estimate(s) the costs of an order selection. 

We concluded that the RFR and LGBM models are the most suitable machine learning models 

for our problem. We developed tactical level models that describe the potential orders on PC4 

level. We both generated data and grouped historical data based on hub size, i.e., small or 

large hubs, to train, validate and test the models. We tested the performance of RFR and 

LGBM on the generated (1) and historical (2) data. We concluded that all models with 6 tactical-

level features have a high predictive performance and that RFR is the best model to support 

the order selection.  

 

2) Build a Monte Carlo simulation, in which the machine learning model(s) are utilized 

to support order selection decisions.  

We concluded that a Monte Carlo simulation is the most suitable to determine the most cost-

efficient order selection when there is uncertainty in how the orders are distributed over the 

PC4s. We found that the number of orders per PC4 can be described with a negative binomial 

distribution. We selected the most cost-efficient order subset based on the estimated insertion 

costs of RFR (1) & RFR (2), without solving a VRP. We concluded that the Daganzo estimation 

enables the most reliable comparison with the RFR models, and therefore we also estimated 

the insertion costs based on Daganzo. To answer the main research question and to validate 

the solution methodology, we also selected orders with CBB’s current order selection Method 

‘Optimal levels’, and we solved the VRP of the 4 retrieved order selections found.  

We tested our proposed solution methodology on the hub in Hilversum. We studied and 
compared the performance of the four order selection methods in 3 experiments: 1: the 
minimum observed potential orders (40), 2: the average observed potential orders (140) and 
3: the maximal observed potential orders (460). We observed that Methods Daganzo, RFR (1) 
and RFR (2) select significantly more orders than the Method ‘Optimal levels’ with 40 and 140 
potential orders, but not with 460 potential orders. Contrary, this difference in costs per order 
is not significant. We concluded that under the current circumstances, the order selection 
choice is trivial for all four methods: select a number of orders close to the maximal number of 
orders. 
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To validate that our solution methodology selects the most cost-efficient order selection, we 
conducted a sensitivity analysis. We learned that when we put more weight on the distance 
estimation, and thus the selected orders, the most cost-efficient number of orders to select is 
less obvious, but not significantly different. The Methods Daganzo, RFR (1) and RFR (2) still 
have a comparable performance. However, we concluded that CBB’s current order selection 
method is not sensitive to these changes in costs or distance and that it is not capable of 
choosing the most cost-efficient number of orders. With zero costs, the difference in order 
selection median is extreme, 132 orders compared to 8 (Daganzo), 7 (RFR (1)), 24 (RFR (2)), 
and results in higher median costs per order, 35.9% compared to 34.5% (Daganzo), 29.4% 
(RFR (2)), 29.9% (RFR (1)). This experiment confirms the value of our solution methodology: 
it selects the subset of orders based on the current costs of delivering orders, and decreases 
the costs per order between 3.9 % – 18.1 %.  
 
We performed an in-depth analysis to understand the comparable performance of the Methods 
Daganzo, RFR (1), and RFR (2). Additionally, we develop an operational level RFR to show 
the performance difference between having all order information (operational level) and 
uncertainty in all types of order information (tactical level), and thus to validate the development 
and use of a tactical level RFR. The operational level RFR has a high predictive performance 
both in the simulation and on the test set. We learned that RFR (1) makes similar estimations 
as the operational level RFR, and thus that both models make a similar decision regarding the 
most cost-efficient order selection. Hence, we concluded that the tactical level model is capable 
of selecting the most cost-efficient number of orders to deliver. Furthermore, we concluded 
that if we want to make an order selection decision based on the travelled distance, the ratio 
of fixed costs, variable costs, travel distance and travel time should be such that the reduction 
in fixed costs per order is overshadowed by the in- or decrease in variable costs per order. 
Under the current circumstances in Hilversum, although the methods underestimate the 
distances, i.e., they evaluate with a haversine distance, the decrease in fixed costs per order 
overshadows the change in variable costs per order. Hence, the order selection decision of 
the three methods is straightforward, and thus comparable: select a number of orders skewed 
to the maximal number of potential orders. 
 
The last step to answer the main research question is providing an implementation guide for 
the other hubs. We explained in Appendix G where to find or how to retrieve the input 
information of each hub and how to load this information into the simulation. Furthermore, we 
handed over the tool to Coolblue’s data scientist team, such that they can implement the tool 
at other hubs.  
 
We conclude that the proposed solution methodology with order selection based on RFR (1) 
is valid to determine the most cost-efficient number of orders selected. RFR (2) overpredicts 
the distance, but showed potential if evaluated on real-life data. The Daganzo estimation gives 
a distorted view of the distance and thus of the most cost-efficient number of orders to select. 
The Methods Daganzo, RFR (1) & RFR (2) have a comparable performance because of the 
current fixed and variable costs of the hub in Hilversum. Although the difference in costs 
retrieved from these solution methodologies is not statistically significant with 95% confidence 
compared to the current order selection method, the methodology is dynamic, robust, easily 
implementable and generalizable to other hubs, unlike the current method. 
 

6.2 Recommendations 
To realize the conclusions stated in Section 6.1, we recommend Coolblue to implement the 
solution methodology as described in Section 4.2 to determine the most cost-efficient capacity 
to deploy. Also, we observed some inefficiencies in the current way of working of Coolblue for 
which we have some improvement suggestions. Hence, we advise the following: 
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1. We recommend selecting orders in the solution methodology based on the distance 

estimation of RFR (1). This model proved to select the most cost-efficient number of orders. 

2. To improve the costs per order of all hubs, we recommend implementing the solution 

methodology for all hubs. We suggest using the guide of Appendix G to find (how to 

retrieve) the input information of each hub and how to load this information into the 

simulation. We recommend comparing the order selection costs considering the distance 

estimation of RFR (1). 

3. A strength of the simulation is that the input parameters are estimated on actual data, 

creating realistic output. Therefore, we suggest storing the input parameters and files of 

the simulation in Coolblue’s data warehouse BiqQuery and to connect them to the Python 

model. This can easily be done with the Google Cloud BiqQuery library in Python. Hence, 

every time the model runs, the newest and latest data is used to obtain the most cost-

efficient capacity to deploy in the current situation without any manual effort.  

4. We recommend utilizing the capacity tool as an advisory tool and not as a binding tool. The 

tool is developed with the goal to understand the impact of capacity deployment per hub, 

but it is not comprehensive and should not be treated as such.  

5. We suggest running the tool once for every number of forecasted potential orders per hub 

under the current circumstances. We recommend storing the optimal capacity advice 

retrieved from these runs, such that the tool does not have to rerun when CBB encounters 

the same number of potential orders with the same input parameters. We advise rerunning 

the tool only when the input parameters or the current circumstances change. 

6. We recommend assigning ownership of the capacity model to ensure its continuity. We 

found a team of data scientists of Coolblue with whom we have discussed the tool, and 

who are willing to and capable of owning the tool. Hence, we handed over the tool to this 

team and provided a guide with the (storage place of the) information necessary to 

implement the tool at other hubs.  

7. During data analysis, we found that Coolblue stores the historical potential order 

information only on PC4 level, whilst they store the information of the delivered orders on 

order level. Hence, we had to estimate the order information in our research based on the 

orders that were delivered with CBB. However, we recommend storing historical order 

information on order level. This could facilitate more in-depth and representative analysis. 

Accordingly, more data is usually more preferable than having too less data.  

8. Currently, Coolblue stores a lot of information in Google Sheets. However, there exist a lot 

of sheets. These sheets are not connected, and they are owned by different employees. 

Therefore, it is hard to find the information one is looking for. Hence, we suggest storing all 

information in one central place, for example in Google Drive, and to document where to 

find specific types of information.  

9. A lot of information on the current working methods of Coolblue is not documented, but 

stored in the head of the employees. However, if an employee is sick or leaves Coolblue, 

the knowledge will be gone. Therefore, we recommend documenting the current 

processes, and the responsibilities and activities of every employee such that the 

information is always available.  

6.3 Contribution to practice and theory 
This section discusses the contribution of this research both to practice and literature in Section 
6.3.1 and Section 6.3.2 respectively. 
 

6.3.1 Practical contribution 
This research stressed the urge to improve the capacity planning process of Coolblue by 
showing the impact of capacity planning on the costs per order. Hence, it showed the potential 
of dynamic capacity determination depending on the forecasted potential orders.  
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Furthermore, we developed a solution methodology that advises on the most cost-efficient 
capacity to deploy at the tactical level. Also, we showed the practical implementation of 
machine learning models for order selection in routing problems. Although our solution 
methods did not improve the costs per order statistically significantly, the method is valid and, 
unlike the current situation, dynamic and robust against changes in the input variables such as 
the costs.  
 
Additionally, the methodology indicates how efficient a hub is and where the improvement 
potential lies to obtain lower costs per order, i.e., for Hilversum in increasing the number of 
potential orders. We showed the impact of the fixed and variable costs, route efficiency and 
forecast accuracy on the capacity, and stressed the importance of the latter.  
 
We provided a tool easily generalizable to other hubs, if we know the order distribution, bike 
speed, stop time, area, distance to the depot per PC4 and the fixed and variable costs per hub. 
We presented a guide in Appendix G with this information, or how to retrieve this information 
for other hubs. Also, the tool is easily adjustable to the CBB distance estimation and route 
planning mechanism by using their Application Programming Interface (API) in Python, to 
which we did not have access. An API is a software interface that allows two computer 
programs, in this case, Python and Coolblue’s route planning program, to communicate with 
each other. Utilizing this API returns representative distance estimations and bike routes. 
Hence, the tool can easily be integrated with changing operational circumstances, e.g., from 
the cherry-picking project.  
 
Furthermore, with a few adjustments, the tool can be used for order selection and route 
planning at the operational level as well. We recommend using the operational level RFR 
model developed in Section 5.3.1 for this purpose because it is capable of selecting the most 
cost-efficient orders, and not only the most cost-efficient number of orders as the tactical level 
models can. Accordingly, we select orders based on the cheapest insertion costs estimated by 
the operational level RFR. Note that there is no order information uncertainty anymore, so the 
Monte Carlo simulation is not necessary. Hence, one replication is sufficient to determine the 
most cost-efficient order selection and the routes. For this implementation, the following 4 
adjustments should be made in the respective phases of the simulation (see Figure 19): 
1. Phase 1: The actual orders are known in this stage, and thus the potential orders do not 

have to be distributed over the PC4s. Hence, the potential order input list with random 

order information should be converted to the actual order list with the actual order 

information, which includes the latitude, longitude and order volume. 

2. Phase 2: At this stage, the number of deployable delivery men hours and bikes are known 

and fixed. Hence, instead of adding orders until no potential orders are left, the orders 

should be added until there is no capacity or time left. Therefore, a feasibility check that 

ensures that the maximal tour time or bike capacity is not exceeded should be performed 

when evaluating what order to add. Because we know the distance increase, the travel 

time increase and the order volume, this check is easy to implement with just a few lines 

of code.   

3. Phase 2: The subset with the lowest costs per order, determined by the distance estimation 

and the total number of selected orders, is the final order selection. However, now the costs 

per hour per order should be determined based on the hours of the deployed delivery men 

instead of the travel time. At this stage, delivery men are already hired and will be paid for 

the maximal tour time. Hence, instead of determining the tour time to determine the variable 

costs per hour, the variable costs per hour should be considered fixed costs equal to 

# 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑚𝑒𝑛 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 ∗ 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑡𝑜𝑢𝑟 ℎ𝑜𝑢𝑟𝑠 ∗ 𝑠𝑎𝑙𝑎𝑟𝑦 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟.  

4. Phase 3: To determine the distance between the customers and the routes to travel, the 

CVRP solver in Python should be replaced by the CBB distance estimation and route 
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planning mechanism API in Python. This easy and straightforward implementation returns 

the routes of the order selection and thus the route planning for the bike delivery. 

Lastly, the solution methodology is generalizable to any tactical and operational (as described 
above) delivery routing problem where the most cost-efficient order selection to deliver should 
be determined. Although we proposed a methodology for bike delivery, the methodology is 
suitable for delivery with any vehicle if the travel speed is aligned with the vehicle choice.  
 

6.3.2 Theoretical contribution 
Although we conducted a case study for Coolblue, our research also contributes to scientific 
literature. In summary, we contribute to the literature with a methodology that selects the most 
cost-efficient order subset to determine delivery capacity in routing problems at the tactical 
level. This includes 1) an application of distance estimation, prior to solving, to support order 
selection decisions to determine the capacity to deploy, 2) an application of machine learning 
model(s) to estimate the variable costs of a VRP, 3) the provision of insight into the 
dependencies of several tactical level features with respect to the VRP distance instead of 
estimated or assumed operational level features, and its respective potential, 4) a method that 
takes variability and stochasticity into account and assesses the robustness of the optimal 
order selection given stochastic input sources, 5) a literature review regarding order selection 
in capacity planning and 6) an illustration of our solution method on the bike delivery case of 
Coolblue. 
 
