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Leveraged Calibrated Loss for Learning to Defer

J.M. ter Steege

March, 2023

Abstract

The Learning to Defer (L2D) framework is designed to enhance the safety of AI sys-
tems by incorporating human intervention in decision-making when it is likely to lead
to more accurate results than the model alone. In this paper, we propose a new family
of surrogate losses, called the Leveraged One-vs-All (LOvA) loss, which for the first
time introduces a leverage parameter to consider the trade-off between expert correct-
ness and incorrectness. Our theoretical analysis derives a generalized result for Bayes
risk consistency of the LOvA loss in the L2D system, providing guidance for selecting
the leverage parameter. Additionally, we establish that the decision margin increases,
which lowers the misclassification rate, resulting in a more robust and deterministic
classification by our system. In our experiments, we validate the guidance offered
by our theoretical analysis and demonstrate that our proposed LOvA loss performs
significantly better than other state-of-the-art L2D systems on real-world datasets.

Keywords: Learning to Defer (L2D), Artificial Intelligence (AI), Surrogate Loss, Bayes
Risk Consistency, Machine Learning, Deep Learning

1 Introduction

Machine learning is becoming increasingly prevalent in various fields, such as healthcare
[10, 11], autonomous driving [26] and the stock market [1]. However, complex algorithms in
high-stakes scenarios are prone to overfitting or being too general for specific cases. This
can result in inaccurate estimations, which may have serious consequences. To address
this issue, human expertise can be utilized in uncertain cases, since humans often possess
additional information that can aid decision-making.

Learning with a rejection option [5], also known as rejection learning, is a solution that
allows the model to abstain from making a decision and defer the burden to a human. For
example, a self-driving car’s algorithm may decline to make a decision when a road has a
sharp turn and resume operation once the road becomes straight again. The rejection learn-
ing framework assumes a constant cost c of deferring, making the problem to predict if the
model is 1−c confident. Approaches to tackle the rejection learning problem are categorized
into two paradigms: confidence-based and classifier-rejector approaches. Confidence-based
methods usually focus on the model’s uncertainty, while classifier-rejector methods learn
the classifier and rejector simultaneously.
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However, the existing rejection learning framework does not explore the interaction be-
tween the expert and the classifier. To address the drawback, the novel Learning to Defer
(L2D) framework [14] takes the human expert’s prediction into account. Recently, there
has been research into the L2D framework, particularly in a multiclass setting [16]. The
proposed approach is based on a novel reduction to cost-sensitive learning and they pro-
pose a consistent surrogate loss function. However, this surrogate loss function has some
drawbacks concerning the calibration of the expert probability, as discovered by Proposi-
tion 3.1 in [24]. It was also confirmed through experimentation that such a scenario was
possible. Consequently, a different surrogate loss function based on One-vs-All classifica-
tion was proposed [24]. This surrogate loss function is well-calibrated and consistent, but
the classifier remains highly dependent on the human expert. We think it is possible to
reduce this dependence, while simultaneously keeping the output accuracy high.

In this paper, we propose a new surrogate loss function called the Leveraged One-vs-All
(LOvA) loss, which introduces a leverage parameter to consider the trade-off between ex-
pert correctness and incorrectness. We show that this loss function satisfies the Bayes
consistency property and theoretically demonstrate that the decision margin increases as
the leverage parameter enlarges under mild assumptions. We also conduct experiments to
verify the theoretical results and compare the performance with other existing methods.

To summarize, the contributions of this paper are:

• We propose a new surrogate loss function for the L2D problem that introduces a
leverage parameter, which decreases the proportion of deferring and increases the
performance of the machine.

• We provide a theoretical analysis to prove the Bayes consistency of our proposed loss
function and show an increased decision margin as the leverage parameter enlarges
under mild assumptions.

• We explore the effect of different values of α on the system performance, classifier
performance and proportion of deferred samples. Additionally, we compare the ex-
perimental results with other methods on the CIFAR-10 dataset.
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2 Related Work

In 1957, rejection learning was introduced in [5], where optimal decision rules were found
by minimizing the error rate for a fixed rejection rate. This sparked research into methods
that required predetermined confidence rates, where the algorithm decides to reject when
it is too uncertain. Since then, numerous confidence-based approaches for binary classifi-
cation have been proposed [2, 25, 9, 19].

In the binary setting, [6] was the first to introduce the simultaneous learning of a classifier
and a rejector. Later, in [17], both the confidence-based and classifier-rejector approaches
were extended to a multiclass setting. [17] derived a general condition for calibration to the
Bayes optimal solution for the classifier-rejector method, which suggested that calibration
is hard to achieve with general loss functions. For the confidence-based technique, they
proposed rejection criteria for more general losses and guaranteed calibration to the Bayes
optimal solution.

While [17] extended existing work to the multiclass setting, [4] was the first to propose a
surrogate loss inspired by the cost-sensitive learning for general classification. However,
the above methods for rejection learning neglect the expert’s decision for the samples. To
fill this gap, [14] for the first time proposed the L2D framework based on the classifier-
rejector approach by exploring the interaction between the expert and the classifier. They
found that L2D is a generalization of the previous rejection learning. However, the loss
in [14] was found to be inconsistent, and [18] introduced a confidence-based method that
compares the confidence levels of the classifier and expert to decide which to defer to.
Unfortunately, [16] provided an example showing that this method fails to adapt to the
expert’s strengths and weaknesses.

Closely related to our work, [16] proposed the consistent surrogate loss for the multiclass
problem, namely the softmax loss. [24] found that the framework in [16] was not calibrated
with respect to expert correctness and proposed a different consistent surrogate loss based
on One-vs-All classifiers called the OvA loss. Our work aims to decrease expert dependency
by adding a leverage term while maintaining the consistency of the proposed surrogate loss.
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3 Preliminaries

In this section, we introduce the basic mathematical definitions and notations for the
classification problem and Learning to Defer (L2D) problem based on it.

3.1 Classification problem

In machine learning, classification is the task of assigning input data to a certain class
[3]. Examples of classification problems include spam detection [22] or handwritten digit
recognition [13]. These are typical examples of binary and multiclass classification prob-
lems respectively within supervised machine learning.

In a general classification problem, we observe the samples {(xi, yi)}ni=1, which are inde-
pendently and identically distributed from an unknown probability distribution. Here,
each input xi is a vector of d features in the input space X ⊆ Rd, and each label yi is in
the true output space Y = [K] := {1, . . . ,K}. Our goal is to learn a prediction function
called the classifier f : X → Y, which maps an input instance x ∈ X to its corresponding
label y ∈ Y. To evaluate the performance of the classifier, we use the 0 − 1 loss function
ℓ0−1(y, f(x)) := 1(y ̸= f(x)).

Let η(x) denote the posterior probability function as

η(x) := [ηk(x)]Kk=1 with ηk(x) := P(Y = k|X = x) for k ∈ [K] and x ∈ X . (1)

Then the probability simplex is the collection of all possible posterior probability vectors,
denoted as

SK :=

{
(η1(x), . . . , ηK(x))

∣∣∣∣∣x ∈ X ,

K∑
k=1

ηk(x) = 1, 0 ≤ ηk(x) ≤ 1, ∀k ∈ [K]

}
.

The corresponding risk with respect to the loss ℓ0−1 is defined as

Rℓ0−1 [f ] := Ex,y[ℓ0−1(y, f(x))] = ExEy|x1(y ̸= f(x)) =
K∑
k=1

ηk(x)Px(f(x) ̸= k), (2)

where Px(f(x) ̸= k) is the probability that the classifier f makes a mistake when predicting
the label of input x as k. The minimal ℓ0−1-risk is called the Bayes risk, which is given by

Rℓ0−1,∗ := inf
f :X→Y

Rℓ0−1 [f ].

The classifier that achieves the Bayes risk is called the Bayes classifier, which is given by

f∗(x) := argmax
k∈Y

ηk(x).

3.2 Learning to Defer

In addition to the standard classification samples {(xi, yi)}ni=1, the L2D problem assumes
access expert demonstrations. The expert’s prediction for feature xi is denoted as mi ∈ M,
where M is the expert’s prediction space. Usually, we take M = Y. Each sample in the
dataset D = {xi, yi,mi}ni=1 is drawn from the same distribution P of (X ,Y,M).
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Figure 1: Schematic overview of the L2D framework [24].

