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We can know only that we know nothing. And that is the
highest degree of human wisdom.

- Leo Tolstoy, War and Peace
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Summary

"We don’t see things as they are, we see them as we are". This statement rings true not
just for humans but also for computer vision models. It goes without saying that, the
world is a vast and mysterious place, teeming with countless unknowns. When deployed
in real-world applications, computer vision models often encounter images that belong
to categories that they have not been trained to recognise. When faced with such an
image, these models naively classify it into one of the categories they have been trained
on. Such computer vision models can be unreliable and pose significant risks in safety-
critical applications. Therefore, a computer vision model must be ‘aware’ of the open world
and be able to recognise and reject an image from an ‘unknown’ category. This is called
open-world recognition.

In this research work, several existing research gaps in the domain of open-world recog-
nition or out-of-distribution detection (OOD) are identified and addressed. In literature,
most of the existing OOD methods have been evaluated on a limited set of balanced
datasets which do not resemble real-world distributions. This often leads to methods ap-
pearing better than they truly are. To address this gap, eight retrofittable OOD detection
methods (MSP [1], Energy [2], ODIN [3], GradNorm [4], PCA FRE [5], DkNN [6], SLOF [7]
and a proposed method - EnWeDi) are evaluated on long-tailed and fine-grained datasets.
These datasets pose significant challenges in the task of OOD detection as they consist
of many categories with few examples for the methods to learn from and have subtle
differences between ‘known’ and ‘unknown’ categories.

Furthermore, due to a lack of a standardised way to quantify difficulty in OOD de-
tection, the accuracies reported in the literature cannot be directly compared between
methods. To tackle this, the concept of using domain similarity scores between datasets to
quantify the difficulty in OOD detection is introduced. This score is a representation of the
least amount of work needed to move the images of one dataset to match the distribution
of another dataset.

Additionally, limitations of existing state-of-the-art (SOTA) OOD detection methods
were identified and the EnWeDi method that overcomes these limitations is proposed. Out
of the 14 OOD detection scenarios tested in this work, the proposed method outperforms
the existing methods in 5 cases and performs similarly to the highest accuracy-achieving
method(s) in 7 cases. Depending on the dataset, when compared with the corresponding
SOTA method, the EnWeDi method shows a maximum improvement of 2.9%, 1.3% and
12.7% in AUROC, true positive rate and false positive rate respectively.

The effect of stacking image feature embeddings extracted from intermediate layers of
a convolutional neural network for the task of OOD detection, which was overlooked in
the literature, is investigated in this work. While stacking led to an improvement in OOD
detection AUROC by 6.8% on one dataset, it also led to a 13.5% decrement in the same
on another dataset. The reasons for this are studied and ‘AutoCrop’ - a robust way of
stacking feature embeddings to improve OOD detection in the later case is proposed.

Overall, this research work proposes several concepts, an OOD detection method and
valuable insights into the domain of open-world recognition. Through these contributions,
this research work aims at taking a step closer to the ultimate goal of making computer
vision models more ‘open-world ready’ and for AI systems that use them to be reliable,
trustable and safe.
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Chapter 1

Introduction

The accuracy of deep neural networks (DNNs) for image classification tasks has increased
rapidly in recent years, paralleling or even outperforming human performance. For in-
stance, the highest accuracy achieved on the ImageNet dataset [8] is 91.0% [9]. Such high
accuracy scores have led to an increase in confidence to use the DNNs for real-world appli-
cations. However, once launched in real-world applications, the classification models that
have achieved ‘high accuracy’ on paper, might become unreliable due to the lack of knowl-
edge of open and changing environments. Multiple works [10, 1, 11, 12] have shown that
neural network-based classifiers can make high-confidence predictions for images, that they
have never been trained to classify in the first place. This happens when the classifier is
deployed without accounting for the uncertainty that would appear outside of its training
classes [13]. This is called the closed-set assumption. However, this assumption does not
hold for classification models targeting real-world applications.

Figure 1.1: Example of a classifier trained on 4 species of butterfly. The closed-set
assumption (A), the problem with the closed-set assumption (B) and the concept
of open-world recognition (C).