Most literature focuses on scheduling as many orders as possible given the fixed capacity, 
instead of determining the most profitable subset of orders to determine capacity on. Also, 
literature more often discusses order selection in routing problems at the operational level, 
which requires operational information unknown at the tactical level. We showed that with 
tactical level information, i.e., the spatial information of a PC4, we could retrieve a similar 
estimation as with operational level information. Therefore, this methodology might be 
interesting for the delivery capacity determination in routing problems at the tactical level of 
any organization. Furthermore, with some extensions, the model can also be used as an order 
selection method and route planning algorithm at the operational level, even with limited 
capacity (for implementation adjustments, see Section 6.3.1). The methodology is not only an 
answer to how much capacity to deploy but also indicates the robustness of the optimal 
capacity. 
 

6.4 Limitations and further research 
This research includes some limitations mainly coming from the scope, limited time and 
available data. We discuss the limitations and suggest Coolblue the following for further 
research to overcome these limitations: 
 
1. In our solution methodology, we determine, compare and validate the most cost-efficient 

order selection based on a simplified distance estimation and a heuristic-based route 

planning mechanism. Hence, the output indicates the (behaviour of the) most cost-efficient 

order selection, and thus required capacity to deploy, but not an exact, CBB-tailored 

answer. Therefore, we recommend implementing the routing planning software of CBB into 

the solution methodology and studying the respective performance. This can be done by 

calling the route planning API of CBB in Python that returns the travel matrix and if 

necessary the routes of the given orders, which we did not have access to. This is an easy, 

straightforward implementation into the capacity tool that facilitates a realistic performance 

comparison. Once implemented, we recommend evaluating the performance of the 

Methods Daganzo, RFR (1) and RFR (2) again to assess if RFR (1) is still the most valid 

method. If the conclusion is that RFR (2) has potential, but that the grouped historical data 

does not contain sufficient variability, we recommend upsampling, i.e., generating or 
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duplicating data points of the underrepresented observations, and re-evaluating the 

performance. Note that for RFR (1), also new training data should be generated with CBB’s 

distance estimation and route planning algorithm.    

2. We determine the most cost-efficient order selection based on the cheapest insertion 

heuristic. We chose this heuristic to illustrate the improvement potential within the limited 

available time. This heuristic adds the cheapest order and subsequently searches for the 

next cheapest order to add. However, it does not evaluate all possible combinations, i.e., 

when it inserts the first cheapest order it assumes that this order is part of the optimal order 

subset. To find an order selection that is close(r) to the actual minimal costs per order, we 

suggest improving the order selection heuristic such that it analyses multiple order 

combinations. For the sake of computational time, we advise using a metaheuristic such 

as Tabu Search like Hernandez, Gendreau, & Potvin (2017). This metaheuristic can keep 

a (tabu) list of the costs of different order selection combinations. It accepts not only the 

order selection with the lowest costs per order but also worse solutions to explore if the 

combination has the best costs per order when an extra order is added. We suggest 

combining this implementation with Recommendation 1. 

3. The solution methodology tries to minimize the costs per order per hub. However, 

minimizing all hubs individually does not necessarily imply that the aggregated costs per 

order of all hubs are minimized. For example, we divided some fixed costs, such as the 

office salary costs, (partly) proportional to the desirable number of orders to deliver. 

However, if CBB decides to deliver significantly fewer orders based on the analysis, the 

office salary costs per order increase. Therefore, it might be possible that the best scenario 

includes delivering more orders than the 𝑜 most cost-efficient orders for one hub because 

this absolute increase in (variable) costs per order from 𝑜 to 𝑜 + 1 orders is less than the 

absolute decrease in (fixed) costs per order from 𝑜 to 𝑜 + 1 orders of another hub. Hence, 

we advise developing a collective capacity model that minimizes the costs per order of all 

CBB hubs simultaneously. This model could for example exploit the same order selection 

logic on all hubs and compare the aggregated costs per order of all possible combinations 

of hubs and order selections with a metaheuristic. It would be interesting to incorporate 

economies of scale into the model obtained from, e.g., linehaul costs, recruitment costs 

and office salary costs. To illustrate the effect of economies of scale, we suggest treating 

the linehaul costs as variable costs instead of fixed costs, and including the possibility to 

supply multiple hubs with the same truck or trailer. We suggest combining this 

implementation with Recommendations 1 and 2. 

4. We assumed a linear relationship between the number of selected orders and the 

recruitment costs because of limited available time. Generally speaking, it is harder to find 

more to be recruited employees than only a few. However, although it points in the right 

direction, this relation is not necessarily linear. It is dependent on many features such as 

the tight or ample labour market, the number of extra biker delivery men that need to be 

hired, the hub location etc. Therefore, we suggest researching and implementing this 

relationship to obtain representative recruitment costs.  

5. We would recommend researching how to increase the number of potential orders in 

Hilversum. We found that up to at least 680 potential orders the costs per order of the hub 

in Hilversum can decrease if the number of potential orders increases. The current average 

of 140 potential orders indicates that there is a lot of improvement potential for the costs 

per order. Additionally, with 460 potential orders, the average costs per order obtained from 

our tool are 18.71% cheaper than the average costs per order of DP from June 2021 to 

September 2022. Besides increasing market share, doing marketing activities and 

conducting market research, we advise simulating the following scenarios: 

a. We restricted the capacity tool to the fixed number of PC4s of the current delivery 

area of CBB, i.e., 45 PC4s in Hilversum. A possibility to increase the potential 
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orders is to enlarge the delivery area with more surrounding PC4s, e.g., > 45 PCs 

in Hilversum. To study the effect of additional PC4s in the delivery area, we 

recommend expanding the capacity tool with the surrounding PC4s of the current 

delivery area. We advise determining the order distribution of those PC4s based on 

historical orders of the PC4s that suffice the CBB delivery restrictions, similarly as 

explained in Section 4.4.1. The simulation can be conducted the same as described 

in Section 4.4. We would suggest studying additional interventions combined with 

the delivery area enlargement during this simulation, such as more available tour 

time and more bike capacity. Both might be necessary to obtain feasible routes with 

the enlargement of the delivery area. This might obtain insight into the potential of 

longer routes and bikes with more volume.  

b. The current delivery area of Hilversum is adjacent to the delivery area of 

Amsterdam, Utrecht and Amersfoort. However, the hub in Hilversum is never 

allowed to deliver orders in the delivery area of one of these three. Multiple hubs 

encounter this phenomenon. Hence, we recommend researching the potential of 

delivering a PC4 from multiple hubs. This can in- or decrease the number of 

potential orders from the hub if it needs to be more cost-efficient, and it might create 

more efficient routes. Therefore, we suggest analysing a flexible, instead of fixed 

delivery area per hub, to find out if it is worthwhile to determine a daily delivery area 

per hub. We recommend combining this analysis with Recommendation 3. 

c. We restricted the capacity tool to the volume restrictions of CBB. However, relaxing 

this constraint might lead to more order inflow for CBB and thus more potential 

orders. A downside can be that the bike capacity might be a bottleneck causing 

less utilized tour time compared to the maximal tour time, more time spend cycling 

from and to the hub, and subsequently less efficient routes. Hence, we recommend 

researching the allowance of larger orders, combined with more available tour time 

and more bike capacity. We suggest evaluating several volume dimensions and 

determining what volume restrictions lead to the lowest costs per order for multiple 

available tour time and bike capacity constraints. 

6. The method determines the optimal number of orders to be delivered, to decide how much 

capacity to deploy. CBB wanted a model that advices on the capacity optimum, to 

understand the situation per hub under perfect conditions, solely making a trade-off 

between the fixed and variable costs. However, other costs such as overcapacity costs 

might be interesting to incorporate as well. This risk of overcapacity, and thus extra costs 

that should be divided over all orders, increases when CBB decides to deploy capacity 

close or equal to the total demand. Evaluation of under capacity is not necessary, since 

CBB simply outsources orders to DP when they have insufficient capacity. Therefore, we 

recommend evaluating the impact of the overcapacity costs, and to compare the results 

with our capacity model. Especially because CBB accepts a forecast deviation of +/- 10%, 

which increases the risk of overcapacity even more. We suggest introducing a cost penalty 

in the model to account for overcapacity, which could be defined by a probability of 

overcapacity given the order selection multiplied by the costs of overcapacity. Alternatively, 

a machine learning model such as RFR can provide a prediction interval of the number of 

orders to select. Hence, with a specified confidence level, we will be confident that the 

number of orders will fall within a range in terms of orders, and thus what the probability of 

overcapacity is in this case. This prediction interval can be utilized to make a trade-off 

between under- and overcapacity, because the capacity planning does not necessarily 

have to consist of the point forecast.  

7. The optimal order selection depends on available time and capacity. For example, if CBB 

needs an extra biker for only one order, CBB needs to pay for the entire tour time instead 

of only the travel time. We excluded this information during the order selection because on 
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the operational level still can be decided not to select this one order and we did not want 

to make any assumptions about both order location and volume. It would require a priori 

knowledge about the capacity to deploy, or a lot of computational time to determine the 

number of tours, which is the desired output. However, it might be interesting to know the 

capacity optimum based on these constraints as well and compare the (robustness of the) 

results with the (robustness of the) current results. Hence, we recommend including these 

features in the order selection process, assigning locations randomly and order volume 

based on a probability function. The costs of adding an order are then determined on the 

number of tours instead of the travel time, e.g., with time and capacity feasibility checks. 

We suggest simulating this scenario multiple times to find statistically significant results. 

8. In case one of the RFR models is utilized, we recommend the following: 

a. The data on which the models are trained, reflect the current situation at CBB. 

However, to ensure that the model is still effective under changing circumstances, 

we recommend updating the training data with the newest data (and forgetting or 

diminishing the oldest data when the dataset is large enough), and retraining the 

model with this new dataset. For more information on such an adaptive learning 

framework, we refer to Akkerman & Mes (2022). This framework can directly be 

applied to the model trained on historical data. To update the model trained on 

generated data, new data should be generated considering the changed 

circumstances. Note that this only makes an impact on the order selection decision 

if the fixed costs do not overshadow the variable costs.  

b. We recommend being aware of the cyclical effect of this solution methodology. The 

distance approximation influences the tactical order selection and thus the capacity 

deployed. The capacity deployed influences the actual order selection. This data is 

used for the distance approximation, and thus influences the number of orders 

selected based on the (performance of the) distance approximation.  

9. Finally, we suggest researching the other two influenceable core problems as stated in 

Section 1.2.1. First, we observed that the forecast deviates from reality. In the current 

system, the capacity decision depends on the forecast. Consequently, Section 5.2.3.2 

stressed the importance of an accurate forecast. At the moment, the forecast of CBB is a 

derivative of the Coolblue wide forecast. Hence, we recommend researching how to obtain 

specific CBB forecast to increase the forecast accuracy. Second, we noticed that the 

current route planning algorithm is sub-optimal. The orders selected to be delivered have 

a direct impact on the costs per order. Although there is a research project (cherry-picking) 

going on, we recommend improving this planning within a short timeframe. We suggest 

extending this tactical level capacity model, as explained in Section 6.3.1, with the 

operational level restrictions, such as the available time and capacity, to utilize it as an 

operational route planning tool. This is a quick improvement to the current situation.  
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8 Appendices 
 

 Types of costs per order 
This appendix defines and explains the types of costs per order. Also, it argues for the chosen 
cost values and how the costs are divided over the hubs.  
 
Fixed costs 
 
Housing costs 
The housing costs are the costs of the hubs. CBB has three types of hubs. A hub can be in a 
Coolblue store, it can be attached to a CoolblueDelivers depot or it can be a stand-alone hub. 
Each format has different associated costs. We use the average housing costs per hub of 2022 
in our analysis. 
 
Office salary costs 
CBB has office employees to support the CBB delivery network. They monitor and improve the 
performance of CBB, but they have no direct added value. These salary costs are fixed since 
an in- or decrease in orders does not cause an (un)employment of office support.  
 
The office salary costs should be divided over all hubs. Roughly half the employees equally 
distribute their time over all the hubs, i.e., process engineers implementing innovation projects. 
These projects should be implemented on every hub, independent of the size of the hub. The 
other half of the employees spend their time proportional to the number of potential orders per 
hub, i.e., human resource employees. The more orders the hub is going to deliver, the more 
delivery men the hubs needs and thus the more work for human resource employees. Hence, 
we use the most representative salary costs, from December 2022, and divide half of the costs 
equally over the hubs and half of the costs proportional to the potential orders per hub. 
 
Hub lead costs 
Every hub has a lead or manager leading the operation. Their salary is fixed and we use the 
most representative salary costs per hub, from December 2022, in our analysis. 
 
Linehaul costs 
The line haul costs are the costs to transport the orders from the warehouse to the hubs. CBB 
transports these orders with a box truck or trailer. The costs consist of the travel cost per 
kilometre and the driver cost per hour. Furthermore, the costs depend on the number and the 
size of the orders transported, because this influences the total number of trucks and trailers 
necessary for transport. Every day delivery is necessary to ensure next day delivery.  
 
However, the number of orders fitting in a box truck or trailer is sufficient to cover the highest 
number of orders per day to be transported. Based on the expected value of the order volume 

(4298 𝑐𝑚3) of empirical probability distribution function based on historically observed orders 

in Hilversum (see Section 4.3.3.2), and the inner volume (964592 𝑐𝑚3)  of a roller container, 
we observe roughly 224 orders per roller container.  A box truck carries 45 roller containers 
and a trailer 10, so around 10080 or 2243 orders. With a maximum of 460 observed potential 
orders per day, we can safely assume that the line haul costs are fixed for simplification 
purposes, although officially they are variable costs. We use the average line haul costs of 
2022 per hub in our analysis. 
 
