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Abstract

In 2013, the World Health Organisation (WHO) estimated the shortage of healthcare
workers at approximately 17.4 million worldwide. A possible solution to alleviate the
health care worker shortage could be found in robotics system performing basic
routines task. However, these systems are still limited in their use, especially in
dynamically changing environments. Learning from Demonstration (LfD) has the
potential to eliminate these limitations. In robotic LfD, robots learns a new task based
on only a few demonstrations from an expert. Currently, the non-reinforcement LfD
frameworks are capable of learning the motion of simple tasks, but it remains unclear
how well these frameworks generalize. Generalization is an important aspect, it
eliminates the need to relearn the framework when something changes within a
task. This exploratory study investigates whether it is possible to capture a human
controller with a non-reinforcement (LfD) framework for closing a valve task. Based
on literature, GMM/GMR was deemed to be most suitable framework to capture a
human controller. The human controller for the valve task was modelled as P(D)-
controller, admittance systems and corresponding feedback loops.
The GMM is learned with five demonstrations with random initial conditions in a
range between 0 and 2π rad. The interpolation and extrapolation capabilities were
tested by reproducing the respective controller over a range of initial conditions both
inside and outside the range of 0 and 2π rad. The reproduction performance of the
GMM/GMR was evaluated by visual inspection of the error and the RMSE between
the demonstration of the model(ground truth) and reproduction. It lead to the result
that GMM/GMR is capable of learning and reproducing the PD-controller, but with a
limited extrapolation capability. The extrapolation is limited by the spread of the
learning data. On the contrary, the GMM/GMR was not capable to capture the
admittance model due to a singularity in the input-output relation. To conclude:
GMM is not suitable to capture a human controller and different methods should
be used to capture a human controller such as reinforcement learning or system
identification.
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Chapter 1

Introduction

In 2013, the World Health Organization (WHO) estimated the shortage of health-
care workers at approximately 17.4 million worldwide. The estimated shortage of
healthcare workers in 2030 still exceeds 14 million [1]. The implications of these
predicted shortages were particularly evident during the corona pandemic. These
circumstances were further strengthen due to the shortage of Personal Protective
Equipment (PPE) [2], leading to an increased risk of corona infections which could
prohibit healthcare providers from working [3]. Furthermore, the PPE shortage im-
posed a moral and ethical dilemma for healthcare workers [4], as they had to choose
between helping their patients or reduce the risk of infection by not helping patients.
Therefore, Yang et al. [5] designed a robot which is controlled via teleoperation. The
goal of the robot was to perform basic routines such as check-ups on patients, de-
livery of food and/or medicine, operation of medical equipment and disinfection of
surfaces [5]. By fulfilling these objectives, the robot showed the potential to reduce
person-to-person contact, lower the risk of infection, and decrease the consumption
of PPE.
Although this solution is promising, it does not alleviate the shortage in healthcare
workers. The robot still has to be controlled by a team of healthcare workers.
Hence, it would be beneficial if the robot also could learn from the worker during
the teleoperation period such that after a few task demonstrations the robot works
autonomously.

1.0.1 Learning from demonstration

Learning from Demonstration (LfD) can bring the above mentioned scenario a step
closer to reality. In LfD, robots (and computers) learn new skills/tasks via a demon-
stration of an expert (demonstrator). The demonstrator could be a human or an-
other machine. The aim of LfD is that the end-user can learn new tasks/skills to
the system without preliminary programming knowledge. However, it is important to
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2 CHAPTER 1. INTRODUCTION

mention that LfD is not limited to solely reproduce tasks. A LfD framework should
be able to generalize over the learned demonstrations to perform tasks which are
new to the robot. Generalization deals with the question how the system should
respond when it encounters an unknown state [6]. Thus, LfD eliminates the need
for a robotics expert each time the robot has to be (re)programmed. It is therefore
suitable in a fast changing setting, because the robot can for example indicate that
it does not know how to perform a task. A nurse can in that case directly teach the
task to the robot.

1.0.2 Stages of learning from demonstration

LfD consists of five stages: the demonstrator, data acquisition, data modelling, ex-
ecution and refinement [7]. The demonstrator stage is concerned with the question
”Who will be performing the demonstration?” Typically, a human is used as demon-
strator, but a different (robotic) system is also be suitable as demonstrator. The
quality of reproduction is limited by the demonstration, because an incorrect demon-
stration leads to incorrect reproduction.
In the data acquisition stage the learning data is collected. The goal is to extract cru-
cial information about the task during the demonstration. However, the demonstrator
and robot interact and perceive the world in a different manner. The issue on how to
convert the data from the demonstrator ’world’ into the robot ’world’ is known as the
correspondence problem [8]. A solution to the correspondence problem can already
be found in the interface/methodology used to record the data, which is known as the
demonstration interface. An example of interface without correspondence problem
is when the demonstrator physically guides the robot during the demonstration. If
the interface does not solve the correspondence problem a separate mapping func-
tion has to be found by for example inverse kinematics [8].
The data modelling stage consists of deriving and learning a policy of the demon-
strated task. The learned policy should not only be able to reproduce the learned
data, but also generalize over new scenario’s. Generalization allows to perform new
tasks without teaching them.
The learning methods are classified in a low- or high-level tasks based on the com-
plexity of the task [7] [9]. A low-level task is defined as primitive motion such as
grasping, pushing and placing [7]. The low-level tasks are trajectories that could be
described with one policy. The high-level task is composed of the low-level tasks and
deals with the question how low-level tasks can be used to perform a more (new)
complex task.
The execution and refinement stages are the last stages of LfD. In the execution
stage the learned policy is reproduced/executed. It is important the system is able
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to refine the task during reproduction, because this allows for adaptability the new
environments. The system should be able to the relearn the new data while main-
taining the old data (the refinement stage), which is called incremental learning [7],
[9]. The incremental learning refines the task execution.

1.0.3 Related literature

The quality of high-level tasks dependent on the quality of low-level tasks. As high-
level tasks are composed of low-level tasks. The focus in this research will therefore
be low-level tasks. Currently, it is possible to learn low-level tasks. For example
in the study by Kormushev et al. [10] an ironing task and door closing task were
learned with multiple demonstrations. It captures the variability (differences) in the
demonstrations. A two-step procedure was introduced in which first the position is
encoded and later the force profile, which allowed for a better encoding of the force
profile.
In the research conducted by Zeng et al. [11] a pushing task was learned. The task
is captured by learning the joint probabilities between the position, velocity, force and
stiffness variable. The position is used as input in the LfD framework to obtain the
velocity, stiffness profile and force. The last example can be found in Lin et al. [12],
where a grasping and manipulation framework is learned via the usage of LfD. The
grasping force was estimated based on a video. The framework can successfully
pick-up a bell pepper and other objects.

1.0.4 Problem statement

An important aspect of the data modelling stage is being able to generalize to new
situation. It allows robots to adapt better in dynamically changing surroundings,
which is required in for example healthcare. However, none of the above mentioned
frameworks have been tested with respect to their generalization capabilities. Only
variability (the small differences in execution) over the different demonstrations has
been taken into account.
A benchmark is lacking to test if frameworks can adapt to new situations, such as
a different shape during the ironing task or a different initial position in the grasping
and manipulation task. In the study by Wang et al. [13] it is learned how to wipe a
table clean. A generalizability test was implemented by changing the position of the
dirt. The parameters of the framework were altered to work with the new goal posi-
tion. It means that for each new goal position the framework has to be altered, which
is not feasible in a fast dynamic changing environment where the goal changes.
Most of the current literature only takes into account one specific task without gen-
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eralizing. The trajectory of the task is learned which limits the generalization capa-
bilities of the system. A step towards better generalization would be learning the
mechanism behind the execution of the task, the controller/controller scheme a hu-
man applies to execute the task. A simple example to support this statement is a
P(D)-controller, which can generalize over different initial conditions without chang-
ing the parameters of the controller. Generalization eliminates the need to train the
robot on every single movement it is supposed to know. This therefore raises the
question: ”Which currently existing learning from demonstration framework is suit-
able for encoding a human (controller) executing an arbitrary low-level task?” To the
best of our knowledge this is the first study which address the research question and
is therefore of exploratory nature.

1.0.5 Outline

The research question is answered by first presenting an overview from literature
identified LfD frameworks in Chapter 2. After which in the methods (Chapter 3) a
demonstration interface is selected (Section 3.2.1). An encoding method is selected
(Section 3.2) based on a theoretical comparison. A task is selected in Section 3.3).
A model of the task combined with the selected LfD framework is presented in Sec-
tion 3.4 of the methods. In Section 3.5 of the methods it is described how simulations
are performed and evaluated. The results are presented in Chapter 4 and discussed
in Chapter 5. The research is concluded by summarizing and concluding with re-
spect to the main findings in the conclusion (Chapter 6).



Chapter 2

Background

The background gives an overview of the learning from demonstration (LfD) frame-
works that can be used for the data acquisition stage. The correspondence prob-
lem (how to map from demonstrator space to robot space) and high-level tasks
framework are beyond the scope of this background. The frameworks are limited to
the non-reinforcement learning frameworks. They require less demonstrations com-
pared to reinforcement learning [14], which is better suited for quickly learning new
tasks.
A demonstration framework is split in a demonstration interface and encoding method.
A demonstration interface is the device/method on which demonstration is captured.
The encoding method is the algorithm used to learn the demonstration. The pro-
cess of LfD is shown in Figure 2.1. A concise overview of demonstration interfaces
including the main limitations of the interfaces is described first. Next a description
of commonly used learning from demonstration frameworks is treated.

2.1 Demonstration interface

The purpose of this section is to get the reader acquainted with the main types
of demonstration interfaces. A demonstration interface is the device/method used
by demonstrator to execute the demonstrations. The demonstration interface can
be divided into three subcategories kinesthetic teaching, teleoperation and passive
observation [9], [15].

2.1.1 Kinesthetic teaching

Kinesthetic teaching is an interface in which the demonstrator physically guides the
robotic system to perform a task [9], [15], [16]. The motion is captured by the on-
board sensors of the robot, the demonstration is recorded in the frame of the robot.
Capturing the demonstration in the world of the robot eliminates the correspondence
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6 CHAPTER 2. BACKGROUND

problem. The problem is in this case solved by the demonstrator during the demon-
stration.
However, the demonstrator is limited by the dynamics of the movement during the
demonstrations. For example, the goal is to pick up a glass of water. The demon-
strator is limited in his/her movements, because it has to physically guide the robotic
arm to the glass of water. Once the demonstrator reaches the glass both hands are
required to close the fingers of the robotic arm for grasping the glass. The demon-
stration quality therefore depends on the how smooth the demonstrator executes the
demonstration within their limited movement freedom.

Demonstration
interface RobotHuman

Demonstration
interface

Encoding
method

Encoding
method Robot

1.

2.

3.

Figure 2.1: First, the human applies the demonstration via a demonstration inter-
face on the robot. Next, the gathered data is used to learn the encoding
method. In the last step the encoding method should be able to control
the robot.

2.1.2 Teleoperation

In teleoperation, the robot is controlled remotely by the operator. The operator con-
trols the robot via a teleoperation device, which can range from a game console
controller to a haptic device. The correspondence problem now shifts from the
demonstrator towards the teleoperation interface. Therefore, the correspondence
problem is solved when framework is correctly implemented.
To obtain a natural feeling of controlling the robot practices is required by the opera-
tor [9]. Especially, if the morphology of the robot is completely different compared to
the human. Additionally, a teleoperation device and software is required to control
the robot.
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2.1.3 Passive observation

In this method, the demonstration is recorded via a motion capture system, wear-
ables or via the robot’s camera [9], [15], [16]. The interface is more user friendly
compared to other two, because the demonstrator can move/perform the task with-
out constraint. The main limitation is that the correspondence problem has to be
solved, a mapping has to be found between the demonstration space and the robot
space. Furthermore, additional hardware is often required in the form of a motion
capture system or wearables.

2.2 Learning framework

The learning frameworks can be divided into two groups, the probabilistic and de-
terministic frameworks. These are distinguished based on the type of data encod-
ing. The probabilistic category uses multiple demonstrations for learning, which
implements variability in the data. This group consists of the Gaussian Mixture
Model (GMM), Hidden Markov Models (HMM) and Probabilistic Movement Primi-
tives (ProMP). On the contrary, the deterministic category learns from one demon-
stration. It does therefore not include variability in the reproduction. The deter-
ministic category consists of the Dynamic Motion Primitive (DMP). The frameworks
are discussed in the above mentioned order, but between the HMM and ProMP the
regression method used for GMM and HMM is discussed.

