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Executive summary 
Climate change and global warming is an important and well-discussed topic the past few years. 

Reducing greenhouse emissions such as carbon dioxide emission is a measure against global warming. 

The agriculture sector can contribute to the reduction of carbon dioxide emission by storing organic 

carbon in the soil (carbon sequestration). Farmers can adjust their cultivation plans based on the state 

of the soil. Therefore it is necessary that farmers gain insights on the state of the soil, specifically the soil 

organic carbon content. In current practice, the insights on soil organic carbon content are mainly based 

on soil samples. However, taking soil samples is an expensive practice. There is an increased need for 

insights into the soil quality without taking soil samples. This thesis presents a method to estimate the 

soil organic carbon content on farms in the Netherlands.  

The study first provides a comprehensive systematic literature review to understand the state of the art 

and best practices used in similar studies. The results of this literature review include a set of 

environmental covariates, categorized using the SCORPAN methodology, a set of best performing 

prediction methods and an analysis of the validation strategies used in similar studies. The results of the 

literature review are used for designing the artifact (prediction method). 

The second part of the study is the design and development of the artifact. During this research, we 

have followed the steps of Design Science Research Methodology (DSRM). For the design and 

development of the artifact, we used the method Knowledge Discovery in Databases. The first steps of 

this method are data selection, pre-processing and transformation. Based on the results of the literature 

review, we have gathered and used the following environmental covariates as prediction features: 

climate data (temperature, rainfall, solar radiation), soil property data (underlying soil type), vegetation 

data (NDVI), land usage (cultivation plan) and an existing soil organic carbon stocks and density map 

(SoilGrids). 

The next step of the KDD method (Data mining) is performed by choosing, implementing, validating and 

optimizing the prediction methods. Based on the results of the literature review, we have implemented 

Random Forest, Support Vector Machine and Artificial Neural Networks as prediction algorithms and 

validated these algorithms using 10-fold cross validation. From these prediction algorithms, Random 

Forest showed the highest predictive accuracy (R2 = 0.37, MSE = 1.76). An important note to these 

results is that, due to a lack of measurements, the model is likely not generalizable to more or other 

farm plots.  

There are a few takeaways from this project. First of all, the environmental covariates used as prediction 

features show predictive potential and can be used in future research to improve the prediction model. 

The research also resulted in methods and sources that can be used to gather these types of data (i.e. 

the vegetation index based on satellite imagery), which both contributes to research and practice. 

Furthermore, the next takeaway is that the Random Forest has predictive potential and performs the 

best for the soil organic carbon computation. The last takeaway is from this study is the analysis of the 

potential value of the artifact: farmers receive a more up-to-date view on the state of the soil which can 

be used for a more tailored advice on how to increase the soil state and reduce carbon emission.  
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1. Introduction 
Modern agriculture has to cope with several challenges, such as climate changes and the increasing call 

for food [1]. The storage of soil organic carbon on farm plots is a strategy to reduce the carbon dioxide 

emission, which is a measure against climate changes. Insights from increased monitoring of the soil 

carbon stocks at farms can lead to a more active approach to carbon storage that farmers can adopt. 

However, researchers of the University of Wageningen state that the quality of the soil, including the soil 

organic carbon content, is sometimes hard to determine without sampling the soil. Soil does not have a 

‘passport’ that indicates whether the soil is of high quality or not [2]. The easiest solution to this is to 

increase the soil sampling frequency. However, taking soil samples is expensive for farmers. Thereby the 

call for insights into the soil quality without taking expensive samples arises. 

1.1 Problem statement 
In order to address this call for getting soil insights without sampling, the agriculture sector has to adopt 

appropriate technologies, such as digital soil mapping (DSM). DSM is seen as an effective method to model 

soil properties based on the quantitative relationship between soil observations and environmental 

predictors [3].  

The practice of digital soil mapping in the context of soil organic carbon computation has a large 

potential. The amount of open data and gathered data increases every day and should be utilized as 

much as possible. However, based on the information we got from a farmers’ organization we 

interviewed, the farmers currently do not use initiatives that predict the soil organic carbon content. 

Furthermore, we did not find initiatives that reach the level of practical usage. Initiatives such as the 

Global Soil Organic Carbon map (GSOC map) [4] and SoilGrids [5] provide estimations of the carbon 

stocks for the entire world. However, these maps include snapshots of the carbon stocks taken in 2020 

and do not provide up-to-date information about the current soil state on a local (farm scale) level. To 

be useful, these carbon maps should be enriched with open environmental data and give a more up-to-

date view on the carbon state of the farm plots. Hence, we identified a knowledge gap: how can one 

accurately predict the current soil organic carbon content on a farm plot scale in the Netherlands based 

on existing soil maps and environmental covariates?  

1.2 Research goal 
The goal of this research is to design a soil organic carbon prediction method that can be used to map 

the current soil organic carbon state for farms. Based on the problem typology of Wieringa [6], the 

stated problem is a design problem: the prediction method is the artifact that will interact with the 

context of farms in the Netherlands and available open data. 

1.2.1 Solution objectives 
The main objective of the artifact is to deliver a prediction on the soil organic carbon content on plots of 

farms in the Netherlands. However, to accomplish this objective, different research objectives have 

been established. The literature review we performed (further discussed in Chapter 2) showed that 

machine learning models outperform standard regression models in recent studies. Therefore, the 

objective of this research was to evaluate the potential of machine learning models to predict the soil 

organic carbon content. However, to achieve this objective, several different objectives or questions 

arise. Assuming the machine learning models show a good prediction potential, we want to identify 
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relevant environmental variables that give a good indication on the carbon stocks and machine learning 

models with the highest predictive accuracy.  

1.3 Research question 
As the goal of this research is to develop a soil organic carbon prediction method using machine learning 

models, we have formulated the following main research question according to the design science 

template: 

How to develop a method that predicts the soil organic carbon content based on environmental 

covariates at farms in the Netherlands so that the company can provide actionable insights on the 

carbon stocks to farmers? 

1.3.1 Research sub-questions 
In order to answer the main research question, we have defined five research sub-questions.  

• RQ1: What covariates can be used as features for the soil organic carbon content prediction? 

• RQ2: What prediction methods can be used to predict the soil organic carbon content and how 

can they be validated? 

• RQ3: Using covariates identified from the literature, how can an empirical model be developed 

to predict the soil organic carbon content?  

• RQ4: What is the predictive accuracy of the developed model and how can it be optimized? 

• RQ5: How can the resulting model be used to create potential value for stakeholders? 

1.4 Research Methodology 
In this research we used the Design Science Research Methodology (DSRM) developed by Peffers et al 

[7]. It consists of six steps (or activities): Identify Problem & Motivate, Define Objectives of a Solution, 

Design & Development, Demonstration, Evaluation and Communication, as shown in figure 1. 

 

 

The activities Identify Problem & Motivate and Define Objectives of a Solution are performed at the start 

of the research and are explained earlier in this chapter.  

Figure 1. DSRM process flow  
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In the Design and Development step, we have used the Knowledge Discovery in Databases (KDD) 

method developed by Fayyad[8]. This method is adequate for this step as its intent is to harvest 

information by recognizing patterns in raw data [9]. This goal matches the goal of this research: 

developing a model that recognizes patterns and predicts the soil organic carbon content based on this 

patterns. The KDD methodology distinguishes five phases that the researcher and thereby the state of 

the data go through: Selection, Pre-processing, Transformation, Data Mining and 

Interpretation/Evaluation.  

In the Demonstration step the artifact is used to solve one or more instances of the problem. To do this, 

the prediction model (artifact) has been tested on other data than the prediction model is trained on, 

using the concept of cross-validation. The Evaluation step automatically follows after the demonstration 

step. Testing the data in the demonstration phase results in different performance measures. These 

measures are the R2-value and the Mean Squared Error of the predictions made by the artifact. The 

Communication step is performed via this thesis presenting how we designed the prediction method 

and discussing the performance of the method. 

1.5 Master Thesis Structure 
Chapter 2 includes the theoretical background of the research and answers RQ1 and RQ2. Chapter 3 

describes the data collection and soil organic carbon computation. Chapter 4 discusses the development 

of the prediction model, which corresponds with RQ3. The validation and optimization of the developed 

model, needed to answer RQ4, are discussed in Chapter 5. Chapter 6 discusses the potential value for 

stakeholders, which is RQ5. The thesis finishes with a conclusion, discussion, limitations and a future 

work section in Chapter 7. 

Table 1 shows a mapping of the chapters of this thesis, the related DSRM activities and the research sub-

questions. 

 

Chapter DSRM Activity Research sub-question 

1. Introduction Problem Definition & Motivation 
Define Objectives of a Solution 

 

2. Background  RQ1, RQ2 

3. Data collection and soil 
organic carbon computation 

Design and Development RQ3  

4. Feature selection and 
model development 

Design and Development RQ3  

5. Model validation and 
optimization 

Demonstration 
Evaluation 

RQ4 

6. Potential value for 
stakeholders 

 RQ5 

7. Conclusions   

 

 

Table 1. Mapping DSRM and thesis chapters 
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2. Background 
This chapter presents the background information that is relevant to our work. The chapter starts with 

information about carbon emission and sequestration. Subsequently, information on Digital Soil 

Mapping is given. The next section gives information about the state of the art regarding environmental 

covariates, prediction methods and validation strategies used for soil organic carbon mapping. The 

chapter ends with a section on machine learning. 

The state of the art regarding organic carbon mapping was reviewed based on articles found on the 

repositories Scopus and Web of Science. We have used a systematic literature review methodology 

following the guidelines from Webster and Watson [10] in order to recognize patterns and concepts in 

the state of the art. The literature review includes other review papers from before 2019 and new 

studies performed from 2019 and later. 

2.1 Carbon emission and sequestration 
Reducing greenhouse gas emissions is a key topic within the sustainability discussion around the world. 

The European Commission has adopted the 2030 agenda for sustainable development from the United 

Nations, in which is stated that ‘Climate action’, including mitigation efforts to reduce the greenhouse gas 

emissions, is one of the 17 Sustainable Development Goals (SDGs) [11]. The Netherlands’ goal related to 

climate action is to reduce the gas emissions by at least 40% before 2030. Carbon dioxide is a main type 

of greenhouse gases that is emitted and global warming is the most important consequence of the 

emission of carbon dioxide. The sequestration of carbon in the soil is a mitigation effort to reduce CO2 

emission [11], [12]. The European Commission states that land-based solutions should maximize soil 

carbon sequestration. To maximize the soil carbon storage, active soil quality determination and 

monitoring is needed.  

