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Abstract

Attention can be oriented internally towards the mind (internal attention) or externally

towards the environment (external attention). Strong evidence suggests that both internal and

external attention share their underlying mechanisms. However, this view is still being

questioned. One possible explanation for this opposing view could be due to potential issues in

the experimental design used by previous studies. This is visible in the research on the

relationship between internal and external spatial attention by Van der Lubbe et al. (2014) and

the subsequent replication of this study by Willems (2020). Both studies found vastly different

results regarding the underlying mechanisms of internal and external attention using similar

methodologies. We propose that this variation in results was caused by the experimental design

that allowed for internal attention, specifically, to not be measured as intended. We aimed to

conceptually replicate both studies by modifying their experimental design to appropriately

reflect internal attention. The cueing paradigm used in this study consisted of two only

conditions; a pre-cue condition that reflects external attention and a post-cue that reflects

internal attention. Behavioural results (n = 29) revealed a Simon effect across both conditions

for both reaction time and accuracy. The EEG analysis revealed an increased ipsilateral power

in the alpha band at parieto-occipital sites during both conditions. These findings add support

to the view that internal and external spatial attention share their underlying mechanisms. The

design has also led to more pronounced behavioural and EEG results compared to the studies it

tried to replicate. This indicates that the modifications have improved the robustness of this

experimental design.
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Introduction

For many decades the relationship between the process of viewing outward items

(external spatial attention) and retrieving items from working memory (internal spatial

attention) has been a focal point in neuroscientific research, with the current literature still

debating on the exact nature of this relationship. Strong evidence supports the view that internal

and external spatial attention share similar processes (Kuo et al., 2009; Nobre et al., 2004;

Oberauer, 2019; Van der Lubbe et al., 2014). However, due to the use of vastly different

experimental designs used in the literature (e.g. Lepsien et al., 2005; Mössing and Busch,

2020), and the limited number of studies that are being replicated (Pavlov et al., 2021), the

reliability of this view is still being questioned.

The relationship between internal and external spatial attention

Whether the mechanisms used in both internal and external spatial attention are

comparable has been widely studied (Kuo et al., 2009; Lepsien et al., 2005; Nobre et al., 2004;

Scheibner et al., 2017; Van der Lubbe et al., 2014; Willems, 2020). While the exact nature of

this relationship is debated, there is a broad agreement that attention and working memory are

closely related (for a review see Oberauer, 2019), as attention can be influenced by the contents

of working memory (Foerster and Schneider, 2018). Working memory is a limited-capacity

storage system used to maintain items relevant to the current task (Oberauer, 2019; Ma et al.,

2014). This limited capacity applies to both information that is stored in the working memory

(Luck and Vogel, 2013), and information that is still externally visible (Tsubomi et al., 2013;

but see Lepsien et al., 2005). Chun (2011) has also suggested that visual working memory and

visual attention are so closely related that visual memory itself can be considered as internal

attention.

Neurophysiological markers of attention shifts, such as alpha (α) band

desynchronizations have also been associated with processes in both internal and external
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attention. These oscillations are negatively linked to visual processing and attention, with

increases in α power leading to decreases in visual processing (for a review see Clayton et al.,

2017). It follows that α power may be involved in suppressing or regulating visual perception.

This can be observed in lateralized α power at parieto-occipital sites, which has been associated

with selective orienting of attention toward relevant stimuli and the inhibition of irrelevant

stimuli (Kelly et al., 2006; Worden, 2000). These lateralizations reflect increases in α power in

areas ipsilateral to the location of the attended stimuli (Sauseng et al., 2005; Van der Lubbe et

al., 2014), and decreases in α power contralateral to the attended location (Kelly et al., 2009).

These lateralizations are comparable between internal (Worden, 2000) and external attention

(Lepsien et al., 2005; Nobre et al., 2004; Wallis et al., 2015). However, α band lateralizations

during internal attention tasks could also indicate automatic shifts in attention unrelated to the

attended stimuli (Mössing and Busch, 2020).

Multiple studies have also examined the effect of behavioural tasks on attention. An

important behavioural measure paired with internal and external attention is the Simon task

(Simon 1969). This task examines if reaction times towards relevant stimulus are shorter when

a response is given on the same side as the visually presented stimulus than when the response

side differs from the stimulus location. Hommel (2002) studied this effect and found that

response times were indeed faster and more accurate if the stimulus and response side

corresponded with each other, while response times were slower and less accurate when the

stimulus and response side did not correspond. These effects were observed in both internal

and external attention tasks.

Reliability and validity in the literature

Van der Lubbe et al. (2014) suggested that one explanation for the differing results in

the literature surrounding the mechanisms of internal and external attention could be the

experimental design employed in certain studies (e.g. Kuo et al., 2009; Nobre et al., 2004),
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where effects such as repetition suppression (Mayrhauser et al., 2014) and automatic orienting

(Tipples, 2002) might have been present. To test the mechanisms of internal and external

attention, while minimizing the presence of these effects, Van der Lubbe et al. (2014) utilized

a visual search task without stimulus repetition, which avoids the possibility of repetition

suppression. In their experimental design, four different coloured stimuli (two circles and two

squares) were presented in a frame. After a fixed amount of time, the frame changed into a

colour that matched one of the stimuli. Depending on the condition the frame would appear

before (pre-cue), during (simultaneous cue), or after (post-cue) the stimuli were displayed.

Participants were expected to respond with either their right or left hand to indicate the form of

the target. To analyse the data, the authors expanded traditional ERP analyses with the

lateralized power spectra (LPS; Van der Lubbe and Utzerath, 2013). This method allowed them

to avoid the shortcomings of the ERP method and assess induced lateralized activity that is not

strongly bound to a time-locked event. The authors found increased ipsilateral α power at

parieto-occipital areas for a brief duration during the pre-cue (~160 ms) and post-cue (~80 ms)

conditions. A Simon effect for reaction time was also observed for all conditions. However, not

all conditions displayed a Simon effect for accuracy. Their results provided support for the view

that internal and external spatial attention share neural commonalities.

Questioning the stability of these effects over time, and the replicability of these effects

Willems (2020) performed a follow-up study. They removed the simultaneous cue condition

and added a post-cue condition with a larger array-cue interval, which allowed them to examine

if the neural commonalities between internal and external attention are visible over longer

periods. Willems also applied the LPS method to investigate induced activity. They found

increased ipsilateral α power in parieto-occipital areas for a brief duration during the pre-cue

condition (~160 ms). No effects for α lateralizations were found in the post-cue condition. The

author observed a Simon effect for reaction time and accuracy in the pre-cue condition, but no
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effects were observed in the post-cue condition. While mechanisms in the brain are difficult to

extract, the question as to why the experimental design used by Van der Lubbe et al. (2014) and

Willems (2020) resulted in differing conclusions still remains.

In this study, it is proposed that the experimental design used in both studies (Van der

Lubbe et al., 2014; Willems, 2020) still contained experimental noise that contributed to two

different interpretations of the relationship between internal and external attention. The design

used in both studies allowed participants to accurately perform post-cue trials by only

memorising part of the stimulus array. Because the experiment only had two response options

(square x circle), participants could easily memorise only one item per visual field and still

accurately perform the trials, without having to fully employ internal attentional processes. For

example, if the participants only memorised stimuli that had a square shape, and the cue

indicated a circle as the target, they would have been able to respond that the shape of the target

stimuli was not square. Using this method they would have been able to perform the post-cue

tasks without the need to memorise the entire stimulus array. This allowed them to flexibly

discard non-relevant items and reduce memory load (Souza and Oberauer, 2016).

The current paper will use an experimental design comparable to Van der Lubbe et al.,

(2014) and Willems (2020) to re-examine the results found by both studies. Some key changes

in this design should ensure that internal attention specifically, and not any additional strategies,

are being measured. Firstly, this study removed any irrelevant conditions by only employing

the pre-cue and post-cue conditions, which measure external and internal attention respectively.