Other operating expenses 
Other operating expenses are several fixed expenses to keep the hubs from CBB up and 
running. An example is a hub’s computer expenses. The use of the other operating expenses 
per hub is proportional to the size of the hub, so we use the average other operating expenses 
of 2022 proportional to the potential orders per hub. 
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Variable costs  
 
Biker salary costs 
The biker salary is the salary of the delivery men of CBB. The more days the delivery men 
work, the higher their salaries. The delivery men are planned for a morning, an afternoon, an 
evening, a morning and afternoon or an afternoon and evening. In each day part, maximal one 
bike route is driven per delivery man. The salary per day part is fixed, so the more orders per 
hour are delivered by the delivery men, the less biker salary costs are passed on per order.   
 
We use the hourly salary costs of the most representative month, December 2022. Additional 
to the hours spent on the bike, the delivery men are also paid for the hours spent on the hub 
and the shrinkage hours (see Section 2.1.2). Furthermore, we cannot assume that all orders 
are delivered in the first try, because customers (or neighbours) might not be at home. Hence, 
we correct the hourly salary costs value such that it also accounts for the hours spent on the 
bike (80% of the working time), the hours spent on the hub (20% of the working time), the 
shrinkage hours (see Section 2.1.2) (additional 8% for holidays and 7% for absence on top of 
the working time), and the percentage not at home customers (2% of all the orders). CBB 
determined these percentages on historical data and uses those for their analyses. Hence, to 
be in line with their working methods, we use the same percentages.  
 
Vehicle maintenance costs 
The vehicle costs are the maintenance costs of the bikes. This includes preventive 
maintenance and ad hoc repairs. This maintenance occurs regularly, so the more orders per 
hour are delivered by the vehicles in this timespan, the fewer maintenance costs are passed 
on per order. The storage costs of the bikes are included in the housing costs because all 
depots have sufficient space to store the bikes. We use the average price per kilometre of 
2022 that Coolblue paid for the bikes in our analysis. 
 
Fraud/theft costs 
When fraud and theft occur, CBB pays for these costs. Prevention of fraud and theft does not 
relate to capacity planning, so we decided together with Coolblue that we cannot influence 
these costs. We use the average fraud/theft costs per order of 2022 in our analysis. 
 
Recruitment costs 
The recruitment costs are the costs to recruit new delivery men. These costs fluctuate based 
on the recruitment targets. If CBB needs a lot of new delivery men to deliver (more) orders, 
they have more costs than if they have sufficient delivery men. Therefore, we assume a linear 
relation and use the average recruitment costs per order of 2022 in our analysis. 
 
Allocated customer service costs 
The allocated customer service costs are the customer service costs from the CBB customers. 
Coolblue has one general customer service and allocates the costs to the responsible 
department. These costs are dependent on the general service provided, for example, if the 
delivery contains everything ordered or if the order arrived on time. We decided together with 
Coolblue that we cannot influence these costs with capacity planning. Hence, we use the 
average allocated customer service costs per order of 2022 in our analysis. 
 
Allocated costs process returns 
The allocated costs process return are the costs related to returning to the customer. This 
includes for example the costs to return to a customer when CBB could not deliver at the initial 
delivery date. Delivery is not possible when the customer is not at home and the neighbours 
neither. We decided together with Coolblue that we cannot influence these costs with capacity 
planning. We use the average costs process returns per order of 2022 in our analysis. 
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Other staffing costs 
Other staffing costs are clothing, coffee and tea costs from the staff. These costs increase 
when the number of staff increases and can be seen as additional biker salary costs. 
Therefore, the more orders are delivered per hour, the less staffing costs are passed on per 
order. We use the other staffing costs per hour of the most representative month, December 
2022. 
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 Feature orders selected per PC4 
This appendix explains the inclusion of the feature number of orders selected per PC4 in the 
machine learning model. We include the feature per PC4 in the RFR model. We test and 
compare the predictive performance of the RFR model on the hub in Hilversum in line with 
Section 5.1, because the RFR model turned out to have the best predictive performance. This 
means 45 extra features, one for every PC4 in Hilversum.  
 
Table 16 displays the out-of-sample performance metrics of the RFR model with the 45 extra 
features on the historical data, and the RFR models trained historical data (2) to compare with. 
Likewise, Table 17 shows the in-sample performance metrics. We observe a worse predictive 
performance from the RFR with extra features on all performance metrics.  Furthermore, the 

RFR model with extra features shows a high 𝑅2 on the training set and a way lower 𝑅2 on the 

test set. The difference is even bigger with the adjusted 𝑅2, which is adjusted for the number 
of features of the model. This indicates that the model is overfitted.  Hence, the inclusion of the 
45 extra features decreases the general predictive performance, the accuracy, and creates 
noise, which is an unrelated variation from the relation of the features with the response. 
Additionally, including 45 extra features make the model more complex.  
 
Table 16 Performance metrics on the test data set of RFR on Hilversum 

Hilversum Test Data RFR extra features (2) RFR (2) 

# Features 51 6 

rRMSE 11.25 % 10.44 % 

rMAE 8.35 % 8.03 % 

𝑅2 0.838 0.887 

Adjusted 𝑅2 0.754 0.881 

MAPE 8.77 % 8.67 % 

 
 
Table 17 Performance metrics on the train data set of RFR on Hilversum 

Hilversum Train Data RFR extra features (2) RFR (2) 

Features 51 6 

rRMSE 4.31 % 3.58 % 

rMAE 3.29 % 2.70 % 

𝑅2 0.977 0.983 

Adjusted 𝑅2 0.975 0.983 

MAPE 3.97 % 2.98 % 

 
Furthermore, we assess the feature importance of the RFR model with extra features. Figure 
47 shows the importance of each feature, where the individual PC4s are the 4 numbers on the 
x-axis. They represent the number of orders selected per PC4. A higher importance score 
indicates that the feature has a larger effect on the predictive performance of the model. 
Indeed, we observe that the 45 features are not extremely important. Hence, we decide to 
exclude these 45 features from the model. 
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Figure 47 Feature importance RFR with extra features on Hilversum 
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 Predictive performance grouped data on all hubs 
This appendix shows the predictive performance of Method RFR (2) trained on historically 
grouped data. We display the number of features, the tuned hyperparameters and the 
predictive performance of the small hubs RFR (2) model and the large hubs RFR (2) model in 
general and on each of the small and large hubs. The performance metrics are evaluated on 
unseen test data. Table 18 and Table 19 show the performance metrics of the model trained 
on the historical data of all the small hubs and Table 20 of the model trained on the historical 
data of all the large hubs. The general small hubs and large hubs models perform usually the 
best compared to the application of the models on an individual small or large hub. However, 
the hub in Eindhoven, Zwijndrecht and Rotterdam outperform the general method. Striking is 
that the hyperparameters are tuned to the same value. Generally speaking, the aggregated 
models have a more than sufficient predictive performance for each individual hub. This implies 
that if the RFR model trained grouped data works on one hub, it most likely works on all hubs. 
 
Table 18 Predictive performance of the RFR model on small hubs (1/2) 

 
Table 19 Predictive performance of the RFR model on small hubs (2/2) 

 
Table 20 Predictive performance of the RFR model on large hubs 

 

Small hubs Small hubs Hilversum Breda Deventer Eindhoven 

# features 6 6 6 6 6 

Max. number of 
features for splitting 

2 2 2 2 2 

Min. number of data 
points per leaf node 

1 1 1 1 1 

rRMSE 11.50 % 10.46 % 9.74 % 15.11 % 10.98 % 

rMAE 8.50 % 8.64 % 7.87 % 11.41 % 7.91 % 

Adjusted 𝑅2 0.949 0.873 0.909 0.905 0.958 

MAPE 9.98 % 9.78 % 8.40 % 14.47 % 9.32 % 

Small hubs Groningen Haarlem Leiderdorp Tilburg Veenendaal Zwijndrecht 

# features 6 6 6 6 6 6 

Max. number 
of features 
for splitting 

2 2 2 2 2 2 

Min. number 
of data points 
per leaf node 

1 1 1 1 1 1 

rRMSE 15.04 % 11.03 % 12.20 % 11.19 % 15.00 % 7.05 % 

rMAE 9.94 % 8.95 % 7.74 % 8.44 % 12.29 % 4.80 % 

Adjusted 𝑅2 0.912 0.950 0.962 0.937 0.773 0.963 

MAPE 10.42 % 12.48 % 7.72 % 9.78 % 13.96 % 5.06 % 

Large hubs Large hubs Den Haag Utrecht Amsterdam Rotterdam 

# features 6 6 6 6 6 

Max. number of 
features for splitting 

3 
3 3 3 3 

Min. number of data 
points per leaf node 

1 
1 1 1 1 

rRMSE 9.20 % 8.34 % 9.42 % 9.47 % 8.87 % 

rMAE 6.64 % 6.33 % 7.04 % 6.39 % 6.38 % 

Adjusted 𝑅2 0.975 0.972 0.960 0.982 0.977 

MAPE 8.14 % 7.47% 7.75 % 8.66 % 7.99 % 
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 Estimation of the PC4 order distributions  
 
Table 21 summarizes per PC4 the Chi-square p-values and the estimated parameters of the 
negative binomial distribution. Table 22 shows the Chi-square p-values that indicate the 
goodness of fit of the Poisson, binomial, geometric and negative binomial distributions, only 
for the PC4s for which we did not observe significant evidence to state that there is distribution 
is negative binomial. 
 
Table 21 PC4 p-value and estimated parameters negative binomial distribution 

PC4 P-value Mu Size P 

1211 0.9419 5.245651 10.17014 0.659722 

1213 0.9786 5.951209 10.39119 0.635842 

1214 0.9786 3.683974 5.695433 0.607227 

1215 0.7856 5.671792 7.142007 0.557368 

1216 0.7738 4.433641 8.118164 0.646773 

1217 0.9594 7.083798 7.73096 0.521842 

1218 0.5376 1.889235 40.37072 0.955295 

1221 0.8881 3.94815 6.305357 0.614946 

1222 0.8524 4.620472 7.274529 0.611562 

1223 0.5338 5.631133 8.810972 0.610089 

1241 0.8746 3.141305 10.98077 0.777561 

1251 0.9973 6.572892 8.160366 0.553874 

1261 0.8595 6.231571 7.733758 0.553783 

1271 0.9866 5.098274 7.218504 0.586071 

1272 0.7319 4.00169 9.647113 0.70681 

1273 0.8762 3.702005 9.713948 0.724059 

1274 0.6277 2.880728 11.7307 0.802844 

1276 0.3409 2.788455 11.11355 0.799421 

1394 0.7902 2.96323 8.951957 0.751306 

1399 0.07361 1.86169 11480.98 0.999838 

1401 0.289 3.438727 9.118024 0.726145 

1402 0.7258 5.115522 7.615918 0.598198 

1403 0.7849 3.657508 8.634452 0.702447 

1404 0.2514 2.223278 53.17654 0.959868 

1405 0.2233 2.267656 17.0156 0.882403 

1406 0.3426 2.260786 11.2495 0.832662 

1411 0.9949 6.573633 9.499253 0.591011 

1412 0.7998 4.957732 7.822675 0.612083 

3632 0.7722 2.613093 13.64324 0.839257 

3741 0.9238 4.78625 11.35863 0.703544 

3742 0.8438 4.057835 8.188722 0.668655 

3743 0.7216 3.290725 13.49486 0.803955 

3755 0.9604 5.041061 10.22055 0.66969 

3761 0.9319 2.400232 26.37429 0.916585 

3762 0.8829 3.928855 3.541119 0.474047 

3764 0.9873 1.999756 11.82691 0.85537 

 



 

88 
 

Table 22 P-values of the Chi-square test of 4 discrete distributions 

PC4  Poisson p-value Binomial p-value Geometric p-value Negative Binomial 
p-value 

1212 0.005229 3.33E-04 1.83E-43 0.004473 

1243 7.09E-12 2.43E-06 5.68E-55 0.004472585 

1244 6.332332e-08 1.43E-04 4.06E-51 0.004472585 

1252 4.820363e-10 4.820363e-10 4.820363e-10 4.820363e-10 

1262 3.922460e-06 3.922460e-06 3.922460e-06 3.922460e-06 

1275 5.106583e-09 5.106583e-09 5.106583e-09 5.106583e-09 

1277 4.069923e-04 4.069923e-04 4.069923e-04 4.069923e-04 

3633 1.417649e-06 1.417649e-06 1.417649e-06 1.417649e-06 

3744 8.512302e-11 8.512302e-11 8.512302e-11 8.512302e-11 
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 Additional performance metrics of the conducted experiments 
In this appendix, we report the median and interquartile range of the distance, travel time, 
number of routes, number of postal codes and the orders deliver per hour belonging to the 
experiments, replicated 10 times, conducted in Section 5.2.2. We show the metrics per order 
selection method. The metrics are retrieved by selecting orders with the respective order 
selection method and solving the CVRP with the solver in Python, such that we can compare 
and validate the methods mutually. Table 23 and Table 24 show the performance metrics of 
the order selection Method ‘Optimal levels’, Table 25 and Table 26 of the Method Daganzo, 
Table 27 and Table 28 of the Method RFR (1), and Table 29 and Table 30 of Method RFR (2). 
 