To tackle this problem, techniques to make a classifier ‘open-world ready’ must be
incorporated. Such techniques make a classifier recognise the input images that do
not belong to any of the classes it has been trained on and therefore ‘reject’
them. This is referred to as open-world recognition and is more commonly known as
out-of-distribution (OOD) detection.

OOD detection is essential not just for higher accuracies, but also for the reliability of
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computer vision systems and to maintain safety in critical applications. For instance, in
autonomous vehicles, when a vision system faces scenes or objects that it has not learnt
to classify, it is better to ‘reject’ them as ‘unknown’ rather than misclassify them. In such
cases, as the system cannot make a safe decision, it would be better to issue an alert or
hand over control to humans.

A seemingly naive approach to the OOD detection problem is to extend the training
set by adding a new class representing the unseen images that the classifier may encounter.
However, the number of ways ‘unknown’ category objects can emerge is innumerable in
an open world. In other words “All positive examples are alike; each negative
example is negative in its own way” [14]. Hence, a very large number of such images
are required to sufficiently generalise the ‘unknown’ category class. To implement this
approach, an immensely large neural network would be required [3], making the training
and the inference of the network impractical. This gives rise to the need for using OOD
detection methods that can detect images from the ‘unknown’ category distribution rather
than using a classifier that can classify images into the ‘unknown’ category class.

As OOD detection is increasingly used as a prerequisite for computer vision applica-
tions, there has been a growing interest in this domain in recent years. However, most of
the existing research (Section 2.3) for OOD detection is benchmarked on a limited set of
balanced datasets that do not fully capture the complex diversity and distribution of how
objects occur in the real world. This makes the existing methods’ applicability for prac-
tical applications debatable. This research aims to address this gap by evaluating OOD
detection methods on datasets that resemble real-world characteristics.

Biodiversity datasets are often considered to closely resemble the distribution of objects
in the real/open world because of the following reasons:

• Long-tailed distributions: Biodiversity datasets often tend to be long-tailed be-
cause of the inherent structure of natural ecosystems- a small number of species are
very common, while a large number of species are rare or occur infrequently. This is
similar to the distribution of objects in the real world, where there may be a few cate-
gories with a high frequency of occurrence and many categories with a low frequency
of occurrence.

• Fine-grained: Biodiversity datasets are also often fine-grained, as they usually
contain many closely related species. In the context of OOD detection, this property
makes the task of classifying an image as ‘unknown’ or ‘known’ relatively difficult.
Many real-world applications also face this challenge.

Furthermore, biodiversity datasets are subject to the same types of environmental
and ecological changes that can impact other real-world datasets, such as extinction, a
sudden increase in the number of species in an area or the discovery of a new species.
These challenging conditions make biodiversity datasets an appropriate test case for OOD
detection in real-world applications.

1.1 Research Gaps

From the extensive literature research (30+ research works presented in Section 2.3), the
following gaps are identified for the task of out-of-distribution (OOD) detection:

Little to no research on OOD detection performance on long-tailed and fine–
grained datasets Despite the considerable research in OOD detection, there is minimal
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consensus on the best approach to tackle this problem for fine-grained and long-tailed
datasets such as biodiversity datasets. Out of all the OOD detection methods mentioned
in Section 2.3, only one method (OLTR [15]) has been tested on a long-tailed dataset.

No methodology to quantify OOD detection difficulty Most of the research works
in the literature ignore quantifying the OOD detection difficulty. A few works quantify the
OODness of a dataset into so-called near-, intermediate- and far-OOD subjectively. This
could lead to OOD detection methods being tested on easy OOD datasets that might not
resemble realistic, yet difficult-to-detect OOD images. This can result in an OOD detection
method appearing better than it truly is.

Single OOD aspect solutions Almost all the OOD detection methods explored during
the literature survey are evaluated on a single aspect of ‘OODness’ or OOD difficulty.
However, in an open world, a classifier can face OOD images that have varying levels of
OODness. Hence comprehensive testing of the methods on a range of OOD detection
difficulties is required to make a classifier ’open-world ready’.