The stimulus array was reduced to two stimuli, allowing for only one stimulus to be visible on

either side of the fixation point. As an increase in stimulus set size appears to decrease the

probability that all items will be retained in the working memory (Luck and Vogel, 2013; Zhang

and Luck, 2008). This change ensured that participants memorise the full stimulus array.
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Finally, the number of response options was increased to four. This change ensured that task

difficulty will not become too low (Kraft et al., 2005).

Goals and predictions

The main goal of this study is to re-examine the relationship between internal and

external spatial attention by performing a successful conceptual replication with a modified

experimental design. This study’s main question is whether the use of a cueing task with this

modified experimental design would show effects that support the view that internal and

external spatial attention share their underlying mechanisms.

To answer this question, the current studyused a modified experimental design based on

the ones used in the study by Van der Lubbe et al., (2014) and Willems (2020). It is expected

that the changes in the experimental design will lead to both behavioural and EEG results

reflected in the α band that indicate commonalities between internal and external spatial

attention. A clear Simon effect for both reaction time and response accuracy in both the pre-cue

and post-cue conditions will also be expected. Since α activity tends to decrease contralateral to

the focus of attention (Kelly et al., 2009; Thut et al., 2006; Worden et al., 2000), it is also

expected to see increased ipsilateral power when compared to contralateral power in the α band

in the pre-cue condition similar to the results found in the previous studies (Van der Lubbe et

al., 2014; Willems, 2020). Additionally, it is also expected to see a similar increased ipsilateral

versus contralateral power during the post-cue condition, similar to the effects observed by Van

der Lubbe et al. (2014).
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Methods

Participants

This study included 29 participants, consisting of 8 men and 21 women in the age range

of 17-55 (M= 22.7, SD = 7.2). All participants were right-handed. Most participants (n=25)

were University of Twente students studying Psychology or Communication Science, who

received course credits for participating in this experiment. The remaining participants (n=4)

were recruited using convenience sampling and participated voluntarily. None of the

participants had visual impairments, and none reported a history of psychiatric or neurological

impairments. The participants were also asked to wash their hair the night before the experiment

to ensure an optimal EEG recording. The EOG data from two participants were not measured

properly and their data were excluded from further analysis. People with pacemakers,

dreadlocks, prior brain surgery, sleep problems, and drug and/or alcohol problems were

excluded from participating. The study was approved by the Ethics Committee of the Faculty

of Behavioural, Management, and Social Sciences at the University of Twente (request number

210676).

Covid measurements

Due to the COVID-19 pandemic, the Dutch government implemented strict measures to

minimize the risk of spreading the virus. Because it was necessary to be in close contact with

the participants during the experiments, several rules were put in place to ensure the safety of

everyone involved in this experiment. Participants were asked to disinfect their hands and were

given FFP2 face masks when entering the EEG lab. The participants and researchers kept their

distance whenever possible and the windows were regularly opened, allowing the air to

circulate. Participants were explicitly asked not to come to if they were experiencing any

COVID-19 symptoms or had been in close contact with someone infected.
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Stimuli, task and Procedure

The experiment took place in the RecogNice Lab on the Campus of the University of

Twente. The participants received and signed the informed consent form and the BMS corona

form. The BMS corona form contained questions to ensure that the COVID-19 measurements

in the lab were being followed by the participants and researchers. The participants performed

the Handedness questionnaire (Cohen, 2008) to determine handedness, the Ishihara test to check

for colour-blindness, and the Freiburg Vision Test (Version 3.10.5) to check the visual acuity.

After these pre-tests, the standard procedures as described by the EEG operations protocol

(2021) were followed to prepare the participants for the EEG recording.

Figure 1. Experimental design based on the cueing paradigm task. An example of the

experiment with the pre-cue condition (left) and the post-cue condition (right). Both trials depict

two stimuli, a green square-shaped target and a blue star-shaped distractor with a cue indicating

the target that the subjects had to respond to. Grey masks were used to cover the stimuli in the

post-cue condition.

The experiment (See Figure 1) consisted of two conditions; pre-cue and post-cue. Half

of the participants started with the pre-cue condition and the other half started with the post-cue

condition. There were a total of 960 trials, and 64 practice trials. These were divided into 10

blocks of 96 trials and 2 practice blocks of 32 trials. Each experimental condition consisted of
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5 real blocks and one practice block. At the beginning of each trial, the participants were

presented with a fixation point. During the pre-cue condition, the cue appeared 800 ms after the

fixation point was presented. Two stimuli (one target and one distractor) were randomly chosen

from four potential targets and were presented 1000 ms after cue onset. The cue was visible

until the response. During the post-cue condition, the stimuli appeared 800 ms after the fixation

point was presented. They were visible for 1000 ms and masked afterwards. The cue appeared

2000 ms after the stimuli were masked.

During each trial, the participants had to react as fast and accurately as possible by

identifying the target as signalled by the cue. The participants received instructions on the task

they would be performing. The potential targets were connected to four keyboard buttons. To

correct for any effects stemming from the position of the buttons, two buttons were located on

the right side of the keyboard, and two were located on the left side. The practice trials during

each condition allowed the participants to familiarize themselves with the task and the position

of the relevant response buttons. During the practice trials, participants also received immediate

feedback on their responses. After every block and between conditions, the participants were

able to take short breaks. After the experiment participants were also asked if they used any

specific strategy.

Apparatus

The pre-tests were performed on an Acer Aspire laptop that ran on Windows 10. The

EEG experiment was performed on a desktop computer that ran on Windows 7 in lean mode

using a 22-inch LED monitor and a standard QWERTY keyboard. The stimuli were presented

using Presentation software (Neurobehavioural Systems, Inc, Version 20.1). The EEG was

recorded using 64 active electrodes (excluding the ground and EOG electrodes) attached using

the actiCAP snap EEG system (Brain Products). The electrodes were placed using the standard

10-20 system at locations Fp1, Fp2, AF7, AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6,
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F8, FT9, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, FT10, T7, C5, C3, C1, Cz, C2, C4,

C6, T8, TP9, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, TP10, P7, P5, P3, P1, Pz, P2,

P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz and O2. Electrode TP8 was used as the online

reference electrode. Eye movements were recorded using EOG electrodes. Vertical EOG was

recorded by placing electrodes above and below the left eye. Horizontal EOG was recorded by

placing electrodes at the outer canthi on both eyes. The signals from the EEG and EOG were

amplified using an actiCHamp amplifier (Brain Products). The signals were registered on a

separate desktop computer that ran on Windows 10 using BrainVision Recorder (Brain

Products, Version 1.21.0403). The impedance was kept below 10 kΩ.

Data analysis

Behavioural measures

Python (version 3.9) was used to analyse the behavioural measures. Premature (<150

ms) and delayed reactions (>2000 ms) were removed. Average reaction times (RT) and the

proportion of correct responses (PC) were computed as a function of Cue Condition (pre-

cue/post-cue) and Correspondence (corresponding/non-corresponding). A 2x2 repeated

measures ANOVA with the factors Cue Condition and Correspondence was used to analyse

the results. Mauchly’s test for sphericity was applied.

EEG measures

The EEG recordings were pre-processed and analysed using a Python script (See

Appendix A), and the MNE-python package (version 1.0.2). The EEG data from every

participant was processed separately before being combined for further analysis. Every data file

was montaged with the standard 10-20 montage to indicate the positions of the electrodes, while

TP8 served as the reference electrode. The data received visual inspection to account for

channels that contained a large amount of noise. Any subsequent bad channels were marked as

‘bad’ channels. Only channel TP10 from participant seven during the pre-cue condition was

marked as ‘bad’. Next, the independent component analysis (ICA) was used to clean the raw
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EEG data. This included multiple steps. Since the ICA can change the properties of the raw

EEG data, a copy of the raw data was made that was used for the ICA. A finite impulse response

filter (0.1-30 Hz) was applied to the raw data. The ICA was applied using the FastICA

algorithm. The extracted components were visually inspected. Then all the components related

to eye movements were removed. On average 2.5 components (SD = 0.66) were extracted from

each participant and removed. In the final step of the ICA, the ICA solution for each participant

was applied to the copy of the data. The data was segmented into epochs from -500 to 2000 ms

intervals relative to the event markers that signalled the relevant stimulus. Baseline correction

was applied with a time interval of -500 ms to 0 ms (cue onset). Epochs that exceeded a peak-

to-peak signal amplitude of 150e-6 were rejected. On average 8.25% of all epochs had to be

dropped for every participant.