We denote (X,Y,M) as the variable distributed from P. Additionally, the probability that
the expert correctly classifies the input x given the true label k ∈ Y is denoted as

pm,k(x) = P(M = k|X = x, Y = k). (3)

while the probability that the expert’s prediction matches the true label Y is denoted as

pm(x) = P(M = Y |X = x). (4)

The L2D framework is a classification system with a rejection option, where both a clas-
sifier and a rejector are learned simultaneously. The rejector r : X → {0, 1} determines
whether the expert should be consulted based on confidence. If the machine is more certain
about deferring than about classifying one of K labels, it decides to defer. The classifier
f : X → Y is used when the rejector decides not to defer, i.e. when r(x) = 0. Figure 1
provides a schematic overview.

To evaluate the classification performance of the L2D system, which applies either the
classifier f(x) or the expert m as the prediction according to the rejector’s decision r(x),
we introduce the 0− 1 loss within the L2D framework. The loss fucntion is defined as

L0−1(y,m, f(x), r(x)) := (1− r(x))1[f(x) ̸= y] + r(x)1[m ̸= y], (5)

where 1 denotes the indicator function that checks if the prediction and label are equal.
For a fixed classifier f and a rejector r, the corresponding risk with respect to the L0−1

loss is defined as

RL0−1 [f, r] := Ex,y,m[L0−1(y,m, f(x), r(x))].

The minimal L0−1-risk is called the Bayes risk and is given by

RL0−1,∗ := inf
f :X→Y, r:X→{0,1}

RL0−1 [f, r].

The classifier and rejector that achieve the Bayes risk are called the Bayes classifier and
Bayes rejector, respectively. Equation 4 in [24] tells us that the Bayes classifier and the
Bayes rejector of the L0−1 loss (5) are

f∗(x) = argmax
k∈Y

ηk(x),

r∗(x) = 1
[
pm(x) ≥ max

k∈Y
ηk(x)

]
.
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4 Methodology

In this section, we introduce our proposed Leveraged One-vs-All (LOvA) surrogate loss
function for the L2D problem in Section 4.1, and present the corresponding Bayes score
function and optimal decision rules in Section 4.2.

4.1 Leveraged One-vs-All (LOvA) Surrogate Loss

The Leveraged One-vs-All (LOvA) loss is inspired by [24] and uses K + 1 score functions
g1(x), . . . , gK(x), and g⊥(x), where gy : X → R for y ∈ Y⊥ := {1, . . . ,K,⊥}. The score
function vector g(x) := [gy(x)]y∈Y⊥ indicates the likelihood of x being labeled as y ∈ Y⊥.
If g⊥(x) is the largest score function, x is deferred to the expert for a decision. Given the
fitted score function g, the classifier and rejector are given by

f(x) = argmax
y∈Y

gy(x),

r(x) = 1
[
g⊥(x) ≥ max

y∈Y
gy(x)

]
.

(6)

Our LOvA loss function introduces a leverage parameter α into a surrogate loss function
for L2D, which leverages losses on expert correctness and incorrectness. The loss function
has the following point-wise form:

ψL(y,m,g(x)) = ϕ[gy(x)] +
∑

y′∈Y, y′ ̸=y

ϕ[−gy′(x)] + ϕ[−g⊥(x)]

+ 1[m = y]
(
ϕ[g⊥(x)]− ϕ[−g⊥(x)] + αϕ[gy(x)]

)
,

(7)

where y denotes the correct label and y′ denotes the wrong labels. It consists of three
components:

(1) A binary loss function ϕ : R → R+, where ϕ[gy(x)] forces gy to be larger when y is
the correct label, while ϕ[−gy′(x)] punishes large gy′ for wrong label y′.

(2) An indicator function 1 that determines whether the expert would predict the right
label (m = y) or wrong label (m ̸= y).

(3) The leverage parameter α distinguishes between the score functions of correct and
incorrect labels. Larger α causes the score function of the correct label to enlarge
and the score functions of incorrect labels to reduce.

We highlight that this is the first time that the leverage parameter α is introduced into
surrogate loss functions for the L2D problem. The LOvA loss function of (7) is in a general
form, but some special cases are worth mentioning:

(i) Taking α = 0, we achieve the OvA surrogate loss proposed by [24], the form of which
is

ψOvA(y,m,g(x)) = ϕ[gy(x)] +
∑

y′∈Y, y′ ̸=y

ϕ[−gy′(x)] + ϕ[−g⊥(x)]

+ 1[m = y]
(
ϕ[g⊥(x)]− ϕ[−g⊥(x)]

)
.

(ii) Taking m ̸= y, the part consisting of the leverage term α disappears and we end up
with

ψL(y,m,g(x)) = ϕ[gy(x)] +
∑

y′∈Y, y′ ̸=y

ϕ[−gy′(x)] + ϕ[−g⊥(x)].

6



(iii) Taking m = y and α ̸= 0, we achieve the case of interest, where our leverage term α
has utility. The loss has the following form

ψL(y,m,g(x)) = (1 + α)ϕ[gy(x)] +
∑

y′∈Y, y′ ̸=y

ϕ[−gy′(x)] + ϕ[g⊥(x)].

As can be seen, the leverage term α is only applicable in the third case, so when the expert’s
prediction is right. In the context of minimizing the loss, a larger α puts more weight on
the score function of the correct label gy. Consequently, we expect that the score function
gy will increase when it is correctly labelled, while simultaneously the other score functions
gy′ will reduce. Experiments should be executed to confirm this estimation, but first of all
we will show the theoretical consequences of our added leverage term α in Section 5.

4.2 Optimal decision rules

The optimal classifier and rejector are induced by the optimal score function g∗ that
minimizes the corresponding risk Ex,y,m[ψL]. We will evaluate the integrated binary loss
ϕ to be the logistic loss in order to get these decision rules.

Theorem 1. Let ϕ be the logistic loss integrated in the LOvA loss (7). Moreover, let
ηk(x), pm,k(x) and pm(x) be defined as in (1), (3) and (4) respectively. Then the optimal
score function g∗ has the form

g∗k(x) = log

(
ηk(x)

1− ηk(x)
· (1 + αpm,k(x))

)
, ∀ k ∈ Y,

g∗⊥(x) = log

(
pm(x)

1− pm(x)

)
.

(8)

The proof of this theorem is given in Section 8.1.

As described in (6), the largest score function determines which action will be taken.
Therefore, the optimal decision rules for the LOvA loss are determined by the optimal
score function in (8) in the same way, i.e.

f∗
L(x) := argmax

k∈Y
g∗k(x),

r∗L(x) := 1
[
g∗⊥(x) ≥ max

k∈Y
g∗k(x)

]
.

(9)

Using (9) and Theorem 1, we can derive the explicit formulation of the Bayes decision
rules, which enables us to determine the specific decision rules for the LOvA loss equipped
with the logistic loss. However, before proceeding, we need to make an assumption about
the maximum probability pm,k.

Assumption 1. Let ηk(x) be the posterior probability function defined as in (1) and let
pm,k(x) be defined as in (3). Assume that for any x, there holds

argmax
k∈Y

ηk(x) ⊂ argmax
k∈Y

pm,k(x).

Assumption 1 assumes that the class with the largest posterior probability ηk(x) is the
class with the largest probability pm,k(x).
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Theorem 2. Let ϕ be the logistic loss in the LOvA loss (7). Moreover, let pm,k(x) and
pm(x) be defined as in (3) and (4), respectively. Suppose that Assumption 1 is satisfied.
Then the optimal decision rules for the LOvA loss are given by

f∗
L(x) = argmax

k∈Y
ηk(x),

r∗L(x) = 1

[
pm(x) ≥ R(x)

1 +R(x)

]
,

(10)

where

R(x) := max
k∈Y

ηk(x)
1− ηk(x)

(1 + αpm,k(x)).

The proof of this theorem is given in Section 8.1.