Not all methods can be retrofitted to an existing classifier A few methods that
show promising results require re-training of the classifier and can not be retrofitted to an
existing classifier. On a computer vision system, enabling OOD detection is more practical
if it can be added without changing/retraining its classifier. This is mostly because training
a model on a dataset can be time-consuming, especially if the model and/or dataset are
large.

Limited use of feature embeddings from shallower layers For feature embedding-
based methods, most of the methods extract feature embeddings from the penultimate
layer of a CNN and do not experiment with shallower layers. Methods such as [5] report
OOD performance on feature embeddings extracted from a few individual intermediate
layers but not on feature embeddings stacked from multiple layers. A thorough search of
the relevant literature yielded no relevant work that experimented with OOD detection
methods on stacked feature embeddings.

1.2 Research Questions

To bridge the above-mentioned gaps in the domain of out-of-distribution (OOD) detection,
this research aims to answer the following research question:

For in-distribution datasets, with fine-grained and long-tailed characteristics, what is
the best retrofittable out-of-distribution (OOD) detection method that achieves high accu-
racy for the task of OOD detection across OOD datasets with varying difficulty?

This question can be further divided into the following sub-questions:

1. RQ1: For a given in-distribution dataset, how can the difficulty of detecting OOD
images from a particular OOD dataset be quantified?

2. RQ2: What improvements can be made to the existing OOD detection methods to
further improve their accuracy for the task of OOD detection on fine-grained and
long-tailed in-distribution datasets?
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3. RQ3: What is the effect of stacking feature embeddings from the intermediate layers
of a convolutional neural network on the accuracies of the OOD detection methods
that make use of feature embeddings?

4. RQ4: What are the OOD detection methods that can consistently achieve the best
accuracies over different OOD difficulties (from RQ1) when measured across a range
of evaluation metrics?

1.3 Thesis Layout

The thesis is organised as follows. Relevant background of the out-of-distribution (OOD)
detection problem followed by a literature survey on OOD detection methods is presented
in Chapter 2. The selected as well as the proposed OOD detection methods are described
in Chapter 3. Chapter 4 describes the datasets, the experimental setup and the evaluation
metrics on which the methods are evaluated. The results of these experiments are presented
in Chapter 5. In Chapter 6, the insights from the results as well as recommendations based
on these insights are presented. Finally, Chapter 7 concludes the thesis by answering the
research questions as well as outlining potential areas of research for further exploration.
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Chapter 2

Background

According to [16], open-world recognition consists of three steps:

1. Developing (or using an existing) classifier and detecting the images that are from
the ‘unknown’ category.

2. Labelling the ‘unknown’ category images into new classes.

3. Using an incremental learning scheme to train the classifier on these new classes.

However, the term open-world recognition has been sparsely used in literature. Instead,
the focus is on the first step mentioned above. Hence, the term ‘out-of-distribution
detection’ has been used more commonly to refer to the idea of open-world
recognition. Most of the existing research, including this research, considers them as
synonyms.

In Section 2.1, the OOD detection task as a binary classification problem is formulated.
A brief introduction to the problems related to OOD detection is presented in 2.2. A few
existing concepts and methods for OOD detection are presented in Section 2.3. Finally, a
few use cases of OOD detection are listed in Section 2.4.

2.1 Formulating OOD Detection Method

Out-of-distribution (OOD) detection is formulated as a binary classification problem where
an input image is classified as in-distribution (ID) or out-of-distribution (OOD). The de-
cision whether an image is ID or OOD is taken based on an OOD scoring function. The
scoring function takes an image x and gives an OOD score for it which is compared with
a preset threshold.

The decision of classifying an input image as ID or OOD can be represented as:

Gλ(x) =

{
ID S(x) ≥ λ,

OOD S(x) < λ ,
(2.1)

where S(x) is the scoring function and λ is the threshold.

Setting the Threshold The threshold is determined using the validation set of ID
dataset such that the desired true positive rate (or a false positive rate) on the ID images
is reached. For instance, the threshold can be set to a value such that a large number ( for
instance 95%) of a set of known in-distribution images are classified correctly as ID. The
set of validation images from the ID dataset can be used for this purpose.
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The primary objective in out-of-distribution detection is to find a scoring function S(x)
that can maximise the accuracy on Gλ(x) i.e., deciding whether an input image x belongs
to ID or OOD.