The LPS was constructed using the LPS method (Van der Lubbe & Utzerath, 2013).

A Morlet wavelet (c=5) was used on the epochs to extract the power from the upper and lower

α frequency bands. The following bands were specified: α1 (8-11 Hz) and α2 (11-14 Hz). After

extracting the values, the individual averages for the left and right cues were computed. The

resulting estimates were used to compute the lateralized indices [ipsilateral – contralateral] /

[ipsilateral +contralateral] for both alpha bands and each cue side. These indices were created

using one symmetrical electrode pair comprised of two electrodes (PO7 and PO8) located above

the parieto-occipital areas. Finally, an average was computed across indices for both relevant

sides [left index+ right index]/2, thereby creating the LPS. These values range from -1 to 1.

Here positive values indicate that the power within a frequency band was larger above the

hemisphere ipsilateral to the cued side compared to the contralateral side, while a negative value

indicates the opposite. A value of zero indicates the absence of any hemispherical differences.

The obtained indices were evaluated using one-sample t-tests. Both alpha bands were evaluated

in 40 ms second intervals between 0 and 1000 ms after cue onset in the pre-cue condition, and
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after array onset in the post-cue condition, as the processing of the trials during the retro-cue

condition can continue up to 1000 ms (Souza and Oberauer, 2016). A one-tailed p<0.05

criterion was used as the significance level, with p-values being adjusted using the Bonferroni

method for multiple corrections.

Results

Behavioural results

The mean reaction times (RT) and the proportion of correct responses (PC) are displayed

in Table 1. An ANOVA analysis on the RTs with factors Cue Condition and Correspondence

showed that responses during both conditions were faster during corresponding than non-

corresponding trials (904 vs 937 ms; F(1,26)=25.9, p=<0.001, ηp
2     =0.004). Responses were

also faster during the pre-cue condition (908 ms) when compared to the post-cue condition (934

ms), although no interaction effects between RT and Cue Condition were observed

(F(1,26)=0.4, p=0.55, ηp
2=0.002). The factors Correspondence and Cue Condition also showed

no additional interaction effects (F(1,26)=3.2, p=0.08, ηp
2     =0.001). Separate t-test per cue

condition confirmed the presence of a Simon effect (correspondence effect) in both the pre-cue

(t(26) = 41.2, p =<0.0125) and post-cue (t(26) = 30.8, p = <0.001)

An ANOVA on PC with the factors Cue Condition and Correspondence showed that

responses in the pre-cue condition were more often correct when compared to the post-cue

condition (F(1,26)=14.7, p=<0.001, ηp
2 =0.081). Responses to corresponding trials were also

more often correct when compared to non-corresponding trials (F(1,26)=21.6, p=<0.001, ηp
2

=0.011). No additional effects between the factors Correspondence and Cue Condition were

observed (F(1,26)=3.9, p=0.057, ηp
2 =0.001). Separate t-test per cue condition confirmed the

presence of a Simon effect in both the pre-cue (t(26) = 63.8, p =<0.001) and post-cue (t(26) =

58.5, p = <0.001).
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Table 1.

Mean reaction time (RT) and proportion of correct answers (PC) as a function of Condition
and Correspondence

Condition RT(ms) PC(%)

Corr Non-corr Corr Non-corr

Pre-cue

Post-cue

901(30)

908(46)

914(32)

959(50)

92(2)

86.5(2)

90.6(2.1)

83.5(2.2)

Note. Standard errors are in brackets. Corr = corresponding, Non-corr = non-corresponding.

EEG results

An overview of the significant time windows for the electrode pair PO7/8 is shown in

Table 2 The analysis using a one-sample t-test showed that both the pre-cue and post-cue

conditions exhibited significant deviations from zero. During the pre-cue condition, the lower

alpha band revealed a posterior effect, showing larger ipsilateral than contralateral power (140-

980 ms; (t(26)=51.3, p= <0.001) ). A comparable effect was observed in the upper alpha band

(140-820 ms; (t(26)=70.4, p= <0.001)). Similar to the pre-cue condition, the lower alpha band

during the post-cue condition also showed a similar, longer-lasting posterior effect(100-980 ms;

((t(26)=38.4, p= <0.001)), showing stronger ipsilateral versus contralateral power. The upper

alpha band during this condition revealed two windows where a posterior effect was visible.

Effects are reflected in both an early (140-260 ms; (t(26)=7.8, p= <0.001) and later (340-980

ms; (t(26)=54.5, p= <0.001) time window. Both effects also reflected a stronger ipsilateral

versus contralateral power.
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Table 2

LPS results

Condition

Pre-cue

Post-cue

Band(site)

α1(PO7/8)

α2(PO7/8)

α1(PO7/8)

α2(PO7/8)

α2(PO7/8)

LPS time window

140-980

140-820

100-980

140-260

340-980

Polarity

Positive

Positive

Positive

Positive

Positive

Note. Positive indicates a stronger ipsilateral versus contralateral power

Figure 2 displays the LPS indices for the lower and upper alpha bands during both

conditions. For the pre-cue condition, there are effects in both the lower and upper alpha band,

which indicate a stronger ipsilateral versus contralateral power after cue onset. In both bands,

this effect is followed by an inverse effect around 1000 ms, where the contralateral power is

stronger compared to ipsilateral. The LPS power in the upper alpha band also appears to be

stronger compared to the lower alpha band. For the post-cue condition, the effects also show an

increased ipsilateral versus contralateral power in both the lower and upper alpha bands. This

effect is mostly sustained throughout the examined time window in the lower alpha band.

Similar to the pre-cue condition, the power in the alpha band also seems to be stronger in the

upper alpha band compared to the lower alpha band.
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Figure 2. LPS indices displaying the lower (~8-11 Hz) and upper (~11-14 Hz) alpha bands

during the pre-cue (left) and post-cue (condition). The line on the x-axis indicates cue onset in

the pre-cue condition and stimuli-onset in the post-cue condition. Positivity indicates a stronger

ipsilateral power when compared to contralateral, while negativity indicates the opposite.
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Discussion

General discussion

This study set out to re-examine the relationship between internal and external spatial

attention. The aim was to investigate whether a modified experimental design based on previous

studies (Van der Lubbe et al., 2014; Willems, 2020) would show results that support the view

that internal and external attention share underlying mechanisms.

The behavioural results indicate the presence of a clear Simon effect in both the pre-cue

and post-cue conditions. Reaction times during both conditions were faster when the stimuli

appeared on the corresponding side and slower when the stimuli appeared on the non-

corresponding side. Trials with corresponding stimuli were also more often correct compared

to non-corresponding stimuli. These results are comparable with previous findings (Hommel,

2002). This suggests that the process of internally retrieving an item from memory facilitates a

response that corresponds to the original location of that item. A process that is comparable to

externally viewing an item.

The LPS analysis showed an increased ipsilateral versus contralateral power in both the

lower and upper posterior α bands. This effect was observed during both the pre-cue and post-

cue conditions. These findings suggest a reduced inhibition of the contralateral hemisphere

and/or an increased inhibition of the ipsilateral hemisphere (Kelly, 2009; Sauseng et al., 2005;

Van der Lubbe and Utzerath, 2013). This implies that when targets and distractors are presented

in separate hemifields, α synchronizes during the maintenance interval over the hemisphere that

is processing the distractor and desynchronizes over the hemisphere that is processing the

targets (Kelly et al., 2006). This suggests that externally viewing an item and internally

retrieving an item from memory are processes where α power is involved in suppressing or

regulating visual perception, even in the absence of visual stimuli.