2.2.1 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is clustering technique that uses a superposition
of Gaussians distributions. A superposition of Gaussians is a sum of multiple Gaus-
sians, as seen in Figure 2.2. The GMM is the sum of the first (blue) and second
(red) Gaussian. The GMM models the joint probability between the input and output
spaces [17]. The clustering type used by GMM is soft clustering in which a data
point is classified based on probabilities. Each classified data point has a probabil-
ity that it belongs to a class. On contrary to hard clustering, where the data point
is classified into one class. It is important to note that GMM can have multiple di-
mensional input and output variables. An example of multiple dimensional encoding
can be found in Figure 2.3, where position over time is plotted and encoded with
5 components/Gaussians. It can be seen that the Gaussians are two dimensional
covering the time and position variable.
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Figure 2.2: Two Gaussians (continuous line) and the sum of both Gaussians
(dashed line) are plotted. It aids with understanding that GMM is a
superposition of Gaussians.
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Figure 2.3: An example of how GMM can be used to encode a demonstration. The
coloured ellipses represent the standard deviation of the different Gaus-
sians components. The dots correspond to the mean of the respec-
tive Gaussian. The dashed lines are the different demonstrations which
have a comparable shape.
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2.2.1.1 Mathematical description

The mathematical notation of a GMM is found in Equation 2.1.

P (q) =
K∑
k=1

πkN (q|µk,Σk) (2.1)

where P (q) is the likelihood of q belonging to the GMM, K is the number of Gaus-
sians, k is one Gaussian component, q is the point that will be classified, µk the
mean of Gaussian k, Σk is the covariance of Gaussian k and πk is the prior of
Gaussian k. Sometimes it is more likely that data points belong to a specific class/-
component, a cluster is biased. This bias is captured with the prior. The prior can
be freely chosen or learned, provided that the sum of the mixing coefficients equals
one.
After pre-processing the data, such as filtering and removing outliers, the model pa-
rameters are learned via the Expectation-Maximization algorithm, which is a maxi-
mum likelihood estimation of the mean, covariance and mixing coefficient. The result
of E-M depends on the initial guess of the parameters as it is susceptible to local
optimum [18].

2.2.1.2 Time dependency

A property of GMMs is that they are time-independent. The GMM classifies a data
point independent with respect to a previous classified point. Hence, it does not take
into account time and will only do so if there is an explicit state that includes time
(dependency), such as time or velocity. Explicitly including time as a state introduces
the problem that demonstrations for the same task have to be aligned in terms of
time [19]. Spatial relations between demonstrations are incorrectly modelled if the
executed task remains the same, but shifted over time. Therefore, the time alignment
is required to correctly model the joint distributions over different demonstrations. It
does allow for spatial variations between demonstrations.
A method to align data is Dynamic Time Warping (DTW). It uses spatial similarities
to align the data, which can be seen in Figure 2.4. However, DTW limits the demon-
stration by requiring the same initial and final state of the signal [20]. Furthermore,
the lack of time dependency in GMMS results in a classification problem if an input
is reached twice in the same movement. For example, the position has a value of
two and one wants the classify that point in Figure 2.3. It is impossible to classify the
point to the orange or yellow Gaussian component with only the position information.
A solution could be including additional dimension to the GMM in which this singu-
larity does not exist. In the case of the example, an additional input signal should be
used with a unique value when the the position reaches two for the first time and a
different value when the position reaches two for the second time.
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0 100 200 300 400 500 600 700 800 900 1000
-1

0

1
Original Signals

0 100 200 300 400 500 600 700 800 900 1000
-1

-0.5

0

0.5

1
DTW aligned signals

Figure 2.4: Example in which DTW was used to align the red data with the blue
data. In the upper plot the blue line is an approximately stretched out
version of the red line. The lower part shows how the red line is aligned
with the blue line after applying DTW.

2.2.1.3 Curse of dimensionality

A disadvantage of the E-M algorithm is that the number of Gaussians/components
are fixed before learning. An incorrect number of components results in under- or
overfitting of the demonstrations. In addition, the curse of dimensionality is also
prevalent for the GMM. An increase in components adds for each Gaussian an N-
dimensional vector of means and N by N covariance matrix, where N is the number
of variables that should be encoded. Therefore, GMMs are often in high-dimensional
space and relearning is unfavourable as this is a time-consuming process [21]. A
method to find an optimum between the number of components and informational
loss is via the use of information criterion. The information criterion determines if
the cost of adding another state weighs against the goodness of fit.
The curse of dimensionality is also present in feature selection (selecting what vari-
ables should be used for encoding), more features results in a higher dimensional
space. There are two solutions to this problem, feature selection and feature trans-
formation. In feature selection, it is determined which variables are useful by looking
at the relation of input and output data. For example, the correlations between a po-
tential input variable and the output variable. In feature transformation a dimension
reduction is performed by transforming the original variables to a lower dimensional
space [19]. An example of feature transformation is principal component analysis.
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2.2.2 Hidden Markov Models

A Hidden Markov Model (HMM) is an encoding technique used in time series or
sequence analysis where the goal is to recover a data sequence that is not directly
observable [22]. As stated in Guan et al. [23] ”One can think of HMMs as GMMs with
latent variables changing over time”. A HMM consists of hidden states (latent vari-
ables) whose outputs are the observations/demonstrations. The states are linked
with each other and one can stay in the same state or jump to a different one. How-
ever, the next action only depends on the current state, which means it satisfies the
Markov property.
An example of HMM encoding can be seen in Figure 2.5. It encodes the same
movement as in Figure 2.3. The difference is the state transition probabilities. State
transition probability describes the probability to jump from the current state to a dif-
ferent state or remain in the same state. The state transition diagram can be found
on the right in Figure 2.5. It shows that HMM starts in state 1 and can only go to
state 2 or stay within the state. The only way to arrive at the final state is by passing
the other four states.

Figure 2.5: An example of how HMM encodes multiple demonstrations. On the
left, the demonstrations are plotted including the observation probabili-
ties. The observation probabilities are modelled as Guassians and are
the colored areas. On the right, the transitions between states can be
found. The color of state corresponds to the same coloured Gaussian
of observation probability on the left diagram.
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2.2.2.1 Mathematical description

The probability that the model with parameters (θ) explains the observed data (X)

can be found with Equation 2.2, where p(X,Z|θ) is the joint probability between the
observed data and latent variables (Z). The joint probability is defined as in Equation
2.3.

P (X|θ) =
∑
Z

p(X,Z|θ) (2.2)

p(X,Z|θ) = π
N∏

n=2

p(zn|zn−1,A)
N∏

m=1

p(xm|zm,ϕ) (2.3)

To increase readability |θ (given the model parameters) is omitted. In Equation 2.3,
π is the initial state probability. It is a vector containing the probability for each state
that it will be the starting state.
The transition probability (p(zn|zn−1,A) is the probability to jump from one state to
another or stay within the state. Matrix A stores the transition probabilities. Each
state has an observation probability (p(xm|zm,ϕ)), which indicates the probability
that an observation belongs to a state given the parameters of the observation prob-
ability density function (ϕ). The observation probability can be encoded by a single
distribution, for example Gaussian or multiples Gaussians, like a GMM. The HMM
parameters are learned iterative via the Baum-Welch algorithm, which is a type of
the E-M algorithm.

2.2.2.2 Comparison with GMM

HMM shares the same advantage as GMM such as encoding the probabilistic rela-
tion between input and output variables, but also similar disadvantage such as the
curse of dimensionality.
However, HMM encodes time dependence indirectly, the next state depends on the
current state. It exploits the sequentially in the data [19]. The HMM can align data
due to exploitation of the sequentially in the data. Therefore, the system is more
robust against scaling time and singularities.
For example, if a certain observation is reached twice at the beginning and during
a movement. The GMM might not correctly classify the observation, because it has
two options for the same value. The HMM could use the temporal information to cor-
rectly classify the point, because it takes into account the previous state. In addition,
HMMs can encode several motion alternatives in the same model and partial move-
ments can be trained [24]. This results in a better generalization, because partial
movements can be combined in a different order which leads to new movements.
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2.2.3 Regression method

The above mentioned encoding methods store data in discrete states/components.
Therefore, a regression method is required to translate the components into a smooth
trajectory, which can be fed as input to a robot controller. Gaussian Mixture Re-
gression (GMR) is a method to create a smooth trajectory from states with latent
variables.
GMR does not directly derive a regression function, but relies on the learned joint
distribution via Gaussian conditioning [25]. It uses the joint distribution to estimate
the conditional expectation of the output given the input [12]. An example of this
can be seen in Figure 2.6, where a Gaussian is plotted (red area). The Gaussian
models the joint distribution between the input (x) and output (y). The goal is find
the output value y1 corresponding to the input point x1 with the aid of GMR. This is
done by calculating the difference between x1 and the mean µx (the pink line). This
difference is multiplied with the slope (the blue line). The slope is calculated by nor-
malizing the covariance with the variance. The last step is to add the output mean
(µy). Thus, the GMR computes an output based on a scaled difference between the
input mean (µx) and input (x1). In case of multiple Gaussians, the aforementioned
calculation is done for each Gaussians and scaled by the normalized likelihood of
the input belonging to respective Gaussian (responsibility).
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Figure 2.6: An example of a Gaussian (red area) and its mean (cyan dot). The
green line is the GMR retrieved trajectory. The yellow striped line shows
the desired input. The pink and blue line show how from the input mean
an output value is found.

The biggest advantage compared to data driven regression is that it tries to
model the conditional distribution, which allows to reproduce data even if there is
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data missing [24]. The usage of joint probability density function allows for regres-
sion with multiple inputs and outputs. On top of that, the in- and output variables
can be decided upon during reproduction, due to the fact that the joint probability is
modelled [26]. For example, position, velocity and force are modelled, one of these
can be input and the other two output or vice versa. The learning process is also
fast and distinct from the retrieval process [18], as the computation time does not
depend on the number of data points used to train the model, but on the the number
of Gaussian components [25].
For HMM an adaption can be made such that regression model also takes the tem-
poral behavior into account, which should prevent the explicit usage of time as input
for the regression [24]. The GMR for HMM is called adapted Gaussian Mixture Re-
gression (aGMR).

2.2.3.1 Mathematical formulation of GMR

The mathematical formulation of GMR is first discussed for GMM, because it is more
intuitive compared to HMM. On top of that, HMM can be considered as time se-
quence expansion of GMM, which means that adapted GMR is an expansion of
GMR. The full mathematical derivation of GMR can be found in the appendix (Sec-
tion A).
As mentioned before GMR is the expectation of the conditional probability of the out-
put (y) given the input (x). The corresponding formulation can be found in Equation
2.4

yest = E(y|x) =
K∑
j

wj(x)mj(x) (2.4)

where yest is the regressed output, K is the number of Gaussians, j is one Gaussian,
wj(x) is the responsibility/weighting. The responsibility shows how well component j
explains the data. The last parameter mj is the conditional expectation for Gaussian
j. It is defined as in Equation 2.5.

mj(x) = µjy +ΣjyxΣ
−1
jx (x− µjx) (2.5)

Where µjy is the mean value for the output of Gaussian j, Σjyx is the covariance
between the input and output variables for Gaussian j. The inverse of the variance
matrix is called the precision matrix. Variable Σjx is the variance of the input data
for Gaussians j and µjx is the mean value for the input of Gaussian j.

2.2.3.2 Adapted GMR

The mathematical formulation for the adapted GMR is the same as GMR. However,
a forward variable is now used instead of responsibility [24]. The forward variable is
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the likelihood of observing a sequence of inputs and being in state j at time t. Due to
this the adapted GMR takes into account the sequentially of HMM. Therefore, HMM
should be used with aGMR and GMM with GMR. The usage of GMM with aGMR is
not possible, because there is no forward variable for GMM. In addition, using HMM
with GMR is also not possible, because the HMM does not have a prior.

2.2.4 Probabilistic movement primitives

Probabilistic movement primitives (ProMP) encode demonstrations as as distribu-
tion over the trajectories. The distribution is found by applying linear regression to
each demonstration. The regression is performed by finding for each demonstration
the weights which are multiplied with basis functions. The multiple demonstrations
are combined by calculating a Gaussian distribution over the weights. The weight
distribution is used to obtain the trajectory distribution. ProMP is not only limited to
motion variables (position, velocity, acceleration) it can also include for example sen-
sory variables such as force [27]. An example of ProMP can be found in Figure 2.7.
It can be seen that there is a relatively large standard deviation, which is explained
by the fact that the variance is calculated based on the variance of the weights. In
this case, the weights have a wide spread which results in a large variance of the
trajectory distribution.