We define the metrics as follows. The distance is the total daily distance of all bike routes in 
kilometres. The travel time is the total daily travel time of all bike routes in minutes, which 
includes the stop time at an order. The number of routes is the number of bike routes necessary 
to deliver the selected orders. Note that this number is not necessarily the same as the number 
of bikes per day, since bikes can be reused in the morning, afternoon and evening. The orders 
per hour is the number of orders delivered per hour and indicates the route efficiency of the 
order selection. Here, more orders per hour mean a higher route efficiency. The number of 
PC4s is the number of PC4s in which we deliver orders. Finally, the necessary time in minutes 
is the total time we need the delivery men, and thus the delivery men minutes. It accounts for 
the hours spent on the bike (80% of the working time), the hours spend on the hub (20% of the 
working time), the shrinkage hours (see Section 2.1.2) (an additional 8% for holidays and 7% 
for absence on top of the working time), and the percentage not at home customers (2% of all 
the orders). We refer to Appendix A for more information about the necessary time. 
 
Method ‘Optimal levels’ 
 
Table 23 Performance metrics Method ‘Optimal levels’ (1/2) 

# potential 
orders 

Distance (km) Travel time (min.) # routes 

Q2 Q1-Q3 Q2 Q1-Q3 Q2 Q1-Q3 

20 49.56 49.56 - 52.86 197.9 197.9 - 214.03 1 1 - 2 

40 70.2 70.2 - 73.9 310.51 310.51 - 321.17 2 2 - 2 

60 74.87 74.87 - 79.35 366.01 366.01 - 378.92 2 2 - 2 

80 89.39 89.39 - 91.63 450.66 450.66 - 460.36 3 3 - 3 

100 97.95 97.95 - 99.05 518.7 518.7 - 527.87 3 3 - 3 

120 105.16 105.16 - 105.93 593.89 593.89 - 595.34 4 4 - 4 

140 111.42 111.42 - 118.72 653.71 653.71 - 675.67 4 4 - 4 

160 117.2 117.2 - 121.91 718.01 718.01 - 723.76 5 5 - 5 

180 128.49 128.49 - 134.25 790.41 790.41 - 820.17 5 5 - 5 

200 139.16 139.16 - 147.93 861.8 861.8 - 886.25 6 6 - 6 

220 147.81 147.81 - 149.42 937.16 937.16 - 963.11 6 6 - 6 

240 157.86 157.86 - 158.34 1019.41 1019.41 - 1030.21 7 7 - 7 

260 163.4 163.4 - 170.57 1083 1083 - 1084.13 7 7 - 7 

280 171.69 171.69 - 182.51 1148.58 1148.58 - 1157.5 8 8 - 8 

300 179.72 179.72 - 183.21 1205.57 1205.57 - 1226.59 8 8 - 8 

320 194.95 194.95 - 201.54 1301.11 1301.11 - 1316.39 9 9 - 9 

340 202.42 202.42 - 214.95 1370.8 1370.8 - 1412.2 9 9 - 10 

360 207.12 207.12 - 215.36 1401.59 1401.59 - 1440.32 10 10 - 10 

380 226.77 226.77 - 234.57 1525.78 1525.78 - 1554.59 11 11 - 11 

400 226.27 226.27 - 236.02 1589.91 1589.91 - 1603.39 11 11 - 11 

420 230.14 230.14 - 237.05 1631.6 1631.6 - 1653.75 11 11 - 12 
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440 241.46 241.46 - 251.49 1715.31 1715.31 - 1742.62 12 12 - 12 

460 251.25 251.25 - 258.16 1799.34 1799.34 - 1816.57 12 12 - 13 

480 250.82 250.82 - 251.72 1820.82 1820.82 - 1832.32 12 12 - 12 

500 270.63 270.63 - 278.15 1914.13 1914.13 - 1936.47 14 14 - 14 

520 281.8 281.8 - 284.35 2016.12 2016.12 - 2022.86 14 14 - 14 

540 288.56 288.56 - 300.62 2075.72 2075.72 - 2091.24 14 14 - 15 

560 290.79 290.79 - 299.3 2111.4 2111.4 - 2166.62 15 15 - 15 

580 301.64 301.64 - 311.6 2188.57 2188.57 - 2234.97 15 15 - 16 

600 309.49 309.49 - 319.96 2252 2252 - 2287.33 16 16 - 16 

620 317.8 317.8 - 336.96 2298.95 2298.95 - 2429 17 17 - 17 

640 335.47 335.47 - 344.72 2435.12 2435.12 - 2464.8 17 17 - 18 

660 335.27 335.27 - 349.86 2492.12 2492.12 - 2527.47 18 18 - 18 

680 339.26 339.26 - 348.76 2538.64 2538.64 - 2562.77 18 18 - 19 

 
Table 24 Performance metrics Method ‘Optimal levels’ (2/2) 

# potential 
orders 

Orders per hour # PC4s Necessary time (min) 

Q2 Q1-Q3 Q2 Q1-Q3 Q2 Q1-Q3 

20 5.48 5.48 - 5.89 17 17 - 19 288.86 288.86 - 312.41 

40 7.45 7.45 - 7.59 27 27 - 28 453.23 453.23 - 468.78 

60 9.17 9.17 - 9.34 30 30 - 31 534.24 534.24 - 553.08 

80 9.74 9.74 - 10 35 35 - 36 657.8 657.8 - 671.95 

100 10.88 10.88 - 10.9 37 37 - 37 757.1 757.1 - 770.49 

120 11.56 11.56 - 11.65 37 37 - 38 866.85 866.85 - 868.97 

140 12.12 12.12 - 12.18 37 37 - 38 954.16 954.16 - 986.22 

160 12.61 12.61 - 12.77 36 36 - 37 1048.02 1048.02 - 1056.42 

180 12.89 12.89 - 13.13 38 38 - 38 1153.7 1153.7 - 1197.13 

200 13 13 - 13.35 37 37 - 37 1257.9 1257.9 - 1293.59 

220 13.28 13.28 - 13.39 37 37 - 38 1367.9 1367.9 - 1405.78 

240 13.41 13.41 - 13.56 38 38 - 38 1487.95 1487.95 - 1503.71 

260 13.63 13.63 - 14.04 37 37 - 38 1580.77 1580.77 - 1582.42 

280 13.94 13.94 - 14.01 38 38 - 38 1676.48 1676.48 - 1689.52 

300 14.13 14.13 - 14.3 37 37 - 38 1759.68 1759.68 - 1790.36 

320 13.89 13.89 - 14.45 37 37 - 39 1899.12 1899.12 - 1921.43 

340 13.92 13.92 - 14.13 37 37 - 38 2000.84 2000.84 - 2061.27 

360 14.3 14.3 - 14.53 36 36 - 37 2045.79 2045.79 - 2102.32 

380 14.08 14.08 - 14.38 38 38 - 38 2227.05 2227.05 - 2269.1 

400 14.4 14.4 - 14.6 37 37 - 37 2320.67 2320.67 - 2340.34 

420 14.63 14.63 - 14.8 37 37 - 38 2381.51 2381.51 - 2413.85 

440 14.46 14.46 - 14.59 37 37 - 38 2503.7 2503.7 - 2543.57 

460 14.61 14.61 - 14.69 36 36 - 37 2626.35 2626.35 - 2651.5 

480 14.88 14.88 - 14.99 36 36 - 37 2657.71 2657.71 - 2674.49 

500 14.55 14.55 - 14.84 37 37 - 39 2793.9 2793.9 - 2826.51 

520 14.8 14.8 - 14.82 37 37 - 38 2942.77 2942.77 - 2952.61 

540 14.71 14.71 - 14.85 37 37 - 38 3029.76 3029.76 - 3052.42 

560 14.95 14.95 - 14.99 37 37 - 38 3081.84 3081.84 - 3162.45 

580 15.02 15.02 - 15.2 37 37 - 38 3194.48 3194.48 - 3262.21 



 

91 
 

600 14.88 14.88 - 15.18 38 38 - 38 3287.06 3287.06 - 3338.64 

620 14.94 14.94 - 15.14 37 37 - 38 3355.6 3355.6 - 3545.41 

640 14.92 14.92 - 15.05 38 38 - 38 3554.36 3554.36 - 3597.67 

660 15.01 15.01 - 15.25 37 37 - 38 3637.55 3637.55 - 3689.15 

680 15.15 15.15 - 15.29 38 38 - 38 3705.45 3705.45 - 3740.67 

 
Method Daganzo 
 
Table 25 Performance metrics Method Daganzo (1/2) 

# potential 
orders 

Distance (km) Travel time (min.) # routes 

Q2 Q1-Q3 Q2 Q1-Q3 Q2 Q1-Q3 

20 60.13 60.13 - 68.55 236.11 236.11 - 262.16 2 2 - 2 

40 80.71 80.71 - 84.39 347.11 347.11 - 357.88 2 2 - 2 

60 92.98 92.98 - 94.11 428.96 428.96 - 434.52 3 3 - 3 

80 105.26 105.26 - 108.32 511.89 511.89 - 522.84 3 3 - 3 

100 113.16 113.16 - 114.52 582.71 582.71 - 585.09 3 3 - 3 

120 123.05 123.05 - 126.97 660.92 660.92 - 672.06 4 4 - 4 

140 131.29 131.29 - 133.92 731.11 731.11 - 738.4 4 4 - 5 

160 135.88 135.88 - 136.36 784.7 784.7 - 794.68 5 5 - 5 

180 150.1 150.1 - 150.24 872.68 872.68 - 882.14 5 5 - 5 

200 156.64 156.64 - 160.18 932.46 932.46 - 961.35 6 6 - 6 

220 167.23 167.23 - 169.01 1023.78 1023.78 - 1035.02 6 6 - 6 

240 174.91 174.91 - 178.07 1083.91 1083.91 - 1085.18 7 7 - 7 

260 178.31 178.31 - 184.89 1128.28 1128.28 - 1158.48 8 8 - 8 

280 191.29 191.29 - 195.17 1223.98 1223.98 - 1244.52 8 8 - 8 

300 194.42 194.42 - 202.66 1269.9 1269.9 - 1302.37 8 8 - 9 

320 210.05 210.05 - 215.15 1370.55 1370.55 - 1383 9 9 - 9 

340 221.1 221.1 - 228.69 1457.81 1457.81 - 1467.42 10 10 - 10 

360 235.94 235.94 - 241.06 1547.9 1547.9 - 1560.03 10 10 - 11 

380 247.53 247.53 - 251.94 1617.23 1617.23 - 1647.71 11 11 - 11 

400 247.76 247.76 - 255.69 1671.71 1671.71 - 1695.6 11 11 - 12 

420 258.94 258.94 - 268.86 1751.45 1751.45 - 1791.59 12 12 - 12 

440 264.3 264.3 - 270.15 1806.41 1806.41 - 1839.43 12 12 - 13 

460 272.58 272.58 - 278.59 1884.85 1884.85 - 1916.57 12 12 - 13 

480 269.71 269.71 - 273.21 1900.85 1900.85 - 1911.61 12 12 - 13 

500 289.03 289.03 - 307.41 2000.81 2000.81 - 2040.8 14 14 - 15 

520 286.65 286.65 - 310.32 2042.33 2042.33 - 2144.43 14 14 - 14 

540 313.09 313.09 - 322.55 2140.68 2140.68 - 2215.94 15 15 - 16 

560 314.24 314.24 - 324.48 2213.38 2213.38 - 2277.47 15 15 - 16 

580 323.97 323.97 - 334.53 2279.44 2279.44 - 2339.1 15 15 - 17 

600 330.4 330.4 - 339.39 2369.69 2369.69 - 2378.39 16 16 - 16 

620 358.34 358.34 - 363.04 2510.21 2510.21 - 2529.25 18 18 - 18 

640 351.05 351.05 - 355.52 2526.75 2526.75 - 2559.51 18 18 - 18 

660 349.13 349.13 - 362.72 2582.05 2582.05 - 2602.92 18 18 - 18 

680 357.86 357.86 - 367.44 2613.99 2613.99 - 2657.41 18 18 - 19 
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Table 26 Performance metrics Method Daganzo (2/2) 

# potential 
orders 

Orders per hour # PC4s Necessary time (min) 