2.1.2 Carbon sequestration 
Carbon sequestration consists of capturing and storing of carbon dioxide (CO2) from the earth’s 

atmosphere. The carbon that is sequestrated forms the basis of the organic matter in the soil, which 

consists of the cells of microorganisms, plants and animal residues at various stages of decomposition 

[13]. Molecules of organic matter can contain carbon, hydrogen, nitrogen, phosphorus and sulfur and 

the soil organic carbon content can be increased by increasing the portion of organic matter in the soil. 

This not only helps in reducing carbon emission, but often also enhances the soils physical, chemical and 

biological processes and properties [14]. 

A researcher of the Louis Bolk Instituut discussed different measures that farmers can use to enhance 

carbon sequestration [15]: 

• Leave behind crop residues 

• Add extra ‘resting crops’ such as grains in the rotation 

• Use green manures 

• Apply non-inversion tillage instead of plowing 

• Use additional rough manure or compost 

• Keep perennial field margins 

• Stop ploughing grassland 

• Use herbaceous grasslands 
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2.2 Digital soil mapping 
Digital soil mapping is a solution to the lack of measurements in case information on the state or quality 

of the soil is needed. Minasny and McBratney [16] define digital soil mapping as the creation and 

population of spatial soil information systems by the use of field and laboratory observational methods 

coupled with spatial and non-spatial soil inference systems. In this context, a soil map is defined as a 

graphic representation for transmitting information about the spatial distribution of soil attributes. In 

short, environmental data is used to predict aspects of the soil. According to Minasny and McBratney 

[16] digital soil mapping has three components:  

- Inputs: field observations and laboratory observations 

- Process: build a mathematical or statistical model that relates soil observations with their 

environmental covariates (the so-called SCORPAN factors). 

- Output: a soil information system (such as a soil map). 

The existing approaches to mapping soil organic carbon do not reach the levels of practical usage. 

Although the inputs are available as soil samples, there are no appropriate processes. Initiatives such as 

the Global Soil Organic Carbon map (GSOC map) [4] and SoilGrids [5] provide estimations of the carbon 

stocks for the entire world. However, these maps are snapshots of the carbon stocks on the entire world 

and do not provide up-to-date information about the soil state. In order to get a view on the current 

state of the carbon stocks, the GSOC or SoilGrids maps should be enriched with environmental 

covariates so that a more detailed and actual status of the soil can be provided to farmers. This research 

looked for a solution that uses actual soil sample data, SOC maps and up-to-date covariates for an 

accurate soil organic carbon estimation for farm plots in the Netherlands. 

2.3 Environmental covariates 
In the past, a wide range of potential factors or covariates and several prediction algorithms have been 

used and tested for the accuracy, suitability and usability of optimizing the digital soil mapping of soil 

organic carbon. The environmental covariates that can be used to predict the soil organic carbon content 

can be categorized into logical clusters using the SCORPAN model developed by McBartney et al [17]. 

According to this model, the soil state at any point in time is a function of seven environmental covariates: 

Soil properties (S), Climate (C), Organisms (O), Relief (R), Parent material (P), Age (A) and Spatial location 

(N). This model helps to categorize the covariates used for soil organic carbon content prediction into 

logical clusters. The different categories used in the SCORPAN typology are described below. 

• Soil properties (S) – Previously measured properties of the soil at a certain point in time, such as 

remotely sensed spectral data, existing soil maps and georeferenced point data representing 

measurements taken in the field or laboratory. Examples of these type of data are bulk density, 

clay mineralogy, soil depth and the taxonomy class of the soil.   

• Climate (C) – All climate related covariates such as precipitation, moisture and temperature.  

• Organisms (O) – Vegetation cover data and land usage data.  

• Relief (R) – Relief of the soil, including terrain attributes, elevation and topography. 

• Parent material (P) – Geologic material from which soils form.  

• Age (A) – Age of the soil. 

• Spatial location (N) – Location of the soil. 
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2.3.1 Covariate usage 
The literature review on the SOC mapping 

revealed the covariates and corresponding 

category that are most often used in similar 

studies. Table 12 in Appendix A shows the 

resulting concept occurrence table used for 

this analysis. Figure 2 shows the covariate 

occurrence of the studies performed after 

February 2019 that we have examined for 

this research. 

Covariates categorized as Organisms are used the most 

often in similar studies. The Normalized Difference 

Vegetation Index (NDVI) score and the cultivation plans used for the farm plot are the highest 

performing covariates used as features for SOC mapping. The NDVI score is an indication of the amount 

of vegetation cover. The vegetation cover for a long period of time might be more influential than a 

single snapshot of the vegetation cover [18], [19]. 

The Relief and Climate covariate categories are both used in a big number of studies as well. The Relief 

category contains covariates such as elevation, slope, curvature, valley depth and landscape position of 

the area of interest. Several studies have shown that the Digital Elevation Model can be used to predict 

the soil organic carbon content [20], [21]. The Climate category contains covariates such as amount of 

precipitation, soil and air temperature and the amount of solar radiation.  

Covariates of the Soil properties (s) category are used in a few studies. Examples of these covariates are 

type of soil and soil depth. The data of these covariates is hard to obtain, but can be found in national 

databases such as the Canadian National Soil Database [22] and the Dutch national soil database 

(PDOK).  

The category Parent material contains covariates such as the underlying geological material of the soil. 

This covariate category is rarely used in soil organic carbon mapping. The same holds for the Age and 

Spatial location of the soil.  

2.4 Machine learning 
Machine learning is a branch of Artificial Intelligence (AI) that is based on teaching a machine how to 

handle data and extract information from the data [23]. It relies on different algorithms that are used to 

solve data problems. These algorithms use statistics to build mathematical models whose goal is to 

make inferences on a dataset. There is not a single one-size-fits-all algorithm: the most appropriate 

algorithm depends on the type of problem the researcher wants to solve and on the data used for the 

research. 

Machine learning algorithms can be split into two types: supervised learning algorithms and 

unsupervised learning algorithms. Supervised learning involves predetermined output variables and the 

use of input variables [24] so that the algorithms try to predict the output variables based on the 

predefined input variables. In contrast, unsupervised learning does not involve a target output variable, 

but instead the data is labeled during the machine learning process. The accuracy of unsupervised 
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learning is usually lower than for supervised learning, as the predictions are not validated using the 

target output variables. 

Two different types of machine learning applications can be distinguished: classification and regression. 

Classification algorithms try to find the decision boundaries for the target value placing it in a category. 

In contrast, with regression the target value is not a class or category, but a continuous variable. 

The literature review we performed on SOC mapping gives us insights in the use of machine learning 

models and the way these models are validated that are presented in the next subchapters answering 

RQ2. 

2.4.1 Prediction methods and SOC mapping 
According to the research of Lamichhane [18], Multiple Linear Regression (MLR) is the method that is 

mostly used in the researches between 2013 and 2019. In general, it is a regression method that 

estimates the relationship between the dependent variable and two or more independent variables. 

However, this method is almost always outperformed by other methods in comparative studies. 

Random Forest is the second most used method to predict the soil organic carbon content in this time 

frame and outperforms other methods in the majority of the studies. Other popular methods are the 

Cubist and Regression tree methods. 

The literature review performed on the methods used 

after 2019 confirmed the insights gained in the other 

review papers. Figure 3 shows the method occurrence 

found in studies similar to this research performed in 

2019 and later. The concept table (Table 13) can be found 

in Appendix A. The shifting trend from traditional 

regression methods towards machine learning is 

confirmed in this research, as almost all studies have used 

machine learning methods as the prediction method for 

the SOC content. The Random Forest (RF) method is used 

in the largest amount of researches. This gives a good 

indication about the relevance of the method. Out of the 17 

studies that compare the method to other methods, 

Random Forest outperformed the other methods in 10 studies [25]–[34].  

Support Vector Machine (SVM) is another popular method. Although it has been used quiet often, it is 

almost always outperformed by other methods (mostly Random Forest).  

The last interesting insight from our literature review is the upcoming trend of Artificial Neural Networks 

(ANN) and Deep Neural Networks (DNN). DNN is used in only a few studies, but in these studies it is 

compared with other methods and it outperformed all other methods [35]–[37]. 

 

 

Figure 3. Prediction method occurrence  
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Random Forest 

Random Forest is a tree-based ensemble prediction 

method  that combines the output of multiple decision 

trees into a single result [24]. Decision trees use a 

flowchart structure in which tests are performed on 

attributes or variables. The possible outcomes on the test 

are branches that lead to new tests and eventually to a 

resulting value. 

When Random Forest is used for regression, the result is 

determined by averaging the results of the individual 

trees. When used for classification, the single result is 

determined based on majority voting: the most frequent 

categorical variable is chosen as the result. Figure 4 shows 

an example of three decision trees and the total flow used 

for random forests. 

Support Vector Machine 

Support Vector Machine works by mapping data points to a multi-dimensional feature space and use 

lines or hyperplanes to separate classes. It classifies new data points based on the location of the data 

point in the multi-dimensional space on whether it lies above or below the line or hyperplane [38]. 

Neural Networks 

Neural networks, also known as Artificial Neural Networks, are a subset of machine learning algorithms 

that uses deep learning. The networks consist of layers of nodes, containing an input layer, one or more 

hidden layers and an output layer. The nodes are connected to each other and have a weight and a 

threshold. If the output of an individual node is 

above the threshold, the node sends data to the 

next layer of the network [39]. Figure 5 

schematically shows a neural network with an 

input layer, hidden layers and an output layer. 

The weights of the nodes determine the 

importance of the variables: larger weights 

contribute more to the output variable than 

lower weights. The data is pushed through the 

layers based on thresholds and eventually the 

last layer is reached. The output layer processes 

the outputs of the previous layers and 

determines the resulting prediction. 

Deep learning or deep neural networks are networks with a large amount of hidden layers. It is usually 

used for a large, potential unstructured dataset. 

 

Figure 4. Random forest flow  

Figure 5. Neural Network scheme  
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2.4.2 Validation strategies 
In our literature review on the SOC mapping we analyzed the validation strategies used in similar 

studies. The resulting concept table of this literature review can be found in Table 14 in appendix A. 