Figure 2.7: An example of how ProMP encodes the demonstrations. The black lines
are the demonstrations to learn the distribution. The mean and standard
deviation of the distribution is plot with blue. The standard deviation is
large, because of the spread in weights between the demonstrations.
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2.2.4.1 Mathematical description

The linear regression function for one demonstration can be found in Equation 2.6,
where Φt =

[
ϕt, ϕ̇t

]
are the basis functions for the positions and velocities respec-

tively. The basis functions are a function of the phase variable. A phase variable is
a time-based variable that is used to normalize the time of different demonstrations.
The vector w is the weight vector, ϵ is noise/residual and t is the corresponding time
step [28]. The basis functions representation reduces the number of parameters
compared to the joint distribution for each time step [29].

yt =

[
qt

q̇t

]
= ΦT

t w + ϵ (2.6)

The probability of a trajectory (τ) consisting of T time steps given the weight vector
(w) is calculated via Equation 2.7 [29].

p(τ |w) = Π
t
N (yt|Φtw,Σy) (2.7)

In order to generalize over the demonstrations, a distribution over the weight vec-
tors is learned via maximum likelihood estimation [28]. The basis functions however
remain the same per demonstration. The marginal distribution of the trajectory can
now be calculated, because the conditional probability of the trajectory and the dis-
tribution of the weight is known. The resulting distribution is found via Equation 2.8.

p(τ ; θ) =

∫
p(τ |w)p(w, θ)dw (2.8)

Where p(w, θ) is the distribution of the weight with the distribution parameters θ.
Assuming that the weight distribution is Gaussian, the probability defined in Equation
2.8 can be learned by rewriting to Equation 2.9. The distribution is now learned with
only the mean and covariance of the weights.

p(y;θ) =

∫
N (yt|Ψw,Σy)N (w|µw, σw)dw = N (yt|ΨTµw,ΨΣwΨ+ Σy) (2.9)

A stochastic linear feedback controller is used to reproduce the mean from this dis-
tribution for each time step [27], [29].

2.2.4.2 Phase variable

Applying ProMP on multiple demonstrations requires to have a time domain of equal
length for all demonstrations [30], which can be achieved by introducing a artificial
clock. The phase variable (artificial clock) normalizes the time domain, for example
between 0 and 1. It can be seen as replacement for time such that the location of the
basis functions can be controlled [31]. The phase variable can be chosen freely, but
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it should be a monotonically increasing function [28]. The different demonstrations
should be approximately temporal aligned with respect to the phase variable [31].
Thus, time can be used as phase variable, but only in case the data has the same
temporal phase [31]. If that does not hold DTW can be used to temporally align the
data. Furthermore, the phase variable allows for temporal modulation, which means
that the execution speed can be changed. This is done by changing the decay rate
of the phase variable. This allows for a change in execution speed [29].

2.2.4.3 Curse of dimensionality

The ProMP is limited by high dimensional input, because it requires a large number
of basis functions [21] and a large covariance matrix. In addition, a longer data
sequence requires more basis functions to correctly encode the demonstrations.
Therefore, the weight vector is longer and more data is required for regression. The
covariance matrix can be restricted in shape by only allowing diagonal components,
but this results in losing correlations between variables [32]. On top of that, more
parameters such as the number of basis functions, have to be tuned in order to
guarantee acceptable results.

2.2.5 Stability of probabilistic types

It is important to mention that it cannot be guaranteed for GMM and HMM that the
desired goal will be reached, because the HMM and GMM alone have no means to
converge to the desired end-position. A possible solution is adding a spring-damper
mechanism, which pulls the system towards the end-position.
The linear feedback controller prevents the ProMP to drift away from the trajectory
distribution for small disturbances. However, if the ProMP is not within the vicinity of
the linear controller a non-linear controller can be used to bring the robot back to the
vicinity of the linear controller [27].

2.2.6 Dynamic Motion Primitive

A Dynamic Motion Primitive (DMP) is a deterministic encoding and reproduction
method. ”Dynamic motion primitives (DMPs) is a motion planning method based on
the concept of teaching a robot how to move based on human demonstration. To this
end, DMPs use a machine learning framework that tunes stable non-linear differen-
tial equations according to data sets from demonstrated motions. Consequently, the
numerical solution of these differential equations represent the desired motion” [33].
A DMP consists of a spring-damper system and a non-linear part. The non-linear
part, which is also known as the forcing function, is used to encode motion. The forc-
ing function is scaled with a phase variable. The phase variable depends on time,
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which means the forcing function also depends on time. The phase variable decays
over time such that near the end-time of the reproduction the system behaves as a
stable spring-damper system.

2.2.6.1 Mathematical description

The spring-damper ensures (if parameters are properly chosen) that the system
converges to its goal position within some steady state error, while the non-linear
term encodes the motion. The DMP is formulated as in Equation 2.10 and 2.11. It is
important to note that the DMP can only model one dimension, for example velocity
in the y-direction.

τ ÿ = αz(βz(g − y)− ẏ) + f(s) (2.10)

This is often rewritten into the first-order notation:

τ ż = αz(βz(g − y)− z) + f(s)

τ ẏ = z
(2.11)

where y is the demonstrated state while learning or in case of reproduction the
desired state, αz and βz are positive constants, which can be freely chosen and
affect the behaviour of spring-damper-model and g is the goal position of the motion.
The system is critically damped by picking constants that obey βz = αz

4
. Variable s

is the phase variable, which is in the standard case defined as Equation 2.12.

ṡ = αss (2.12)

where ṡ is the derivative of the phase variable and αs is the time constant/temporal
constant. Function f(s) is the forcing function, the non-linear function that encodes
the demonstrated movement. If the forcing term equals zero the system is a globally
stable second-order system with (z, y) = (0, g) as attractor [34], which is favourable
as this guarantees a stable behaviour. The forcing function is defined as in Equation
2.13, where ψ(s) is a basis function and wi are the weights. The forcing functions
determines the shape of the trajectory.

f(s) =

∑N
i=1 ψi(s)wi∑N
i=1 ψi(s)

s (2.13)

The weights are used to scale the basis functions such that the demonstration tra-
jectory is encoded. They are learned via regression, which is typically performed
with only one demonstration.



2.2. LEARNING FRAMEWORK 19

2.2.6.2 Generalizability

The DMP learns the shape of the trajectory which allows for temporal scaling, scal-
ing in the magnitude of the movement, different initial and goal position during re-
production [35] [36]. However, it requires to adjust the phase variable. The phase
variable has to be tuned for a longer/shorter reproduction. The implicit time depen-
dency results in the problem that the shape of the motion is dependent on the phase
variable [35]. If the phase variable decays to quickly, the non-linear term will fade
before the desired task is finished. Due to the spring-damper the DMP will reach the
end-goal, but with a sped-up version of the the desired non-linear trajectory.

2.2.6.3 Multiple demonstrations

A main limitation of DMP is the lack of variability, because DMP learns from one
demonstration. However, it is possible to encode multiple demonstrations by using
a GMM and GMR as non-linear function [20] [37]. The GMM is able to encode
multiple demonstrations via Gaussians components, while GMR is used to retrieve
a continuous path from GMM. However, this also introduces the disadvantages of the
GMM, such as high dimensionality. In addition, it makes the system more complex
while the limitation of the phase variables are still present.
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Chapter 3

Method

This chapter discusses how the research question ”Which currently existing learn-
ing from demonstration framework is suitable for encoding a human (controller) ex-
ecuting an arbitrary low-level task?” was answered. Eventually, the suitable LfD
framework will be applied on a humanoid robot named Eve. Hence, the demonstra-
tion interface was selected such that the findings of this preliminary study could be
transferred to the Eve. However, implementation of the learning framework on the
robot is beyond the scope of this thesis.
The selection of the LfD framework and task is covered first. The framework is se-
lected in Section 3.2. The task selection is covered in Section 3.3. A model of the
selected system and task is presented in Section 3.4. Lastly, in Section 3.5 it is
explained how the selected frameworks will be evaluated on their performance with
respect to their generalizability.

3.1 Robot

A picture of the humanoid Eve can be seen in Figure 3.1. The robot is controlled via
a whole body controller, which accepts position, acceleration and velocity in either
task space or joint space as input. However, the Eve does not have force sensors
or a vision framework that can be used to process information of the task.

3.2 Framework selection

This section addresses the selection of demonstration interface and learning frame-
work. Subsection 3.2.1 motivates the selection of the demonstration interface. Sub-
section 3.2.2 evaluates the learning framework based on requirements for encoding
a human controller.

21
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Figure 3.1: The wheeled humanoid robot Eve

3.2.1 Demonstration interface

Several issues should be considered upon selecting a demonstration interface such
as the absence of force sensors, spatial limitations during the demonstrations and
the correspondence problem. The teleoperation framework deemed to be the most
suitable for the Eve based on the following three points:

1. The correspondence problem is solved by the interface. Thus, the mapping
between the operator space and the robot space is already found.

2. Teleoperation provides force information during demonstrations and reproduc-
tion without the usage of force sensors. Teleoperation eliminates the need for
physical modifications on the robot for force information during reproduction
and learning. These physical modifications are outside the scope of the re-
search.
Instead, a virtual spring is placed between the desired position of the operator
and the actual position of the robot (Figure 3.2). In the first step, the spring
between Eve and the desired position is in rest. In the second step the desired
position moves to a new position, the spring elongates and pulls the Eve po-
sition towards the new desired position. In the final step the spring is in rest
again, but the Eve and desired position have moved to a different position.

3. A proven teleoperation framework exists, It is an adaptation of the by Franken
et al [38] introduced two-layered passivity framework. The framework will be
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used combined with an Omega, which is a haptic feedback device. It can be
seen as a joystick which provide force feedback to the operator.

Desired position
Eve position

1.

2.

3.

Figure 3.2: An example of the working of the virtual force. It shows how the desired
position pulls the Eve towards the desired position.

3.2.2 Choice of encoding method

In order to evaluate if an encoding method is suitable to capture a controller the
following three requirements were defined:

1. Encode multiple dimensions. Typically, a task consists of multiple dimensions
and degrees of freedom. An example is a pick and place task in which force
and position information are required. In this case, the position is used to
locate the object and the force determines how the object should be picked
up. Therefore, the desired framework should be able to capture the different
degrees of freedom and dimensions.

2. Capture the relation between variables and how variables correlate with each
other. In a P-controller, for example, it is known that the relation between
the input and output is a constant parameter. It allows to capture underlying
mechanism of the demonstrations.

3. Robust against noise, because the recorded data will contain noise. The
framework should be able to extract the relevant information preferably with-
out signal processing. Signal processing does not generalizes to different
tasks. As an illustration, for some task high frequency information is important
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while for other task lower frequency information is more relevant. In addition,
the data obtained during reproduction will also contain noise. Therefore, the
framework should be robust against noise.

Four possible encoding methods were identified from literature and explained in the
background( Section 2.2): DMPs, ProMPs, HMM, and GMM. These methods were
evaluated against the requirements (Table 3.1). In addition, two methods were eval-
uated through preliminary simulations, which lead to GMM being the most suitable
for encoding a controller.

Table 3.1: Comparison of the frameworks against the requirements
Encoding Encode multiple Underlying relation Robust against
framework dimension between variables noise

GMM x x x
HMM x x x
DMP x

PromP x x

DMPs and ProMPs were eliminated as they solely reproduce the trajectory with-
out modelling the underlying relationship between the input and output data (re-
quirement 2). The two remaining candidates (HMMs and GMMs) both deemed to
be viable based on theoretical grounds. These methods utilize the spatial pattern
to encode trajectories by encoding the joint probability of the in- and output signals
(requirement 2), which increases robustness against noise [39] (requirement 3).
However, based on preliminary simulation, HMMs were found to be unsuitable. The
details of these preliminary simulation (including a derivation of (a)GMR) are found in
Appendix A. The exploratory simulation consists of a reproducing a one dimensional
trajectory. The HMM incorrectly reproduced the demonstrated trajectory, which is
likely related to the forward variable. In addition, HMM can be seen as an expansion
of GMM [23] [40]. A HMM has implicit time dependency due to Markov assumption,
which increases the complexity of the method.
The incorrect reproduction in the exploratory simulations combined with the increased
complexity resulted that GMM is the most suitable framework to capture the human
controller.

3.3 Task selection

The performance of the LfD framework is evaluated using a task. The task that has
to be learned and reproduced is closing a valve. The closing valve motion can also
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be used in a healthcare setting, for example closing a bottle or a tap.
The task consists of two parts to model: linear dynamics and the stopping condi-
tion of the valve. The first part is the linear dynamics, which ensures that the valve
rotates until the desired angle is reached. The linear dynamics are modeled with a
mass-damper system. The final angle is the stopping condition of the valve, which
results in zero acceleration and velocity of the valve. The stopping condition is mod-
elled with a function that gradually saturates at the final angle. In addition, a model
of when the task is closed for the demonstrator is required to the perform the simu-
lations, the force threshold.
For a human it is clear when a valve is closed, but a quantitative description is te-
dious. Therefore, the following definition is introduced for a closed valve from the
point of view of the demonstrator: the torque exerted by the operator on the valve
exceeds a torque threshold and the angular velocity imposed by the operator is
(near) zero. After the threshold has been reached the operator stops rotating the
valve.
The threshold represents the minimum torque required to close the valve. The mini-
mum torque is induced by the resistance of the valve. The resistance is a non-linear
damping, which depends on the position of the valve. When the Eve is near the
end-position the resistive torque increases due to high non-linear damping.
The threshold is defined in Equation 3.1, where τe is the torque measured/felt by the
end-effector/arm, τr is the resistive torque, θ̇e is the rotational velocity measured/felt
by the end-effector/arm and θ̇human is the velocity that the operator uses to open the
valve.