Q2 Q1-Q3 Q2 Q2 Q2 Q2 

20 5.08 5.08 - 5.61 19 19 - 20 344.63 344.63 - 382.66 

40 6.91 6.91 - 7.17 29 29 - 30 506.65 506.65 - 522.37 

60 8.28 8.28 - 8.47 33 33 - 33 626.12 626.12 - 634.24 

80 9.27 9.27 - 9.38 39 39 - 40 747.16 747.16 - 763.15 

100 10.25 10.25 - 10.47 40 40 - 41 850.53 850.53 - 854.01 

120 10.89 10.89 - 10.96 39 39 - 42 964.69 964.69 - 980.95 

140 11.49 11.49 - 11.49 40 40 - 42 1067.15 1067.15 - 1077.78 

160 12.08 12.08 - 12.13 40 40 - 40 1145.36 1145.36 - 1159.92 

180 12.28 12.28 - 12.41 42 42 - 42 1273.78 1273.78 - 1287.59 

200 12.49 12.49 - 12.85 40 40 - 40 1361.04 1361.04 - 1403.2 

220 12.87 12.87 - 12.89 41 41 - 41 1494.33 1494.33 - 1510.73 

240 12.96 12.96 - 13.22 41 41 - 42 1582.1 1582.1 - 1583.95 

260 13.23 13.23 - 13.47 39 39 - 41 1646.86 1646.86 - 1690.94 

280 13.5 13.5 - 13.57 41 41 - 43 1786.55 1786.55 - 1816.52 

300 13.84 13.84 - 13.92 41 41 - 41 1853.56 1853.56 - 1900.96 

320 13.57 13.57 - 14.04 41 41 - 42 2000.48 2000.48 - 2018.65 

340 13.54 13.54 - 14.03 40 40 - 42 2127.85 2127.85 - 2141.88 

360 13.95 13.95 - 14.19 40 40 - 41 2259.35 2259.35 - 2277.05 

380 13.75 13.75 - 14.06 41 41 - 41 2360.53 2360.53 - 2405.03 

400 14.15 14.15 - 14.33 40 40 - 42 2440.06 2440.06 - 2474.94 

420 14.15 14.15 - 14.54 39 39 - 40 2556.45 2556.45 - 2615.04 

440 14.25 14.25 - 14.36 40 40 - 41 2636.68 2636.68 - 2684.86 

460 14.4 14.4 - 14.62 38 38 - 40 2751.17 2751.17 - 2797.47 

480 14.63 14.63 - 14.71 38 38 - 39 2774.52 2774.52 - 2790.22 

500 14.48 14.48 - 14.64 40 40 - 42 2920.42 2920.42 - 2978.79 

520 14.55 14.55 - 14.67 39 39 - 40 2981.03 2981.03 - 3130.05 

540 14.41 14.41 - 14.79 40 40 - 42 3124.59 3124.59 - 3234.43 

560 14.75 14.75 - 14.81 39 39 - 42 3230.7 3230.7 - 3324.24 

580 14.76 14.76 - 14.92 40 40 - 41 3327.11 3327.11 - 3414.2 

600 14.76 14.76 - 15.08 40 40 - 41 3458.85 3458.85 - 3471.55 

620 14.63 14.63 - 14.76 41 41 - 42 3663.95 3663.95 - 3691.75 

640 14.7 14.7 - 14.9 40 40 - 41 3688.1 3688.1 - 3735.91 

660 14.94 14.94 - 15.06 38 38 - 41 3768.82 3768.82 - 3799.27 

680 14.85 14.85 - 15.15 39 39 - 39 3815.43 3815.43 - 3878.8 

 
Method RFR (1) 
 
Table 27 Performance metrics Method RFR (1) (1/2) 

# potential 
orders 

Distance (km) Travel time (min.) # routes 

Q2 Q1-Q3 Q2 Q1-Q3 Q2 Q1-Q3 

20 60.13 60.13 - 68.55 236.11 236.11 - 262.16 2 2 - 2 

40 80.71 80.71 - 84.39 347.11 347.11 - 357.88 2 2 - 2 

60 92.98 92.98 - 95.27 428.96 428.96 - 434.52 3 3 - 3 
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80 105.18 105.18 - 108.32 508.78 508.78 - 522.01 3 3 - 3 

100 111.55 111.55 - 114.52 573.21 573.21 - 585.09 3 3 - 3 

120 123.05 123.05 - 124.08 653.45 653.45 - 660.51 4 4 - 4 

140 130.94 130.94 - 132.29 723.41 723.41 - 731.32 4 4 - 5 

160 132.44 132.44 - 134.61 770.87 770.87 - 775.96 5 5 - 5 

180 150.24 150.24 - 151.43 877.25 877.25 - 881.54 5 5 - 5 

200 156.93 156.93 - 159.37 933.38 933.38 - 952.29 6 6 - 6 

220 158.61 158.61 - 160.82 981.76 981.76 - 997.55 6 6 - 6 

240 176.99 176.99 - 179.38 1080.9 1080.9 - 1105.85 7 7 - 7 

260 175.84 175.84 - 184.85 1120.56 1120.56 - 1150.58 7 7 - 8 

280 189.47 189.47 - 197.22 1225.19 1225.19 - 1252.51 8 8 - 8 

300 194.85 194.85 - 198.65 1266.89 1266.89 - 1294.45 8 8 - 8 

320 214.21 214.21 - 219.61 1382.36 1382.36 - 1408.89 9 9 - 10 

340 221.38 221.38 - 229.95 1450.4 1450.4 - 1466.13 9 9 - 10 

360 224.81 224.81 - 239.77 1485.83 1485.83 - 1553.97 10 10 - 11 

380 244.68 244.68 - 247.14 1567.87 1567.87 - 1631.37 11 11 - 11 

400 241.86 241.86 - 260.24 1639.5 1639.5 - 1699.04 11 11 - 12 

420 245.18 245.18 - 264.06 1673.67 1673.67 - 1777.11 11 11 - 13 

440 259.31 259.31 - 271.21 1776.27 1776.27 - 1842.03 12 12 - 12 

460 263.09 263.09 - 278.38 1859.62 1859.62 - 1911.78 12 12 - 13 

480 270.76 270.76 - 273.38 1863.26 1863.26 - 1945.64 12 12 - 13 

500 296.9 296.9 - 305.27 2039.5 2039.5 - 2067.26 14 14 - 15 

520 303.29 303.29 - 310.67 2123.61 2123.61 - 2137.73 14 14 - 14 

540 311.02 311.02 - 330.51 2160.05 2160.05 - 2246.25 15 15 - 16 

560 321.88 321.88 - 327.46 2264.93 2264.93 - 2277.85 16 16 - 16 

580 336.76 336.76 - 350.25 2364.75 2364.75 - 2402.69 16 16 - 17 

600 333.26 333.26 - 338.32 2372.79 2372.79 - 2398.6 16 16 - 16 

620 359.39 359.39 - 366.47 2528.84 2528.84 - 2537.11 18 18 - 18 

640 368.44 368.44 - 377.66 2592.27 2592.27 - 2623.23 18 18 - 18 

660 365.71 365.71 - 375.79 2637.61 2637.61 - 2661.48 18 18 - 19 

680 371.85 371.85 - 383.7 2697.85 2697.85 - 2752.61 19 19 - 20 

 
Table 28 Performance metrics Method RFR (2) (2/2) 

# potential 
orders 

Orders per hour # PC4s Necessary time (min) 

Q2 Q1-Q3 Q2 Q1-Q3 Q2 Q1-Q3 

20 5.08 5.08 - 5.61 19 19 - 20 344.63 344.63 - 382.66 

40 6.91 6.91 - 7.04 29 29 - 30 506.65 506.65 - 522.37 

60 8.28 8.28 - 8.51 32 32 - 33 626.12 626.12 - 634.24 

80 9.2 9.2 - 9.34 38 38 - 39 742.63 742.63 - 761.94 

100 10.25 10.25 - 10.44 39 39 - 41 836.67 836.67 - 854.01 

120 10.84 10.84 - 10.9 38 38 - 40 953.79 953.79 - 964.09 

140 11.46 11.46 - 11.5 40 40 - 41 1055.91 1055.91 - 1067.45 

160 11.94 11.94 - 12.15 38 38 - 39 1125.18 1125.18 - 1132.61 

180 12.29 12.29 - 12.69 42 42 - 43 1280.46 1280.46 - 1286.72 

200 12.54 12.54 - 12.82 39 39 - 41 1362.39 1362.39 - 1389.98 

220 12.8 12.8 - 12.9 39 39 - 40 1433 1433 - 1456.04 
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240 13.02 13.02 - 13.15 40 40 - 42 1577.71 1577.71 - 1614.12 

260 13.24 13.24 - 13.45 38 38 - 42 1635.59 1635.59 - 1679.41 

280 13.46 13.46 - 13.61 40 40 - 43 1788.31 1788.31 - 1828.19 

300 13.7 13.7 - 13.91 40 40 - 41 1849.18 1849.18 - 1889.4 

320 13.63 13.63 - 13.9 41 41 - 42 2017.73 2017.73 - 2056.45 

340 13.46 13.46 - 14.07 40 40 - 41 2117.03 2117.03 - 2140 

360 13.97 13.97 - 14.19 39 39 - 41 2168.75 2168.75 - 2268.21 

380 13.74 13.74 - 13.98 40 40 - 41 2288.49 2288.49 - 2381.19 

400 14.07 14.07 - 14.23 40 40 - 41 2393.05 2393.05 - 2479.95 

420 14.27 14.27 - 14.54 39 39 - 40 2442.92 2442.92 - 2593.9 

440 14.2 14.2 - 14.33 41 41 - 41 2592.68 2592.68 - 2688.66 

460 14.44 14.44 - 14.6 39 39 - 40 2714.34 2714.34 - 2790.47 

480 14.59 14.59 - 14.72 38 38 - 40 2719.65 2719.65 - 2839.89 

500 14.51 14.51 - 14.71 40 40 - 42 2976.9 2976.9 - 3017.42 

520 14.54 14.54 - 14.69 40 40 - 41 3099.66 3099.66 - 3120.27 

540 14.37 14.37 - 14.82 40 40 - 42 3152.85 3152.85 - 3278.67 

560 14.75 14.75 - 14.81 41 41 - 42 3305.94 3305.94 - 3324.79 

580 14.72 14.72 - 14.9 41 41 - 42 3451.64 3451.64 - 3507.02 

600 14.75 14.75 - 15.11 40 40 - 41 3463.37 3463.37 - 3501.05 

620 14.66 14.66 - 14.76 42 42 - 42 3691.14 3691.14 - 3703.22 

640 14.71 14.71 - 14.86 41 41 - 42 3783.73 3783.73 - 3828.91 

660 14.88 14.88 - 15.16 39 39 - 41 3849.91 3849.91 - 3884.75 

680 14.82 14.82 - 15.12 41 41 - 42 3937.83 3937.83 - 4017.77 

 
Method RFR (2) 
 
Table 29 Performance metrics Method RFR (2) (1/2) 

# potential 
orders 

Distance (km) Travel time (min.) # routes 

Q2 Q1-Q3 Q2 Q1-Q3 Q2 Q1-Q3 

20 60.13 60.13 - 68.55 236.11 236.11 - 262.16 2 2 - 2 

40 80.71 80.71 - 84.39 347.11 347.11 - 357.88 2 2 - 2 

60 94.02 94.02 - 95.45 434.52 434.52 - 438.47 3 3 - 3 

80 104.95 104.95 - 107.59 511.89 511.89 - 515.86 3 3 - 3 

100 112.29 112.29 - 114.52 563.25 563.25 - 585.09 3 3 - 3 

120 123.03 123.03 - 126.97 658.21 658.21 - 670.93 4 4 - 4 

140 131.29 131.29 - 135.59 731.32 731.32 - 739.71 5 5 - 5 

160 134.12 134.12 - 135.83 775.97 775.97 - 788.63 5 5 - 5 

180 148.43 148.43 - 150.77 869.45 869.45 - 878.58 5 5 - 5 

200 158.83 158.83 - 160.66 938.09 938.09 - 949.36 6 6 - 6 

220 165.68 165.68 - 166.49 1010.15 1010.15 - 1027.09 6 6 - 6 

240 177.31 177.31 - 180.07 1099.89 1099.89 - 1109.52 7 7 - 7 

260 178.7 178.7 - 181.17 1121.75 1121.75 - 1149.03 8 8 - 8 

280 184.77 184.77 - 190.92 1192.85 1192.85 - 1229.59 8 8 - 8 

300 192.66 192.66 - 199.94 1265.65 1265.65 - 1284.49 8 8 - 8 

320 210.18 210.18 - 215.61 1364.62 1364.62 - 1371.04 9 9 - 9 

340 221.7 221.7 - 227.47 1449.63 1449.63 - 1468.12 9 9 - 10 

360 221.49 221.49 - 225.03 1473.56 1473.56 - 1486.53 10 10 - 10 
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380 242.66 242.66 - 249.94 1591.03 1591.03 - 1637.28 11 11 - 11 

400 240.35 240.35 - 255.96 1644.86 1644.86 - 1677.96 11 11 - 11 

420 250.77 250.77 - 256.36 1696.79 1696.79 - 1710.7 11 11 - 12 

440 260.73 260.73 - 272.58 1800.17 1800.17 - 1846.42 12 12 - 12 

460 260.08 260.08 - 264.43 1816.59 1816.59 - 1864.74 12 12 - 13 

480 265.85 265.85 - 273.1 1889.71 1889.71 - 1919.99 13 13 - 13 

500 283.41 283.41 - 301.47 1989.5 1989.5 - 2040.16 14 14 - 14 

520 289 289 - 302.47 2041.51 2041.51 - 2092.57 14 14 - 14 

540 310.69 310.69 - 322.17 2150.31 2150.31 - 2196.44 15 15 - 15 

560 320.15 320.15 - 323.56 2261.63 2261.63 - 2274.54 15 15 - 16 

580 320.68 320.68 - 334.34 2288.51 2288.51 - 2330.99 15 15 - 17 

600 331.41 331.41 - 339.72 2379.19 2379.19 - 2392.71 16 16 - 17 

620 355.46 355.46 - 357.65 2493.02 2493.02 - 2517.89 17 17 - 18 

640 350 350 - 363.03 2527.01 2527.01 - 2542.42 18 18 - 18 

660 355.81 355.81 - 362.26 2587.6 2587.6 - 2593.99 18 18 - 18 

680 368.45 368.45 - 375.31 2651.82 2651.82 - 2683.72 19 19 - 19 

 
Table 30 Performance metrics Method RFR (2) (2/2) 