In the early 2000’s, a substantial amount of the studies examined in the study of Minasny et al. [17] did 

not validate the prediction models. This has changed for the studies performed between 2013 and 2019: 

the studies included in the research of Lamichhane et al [18] have all performed a validation step. The 

majority of the studies used the data-splitting technique for evaluating the results. Other studies used 

cross-validation. 

Considering studies performed after February 2019 we have found that almost all studies (24 of the 27) 

have used cross-validation as validation strategy. Cross-validation is a widely used data resampling 

method to prevent overfitting of the machine learning model [40]. Overfitting is the phenomenon that a 

model is perfectly adapting to the dataset, but is not able to generalize to data that is not in the dataset. 

When using (k-fold) cross-validation, the dataset is partitioned in subsets (amount = k) of approximately 

equal sizes without overlap in the subsets [41]. The model is trained for k-1 subsets and is validated with 

the remaining subset. This process is iterated until all the subsets are used as validation set.  

The majority of the studies using cross-validation in this field have used a 10-fold cross-validation 

strategy. This means that the data is partitioned in 10 different subsets and all the subsets are used once 

as testing set. Most of the studies have an R2 value between 0.4 and 0.8. 
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3. Data description and soil organic carbon computation 
Figure 6 shows the methodology followed for this research. The literature review on SOC mapping and 

its conclusions form the theoretical basis that is used for designing and developing the artifact. The 

methodology followed for the development of the model is Knowledge Discovery from Databases [8]. 

This chapter covers the first three phases of the methodology: Selection, Pre-processing and 

Transformation. 

 

 

 

3.1 Initial dataset 
The initial dataset contains observational soil data gathered by taking soil samples. The data is gathered 

by Eurofins-Agro, a group of laboratories that provide support services to the agriculture industry. This 

data is gathered by taking multiple soil samples on a farm plot, putting these different samples together 

on a pile and measuring different aspects of the soil. Although the soil samples are taken (almost) every 

year on a farm, not every farm plot will be sampled during these visits. On average, a plot farm is 

sampled once each 4-5 years. The average measurement error on the soil samples is 10-15%. 

The dataset contains 284 soil measurements formatted as a comma-separated values file. It consists of 

measurements taken between 2010 and 2022. Some measurements of the dataset are from the same 

farm plots, but most of the measurements are from different plots. The measurements taken by 

Eurofins contain a vast amount of columns (variables), but not all these columns are relevant for this 

research. The relevant columns for this research are the following: 

• MNNROA: Unique identifier of the visit/research on which the sample is taken 

Figure 6. Methodology used for organic carbon prediction 



 

18 
 

• monsternr: Unique identifier of the soil sample 

• location: Coordinates corresponding to the border of the farm plot 

• date: Date on which the measurement is performed 

• os: Percentage of organic matter in the soil 

The Eurofins-Agro measurements have been matched with open farm plot data from the Basisregistratie 

Gewaspercelen (BRP) dataset of the Nationaal Georegister of the Netherlands in order to identify the 

farm plots corresponding to the measurement. The location field is replaced by the set of coordinates of 

the border of the matched BRP farm plot. Thereby, the following columns are added to the dataset: 

• brp_hash: Unique identifier of the farm plot 

• centroid_distance: Distance between the centroid of the Eurofins coordinates and the matched 

BRP farm plot centroid 

• centroid: Coordinates of the centroid of farm plot 

The initial soil measurements do not contain information on the SOC content of the soil. Therefore, 

different strategies to obtain or compute the SOC content data have been investigated. 

3.1.1 Soil organic carbon computation 
The initial computation strategy used in the international agriculture sector is a rule of thumb that the 

amount of organic carbon is roughly equal to 50% of the soil organic matter (SOM) content [42]. 

Research performed by researchers from the University of Wageningen has shown that the SOC:SOM 

ratio for farms in the Netherlands is in line with this rule of thumb: the datasets investigated show a 

ratio between 0.38 and 0.60 (0.52 ± 0.08 in two datasets and 0.47 ± 0.09 in a third dataset)[42]. 

However, we have decided to look further for other computation strategies as a measurement error of 

10-15% and a deviation of the carbon content between 0.38 and 0.60 leads to a layer of uncertainty that 

is too large for this research. 

The second SOC computation strategy comes from contact with Eurofins-Agro. Although there are no 

SOC measurements available in the initial dataset, it turned out that these SOC values can be calculated 

based on the Near Infrared Spectroscopy (NIRS) values of the samples. Research has shown that the SOC 

values can be calculated with ‘a satisfactory to good calibration performance’ (R2
 = 0.98, RMSE = 2.98) 

[43]. The NIRS data of the measurements in the initial dataset are stored by Eurofins-Agro and the SOC 

values based on this NIRS values are provided to me in two separate datasets. These new datasets 

contain the SOC and SOM values of measurements. These values are mapped to the initial dataset based 

on the unique identifier of the sample (monsternr in initial dataset). 

3.2 Prediction covariates 
The results on RQ1 are a set of environmental covariates categorized using the SCORPAN typology. I 

have established a list of environmental covariates that are used as features for the prediction model 

based on the results of RQ1. The covariates (and corresponding categories) can be found below:  

• Climate: Annual mean and variance of daily amount of rainfall 

• Climate: Annual mean and variance of daily temperature 

• Climate: Annual mean and variance of daily amount of hours solar radiation 

• Soil propierties: Mostly present type of underlying soil 

• Organisms: Cultivation plans of the past 5 years 
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• Organisms: Average NDVI score of the past year 

• Other: SoilGrids organic carbon stock and density estimations 

We have not included covariates from the Relief category such as the elevation of the soil as the 

elevation is less relevant for farms in the Netherlands and close to equal for all farm plots. Figure 7 

shows a class diagram that presents an overview of all the data used for this research. The Eurofins 

measurements are the basis of the target dataset. The five different types of data added to the dataset 

are presented together with an index (1-5).  These indices also correspond to the Jupyter Notebooks 

that we have created in order to gather and transform the data. Table 2 shows a further explanation of 

the variables. It includes a description of the variable, the type of data, the amount of missing values 

and the Jupyter Notebook flow used to gather and further process this data. 

 

 

 

 

Figure 7. Class diagram of the data 
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3.2.1 Climate data 
In total, three different types of climate data is gathered and used as input for the SOC prediction: 

rainfall, temperature and solar radiation. The Koninklijk Nederlands Meteorologisch Instituut (KNMI) has 

APIs available that can be used to gather daily measures of this data. The rainfall data is gathered via the 

precipitation stations and the other two types of data are gathered via the weather stations. 

The first step in gathering data is to find the active precipitation stations and the active weather 

stations. We have created a list of precipitation stations that are active within the relevant time frame 

(between 01-01-2000 and the 01-01-2023) and provide the necessary data. The station list contains the 

name of the station, the station number and the location of the station. 

The next step in gathering climate data is to find the closest station to the centroid of the farm plot. The 

Jupyter Notebook downloads the weather data that lies within the time frame of the first measurement 

and last measurement of the dataset for all the unique weather stations and precipitation stations. 

These data points are daily measurements of the amount of rainfall (in 0.1 millimeters), the average 

temperature (in 0.1 degrees Celsius) and the amount of solar radiation (0.1 hours). 

Index Variable Unit Missing Flow 

0 
 
 

Carbon content Percentage - 
 
 

[0 Basis] Merge Eurofins 
Datasets Location Polygon 

Date Date (DD-MM-
YYYY) 

1 Station number Numerical - [1 KNMI 1] Create CSV of 
active precipitation 
stations 
[1 KNMI 2] Download 
Weather Data 
[1 KNMI 3] Add Weather 
Data to Merged Dataset 

Date Date 
(YYYYMMDD) 

Daily average temperature Decimal 

Daily amount of hours of 
solar radiation 

Decimal 

Amount of daily 
precipitation 

Decimal 

2 Soil type Categorical - 
 

[2 Soil 1] Add soil texture 
to Merged Dataset Location Polygon 

3 Cultivation plan Categorical 94 (6.6%) [3 Cultivation Plan 1] Add 
Cultivation plans to 
Merged Dataset 

Hash (farm plot identifier) Hash 

Surface Decimal 

Year Integer 

4 Yearly average NDVI Decimal 74 (35.4%) [4 NDVI 1] Add NDVI 
Scores to Merged Dataset Location Polygon 

5 Carbon stock Decimal (t/ha) - [5 SOC 1] Add SOC 
estimations SoilGrids to 
Merged Dataset 

Carbon density Decimal (g/dm3) 

Location Polygon 

Table 2. Data sources and Jupyter Notebook flows 
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The last step for gathering the climate data is to transform the downloaded data into relevant measures 

for all the Eurofins measurements. For each of the covariates, we selected the daily measurements that 

correspond with the closest weather station and are measured in the past year and calculated the mean 

and variance for these values. Thereby, the following fields are added to the target dataset: 

• PrecipitationAverage 

• PrecipitationVariance 

• TemperatureAverage 

• TemperatureVariance 

• RadiationAverage 

• RadiationVariance 

3.2.2 Soil information 
The second source of data that is added to the target dataset is the soil information. We have 

downloaded the BRO Bodemkaart (scale 1:50,000) from the Publieke Dienstverlening Op de Kaart 

(PDOK). This dataset contains polygons with RD-coordinates (Rijksdriehoekscoördinaten) and a type of 

soil that corresponds with these coordinates. 

We have combined the soil dataset with the target dataset based on the location polygons. The overlap 

percentage is calculated for each farm plot and the soil type with the highest overlap percentage for the 

farm plot is selected for the target dataset. The other soil types are dropped from the dataset. Figure 8 

shows an example of a farm plot and the underlying soil types. In this example, the blue polygon is the 

farm plot and the red polygons are the overlapping underlying soil types. 

 

 

 

 

 

 

 

 

 

 

 

After this addition of the soil type, the target dataset contains one new column that can be used as an 

input feature: the column normal_soilprofile_name. However, these values are not numerical and need 

to be transformed so that they can be used for regression by the machine learning model. The 

transformation of these fields will be discussed in section 3.3: Data pre-processing and transformation 

Figure 8. Example of a farm plot with underlying soil types 
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3.2.3 Cultivation plans 
The cultivation plans used for this research come from the BRP Gewaspercelen dataset of PDOK. The 

cultivation plans of the last five years are added to the target dataset. However, finding the history of 

cultivation plans for a farm plot can be challenging as the size of the farm plot can change over time. 