If τe ≥ τr AND θ̇e ≈ 0

θ̇human = 0

end

(3.1)

Although the use of a force threshold would allow for more realistic simulation re-
sults, the report focuses only the valve dynamics. The force threshold increases the
complexity of the controller captured by the GMM, while it is unclear if the GMM can
capture a linear controller. The valve dynamics also include a non-linear threshold,
but the GMM only captures the human and Omega dynamics.
The valve task allows to generalize over different initial conditions for the same con-
troller, because the initial condition does not affect the force threshold in Equation
3.1. The threshold torque depends on the valve its parameters such as the damping
constant or the radius of the valve. Additionally, generalization over different initial
conditions is typically used in daily scenarios. The position at which a valve/tap is
open is often unknown to an operator. Generalizing over different initial conditions
is therefore considered as a benchmark.
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3.4 Framework model

The model used in this study simplifies the task to linear dynamics in one dimen-
sion. This section provides an overview of the model including the subsystems. A
schematic drawing of the corresponding model can be found in Figure 3.3A. The
goal is to capture the blue area, the Human-Omega, a combination of linear con-
trollers in a feedback loop. The GMM/GMR should reproduce the Omega angle (red
colored text in Figure 3.3A) based on the states of the Eve and impedance torque
signals (the colored text in Figure 3.3A). The system with GMM/GMR in the results
in the schematic of Figure 3.3B.
The human has a desired end-position in mind, which could be seen as the current
visible angle of the omega/EVE plus some offset (θbrain). The brain angle increases
over time until the valve is closed. The human exerts a torque on the Omega based
on the error (θerror) between the brain angle (θbrain) and the angle of Eve (θeve). The
human torque (τhuman) combined with the impedance torque (τimp) is applied on the
Omega. The impedance torque is the virtual torque exerted on the Eve and fed
back to the human. The human torque and impedance torque have opposite sign,
because the impedance torque acts against the human movement. It allows the
user to feel for example the weight of the robot arm while moving.
The Omega maps the Omega torque (τomega) to a desired Eve angle (θomega) via
an admittance model, which is a mass-damper system. The impedance controller
(which is in this case a PD-controller) minimizes the error between the Eve and
Omega (θteleop). The angle set by the Omega is used as input for the impedance
controller and is the angle to which the Eve converges.
The resulting torque is the impedance torque (τimp), which is used as feedback
torque to the human and input for the Eve. The Eve and valve are modelled in
series and therefore the dynamics are concatenated. If the maximum angle of the
valve is reached the velocity and acceleration of the Eve converge to zero such that
the Eve+valve does not move. That results in an impedance torque which increases
until the saturation torque of Equation 3.1 is achieved.
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Figure 3.3: Figure to clarify what should be encoded by the GMM/GMR. The origi-
nal model can be found in part 3.3A. The blue area is the part learned
by the GMM. The red striped area is the human. The threshold set for
the human is described by Equation 3.1. The blue colored part is re-
moved and substituted by the GMM/GMR, which is visible in part 3.3B.
It is important to note that multiple states of the Eve are used as input
(Seve), because it is not defined yet what states will be used for learning.
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3.5 Experimental plan for the simulations

The goal of the simulation is to assess if GMM/GMR can learn, reproduce and gen-
eralize the Human-Omega controller (blue box in Figure 3.3A). To achieve this goal
the GMM/GMR should encode a PD-controller, admittance system and correspond-
ing feedback loops. It is unclear if the GMM/GMR can capture all these subsystems
in once. Therefore, the complexity of the learning task was reduced by learning
P(D)-controller and admittance separately. The controllers are split in different sys-
tem, because the input-output relation of the linear controller is not affected by the
dynamics of the system. The steps in which the simulations are performed are found
in Figure 3.4. The first simulation performed was learning a P-controller, which is

P-controller with
mass-damper

Human PD-controller
in valve task

Admittance with PD-
controller

Admittance (Omega)
in valve task

1
PD-controller with

mass-damper

2 3 4 5

Figure 3.4: Flow diagram of how the simulations are performed and in what system.
It shows the sequence of how simulations are performed. The red text
indicates what was learned by the GMM.

placed in a loop with a mass-damper. The goal is to bring the mass to a desired
goal position while changing the initial conditions. It is considered a baseline task,
because the mapping between input and output is a linear line. The second simula-
tion is the same as the P-controller simulation, but now a PD-controller is used. A
PD-controller is more complex with respect to a P-controller, because of the differ-
entiation and additional dimension. The simulations of step one and two are used
to gain insight into GMM. It does not have a quantitative metric which defines it as
successful. The third step is learning the PD-controller in the valve task, because
the simulations of step one and two should give insight on how to capture the PD-
controller in the valve task. The fourth step is learning a mass-damper placed in a
loop with a PD-controller. The admittance with a P-controller has not been tested,
because the input output relation of the admittance is the same when in a loop with
a PD-controller. Lastly, the admittance model in the valve task was learned.

3.5.1 Initialization of GMM

In all steps the GMMs were learned with five demonstrations and initialized with
k-means algorithm [41]. The demonstrations were learned by E-M algorithm. The
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algorithm stops when the number of iteration exceeds 100 or if the likelihood in-
crease is less than 0.0001. The simulations were performed with Matlab R2021b
and Simulink. The code used for GMM, GMR, the Gaussian probability density
function and E-M was based on the code written by [41]. The initial conditions for
these demonstrations were randomly chosen between 0 and 2π rad with a uniform
distribution. The initial conditions used to learn the GMM are found in Table 3.2.

Table 3.2: The randomized initial conditions of the five demonstrations used to learn
the GMM.

Learning IC [rad] 0.41π 0.3553π 0.3664π 1.9145π 1.1205π

3.5.2 Evaluation of reproduction

The performance of reproduction is evaluated by the root mean square error and
visual inspection of the error between demonstration and reproduction. A combina-
tion of these gave insight on the quality of reproduction. The root mean square error
(RMSE) between the reproduction and ground truth combined with visual inspection
was used to evaluate the reproduction [42]. The ground truth is defined as the sim-
ulation result of the system with the corresponding controller, thus the model from
which the GMM/GMR learns. The following two properties were assessed by visual
inspection of the error for all the simulations:

1. Interpolation is tested by reproducing with five initial conditions equidistant in
a range from 0 rad to 2π rad.

2. Extrapolation is evaluated by reproducing initial conditions outside the range
of 0 rad to 2π rad.

For the P(D)-controller and admittance simulations in separate systems two addi-
tional properties were evaluated to obtain insight in the quality of reproduction. The
first additional property is the number of Gaussians. Even though the number of
Gaussians can be deduced from the input-output relation, it is not guaranteed to re-
sult in a reproduction that follows the demonstration. The second additional property
is the length of steady-state relative to the transient behaviour, because the steady-
state does not add any new information to the reproduction. In the case of only one
Gaussian it can therefore lead to a bias while learning the input and output relation.
Therefore, this property is only tested on GMMs with one Gaussian.
Only for the valve-task a quantitative metric is used to define a reproduction as suc-
cessful, because it will eventually be reproduced on the Eve. The metric is based
on the accuracy of the Eve. An absolute error of less than 0.03 rad over the whole
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trajectory defines the task as successful. This metric was determined by the mea-
surement error of the end-effector of eve, which is 1.5 mm and the valve is assumed
to have a radius of 5 cm, which results in 0.03 rad error. If a reproduction is below
this value it can be seen as a perfect reproduction, because it is smaller than the
measurement error of the Eve.
Details on the simulations for the specific systems are described in the following
sections: Subsection 3.5.3 the mass-damper model includes the (evaluation) pa-
rameters used for the simulations. Subsection 3.5.4 describes the parameters of
the valve task and includes more details about the human PD-controller simulations.
Lastly, Subsection 3.5.5 describes the detailed procedure of the admittance system.

3.5.3 P(D) with a mass-damper

The first simulation performed was a P(D)-controller in a feedback loop with a ro-
tational mass-damper. The goal of the P(D)-controller is to bring the mass to an
arbitrary position of approximately π rad. A schematic of the system can be found in
Figure 3.5. The standard equation of motion for a rotational mass-damper is used.
A parallel unfiltered discrete P(D) controller was used to model the P(D) controller.

θerθdes τpdPD

θsys

Mass-damper+
-

Figure 3.5: A simple schematic of the encoding of P(D)-controller in a loop with the
mass-damper system. The input of the system is a constant desired
angle (θdes). This desired angle is subtracted by the angle of the mass-
spring-damper (θsys), which results in the angle error (θer). The P(D)-
controller calculates the resulting force (τPD) for the mass-damper.

The parameters for the rotational mass-damper system can be found in Table 3.3.
In which T1 is the demonstration time used to learn a GMM, while T2 is the shorter
demonstration time used to learn a GMM to explore the influence of steady state on
reproduction. The parameters were tuned such that a stable non-oscillating steady
state position was found.
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Table 3.3: Mass-damper parameters
Irot [kg] 0.05
Drot [Ns

m
] 5

T1 [s] 5
T2 [s] 1
dt [s] 0.002

The exact parameters used for evaluating the interpolation and extrapolation are
found in Table 3.4. These are only used for the P(D)-controller combined with the
mass-damper.

Table 3.4: Initial conditions used to evaluate the interpolation and extrapolation ca-
pabilities of GMM/GMR combined with a mass-damper.
Interpolation IC [rad] 0.00 0.50π 1.00π 1.50π 2.00π

Extrapolation IC [rad] 0.00 2.50π 5.00π 7.50π 10.00π

3.5.3.1 P-controller

As mentioned before the P-controller is considered as baseline, because its con-
troller mechanism is trivial. It is a linear mapping between the angle error θer and
torque τpd, which are the variables used to learn the P-controller.
The GMM/GMR should be able to generalize over a line with only one Gaussian. An
example of how GMM captures a line can be found in Figure 3.6. The Gaussian has
the same direction as the line. The GMR assumes a linear relation between the in-
put and output while the slope is determined by the direction of the main component
variance (which is in this case aligned with the line). The linear regression function
is multiplied with the responsibility (weighting), which is based on the normalized
probability that a point belongs to a Gaussian (it should always be one due to the
fact that there is only one Gaussian).
Despite the fact that one Gaussian should be sufficient, simulations with five Gaus-
sians were also performed to obtain an intuition on how the number of Gaussians
affects the learning and reproduction. The Gaussians could for example be evenly
spread over the angle error-force line and cover a larger area compared to one
Gaussian, which should result in a bigger extrapolation range compared to one
Gaussian. The corresponding parameters of the P-controller used for simulations
can be found in Table 3.5. These were manually tuned such that the system con-
verged to an angle of approximately π rad.
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Figure 3.6: An example of how GMM with one state captures a linear line. It is
used to motivate why one Gaussian should be sufficient to inter- and
extrapolate a P-controller.

Table 3.5: Parameters used for the P-controller simulations.
Kp [Nm

rad
] 25

Ki 0
Kd [Nms

rad
] 0

3.5.3.2 PD-controller

The PD-controller is more complex compared to the P-controller, because of the
differentiation. This complexity is evident in variable selection: if one would retain
the P-controller combination of input and output for a PD-controller the GMM has to
differentiate. GMMs cannot differentiate, because of their time independence.
In this specific scenario differentiation can be prevented via the variable selection.
The velocity of the mass is the same as the derivative of the error, because the goal
position remains constant over time. Therefore, the angle error (θer), angular velocity
(θ̇er) of the mass and torque (τpd) will be learned by the GMM.
The relation between the input and output variables should result in a plane within
the velocity, error and torque space, which can be seen in Equation 3.2.

τpd = kp θerror︸ ︷︷ ︸
x

+kd θ̇error︸ ︷︷ ︸
y

(3.2)
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A plane is favourable for the encoding process of the GMM, due to the simple linear
structure. Therefore, the reasoning as for the P-controller can be expanded to three
dimensions (a plane). One Gaussian should be sufficient to encode the plane, be-
cause one Gaussian can capture the direction of the plane. In addition, the direction
of the GMR is determined by the direction of the Gaussian, which was clearly visible
in Figure 3.6.
Similar to the P-controller simulations with one and five Gaussians were performed.
The corresponding parameters can be found in Table 3.5. These were manually
tuned such that the system converged to an angle of approximately π rad.