The visual results (See Figure 2) indicate that the lateralized α power is stronger in the

α2 band compared to the α1 band. One explanation for the discrepancy in results between these
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bands could be related to a distinction in task processing in the α band. Studies have suggested

that the α1 band is more likely to reflect general tasks, such as attentional processes, whereas

the α2 band reflects specific tasks, such as semantic processing (Neubauer and Fink, 2009).

An inverse effect is visible when comparing the pre-stimulus LPS power between both

conditions. A contralateral versus ipsilateral power is displayed during the pre-cue condition,

while the post-cue condition shows the opposite. However, rather than being directly linked to

spatial attention, these fluctuations in pre-stimulus α power could involve global changes in

visual processing as suggested by Foster and Awh (2019). When comparing the two conditions

after stimulus onset, it seems that the pre-cue condition shows an earlier deviation in lateralized

α power compared to the post-cue condition. This difference could be the result of variations in

memory load and perceptual selection (Tas et al.,2016). Cues measuring external attention were

always presented at the beginning of a trial and did not require memorisation, while internal

attention cues were presented after the stimuli had to be memorised. Indicating that internal

attention occurs in the context of working memory (Tas et al., 2016).

Considering the conceptual replication, this study was able to observe that internal and

external spatial attention share similar mechanisms. This study observed a Simon effect across

conditions for both reaction time and accuracy, while previous studies (Van der Lubbe et al.

2014; Willems, 2020) only observed this effect in some conditions. This suggests that the

discrepancies in behavioural results from these studies could have been due to the additional

noise in the post-cue condition. The lateralized α power during both conditions is more

pronounced and visible over a longer time window when compared to the results of Van der

Lubbe et al. (2014) and Willems (2020). It follows that the changes made in the experimental

design do not only measure internal and external attention as intended, but have also led to a

more robust paradigm that still adds support for the view of shared mechanics regarding internal

and external attention.
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Conclusion

The results show that the changes made to the experimental design have led to the

presence of a clear Simon effect, and pronounced LPS effects in both conditions. It also

highlights that the modified experimental design has resulted in more pronounced effects

compared to the studies it tried to replicate. These results add further support to the view that

internal and external spatial attention share their underlying mechanisms. Lastly, this study also

supports the suggestion that the experimental design played an important factor as to why both

studies resulted in varying conclusions about the relationship between internal and external

attention.

Limitations and future studies

One of the main limitations of this study is that it only examined the effects in the α

band in the posterior parieto-occipital area, while disregarding potential activity at other sites

and bands. Studies have shown that posterior α desynchronizations are coupled to frontal

oscillations in the delta (e.g. de Vries et al., 2019) and theta band (Reinhart and Woodman,

2014). This suggests that the modulations in the α band when processing spatial attention may

only occur because another region directs it (Woodman, 2022).

It can be interesting for future studies to consider using this paradigm in multimodal

settings. The presence of only two visual stimuli that need to be retained in the working memory

allows for more opportunities to combine this cueing task with other for example, auditory

tasks.
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Appendix A

Python script

This appendix contains the full script that was used to process the EEG data. This script can al
so be found in the online Github repository at https://github.com/IvaniaJahangier/Internal_ext
ernal_attention_analysis.

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#----------------------------------------------------------------------------
# @Author: Ivania Jahangier
# @Date: 12-10-2021
# ---------------------------------------------------------------------------

#LOADING PACKAGES
import pandas as pd
import seaborn as sns
import glob
import os as os
import sklearn
from picard import picard
from turtle import title
import numpy
import numpy as np
from scipy.special import logsumexp
import pathlib
from pathlib import Path
import PyQt5
import matplotlib.pyplot
import matplotlib
matplotlib.use('Qt5Agg')
import matplotlib.pyplot as plt
from tabulate import tabulate
import mne
from mne.time_frequency import tfr_morlet, tfr_array_morlet
from mne import event
from mne.io import concatenate_raws, read_raw_edf
from mne import concatenate_events, find_events
from mne.preprocessing import ICA, create_eog_epochs, create_ecg_epochs, corrmap
from mne.baseline import rescale
from mne.stats import bootstrap_confidence_interval
from mne.viz import plot_topomap
from mne.event import define_target_events
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
import matplotlib.patches as patches
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from numpy import unravel_index
from statsmodels.stats.anova import AnovaRM
import pingouin as pg
import scipy.stats as stats
import statsmodels.stats.multitest as smm

# GLOBAL VARIABLES
reject_criteria = dict(eeg=150e-6) # 100uV
flat_criteria = dict(eeg=1e-7) # 1uV
interval = (-0.5, 0)
sfreq = 1000
tmin = 0
tmax = 3
fill_na = 99
wave_cycles = 5
frequenciesa1 = np.arange(8, 11, 1) # a1 band
frequenciesa2 = np.arange(11, 14, 1) # a2 band
frequenciesa = np.arange(4, 19, 1) # plot
picks = ['PO7', 'PO8']
number_of_trials = 240 #for every RVF/LVF per condition (240x4=960 trials)
shape = (0,2501)
dtype = float

#LISTS
#These lists are used during both conditions
PRO_files = []
RETRO_files = []
corr_list = []
corresponding = []
subjectnumber = []
condition = []
pc_list = []
p_correspondence = []

# These lists will be used for the pre-cue condition.
a1_PRO_L_PO7 = np.empty(shape = shape, dtype = dtype)
a1_PRO_L_PO8 = np.empty(shape = shape, dtype = dtype)
a1_PRO_R_PO7 = np.empty(shape = shape, dtype = dtype)
a1_PRO_R_PO8 = np.empty(shape = shape, dtype = dtype)
a2_PRO_L_PO7 = np.empty(shape = shape, dtype = dtype)
a2_PRO_L_PO8 = np.empty(shape = shape, dtype = dtype)
a2_PRO_R_PO7 = np.empty(shape = shape, dtype = dtype)
a2_PRO_R_PO8 = np.empty(shape = shape, dtype = dtype)

# These lists will be used for the post-cue condition.
a1_RETRO_L_PO7 = np.empty(shape = shape, dtype = dtype)
a1_RETRO_L_PO8 = np.empty(shape = shape, dtype = dtype)
a1_RETRO_R_PO7 = np.empty(shape = shape, dtype = dtype)
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a1_RETRO_R_PO8 = np.empty(shape = shape, dtype = dtype)
a2_RETRO_L_PO7 = np.empty(shape = shape, dtype = dtype)
a2_RETRO_L_PO8 = np.empty(shape = shape, dtype = dtype)
a2_RETRO_R_PO7 = np.empty(shape = shape, dtype = dtype)
a2_RETRO_R_PO8 = np.empty(shape = shape, dtype = dtype)

#LPS FUNCTION
#Here we are creating a function that calculates the LPS indices
#the formula is adapted from Van der Lubbe and Utzerath (2013)

def Left_cues (L_ipsi, L_contra):
LPS_Left_cues = (L_ipsi-L_contra)/(L_ipsi+L_contra)
return LPS_Left_cues

def Right_cues (R_ipsi, R_contra):
LPS_Right_cues = (R_ipsi-R_contra)/(R_ipsi+R_contra)
return LPS_Right_cues

def N_LPS(L_ipsi, L_contra, R_ipsi, R_contra):
LPS_Left_cues = (L_ipsi-L_contra)/(L_ipsi+L_contra)
LPS_Right_cues = (R_ipsi-R_contra)/(R_ipsi+R_contra)
final_LPS = (LPS_Left_cues+LPS_Right_cues)/2
return final_LPS

ICA ANALYSIS
# Setting the ICA to False. This way the code will not go through the ICA process repeatedly.
completeICA = False

#Change the working directory to open the raw data
working_directory = os.chdir("C:/Users/ivani/Desktop/dir_eeg_analysis/EEG.data")

#Create an empty list to store the raw files
ICA_solutions = [] # move to the lists section
for item in glob.glob("*.eeg"):

ICA_solutions.append(item)

for item in ICA_solutions:
if completeICA:

raw = mne.io.read_raw_brainvision(item, preload=True)
anno = mne.read_annotations(item, sfreq='auto', uint16_codec=None)