2.2 Related Problems

All the related problems of out-of-distribution (OOD) detection can be formulated in terms
of distribution shift. Distribution shift can be categorised into two types: covariate shift
and semantic (label) shift. IfX represents the input space and Y represents the label space,
then a data distribution can be defined as a joint distribution of the probability P (X;Y )
in the space XxY . A covariate shift is when the distribution of the data (input) changes
during testing. In other words, covariate shift occurs when Ptrain(Y |X) = Ptest(Y |X) but
Ptrain(X) ̸= Ptest(X). In these shifts, the label space Y remains unchanged. On the other
hand, in a semantic shift, the label space Y is different i.e., Ptrain(Y ) ̸= Ptest(Y ).

Several problems that come under OOD detection in terms of motivation, as well as
methodologies, are open-set recognition (OSR), anomaly detection (AD), novelty detection
(ND), and outlier detection (OD). While most of the topics closely overlap with each other,
there are a few differences among them in terms of the specific definition.

2.2.1 Open-Set Recognition

In open-set recognition, a classifier has two objectives: (1) classify images from ‘known’
classes with high accuracy and (2) detect images from the ‘unknown’ (or OOD classes).

Alternative taxonomy: OSR is also referred to as multi-class novelty detection, open
category detection [17] and open set learning [18].

Relation to OOD detection: OSR is sometimes considered as an extension of OOD de-
tection. OOD detection is similar to OSR in terms of objectives, motivation, and method-
ology. Multiple works use the terms interchangeably. However, there is a subtle difference
between both. In terms of the scope of benchmarking and testing, in OSR, a single dataset
is split into two subsets – the closed set (or in-distribution set) for training, and the out-
of-distribution set for testing. A second dataset is not considered to be part of the original
set and hence is not often considered in testing. In OOD detection, a ‘set’ is not defined
and hence OOD data can be from an entirely different domain.

2.2.2 Anomaly Detection

Anomaly detection (AD) refers to the problem of finding patterns in data that do not
conform to expected behaviour [19]. In other words, it is the detection of any anomalous
samples that are deviated from the predefined normality during testing [20]. In a so-called
sensory (input-related) AD, the ‘normal data’ is from an in-distribution dataset P (X) and
anomalies are from an out-of-distribution dataset P ′(X), where P (x) ̸= P ′(X). However
the labels remain unchanged (P (Y ) = P ′(Y )). On the other hand, in semantic anomaly
detection, only semantic shift occurs i.e., (P (Y ) ̸= P ′(Y )). In this work, only sensory
anomaly detection is considered.

Relation to OOD detection: In the context of OOD detection, ‘normality’ corresponds
to an in-distribution image and an ‘anomaly’ corresponds to an out-of-distribution image.
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2.2.3 Novelty Detection

The task of novelty detection (ND) aims to detect any input images that do not fall into
any training category. While novelty detection and anomaly detection are mostly used as
synonymous, there is a fine difference between them. In novelty detection, the novel class
images are not usually regarded as ‘erroneous’, or ‘abnormal’ as done in anomaly detection.

Relation to OOD detection: Novelty detection and OOD detection share the same
objective. However, in novelty detection, the focus is more on detecting the semantic shift.
Hence the novel images are treated as resources for improving the model, for instance,
through active learning.

2.2.4 Outlier Detection

In outlier detection (OD), the objective is to detect images that appear to deviate signifi-
cantly from the others in the given set of images[21].

Relation to OOD detection: In OOD detection, the in-distribution is defined during
training, and the OOD images appear during testing time. In outlier detection, a single
dataset containing both in-distribution and OOD (outlier) images are provided at the same
time without any labels. In the case of outlier detection, the OOD is learnt during the
training.