Table 3.6: Parameters used for the PD controller during simulations.
Kp [Nm

rad
] 25

Ki 0
Kd [Nms

rad
] 2

3.5.4 Parameters of the Human-Omega model

The human PD-controller as seen in Figure 3.3A will be learned, but as already
mentioned in the task selection (Section 3.3) the stop reaction of the human is not
modeled. The reason for this is that it increases the complexity of what GMM/GMR
should learn, while it is not certain if the GMM/GMR can learn a linear controller.
The exact parameter specifications can be found in Table 3.7. These parameters
are obtained by tuning the system such that the behaviour of Figure 3.7 is observed.

Table 3.7: Parameters used within the valve task model. The dynamics of the Eve
and valve are concatenated, because they are modelled in series.

Damping Eve and valve [Nms
rad

] 2

Inertia Eve and valve [kgm2] 0.25

Damping Omega [Nms
rad

] 0.75

Inertia Omega [kgm2] 0.01

Stiffness impedance controller [Nm
rad

] 35

Damping impedance controller [Nms
rad

] 2

Stiffness human [Nm
rad

] 10

Damping human [Nms
rad

] 1

Estimated rotation velocity[ rad
s

] 2.5

Max valve angle [rad] 5π

Length of demonstration [s] 10

Sample time [dt] 0.002
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Figure 3.7: The Eve angle, which is the same as valve angle, and the Omega angle
starts at 2π rad, while the human angle starts at 2.035π rad and rotates
until 4.5π rad, where the angle of the Eve saturates. The Human and
Omega continue rotating, because the stop condition of the human was
not implemented. This results in an increasing error between the Eve
and Human which lead to an increasing torque.

The initial conditions of the system are specified in the following manner: The
Omega and Eve start at the same position with the initial velocity and acceleration
set to 0. The initial value of the human angle is the initial Eve/ Omega angle with an
0.035 rad offset as it is not realistic that the human starts at exactly the same position
of the Eve. Furthermore, it results in a zero error which leads to a system that does
not move due to the multiplication with zero.
The number of Gaussians used for learning the valve task are based on the find-
ings of learning the PD-controller in the separate system. The same random initial
conditions (Table 3.2) were used to learn the task, but the initial condition of the ex-
trapolation behavior is limited to 4π. Therefore, extrapolation will be performed over
a smaller range which can be found in Table 3.8.

Table 3.8: Reproduction initial conditions for the start position of the valve to test
the generalization capabilities.

Valve IC [rad] 0.00 1.00π 2.00π 3.00π 4.00π



3.5. EXPERIMENTAL PLAN FOR THE SIMULATIONS 35

3.5.4.1 Variable selection to learn the human PD-controller

The mathematical description of the human PD-controller is found in Equation 3.3

τhuman = kpθerror + kdθ̇error (3.3)

where (τhuman) is the human torque, (θerror) the error between brain angle and Eve
angle and (θ̇error) is the velocity of the error. Similar to the PD-controller with mass-
damper differentiation was prevented by taking the error and velocity of the error
as input. However, the velocity of the error (θ̇error) cannot be obtained directly from
the valve task model (see Figure 3.3A). Therefore, a related variable to the error
is required, which is found by expanding and differentiating the error (θerror). The
velocity of the θbrain is constant, because it was assumed that the operator closes
the valve with a constant velocity. The Eve velocity (θ̇Eve) therefore captures the
same dynamics as the error velocity (θ̇error).

θerror = θbrain − θEve

θ̇error = θ̇brain − θ̇Eve

(3.4)

3.5.5 Admittance model

An admittance controller uses a different mapping compared to a PD-controller. The
output angle depends on the double integral of the angular velocity (input). It makes
use of integration to obtain the desired output, which can be seen in Equation 3.5.
The GMM is not capable of integration, because it requires memory. The integral
action is circumvented by taking the double integral of torque an double integral of
the velocity as input variable. Furthermore, taking the double integral of the variables
as input results that the input-output path should be on a plane, which can be seen
in Equation 3.5. The similar reasoning as for PD-controller about the plane holds
here. Therefore, only on Gaussian was sufficient to encode the demonstration, but
simulations were performed with one and five Gaussians.

Iθ̈omega = τhumanerror −Domegaθ̇omega

Iθ̇omega =

∫
(τhumanerror −Domegaθ̇omega )dt

Iθomega =

∫ ∫
τhumanerrordt dt︸ ︷︷ ︸

z

−Domega

∫ ∫
θ̇omega dt dt︸ ︷︷ ︸

y

(3.5)

However, the initial conditions of these double integral have to be set to zero (or at
least remain constant) while learning and reproducing the admittance system. If this
is not the case the demonstrations will not lie on a plane. The integral of the angle
cannot be used as input, because the initial condition changes per demonstration.
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Therefore, the velocity was also used as output and fed back after integrating twice
as input. This is visible in Figure 3.8.

Velocity

Angle

GMM/GMR

∫∫Velocity

∫∫

∫ ∫

Torque

Figure 3.8: Illustrations of how the input and output variables work the GMM/GMR.
The output is in a direct loop also input.

3.5.5.1 Evaluation

The admittance model was tested with the same procedure and criteria as for the
PD-controller (Section 3.5.2). Similar simulations as with the PD-controller was per-
formed (Section 3.5.3). First the admittance was learned in a separate system as
seen in Figure 3.5, but the mass-damper is learned instead of the PD-controller. The
next step was learning the Omega in the valve task (Figure 3.3A).
The performance of reproduction for the separate system was evaluated based on
the interpolation and extrapolation capabilities of the GMM, which is done by repro-
ducing the initial conditions mentioned in Table 3.4 while the GMM was learned with
the initial conditions mentioned in Table 3.2. In addition, for the separate system the
influence of steady state duration and number of Gaussians is evaluated. As men-
tioned before, the steady state duration can lead to a bias for a one Gaussian GMM.
It can shift the mean towards the steady state, which might lead to an inaccurate
representation of the task.
Similarly to the human PD-controller reproduction the Omega was learned with the
number of Gaussians based on the results of the separate system. In addition, the
system was evaluated with the same parameters (Table 3.7) and initial conditions
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(Tab 3.8) as the human PD-controller. The variables that will be used to capture the
Omega in the valve task are the angle of the Omega (θOmega) and the torque applied
on the Omega (τOmega).
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Chapter 4

Results

In this chapter, the simulations results are presented in the order as described in
Figure 3.4. First, the results of the P-controller (Section 4.1) are presented. After
which the results of the PD-controller are presented (Section 4.2). The simulations
results of the human PD-controller are presented in Section 4.3 and the admittance
results are presented in Section 4.4.

4.1 P-controller

The interpolation capabilities of GMM were evaluated by reproducing the P-controller
with equidistant initial conditions, ranging from 0 rad to 2π rad. Figure 4.1 is an ex-
ample of the P-controller reproduction by the one Gaussian GMM, where the mass
has an initial condition of 0.5π rad. Based on visual inspection, the reproduction
seems to exactly follow the demonstration, but the error (Figure 4.2A) indicates the
reproduction is not the same.
The error at 0 s is the largest of the whole trajectory. This results from the initial con-
ditions being at the largest distance to the mean of the One Gaussian GMM. The
mean of one Gaussian GMM( 0.0209 rad)is the same as the mean of all demonstra-
tion combined and the steady-state value has the largest contribution to the mean.
This results from the fact that the different initial conditions converges to approxi-
mately the same steady-state value. Since the mean of the GMM is close to the
steady state value, the error converges to 0 rad.
In contrast to the one Gaussian GMM, the error of the five Gaussians GMM starts
approximately at zero (Figure 4.2B. The error peaks at around one second for all
initial conditions except π rad. The peak is a result of GMR sampling from the incor-
rect Gaussian. However, the input eventually is correctly classified which results in
a decrease of error, which result in the converging to approximately zero error. The
misclassification is evident in Figure 4.3, where the third Gaussian (fifth subplot) has
the highest probability, while the mean of the second Gaussian is closer to the value

39
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of the angle error (marker in second plot). The second Gaussian should have the
highest probability instead of the third Gaussian.
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Figure 4.1: An example of the one Gaussian GMM reproducing the P-controller
with the mass having an initial angle of 0.5π rad, where the dashed red
line shows the ground truth. The solid blue line (plotted underneath the
red line) is the reproduction of the one Gaussian GMM. The top graph
shows the angle of the mass-damper. The bottom graph the torque
of the P-controller, which is the output of the GMM/GMR. The plot is
trimmed from 5 s to 1 s

.

The RMSE between the demonstration and reproduction for the five Gaussians
GMM is higher compared to the GMM with one Gaussian (Table 4.1). The initial
conditions increases for both systems while for the one Gaussian GMM the RMSE
increases, decreases and increases, which is due to the fact that the GMM encodes
the data centered around the steady state value. Therefore, reproduction which
starts close to the steady state value results in a lower RMSE.

Table 4.1: The RMSE value of the reproduction of P-controller with GMM for one
and five Gaussians for the interpolation condition. The P-controller was
used as ground truth to calculate the RMSE.
Initial condition [rad] 0 0.5π π 1.5π 2π

One Gaussian [Nm] 0.0101 0.0050 0.0001 0.0051 0.0102

Five Gaussians [Nm] 0.0347 0.0347 0.0035 0.0365 0.0365
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Figure 4.2: The torque error [Nm] between the P-controller and GMM for the inter-
polation initial conditions of the mass angle. Figure 4.2A: the error of
the one Gaussian GMM. Figure 4.2B: the error of five Gaussians GMM.
The plots are trimmed from 5 s to 1 s.
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Figure 4.3: The top plot shows the reproduction error of the five Gaussians GMM
for the initial condition of 2π rad. The second plot is the angle error (input
of the GMM) where the red marker indicates the error value at the time
instance of the error peak. The five lowest plots show the normalized
responsibility (probability) of the five Gaussians used in the GMM. The
corresponding Gaussian means are shown in the legend. The plot has
been trimmed from 5 s to 1.5 s.

4.1.1 Extrapolation

The extrapolation capabilities of the P-controller reproduction were evaluated with
equidistant initial conditions ranging from 0 rad to 10π rad. For initial condition 7.5π rad

the reproduction of one Gaussian does not follow the dynamics of the P-controller
(Figure 4.5). The initial condition is in the tail of the responsibility Gaussian. The
responsibility shows how well Gaussian j explains the data (wj in Equation 2.4).
Being in the tail of the responsibility Gaussian results in a zero likelihood, which is
multiplied with the regression value resulting in a zero torque output (Equation 2.4).
The zero torque is also evident in the error of one Gaussian GMM (from third plot
onwards in Figure 4.4A). The error of the one Gaussian GMM converges to zero,
because the output of the P-controller in steady state equals zero.
The five Gaussian GMM on the contrary does follow the demonstration (see Figure
4.4B). The error between reproduction and demonstration does not exceed 0.2 Nm.
The same error peaks as for the interpolation are visible, which is also due to incor-
rect classification of the Gaussian. The RMSE of the five Gaussians GMM remains
constant for the different initial conditions, while the RMSE of the one Gaussian
GMM increases over the initial conditions (see Table 4.2).
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Figure 4.4: The torque error [Nm] between the P-controller and GMM for the extrap-
olation initial conditions of the mass angle. Figure 4.4A: the error of the
one Gaussian GMM. The plot is trimmed from 5 s to 1 s. Figure 4.4B:
the error of the five Gaussians GMM. The plot is trimmed from 5 s to
2.5s.
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Figure 4.5: The one Gaussian GMM reproduction of a P-controller for an initial con-
dition of the mass at 2.5π rad and 7.5π rad. The dashed line represents
the ground truth. The solid line is the reproduction of the one Gaus-
sian GMM. The top graph shows the angle of the mass-damper. The
bottom graph the torque of the P-controller, which is the output of the
GMM/GMR. The plot is trimmed from 5 s to 1 s.

Table 4.2: The RMSE value of the P-controller reproduction for the extrapolation
initial condtions.

Initial condition [rad] 0 2.5π 5π 7.5π 10π

One Gaussian [Nm] 0.0101 0.0153 45.637 74.1595 102.68

Five Gaussians [Nm] 0.0347 0.0365 0.0365 0.0367 0.0369

4.1.2 Time

The reproduction of the GMM with one state and shorter learning time can be found
in Figure 4.6. The reproductions are improved compared to the GMM with a normal
simulation time system (Figure 4.4A). The shorter time GMM only fails in reproduc-
ing for initial condition of 10π rad, which is again a result of the responsibility. The
initial condition is in the tail of the responsibility resulting in a zero value. The RMSE
is smaller compared to the RMSE of the one Gaussian GMM (see Table 4.3), except
for the initial condition of 10π rad. The RMSE is the same because both GMMs are
in the extrapolation limit and produce a zero torque.
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Figure 4.6: The torque error [Nm] between the reproduction of one Gaussian GMM
with shorter learning time and the P-controller for the extrapolation initial
conditions of the mass angle.