#plotting the data to check for bad channels
raw_RETRO.plot()
raw_RETRO.plot_psd(fmax=500)
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# Setting the montage to the extended 10-20system, which is how we indicate how the electr
odes were positioned
# On the head. The data was recorded by setting the channel TP8 as the reference electrode.

raw.set_montage(mne.channels.make_standard_montage('standard_1020'))
raw = mne.add_reference_channels(raw_PRO, ref_channels=['TP8'])
raw_PRO.set_eeg_reference(ref_channels='average')

# Plot to show the waves and their source on the head
raw_PRO.plot_sensors(kind='topomap', show_names=True, title='ProPlot')

# We are filtering all major frequencies to enhance the quality of the data.
# Since these frequency drifts can make it hard to create an ICA solution.

raw.load_data().filter(l_freq=0.1, h_freq=30)
print('step 1 preparation complete')

# Starting the ICA
# Since the ICA can change our raw data We start of with creating a copy of our data

raw_copy= raw.copy()
raw_copy.load_data().filter(l_freq=0.1, h_freq=30)

# Variables that are used in the ICA
nu_components = 63
algorithm = 'fastica'
random_seed = 91 #Setting a random state ensures that we get the same random value

for every train and test datatesets. Otherwise it would set to non everytime and generate diff
erent values each time.

ica = mne.preprocessing.ICA( n_components= nu_components, method= algorithm, ran
dom_state= random_seed )

ica.fit(raw_copy)

# Instead of manually selecting which ICs to exclude, we use dedicated EOG sensors as a "pat
tern" to check the ICs against

ica.exclude =[] #first we make an empty exclude list
eog_indices, eog_scores = ica.find_bads_eog(raw_PRO_copy, ['hEOG', 'vEOG'])#automat

ically find the ICs that best match the EOG signal
ica.exclude = eog_indices#excludes artefacts matching eog signals that are added to the

exclude list

# Barpolt of ICA component "EOG" match scores
fig_1 = ica.plot_scores(eog_scores)
plt.close(fig_1)
fig_1.savefig(r'C:/Users/ivani/Desktop/Resultseeg/ICA_PRO_component_Score.png', ov

erwrite=False)

# Plot diagnostics
fig_2 = ica.plot_properties(raw_PRO_copy, picks=eog_indices) #save this image
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# Visual presentation ICA components on head
fig_4 = ica.plot_components(ch_type = 'eeg')

# Plot ICs applied to raw data, with EOG matches highlighted
fig_3 = ica.plot_sources(raw_PRO_copy)
fig_3.figure.savefig(r'C:/Users/ivani/Desktop/Resultseeg/ICA_PRO_plot_sources.png', ov

erwrite=False)

# Apply the ICA
ica.apply(raw_copy)

# Final check of raw data, here the data should be full cleaned
fig_5 = raw_PRO_copy.plot(title='Final check')
fig_5.figure.savefig(r'C:/Users/ivani/Desktop/Resultseeg/raw_PRO_final_check.png', ov

erwrite=True)

# If the data is fully cleaned, the ICA solution can be saved
raw_copy.save(r'C:/Users/ivani/Desktop/Resultseeg/raw_cleaned.fif', overwrite=True)

else:
print('Ica is completed')

#PRE-CUE ANALYSIS

# This loop consist of two main parts
# the first part involved creating epochs, TFRs and saving the data to arrays
# This conderns the PO7/PO8 electrodes for the a1 and a2 band
# This data will be used to calculate the LPS later on
# The second part involves the data analysis of the behavioral data.
# The events are merged and saved to lists that will be used in a pandas dataframe

#Change the working directory to find the cleaned files
working_directory = os.chdir("C:/Users/ivani/Desktop/dir_eeg_analysis/ICA_Solutions/PRO")

# Save the data for this condition in one list.
for item in glob.glob("*.fif"):

PRO_files.append(item)

# Variables for this section
subject = 1
current_condition = 'pre-cue'

for item in PRO_files:
PRO_raw = mne.io.read_raw_fif(item, preload=True)

events_PRO, event_dict_pro = mne.events_from_annotations(PRO_raw)
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events_PRO, notNeeded = mne.events_from_annotations(PRO_raw)

event_dict_PRO = {"fixation start": 2, 'cue': 3,
'target': 4, 'correctresponse/1': 101,
'correctresponse/2': 102, 'correctresponse/3': 103,
'correctresponse/4': 104, 'incorrectresponse': 105,
'PRO_LVF/L': 11, 'PRO_LVF/R': 12,
'PRO_RVF/L': 21, 'PRO_RVF/R': 22}

#Create epochs
epochs_PRO = mne.Epochs(PRO_raw, events_PRO, event_id=event_dict_PRO, tmin=-0.5,

tmax=2.0, preload=True)
epochs_PRO.drop_bad(reject=reject_criteria, flat=flat_criteria)
epochs_PRO.apply_baseline(interval)

# The TFR analysis is performed twice, one for the a1 and one for the a2 band.
# We start with the manipulations in the a1 band. Using a morlet wavelet

L_tfr_a1 = tfr_morlet(epochs_PRO['PRO_LVF'], freqs=frequenciesa1, picks=picks,
return_itc=False, n_cycles=wave_cycles, average = True, output= 'power')

R_tfr_a1 = tfr_morlet(epochs_PRO['PRO_RVF'], freqs=frequenciesa1, picks=picks,
return_itc=False, n_cycles=wave_cycles, average = True, output= 'power')

# Save the data from the TFR into separate arrays
a1_PO7 = L_tfr_a1.data[0,:,:]
a1_PO8 = L_tfr_a1.data[1,:,:]
a1_PO72 = R_tfr_a1.data[0,:,:]
a1_PO82 = R_tfr_a1.data[1,:,:]

# Take the average from the 4 frequencies for the band per time point (2501 points) and
compute the mean.
# Creating one mean for the entire frequency band

m_a1_PO7 = np.mean(a1_PO7, axis=0, keepdims=True)
m_a1_PO8 = np.mean(a1_PO8, axis=0, keepdims=True)
m_a1_PO72 = np.mean(a1_PO72, axis=0, keepdims=True)
m_a1_PO82 = np.mean(a1_PO82, axis=0, keepdims=True)

#save the mean values to arrays
a1_PRO_L_PO7 = np.append(a1_PRO_L_PO7, m_a1_PO7, axis=0)
a1_PRO_L_PO8 = np.append(a1_PRO_L_PO8, m_a1_PO8, axis=0)
a1_PRO_R_PO7 = np.append(a1_PRO_R_PO7, m_a1_PO72, axis=0)
a1_PRO_R_PO8 = np.append(a1_PRO_R_PO8, m_a1_PO82, axis=0)

# Manipulations in the a2 band. Using a morlet wavelet
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L_tfr_a2 = tfr_morlet(epochs_PRO['PRO_LVF'], freqs=frequenciesa2, picks=picks, return_it
c=False,

n_cycles=wave_cycles, average = True, output= 'power') # power ipv complex

R_tfr_a2= tfr_morlet(epochs_PRO['PRO_RVF'], freqs=frequenciesa2, picks=picks, return_it
c=False,

n_cycles=wave_cycles, average = True, output= 'power')

# Save the data from the TFR into separate arrays
a2_PO7 = L_tfr_a2.data[0,:,:]
a2_PO8 = L_tfr_a2.data[1,:,:]
a2_PO72 = R_tfr_a2.data[0,:,:]
a2_PO82 = R_tfr_a2.data[1,:,:]

# Takes the average from the 4 frequencies for the band per time point (2501 points) and
compute the mean.
# Creating one mean for the entire frequency band

m_a2_PO7 = np.mean(a2_PO7, axis=0, keepdims=True)
m_a2_PO8 = np.mean(a2_PO8, axis=0, keepdims=True)
m_a2_PO72 = np.mean(a2_PO72, axis=0, keepdims=True)
m_a2_PO82 = np.mean(a2_PO82, axis=0, keepdims=True)