# potential 
orders 

Orders per hour # PC4s Necessary time (min) 

Q2 Q1-Q3 Q2 Q1-Q3 Q2 Q1-Q3 

20 5.08 5.08 - 5.61 19 19 - 20 236.11 236.11 - 262.16 

40 6.91 6.91 - 7.17 29 29 - 30 347.11 347.11 - 357.88 

60 8.28 8.28 - 8.51 33 33 - 33 434.52 434.52 - 438.47 

80 9.36 9.36 - 9.44 38 38 - 39 511.89 511.89 - 515.86 

100 10.13 10.13 - 10.42 39 39 - 39 563.25 563.25 - 585.09 

120 10.84 10.84 - 10.9 39 39 - 42 658.21 658.21 - 670.93 

140 11.38 11.38 - 11.5 40 40 - 41 731.32 731.32 - 739.71 

160 11.95 11.95 - 12.06 39 39 - 40 775.97 775.97 - 788.63 

180 12.29 12.29 - 12.56 40 40 - 42 869.45 869.45 - 878.58 

200 12.58 12.58 - 12.79 40 40 - 41 938.09 938.09 - 949.36 

220 12.85 12.85 - 12.98 41 41 - 42 1010.15 1010.15 - 1027.09 

240 13.02 13.02 - 13.09 41 41 - 42 1099.89 1099.89 - 1109.52 

260 13.21 13.21 - 13.42 38 38 - 40 1121.75 1121.75 - 1149.03 

280 13.43 13.43 - 13.57 40 40 - 41 1192.85 1192.85 - 1229.59 

300 13.89 13.89 - 13.89 40 40 - 40 1265.65 1265.65 - 1284.49 

320 13.64 13.64 - 13.92 41 41 - 41 1364.62 1364.62 - 1371.04 

340 13.49 13.49 - 13.96 39 39 - 40 1449.63 1449.63 - 1468.12 

360 13.91 13.91 - 14.21 39 39 - 40 1473.56 1473.56 - 1486.53 

380 13.69 13.69 - 14.08 41 41 - 41 1591.03 1591.03 - 1637.28 

400 14.11 14.11 - 14.37 40 40 - 41 1644.86 1644.86 - 1677.96 

420 14.28 14.28 - 14.42 39 39 - 40 1696.79 1696.79 - 1710.7 

440 14.21 14.21 - 14.3 40 40 - 41 1800.17 1800.17 - 1846.42 

460 14.5 14.5 - 14.62 37 37 - 40 1816.59 1816.59 - 1864.74 

480 14.71 14.71 - 14.78 39 39 - 40 1889.71 1889.71 - 1919.99 

500 14.36 14.36 - 14.76 39 39 - 40 1989.5 1989.5 - 2040.16 

520 14.61 14.61 - 14.72 40 40 - 41 2041.51 2041.51 - 2092.57 
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540 14.31 14.31 - 14.72 40 40 - 42 2150.31 2150.31 - 2196.44 

560 14.77 14.77 - 14.81 41 41 - 42 2261.63 2261.63 - 2274.54 

580 14.75 14.75 - 14.99 41 41 - 41 2288.51 2288.51 - 2330.99 

600 14.85 14.85 - 15.08 41 41 - 41 2379.19 2379.19 - 2392.71 

620 14.73 14.73 - 14.87 41 41 - 42 2493.02 2493.02 - 2517.89 

640 14.78 14.78 - 14.86 41 41 - 41 2527.01 2527.01 - 2542.42 

660 14.91 14.91 - 15.06 39 39 - 41 2587.6 2587.6 - 2593.99 

680 14.82 14.82 - 15.14 40 40 - 42 2651.82 2651.82 - 2683.72 

  



 

97 
 

 Assumption normal distribution 
We state in Section 5.2.2 that we cannot assume a normal distribution for the order selections 
retrieved from the simulation. Hence, we show what the effect is of not assuming a normal 
distribution, and how this might have affected our results. Accordingly, we conduct a paired t-
test with a significance level of 5% between the order selections, i.e., we assume a normal 
distribution (~𝑁(𝜇, 𝜎)), and we conduct a Wilcoxon Signed Rank Test with a significance level 
of 5%, i.e., a non-parametric statistical hypothesis that does not assume normality in the data 
(≠ 𝑁(𝜇, 𝜎)). 
 
Table 31 shows for 40, 140 and 460 potential orders if the difference in order selection retrieved 
by two individual methods is significant or not, based on the Paired T-Test and Wilcoxon 
Signed Rank Test. We observe that the difference in order selection methods is never 
significant if we assume a normal distribution. However, if we do not assume a normal 
distribution, the difference between the Method ‘Optimal levels’ and the other three order 
selection methods is significant. The mutual difference between the other three methods stays 
insignificant, independent of the normal distribution assumption. 
 
Table 31 Effect in significance between methods whilst assuming a normal distribution 

 
 
This difference can be explained by the assumptions of the tests. The Paired T-Test compares 
the means of the two methods and tests whether the mean of the differences between the two 
methods is significantly different from zero. Contrary, the Wilcoxon Signed Rank Test 
evaluates the ordering of the data, and thus whether the median of the differences between 
the two methods is significantly different from zero. Note that in a normal distribution, the mean 
is equal to the median, and thus we would expect similar conclusions from both tests.  
 
We observed that for 40 and 140 potential orders, Methods Daganzo, RFR (1) and RFR (2) 
select a higher number of orders (40 or (skewed to) 140) than Method ‘Optimal levels’. The 
different results of the two tests confirm that indeed no normal distribution is observed. 
However, with 460 potential orders, the order selection choice is less obvious and less skewed 
to the 460 potential orders. The order selection choice of the Method ‘Optimal levels’ coincides 
more with the order selection of the other three methods. Hence, we observe a spread of all 
four methods that corresponds more with the spread of a normal distribution. Therefore, we 
can conclude that a Wilcoxon Signed Rank Test should be performed to compare the order 

# 
Potential 

orders 
Method 

Daganzo RFR (1) RFR (2) 

~𝑁(𝜇, 𝜎) ≠ 𝑁(𝜇, 𝜎) ~𝑁(𝜇, 𝜎) ≠ 𝑁(𝜇, 𝜎) ~𝑁(𝜇, 𝜎) ≠ 𝑁(𝜇, 𝜎) 

40 

‘Optimal 
levels’ 

Not sign. Sign. Not sign. Sign. Not sign. Sign. 

Daganzo x x Not sign. Not sign. Not sign. Not sign. 

RFR (1) x x x x Not sign. Not sign. 

RFR (2) x x x x x x 

140 

‘Optimal 
levels’ 

Not sign. Sign. Not sign. Sign. Not sign. Sign. 

Daganzo x x Not sign. Not sign. Not sign. Not sign. 

RFR (1) x x x x Not sign. Not sign. 

RFR (2) x x x x x x 

460 

‘Optimal 
levels’ 

Not sign. Not sign. Not sign. Not sign. Not sign. Not sign. 

Daganzo x x Not sign. Not sign. Not sign. Not sign. 

RFR (1) x x x x Not sign. Not sign. 

RFR (2) x x x x x x 
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selection methods when the order selection choice is not obvious, i.e., with a small number of 
potential orders. When the choice becomes less obvious, the spread of the order selection 
becomes (closer to) the spread of a normal distribution, and hence the results of the two tests 
are probably similar.   
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 Information guide  
This guide explains where to find or how to retrieve the input data to implement the solution 
methodology at all CBB’s hubs. Hence, the current input data should be replaced or expanded 
with the data of all hubs. We refer to both the storage location and the responsible employee 
of this data. Note that we assign the responsibility of our created databases in both BiqQuery 
and Google Sheets to the data science team. All BiqQuery tables contain the most up-to-date 
information. Due to confidentiality, we do not specify the exact storage location in this 
appendix. Hence, we only specify if the information is stored in a Google Sheet or a 
BiqQuery table. 
 
The following information is necessary per hub for the order selection: 
 
1. PC4 information list 

This list must contain all PC4s located in the delivery area of the hub. 
- Storage place: Google Sheet 
- Responsible: Owner capacity CoolblueBikes 

 
For every PC4 on the PC4 information list, the information listed below must be provided. 
Note that we made this list already in BiqQuery (with information a, b & c). However, we 
display where to find (the source of) this information as well for the sake of completeness. 
 

a. Level  
The level assigned by CBB, if a comparison with the current system is desired.  
- Storage place: Google Sheet 
- Responsible: Owner capacity CoolblueBikes 
 
b. Area 
The level assigned by CBB, if a comparison with the current system is desired.  
- Storage place: BiqQuery table  
- Responsible: Data scientist 

 
c. Distance 
The distance of the centroid of the PC4 to the depot. 
- Storage place: BiqQuery table  
- Responsible: Data scientist team 

 
d. Stop time 
The stop time of an order per PC4. 
- Storage place: Google Sheet  
- Responsible: Owner on-time performance Delivery & Installations 

 
e. Order probability distribution 
The probability of observing o orders in a PC4. 
- Storage place: This distribution still has to be defined. We learned from the hub in 

Hilversum that most likely the discrete probability distribution is negative binomial. 
The data to fit the distribution can be found in the BiqQuery table. Here, ensure that 
the chosen hub is set to the hub that you are going to analyze. Then, filter all 
observations per PC4 and fit the data on the negative binomial distribution as 
described in Section 4.4.1. 

- Responsible: Data scientist team 
 
2. Address 

The addresses of the hub 
- Storage place: Google Sheet  
- Responsible: Manager CoolblueBikes Operations 
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3. ‘Optimal levels’ 

The ‘optimal levels’ of the hub, if a comparison with the current system is desired.  
- Storage place: Google Sheet  
- Responsible: Owner capacity CoolblueBikes 

 
4. Bike speed 

The average bike speed per hub.  
- Storage place: Google Sheet  
- Responsible: Owner on-time performance Delivery & Installations 
 

5. Costs per order 
The fixed costs, the variable costs per order, the variable costs per hour and the variable 
costs per kilometre. We summarized these costs for all hubs, similarly to how we retrieved 
those costs for the hub in Hilversum. Note that this information should be updated to be 
the most representative.  
- Storage place: Google Sheet  
- Responsible: Owner capacity CoolblueBikes and data scientist team 

 
6. Order volume probability distribution 

The probability of observing an order with volume v. If wished for, the distribution of all the 
hubs can also be used. We defined this distribution and stored this in the Google Sheet. 
- Storage:  BiqQuery table. Here, ensure that depot_potential_huidig is set to the hub 

that you are going to analyze. Also, ensure that the bins in 𝑐𝑚3 are: 0-1999, 2000-
3999, 4000-5999, 6000-7999, 8000-9999, 10000-11999, 12000-13999, 14000-15999, 
16000-17999 & 18000-19999. 

- Responsible: Analyst CoolblueBikes and data scientist team 
 
Furthermore, for the development of a machine learning model, the following information is 
necessary: 
 
7. Tour information (training data) 

The grouped historical data includes all the features and the response (distance).  
- Storage:  BiqQuery table. Here, ensure that the hub is set to all small or large hubs 

when utilizing this data set. The large hubs are Amsterdam Overamstel, Rotterdam, 
Den Haag and Utrecht. The remaining hubs are small hubs.  

- Responsible: Data scientist team 
 
8. PC4 order division  

The historical division of all potential orders over the PC4s from almost 4 years of data.   
- Storage:  BiqQuery table. Here, ensure that the depot is set to the hub that you are 

going to analyze. 
- Responsible: Data scientist team 

 
9. Address list 

The random addresses per PC4 are based on historical orders.  
- Storage:  BiqQuery table. Again, note that the depot should be changed into the hub to 

be analysed.  
- Responsible: Data scientist team 
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 Costs per order per order selection 
Figure 48 shows the costs per order per order selection of the estimated and actual, 
constructed costs per order of the Methods Daganzo, RFR (1), RFR (2) and the operational 
level RFR. 

Figure 48 Estimated and constructed costs per order of methods Daganzo, RFR (1), RFR (2) and operational level RFR 
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 Costs per order 
Table 32 presents the costs per order per number of selected orders by Method Daganzo, 
RFR 1, RFR 2 and the operational level RFR, corresponding with  Appendix H. The lowest 
value of each order selection is marked green. We observe that the operational level RFR 
outperforms the tactical level methods most of the time. 
 