Sometimes multiple farm plots are merged together into one farm plot or a farm plot is split up into 

multiple farm plots. The borders of farm plots can change. Therefore, the following logic has been used 

to match historical farm plots and the corresponding cultivation plans to the current farm plots. In 

general we have used the rule of at least 75% overlap to match farm plots. Overlapping farm plots can 

be categorized into different types of matches: 

• The plots are matched and identified as identical if the surface difference is a maximum of 20% 

between the farm plots. The plots are checked if they are not merged or split subsequently. 

• The plots are identified as expanded when the surface of the farm plot is at least 20% higher 

than the surface of the original farm plot. Afterwards, the plots are again checked if they are not 

merged or split. The same rules apply for reduced plots, but in this case the surface should be at 

least 20% lower than the original farm plot. 

• The plots are identified as split farm plot when the farm plot has at least one other plot of the 

current year overlapping the old plot and the plot is not merged with another plot. 

• The farm plot is categorized as merged and matched to the current year farm plot if the overlap 

check returns more than one matching farm plot. 

• If there is no plot with more than 75% overlap to the plot, the plot is categorized as a new farm 

plot. 

The resulting cultivation plan dataset contains farm plots with the corresponding matched historical 

plots attached to the farm plot. The cultivation plans of the past five years are added to the target 

dataset. Whenever there is missing data for specific fields, the fields are left empty in the target dataset. 

Sometimes, there are more than one historical farm plots and cultivation plans of the same year for a 

farm plot. Therefore we have used the cultivation plan of the farm plot with the highest surface as input 

feature for the machine learning model. The cultivation plan data needs to be transformed into 

numerical values like the soil type data, which will be explained in section 3.3. 

3.2.4 Vegetation index 
The Normalized Difference Vegetation Index (NDVI) is a vegetation quantification measuring the 

normalized difference between the near infrared and red light bands of satellite images. Vegetation 

strongly reflects the near infrared (NIR) bands and absorbs the red light (Red) bands. The NDVI values 

can be calculated using the following formula: 

 

 

The satellite measures the bands reflected by the area of interest. The NDVI score always ranges from -1 

to 1. Negative values usually represent water. A value close to 1 indicates a very green area, usually 

consisting of a lot of vegetation. When the NDVI score is close to 0, it is likely an urbanized area or an 

area without vegetation.  



 

23 
 

The Google Earth Engine has several geospatial datasets available that can be used for research 

purposes. For this research, we have used the Copernicus dataset of the Sentinel-2 Level-2A satellite. 

The Sentinel-2A product provides data of Bottom-Of-Atmosphere (BOA) reflectance, which represents 

the actual reflectance of the areas on the earth’s surface. In comparison to data of Sentinel-2 Level-1C, 

which provides data on Top-Of-Atmosphere level, the BOA values undergo atmospheric correction. 

The near infrared band (B8) and the red light band (B4) are both provided with a relatively accurate pixel 

size (10 meters). The Google Earth Engine also provide datasets that have the NDVI value available 

without having to calculate it, but these datasets have a substantially higher pixel size (≥ 250 meters). 

Figure 9 and Figure 10 present examples of a NDVI map of the Netherlands, showing the average NDVI 

value per pixel. Figure 9 presents the average NDVI score per pixel in april 2020, Figure 10 shows the 

average NDVI score per pixel in october 2020. In order to create these images I have used the ADM0 

boundaries (which refer to country boundaries) as area of interest and used the boundary coordinates 

as filter when retrieving sattelite data. The difference in color of the two images can be explained by the 

difference in season for both images: Figure 9 shows the vegetation in the autumn, Figure 10 shows the 

NDVI scores in the spring season which is usually more green. 

The dataset of the Sentinel-2 satellite contains data points measured after march 2017. For all Eurofins 

samples taken after march 2018, the average NDVI score of the past year for the farm plot is added to 

the target dataset. For samples taken between march 2017 and march 2018, the average NDVI score 

from march 2017 until the sampling date is added to the target dataset. For Eurofins samples taken 

before march 2017, no NDVI score is added to the target dataset. 

3.2.5 SoilGrids 
SoilGrids provides global predictions for standard numeric soil properties such as the organic carbon 

stock and the organic carbon density. The estimations of Soilgrids may give a good indication on the 

Figure 10. NDVI image constructed for April 2020 Figure 9. NDVI image constructed for October 2020 
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organic carbon content on the farm plots. However, the accuracy of SoilGrids layers is still limited and 

the variation explained by the models is between 30% and 70%. The resolution of the SoilGrids map is 

250 meters. The latest release of the SoilGrids map is the version released in 2020. 

The SoilGrids map is accessed through the WebCoverageService (WCS). For each Eurofins measurement, 

a rectangle-shaped box is calculated that fully covers the farm plot. We have retrieved the organic 

carbon density and organic carbon stock for the box corresponding to the farm plot. The last step is to 

add the mean values for the density and stock to the target dataset. The organic carbon stock is 

estimated for a depth of 0-30 cm and the organic carbon density is estimated for a depth of 5-15 cm. 

3.3 Data pre-processing and transformation 
Some outliers in the original dataset have an unrealistic SOC content value. An example of this outlier is 

a SOC value that is higher than the organic matter percentage. As the organic carbon content is lower 

(around 50%) than the organic matter percentage, the outliers that have a higher SOC percentage than 

the organic matter percentage are removed manually from the dataset.  

The cultivation plan data and the soil type data need 

to be transformed in order to be used for 

regression. The problem with this data is that it is 

categorical data and regression can only process 

numerical data. There is no natural ordered 

relationship between the categories. In order to use 

the categorical data, the data needs to be 

transformed into dummy variables [44]. Dummy variables 

can only take the values of 0 and 1 [45]. We have chosen 

to adopt the One-Hot Encoding method to transform the 

data. This methodology can be used to remove the categorical variable and transform it into the new 

binary variables [46].  

All the unique soil types and all unique combinations of the cultivation plan and the amount of years ago 

are transformed into dummy variables and used as input for the machine learning algorithm. Figure 10 

shows an example of how one-hot encoding works. In this example, the three categories for the column 

‘Color’ are red, green and blue. For each category, a new column is created (d1 = red, d2 = green, d3 = 

blue). Figure 12 shows an example of the soil type and cultivation plan data. Figure 13 shows how the 

data looks after the transformation of these columns. In this example, the columns (such as Cultplans – 

year 1 – Maïs, snij-) that have a 0 in it are not shown (as this is a large amount of columns).  

 

 

 

 

 

Figure 11. One-hot encoding example 

Figure 12. Soil type and cultivation plan data 

Figure 13. Transformed soil type and cultivation plan data 
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For some Eurofins measurements, the NDVI values are missing. The reason for this is that the satellite 

images from before 2017 are not available in the Sentinel-2 Level-2A dataset. Therefore we had to make 

a decision on the usage of the NDVI values: either removing the measurements from before 2017 from 

the dataset, adding NDVI scores with a worse resolution to the dataset or removing the NDVI score from 

the features list. We have decided to remove the measurements from before 2017 as most of the 

measurements (± 80%) are still included in the training and testing of the model. The alternative for the 

NDVI data using other satellite images have a worse resolution (250 meters) and may lead to 

inaccuracies in the data. We see the last option as the worst option, as the NDVI score was one of the 

most important features based on the literature review and has a large prediction potential.   

Lastly, unnecessary columns are removed from the dataset. These columns already existed in the 

original dataset and some columns are also added during the process of adding features to the target 

dataset. The final dataset contained 209 data points.  
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4. Model development 
After gathering the data and transforming it into a usable dataset we started analyzing the data. As the 

goal of the machine learning artifact is to predict a numerical value, the SOC content, we have used 

regression machine learning algorithms for the prediction. In this chapter, we discuss the machine 

learning model selection and implementation step depicted in figure 6. We have used the methods 

found during the literature review as prediction methods for this model.  

For the implementation of the machine learning algorithm, we have decided to use the scikit-learn 

(version 1.0.2) library in Python, which is suitable for performing machine learning regressions in 

Python. It includes simple and efficient tools for predictive data analysis and also has a vast amount of 

machine learning algorithms implemented that can be configured to use it optimally for a dataset.   

4.1 Training and test data 
In order to train the machine learning models, we have split the dataset into a training part and a test 

part for each iteration of model training. This splitting is performed automatically as this is built-in 

functionality for the cross-validation library we used when training and validating the model. The data 

set fragments used for training the model are chosen randomly and do not overlap with the test data. 

We have tested two different split sizes:  

• Training the model with 90% of the data and validating the model with 10% of the data. In this 

scenario, 188 rows are used for training the model and 21 rows are used for testing the model. 

These split sizes are used when performing 10-fold cross validation. 

• Training the model with 80% of the data and validating the model with 20% of the data. In this 

scenario, 167 rows of the data are used to train the model and 42 rows are used to validate the 

model. We have used these split sizes when performing 5-fold cross validation and when 

performing the ShuffleSplit validation. 

The validation strategies are further explained in Chapter 5. 

4.2 Regressors 
Based on the literature review, the Random Forest algorithm is the most promising algorithm and is 

used the most in similar studies. However, to test the accuracy of this algorithm, we have decided to 

implement two other machine learning algorithms as well, namely Support Vector Machine and Artificial 

Neural Network. The machine learning algorithms are tested on different accuracy metrics and are 

compared to each other based on these measures. 

4.2.1 Random Forest 
When implementing the Random Forest regressor, the part of the data that is labeled as training data is 

used to construct a set of decision trees. These decision trees all consist of tests that are performed on 

the data and branches for the potential outcomes on these tests. All branches lead to either new tests 

and branches or to a result value: the estimation of the target variable. After all decision trees create a 

prediction for the target value, the average of the prediction is calculated and is taken as the prediction 

of the random forest.  
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We used the RandomForestRegressor class imported from the Scikit-learn library, which consists of a 

forest ensemble method using the DecisionTreeRegressor as   sub-estimator implementation. When 

initializing this regressor, several hyperparameters can be set in order to let the regressor fit the dataset 

and the problem context. Table 3 shows the hyperparameters that we have used for this regression 

model. The definitions in Table 3 come from the Scikit-learn documentation. We set most parameters to 

their default value. The random_state parameters is set to 0 (could take any random integer). This is a 

fixed integer which will produce the same results across different calls, generating reproducible results 

while bootstrapping the data. We have kept the default number of estimators (100), which means that 

the Random Forest consists of 100 decision trees. Increasing the number of trees leads to a smoother 

model, but also increases the processing time. The criterion we used for measuring the quality of the 

split is the squared error. Due to the small amount of data points in the dataset, the minimum number 

of samples required to split an internal node is set to 2 (lowest possible) and the minimum number of 

samples required to be at a leaf node is 1. These numbers can be increased when a larger dataset is 

used.  