Table 4.3: The RMSE value of the reproduction for the one Gaussian GMM with a
short learning time compared with the one Gaussian GMM.

Initial condition [rad] 0 2.5π 5π 7.5π 10π

One Gaussian [Nm]
(shorter time)

0.0020 0.0032 0.0084 0.0136 102.68

One Gaussian [Nm]
(normal time)

0.0101 0.0153 45.637 74.1595 102.68

4.2 PD - controller

An example of reproduction of the PD-controller with the one Gaussian GMM can
be found in Figure 4.7, the one Gaussian GMM does not follow the desired trajec-
tory. The error (see Figure 4.8A) indicates that the one Gaussian GMM is not able
to reproduce the PD-controller for the interpolation initial conditions. All of the initial
conditions result in the extrapolation limit which was also countered in the extrap-
olation of the P-controller by the one Gaussian GMM (Subsection 4.1.1). The five
Gaussians GMM on the contrary does follow the desired behavior (see Figure 4.8B).
The first peak in the error is due to the ideal differentiator, which results in aggres-
sive behavior at the beginning of the simulations (visible at around 0.01 seconds in
Figure 4.7). The GMM does not reproduce this aggressive peak, because it gener-
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alizes over multiple peaks and combines them in a smooth distribution in which the
peak is less prominent.
Similar to the P-controller the RMSE shows (Table 4.4) for both systems the pattern
of increasing, decreasing and increasing RMSE. However, the RMSE error for the
P-controller is a magnitude smaller.
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Figure 4.7: An example of the one Gaussian GMM reproducing a PD-controller
with mass starting at 1.5π rad. The dashed red line shows the ground
truth. The solid blue line (plotted underneath the red line) is the re-
production of the one Gaussian GMM. The top graph shows the angle
of the mass-damper. The bottom graph depicts the torque of the PD-
controller, which is the output of the GMM/GMR. The plot is trimmed
from 5 s to 1 s.

Table 4.4: The RMSE value of PD-controller reproduction for one and five Gaus-
sians with the interpolation initial conditions.
Initial condition [rad] 0 0.5π π 1.5π 2π

One Gaussian [Nm] 9.6570 4.8290 0.0004 4.8290 9.6570

Five Gaussians [Nm] 0.1401 0.0813 0.0007 0.0704 0.1408
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Figure 4.8: The torque error [Nm] between the reproduction PD-controller and GMM
for the interpolation conditions. Figure 4.8A: the error for the GMM with
one Gaussian is plotted. The plot is trimmed from 5 s to 1 s. Figure
4.8B: the error for the GMM with five Gaussians is plotted. The plot is
trimmed from 5 s to 0.1s.

4.2.1 Extrapolation

In line with the P-controller simulation, the five Gaussian GMM result in a better re-
production for the extrapolation compared to the one Gaussian GMM. The results of
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the one Gaussian GMM remain zero torque for all initial conditions. Therefore, it has
been left out (Appendix C.1). On contrary, the five Gaussian GMM cannot reproduce
the PD-controller from the initial condition 10π rad (see Figure C.3). The increased
complexity of the PD-controller limits the extrapolation. In addition, the RMSE( Ta-
ble 4.5) increases, because the initial conditions are going further in the tail of the
Gaussian resulting in a lower responsibility. In other words, the initial conditions are
further away from the known Gaussians and entering a space with less certainty.

Table 4.5: The RMSE value of the reproduction of PD-controller with GMM/GMR
for five Gaussians for the extrapolation.
Initial condition [rad] 0 2.5π 5π 7.5π 10π

Five Gaussians [Nm] 0.1401 0.2089 0.5518 0.8955 86.915
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Figure 4.9: The torque error [Nm] between the reproduction of five Gaussians GMM
and PD-controller for the extrapolation initial conditions of the mass an-
gle. The time limit for the first until the fourth plot are the same for all the
graphs. These have been trimmed from 5 s to 0.1 s. The fifth is trimmed
from 5 s to 1 s.

4.2.2 Time

Based on the error in Figure 4.10 a shorter learning time results in a better pro-
duction compared to the one Gaussian GMM. The steady state does influences the
quality of learning for the one Gaussian GMM. This is also evident in the RMSE
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(Table 4.6). The shorter learning time RMSE has a similar magnitude as the five
Gaussian GMM, which indicates a similar performance. In addition the returning
RMSE pattern can be found.
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Figure 4.10: The torque error [Nm] between the reproduction PD-controller and
the one Gaussian GMM with shorter learning time for the interpolation
initial conditions. The plots are trimmed from 1 s to 0.1 s.

Table 4.6: The RMSE value of the PD-controller reproduction for the one and one
Gaussians with shorter learning time GMM.
Initial condition [rad] 0 0.5π 1π 1.5π 2π

One Gaussian [Nm]
(shorter time)

0.1333 0.0667 0.0003 0.0666 0.1333

One Gaussian [Nm]
(normal time)

9.6570 4.8290 0.0004 4.8290 9.6570

4.3 Human PD-controller

Based on the aforementioned results five Gaussians were used to encode the hu-
man PD-controller of the valve task. An example of reproduction is seen in Figure
4.11. The angle error increases until a steady state error is reached between the
Eve/valve and Omega and thus also between the human and Eve. When the Eve/-
valve encounters the end point the angular velocity of the Eve/valve is zero, but the
human angle continues rotating (the human-threshold is not implemented).
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The torque error between the reproduction and demonstration for the human PD-
controller is found Figure 4.12. The error at the beginning of the simulation is the
result of the initial condition of the unfiltered PD-controller, which reacts aggressively
on the initial error (This is also visible at torque plot in Figure 4.11). The second dis-
turbance at around 2 seconds for 3π rad is the result of an incorrectly classified
Gaussian, similar disturbance is evident for the other initial conditions. An exam-
ple of the disturbance for initial condition π rad is plotted in Figure 4.13, at the time
instance of the red marker the responsibility of the fifth Gaussian peaks, while the
mean of the third Gaussian is closer towards the error. The responsibility is wrongly
classified.
The absolute error between the reproduction and demonstration angle of the Eve is
plotted over time for different conditions, see Figure 4.14. The black line represent
the maximum tolerance after which the reproduction is not perfect. The reproduction
for each initial condition is below this tolerance. Based on this result the GMM/GMR
successfully reproduces the human PD-controller. The RMSE value can be found in
Appendix C.3.
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Figure 4.11: An example of GMM reproducing the human PD-controller with mass
starting at 3π rad. The dashed red line shows the ground truth. The
solid blue line (plotted below the red line) is the reproduction of the one
Gaussian GMM. The top graph shows the angle of the Omega. The
bottom graph depicts the torque of the human PD-controller, which is
the output of the GMM/GMR. The plots are trimmed from 10 s to 3 s.
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Figure 4.12: The torque error [Nm] between the reproduction of the human PD-
controller and the GMM in the valve task. The plots are trimmed from
10 s to 7 s.
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Figure 4.13: The top plot shows the reproduction error of the GMM capturing the
human PD-controller for the initial condition of 1π rad. The second
plot is the angle error (input of the GMM) where the red marker indi-
cates the error value at the time instance of the error peak. The five
lowest plots show the normalized responsibility (probability) of the five
Gaussians used in the GMM. The corresponding Gaussian means are
shown in the legend. The plot has been trimmed from 10 s to 7 s.
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Figure 4.14: The absolute error of the reproduction and demonstration angle of the
Eve for different initial conditions of the valve.

4.4 Admittance

Against expectations the GMM does not capture the admittance model, therefore
this section contains both inter- and extrapolation results. Figure 4.15 is example
of the one Gaussian GMM reproduction with the mass initial condition of 0.5π rad.
The reproduction starts at the incorrect angle and at approximately 0.4 seconds
the system starts oscillating. Additionally, the reproduced velocity diverges from
the demonstrated one. The incorrect reproduction is not an exception, based on
the error (Figure 4.16 for interpolation) and RMSE for the interpolation (Table 4.7)
and extrapolation (Table 4.8) it can concluded that both one and five Gaussian(s)
GMM cannot reproduce an admittance model.T The error plot for extrapolation initial
conditions can be found in Appendix C.2.1.
The incorrect reproduction for both output variables is a result of a singularity when
mapping the input data to output data. There does not exist an unique input pair for
each output value. In other words, for one input pair multiple solutions exist, which
is visible in Figure 4.17 . In the left graph of figure an input of 0

∫ ∫
V elocity and 0∫ ∫

Torque results in an output value ranging from 0 to 2π rad at. It is not possible to
reproduce the correct angle/velocity on solely this information.
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Figure 4.15: An example of initial condition 0.5π rad reproduced by the one Gaus-
sian GMM to test the interpolation capabilities reproducing an admit-
tance in loop with a PD-controller. The dashed red line shows the
ground truth. The solid blue line is the reproduction of the one Gaus-
sian GMM. The top graph shows the angle of the admittance. The
bottom graph the velocity of the admittance, which is the output of the
GMM/GMR. The plot is trimmed from 5 s to 1s.

Table 4.7: The RMSE value of the admittance reproduction for the one and five
Gaussians GMM in case of interpolation.
Initial condition [rad] 0 0.5π 1π 2π 3π

one Gaussian [rad] 2.2203 2.1240 2.7173 3.0764 3.2111

five Gaussians [rad] 3.4602 3.5786 3.0094 3.0166 3.1556

Table 4.8: The RMSE value of the admittance reproduction for the one and five
Gaussians GMM in case of extrapolation.
Initial condition [rad] 0 2.5π 5π 7.5π 10π

one Gaussian [rad] 2.2203 3.3516 4.2267 5.2954 6.4627

five Gaussians [rad] 3.4602 3.2987 4.1839 5.2624 6.4344
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Figure 4.16: The angle error [rad] between the reproduction and admittance system
for the interpolation initial conditions of the mass angle. Figure 4.16A:
the error of the one Gaussian GMM. The plot is trimmed from 5 s to 1

s. Figure 4.16B: the error of five Gaussians GMM. The plot is trimmed
from 5 s to 3.5s for the second panel counted from the top. The last
three panels are trimmed from 5 s to 1 s.
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Figure 4.17: The input-output space of the GMM plotted with the interpolation initial
conditions. It consists of the angle (left plot) and velocity (right plot)
as output and the double integral of the torque and velocity are inputs.
The singularity line shows that along that line a singularity exists, which
is less evident for the angle plot compared to the velocity plot.

4.5 Omega

The last simulations performed were the reproduction of the Omega. Five states
were used to learn the admittance mode, but the reproduction are in line with the re-
production of the admittance system in loop with a PD-controller, which is confirmed
by the RMSE in Table 4.9. An example of reproduction can be found in Figure 4.18,
where the system does follow the demonstration for the first 4.5 s after which it starts
oscillating. However, as visible in Figure 4.19 only the initial condition 1π and 2π rad

show a relative small error at the beginning. This is a consequence of the GMM
encoding, which can be seen on the right of Figure 4.20. The first Gaussian follows
approximately the slope of the trajectory of 1π and 2π rad and therefore the resulting
reproduction also follows this slope yielding in a relative small error.
The incorrect reproduction are also the result of the singularity similar to the simu-
lation results of the admittance system in loop with a PD-controller. However, the
singularity is also visible in the right panel of Figure 4.20. The inputs have a linear
relations, which means in this case that for one pair of input multiple output values
are possible (visible in the left panel of Figure 4.20).
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Figure 4.18: An example of one initial condition π rad reproduced by the five Gaus-
sian GMM to reproduce the Omega. The dashed red line shows the
ground truth. The solid blue line is the reproduction of the one Gaus-
sian GMM. The top graph shows the angle of the admittance. The
bottom graph the velocity of the admittance, which is the output of the
GMM/GMR. The plot is trimmed from 10 s to 5s
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Figure 4.19: The angle error [rad] between the reproduction of five Gaussians GMM
and the Omega. The plot is trimmed from 10 s to 5 s.
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Figure 4.20: The input-output space of the angle for the admittance model. The
left panel shows the trajectory of demonstrations in this space. The
meshed ellipses are the Gaussians ellipse in three dimensions, it
shows the variances of the Gaussians. The right panel shows the
linear relationship between the input variables.