These decision rules can be used for each possible observed training data D to classify new
data x or to decide to reject and refer to the expert. Note that the decision rules in (10)
are optimal for the logistic loss ϕ integrated in the LOvA loss (7). The optimal decision
rules for other integrated losses can be computed similarly.

The optimal rejector r∗L(x) as in (10) is depending on the leverage term α. For a given
instance x, a larger α causes a larger rejection threshold R(x)

1+R(x) . Therefore, the system is
less likely to reject new instances when α increases and is more dependent on the classifier
f∗
L(x).

The addition of the leverage term reduces the workload of the expert, but this does not
say anything about the performance of the system. It is therefore not clear what value of α
should be used in order to maximize the system accuracy. Consequently, we must conduct
experiments for different values of α to test how large the leverage term should be. We
will show these experimental consequences in Section 6.
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5 Theoretical Results

In this section, we explore two important theoretical properties of the LOvA loss. More
precisely, in Section 5.1, we prove that when equipped with two commonly-used binary
losses, the LOvA loss is Bayes consistent with respect to the ℓ0−1-loss for any α ≥ 0.
While this results provides valuable insights into the performance of the LOvA loss, it
does not necessarily shed light on the necessity of the leverage parameter α. To address
this, we move on to Section 5.2, where we investigate how different values of α impact
the margin of the Bayes score functions of the LOvA loss. This analysis provides a more
complete picture of the role of α in the performance of the LOvA loss.

5.1 Bayes consistency of LOvA loss

In this section, we will first define Bayes consistency in the L2D problem, and then demon-
strate that our proposed LOvA loss serves as a Bayes consistent surrogate loss for the 0−1
L2D loss in (5), using two commonly-used binary losses.

5.1.1 Definition of Bayes consistency in L2D

First, we define some notations for a general surrogate loss ψ : Y × M × RK+1 → R+,
designed for K +1 score functions g(x) := [gy(x)]y∈Y⊥ . The ψ-risk and Bayes ψ-risk of g,
denoted as Rψ and Rψ,∗, respectively, are defined by

Rψ(g) := Ex,y,m[ψ(y,m,g(x))],

Rψ,∗ := min
g:X→RK+1

Rψ(g).

The optimal score functions that achieve the Bayes ψ-risk are defined by

gψ,∗ := argmin
g:X 7→RK+1

Rψ(g).

In order to estimate the optimal score function gψ,∗, we minimize the empirical ψ-risk over
the function space Fn, i.e.

ĝψ := argmin
g∈Fn

R̂ψ(g) := argmin
g∈Fn

1

n

n∑
i=1

ψ(yi,mi,g(xi)). (11)

Correspondingly, based on the estimated score functions ĝψ, we get the classifier

f̂ψ := argmax
k∈Y

ĝψk (x).

Under suitable conditions for a surrogate loss ψ, minimizing its empirical risk R̂ψ(g) over
a sequence of function classes Fn approximately minimizes the ψ-risk Rψ(g). However,
one goal in the L2D problem is to find a classifier f whose classification risk Rℓ0−1 [f ] in
(2) (called the risk of f) is close to the possible minimum, i.e. the Bayes risk Rℓ0−1,∗.
Therefore, we investigate the conditions which guarantee that if the ψ-risk of g gets close
to its Bayes ψ-risk, then the risk of the induced classifier f(x) = argmaxk∈Y gk(x) also
approaches the Bayes risk. When this happens, we say that the L2D classification method
based on ψ is Bayes consistent. Mathematically speaking, we provide the formal definition
as follows:
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Definition 1. (Bayes consistency) Let ψ : Y × M × RK+1 → R+ be a surrogate loss
function for the L2D problem. The surrogate loss function ψ is said to be Bayes consistent
with respect to the classification loss ℓ0−1 if for any sequence of score functions gn : X →
RK+1 with gn(x) := [gn,y(x)]y∈Y⊥ , the following holds:

Rψ(gn) → Rψ,∗ =⇒ Rℓ0−1(fn) → Rℓ0−1,∗,

where the classifier is

fn(x) := argmax
k∈Y

gn,k(x).

The Bayes consistency property is crucial in determining the success of a classifier learned
by minimizing the surrogate loss. If the surrogate loss is Bayes consistent with respect to
the classification loss ℓ0−1, then the convergence of the surrogate ψ-risk to its Bayes ψ-risk
implies the convergence of the original classification risk to its Bayes risk. This property
enables us to solve the minimization of a surrogate loss instead of the 0− 1 loss, providing
theoretical guarantees for the usage of the surrogate loss function in the L2D problem.

Next, we equip our LOvA loss with two widely-used binary loss functions ϕ and then
explore the Bayes consistency of the LOvA loss.

5.1.2 Strictly proper composite loss

The first binary loss function that we consider is the strictly proper composite loss [20],
which is defined as follows:

Definition 2. (Strictly proper composite loss) Let ϕ : R → R+ be a binary surrogate loss.
Then, ϕ is said to be proper composite if there exists a strictly increasing link function
γ : [0, 1] 7→ R such that for any p(x) := P(Y = 1|x) ∈ (0, 1), there holds:

γ(p(x)) ∈ argmin
f(x)∈R

p(x)ϕ[f(x)] + (1− p(x))ϕ[−f(x)].

Moreover, ϕ is said to be strictly proper composite if the above minimizer is unique for all
p(x) ∈ (0, 1).

This definition shows that if a binary surrogate loss is strictly proper composite, we can
use the associated link function to find the unique minimizer of a binary classification
problem. This is a useful trick that we will use to prove the consistency of our LOvA loss
in Theorem 3.

Theorem 3. Let ψL (7) be the LOvA loss equipped with a strictly proper composite loss
ϕ, and let pm,k(x) be defined as in (3). Suppose that Assumption 1 is satisfied. Then, for
any α ≥ 0, ψL is Bayes consistent with respect to the classification loss ℓ0−1.

The complete proof is provided in Section 8.2.2. Theorem 3 shows that, under a reasonable
assumption, our surrogate loss is consistent with the non-convex 0− 1 loss. As mentioned
earlier, this is especially useful in the learning phase, where finding the minimizer of the
0− 1 loss appears to be NP-hard.

Some examples of strictly proper composite losses are the logistic loss, exponential loss,
and square loss. The logistic loss is often used in LogitBoost [8] and the exponential loss in
AdaBoost [7], while the square loss is frequently used for regression but can also be applied
to classification [15]. In this context, link functions play a crucial role by connecting the
output of a model to a target variable. Here are these examples:
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Loss name ϕ(v) γ(p) γ−1(v)

Logistic log(1 + exp(−v)) log( p
1−p)

1
1+exp(−v)

Exponential exp(−v) 1
2 log(

p
1−p)

1
1+exp(−2v)

Square (1− v)2 2p− 1 1
2(v + 1)

Table 1: Surrogate losses with their respective link and inverse link functions.

Example 1. (Logistic loss) This strictly proper composite loss function is defined as

ϕ[f(x)] = log(1 + exp(−f(x))).

The corresponding link function γ(p) = log(p/(1− p)) is strictly increasing and minimizes
the inner ψ-risk. Conversely, the inverse link function γ−1[f(x)] = 1/[1+ exp(−f(x))] can
be used as an approximation of the posterior probability p.

Example 2. (Exponential loss) This strictly proper composite loss function is defined as

ϕ[f(x)] = exp(−f(x)).

The corresponding link function γ(p) = 1
2 log(p/(1−p)) is strictly increasing and minimizes

the inner ψ-risk. Conversely, the inverse link function γ−1[f(x)] = 1/[1 + exp(−2f(x))]
can be used as an approximation of the posterior probability p.

Example 3. (Square loss) This strictly proper composite loss function is defined as

ϕ[f(x)] = (1− f(x))2.

The corresponding link function γ(p) = 2p − 1 is strictly increasing and minimizes the
inner ψ-risk. Conversely, the inverse link function γ−1[f(x)] = 1

2(f(x) + 1) can be used as
an approximation of the posterior probability p.

These three losses satisfy the conditions given in Theorem 3, and they are summarized in
Table 1. By using one of these binary surrogate losses ϕ with our LOvA loss ψL (7), we
can obtain a calibrated surrogate loss for the 0− 1 classification loss.