Figure 14 presents a small snapshot of one of the decision trees of a random forest constructed with our 

data.  This figure shows a clear example on the tests (top row of the nodes), the impact on the squared 

error, the amount of samples per branch and the impact on the prediction value. The snapshot is taken 

from a tree consisting of 229 nodes. Figure 17 in Appendix B shows the entire tree. 

 

 

Figure 14. Constructed decision tree 
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Parameter Meaning Implementation 

n_estimators Number of trees in the forest 100 (default) 

criterion Function used to measure the quality of the 
split 

Squared_error (default) 

max_depth Maximum depth of the tree None (default) 

min_samples_split Minimum number of samples required to 
split an internal node 

2 (default) 

min_samples_leaf The minimum number of samples required 
on each side of a split node. 

1 (default) 

min_weight_fraction_leaf The minimum weighted fraction of the sum 
of weights required to be at the leaf node. 

0.0 (default, samples 
have an equal weight) 

max_features The number of features to consider when 
looking for the best split 

1.0 (default) 

max_leaf_nodes Grows trees with nodes ‘best-first’, nodes 
with the least impurity. 

None (default, 
unlimited amount of 
leaf nodes) 

min_impurity_decrease Only split a node if the impurity decreases 
with at least this value 

0.0 (default) 

bootstrap Use bootstrap samples are when building 
trees 

True (default) 

oob_score Use out-of-bag samples to estimate the 
generalization score 

False (default) 

n_jobs Number of jobs that run in parallel None (default, 1) 

random_state Controls the randomness of the 
bootstrapping 

0  

verbose Controls verbosity (logging) 0 (default) 

warm_start Re-use the solution of previous call (true) or 
fit a whole new forest (false) 

False (default) 

ccp_alpha Minimal Cost-Complexity Pruning 0.0 (default) 

max_samples Maximum number of samples drawn to train 
an estimator 

None (default) 

4.2.2 Support Vector Machine 
In our implementation of the Support Vector Machine (SVM) regressor, the training part of the data is 

used to determine a multi-dimensional feature space and create a multi-dimensional hyperplane that is 

used to classify the data points in the test set. This hyperplane is determined in such way that the data 

points are as close as possible to the hyperplane. Later, the hyperplane function is used to calculate the 

target value for the test part of the data. 

We have implemented the Support Vector Machine algorithm using the SVR class in Scikit-learn, which 

provides an Epsilon-Support Vector Regressor. Table 4 shows the hyperparameters that can be filled in 

when initializing the regressor and the values we chose for these hyperparameters. One interesting 

parameter is the degree of the polynomial function. As we are not working with a large dataset, we have 

chosen to increase the polynomial degree to 5 (instead of the default value, 3). Increasing the 

polynomial degree makes the decision boundary more flexible: the constructed hyperplane fits the data 

Table 3. Random Forest Regressor hyperparameters 
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better [47]. However, a risk of increasing this polynomial degree is that the model overfits the dataset. 

This means that the model can predict the values relatively well, but the model is not generalizable to 

another (larger) dataset. Therefore we have only slightly increased the degree. 

 

Parameter Meaning Implementation 

kernel Specifies the kernel to be used None (default, RBF 
kernel) 

degree Degree of polynomial kernel function 
(represents the similarity of vectors) 

5 

gamma Kernel coefficient ‘scale’ (default) 

coef0 Only relevant when kernel = poly or sigmoid - 

tol Tolerance for stopping criterion 1e-3 (default) 

C Regularization parameter (inversed) 1.0 (default) 

epsilon Epsilon in the epsilon-SVR model 0.1 (default) 

shrinking Use the shrinking heuristic True (default) 

cache_size Kernel cache (MB) 200 (default) 

verbose Enable verbose (logging) False (default) 

max_iter Limit on iterations -1 (default) 

4.2.3 Artificial Neural Network 
In the implementation of the Artificial Neural Network regressor, the training part of the data is used to 

construct an input layer, multiple hidden layers and an output layer. Figure 15 presents the structure of 

such a network with 2 hidden layers [48]. During the development of the model, the data is iteratively 

put through the network in which every feature gets a certain weight (forward propagation), the loss (or 

accuracy) of the resulting prediction in the output layer is calculated and the weights of the features in 

the hidden layer nodes are changed based on this loss (backwards propagation). This is done until either 

conversion to a loss threshold is achieved or the maximum amount of iterations is reached. 

Table 4. Support Vector Machine Regressor hyperparameters 

Figure 15. Artificial Neural Network 
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The Artificial Neural Network is implemented using the MLPRegressor class of Scikit-learn, which 

implements a Multi-layer Perceptron regressor. Table 5 shows the hyperparameters chosen when 

initializing the regressor. We have chosen to stick with the default values of the regressor for almost all 

the hyperparameters, as neural networks are usually used for larger datasets and might not fit this data 

set [49]. Changing the input parameters can lead to model overfitting. However, we advise to critically 

look at the input parameters when using a different or lager dataset. 

Parameter Meaning Implementation 

hidden_layer_sizes Number of neurons in the layer 100 (default) 

activation Activation function for the layer ‘relu’ (default, rectified 
linear unit function) 

solver Weight optimization solver ‘adam’ (default) 

alpha Strength of the L2 regularization term 0.0001 (default) 

batch_size Size of minibatches for stochastic optimizers ‘auto’ (default) 

learning_rate Learning rate schedule for weight updates ‘constant’ (default, 
constant learning rate 
given by 
learning_rate_init) 

learning_rate_init Step-size of updating the weights 0.001 (default) 

power_t Only relevant when solver = sgd - 

max_iter Maximum number of iterations  200 (default) 

shuffle Shuffle samples in each iteration True (default) 

random_state Controls the randomness of the weights and 
bias initialization 

0 

tol Optimization tolerance (defines when 
convergence is reached) 

1 e-4 (default) 

verbose Enable verbose (logging) False (default) 

warm_start Re-use the solution of previous call (true) or 
fit a whole new forest (false) 

False (default) 

momentum Only relevant when solver = sgd - 

nesterovs_momentum Only relevant when solver = sgd - 

early_stopping Use early stopping when validation score is 
not improving 

False 

validation_fraction Only relevant when early stopping is true - 

beta_1 Exponential decay rate – first moment 0.9 (default) 

beta_2 Exponential decay rate = second moment 0.999 (default) 

epsilon Numerical stability value  1 e-8 (default) 

n_iter_no_change Max number of epochs without meeting 
tolerance 

10 (default) 

max_fun Only relevant when solver = lbfgs - 

 

  

Table 5. Neural Network Regressor hyperparameters 
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5. Model validation and optimization 
The next step of this research is validating the model, interpreting the results and optimizing the model. 

The method we used for validating the results is cross-validation. Based on the results of the literature 

review, we have validated the machine learning models with 10-fold cross validation using a test 

fraction of 0.1. We compared the results of this validation strategy with two other strategies. As a 

fraction 0.1 of the data is only 21 data points, we think that it is likely that the results will be highly 

dependent on the chosen test split. Therefore we used 5-fold cross fold cross validation with an 

increased test split (test split = 0.2) and we also compared the results with a shuffle split validation 

strategy (amount of splits = 100, test split = 0.2).  We have used the cross-validate class of Scikit-learn 

for each validation and the ShuffleSplit class of Scikit-learn for splitting the data for the shuffle split 

validation.  

In 10-fold cross validation works is that the data is split into ten equal parts. Each part is used once for 

testing the model, while the other 9 parts are used for training the model. Thereby, 10% of the data is 

used to test the performance of the model. The same pattern is used for 5-fold cross validation, but with 

less splits, less iterations and larger split sizes.  

Shuffle split is a method that randomly splits the data into a test and training set with potential overlap 

of the test sets between the iterations. In each iteration, the data is trained with a fraction (80% of the 

data in this study) and tested with the remaining parts of the data. The most important difference with 

cross validation is that more iterations can be performed as the test sets can overlap (in contrast to non-

overlapping test sets for iterations of cross validation). 

5.1 Performance metrics 
The first performance metric we used is the R2 value. This value indicates how much variation of the 

dependent variable can be explained by the independent input variables. It is calculated by dividing the 

sum of squares regression by the total sum of squares and subtracting this value from 1 using the 

following formula [50]: 

The sum of squares regression is calculated by taking the distance to the regression line to each data 

point, squaring this distance and summing these values. The sum of squares total is the difference 

between each data point and the mean of the data points, squared and summed. In general, the higher 

the R2 is, the better the dependent variable can be explained by the input variables. The value usually 

ranges from 0 to 1, but can be negative when the chosen model does not follow the trend of the data. 

The second performance metric we used is the Mean Squared Error (MSE), which indicates how close 

the expected values (based on the regression) are to the actual values. It varies from 0 to infinity and the 

closer the MSE value is to 0, the better the prediction is. It is  calculated using the following formula [50]: 
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5.2 Results 
We have performed 3 types of experiments: training the model with all the features, training the model 

with all the features except the SoilGrids features and training the model with only the SoilGrids 

features.  

5.2.1 10-fold cross validation 
Table 6 shows the predictive accuracy of the machine learning models when all the features are used for 

training the machine learning model. We have performed 5 iterations of the 10-fold cross validation. 

Table 6 shows the metrics of the iterations and the average between these iterations. All iterations of 

this experiment show similar results on the R2 and MSE metrics for Random Forest. The five iterations 

for Support Vector Machine resulted in the exact same results every time. The results of the Artificial 

Neural Network fluctuate a lot and the optimization does not converge before the maximum of 

iterations are reached (200) for all iterations. Random Forest shows the highest prediction algorithm (R2 

= 0.37, MSE = 1.76). The other algorithms perform poorly and even show negative values for the R2 

value. This means that the predictions are worse than a constant function that always predict the mean 

of the data.  