2.3 Literature Survey

In recent years, there has been a significant amount of research focused on the topic of
out-of-distribution (OOD) detection and related problems, demonstrating a growing inter-
est in this field. The goal of this literature survey chapter is to compile an overview of the
existing OOD detection methods and related concepts, along with any of their noteworthy
strengths and weaknesses. This overview will help to shortlist promising methods whose
performance will be compared on biodiversity datasets. A few of the existing OOD detec-
tion methods from each category are reviewed in Subsections 2.3.2, 2.3.3, 2.3.4 and 2.3.5
respectively. Before starting an in-depth exploration of deep neural network (DNN)-based
OOD detection methods, a few of the related solutions from the traditional machine learn-
ing (non-DNN) methods are studied. Most of the traditional machine learning-based (es-
pecially distance-based) OOD detection methods act as groundwork that is often adapted
for DNN-based methods. A few such methods along with the OOD detection preliminaries
introduced by them are discussed in the Subsection 2.3.1.

The existing set of OOD detection methods that use deep neural network can be cate-
gorised into:

• Output scores-based methods

• Feature embeddings-based methods

• Training-based methods

• OOD data generative methods
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2.3.1 Concepts From the Traditional Machine Learning-based OOD De-
tection

Traditional classification and recognition tasks are based on leveraging the support vector
machine (SVM) [22]. However, traditional SVM-based classifiers are trained with the
assumption of a closed set where the entire classification space is open.

2.3.1.1 Concept of Bounded Classification Space

Open and closed classification spaces In [23], the authors propose the 1 vs. set
machine, which marks the spaces beyond a certain distance from the in-distribution as
‘open space’ and introduces the concept of risk of classifying an input belonging to this
open space. As a solution, the authors propose creating a hyperplane parallel to the
discriminating plane of the SVM to make a “slab”. Every input that does not fall within
this slab falls into the ‘open space’ and therefore is rejected. The authors in [24] extend
the 1-vs-set method and propose a best-fitting hyperplane classifier (BFHC) that uses the
kernel trick to make this method more practical to be applied for high dimensional feature
spaces.

Quantifying open classification spaces In [25], the authors propose the solution of
using a compact abating probability (CAP) model to further reduce the so-called
‘open space risk’. In a CAP model, the probability of class membership reduces as the
input sample moves from the in-distribution classes’ space to the ‘open space’. The first
half of the CAP model is a one-class SVM model that calculates the probability of an
input sample belonging to the ‘closed space’. If the posterior estimate Po(y|x) of an input
sample x predicted by this one-class SVM is less than a threshold, the input sample is
called a ‘negative’ and is rejected outright. Otherwise, the input sample is fed to the
next SVM which gives the posterior estimate Pη(y|x). Pη(y|x) gives the probability of
an input belonging to one of the ‘known classes’ in the closed space. However, the main
drawback is deciding on the threshold against which Po(y|x) is compared. The authors set
this important threshold empirically and do not propose any methodology to calculate it.

Bounding the classification space of ID classes To further bound the quantified
open spaces, the authors introduce the probability-inclusion SVM (PI −SVM) in [26]
which is based on the extreme value theory (EVT) [27]. The idea is that if there is sufficient
knowledge of the in-distribution data, enough to generalise but not over-fit, then for each
ID class, a decision boundary in the open space can be made. Each ID class then occupies a
smaller, confined space in the complete feature space. Any input sample that does not fall
within a threshold of these confined spaces can be treated as belonging to a ‘novel class’.
The major drawback of this method was the use of the same threshold at the decision
boundaries for all the classes. This made it difficult to generalise effectively for imbalanced
datasets. The probabilistic open set SVM (POS-SVM) classifier proposed in [28]
overcomes this problem by setting a decision boundary threshold for each ID class instead
of using a single threshold for all of them.

2.3.1.2 Concept of Using the Distance Between Samples for OOD Detection

Distance-based OOD detection concepts inspired by outlier detection methods are based
on the nearest neighbour classifier. In these methods, for a given input sample, the nearest
data points in a known set of training data points are searched. If the distance (or any
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distance-based score) to these neighbours is above a threshold, the input sample can be
classified as belonging to out-of-distribution.

In [16], the authors propose the nearest non-outlier (NNO) algorithm (based on
the nearest class mean (NCM))classifier [29]). In this method, a distance between the test
input and the mean of each known class is calculated. The test input is rejected if all these
distances are beyond a certain threshold.