5.1.3 Convex, differentiable, decreasing loss

Another group of commonly used loss functions that can be minimized are those that are
convex, differentiable and decreasing. These types of loss functions can be minimized using
standard optimization techniques [28]. Convex functions have the advantageous property
that we only need to aim for local optima, as they are equivalent to global optima. This
means that we can minimize our loss function and know that it is the lowest possible loss,
making the decision that causes this minimal loss optimal. Additionally, since the loss is
both differentiable and decreasing, we have the following theorem:

Theorem 4. Let ψL (7) be the LOvA loss equipped with a convex, differentiable and
decreasing loss ϕ. Suppose that Assumption 1 is satisfied. Then, for any α ≥ 0, ψL is
Bayes consistent with respect to the classification loss ℓ0−1.

The complete proof is provided in Section 8.2.3. Theorem 4 allows for a variety of surrogate
loss functions to be used to approximate the non-convex 0−1 loss. The following examples
demonstrate some of these loss functions and their associated results.
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Example 4. (Logistic loss) This convex, differentiable and decreasing loss function is
defined as

ϕ[f(x)] = log(1 + exp(−f(x))).

For this logistic loss, we have the derivative ϕ′[f(x)] = −1/(1 + exp(x)). By applying the
first-order optimality condition to a binary classification problem, we can find the minimizer
of the risk. This gives p(x)ϕ′[g(x)] + (1 − p(x))ϕ′[−g(x)] = 0 where p(x) := P(Y = 1|x),
which leads to the optimal score function g(x) = log(p(x)/(1− p(x))).

Example 5. (Exponential loss) This convex, differentiable and decreasing loss function is
defined as

ϕ[f(x)] = exp(−f(x)).

For this exponential loss, we have the derivative ϕ′[f(x)] = − exp(−f(x)). By applying the
first-order optimality condition to a binary classification problem, we can find the minimizer
of the risk. This gives p(x)ϕ′[g(x)] + (1 − p(x))ϕ′[−g(x)] = 0 where p(x) := P(Y = 1|x),
which leads to the optimal score function g(x) = 1

2 log(p(x)/(1− p(x))).

These two losses satisfy the conditions given in Theorem 4. By using one of these binary
surrogate losses ϕ with our LOvA loss ψL (7), we can obtain a calibrated surrogate loss for
the 0−1 classification loss. Unfortunately, the square loss is increasing on f(x) ∈ [1,+∞),
so it does not belong to the type of loss functions we discussed in this section.

5.2 Margin theory

In this section, we explore the effect of the leverage parameter α on the performance of
the LOvA loss from the perspective of margin theory. Theorem 3 and 4 both show that
the LOvA loss is always Bayes consistent for any α ≥ 0. In other words, the class with
the largest Bayes score function g∗k(x) is the same as the class with the largest posterior
probability ηk(x), i.e.

argmax
y∈Y

ηy(x) = argmax
y∈Y

g∗y(x).

However, since only finite samples can be observed in reality, we can only get the estimated
score functions ĝ by minimizing the empirical risk R̂ψ

L[g] using (11). Unfortunately, due to
the randomness of samples and the estimation error, for some instances x ∈ X , the class
with the largest estimated score function ĝk(x) is likely to be different from the one with
the largest Bayes score function g∗k(x), i.e.

argmax
y∈Y

ĝy(x) ̸= argmax
y∈Y

g∗y(x),

which incurs a larger classification error compared to the Bayes classifier, especially for
some indecisive cases where the largest two posterior probabilities are very close. Therefore,
to accurately classify such points, we encourage the Bayes score functions to enlarge the
difference between its largest two score functions. In this way, in spite of some randomness
from samples and the estimation error, the estimated score functions are able to achieve

argmax
y∈Y

ĝ∗y(x) = argmax
y∈Y

g∗y(x)

12



and therefore have high prediction accuracy.

First, for a fixed x, we rank the score functions [gk(x)]k∈Y of the K classes in order and
denote them as g(1)(x) ≥ g(2)(x) ≥ . . . ,≥ g(K)(x). In the next definition, we define the
margin as the difference between the largest two score functions as follow.

Definition 3. (Margin) Let g(x) := [gy(x)]y∈Y be the vector of score functions and let
[g(y)(x)]y∈Y be the ordered vector of score functions correspondingly. Then the difference
between g(1)(x) and g(2)(x) denoted as

∆g(x) = g(1)(x)− g(2)(x)

is called the margin of the score functions g.

We aim to prove that the margin for our proposed LOvA loss is larger than the margin for
other loss functions. For binary surrogate losses satisfying the strictly proper composite
property of Definition 2, we can compare the estimated score functions using its link
functions. Therefore, we will investigate the margin of the LOvA loss equipped with
different strictly proper composite loss functions.

5.2.1 Logistic loss

We will first investigate the logistic loss, which has a continuous inverse link function
[19]. In Example 1, we saw that the logistic loss has inverse link function γ−1[f(x)] =
1/[1 + exp(−f(x))]. We can approximate gy(x) by this link function combined with its
binary probability.

It is important to note that the probabilities ηk(x) = P(Y = k|X = x) and pm,k(x) =
P(M = k|X = x, Y = k) are closely related. When ηk is large (i.e. x will get label k), we
expect pm,k to be large as well and vice versa. In this case, the expert will also predict the
label that has high probability. Therefore, it is desirable to have the probabilities of ηk’s
and pm,k’s have the same order.

To achieve this, we introduce an assumption about the order-preserving property, as fol-
lows:

Assumption 2. (Order-preserving property) Let ηk(x) and pm,k(x) be defined as in (1)
and (3) respectively. Assume that

(pm,i(x)− pm,j(x))(ηi(x)− ηj(x)) > 0, ∀x ∈ X

for any i, j ∈ Y.

When the property of Assumption 2 holds for a classifier, we get that (pm,i(x)− pm,j(x))
and (ηi(x)− ηj(x)) should have an equal sign, thus can be interpreted as

pm,i(x) > pm,j(x) ⇔ ηi(x) > ηj(x)

and conversely. This does not necessarily mean that these probabilities should be directly
proportional to each other, but ordering its respective labels based on these probabilities
should give equal results. Assumption 2 is stronger than Assumption 1, which only assumes
that the class with the largest posterior probability ηk(x) is also the one with the largest
probability pm,k(x).
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Theorem 5. Let ηk(x) and pm,k(x) be defined as in (1) and (3) respectively and let
Assumption 2 hold. If ψL (7) is the LOvA loss equipped with the logistic loss ϕ, then
for any x, the margin ∆g∗(x) of the Bayes score function g∗(x) becomes larger as α ≥ 0
increases.

The complete proof is provided in Section 8.3. Theorem 5 shows that under a reasonable
assumption, we are able to obtain an increased margin for the logistic loss, thus a better
and more deterministic classifier.

Note that the link function of the exponential loss has a similar form, thus the same proof
suffices. Therefore, we also get an increased margin for the exponential loss as α increases.

5.2.2 Square Loss

Next, we turn our attention to the square loss, which also has a continuous inverse
link function [19]. In Example 3, we saw that the square loss has inverse link function
γ−1[f(x)] = (f(x) + 1)/2. We can approximate gy(x) by this link function combined with
its binary probability.

Theorem 6. Let ηk(x) and pm,k(x) be defined in (1) and (3) respectively and let Assump-
tion 2 hold. If max ηk(x) < 1/2 for any x and ψL (7) is the LOvA loss equipped with the
square loss ϕ, the margin ∆g∗(x) of the Bayes score function g∗(x) becomes larger as

α ∈
[
0,min

x
min
k∈Y

(ηk(x)
−1 − 2)/pm,k(x)

]
increases for any x.

The complete proof is provided in Section 8.3.2. Theorem 6 has some limitations. The
feasible range for α is complex and difficult to understand, making it less practical for
experiments. Moreover, the assumption that max ηk(x) < 1/2 is not true for most datasets,
meaning that the theorem does not guarantee a larger margin for simple samples where
max ηk(x) ≥ 1/2. Consequently, in the next section, we will focus on the logistic loss for
experimental purposes.
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6 Experiments

In this section, we conduct numerical experiments to evaluate the effectiveness of our pro-
posed LOvA surrogate loss, comparing its performance with the softmax loss from [16]
and the OvA loss from [24]. We perform simulations on the CIFAR-10 dataset, with the
training and test sets provided according to [12]. We further divide the training set into
a 90% training subset and a 10% validation subset. We standardized the dataset to have
zero mean and unit standard deviation.