Table 4.9: The RMSE value of the Omega reproduction.
Initial condition [rad] 0 0.5π 1π 1.5π 2π

GMM [rad] 13.447 11.159 14.173 15.829 17.502
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Chapter 5

Discussion

The purpose of the research was to investigate whether a state-of-the-art imitation
learning framework can capture a (human) controller closing a valve. Based on a
theoretical comparison, GMM/GMR was deemed to be most suitable for capturing
the human controller. The human controller was split in sub controllers, which al-
lowed to obtain insight on the limitations of GMM/GMR. These results indicate the
ability of GMM/GMR to reproduce and generalize to a limited extent a system in
which there exists a linear relation between the input and output variable without a
singularity. A singularity arises when an input corresponds to multiple output values.
Limitations include difficulties in selection of hyperparameters and features, and lim-
ited inter- and extrapolation capabilities. These limitations indicate that, while GMM
can model linear systems, they are not suitable to capture human controllers. It im-
poses the restriction on the system to have a linear controller without singular input
output variables. However, if the linearity of the controller is already known,system
identification might be a better solution instead of GMM, a correctly identified con-
troller/system does not impose limitations on the extrapolation capability.
Additionally, these restrictions imply that GMM are more suitable to capture motions
instead of the underlying mechanism. It is a method which allows you to learn one
type of task with limited spatial variance without prior knowledge of the task [18],
[43], [44], which comes at the cost of limited generalizability. The generalizability of
the GMM/GMR could be expanded by combing with another encoding method [44]
and/or task parameters [45]. These expansions however solely capture the motion
of a specific task and not the underlying mechanism. Inverse Reinforcement Learn-
ing (IRL) for LfD on the contrary shows, despite the demand for large number of
demonstrations, more potential in generalization [46] and thus in capturing a human
controller. The generalization capabilities are a result of extracting an environment
independent reward function [46]–[48]. However, a drawback is that there might ex-
ist multiple reward functions for one task, which makes it an ill-posed problem. This
makes it difficult or even impossible to find the correct solution [47], because the
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same reward function might be optimized by multiple policies [48]. In order to de-
duce the reward function, large amount of data is required [14]. Additionally, if the
environment changes, a new policy has to be learned based on the found reward
function [47]. Lastly, the method remains a black box method, which limits the adapt-
ability of the reward function. It might be unclear how to adapt the reward function
without completely relearning to different tasks.
Even though IRL might have the potential to capture the underlying mechanisms
of a human controller via environment independent reward functions, it suffers from
limitations such as requiring a large number of demonstrations, the inability to al-
ways find the correct reward function and the requirement to relearn a policy when
the environment changes.
A different potential framework for capturing a controller is combining Lfd with ma-
chine learning. For example, Hadar et al. [49] eliminates the requirement of large
number of demonstrations by combining LfD with reinforcement learning. This re-
quires at most twenty minutes of interactive learning after which it can generalize
to new object configurations. It is a promising direction. However, it uses a visual
framework and it is also a black box method. Additionally, the goal of the paper was
not to model a human controller, but to find a policy to execute the desired tasks.
As mentioned before, the GMM is limited in reproducing controllers. This problem is
most evident in the incorrect reproduction of the admittance system, which is a result
of the singularity. Additionally, the self-dependency of the GMM is also a potential
cause for incorrect reproductions. The input of the GMM depends on the double
integral of the velocity, which is an output of the GMM. The output will be integrated
twice and used as input in the next sample, which is thus also an incorrect input.
The incorrect input results in an incorrect the output. It is a circular error. Thus, the
admittance model cannot be reproduced for this input output pair.
A different selection of input might solve this problem, but it does not guarantee a
successful reproduction. A solution to the feature selection problem could be by
using the correlation variables together with the physics of the system [50]. If two
input variables are highly correlated one of them might be redundant for learning the
correspondent task.
The input output selection is not the only factor that determines the quality of re-
production. The (spatial) spread of the demonstration data influences the range of
the responsibility. Based on the P- and PD-controller reproduction, the responsibility
seems to be a narrow tailed Gaussian. It leads a zero value reproduction, because
the likelihood that the GMM explains the data is zero. The spread of the demon-
stration data determines the variance of the responsibility and it therefore influences
the generalizability. This is evident while taking into account the demonstration time
when learning the P(D)-controller. Decreasing the demonstration time resulted in a
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smaller contribution of the steady state on the mean and variance, which resulted
in a better reproduction compared to the original length. The variance widens the
Gaussian, resulting in a larger range of possible encoding.
Lastly, the desired reproduction depends on choosing an adequate number of com-
ponents. The quality of the reproduction and capabilities of a GMM are depends
on the hyperparameters selected within the GMM. Especially the number of compo-
nents influences the quality of the reproduction, which is evident in the P- and PD-
control cases. The results might suggest that more Gaussian components would re-
sult in a better reproduction. However, it might lead to overfitting of the data, which
results in poor generalization. Therefore, determining the optimal number of com-
ponents remains a key problem in LfD. Future studies could further optimise this
procedure by relying on methods based on an Bayesian information criterion (BIC)
which success has been demonstrated [51]–[53]. However, the BIC only selects the
parameters that are optimal for the GMM, but not for regression [54]. Therefore, a
combination of information criterion and comparing RMSE ( [55]) was recommended
for future research.
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Chapter 6

Conclusion

Although the proposed LfD framework was not capable of reproducing the valve
task, this study shed more light on the limitations of GMM/GMR in capturing a hu-
man controller. In conclusion, a GMM/GMR showed potential to capture human con-
troller. GMM/GMR was capable of learning and reproducing a P(D)-controller, but
with limited generalization capabilities. These limitations are a result of the respon-
sibility used in the GMR and the spread of the data. Additionally, the reproduction
of an admittance system was unsuccessful. The GMM performance was limited by
a singularity in input-output variable relation. Furthermore, if it is already known that
a system can be controlled with a linear controller it might be more beneficial to
use system identification in contrast to using GMM. It lead to the conclusion that the
GMM are not suitable to capture a human controller. The method is better suited
to capture a motion over time with limited spatial variance in which there is no prior
information about the motion/system. A promising field for capturing a human con-
troller could be reinforcement learning, but these introduces other limitations such
as the requirement for a large set of demonstrations and less intuitive understanding
of the control method.
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Appendix A

Theoretical derivation of GMR

The goal of this chapter is to show how GMR and the adapted GMR are derived and
how initial intuition of these methods was obtained by exploratory simulations. A
mathematical derivation of the GMR can also be found in Sung [56]. The derivation
of GMR is mentioned in Section A.1.1 for completeness. The derivation of the aGMR
is found in Section A.1.1. Additionally, the results and discussion of two exploratory
simulations are shown in Section A.2.1.

A.1 Theoretical derivation of GMR

The derivation of GMR is more intuitive compared to HMM, because GMR does
not include sequentiality in the regression. The goal of GMR is to convert discrete
states into a continuous trajectory. GMR can only be used with encoding methods
that make use of latent variables to encode the data. Regression is performed via
the expectation of the output data given the input.
The goal of the derivation is obtain an expectation function from the conditional prob-
ability of the output (y) given the input (x) such that a value can be sampled from the
GMM with only the known input.
The derivation of GMR starts by the marginal joint distribution of GMM of two vari-
ables, input (x) and output variable (y). The GMM is found in Equation A.1), where
πj is the prior of Gaussian j and ψ a multivariate Gaussian with mean µj and vari-
ance Σj. It is obtained from the GMM by computing the sum over all K Gaussian
components, weighted by their respective priors.

p(x,y) =
K∑
j=1

πjϕ(x,y|µxyj,Σxyj) (A.1)
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The conditional probability of the output given the input is derived via Bayes rule,
which can be seen in Equation A.2.

p(y|x)p(x) = p(x,y)

p(y|x) = p(x,y)

p(x)

(A.2)

The joint probability is partitioned into Equation A.3, according to Mardia et al. [57].
Rewriting the joint probability eases finding the marginal probability, and therefore
also obtaining the likelihood.

p(x,y) =
K∑
j=1

πjϕ(y|x,mj(x),σ
2
j)ϕ(x,µjx,Σjx) (A.3)

Where ϕ(y|x,mj(x),σ
2
j) describes the conditional probability density function (pdf)

for Gaussian j with mean mj and variance σ2
j , ϕ(x,µjx,Σjx) describes the pdf for

Gaussian j with mean (µjx) and the variance of x (Σjx). The mean (mj) is defined as
in Equation A.4, which is known as the regression function or conditional expectation
for Gaussian j. The variance is defined as in Equation A.5 which is found by the
variance of x (Σx) and covariance between x and y (Σxy)

mj(x) = µjy +ΣjyxΣ
−1
jx (x− µjx) (A.4)

σ2
j = ΣjY Y

−ΣjY X
Σ−1

jX
ΣjXY

(A.5)

The marginal density function of the input variable is found by integrating over the
output variables (Equation A.6). It results in pdf that only depends on the observa-
tion, because taking into account all probabilities of the whole space should result
in a probability of one.

p(x) =

∫
p(x,y)dy =

K∑
j

πjϕ(x, µjx,Σjx) (A.6)

The conditional probability (y given x) is obtained using Bayes rule, by substituting
equations A.3 and A.6 into equation A.2

p(y|x)
K∑
j

πjϕ(x,µjx,Σjx) =
K∑
j=1

πjϕ(x,µjx,Σjx)ϕ(x,mj(x),Σj) (A.7)

p(y|x) =
K∑
j=1

πjϕ(x,µjx,Σjx)∑K
j πjϕ(x,µjx,Σjx)

ϕ(x,mj(x),Σj) (A.8)

p(y|x) =
K∑
j=1

wj(x)ϕ(x,mj(x),Σj) (A.9)
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Equation A.9 can also be rewritten into a more intuitive notation. This is done by
introducing a new variable, the responsibility. This is the same as the weight (wj(x))

in Equation A.9. The responsibility shows how well component j explains the data.
The second part of the equation is the probability that an output point belongs to the
component j. This results into the following notation:

p(y|x) =
K∑
j=1

wj(x)︸ ︷︷ ︸
P (zj |x)

ϕ(y,mj(x),Σj)︸ ︷︷ ︸
P (y|zj)

(A.10)

Where z is considered a latent variable (in this case a Gaussian j) However, we
are only interested in the expectation of the posterior probability (Equation A.11).
There is no need to calculate the likelihood of the conditional probability each it-
eration. Only the mean (A.4) and the weight are of importance to calculate the
expectation/regression function.

yest = E(y|x) =
K∑
j

wj(x)mj(x) (A.11)

The regression function is a summation of the means based on the weights. There-
fore, the new data point is found by the weighted sum of the conditional means. The
means are scaled by how well the corresponding component explains the data. It
considers how likely it is that a certain observation belongs to a component and thus
how much influence a component should have on the resulting output.

A.1.1 Adapted GMR

Similar to GMR the goal is to find an expression for the conditional expectation of
the input given the output for the HMM instead of GMM. In order to so, the prob-
ability relation in Equation A.10 is used as start of the GMR derivation, which is
for clarity written into Equation A.12. The P (y|zj) shows the likeliness of an output
value based on the state z. The P (zj|x) shows the likeliness of the state based
on the input. The input variable is classified to a state and based on this state an
output variable is sampled. The terms in Equation A.12 have to be expressed with
variables/probabilities of HMMs.

P (y|x) =
K∑
j=1

P (zj|x)P (y|zj) (A.12)

The observation probability P (y|zj) of Equation A.12 equals the emission probability
of HMM.
Next the responsibility for HMM is required to obtain the posterior distribution as in
Equation A.12. The sequentiality in the HMM requires to take into account the whole
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sequence of data points, or at least have some memory. Bayes rule is applied to
find the responsibility [58] which can be seen for state j at time instance n (zjn) in
Equation A.13.

γj(xn) = p(zjn|X) =
P (X|zjn)P (zjn)

P (X)
(A.13)

Equation A.13 can be rewritten into Equation A.14 by introducing the forward vari-
able α and the backward variable β. It is important to note that in Equation A.14, the
subscript n is used to indicate time instance of the responsibility.

γj(xn) =
p(x1...xn, zjn)p(xn+1..xN |zjn)

p(X)
=
αj(xn)βj(xjn)

p(X)
(A.14)

The forward variable is defined as in Equation A.16, a derivation can be found in [58].
The forward variable is the probability that a sequence of data happens at the same
time with state x.

αj(xn) = p(x1...xn, zjn) (A.15)

αj(xn) = p(xn|zjn)
∑
zn−1

αj(xn−1)p(zjn|zn−1) (A.16)

The backward variable is the conditional probability that a sequence will happen
given the current state and the next state.