A slightly different method is presented in [30]. This method is an open-set version
of the nearest neighbour classifier and is called open-set nearest neighbour (OSNN)
method. Just like other methods, in the first step, the distance-based similarity score
is calculated with every class. However, instead of comparing all the similarity scores
calculated, OSNN calculates the ratio between the two highest similarity scores. If this
ratio is below a threshold, then the input sample is considered to be belonging to OOD.
This ratio is called the nearest neighbour distance ratio (NNDR) and is given by

NNDR =
d(s, T1)

d(s, T2)
, (2.2)

where s is the input sample, T1 and T2 are the closest and the second closest neighbours of
the sample s respectively. Here d(x1, x2) indicates the Euclidean distance between sample
x1, x2 in the feature space.The drawback of this method is its dependency on the accuracy
of finding the neighbours T1 and T2. As the NNDR (and the whole method) depends on
the distance of the input sample to the samples T1 and T2, T1 and T2 must not be outliers.

2.3.1.3 Concept of Using Density of Samples for OOD Detection

The density-based methods are more robust to noisy data points than distance-based
methods. This is because these methods use local density estimates to detect outliers,
rather than completely relying on global distance metrics which can be influenced by noisy
or isolated examples in the training set used as reference.

One of the earliest density-based methods for detecting outliers is the local outlier
factor (LOF) [31]. It is also one of the first methods in which an outlier is quantified on
how outlying it is. For a given data point x, in LOF, the density of x is compared with
the density of the k-nearest neighbours of x. A LOF value around 1 indicates that the
data point x is located within a region of homogeneous density. Hence it can be assumed
that the data point belongs to that local neighbourhood cluster of points. If the difference
between the density in the local neighbourhood of x and the density around the kNNs of
x is higher, x gets assigned a higher LOF value. The higher the LOF value of X, the
more outlying x is considered to be. Although more stable and robust than the distance-
based methods, LOF requires the calculation of a so-called reachability distance which is
computationally expensive. For high-dimensional data points (such as feature embeddings
of images), the complexity of LOF tends to be O(n2) [31].

Another density-based local outlier factor method called simplified local outlier
factor (SLOF) reduces the computational complexity involved in LOF. For a given test
point, the density of its neighbouring points is calculated using the distance to their re-
spective kth neighbours, instead of using the more computationally expensive reachability
distance. However, for a single test data point, both LOF and SLOF require performing
a kNN search at least k+1 times (once for the test point and once for every k nearest
neighbour of the test point).

The local distance-based outlier factor (LDOF) [32] method is a density method
which requires one kNN search for every test point. Given a datapoint x, LDOF uses the
relative location of x to its neighbours to determine the degree to which it deviates from
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its neighbourhood. For a data point x, LDOF is the ratio of ‘the mean of the distances
to its k-nearest neighbours’ to ‘the mean of the pairwise distances between those nearest
neighbours’.

2.3.1.4 Concept of Using Reconstruction Error for OOD Detection

Sparse representation-based classifiers (SRC) identify the correct class by seeking
the most sparsely distributed representation of the testing sample in terms of the train-
ing. In [33] the authors present an open-set version of the SRC. The method uses class
reconstruction errors for classification. This means that it looks at how well a given input
sample can be reconstructed using information extracted from the known classes of ID.
Then the reconstruction error is used to classify the test sample as belonging to ID or
OOD.

Another method is the extreme value machine [34] is based on the concept of margin
data distribution. This method uses the statistical EVT and consists of two stages. In
the first stage, the distributions of the matched reconstruction errors and the sum of
non-matched reconstruction errors are modelled using the EVT. In the second stage, the
reconstruction errors corresponding to a test sample from each class are calculated and the
confidence scores based on the two distributions are fused to determine the identity of the
test sample.

2.3.2 Output Scores-based Methods

The softmax function is often used as the output function for deep neural networks (DNNs)
for multi-class classification. The output of the softmax function is the normalised prob-
abilities for each class, all of which add up to 1. This normalisation makes DNNs with
softmax as the output function, inherently of close-set nature.