To generate expert predictions from the training labels, we assign 70% probability of pro-
viding an accurate label for images belonging to the classes [1, k], but a random label for
images belonging to the classes (k, 10]. We vary the value of k from 2 to 8 to simulate
different scenarios for experts with varying predictive capabilities.

We use the same neural network architecture and training configurations for all methods.
In accordance with [16] and [24], we utilize a 28-layer Wide Residual Network [27] to
parameterize the g(x) functions. The optimization process is performed using stochastic
gradient descent with a momentum of 0.9, weight decay of 5e− 4, and an initial learning
rate of 0.1 with the cosine annealing learning rate schedule. The models are trained with
a batch size of 1024, and we do not employ any data augmentation techniques in line with
[16] and [24]. To prevent overfitting, we monitor the validation loss throughout the train-
ing process and choose the model in the epoch whose validation loss is the lowest. In the
evaluation of OvA and LOvA results, the logistic loss function is used as the integrated
binary surrogate loss.

Firstly, we analyze the impact of various leverage parameters α on the proposed LOvA
loss function by choosing three distinct values of k to simulate varying levels of expert
proficiency. We then modify the value of α and compare the overall accuracy of the L2D
system (system accuracy), the accuracy of the classifier on the entire test set (classifier
accuracy), and the coverage, which indicates the percentage of samples that the system
has not deferred. We compute all three measurements by averaging the results of multiple
runs with unique random seeds. We employ a total of six seeds in the analysis.
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Figure 2: System accuracy as the function of the leverage parameter α in the
proposed LOvA surrogate loss.

Figures 2 and 3 demonstrate that selecting an appropriate value for the leverage parameter
α can significantly improve both the system accuracy and the classifier accuracy across
various values of k compared to the scenario where α = 0. This suggests that the LOvA

15



0 0.5 1.0 2.0 5.0

90.7

90.8

90.9

91.0

91.1

91.2

91.3

Cl
as

sif
ie

r A
cc

ur
ac

y

k=2
k=5
k=8

Figure 3: Classifier accuracy as the function of the leverage parameter α in the
proposed LOvA surrogate loss.

loss (α ̸= 0) can outperform the OvA loss (α = 0) when an optimal α is chosen. Therefore,
adjusting the leverage parameter α can maximize the performance of the L2D system. In
addition, the empirical superiority of the LOvA loss over the OvA loss on classification
accuracy shown in Figure 3 verifies the larger margin of Bayes score functions of the LOvA
loss as proven in Theorem 5 and 6. Furthermore, we discovered that the optimal α value
for the system accuracy is similar to that for the classifier accuracy.
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Figure 4: Coverage as the function of the leverage parameter α in the proposed
LOvA surrogate loss.

Figure 4 shows that, under different k values, a higher α value corresponds to a greater
coverage, indicating that the system relies less on expert input. Our LOvA loss has a lower
deferring rate compared to the OvA loss (i.e. LOvA loss with α = 0), providing empirical
evidence supporting the theoretical result presented in Theorem 2 from Section 4.2.

Secondly, we assess the performance of our proposed LOvA loss function, OvA loss function,
and softmax loss function on the L2D system’s accuracy and classifier accuracy under vari-
ous expert capabilities k. We tune the parameter α in the LOvA loss function by choosing
the model with the lowest validation loss. The relationship between the number of classes
the expert can predict correctly k and the two types of accuracy (system and classifier)
is illustrated in Figures 5 and 6. Our LOvA loss function consistently outperforms the
other two loss functions, demonstrating the effectiveness of our approach for various levels
of expert competence.
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Figure 5: System accuracy as the function of an expert with increasing expertise.
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Figure 6: Classifier accuracy as the function of an expert with increasing expertise.
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7 Conclusion & Discussion

This paper presents a novel approach for improving the performance of multiclass L2D
frameworks called the Leveraged One-vs-All (LOvA) loss function by decreasing the re-
liance on expert deferring. We provide theoretical justification for the Bayes risk consis-
tency of our proposed LOvA loss and demonstrate that, under reasonable assumptions, our
method can increase the decision margin proportionally to the leverage parameter. Our
experimental results confirm the effectiveness of our proposed approach, outperforming
other state-of-the-art L2D systems. Overall, this work contributes a valuable loss function
with potential applications across a wide range of fields.

One possible area for future work is to extend the multiclass L2D framework to incorporate
multiple experts, following the approach of the softmax and OvA losses [23]. In such cases,
the expert with the highest confidence score should be utilized if deferral occurs, resulting
in an overall increase in deferral confidence. This extension could further improve the
classification performance of the L2D system.
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8 Proofs

8.1 Proofs Related to Section 4

Proof of Theorem 1. The LOvA loss is defined by

ψL(y,m,g(x)) = ϕ[gy(x)] +
∑

y′∈Y,y′ ̸=y

ϕ[−gy′(x)] + ϕ[−g⊥(x)]

+ 1[m = y](ϕ[g⊥(x)]− ϕ[−g⊥(x)] + αϕ[gy(x)]).

Since the Bayes score function g∗
L = [g∗y ]y∈Y⊥ is the minimizer of the risk Rψ(g), i.e.

g∗
L = argmin

g
Rψ(g) = argmin

g
Ex,y,mψL(y,m,g(x))

= argmin
g

ExEy,m|xψL(y,m,g(x)),

we have

g∗
L(x) = argmin

g(x)
Ey,m|xψL(y,m,g(x)) = argmin

g(x)
CψL
x .

Simplifying the inner risk by expanding the expectations gives

CψL
x (g) := Ey,m|xψL(y,m,g(x)) = Ey|xEm|x,yψL(y,m,g(x))

= Ey|x

[
ϕ[gy(x)] +

∑
y′∈Y, y′ ̸=y

ϕ[−gy′(x)] + ϕ[−g⊥(x)]

+
∑
m∈Y

P(M = m|X = x, Y = y)1[m = y]
(
ϕ[g⊥(x)]− ϕ[−g⊥(x)] + αϕ[gy(x)]

)]
= Ey|x

[
ϕ[gy(x)] +

∑
y′∈Y, y′ ̸=y

ϕ[−gy′(x)] + ϕ[−g⊥(x)]

+ P(M = y|X = x, Y = y)
(
ϕ[g⊥(x)]− ϕ[−g⊥(x)] + αϕ[gy(x)]

)]
.

Expanding the outer expectation and using ηy(x) = P(Y = y|X = x), we get

CψL
x (g) =

∑
y∈Y

ηy(x)
[
ϕ[gy(x)] +

∑
y′∈Y,y′ ̸=y

ϕ[−gy′(x)]
]
+ ϕ[−g⊥(x)]

+
∑
y∈Y

ηy(x)P(M = y|X = x, Y = y)
(
ϕ[g⊥(x)]− ϕ[−g⊥(x)] + αϕ[gy(x)]

)
.

By the law of total probability, we have∑
y∈Y

ηy(x)P(M = y|X = x, Y = y) = P(M = Y |X = x).

Therefore, we get

CψL
x (g) =

∑
y∈Y

ηy(x)

[
ϕ[gy(x)] +

∑
y′∈Y, y′ ̸=y

ϕ[−gy′(x)]

]
+ ϕ[−g⊥(x)]

+ P(M = Y |X = x)
(
ϕ[g⊥(x)]− ϕ[−g⊥(x)]

)
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+
∑
y∈Y

ηy(x)P(M = y|X = x, Y = y)αϕ[gy(x)]

=
∑
y∈Y

ηy(x)

[
ϕ[gy(x)] +

∑
y′∈Y, y′ ̸=y

ϕ[−gy′(x)]

]
+ P(M ̸= Y |X = x)ϕ[−g⊥(x)]

+ P(M = Y |X = x)ϕ[g⊥(x)] +
∑
y∈Y

ηy(x)P(M = y|X = x, Y = y)αϕ[gy(x)]

=
∑
y∈Y

ηy(x)

[(
1 + αP(M = y|X = x, Y = y)

)
ϕ[gy(x)] +

∑
y′∈Y, y′ ̸=y

ϕ[−gy′(x)]

]
+ P(M = Y |X = x)ϕ[g⊥(x)] + P(M ̸= Y |X = x)ϕ[−g⊥(x)].