 

Iteration R2 (RF) MSE (RF) R2 (SVM) MSE (SVM) R2 (ANN) MSE (ANN) 

1 0.38 1.74 -0.06 2.80 -112.98 454.91 

2 0.37 1.75 -729.90 634.66 

3 0.36 1.81 -30.85 121.55 

4 0.39 1.72 -670.36 848.78 

5 0.35 1.77 -408.79 904.64 

Average 0.37 1.76 -0.06 2.80 -408.79 592.91 

 

Table 7 shows the performance of three iterations of the experiments when not using the SoilGrids 

features as machine learning features. For this experiment, Random Forest shows the highest predictive 

accuracy (R2 = 0.47, MSE = 1.53). The other prediction algorithms perform poorly and do not display any 

predictive value for these features and this dataset. The resulting accuracy in these experiments is 

higher than the results of the first experiment (when both the SoilGrids data and environmental data are 

used as features). This raises questions about the value of the SoilGrids estimations, which should be 

tested and evaluated using a larger data set.  

 

Iteration R2 (RF) MSE (RF) R2 (SVM) MSE (SVM) R2 (ANN) MSE (ANN) 

1 0.47 1.51 -0.10 2.89 -18.50 34.15 

2 0.46 1.54 -67.40 168.71 

3 0.47 1.53 -29.39 37.58 

Average 0.47 1.53 -0.10 2.89 -38.43 80.15 

 

Table 8 shows the experiment in which we only use the SoilGrids estimations as input features for our 

prediction algorithm. The predictive accuracy of the machine learning models in this experiment is the 

lowest of all experiments. In contrast to the previous experiments, Random Forest does not perform the 

Table 6. Machine learning performance using all features 

Table 7. Machine learning performance without using SoilGrids features 
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best with these input features, and only SVM shows some predictive value (R2 = 0.19, MSE = 2.19). 

However, this still does not display a lot of predictive potential. 

Iteration R2 (RF) MSE (RF) R2 (SVM) MSE (SVM) R2 (ANN) MSE (ANN) 

1 0.01 2.31 0.19 
 

2.19 
 

-49.97 96.98 

2 -0.01 2.40 -69.97 98.50 

3 0.00 2.36 -64.68 139.42 

Average 0.00 2.36 0.19 2.19 -61.54 111.63 

5.2.2 5-fold cross validation and shuffle split validation 
We have done the same experiments and the same amount of iterations per experiment for the other 

two validation strategies (5-fold cross validation and shuffle split validation): 5 iterations for experiment 

1, 3 iterations for experiment 2 and 3. The results of these validations can be found in Table 9. 

Experiment Validation R2 (RF) MSE (RF) R2 (SVM) MSE 
(SVM) 

R2 (ANN) MSE 
(ANN) 

1 5-fold 0.36 1.74 -0.07 2.87 -109.81 270.96 

Shuffle 0.52 1.36 -0.01 2.78 -2.17 8.41 

2 5-fold 0.40 1.61 -0.09 2.93 -5.31 12.09 

Shuffle 0.48 1.48 -0.03 2.89 -86.97 226.53 

3 5-fold 0.09 2.44 0.20 2.22 -48.89 122.33 

Shuffle 0.39 1.68 0.21 2.24 -44.92 117.21 

  

The 5-fold cross validation strategy showed similar results to the 10-fold cross validation strategy. When 

comparing the different experiments, we can conclude that the added environmental covariates do 

explain the dependent variable as Experiment 2 (only using added environmental covariates) has the 

highest predictive accuracy. Experiment 3 (only using SoilGrids) shows the lowest predictive accuracy. 

The highest predictive accuracy is used when using shuffle split when cross-validating. The predictive 

accuracy is the highest when using all input features for the machine learning model. This resulted in a 

R2 value of 0.52 and a Mean Squared Error of 1.36. 

5.2.2 Feature importance 
The different features used for predicting the soil organic carbon content all have a specific importance. 

We have looked at the importance of the features when using the highest performing algorithm 

(Random Forest) with all the input features. Figure 16 shows the importance of the features used in this 

experiment when using 10-fold cross-validation. The importance of the features is calculated based on 

the mean decrease in impurity within each tree. The other validation strategies show similar feature 

importance results. 

Table 8. Machine learning performance when only using SoilGrids features 

Table 9. Machine learning performance when using alternative validation strategies 
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As expected, the estimations of the carbon density and carbon stock from SoilGrids have the highest 

impact on the dependent variable. In the different iterations performed for the first experiment, we 

found that the vegetation cover index (NDVI) and the solar radiation data (average and variance of 

radiation) are important features. Figure 13 also shows four dummy variable categories as important 

features. These features show up in the top 10 of important features in multiple iterations. Table 10 

shows the meaning of these features. However, it is likely that these features are important for this 

specific dataset and less important for other datasets due to the low amount of measurements in this 

dataset. Increasing the amount of data points in the set may lead to totally different values for the 

relevance of the soil type and cultivation plan usage. 

Feature Meaning (and value in database) 

CultYear-2_114 Cultivation plan used 2 years ago 
(value in database: bieten, suiker-) 

Soil_14 Underlying soil type 
(value in database: Moerige eerdgronden met een veenkoloniaal dek en een 
moerige tussenlaag op zand) 

Soil_2 Underlying soil type 
(value in database: Madeveengronden op zand zonder humuspodzol, beginnend 
ondieper dan 1.2 m) 

CultYear-2-199 Cultivation plan used 2 years ago 
(value in database: Maïs, snij-) 

 

As the goal of this research was to predict the soil organic carbon content using environmental 

covariates and existing soil maps, it is interesting to look at the performance of the different 

experiments. We can clearly see that the environmental covariates show predictive potential, as the 

results of experiment 1 and 2 are structurally better than experiment 3. This means that the usage of 

the environmental covariates led to an improvement on the soil organic carbon prediction for this 

Figure 16. Feature importance based on mean decrease in impurity 

Table 10. Meaning of important dummy variables 
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dataset. We expect that the same holds when using a different, larger, dataset, but this needs to be 

validated in future research. 

5.2.3 Reflection on results 
The accuracy of the models is not as high as hoped. Whereas Random Forest shows some prediction 

potential, the other machine learning algorithms do not give meaningful predictions in almost all 

experiments. However, if we look at the results of the Random Forest algorithm, we can conclude a few 

things. First of all, the Random Forest outperforms other methods, which is in line with the conclusions 

we drew from the literature review. Furthermore, we can conclude that the features added to the 

SoilGrids map improve the carbon content prediction to some extent as the experiment with only using 

the soil map always shows a substantially lower predictive accuracy.  

However, we have worked with a relatively small dataset (209 data points), which increases the risk of 

overfitting in the prediction model. It is likely that the model tends to predict the carbon content 

relatively well for the data points in the data set, but is not generalizable to other plots or a larger 

dataset. In that case the model is not able to predict the SOC content for farm plots in general, but is 

able to predict the SOC content for the specific farm plots in this dataset. 

We expect that increasing the amount of data points will increase the performance of the machine 

learning models and prevents the models for overfitting better. This expectation is based on the 

predictive potential the model has shown in this study and based on the similar studies  that have 

shown working predictive models [22], [29], [30], [34], [51]. 

5.3 Model optimization 
Machine learning is the process of iteratively improving the machine learning model and its accuracy by 

tweaking the configurations (also called hyperparameters) of the models. In machine learning, the 

hyperparameters are set by the researcher and not built by the model. For example, we have chosen to 

optimize the Random Forest algorithm using the shuffle split validation strategy, as this combination of 

model and validation strategy show the highest predictive accuracy. 

Optimization of the machine learning brings the risk of overfitting the model. By tweaking the 

hyperparameters we try to reduce the mean squared error of the predictions for data points in this data 

set. Thereby the generalizability, if existing, can be compromised. During the optimization iterations we 

have tried to tweak the following hyperparameters: 

- Max depth: we have tried a maximum depth of the trees of 3, 5, 7, 10 and 20 layers. None of 

these values of the hyperparameter led to a higher predictive accuracy. The predictive accuracy 

when using 10 or 20 layers is close to having no maximum depth. 

- Min_samples_split: Increasing this value varying from 4, 6, 8, 10, 20 did not improve the 

predictive accuracy. The predictive accuracy was similar to using default settings, as the R2 value 

was slightly lower for these settings (varying from 0.48 to 0.51) and the mean squared error was 

similar (varying from 1.34 to 1.39). We also tried to combine the increase of the 

min_samples_split with an increase of the min_samples_leaf. However, this did not lead to a 

higher predictive accuracy. 

- Criterion: we have tried all the different options that can be used to analyze the quality of the 

splits. Using “absolute_error” made the prediction of organic carbon significantly slower, but did 

not increase the predictive accuracy. “Friedman_mse” did not lead to better results either, but 



 

36 
 

was not slower than using the default setting (“squared_error”). The same holds for the 

“poisson” method of analyzing the quality of the splits. 

- Max_features: The default value of maximum fraction of features considered when looking for 

the best split is 1.0. This means that all features are considered. Lowering this fraction led to 

slightly better results. When we set the fraction to 0.8, the R2 value was 0.55 and the MSE was 

1.29. Increasing it to a lower fraction did not improve the results. 

- Min_impurity_decrease: Increasing the minimum decrease of impurity for a split from 0.0 to 0.1 

and 0.2 led to worse results on both the R2 value and MSE. 

- Max_leaf_nodes: We have tried different values for the maximum amount of leaf nodes. When 

using values lower than 20, the accuracy of the model decreased. Higher values did not improve 

the accuracy. 

We can conclude that the optimization step does not significantly increase the predictive accuracy of the 

model. The only change in hyperparameters that improved the model was the reduction of the 

maximum fraction of features. We do not know if this led to extra overfitting of the model. 
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6. Potential value for the stakeholders 
This chapter discusses the potential value of our artifact for the stakeholders. We assume that in future 

work the predictive accuracy for the SOC content is sufficient and the predictions are visualized into an 

application that can be used for practice. We start by analyzing the stakeholders for this project and 

subsequently we discuss the value created by the new solution compared to the solution in the old 

situation. 

6.1 Stakeholders 
We have identified the stakeholders in this problem context and classified them using the stakeholder 

taxonomy of Alexander [52]. Table 11 shows the stakeholders and their taxonomy, description and goal. 

We have chosen to include the society as a stakeholder for this project. Although this project and the 

artifact developed do not directly influence society, we see a potential influence in the future once the 

artifact reaches the level of practical usage and is used to reduce the carbon emission on farm plots. 

 

Stakeholders Taxonomy Description Goal 

Supervisors of 
the University 
of Twente 

Supplier Supervisors of the University of Twente 
supply knowledge to the researcher and 
provide guidance and support to the 
researcher during the project. 