OpenMax In [35], the authors introduce one of the first methods to adapt DNNs to
an open-set setting by using OpenMax as a replacement for softmax. In addition to the
probability of an input belonging to a known set of classes (ID), OpenMax also gives
the probability of the input belonging to an unknown class (OOD) as output too. In
this method, the activation vectors (scores from the penultimate layer) of all the training
images are extracted. To these activation vectors, a nearest class mean (NCM) is applied
to represent each of the known classes with a mean activation vector (MAV). For a test
input image x, the activation vectors are extracted and additionally the top n classes
that give a high probability for this input are noted. Next, the activation vector of the
input and the MAV of the top n classes are fed to a softmax function (which considers an
additional unknown class). This function gives the probabilities P (YC0,C1,C2..Cn|x) where
C0 represents the ‘unknown class’ and C1...Cn are the top n classes. If argmax(P (x)) = 0
(0 is unknown class) or ifmax(P (YC0,C1,C2..Cn|x) < threshold, then the input x is classified
as being from out-of-distribution. The authors use a grid search (rather than intuition) to
find the threshold, the number of top classes to choose and other hyperparameters. These
hyperparameters can be tuned to increase open-set image detection at the cost of rejecting
more images belonging to true classes. However, the grid search requires a small set of
calibration datasets consisting of OOD images to avoid extreme values for hyperparameters.

Maximum Softmax Probability A simple method is proposed in [1] to detect out-
of-distribution inputs based on the observation that a well-trained neural network tends
to assign higher softmax scores to ID examples than for out-of-distribution. The authors
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use the maximum softmax probability (MSP) of input directly as the OOD score for that
input. If this is below a threshold, the input is considered to be an OOD input. However,
the assumption that softmax probability scores for OOD images are always well-spread
across the classes leading to a lower MSP does not always hold true. The method is used
as a common baseline in multiple OOD detection methods.

ODIN In [3], the authors propose ODIN (Out-of-DIstribution detector for Neural net-
works) method. This method uses a combination of temperature scaling [36] on the softmax
score of the neural network along with the addition of small, controlled perturbations to
inputs. This results in an increased gap between the softmax scores between in and out-of-
distribution images. The input perturbations have a stronger effect on the images on which
the neural network is trained (the in-distribution images) than on the out-of-distribution
images. Although the method requires finding the best values for two hyperparameters -
temperature scaling factor and input perturbation’s magnitude, the results indicate that
the method is quite effective in reducing the false positive rates (OOD image classified as
ID image) when compared to the baseline method.

Generalised ODIN The Generalised ODIN [37] is an extension of the ODIN method [3]
and combines decomposed probabilities with a modified input prepossessing to learn the
out-of-distribution. There are essentially two probabilities that are learnt: the probability
that the input is in-distribution (p(din|x) and the probability that an input belongs to a
class y given that the input is in-distribution (p(y, din|x)). These two probabilities are
then used to calculate the probability

p(y|din, x) =
p(y, din|x)
p(din|x)

. (2.3)

The two decomposed probabilities are less overconfident and can reject the OOD images
better than a standard classifier.

Energy-based OOD detection method The authors in [2] present an energy-based
out-of-distribution (OOD) detection method and use “energy scores” instead of softmax
scores to detect OOD images. Energy-based models (EBM) [38] learn a function that
maps each image from the input space to a single scalar value called the ‘energy’. A large
number of such mappings can be used to make a probability distribution function for the
inputs. The idea behind this method is that the energy value of an OOD image would be
further away from the centre of the probability density function of the ID images’ energy.
The authors present a new energy scoring function, based on the Helmholtz free energy
function, that can be used as a scoring function for any pre-trained model. Moreover,
the same energy function can be used as a trainable cost function, instead of softmax,
to further improve the OOD detection performance. However, the authors compare the
method with a few old baseline methods like [3] and [39] and not with the then-existing
state-of-the-art OOD detection methods.