Using the notations pm(x) := P(M = Y |X = x) and pm,k(x) := P(M = k|X = x, Y = k),
k ∈ [K], we get

CψL
x (g) =

∑
y∈Y

[
ηy(x)

(
1 + αpm,y(x)

)
ϕ[gy(x)] + (1− ηy(x))ϕ[−gy(x)]

]
+ pm(x)ϕ[g⊥(x)] + (1− pm(x))ϕ[−g⊥(x)].

(12)

For the logistic loss ϕ(v) := log(1+ exp(−v)), it is obvious that CψL
x (g) is convex w.r.t. all

gy(x), where y ∈ Y⊥. Therefore, in order to obtain the minimizer g∗(x), it suffices to
differentiate CψL

x (g) w.r.t. each gy and set it equal to zero. For any y ∈ Y, the partial
derivative of CψL

x (g) with respect to gy(x) is

∂CψL
x (g)

∂gy(x)
= −ηy(x)(1 + αpm,y(x))

1 + exp(gy(x))
+

(1− ηy(x)) exp(gy(x))

1 + exp(gy(x))

=
(1− ηy(x)) exp(gy(x))− ηy(x)(1 + αpm,y(x))

1 + exp(gy(x))
.

Letting the above equation be zero, we get the solution as

g∗y(x) = log

(
ηy(x)(1 + αpm,y(x))

1− ηy(x)

)
.

Similarly, the partial derivative of CψL
x (g) w.r.t. g⊥(x) is

∂CψL
x (g)

∂g⊥(x)
= − pm(x)

1 + exp(gy(x))
+

(1− pm(x)) exp(g⊥(x))

1 + exp(g⊥(x))

=
(1− pm(x)) exp(g⊥(x))− pm(x)

1 + exp(g⊥(x))
.

Setting this to be zero, we get the optimal score function for the deferring as

g∗⊥(x) = log

(
pm(x)

1− pm(x)

)
.

Therefore, we finish the proof.

Proof of Theorem 2. Using the decision rules in (9) and Theorem 1, we get the optimal
score functions as

g∗y(x) = log

(
ηy(x)

1− ηy(x)
(1 + αpm,y(x))

)
, ∀ y ∈ Y,
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g∗⊥(x) = log

(
pm(x)

1− pm(x)

)
.

The optimal classifier for the LOvA loss is given by

f∗
L(x) = argmax

y∈Y
g∗y(x)

= argmax
y∈Y

log

(
ηy(x)

1− ηy(x)
(1 + αpm,y(x))

)
= argmax

y∈Y

ηy(x)
1− ηy(x)

(1 + αpm,y(x)). (13)

First, we prove that

argmax
y∈Y

ηy(x)
1− ηy(x)

(1 + αpm,y(x)) ⊂ argmax
y∈Y

ηy(x)

by contradiction. Assume that the assertion does not hold. Then there exists some k ∈ Y
satisfying

k ∈ argmax
y∈Y

ηy(x)
1− ηy(x)

(1 + αpm,y(x)) and k /∈ argmax
y∈Y

ηy(x).

Moreover, there exists another index i ̸= k satisfying ηi(x) > ηk(x). Since

argmax
k∈Y

ηk(x) ⊂ argmax
k∈Y

pm,k(x),

we have pm,i(x) > pm,k(x). Therefore, we have

ηi(x)
1− ηi(x)

(1 + αpm,i(x)) >
ηk(x)

1− ηk(x)
(1 + αpm,k(x)).

This implies

k /∈ argmax
y∈Y

ηy(x)
1− ηy(x)

(1 + αpm,y(x)),

which yields the contradiction.

Next, we prove that

argmax
y∈Y

ηy(x) ⊂ argmax
y∈Y

ηy(x)
1− ηy(x)

(1 + αpm,y(x)).

For any k ∈ argmaxy∈Y ηy(x) and any i ̸= k, we have ηk(x) ≥ ηi(x). Due to Assumption
1, we have pm,k(x) ≥ pm,i(x). Thus, we have

ηk(x)
1− ηk(x)

(1 + αpm,k(x)) ≥
ηi(x)

1− ηi(x)
(1 + αpm,i(x))

for any i ̸= k and therefore,

k ∈ argmax
y∈Y

ηy(x)
1− ηy(x)

(1 + αpm,y(x)).
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Combining these two parts of the proof, we get

argmax
y∈Y

ηy(x)
1− ηy(x)

(1 + αpm,y(x)) = argmax
y∈Y

ηy(x).

This together with (13) yields

f∗
L(x) = argmax

y∈Y
ηy(x).

Moreover, the optimal rejector for the LOvA loss satisfies

r∗L(x) = 1
[
g∗⊥(x) ≥ max

y∈Y
g∗y(x)

]
= 1

[
log

(
pm(x)

1− pm(x)

)
≥ max

y∈Y
log

(
ηy(x)

1− ηy(x)
(1 + αpm,y(x))

)]
= 1

[
pm(x)

1− pm(x)
≥ max

y∈Y

ηy(x)
1− ηy(x)

(1 + αpm,y(x))
]

= 1

[
pm(x) ≥ max

y∈Y

ηy(x)
1−ηy(x)(1 + αpm,y(x))

1 +
ηy(x)

1−ηy(x)(1 + αpm,y(x))

]
,

which yields the assertion.

8.2 Proofs Related to Section 5.1

8.2.1 Bayes Consistency and Classification Calibration

The definition of Bayes consistency stated in Definition 1 is not concrete enough to be used
in checking the consistency of a surrogate loss function. In this section, we aim to find
a necessary and sufficient condition of Bayes consistency called classification calibration,
which is easier to be checked. Before introducing the concept of classification calibration,
we first provide some notations concerning it. To this aim, we first write the ψ-risk as

Rψ[g] = Ex

[
Ey,m|x[ψ(y,m,g(x))]

]
.

Finding the Bayes score function of ψ-risk Rψ[g] is equivalent to finding the minimizer
of the inner conditional expectation Ey,m|x[ψ(y,m,g(x))] for each x ∈ X . We denote the
inner ψ-risk as

Cψx [g] := Ey,m|x[ψ(y,m,g(x))]

and the Bayes inner ψ-risk as

Cψ,∗x := inf
f :X→Y

Cψx [g].

Similarly for the 0− 1 loss ℓ0−1 on the classifier

f(x) := argmax
k∈Y

gk(x),

we define the inner ℓ0−1-risk by

Cℓ0−1
x [f ] := Ey|xℓ0−1(y, f(x))
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and Bayes inner ℓ0−1-risk by

Cℓ0−1,∗
x := inf

f :X→Y
Cℓ0−1
x [f ].

Both inner risks make use of the conditional expectations of the output space Y given
the input x. Therefore, we will look into their respective posterior probability functions
denoted as ηk(x) = P(Y = k|X = x), i.e. the probability that a given input x is labelled
as class k. Intuition suggests that the class k with the largest corresponding ηk(x) should
be chosen.

We can now give the formal definition of the classification calibration property.

Definition 4. (Classification calibration) Let g : X → RK+1 be the score function vector
in L2D problem and f(x) := argmaxk∈Y gk(x) be the induced classifier. Then we say the
surrogate loss ψ on the set Ω ⊂ RK+1 is classification calibrated if there exists a predictor
function such that

inf
g(x)∈Ω:ηf(x)(x)<maxy ηy(x)

Cψx [g] > inf
g(x)∈Ω

Cψx [g], ∀η ∈ SK ,

where SK ⊂ RK is the probability simplex.

Definition 4 states that classification calibration involves minimizing the innerψ-risk, which
yields an optimal g∗(x) ∈ Ω. This optimal score function ensures that the label with the
highest score value matches the one with the largest posterior probability, i.e.

argmax
k∈Y

g∗k(x) = argmax
k∈Y

ηk(x).