Table 32 Constructed costs per order of the Methods Daganzo, RFR (1), RFR (2) and operational level RFR 

 Daganzo RFR (1) RFR (2) Operational RFR 

1 4410.9% 4411.4% 4405.3% 4428.1% 

2 2230.5% 2226.5% 2259.6% 2241.6% 

3 1494.2% 1496.7% 1513.5% 1501.9% 

4 1127.5% 1128.0% 1146.9% 1132.0% 

5 907.0% 907.0% 922.4% 910.0% 

6 759.5% 759.5% 772.8% 762.1% 

7 654.4% 654.4% 666.5% 656.4% 

8 596.5% 578.6% 585.9% 577.0% 

9 532.4% 516.7% 523.7% 515.2% 

10 481.7% 468.9% 473.7% 465.9% 

11 440.2% 428.2% 432.7% 425.6% 

12 405.4% 394.3% 398.6% 392.0% 

13 375.9% 365.9% 369.7% 363.8% 

14 350.8% 341.3% 344.8% 339.6% 

15 329.1% 323.0% 323.6% 318.5% 

16 310.0% 304.3% 304.7% 300.2% 

17 293.0% 290.8% 288.1% 284.0% 

18 278.0% 275.9% 273.3% 269.6% 

19 264.6% 263.6% 260.1% 256.7% 

20 252.6% 252.0% 248.6% 245.0% 

21 241.9% 241.3% 237.8% 234.7% 

22 232.0% 231.6% 228.0% 225.4% 

23 222.9% 222.8% 219.1% 216.7% 

24 214.7% 214.5% 210.9% 209.0% 

25 211.9% 206.9% 203.4% 201.6% 

26 205.1% 199.8% 199.6% 194.8% 

27 198.3% 193.2% 193.1% 188.4% 

28 192.1% 187.2% 187.1% 182.9% 

29 186.6% 181.6% 181.4% 177.5% 

30 181.2% 176.3% 176.4% 172.4% 

31 176.1% 171.4% 171.5% 167.5% 

32 171.4% 166.9% 166.9% 163.1% 

33 166.9% 162.6% 162.7% 159.6% 

34 162.6% 158.5% 158.8% 155.6% 

35 162.7% 154.7% 155.0% 151.7% 

36 159.2% 151.0% 151.4% 148.1% 

37 155.4% 149.7% 148.0% 144.7% 

38 151.9% 146.7% 144.7% 141.6% 

39 148.5% 143.5% 141.5% 138.5% 

40 145.3% 140.6% 139.6% 135.7% 
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41 142.2% 137.7% 136.9% 132.9% 

42 139.6% 135.1% 134.2% 130.4% 

43 137.0% 132.5% 132.5% 128.1% 

44 134.4% 130.1% 130.0% 125.8% 

45 132.0% 127.7% 130.8% 123.6% 

46 129.6% 125.4% 128.4% 121.6% 

47 127.3% 123.3% 126.2% 119.5% 

48 125.2% 121.2% 124.0% 117.5% 

49 123.2% 119.2% 122.1% 115.5% 

50 121.3% 117.4% 120.1% 113.8% 

51 119.4% 115.7% 118.2% 112.0% 

52 117.6% 113.9% 116.3% 110.7% 

53 115.9% 112.2% 114.5% 109.1% 

54 114.2% 110.5% 112.8% 107.7% 

55 112.6% 109.0% 111.1% 106.2% 

56 111.0% 107.5% 109.5% 104.7% 

57 109.6% 106.0% 108.1% 103.4% 

58 108.1% 104.5% 106.6% 102.1% 

59 106.7% 103.3% 105.2% 100.7% 

60 105.3% 102.0% 103.8% 99.4% 

61 103.9% 100.7% 102.5% 98.5% 

62 102.6% 99.4% 101.3% 97.3% 

63 101.4% 98.2% 100.1% 96.1% 

64 100.2% 97.0% 98.9% 95.0% 

65 99.0% 96.6% 97.7% 93.9% 

66 97.9% 95.4% 96.7% 92.8% 

67 96.9% 94.5% 95.5% 91.8% 

68 95.8% 93.6% 94.4% 90.9% 

69 94.8% 92.6% 93.4% 89.9% 

70 93.9% 94.8% 92.7% 89.0% 

71 92.9% 93.8% 91.8% 88.1% 

72 93.3% 92.8% 90.9% 87.3% 

73 92.4% 91.8% 90.0% 86.4% 

74 91.5% 90.9% 89.1% 85.6% 

75 90.6% 90.0% 90.2% 84.8% 

76 89.7% 89.1% 89.3% 84.0% 

77 88.9% 88.3% 88.5% 83.4% 

78 88.0% 87.5% 87.7% 82.6% 

79 87.2% 86.7% 86.9% 81.9% 

80 86.5% 85.9% 86.1% 81.2% 

81 86.0% 85.1% 85.3% 80.6% 

82 85.4% 84.8% 84.6% 79.9% 

83 84.6% 84.2% 83.9% 79.2% 

84 83.8% 83.6% 83.1% 78.6% 

85 83.1% 82.9% 82.4% 78.0% 

86 82.4% 82.2% 81.7% 77.5% 

87 82.0% 81.5% 81.1% 77.1% 

88 81.3% 80.9% 80.4% 76.4% 
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89 80.6% 80.3% 79.8% 75.9% 

90 80.0% 79.6% 79.1% 75.5% 

91 79.5% 79.0% 78.6% 74.9% 

92 78.9% 78.4% 78.0% 74.3% 

93 78.4% 77.8% 77.4% 73.8% 

94 78.0% 77.2% 76.9% 73.3% 

95 77.4% 76.8% 76.3% 72.9% 

96 76.9% 76.3% 75.7% 72.4% 

97 76.4% 76.1% 75.2% 72.1% 

98 75.9% 75.6% 74.6% 71.6% 

99 75.4% 75.0% 74.2% 71.1% 

100 74.9% 74.5% 73.8% 70.6% 

101 74.4% 74.0% 73.5% 70.1% 

102 73.9% 73.5% 73.2% 69.8% 

103 73.4% 73.1% 73.6% 69.4% 

104 73.0% 72.6% 73.1% 69.1% 

105 72.6% 72.1% 72.6% 68.7% 

106 72.1% 71.7% 72.2% 68.2% 

107 71.6% 71.2% 71.7% 68.0% 

108 71.2% 70.7% 71.3% 67.6% 

109 70.7% 70.3% 70.9% 67.3% 

110 70.3% 69.9% 70.5% 66.9% 

111 69.9% 69.4% 70.1% 66.5% 

112 69.5% 69.0% 69.8% 66.1% 

113 69.1% 68.6% 69.4% 65.7% 

114 68.7% 68.2% 69.0% 66.0% 

115 68.3% 67.8% 68.6% 65.7% 

116 69.1% 67.4% 68.3% 65.4% 

117 68.8% 67.0% 68.0% 65.0% 

118 68.4% 66.6% 67.6% 64.7% 

119 68.0% 66.3% 67.3% 64.3% 

120 67.6% 66.0% 66.9% 64.0% 

121 67.3% 65.6% 66.6% 63.7% 

122 66.9% 65.4% 66.2% 63.3% 

123 66.5% 66.0% 66.0% 63.1% 

124 66.2% 65.9% 65.6% 63.0% 

125 65.9% 65.6% 65.3% 62.7% 

126 65.5% 65.2% 64.9% 62.4% 

127 65.3% 64.9% 64.7% 62.4% 

128 64.9% 64.6% 64.3% 62.1% 

129 64.6% 64.2% 64.0% 61.7% 

130 64.3% 63.9% 63.7% 61.5% 

131 64.0% 63.6% 63.4% 61.2% 

132 63.7% 63.3% 63.1% 61.0% 

133 63.4% 63.0% 62.8% 60.7% 

134 63.1% 62.8% 62.5% 60.5% 

135 62.8% 62.5% 62.2% 60.2% 

136 62.6% 62.1% 61.9% 60.0% 
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137 62.3% 62.6% 61.6% 59.7% 

138 62.0% 62.3% 62.4% 59.4% 

139 61.7% 62.0% 62.1% 59.1% 

140 61.5% 61.8% 61.9% 58.9% 

141 61.3% 61.6% 61.6% 58.9% 

142 61.0% 61.4% 61.4% 58.9% 

143 60.8% 61.2% 61.1% 58.9% 

144 60.5% 61.0% 61.2% 58.7% 

145 60.2% 60.7% 61.0% 58.5% 

146 60.0% 60.5% 60.7% 58.4% 

147 59.8% 60.3% 60.5% 58.3% 

148 59.5% 60.1% 60.2% 58.1% 

149 59.7% 59.9% 60.0% 57.8% 

150 59.5% 59.6% 59.7% 57.6% 

151 59.3% 59.4% 59.6% 57.8% 

152 59.7% 59.3% 59.4% 57.6% 

153 60.2% 59.1% 59.2% 57.4% 

154 59.9% 58.8% 59.0% 57.2% 

155 59.7% 58.6% 58.7% 57.1% 

156 59.4% 58.3% 58.7% 56.8% 

157 59.2% 58.1% 58.5% 56.7% 

158 58.9% 57.9% 58.3% 56.7% 

159 58.8% 57.7% 58.1% 56.5% 

160 58.5% 57.7% 57.8% 56.3% 

161 58.3% 57.5% 57.6% 56.1% 

162 58.1% 57.3% 57.4% 55.9% 

163 57.9% 57.1% 57.2% 55.7% 

164 57.7% 56.9% 57.0% 55.7% 

165 57.6% 56.7% 56.9% 55.6% 

166 57.4% 56.5% 56.7% 55.4% 

167 57.2% 56.3% 56.7% 55.3% 

168 57.0% 56.1% 56.4% 55.1% 

169 56.9% 55.9% 56.3% 54.9% 

170 56.8% 55.7% 56.5% 54.7% 

171 56.6% 55.7% 56.4% 54.5% 

172 56.5% 55.5% 56.3% 54.3% 

173 56.3% 55.4% 56.2% 54.1% 

174 56.1% 55.2% 56.1% 53.9% 

175 55.9% 55.0% 55.8% 53.8% 

176 55.8% 55.0% 55.8% 53.6% 

177 55.6% 54.9% 56.2% 53.4% 

178 55.4% 54.8% 56.0% 53.3% 

179 55.2% 54.8% 55.9% 53.1% 

180 55.1% 54.6% 55.7% 53.0% 

181 55.0% 54.5% 55.5% 52.8% 

182 54.7% 54.4% 55.3% 52.6% 

183 54.6% 54.2% 55.1% 52.4% 

184 55.3% 54.1% 55.0% 52.4% 
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185 55.2% 54.0% 54.8% 52.2% 

186 55.0% 53.8% 54.6% 52.1% 

187 54.8% 53.6% 54.4% 51.9% 

188 54.7% 53.5% 54.3% 51.8% 

189 54.6% 53.4% 54.1% 51.6% 

190 54.5% 53.3% 53.9% 51.5% 

191 54.2% 53.2% 53.7% 51.4% 

192 54.1% 53.0% 53.6% 51.3% 

193 53.9% 52.8% 53.4% 51.2% 

194 53.8% 52.7% 53.3% 51.0% 

195 53.6% 52.5% 53.2% 50.9% 

196 53.5% 52.4% 53.1% 50.8% 

197 53.3% 52.3% 53.1% 50.6% 

198 53.1% 52.2% 52.8% 50.6% 

199 53.0% 52.2% 52.7% 50.4% 

200 52.8% 52.0% 52.7% 50.4% 

201 52.8% 51.9% 52.4% 50.2% 

202 52.7% 51.9% 52.4% 50.1% 

203 52.6% 52.1% 52.4% 50.0% 

204 52.6% 51.8% 52.4% 49.9% 

205 52.7% 51.8% 52.2% 49.9% 

206 52.5% 51.7% 52.0% 49.8% 

207 52.4% 51.5% 52.1% 49.8% 

208 52.3% 51.4% 51.8% 49.7% 

209 52.2% 51.3% 51.8% 49.6% 

210 52.1% 51.1% 51.6% 49.5% 

211 52.0% 51.0% 51.6% 49.3% 

212 51.9% 50.9% 51.5% 49.3% 

213 51.8% 50.8% 51.5% 49.2% 

214 51.8% 50.7% 51.4% 49.1% 

215 51.6% 50.6% 51.3% 49.0% 

216 51.5% 50.5% 51.8% 48.9% 

217 51.4% 50.3% 51.7% 48.8% 

218 51.7% 50.2% 51.6% 48.7% 

219 51.5% 50.1% 51.5% 48.6% 

220 51.4% 50.0% 51.4% 48.5% 

221 51.3% 49.9% 51.2% 48.4% 

222 51.2% 49.9% 51.2% 48.2% 

223 51.1% 49.6% 51.0% 48.2% 

224 51.0% 49.5% 50.9% 48.1% 

225 50.9% 49.4% 51.1% 48.1% 

226 50.7% 49.3% 51.0% 48.1% 

227 50.7% 49.3% 50.8% 48.0% 

228 51.0% 49.3% 50.8% 48.0% 

229 50.9% 49.1% 50.7% 47.9% 

230 50.8% 49.1% 50.6% 47.8% 

231 50.7% 49.0% 50.5% 47.8% 

232 50.6% 48.9% 50.4% 47.7% 



 