# Save the mean values to arrays
a2_PRO_L_PO7 = np.append(a2_PRO_L_PO7, m_a2_PO7, axis=0)
a2_PRO_L_PO8 = np.append(a2_PRO_L_PO8, m_a2_PO8, axis=0)
a2_PRO_R_PO7 = np.append(a2_PRO_R_PO7, m_a2_PO72, axis=0)
a2_PRO_R_PO8 = np.append(a2_PRO_R_PO8, m_a2_PO82, axis=0)

# Now we start with creating the data for the pandas dataframe
# This will be done for both the corresponding and non-corresponding trials
# First the correct answers are all merged
# Then the corresponding trials (visual fieldxhandedness) are merged
# Lastly the non-corresponding trials are merged

events_PRO = mne.merge_events(events_PRO, [101,102,103,104], 80,
replace_events=False)

events_PRO = mne.merge_events(events_PRO, [11,22], 13, replace_events=False)
events_PRO = mne.merge_events(events_PRO, [12,21], 14, replace_events=False)

# These events sets up the reaction times for the corresponding correct responses
# Setting up the RTs. Which starts with the define-target function.
# This allows us to define new targets based on co-occurring events and the time (in ms)
#between the target and the reference id events
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c1_events, nan_rt1 = define_target_events(events = events_PRO, reference_id = 13,
target_id = 80, sfreq = sfreq,
tmin = tmin, tmax=3, new_id = 25, fill_na=fill_na)

# remove the nan values
rt1 = nan_rt1[np.logical_not(np.isnan(nan_rt1))]

# Calculate the percentage of correct answers (pc)
pc = len(rt1)/number_of_trials*100

# Appending the RT, corresponding side, participantnumber, condition, and pc
corr_list.append(np.mean(rt1, axis=0))
corresponding.append('corr')
subjectnumber.append(subject)
condition.append(current_condition)
pc_list.append(pc)

# These events set up the reaction times for the non-corresponding correct responses
# Setting up the RTs. Which starts with the define-target function.
# This allows us to define new targets based on co-occurring events and the time (in ms)
# between the target and the reference id events

c2_events, nan_rt2 = define_target_events(events = events_PRO, reference_id = 14,
target_id = 80, sfreq = sfreq, tmin = tmin, tmax=3, new_id = 15,
fill_na=fill_na)

# Remove nan-values
rt2 = nan_rt2[np.logical_not(np.isnan(nan_rt2))]

# Calculate the percentage of correct answers (pc)
pc = len(rt2)/number_of_trials*100

# Appending the RT, non-corresponding side, participant number, condition,and pc
corr_list.append(np.mean(rt2, axis=0))
corresponding.append('noncorr')
subjectnumber.append(subject)
condition.append(current_condition)
pc_list.append(pc)

subject = subject+1

#POST-CUE ANALYSIS
# This loop consist of two main parts
# he first part involved creating epochs, TFRs and saving the data to arrays
# This conderns the PO7/PO8 electrodes for the a1 and a2 band
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# This data will be used to calculate the LPS later on
# The second part involves the data analysis of the behavioral data.
# The events are merged and saved to lists that will be used in a pandas dataframe

#Change the working directory to find the cleaned files
working_directory = os.chdir("C:/Users/ivani/Desktop/dir_eeg_analysis/ICA_Solutions/
RETRO")

# Save the data for this condition in one list.
for item in glob.glob("*.fif"):

RETRO_files.append(item)

# Variables needed for this section
subject = 1
current_condition = 'post-cue'

for item in RETRO_files:
RETRO_raw = mne.io.read_raw_fif(item, preload=True)

event_dict_RETRO = {'fixation start': 2, 'Cue': 3,
'target': 4, 'correctresponse/1': 101,
'correctresponse/2': 102, 'correctresponse/3': 103,
'correctresponse/4': 104, 'incorrectresponse': 105,
'RETRO_LVF/L': 111, 'RETRO_LVF/R': 112,
'RETRO_RVF/L': 121, 'RETRO_RVF/R': 122}

events_RETRO, event_dict_retro = mne.events_from_annotations(RETRO_raw)

events_RETRO, notNeeded = mne.events_from_annotations(RETRO_raw)
print(events_RETRO)

#Create epochs
epochs_RETRO = mne.Epochs(RETRO_raw, events_RETRO, event_id=event_dict_RETRO,

tmin=-0.5, tmax=2.0)
epochs_RETRO.drop_bad(reject=reject_criteria, flat=flat_criteria)
epochs_RETRO.apply_baseline(interval)

# The TFR analysis is performed twice, one for the a1 and one for the a2 band.
# We start with the manipulations in the a1 band. Using a Morlet wavelet

L_tfr_a1 = tfr_morlet(epochs_RETRO['RETRO_LVF'], freqs=frequenciesa1, picks=picks,
return_itc=False, n_cycles=wave_cycles, average = True,
output= 'power')
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R_tfr_a1= tfr_morlet(epochs_RETRO['RETRO_RVF'], freqs=frequenciesa1, picks=picks,
return_itc=False, n_cycles=wave_cycles, average = True,

output= 'power')

# Save the data from the TFR into separate arrays
a1_PO7 = L_tfr_a1.data[0,:,:]
a1_PO8 = L_tfr_a1.data[1,:,:]
a1_PO72 = R_tfr_a1.data[0,:,:]
a1_PO82 = R_tfr_a1.data[1,:,:]

# Take the average from the 4 frequencies for the band per time point (2501 points) and
# compute the means.
# Creating one mean for the entire frequency band

m_a1_PO7 = np.mean(a1_PO7, axis=0, keepdims=True)
m_a1_PO8 = np.mean(a1_PO8, axis=0, keepdims=True)
m_a1_PO72 = np.mean(a1_PO72, axis=0, keepdims=True)
m_a1_PO82 = np.mean(a1_PO82, axis=0, keepdims=True)

#save the mean values to arrays
a1_RETRO_L_PO7 = np.append(a1_RETRO_L_PO7, m_a1_PO7, axis=0)
a1_RETRO_L_PO8 = np.append(a1_RETRO_L_PO8, m_a1_PO8, axis=0)
a1_RETRO_R_PO7 = np.append(a1_RETRO_R_PO7, m_a1_PO72, axis=0)
a1_RETRO_R_PO8 = np.append(a1_RETRO_R_PO8, m_a1_PO82, axis=0)

# Manipulations the a2 band. Using a morlet wavelet
L_tfr_a2 = tfr_morlet(epochs_RETRO['RETRO_LVF'], freqs=frequenciesa2, picks=picks,

return_itc=False, n_cycles=wave_cycles, average = True,
output= 'power')

R_tfr_a2= tfr_morlet(epochs_RETRO['RETRO_RVF'], freqs=frequenciesa2, picks=picks,
return_itc=False, n_cycles=wave_cycles, average = True,
output= 'power')

# Save the data from the TFR into separate arrays
a2_PO7 = L_tfr_a2.data[0,:,:]
a2_PO8 = L_tfr_a2.data[1,:,:]
a2_PO72 = R_tfr_a2.data[0,:,:]
a2_PO82 = R_tfr_a2.data[1,:,:]

# Take the average from the 4 frequencies for the band per time point (2501 points) and com
putes the mean.
# Creating one mean for the entire frequency band
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m_a2_PO7 = np.mean(a2_PO7, axis=0, keepdims=True)
m_a2_PO8 = np.mean(a2_PO8, axis=0, keepdims=True)
m_a2_PO72 = np.mean(a2_PO72, axis=0, keepdims=True)
m_a2_PO82 = np.mean(a2_PO82, axis=0, keepdims=True)

# Save the mean values to arrays
a2_RETRO_L_PO7 = np.append(a2_RETRO_L_PO7, m_a2_PO7, axis=0)
a2_RETRO_L_PO8 = np.append(a2_RETRO_L_PO8, m_a2_PO8, axis=0)
a2_RETRO_R_PO7 = np.append(a2_RETRO_R_PO7, m_a2_PO72, axis=0)
a2_RETRO_R_PO8 = np.append(a2_RETRO_R_PO8, m_a2_PO82, axis=0)