Contribute to the 
research by supporting 
the researcher. 

Master thesis 
researcher 

Developer The researcher designed and developed the 
prediction method. 

Develop the prediction 
method. 

Inversable B.V. Product 
champion 

Inversible B.V. initiated the development of 
the artifact based on contact with the other 
stakeholders. It also supported the master 
thesis researcher during the development 
of the project. 

Provide farmers with 
meaningful insights on 
the state of the soil 

IntoAgri B.V. Supplier & 
product 
champion 

IntoAgri B.V. provided the researcher with 
agricultural knowledge, explained the 
relevance of the problem and initiated the 
project. 

Provide farmers with 
meaningful insights on 
the state of the soil and 
give tailored advice to 
farmers on how to act 
based on these insights 

Farmers Functional 
beneficiary 

The farmers benefit by the insights created 
by the artifact. 

Keep the soil healthy 
and reduce carbon 
emission. 

Society Functional 
beneficiary 

The society potentially benefits from the 
carbon emission reduction measures that 
farmers take. 

Live on a healthier 
planet. 

 

6.2 Potential value 
We analyze the potential value of the artifact in four steps: describing the current situation, analyzing 

the flaws of the current situation, discussing the direct impact of the new situation and long term 

Table 11. Stakeholder 

analysis 
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implications of the new situation. Thereby we have taken the stakeholders from Table 11 into account, 

specifically Inversable B.V., IntoAgri B.V., farmers and the society. 

6.2.1 Current situation 

In the current situation, IntoAgri B.V. provides information about the soil state based on measurements 

taken averagely once each five years. The advices given by IntoAgri B.V. are mainly based on 

measurements and not based on estimations of the soil state. The data provided by farmers is not fully 

utilized. 

Inversable B.V. focusses on providing the applications, data management and data analysis that IntoAgri 

B.V. uses to build tailored advice for farmers. The applications developed by Inversable B.V. contain 

information about SOC measurements. 

If farmers want to have insights into the state of their soil regarding the SOC content, and they have a 

few options. The first option is to increase the frequency of sampling done by companies like Eurofins-

Agro. Thereby the farmers receive information based on laboratory tests, IntoAgri B.V. interprets these 

measurements and provides advice based on them. The second option is to use snapshots of the soil 

organic carbon state such as SoilGrids. However, we learnt from the interview with the farmers’ 

organization that the maps of SoilGrids or alternatives are currently not used in practice. 

The interview with the farmers’ organization learnt us that most farmers do not have clear insights into 

the state of their soil, specifically regarding the soil organic carbon content. They feel the pressure by 

the government that encourages them to reduce the carbon emission and increase the carbon 

sequestration, but they are likely to choose the practices with the highest return or practices based on 

guidelines of farmers’ organization without considering the current SOC state of the soil. 

6.2.2 Flaws of the current situation 

For IntoAgri B.V., the most important flaw of the current situation is that they are not always able to 

provide up-to-date information and estimations of the current state of the SOC content of the soil on 

the farm plots. Inversable B.V. is limited to using measurements in the application and can not provide 

IntoAgri B.V. with information on all the farm plots, since for most farm plots no soil sample data is 

available. 

When Farmers choose to increase the soil sampling frequency, the biggest flaw is the financial impact 

since it is expensive to increase the frequency of soil sampling. Whenever the farmers choose not to 

increase the frequency of soil sampling, they will have less insights into the current state of the soil and 

the organic carbon content of the soil. Generally, the less insights into the state of the soil the farmers 

have, the less tailored advice the farmers can get on how to improve the soil state and the less the 

farmers are able to increase the carbon stock and reduce carbon emission. 

6.2.3 Direct impact of the artifact 

The direct impact is the highest for the farmers’ organization (IntoAgri B.V.) and the farmers. When the 

artifact reaches the levels of practical usage, the farmers’ organization is able to provide estimations 

about the current state of the soil. This has two direct implications. The first implication is that they can 

give a more detailed and tailored advice on how farmers can improve the soil state and increase the soil 

organic carbon computations. The farmers’ organization can give the farmers a data-driven advice on 

how to do this. The second implication is of financial nature: by being able to provide more up-to-date 
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information on the soil state, the organization can create more value for their customers and can 

financially benefit from this. 

The direct impact on farmers consists of having a more up-to-date view on the current state of the soil 

regarding the organic carbon content and being provided with a data-driven plan tailored to their farm 

plots on how to improve the soil state and increase SOC content. 

6.2.4 Long term implications 

When the artifact reaches the level of practical usage, Inversable B.V. and IntoAgri B.V. are able to 

create more value for their customers. Thereby new opportunities arise as they can use the same 

method to provide more insights on the soil quality, soil usage and best practices for farmers. 

Furthermore, by increasing the value given to customers, it is likely that the amount of customers will 

increase as well. It also has implications for soil measurement companies, as their role in providing soil 

information is at stake since alternatives for soil sampling emerge. However, during our research we 

experimented support and positive reactions from the soil sampling company we contacted (Eurofins-

Agro). 

For farmers, the long term implications are that a more healthy soil can lead to better performance [14]. 

Furthermore, initiatives arise that make use of carbon credits, which are certificates earned by 

companies or projects that they obtain when reducing their carbon dioxide emission [53]. In general, the 

amount of carbon credits obtained is equal to the amount of tons of sequestrated carbon, so carbon 

credits can be sold or bought by other companies or projects to compensate their carbon emission. 

During interviews with the farmers’ organization, we learned that municipalities are also investigating 

the usage of carbon credits and setting a minimum of carbon credits a company should own (either earn 

or buy). 

In the ideal scenario, the society indirectly benefits from this solution as well. If farmers are able to 

increase the carbon sequestration and reduce the carbon dioxide emission, this has impact on the 

climate change and reduces the global warming.  
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7. Conclusions 
This chapter first presents the general conclusions of the thesis, the methodology used to achieve this 

goal and the insights gained while performing the research. It also discusses the research questions and 

answers to the research questions. Subsequently the chapter presents the contribution of this research 

to research and to practice. Lastly we discuss an overview of the limitations and recommendations for 

future work. 

7.1 General conclusions 
This thesis presents a method to estimate the soil organic carbon content on farms in the Netherlands. It 

makes use of a snapshot of existing soil maps (SoilGrids) and enriches this map with up-to-date 

environmental covariates. This research is performed at Inversable B.V., which provided us with soil 

samples of farm plots taken by Eurofins-Agro. The methodology used for this research is Design Science 

Research Methodology [7]. For the third step of the methodology (Design & Development) we have used 

the method Knowledge Discovery in Databases [8]. In order to develop a method that predicts the 

organic carbon content in the soil, we answered 5 different research sub questions.  

RQ1: What covariates can be used as features for the soil organic carbon content prediction? 

In order to answer this research question, we have performed a literature review following the 

guidelines of Webster and Watson [10] to analyze similar studies which can be found in Section 2.3. We 

have classified the prediction features in the SCORPAN feature categorization. The different categories 

of the SCORPAN framework are used as inputs for the concept table. We have identified that the 

Organisms (O) category is the most used. The vegetation index (i.e. NDVI) and the land usage are 

features that are commonly used as predictors in prediction models. The Relief (R) feature category has 

become more popular in the past few years (in comparison to the researches performed before 2019). 

Other promising feature categories are the Climate category (C) and to a lesser extent the Soil 

properties (S) category. 

RQ2: What prediction methods can be used to predict the soil organic carbon content and how can they 

be validated? 

The same literature review (Section 2.4) used to answer RQ1 was used to answer this research question. 

Regarding the prediction methods, we have identified the following patterns: the Random Forest 

method is used in the majority of the studies and also outperforms a lot of other methods within those 

studies. The method has become more popular in comparison to the researches performed before 2019, 

which is a logical consequence of the research of Lamichhane et al [18], as the Random Forest method 

already outperformed a large amount of other methods before 2019. The second most used prediction 

method is Support Vector Machine. Deep learning (Artificial Neural Networks) has been introduced in 

the last few years and is a promising method as it outperforms other methods in the researches that 

involve method comparison.  

The amount of researches including a validation step has drastically increased in the past few years [18]. 

An interesting trend shift is that the majority of papers published before 2019 have used the data 

splitting validation methodology, while papers published from 2019 and later mainly use the cross-

validation methodology. The cross-validation methodology, specifically the 10-fold cross-validation, has 
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become more popular because it makes better usage of data by training your model on multiple train-

test splits. 

RQ3: Using covariates identified from the literature, how can an empirical model be developed to predict 

the soil organic carbon content? 

For this research question we have used the method Knowledge Discovery in Databases. We have used 

the answers of the first research question to develop a prediction model for the soil organic carbon 

content. Based on the answer to RQ1, we have chosen the following environmental covariates as 

prediction features (Chapter 3): 

• Climate: Annual mean and variance of daily amount of rainfall 

• Climate: Annual mean and variance of daily temperature 

• Climate: Annual mean and variance of daily amount of hours solar radiation 

• Soil propierties: Mostly present type of underlying soil 

• Organisms: Cultivation plans of the past 5 years 

• Organisms: Average NDVI (vegetation index) score of the past year 

• Other: SoilGrids organic carbon stock and density estimations 

The answer to RQ2 consisted of a set of three prediction algorithms: Random Forest, Support Vector 

Machine and Artificial Neural Networks. We have implemented these three prediction algorithms 

(Chapter 4) and validated the prediction algorithms in three different experiments (Chapter 5). 

RQ4: What is the predictive accuracy of the developed model and how can it be optimized? 

In order to validate the results of the prediction algorithms, we used the 10-fold cross validation 

technique based on the results of the literature review performed for RQ2. We have also tried two other 

validation strategies as we are working with a small dataset, namely 5-fold cross validation and cross 

validation based on a shuffle split. The results of these strategies can be found in Chapter 5. 

The Random Forest algorithm resulted in the highest predictive accuracy when using all features as 

inputs for the prediction: when using 10-fold cross-validation, the R2 value is 0.37 and the Mean Squared 

Error is 1.76. This is slightly lower than similar researches that show R2 values between 0.4 and 0.8. The 

other two algorithms showed no prediction potential for this dataset. We reached the highest predictive 

accuracy when validating the model with shuffle split (R2 = 0.52 and MSE = 1.36). However, these results 

have a high risk of overfitting as we were working with a relatively small dataset (209 datapoints). 