βj(xn) = p(xn+1, ..,xN |zjn) (A.17)

βj (xn) =
∑
zn+1

βj (zn+1) p (xn+1 | zn+1) p (zn+1 | zjn) (A.18)

One can already conclude that it is not possible to calculate the backward variable
in real time. The backward variable depends on observations of the future, which
are not measurable at time step n. However, it is not relevant at time step n to know
the responsibility over the whole time sequence. Only the responsibility at up to time
instance n is relevant, because the goal is to sample the corresponding output y at
time instance n and not at time instance n + 1. Therefore, only the forward variable
is used to calculate the responsibility, which results into Equation A.19.

P (y|x) =
K∑
j=1

P (zj|x)P (y|zj)

=
K∑
j=1

αj(x)

P (x)
P (y|zj)

=
K∑
j=1

αj(x)∑K
q=1 αq(x)

P (y|zj)

(A.19)
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The expectation of the conditional probability (Equation A.19) is notated as in Equa-
tion A.20, which is the aGMR function. This is in line by the less mathematical
derivation proposed by Calinon et al. [24].

yest = E(y|x) =
K∑
j

αj(x)∑K
q=1 αq(x)

(x)mj(x) (A.20)

A.2 Exploratory simulations

The simulations were performed with code and a dataset provided by Calinon [59].
The GMM, HMM and GMR were already included in this code base. The GMR code
was adapted to obtain the aGMR.
The dataset are demonstrations of letters written in 2 dimensions. An example of
the letter Q is visible in Figure A.1. The demonstrations include position, velocity
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Figure A.1: An example of the dataset which is used. The letter Q is plotted, but
the data set consists of all the letters of the alphabet.

and acceleration information in two dimensions and time with only one dimensions.
For the reproduction test, the goal was to reproduce only the y component of the
letter Q (see Figure A.1). The time is used as input, because it ensures that there is
a relation between the data and position. The data is time dependent and there are
no singularities. In addition, it allowed to use a left-to-right topology for the HMM. The
first state is on the left and the final state is on the right without feedback between the
states. The parameters used are the same for both frameworks and can be found
in Table A.1. Both algorithms were initialized with K-means and afterwards learned
with E-M for GMM and the Baum-Welch algorithm for HMM.
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The quality of reproduction is based on visual inspection, which means there is
no quantitative metric. The comparison was evaluated by inspecting which of the
reproduction more closely represents the demonstrations.

Table A.1: Parameters used in to reproduce the y-direction of the letter q, including
the time step dt and duration T .

Demonstrations 5Nm
rad

States/Gaussians 5

dt 0.0001s

T 10s

A.2.1 Results & Discussion

The HMM shows a more linear reproduction behaviour compared to the GMM as
seen in Figure A.2. The states however are captured at around the same time. The
linearity has to be related with the responsibility, because it is the only difference
between the GMR and aGMR. This is also evident in Figure A.3 and A.4. Here the
responsibility and reproduction are plotted. The responsibility of the GMM is more
Gaussian shaped while transitioning from one state to another, while the respon-
sibility of HMM results in a faster saturation to a probability of one. That results
is evident in for example Gaussian 5, all the data points in the vicinity of the state
are a linear line with direction of that Gaussian. A solution to this could be the use
of more states, however that also requires more data and increases computational
time. While, the GMM does not require this. Therefore, based on these results GMM
was deemed to be more suitable.
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Figure A.2: Exploratory results which shows that the HMM (top graph) result in a
less desired reproduction compared to the GMM (bottom graph). The
dotted magenta line shows the reproduction, the grey lines are the
demonstrations and the colored areas are the states/Gaussians.
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Figure A.3: The top plot is the reproduction of the y component of the letter Q by
the GMM. The bottom plot shows the responsibility.
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Figure A.4: The top plot is the reproduction of the y component of the letter Q by
the HMM. The bottom plot shows the responsibility.



Appendix B

Valve task simulations

To ease the modelling of the valve task, the task was split in three complexity levels.
The first level is the linear dynamics of the system, only the linear system is mod-
elled without thresholds/ function. This model consists of PD-controller, admittance
controller and feedback loops. The second level is the same as the first level, but it
includes a saturation function to model the end position of the valve. The last level
includes the force threshold combined with the saturation of the valve.

B.1 First level of complexity

The valve-task has different levels of complexity while modelling. The schematic of
how the task is modelled can be seen in Figure B.1.

Stop
threshold

θbrain

∫
θerror τhuman

Human
PD

τomega θomegaOmega

θteleop

θeve
Eve +
valve

impedance
controller

τ imp τ impτ imp

θeve

+
-

θeve

-
-+ +

Figure B.1: A schematic overview of the valve closing task.

If the stop threshold has not been exceed, a constant velocity is produced to
ensure the human continues rotating until the valve is closed. The PD controller and
impedance controller are modelled with the standard notation for a PD-controller

81
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as seen in Equation B.1 and B.2 respectively. It is important to note that the PD-
controller is ideal and the derivative is unfiltered, which results in an aggressive
PD-controller.

Kpθerror +Kdθ̇error = τhuman (B.1)

Kpimpθteleop +Kdimpθ̇error = τteleop (B.2)

The Omega and Eve+damper are modelled as an admittance system as seen in
Equation B.3 and B.4.

I ¨θomega = τomega +D ˙θomega (B.3)

I ¨θeve = τimp +D ˙θeve (B.4)

The parameters used to encode the system can be found in Table B.1.

Table B.1: Parameters used within the valve task model. The dynamics of the Eve
and valve are concatenated, because they are modelled in series.

Damping Eve and valve [Nms
rad

] 2

Inertia Eve and valve [kgm2] 0.25

Damping Omega [Nms
rad

] 0.75

Inertia Omega [kgm2] 0.01

Stiffness impedance controller [Nm
rad

] 35

Damping impedance controller [Nms
rad

] 2

Stiffness human [Nm
rad

] 10

Damping human [Nms
rad

] 1

Estimated rotation velocity[ rad
s

] 2.5

Max valve angle [rad] 5π

Length of demonstration [s] 10

Sample time [dt] 0.002

The initial conditions of the system are specified in the following manner: The
Omega and Eve start at the same position with the initial velocity and acceleration
set to 0. The initial value of the human angle is the initial Eve/ Omega angle with an
0.035 rad offset as it is not realistic that the human starts at exactly the same position
of the Eve. Furthermore, it results in a zero error which leads to a system that does
not move due to the multiplication with zero. It is expected that the Omega and Eve
start at the same angle and diverge, because of how the PD-controller is tuned. The
damping induces some saturation time to steady state, which has as a result that
the Eve will not reach the same position as the Omega/input. In addition, the torque
should be the same for the different initial conditions. The torque should converge
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to a steady state value. This is accordance with the result as seen in Figure B.2 for
the angle and Figure B.3 for the torque.
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Figure B.2: The angles within the valve task without limits modelled. It is a linear
system. The solid line represents the angle of the Eve/valve, the striped
line the angle of the Omega and the dotted line the angle of the human.
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Figure B.3: The torque results within the valve task without limits modelled. It is
a linear system. The solid line represents the torque of the impedance
controller, the striped line represents the human torque.



84 APPENDIX B. VALVE TASK SIMULATIONS

B.2 Second level of complexity

The model for the second level of complexity is the same as the first level, but a
saturation function is added to model the end-position of the valve. The most trivial
method is would be a clipping function, but that results in a sudden stop of the valve.
A more representative situation is a gradual saturation towards the end-position,
which is realised with a hyperbolic tangent. The transition between the constant
rotation and hyperbolic behaviour should be tuned to a level in which the transition
is smooth. If it is not properly tuned the transitions result in a peak in the PD-
controller due to the aggressive controller. The exact implementation can be seen in
the Pseudocode 1. The buffer position is used to ensure that the saturation function
starts at the correct position and an artificial clock is used to ensure that hyperbolic
tangent starts at a zero input. The resulting behavior of the simulations can be
seen in Figure B.4, where all angles are plotted. It can be clearly seen that the
human and Omega angle linearly keeps increasing, until the Eve encounters the
end position to the valve at this point the system smoothly saturates. The torque
(Figure B.5) increases until the error between the Eve and Omega and thus the
human is saturated. As the end position of the valve is reached the torque increases
until infinity, because the error between the Eve and Omega keeps increasing.
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Algorithm 1 Saturation of valve angle
1: The algorithm uses n as time instance. It is a realtime algorithm, which means

that n− 1 is the sample of previous time instance.
2: Variables: maxV alveAngle, humanAngleV elocity
3: Input: Torque T, Velocity v, Artificial clock c, Position p, Buffer position b, sam-

ple time dt
4: Output: Position p

5: Initialization: c(0) = 0, b(0) = 0

6: for each time instance n do
7: a = T(n)−eveD·v(n−1)

I

8: if (p(n− 1) >= (maxV alveAngle)− 1 then
9: if b(n) == 0 then

10: v(n) = v(n− 1) + a(n) · dt
11: b(n) = p(n− 1) + v(n) · dt
12: end if
13: a(n) = 0

14: p(n) = b(n) + tanh(humanAngleV elocity · c(n))
15: v = p(n)−p(n−1)

dt

16: c(n) = c(n− 1) + dt

17: else
18: v(n) = v(n− 1) + a · dt
19: p(n) = p(n− 1) + v(n) · dt
20: c(n) = 0

21: b(n) == 0

22: end if
23: end for
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Figure B.4: The angles within the valve task after implementing the valve task sat-
uration function. The continuous colored line represent the behavior of
the Eve, the dotted line the human and the striped line the Omega.
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Figure B.5: The torques within the valve task after implementing the valve task sat-
uration function. The continuous colored line represent the behavior of
the Eve, the dotted line the human and the striped line the Omega.
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B.3 Human threshold

Lastly, the behaviour of the human threshold is modelled combined with the satu-
ration function. The threshold of the human stopping condition is implemented by
Equation B.5.

If τteleoperation ≥ 10 AND θ̇eve == 0

θ̇human = 0

end

(B.5)

The Omega and human angle saturates a few seconds after the valve max angle
is reached (Figure B.6). This behaviour can be improved by changing the velocity
threshold to using a less than/or equal to a constant velocity. That would result
in quicker saturation and more realistic scenario. However, the torque does not
show behavior which is expected (Figure B.7). There are oscillations and it does
not converges to zero. The oscillations are a result of the threshold, the sudden
zero velocity result in some oscillations. These are amplified by the aggressive PD-
controller. The problem can be solved by gradually decreasing the human velocity to
zero. The constant torque is a result of the difference between the Eve and Omega
angle, which is constant after saturation.
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Figure B.6: The angles within the valve task after implementing human threshold.
The continuous colored line represent the behavior of the Eve, the dot-
ted line the human and the striped line the Omega.
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Appendix C

Additional results

C.1 Extrapolation result oen Gaussian GMM for the
PD-controller
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Figure C.1: The torque error [Nm] between the reproduction of one Gaussians
GMM and PD-controller for the extrapolation initial conditions of the
mass angle.

Table C.1: The RMSE value of the one Gaussian GMM for PD-controller while ex-
trapolating.

Initial condition [rad] 0 2.5π 5π 7.5π 10π

Five Gaussians [Nm] 9.657 14.485 38.6291 62.772 86.915
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C.2 Admittance

C.2.1 Extrapolation

-4
-2
0
2

Angle error reproduction admittance one Gaussian

IC 0 rad

3.5
4

4.5
5

IC 2.5 rad

5

10
IC 5 rad

0

10

20

IC 7.5 rad

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20
IC 10 rad

A
n

g
le

 e
rr

o
r 

(r
a

d
)

Time (s)

(C.2A) .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-20

-10

0

Angle error reproduction admittance five Gaussians

IC 0 rad

2

4

6

IC 2.5 rad

5

10
IC 5 rad

0

10

20

IC 7.5 rad

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20
IC 10 rad

A
n
g
le

 e
rr

o
r 

(r
a
d
)

Time (s)

(C.2B)

Figure C.2: The angle error [rad] between the reproduction and admittance system
for the extrapolation initial conditions of the mass angle. Figure C.2A:
the error of the one Gaussian GMM. The plot is trimmed from 5 s to 1 s.
Figure C.2B: the error of five Gaussians GMM. The bottom four panels
are trimmed from 5 s to 1 s.
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Figure C.3: The angle error [rad] between the reproduction of the one Gaussian
GMM with shorter learning time and admittance controller for the inter-
polation initial conditions of the mass angle.

Table C.2: The RMSE value of the one Gaussian GMM with shorter learning time
for admittance reproduction.

Initial condition [rad] 0 0.5π 1π 1.5π 2π

One Gaussian (shorter time)[rad] 0.5649 0.3384 0.3567 3.0569 3.1976

C.3 Human PD-controller

Table C.3: The RMSE value of the human PD-controller reproduction.
Initial condition [rad] 0 1π 2π 3π 4π

Five Gaussians [Nm] 0.0211 0.0213 0.0215 0.0218 0.0218
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