# Now we start with creating the data for the pandas dataframe
# This will be done for both the corresponding and non-corresponding trials
# First the correct answers are all merged
# Then the corresponding trials (visual fieldxhandedness) are merged
# Lastly the non-corresponding trials are merged

events_RETRO = mne.merge_events(events_RETRO, [101,102,103,104], 80,
replace_events=False)

events_RETRO = mne.merge_events(events_RETRO, [111,122], 113, replace_events=False)
events_RETRO = mne.merge_events(events_RETRO, [112,121], 114, replace_events=False)

# These events set up the reaction times for the corresponding correct responses
# Setting up the RTs. Which starts with the define-target function.
# This allows us to define new targets based on co-occurring events and the time (in ms) bet
ween
# the target and the reference id events

c1_events, nan_rt1 = define_target_events(events = events_RETRO, reference_id = 113,
target_id = 80, sfreq = sfreq, tmin = tmin, tmax=tmax, new_id = 25,
fill_na=fill_na)

#Remove the nan values
rt1 = nan_rt1[np.logical_not(np.isnan(nan_rt1))]

# Calculate the percentage of correct answers (pc)
pc = len(rt1)/number_of_trials*100

# Append the RT, corresponding side, participantnumber, condition,and pc
corr_list.append(np.nanmean(rt1, axis=0))
corresponding.append('corr')
subjectnumber.append(subject)
condition.append(current_condition)
pc_list.append(pc)
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# These events set up the reaction times for the non-corresponding correct responses
# Setting up the RTs. Which starts with the define-target function.
# This allows us to define new targets based on co-occurring events and the time (in ms)
# between the target and the reference id events

c2_events, nan_rt2 = define_target_events(events = events_RETRO, reference_id = 114,
target_id = 80, sfreq = sfreq, tmin = tmin, tmax=tmax, new_id = 15,
fill_na=fill_na)

# Remove nan-values
rt2 = nan_rt2[np.logical_not(np.isnan(nan_rt2))]

# Calculate the percentage of correct answers (pc)
pc = len(rt2)/number_of_trials*100

# Append the RT, non-corresponding side, participantnumber, condition,and pc
corr_list.append(np.nanmean(rt2, axis=0))
corresponding.append('noncorr')
subjectnumber.append(subject)
condition.append(current_condition)
pc_list.append(pc)

subject = subject+1

LPS CONSTRUCTION
# construct the LPS for both conditions

#pre-cue a1
PRO_left_cues_a1 = Left_cues(a1_PRO_L_PO7,a1_PRO_L_PO8)
PRO_right_cues_a1 = Right_cues(a1_PRO_R_PO8, a1_PRO_R_PO7)
PRO_epoch_array_a1 = N_LPS(a1_PRO_L_PO7,a1_PRO_L_PO8,a1_PRO_R_PO8,

a1_PRO_R_PO7)

#pre-cue a2
PRO_left_cues_a2 = Left_cues(a2_PRO_L_PO7,a2_PRO_L_PO8)
PRO_right_cues_a2 = Right_cues(a2_PRO_R_PO8, a2_PRO_R_PO7)
PRO_epoch_array_a2 = N_LPS(a2_PRO_L_PO7,a2_PRO_L_PO8,a2_PRO_R_PO8,

a2_PRO_R_PO7)

#post-cue a1
RETRO_left_cues_a1 = Left_cues(a1_RETRO_L_PO7,a1_RETRO_L_PO8)
RETRO_right_cues_a1 = Right_cues(a1_RETRO_R_PO8, a1_RETRO_R_PO7,)
RETRO_epoch_array_a1 = N_LPS(a1_RETRO_L_PO7,a1_RETRO_L_PO8,a1_RETRO_R_PO8,

a1_RETRO_R_PO7)
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#post-cue a2
RETRO_left_cues_a2 = Left_cues(a2_RETRO_L_PO7,a2_RETRO_L_PO8)
RETRO_right_cues_a2 = Right_cues(a2_RETRO_R_PO8, a2_RETRO_R_PO7)
RETRO_epoch_array_a2 = N_LPS(a2_RETRO_L_PO7,a2_RETRO_L_PO8,a2_RETRO_R_PO8,

a2_RETRO_R_PO7)

LPS POWER PLOTS

pre-cue plots
#creating the frame to plot both alpha bands in one plot
#Because the values are mapped from the array they are plotted from [0,0]
#we create some empty layers to allow the plot to be scaled more accurately

PRO_epoch_array_a1_np = np.mean(PRO_epoch_array_a1, axis=0, keepdims=True)
PRO_epoch_array_a2_np = np.mean(PRO_epoch_array_a2, axis=0, keepdims=True)
PRO_epoch_array = np.vstack([PRO_epoch_array_a1_np, PRO_epoch_array_a2_np])

empty = np.zeros(shape = (2,2501), dtype = float)
PRO_epoch_array2 = np.vstack ([empty,PRO_epoch_array ])
PRO_epoch_array3 = np.vstack ([PRO_epoch_array2, empty ])

times =epochs_PRO.times
plot_max = np.max(np.max(PRO_epoch_array3))
plot_min = -plot_max

fig, ax = plt.subplots(1)
im = plt.imshow(PRO_epoch_array3,

extent=[times[0], times[-1], frequenciesa[0], frequenciesa[-1]],
aspect='auto', origin='lower', cmap='coolwarm', vmin=plot_min, vmax=plot_max)

plt.xlabel('Time (sec)')
plt.ylabel('Frequency (Hz)')
plt.title('LPS Pre-cue')
cb = fig.colorbar(im)
cb.set_label('Power')
plt.axvline(x=0, color = 'k', linewidth = 1)
plt.show()

post-cue plot
#create the frame to plot both alpha bands in one plot
#Because the values are mapped from the array they are plotted from [0,0]
#we create some empty layers to allow the plot to be scaled more accurately

RETRO_epoch_array_a1_np = np.mean(RETRO_epoch_array_a1, axis=0, keepdims=True)
RETRO_epoch_array_a2_np = np.mean(RETRO_epoch_array_a2, axis=0, keepdims=True)
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RETRO_epoch_array = np.vstack([RETRO_epoch_array_a1_np, RETRO_epoch_array_a2_np])

# create an empty list for scaling
empty = np.zeros(shape = (2,2501), dtype = float)
RETRO_epoch_array2 = np.vstack ([empty,RETRO_epoch_array ])
RETRO_epoch_array3 = np.vstack ([RETRO_epoch_array2, empty ])

times =epochs_RETRO.times
plot_max = np.max(np.max(RETRO_epoch_array3))
plot_min = -plot_max

fig, ax = plt.subplots(1)
im = plt.imshow(RETRO_epoch_array3,

extent=[times[0], times[-1], frequenciesa[0], frequenciesa[-1]],
aspect='auto', origin='lower', cmap='coolwarm', vmin=plot_min, vmax=plot_max)

plt.xlabel('Time (sec)')
plt.ylabel('Frequency (Hz)')
plt.title('LPS post-cue')
cb = fig.colorbar(im)
cb.set_label('Power')

plt.axvline(x=0, color = 'k', linewidth = 1)
plt.show()

STATISTICAL ANALYSIS
# The statistical analysis consists of two main parts
# First we perform the LPS analysis to look for relevant time windows
# Then we perform a 2x2 repeated measures ANOVA

LPS analysis

pre-cue a1
# Creating 40 ms time intervals for the analysis
# Performing one sample one-tailed t-tests to get an overview of the raw sig time windows
chunk_size = 40
sig_time_windows = []
for i in range(0, 2501, chunk_size):

chunk = PRO_epoch_array_a1[:, i:i+chunk_size]
chunk = chunk.flatten()
tstat, pval = stats.ttest_1samp(chunk, popmean=0, alternative = 'greater')
if pval1 <= 0.05:

print('time window', + i,'till', + i+chunk_size, 'ms ', 'pval=',+pval)
sig_time_windows.append(pval)
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#calculating adjusted p-values
chunk_size = 0
reject, pvals, alphacs, alphacb = smm.multipletests(list3, alpha=0.05, method='b',

is_sorted=False, returnsorted=False)

for i in pvals:
if i <= 0.05:

print('time window', + chunk_size,'till', + chunk_size+40, 'ms ', 'pval=',+i )
chunk_size = chunk_size+40