Note that this must hold for any probability vector η and any instance x.

The next theorem shows us that the classification calibration property is indeed the nec-
essary and sufficient condition to investigate, since the convergence of the inner risk will
imply the convergence of the whole risk, and thus Bayes consistency will be satisfied.

Theorem 7. Let ψ : Y ×M× RK+1 → R+ be a loss function and G be the set of score
function vectors satisfying G := {g : ∀x,g(x) ∈ Ω}. Moreover, let {Gn} be a sequence of
function classes satisfying Gn ⊆ G and

⋃
n Gn = G. Then ψ is classification calibrated on

Ω if and only if for any sequence of gn ∈ Gn, there holds

Rψ[gn] −→ Rψ,∗ =⇒ Rℓ[fn] −→ Rℓ,∗,

where fn := argmaxk∈Y gn,k.

Proof. See Appendix A of [21].

Since Bayes consistency, as introduced in Definition 1, is the immediate consequence in
Theorem 7, we get that classification calibration is indeed the necessary and sufficient con-
dition to study. Therefore, proving if the surrogate loss ψ is Bayes consistent is equivalent
to checking the property of classification calibration for the loss ψ.
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8.2.2 Proof of Theorem 3

Proof of Theorem 3. By (12), we have the following form of the inner risk

CψL
x [g] := Ey,m|x[ψL(y,m,g(x))],

i.e.

CψL
x [g] =

∑
y∈Y

[
ηy(x)

(
1 + αpm,y(x)

)
ϕ[gy(x)] + (1− ηy(x))ϕ[−gy(x)]

]
+ pm(x)ϕ[g⊥(x)] + (1− pm(x))ϕ[−g⊥(x)]

=
∑
y∈Y

(
1 + αηy(x)pm,y(x)

)((ηy(x) + αηy(x)pm,y(x))ϕ[gy(x)]

1 + αηy(x)pm,y(x)
+

(1− ηy(x))ϕ[−gy(x)]

1 + αηy(x)pm,y(x)

)
+ pm(x)ϕ[g⊥(x)] + (1− pm(x))ϕ[−g⊥(x)]

=
∑
y∈Y

(
1 + αηy(x)pm,y(x)

)(
Qy(x)ϕ[gy(x)] + (1−Qy(x))ϕ[−gy(x)]

)
+ pm(x)ϕ[g⊥(x)] + (1− pm(x))ϕ[−g⊥(x)],

where we denote

Qy(x) :=
ηy(x) + αηy(x)pm,y(x)

1 + αηy(x)pm,y(x)
, y ∈ Y.

Since the binary loss ϕ is a strictly proper composite loss, there exists an increasing function
γ such that

γ(p(x)) := argmin
gy(x)∈R

p(x)ϕ[gy(x)] + (1− p(x))ϕ[−gy(x)] ∀y ∈ Y⊥.

Therefore, the unique minimizer g∗(x) of the inner risk CψL
x [g] is given by

g∗k(x) = γ(Qk(x)), ∀ k ∈ Y,

g∗⊥(x) = γ(pm(x)).

Since the link function γ is strictly increasing, we have

argmax
y∈Y

Qy(x) = argmax
y∈Y

g∗y(x).

For any k ∈ argmaxk∈Y g∗k(x), we have Qk(x) = maxy∈Y Qy(x).
Now, we prove

ηk(x) = max
y∈Y

ηy(x)

by contradiction. Assume that ηk(x) ̸= maxy∈Y ηy(x). Then there exists an index i ̸= k
such that ηk(x) < ηi(x) = maxy∈Y ηy(x). Since

argmax
k∈Y

ηk(x) ⊂ argmax
k∈Y

pm,k(x),

by Assumption 1 we get i ∈ argmaxk∈Y pm,k(x) and thus pm,i(x) ≥ pm,k(x). Since the
function f(t) := t/(1 + ct) with t > 0 and c ≥ 0 is strictly increasing w.r.t. t, we get

f(t1) > f(t2) if t1 > t2. (14)
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Taking t1 := ηi(x), t2 := ηk(x) and c := pm,i(x), we get

ηi(x)

1 + αηi(x)pm,i(x)
>

ηk(x)

1 + αηk(x)pm,i(x)
.

Multiplying both sides of the above equation by 1 + αpm,i(x), we obtain

Qi(x) =
ηi(x) + αηi(x)pm,i(x)

1 + αηk(x)pm,i(x)
>

ηk(x) + αηk(x)pm,i(x)

1 + αηk(x)pm,i(x)
. (15)

Applying (14) with t1 := pm,i(x), t2 := pm,k(x), c := αηk(x) with α ≥ 0, we get

pm,i(x)

1 + αηk(x)pm,i(x)
≥

pm,k(x)

1 + αηk(x)pm,k(x)
.

Multiplying α(1− ηk(x)), adding 1 and then multiplying ηk(x) to both hand sides of the
above equation yields

ηk(x)(1 + αpm,i(x))

1 + αηk(x)pm,i(x)
≥

ηk(x)(1 + αpm,k(x))

1 + αηk(x)pm,k(x)
= Qk(x). (16)

Combining (15) and (16), we get Qi(x) > Qk(x) and thus we derive the contradiction to
Qk(x) = maxy∈Y Qy(x). Therefore, we finish the proof of ηk(x) = maxy∈Y ηy(x). Thus,
we prove that

argmax
y∈Y

g∗y(x) ⊂ argmax
y∈Y

ηy(x).

As a result, we have

g∗(x) /∈
{
g(x) : ηargmax

k∈Y
gk(x)(x) < max

k∈Y
ηk(x)

}
,

which implies

inf
g(x)∈RK+1:ηf(x)(x)<max

y∈Y
ηy(x)

CψL
x [g] > CψL

x [g∗] = inf
g(x)∈RK+1

CψL
x [g], ∀η ∈ SK ,

where f(x) := argmaxy∈Y gy(x). Therefore, we prove that the surrogate loss ψL is clas-
sification calibrated. By the equivalence between classification calibration and Bayes con-
sistency in Theorem 7, we get the assertion.

8.2.3 Proof of Theorem 4

Proof of Theorem 4. Using (12), we get

CψL
x [g] =

∑
y∈Y

(
1 + αηy(x)pm,y(x)

)(
Qy(x)ϕ[gy(x)] + (1−Qy(x))ϕ[−gy(x)]

)
+ pm(x)ϕ[g⊥(x)] + (1− pm(x))ϕ[−g⊥(x)],

where

Qy(x) :=
ηy(x) + αηy(x)pm,y(x)

1 + αηy(x)pm,y(x)
, y ∈ Y. (17)
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Since the binary surrogate loss ϕ is a convex, differentiable, and decreasing loss for binary
classification, the minimizer g∗ satisfies the first-order condition, i.e.

Qk(x)ϕ
′[g∗k(x)]− (1−Qk(x))ϕ

′[−g∗k(x)] = 0, k ∈ Y,

pm(x)ϕ′[g∗⊥(x)]− (1−Qi)ϕ
′[−g∗⊥(x)] = 0.

Note that the assumptions imply that ϕ′(0) < 0 and ϕ is a decreasing function. It suf-
fices to consider the case that Qi ̸= 0.5, else the first condition cannot be satisfied since
ϕ′(0) ̸= 0. By the assumption that ϕ is a decreasing function and ϕ′(0) < 0, we get that
ϕ[g∗i (x)] < ϕ[−g∗i (x)] if g∗i (x) > 0. Therefore if Qi(x) > 0.5, we get that g∗i > 0 and else if
Qi(x) < 0.5, there holds g∗i (x) < 0. Next, we will show that Qi < Qj implies gi < gj with
the following cases.

Case 1: When Qi < Qj < 0.5, we know that gi < 0 and gj < 0. Since we prove it
by contradiction, we assume gj < gi < 0. Then by the convexity of ϕ, we get that ϕ′ is
non-decreasing and thus ϕ′[gj ] ≤ ϕ′[gi] < 0. Then we can use the first-order optimality
condition to get

ϕ′[−gi] =
Qiϕ

′[gi]

1−Qi
>

Qjϕ
′[gi]

1−Qj
≥ Qjϕ

′[gj ]

1−Qj
= ϕ′[−gj ].