Anyway, we can conclude that the environmental covariates add value to the existing soil organic 

carbon maps for this dataset.  

We have performed different optimization iterations by tweaking the hyperparameters of the model. 

None of the changes in the hyperparameters improved the predictive accuracy of the model 

significantly.  

RQ5: How can the resulting model be used to create potential value for stakeholders? 

We answered this question in Chapter 6 with the assumption that the model can be further developed 

and reaches the level of practical usage. For the farmers’ organization, the model creates value as the 

organization can give more tailored advice to farmers which increases the value of their business. The 



 

42 
 

farmers receive more up-to-date estimations of the state of their soil and tailored advice from the 

farmers’ organization, which enables them to increase their soil sequestration, improve the quality of 

the soil and reduce carbon dioxide emission. As a long term implication of this project, society can 

benefit if  farmers manage to reduce carbon emission. 

Main RQ: How to develop a method that predicts the soil organic carbon content based on 

environmental covariates at farms in the Netherlands so that the company can provide actionable 

insights on the carbon stocks to farmers? 

This thesis presented the method we developed and used to predict the soil organic carbon content. We 

gathered different types of environmental covariates (climate covariates, vegetation indices, land usage, 

underlying soil type and existing soil maps) and tested the performance of different machine learning 

algorithms. Although the validation of the method showed predictive potential for the Random Forest 

algorithm, it still remains questionable if these results are generalizable and future research is needed to 

validate this. 

7.2 Contributions 
We have developed a method that can be used for soil organic carbon predicting for farm plots in the 

Netherlands. Although the accuracy of the resulting prediction method is relatively low and future 

research is needed on how to improve this (further discussed in section 7.3), the development of the 

model already makes contributions to research and practice. 

7.2.1 Contribution to research 
This thesis has the following contributions to research: 

1. The literature review we performed on the prediction features, prediction methods and 

validation strategies. By analyzing the current state of the art in this field, we have gained 

valuable insights into the various methods employed in similar studies. The results of our 

literature review offer a clear overview of the existing prediction methods, providing a 

foundation upon which future research can be built. Moreover, our review can be a valuable 

resource for other researchers, offering them guidance and insights as they design their own 

prediction methods. The documentation of the findings of our literature review contributes to 

the broader knowledge base and to the understanding of the various approaches towards digital 

soil mapping. This can ultimately lead to the development of more accurate and effective 

prediction models, with the potential to benefit society in numerous ways. 

2. The demonstration of an effective method for collecting the environmental covariates. As a part 

of our research, we have effectively transformed the existing theoretical knowledge about the 

identification of environmental prediction covariates into practical, collected data points. The 

databases, tools, and APIs that we have used for acquiring the data can serve as a guideline for 

future researchers seeking to collect relevant data points for similar predictions. By 

documenting and sharing our data collection process, we enable other researchers to conduct 

similar studies with greater ease and accuracy. 

3. The findings regarding the performance of the prediction algorithms. The research has shown 

that the Random Forest algorithm can provide the most precise and reliable predictions of the 

soil organic carbon content when compared to other prediction algorithms. The insights on the 
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performance of the prediction algorithms can guide future researchers in selecting the most 

appropriate algorithm for their research questions and objectives. 

7.2.2 Contribution to practice 
This thesis is a step towards accurate SOC prediction, but the developed model does not reach the level 

of practical usage yet. Section 6.2 discusses the potential practical value the artifact has when reaches 

the level of practical usage. That section also forms the basis for the contributions to practice this thesis 

has, which are described below. 

1. The tailored advice the farmers’ organization can give to farmers using this model, which in turn 

frees them from the dependency on soil sampling frequency of their customers. It enables the 

organization to play a more proactive role to help farmers achieve success in their agricultural 

practices. Furthermore, once the full potential of the model has been reached, the farmers’ 

organization is able to deliver more value to the customers. This ultimately leads to the creation 

of new business opportunities. 

2. Through the utilization of this model, farmers are able to receive an up-to-date view of the soil 

state of their plots, which enables them to make more informed decisions about their 

agricultural practices. They can use the tailored advice provided by the farmers' organization to 

increase the organic carbon content in their soil. This is an essential step towards improving the 

overall quality of the soil and ultimately leads to higher yields and greater profitability. 

3. During the data research we have provided the organization with a method to determine the 

NDVI scores and visualize these scores. The companies that initiated this project wanted stated 

that they wanted/needed this functionality and are able to reuse this in other contexts as well. 

4. If the farmers manage to use the insights from the model and the tailored advice from the 

farmers ‘organization, they are contributing towards the reduction of carbon emission. As the 

reduction of carbon emission is an important step towards stopping global warming, the 

development of this model ultimately contributes to achieving these goals. 

7.3 Limitations and future work 
The first limitation of this research is the size of the dataset used as target values. We were not able to 

evaluate the performance of the different machine learning models due to the limited amount of 

available data. The goal of this research was to design and develop a prediction method that accurately 

predict the soil organic carbon content, which has not been accomplished and we are not sure whether 

this goal could be accomplished with a larger dataset.  Therefore we propose that in future work the 

same method should be evaluated with a larger dataset. This also involves research on how much data is 

needed to perform an accurate prediction. In this study we have used data gathered by Eurofins-Agro. 

Future studies could evaluate other data sources and other ways to determine the organic carbon 

content, if available.  

Furthermore, we learned from the interview with the farmers’ organization that the organic carbon 

content does not change very much over years for a farm, and the carbon stock values are close to 

historical measurements. Due to the lack of measurements, we were not able to use historical carbon 

measurements as inputs for the organic carbon prediction. We advise to use historical soil 

measurements as features in order to make the soil organic carbon prediction more accurate. 

Furthermore, this historical data can be used to analyze the changes in organic carbon and thereby the 
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following questions can be addressed: What measures of the farmers influence the soil organic carbon 

content? How well can the change in organic carbon be explained by the measures of the farmers? 

The measurements of the organic carbon content from Eurofins-Agro are taken from different depths, 

either 10 cm or 25 cm. In our research, we assumed that the carbon content is the same (or close) for 

the different depths of the soil as we did not have enough data points. We advise to test this 

assumption or split the dataset into groups of samples taken from the same depth. 

Another assumption we made was the time span of the NDVI data we used for each measurement. We 

have chosen to take the NDVI scores of the past year for each pixel lying within the farm plot. This is 

because the NDVI values of the Sentinel-2 Level 2A dataset are only available from 2017 and later. We 

propose that in future research a solution for this problem is found, by either using more recent data 

points or finding an alternative for determining the NDVI values. 

In future studies, a closer look on the different features should be taken. In this research we have 

transformed the soil type and cultivation plans into dummy variables. This resulted in a large number of 

features. However, a deeper understanding of these variables and a different way of transforming the 

variables could lead to more valuable insights. For example, one should consider classifying the possible 

soil types into categories so that similarities and relations between the soil types can be modeled. The 

same applies to the cultivation plans. We translated each unique combination of a cultivation plan and 

the amount of ‘years ago’ into a dummy variable. Other ways of transforming this data (such as counting 

the amount of times a cultivation plan is used in the past five years or determining the variation of the 

cultivation plans) could improve the feature importance and give new insights.  

Lastly, we propose that the practical usage of the predictions should be investigated. The goal of the 

developed artifact was to provide insights into the soil organic carbon content on farm plots. Assuming 

it is possible to give a good prediction on the soil carbon content,  the estimations should be presented 

to potential stakeholders. The knowledge gained on the influence of the cultivation plans should be 

used as well to provide a tailored advise for farmers when planning the occupation of their farm plots.  
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Appendix 

Appendix A – Literature review 

 

 

 S C O R P A N 

[3]  x  x    

[22] x x x x    

[25] x  x x    

[54]   x x    

[26]  x x x x x  

[27]   x x    

[28] x x x x    

[55]   x     

[56]  x x x    

[57]   x     

[29] x x x x    

[51]  x  x    

[30] x x x x    

[35]   x     

[36]  x x x    

[37]  x x x    

[31] x x x x    

[32]  x x x    

[58]  x x x    

[59]    x    

[60]   x     

[34]   x     

[61] x x x x    

[62] x x x x    

Total: 8 15 21 19 1 1 0 

Table 12. Concept table Covariate categories 
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 RF Cubist SVM PLSR MLR NN-
RMA 

RT GLM QRF BaRT CaRT BoRT RegKr OrdKr 

[3] x  x         x   

[22] x              

[25] x x x x           

[54]     x x         

[26] x    x          

[27] x x   x  x        

[28] x x x     x       

[55] x   x           

[56]         x      

[57]    x           

[29] x  x x      x x x x x 

[51]               

[30] x  x x   x x       

[35] x  x            

[36] x  x    x        

[37] x x             

[31] x x x  x          

[32] x x x            

[58] x    x    x   x x x 

[59]             x x 

[60]    x           

[34] x  x x           

[61] x              

[62]  x             

[33] x              

[63] x  x            

[64] x              

Total 20 7 11 7 5 1 3 2 2 1 1 2 3 3 

 

Table 13. Concept table Prediction methods 
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 BPNN CNN kNN ANN DNN XGBoost AvNNet HK SGS GR BC-VW BMA Res-Cub 

[3]              

[22]              

[25]              

[54]              

[26]              

[27]              

[28]              

[55]              

[56]              

[57]              

[29]              

[51]  x            

[30]   x           

[35]    x x         

[36]    x x x        

[37]    x x x x       

[31]    x          

[32]   x   x        

[58]        x      

[59]         x     

[60]              

[34]    x          

[61]              

[62]          x x x x 

[33]              

[63] x             

[64]              

Total 1 1 2 5 3 3 1 1 1 1 1 1 1 

Table 13 (continued) 
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 Cross-validation Data splitting 

 5-fold 10-fold Other  

[3]  x   

[22] x   x 

[25] x    

[54]  x   

[26]  x   

[27]  x   

[28] x    

[55]  x   

[56]  x   

[57]   x (LOO)  

[29]    x 

[51]    x 

[30], [35]  x   

[35]  x   

[36]  x   

[37]  x   

[31]  x   

[32]  x   

[58]   x (3)  

[59]   x (2, LOO)  

[60]  x   

[34]  x   

[61][   x  

[62]  x   

[33]  x   

[63]    x 

[64]  x   

Subtotal 3 17 4 4 

Total 24 4 

 

  

Table 14. Concept table Validation strategies 
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Appendix B 

 

 

Figure 17. Example of constructed decision tree 