#calculate p-value of the sig time window
tstat, pval = stats.ttest_1samp(PRO_epoch_array_a1[:, 640:1480].flatten(), popmean=0,

alternative = 'greater')
print('time window 140-980 ms', 'pval=',+pval, 'tstat=',+tstat )

#calculate the polarity of the sig time windows
pol_1 = np.mean(PRO_epoch_array_a1[:, 640:1480].flatten())
print('Polarity time window 140-980 ms = '+ str(pol_1))

pre-cue a2
# Create 40 ms time intervals for the analysis
# Perform one sample one-tailed t-tests to get an overview of the raw sig time windows
chunk_size = 40
sig_time_windows = []
for i in range(0, 2501, chunk_size):

chunk = PRO_epoch_array_a2[:, i:i+chunk_size]
chunk = chunk.flatten()
tstat, pval = stats.ttest_1samp(chunk, popmean=0, alternative = 'greater')
if pval1 <= 0.05:

print('time window', + i,'till', + i+chunk_size, 'ms ', 'pval=',+pval)
sig_time_windows.append(pval)

#calculating adjusted p-values
chunk_size = 0
reject, pvals, alphacs, alphacb = smm.multipletests(list3, alpha=0.05, method='b',

is_sorted=False, returnsorted=False)
for i in pvals:

if i <= 0.05:
print('time window', + chunk_size,'till', + chunk_size+40, 'ms ', 'pval=',+i )

chunk_size = chunk_size+40

#calculate p-value of the sig time window
tstat, pval = stats.ttest_1samp(PRO_epoch_array_a2[:, 640:1320].flatten(), popmean=0,

alternative = 'greater')
print('time window 140-820 ms', 'pval=',+pval, 'tstat=',+tstat )

#calculate the polarity of the sig time windows
pol_1 = np.mean(PRO_epoch_array_a2[:, 640:1320].flatten())
print('Polarity time window 140-820 ms = '+ str(pol_1))
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post-cue a1
# Creating 40 ms time intervals for the analysis
# Perform one sample one-tailed t-tests to get an overview of the raw sig time windows
chunk_size = 40
sig_time_windows = []
for i in range(0, 2501, chunk_size):

chunk = RETRO_epoch_array_a1[:, i:i+chunk_size]
chunk = chunk.flatten()
tstat, pval = stats.ttest_1samp(chunk, popmean=0, alternative = 'greater')
if pval1 <= 0.05:

print('time window', + i,'till', + i+chunk_size, 'ms ', 'pval=',+pval)
sig_time_windows.append (pval)

#calculate adjusted p-values
chunk_size = 0
reject, pvals, alphacs, alphacb = smm.multipletests(list3, alpha=0.05, method='b',

is_sorted=False, returnsorted=False)
for i in pvals:

if i <= 0.05:
print('time window', + chunk_size,'till', + chunk_size+40, 'ms ', 'pval=',+i )

chunk_size = chunk_size+40

#calculate p-value of the sig time window
tstat, pval = stats.ttest_1samp(RETRO_epoch_array_a1[:, 600:1480].flatten(), popmean=0,

alternative = 'greater')
print('time window 100-980 ms', 'pval=',+pval, 'tstat=',+tstat )

#calculate the polarity of the sig time windows
pol_1 = np.mean(RETRO_epoch_array_a2[:, 840:1480].flatten())
print('Polarity time window 100-980 ms = '+ str(pol_1))

post-cue a2
#variables
chunk_size = 40
sig_time_windows = []

# Create 40 ms time intervals for the analysis
# Perform one sample one-tailed t-tests to get an overview of the raw sig time windows
# Save sig time windows in one list
for i in range(0, 2501, chunk_size):

chunk = RETRO_epoch_array_a2[:, i:i+chunk_size]
chunk = chunk.flatten()
tstat, pval = stats.ttest_1samp(chunk, popmean=0, alternative = 'greater')
if pval1 <= 0.05:

print('time window', + i,'till', + i+chunk_size, 'ms ', 'pval=',+pval)
sig_time_windows.append(pval)
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#calculating adjusted p-values
chunk_size = 0
reject, pvals, alphacs, alphacb = smm.multipletests(list3, alpha=0.05, method='b',

is_sorted=False, returnsorted=False)

for i in pvals:
if i <= 0.05:

print('time window', + chunk_size,'till', + chunk_size+40, 'ms ', 'pval=',+i )
chunk_size = chunk_size+40

#calculate p-value of the sig time window
tstat, pval = stats.ttest_1samp(RETRO_epoch_array_a2[:, 640:760].flatten(), popmean=0,

alternative = 'greater')
print('time window 140-260 ms', 'pval=',+pval, 'tstat=',+tstat )

#calculate p-value of the sig time window
tstat, pval = stats.ttest_1samp(RETRO_epoch_array_a2[:, 840:1480].flatten(), popmean=0,

alternative = 'greater')
print('time window 340-980 ms', 'pval=',+pval, 'tstat=',+tstat )

#calculate the polarity of the sig time windows
pol_1 = np.mean(RETRO_epoch_array_a2[:, 640:760].flatten())
print('Polarity time window 140-760 ms = '+ str(pol_1))

pol_2 = np.mean(RETRO_epoch_array_a2[:, 840:1480].flatten())
print('Polarity time window 340-980 ms = '+ str(pol_2))

ANOVA
#Create the pandas data frame
df = pd.DataFrame({'id': subjectnumber,

'RT': corr_list,
'condition': condition,
'corr_side': corresponding,
'pc':pc_list})

df

#test the sphericity of the data
pg.sphericity(df, dv='pc', subject='id', within=['condition','corr_side'])
pg.sphericity(df, dv='RT', subject='id', within=['condition','corr_side'])

#calculate the means of the RT and PC
df.groupby(['condition', 'corr_side'])['RT'].mean()
df.groupby(['condition', 'corr_side'])['pc'].mean()

# Repeated measures ANOVA 2x2 factors for RT
pg.rm_anova(dv='RT', within=['condition', 'corr_side'], subject = 'id', data =df, detailed = True

)
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# Repeated measures ANOVA 2x2 factors for pc
pg.rm_anova(dv='pc', within=['condition', 'corr_side'], subject = 'id', data =df, detailed = True
)

# PC pre-cue condition
# Filter the dataframe for the conditionxpc t-tests for correspondence
correspondence = df[df["condition"] =='pre-cue']
correspondence = correspondence['RT']

# One sample t test for simon effect(correspondence)
tstat, pval = stats.ttest_1samp(correspondence, popmean=0, alternative = 'greater')
p_correspondence.append(pval)

# PC pre-cue condition
# Filter the dataframe for the conditionxpc t-tests for correspondence
correspondence = df[df["condition"] =='post-cue']
correspondence = correspondence['RT']

# One sample t-test for Simon effect(correspondence)
tstat, pval = stats.ttest_1samp(correspondence, popmean=0, alternative = 'greater')
p_correspondence.append(pval)

# PC pre-cue condition
# Filter the data frame for the conditionxpc t-tests for correspondence
correspondence = df[df["condition"] =='pre-cue']
correspondence = correspondence['pc']

# One sample t-test for Simon effect(correspondence)
tstat, pval = stats.ttest_1samp(correspondence, popmean=0, alternative = 'greater')
p_correspondence.append(pval)

# PC post-cue condition
# Filter the data frame for the conditionxpc t-tests for correspondence
correspondence = df[df["condition"] =='post-cue']
correspondence = correspondence['pc']

# One sample t-test for Simon effect(correspondence)
tstat, pval = stats.ttest_1samp(correspondence, popmean=0, alternative = 'greater')
p_correspondence.append(pval)

# Correct the pvalues
reject, pvals, alphacs, alphacb = smm.multipletests(p_correspondence, alpha=0.05,

method='b', is_sorted=False, returnsorted=False)
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