107 
 

233 50.4% 48.8% 50.3% 47.7% 

234 50.4% 48.7% 50.2% 47.6% 

235 50.3% 48.6% 50.1% 47.5% 

236 50.2% 48.5% 50.0% 47.3% 

237 50.1% 48.4% 49.9% 47.3% 

238 50.0% 48.4% 49.9% 47.2% 

239 50.0% 48.2% 50.7% 47.0% 

240 49.9% 48.3% 50.6% 47.0% 

241 49.8% 48.2% 50.5% 46.8% 

242 49.8% 48.2% 50.4% 46.8% 

243 49.7% 48.1% 50.3% 46.8% 

244 49.6% 48.0% 50.2% 46.8% 

245 49.5% 47.9% 50.3% 46.8% 

246 49.4% 47.8% 50.2% 46.8% 

247 49.3% 47.7% 50.1% 46.7% 

248 49.1% 47.6% 49.9% 46.6% 

249 49.8% 47.5% 49.9% 46.5% 

250 49.7% 47.4% 49.8% 46.5% 

251 49.7% 47.3% 49.7% 46.4% 

252 49.7% 47.3% 49.6% 46.4% 

253 49.5% 47.2% 49.6% 46.3% 

254 49.4% 47.2% 49.5% 46.2% 

255 49.4% 47.5% 49.4% 46.1% 

256 50.1% 47.5% 49.4% 46.1% 

257 50.1% 47.4% 49.4% 46.1% 

258 50.0% 47.3% 49.2% 45.9% 

259 49.9% 47.3% 49.1% 45.9% 

260 49.8% 47.2% 49.1% 45.9% 

261 49.6% 47.1% 49.1% 45.8% 

262 49.7% 47.2% 48.8% 45.7% 

263 49.6% 47.1% 48.9% 45.6% 

264 49.5% 47.1% 48.7% 45.6% 

265 49.4% 47.1% 48.5% 45.5% 

266 49.3% 47.0% 48.4% 45.4% 

267 49.1% 46.8% 48.6% 45.3% 

268 49.1% 46.8% 48.4% 45.2% 

269 49.1% 46.8% 49.1% 45.1% 

270 49.0% 46.7% 49.1% 45.1% 

271 48.8% 46.6% 48.9% 44.9% 

272 48.7% 46.5% 48.8% 44.9% 

273 48.7% 46.3% 48.8% 44.9% 

274 48.7% 46.3% 48.7% 44.7% 

275 48.6% 46.2% 48.5% 44.7% 

276 48.6% 46.1% 48.6% 44.6% 

277 48.4% 46.1% 48.4% 44.5% 

278 48.3% 46.3% 48.3% 44.5% 

279 48.2% 46.2% 48.4% 44.5% 

280 48.1% 46.4% 48.3% 44.4% 
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281 48.1% 46.3% 48.4% 44.4% 

282 48.0% 46.3% 48.2% 44.2% 

283 47.9% 46.2% 48.2% 44.3% 

284 47.9% 46.2% 48.1% 44.2% 

285 47.7% 46.0% 48.1% 44.0% 

286 47.9% 46.1% 48.0% 44.1% 

287 47.7% 46.4% 47.9% 44.0% 

288 47.6% 46.3% 47.8% 43.9% 

289 47.4% 46.2% 47.7% 43.9% 

290 47.5% 46.1% 47.7% 43.9% 

291 47.4% 46.1% 47.6% 43.8% 

292 47.2% 46.0% 47.5% 43.8% 

293 47.2% 45.9% 47.5% 43.7% 

294 47.1% 46.0% 47.3% 43.8% 

295 46.9% 45.9% 47.3% 43.7% 

296 47.0% 45.8% 47.1% 43.6% 

297 47.0% 45.7% 47.1% 43.6% 

298 46.9% 45.5% 46.9% 43.5% 

299 46.9% 45.4% 47.0% 43.7% 

300 46.7% 45.5% 46.7% 43.7% 

301 46.7% 45.4% 46.9% 43.7% 

302 46.6% 45.3% 46.7% 43.6% 

303 46.5% 45.2% 46.7% 43.6% 

304 46.5% 45.2% 46.6% 43.7% 

305 46.5% 45.1% 46.6% 43.5% 

306 46.4% 45.1% 46.5% 43.5% 

307 46.3% 45.0% 46.3% 43.5% 

308 46.3% 45.0% 46.4% 43.5% 

309 46.3% 45.0% 46.3% 43.4% 

310 46.2% 44.9% 46.2% 43.4% 

311 46.1% 44.9% 46.2% 43.3% 

312 46.1% 44.7% 46.1% 43.2% 

313 46.1% 44.5% 46.1% 43.2% 

314 46.0% 44.6% 45.9% 43.2% 

315 46.0% 45.2% 46.1% 43.1% 

316 45.8% 45.2% 45.7% 42.9% 

317 45.8% 45.2% 45.8% 43.1% 

318 45.6% 45.7% 45.8% 43.1% 

319 45.7% 45.7% 45.7% 43.0% 

320 45.6% 45.6% 45.7% 43.0% 

321 45.5% 45.6% 45.7% 42.9% 

322 45.5% 45.4% 45.5% 42.9% 

323 45.4% 45.3% 45.5% 43.0% 

324 45.4% 45.4% 45.2% 42.9% 

325 45.2% 45.3% 45.1% 42.8% 

326 45.1% 45.3% 45.3% 43.0% 

327 45.1% 45.3% 45.4% 42.9% 

328 45.0% 45.4% 45.3% 43.0% 
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329 45.1% 45.2% 45.1% 43.0% 

330 44.9% 45.2% 45.1% 42.8% 

331 45.0% 45.2% 45.1% 42.8% 

332 44.9% 45.1% 45.0% 42.7% 

333 44.8% 44.9% 45.0% 42.8% 

334 44.7% 45.0% 44.9% 42.9% 

335 44.9% 45.0% 44.9% 42.7% 

336 44.8% 44.9% 44.8% 42.7% 

337 44.8% 44.9% 44.8% 42.7% 

338 44.9% 44.8% 44.7% 42.6% 

339 44.8% 44.7% 44.7% 42.5% 

340 44.9% 44.7% 44.7% 42.6% 

341 44.6% 44.6% 44.6% 42.4% 

342 44.8% 44.7% 44.5% 42.4% 

343 44.7% 44.5% 44.5% 42.3% 

344 44.8% 44.5% 44.3% 42.4% 

345 44.7% 44.4% 44.4% 42.4% 

346 44.7% 44.3% 44.3% 42.3% 

347 44.4% 44.3% 44.3% 42.3% 

348 44.5% 44.3% 44.2% 42.2% 

349 44.5% 44.2% 44.2% 42.2% 

350 44.5% 44.2% 44.2% 42.2% 

351 44.4% 44.1% 44.2% 42.2% 

352 44.3% 44.0% 44.3% 42.2% 

353 44.2% 44.0% 44.1% 42.2% 

354 44.2% 43.9% 44.4% 42.1% 

355 44.1% 43.8% 44.3% 42.2% 

356 44.1% 43.8% 44.2% 42.2% 

357 44.1% 43.8% 44.2% 42.2% 

358 44.0% 43.8% 44.2% 42.1% 

359 43.9% 43.7% 44.1% 42.2% 

360 43.9% 43.8% 44.1% 42.1% 

361 43.9% 43.6% 44.0% 42.1% 

362 43.8% 43.6% 44.0% 42.1% 

363 43.8% 43.5% 44.0% 42.2% 

364 43.7% 43.6% 44.0% 42.0% 

365 43.9% 43.6% 43.9% 41.9% 

366 43.7% 43.6% 43.8% 42.0% 

367 43.7% 43.7% 43.8% 41.9% 

368 43.6% 43.7% 43.7% 42.2% 

369 43.7% 43.6% 43.7% 42.2% 

370 43.6% 43.6% 43.7% 42.1% 

371 43.7% 43.4% 43.6% 42.1% 

372 43.6% 43.4% 43.5% 42.2% 

373 43.6% 43.4% 43.6% 42.1% 

374 43.5% 43.4% 43.7% 42.2% 

375 43.5% 43.4% 43.6% 42.1% 

376 43.4% 43.3% 43.5% 42.4% 
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377 43.4% 43.3% 43.5% 42.4% 

378 43.4% 43.2% 43.5% 42.5% 

379 43.3% 43.2% 43.4% 42.3% 

380 43.2% 43.1% 43.4% 42.3% 

381 43.2% 43.3% 43.3% 42.4% 

382 43.2% 43.2% 43.3% 42.3% 

383 43.1% 43.2% 43.2% 42.3% 

384 43.1% 43.0% 43.1% 42.3% 

385 42.9% 43.0% 43.2% 42.3% 

386 42.9% 43.0% 43.2% 42.4% 

387 42.9% 42.9% 43.1% 42.2% 

388 42.8% 42.8% 43.1% 42.2% 

389 42.8% 42.8% 43.0% 42.2% 

390 42.7% 42.9% 42.9% 42.3% 

391 42.7% 42.9% 42.8% 42.2% 

392 42.9% 42.8% 42.8% 42.0% 

393 42.7% 42.8% 42.9% 42.2% 

394 42.7% 42.7% 42.7% 42.1% 

395 42.6% 42.7% 42.8% 42.1% 

396 42.7% 42.5% 42.7% 42.2% 

397 42.7% 42.4% 42.5% 42.2% 

398 42.6% 42.5% 42.7% 42.0% 

399 42.5% 42.5% 42.5% 42.0% 

400 42.5% 42.4% 42.6% 41.9% 

401 42.4% 42.4% 42.6% 41.9% 

402 42.4% 42.4% 42.6% 41.9% 

403 42.4% 42.3% 42.4% 41.8% 

404 42.3% 42.3% 42.3% 41.8% 

405 42.4% 42.4% 42.4% 41.9% 

406 42.3% 42.2% 42.3% 41.7% 

407 42.2% 42.2% 42.3% 41.6% 

408 42.3% 42.1% 42.3% 41.6% 

409 42.2% 42.2% 42.1% 41.5% 

410 42.1% 42.2% 42.3% 41.4% 

411 42.1% 42.1% 42.1% 41.4% 

412 42.1% 42.0% 42.1% 41.4% 

413 42.1% 42.0% 42.0% 41.4% 

414 42.0% 41.9% 42.1% 41.4% 

415 42.0% 41.9% 41.8% 41.3% 

416 41.9% 42.1% 42.0% 41.2% 

417 41.9% 42.0% 42.0% 41.3% 

418 41.7% 41.9% 41.9% 41.3% 

419 41.9% 41.9% 41.9% 41.2% 

420 41.8% 41.8% 42.0% 41.3% 

421 41.7% 41.8% 42.0% 41.3% 

422 41.8% 41.9% 41.9% 41.1% 

423 41.8% 41.7% 41.9% 41.2% 

424 41.7% 41.7% 41.9% 41.1% 
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425 41.4% 41.7% 41.9% 41.2% 

426 41.7% 41.7% 41.8% 41.2% 

427 41.6% 41.8% 41.9% 41.0% 

428 41.5% 41.6% 41.7% 40.8% 

429 41.4% 41.6% 41.7% 40.9% 

430 41.5% 41.6% 41.7% 40.9% 

431 41.5% 41.7% 41.7% 41.0% 

432 41.4% 41.6% 41.6% 40.9% 

433 41.4% 41.5% 41.6% 41.0% 

434 41.5% 41.3% 41.5% 41.0% 

435 41.5% 41.6% 41.4% 41.0% 

436 41.5% 41.3% 41.4% 40.8% 

437 41.4% 41.4% 41.3% 40.8% 

438 41.4% 41.4% 41.4% 40.9% 

439 41.3% 41.2% 41.3% 40.8% 

440 41.3% 41.2% 41.2% 40.7% 

441 41.3% 41.4% 41.3% 40.7% 

442 41.2% 41.2% 41.3% 40.8% 

443 41.2% 41.1% 41.1% 40.9% 

444 41.2% 41.2% 41.0% 40.8% 

445 41.2% 41.1% 40.9% 40.9% 

446 41.0% 41.0% 40.9% 40.9% 

447 41.2% 41.0% 41.2% 40.9% 

448 41.1% 41.1% 41.1% 40.9% 

449 41.1% 41.1% 41.1% 40.9% 

450 41.1% 41.2% 41.0% 40.9% 

451 40.9% 41.3% 40.9% 41.0% 

452 41.0% 41.3% 40.9% 40.8% 

453 41.1% 40.9% 41.1% 41.1% 

454 40.9% 41.1% 41.1% 41.0% 

455 41.0% 41.1% 41.1% 41.0% 

456 40.9% 41.1% 41.1% 40.9% 

457 41.0% 41.0% 41.0% 40.9% 

458 40.9% 40.9% 40.9% 40.9% 

459 40.9% 40.9% 41.0% 41.0% 

460 40.8% 40.8% 40.8% 40.8% 
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 Costs per order composition Method Daganzo and RFR (2) 
Figure 49 shows the estimated and constructed costs per order composition of the order 
selection by Method Daganzo. Figure 50 shows the estimated and constructed costs per order 
composition of the order selection by Method RFR (2). Figure 51 shows the estimated and 
constructed costs per order composition of the order selection by the operational level RFR. 
We observe more fluctuations in the constructed costs per order by Method Daganzo, probably 
because the orders selected are further away. Also, we see again that RFR overestimates the 
distance in the beginning, resulting in relatively high costs per order at the first orders selected 
(>360.0%) 
 

Figure 49 The estimated (left) and constructed (right) cost per order composition of the order selection of Daganzo 

Figure 50 The estimated (left) and constructed (right) costs per order composition of the order selection of RFR (2) 
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Figure 51 The estimated (left) and constructed (right) costs per order composition of the order selection of the 
operational level RFR 
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 Confidentiality appendix 
 
We do not display the content of this appendix due to confidentiality.  