Again, using the fact that ϕ′ is non-decreasing for convex ϕ, we get −gi > −gj and thus
gi < gj . This contradicts our assumptions, so we have gi < gj .

Case 2: When Qi < 0.5 < Qj , we immediately know that gi < 0 and gj > 0 and hence
gi < gj is satisfied.

Case 3: When 0.5 < Qi < Qj , we know that gi > 0 and gj > 0. Since we prove it
by contradiction, we assume 0 < gj < gi. Then by the convexity of ϕ, we get that ϕ′ is
non-decreasing and thus ϕ′[gj ] ≤ ϕ′[gi] < 0. Then we can use the first-order optimality
condition to get

ϕ′[−gi] =
Qiϕ

′[gi]

1−Qi
>

Qjϕ
′[gi]

1−Qj
≥ Qjϕ

′[gj ]

1−Qj
= ϕ′[−gj ].

Again, using the fact that ϕ′ is non-decreasing for convex ϕ, we −gi > −gj and thus
gi < gj . This contradicts our assumptions, so we must have that gi < gj .
Notice that

argmax
k∈Y

ηk(x) ⊂ argmax
k∈Y

pm,k(x)

by Assumption 1. Therefore, if there exist two different indices i ̸= k satisfying

ηi(x) < ηk(x) = max
y∈Y

ηy(x),

then we have

pm,i(x) < pm,k(x) = max
y∈Y

pm,y(x).

By the definition of Qk in (17), we then have

Qi(x) < Qk(x) = max
y

Qy(x).

Since Qi < Qj =⇒ gi < gj , we obtain that

ηi(x) < ηk(x) = max
y∈Y

ηy(x) =⇒ gi(x) < gk(x) = max
y∈Y

gy(x).

Therefore, we finish the proof.
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8.3 Proofs Related to Section 5.2

8.3.1 Proof of Theorem 5

Proof of Theorem 5. Using (12), we get

CψL
x [g] =

∑
y∈Y

(
1 + αηy(x)pm,y(x)

)(
Qy(x)ϕ[gy(x)] + (1−Qy(x))ϕ[−gy(x)]

)
+ pm(x)ϕ[g⊥(x)] + (1− pm(x))ϕ[−g⊥(x)],

where

Qy(x) :=
ηy(x) + αηy(x)pm,y(x)

1 + αηy(x)pm,y(x)
, y ∈ Y.

Denote Q(1)(x) and Q(2)(x) as the largest two values among [Qy(x)]y∈Y . Without loss
of generality, we let ηi(x) = η(1)(x) and ηj(x) = η(2)(x). By Assumption 2, we have
pm,i(x) > pm,j(x) and thus Q(1)(x) = Qi(x) and Q(2)(x) = Qj(x). Since the logistic loss
has the link function γ(u) = − ln

(
1
u − 1

)
[15], the largest two Bayes score functions are

g∗(1)(x) = γ(Q(1)(x)) and g∗(2)(x) := γ(Q(2)(x)). Therefore, it follows that the margin of
the Bayes functions for the LOvA loss is

∆g∗
L
(x) = γ(Qi)− γ(Qj) = − ln

(
1

Qi
− 1

)
+ ln

(
1

Qj
− 1

)
= − ln

(
1 + αηipm,i

ηi(1 + αpm,i)
− 1

)
+ ln

(
1 + αηjpm,j

ηj(1 + αpm,j)
− 1

)
= ln

(
1 + αηjpm,j − ηj(1 + αpm,j)

ηj(1 + αpm,j)

)
− ln

(
1 + αηipm,i − ηi(1 + αpm,i)

ηi(1 + αpm,i)

)
= ln

(
1 + αηjpm,j − ηj(1 + αpm,j)

ηj(1 + αpm,j)
· ηi(1 + αpm,i)

1 + αηipm,i − ηi(1 + αpm,i)

)
= ln

(
1− ηj

ηj(1 + αpm,j)
· ηi(1 + αpm,i)

(1− ηi)

)
= ln

(
1− ηj
ηj

· ηi
1− ηi

· 1 + αpm,i

1 + αpm,j

)
.

Due to ηi(x) > ηj(x) and Assumption 2, it is easy to see that pm,i(x) > pm,j(x). Therefore
as the parameter α ≥ 0 increases, ∆g∗

L
(x) becomes larger.

8.3.2 Proof of Theorem 6

Proof of Theorem 6. Since our LOvA loss is equipped with the square loss ϕ, the largest
two Bayes score functions are g∗(1)(x) = γ(Q(1)(x)) and g∗(2)(x) = γ(Q(2)(x)) with γ(ηk) :=

2ηk − 1. Without loss of generality, we let ηi(x) = η(1)(x) and ηj(x) = η(2)(x), where
i, j ∈ Y. By Assumption 2, we have pm,i(x) > pm,j(x) and thus Q(1)(x) = Qi(x) and
Q(2)(x) = Qj(x). Similar to the proof of Theorem 5, the margin of the Bayes score
functions turns out to be

∆g∗
L
(x) = γ(Qi)− γ(Qj) = 2(Qi −Qj) =

ηi(1 + αpm,i)

1 + αηipm,i
− ηj(1 + αpm,j)

1 + αηjpm,j
.

Taking the derivative of ∆g∗
L
(x) w.r.t. α, we get

d∆g∗
L
(x)

dα
= ηi ·

pm,i(1 + αηipm,i)− (1 + αpm,i)ηipm,i

(1 + αηipm,i)2
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− ηj ·
pm,j(1 + αηjpm,j)− (1 + αpm,j)ηjpm,j

(1 + αηjpm,j)2

=
ηi(1− ηi)pm,i

(1 + αηipm,i)2
− ηj(1− ηj)pm,j

(1 + αηjpm,j)2
. (18)

We now need to show that the above derivative is positive, in order to achieve an increasing
margin. We will now use some formulas of useful forms to show this increase.

Denote the function f(t) := t(1− t)/(1 + ct)2 with t ∈ [0, 1] and c ≥ 0. We will show that
this function is increasing. The derivative of f w.r.t. t is

df(t)

dt
=

(1− 2t)(1 + ct)2 − (t− t2)2(1 + ct)c

(1 + ct)4
=

1− (c+ 2)t

(1 + ct)3
.

Taking t := ηk(x) and c := αpm,k(x), we get that f(t) is increasing when (2+αpm,k(x))ηk(x) <
1 for any k ∈ Y. Therefore we get f(ηi(x)) > f(ηj(x)) and consequently

ηi(1− ηi)pm,i

(1 + αηipm,i)2
>

ηj(1− ηj)pm,i

(1 + αηjpm,i)2
(19)

when the condition (2 + αpm,k(x))ηk(x) < 1 is satisfied for any k ∈ Y.

Next, we define the function h(t) := t/(1+ ct)2 with t ∈ [0, 1] and c ≥ 0. We will also show
that this function is increasing. The derivative of h w.r.t. t is

dh(t)

dt
=

(1 + ct)2 − t(1 + ct)(2c)

(1 + ct)4
=

(1− ct)

(1 + ct)3
.

Taking t := pm,k(x) and c := αηk(x), we get that h(t) is increasing when αpm,k(x)ηk(x) < 1
for any k ∈ Y. Therefore, we get h(pm,i(x)) > h(pm,j(x)) and consequently

ηj(1− ηj)pm,i

(1 + αηjpm,i)2
>

ηj(1− ηj)pm,j

(1 + αηjpm,j)2
(20)

when the condition αpm,k(x)ηk(x) < 1 for any k ∈ Y.

Merging the conditions of (19) and (20)

2ηk(x) + αpm,k(x)ηk(x) < 1 ∀k ∈ Y
αpm,k(x)ηk(x) < 1 ∀k ∈ Y

gives the total condition, but is equal to only the first condition. The first condition yields

α < (ηk(x)
−1 − 2)/pm,k(x) ∀k ∈ Y

Combining (19) and (20) yields

ηi(1− ηi)pm,i

(1 + αηipm,i)2
>

ηj(1− ηj)pm,j

(1 + αηjpm,j)2
,

so d∆g∗ (x)
dα > 0 of (18) is satisfied, which finishes the proof.
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