Rectified activations method Based on the observation that the internal activations
of neural networks have highly distinctive signature patterns for OOD inputs, the authors
in [40] propose the Rectified Activations (ReAct) method. The method can be used as
such for OOD detection or can be applied to existing OOD detection methods to increase
accuracy. The method shows that the mean activation from the penultimate layer for in-
distribution data is mostly characterised by near-constant mean and standard deviation.
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In contrast, for OOD data, the mean activation has a larger variation across the activation
units. Rectifying (trimming) the activations at an upper limit leads to a better separation
of the distribution curves of the vectors produced by ID and OOD data. The authors show
that combining this method with the energy-based OOD detection method [2] further
increases the performance.

GradNorm While most of the methods in this section estimate OOD scores using by
directly using the output scores, the GradNorm [4] method uses the vector norm of gra-
dients extracted from a trained neural network as an OOD scoring function. Gradients
are back propagated from the Kullback-Leibler divergence (KL divergence) [41] between
the softmax output and a uniform distribution. For an ID image, the prediction scores
from the model tend to concentrate on one of the ground-truth classes and are therefore
less uniformly distributed. The idea behind GradNorm is that the gradient norm of the
Kullback-Leibler divergence will be higher for the in-distribution images than that for
OOD images. This information is leveraged to calculate an uncertainty score to detect
OOD images.

Competitive overcomplete output layer In [42], the authors propose the compet-
itive overcomplete output layer (COOL) neural network as a way to reduce the over-
generalisation of neural networks over regions far from the training data. In this method,
more than one output is allocated to each class to encourage the outputs to compete with
each other during the process of stochastic gradient descent. This in turn results in par-
titioning the input space making a narrower area for each class around the training data
distribution.

2.3.3 Feature Embeddings-based Methods

A feature embedding of an image extracted from a convolutional neural network (CNN)
is the representation of different aspects of that image as a numerical vector of a fixed
length. In general, the feature embeddings are extracted from the last (closest to the
output) convolutional layer of the CNNs. A few methods that use feature embeddings
rather than output scores for the task of OOD detection are mentioned in this section.

Deep k-Nearest Neighbours The authors in [43] introduce the deep k-nearest neigh-
bours method which performs kNN search on the input image’s features extracted at
multiple intermediate layers of the CNN. Using this information, and the distance of the
input image to the centroids (mean activation vector) of ID classes at each layer, a so-
called credibility score is calculated. For an input image, any classification performed by
the classifier must be supported by this credibility score. A very low credit score would
indicate that the input image can not be trusted to belong to any of the ID classes. As
an added advantage, the method can be used to answer why a certain image is classified
into a certain class. This interpretability can be achieved by finding which training images
were the nearest neighbours of the input image at each layer where kNN is performed.
The method is also effective in detecting adversarial images [10]. One of the drawbacks of
this method is that although the centroids for each ID class can be calculated offline, it
could be computationally expensive to calculate kNN at every layer (especially with deep
networks).
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Distance to the k-nearest neighbours Using the k-nearest neighbours concept, [6]
presents ‘Out-of-Distribution Detection with Deep Nearest Neighbours’. The method
makes use of the normalised feature embeddings extracted from the penultimate layer of
the CNN. For an input image x, the method computes the Euclidean distance between the
normalised feature vector of x to all the normalised feature embeddings of the ID images.
The distances are sorted in ascending order to get the k-nearest neighbours. If the distance
to the kth neighbour is more than a predetermined threshold, the image is considered an
OOD image. The threshold is fixed to a value such that a high fraction of in-distribution
data is correctly classified. The authors also indicate that using the method with con-
trastive learning leads to a significant improvement in OOD detection performance. The
method is relatively new (published in June 2022) and utilises Facebook AI Similarity
Search (Faiss) library [44] for performing faster and more efficient kNN search.

Note on kNN-based methods While kNN has been used in many machine learning
applications, it has largely been overlooked for applications where the number of data points
and the number of features required to represent each data point is large. This is mainly
due to the computational and memory requirements for performing kNN. As the distance
from the test data points to all the training data points is calculated, kNN requires a lot
of computational resources. With large datasets, the time and memory requirements can
be prohibitive. (This is more crucial when distance metrics like Minkowski distance with
p =2 (Euclidean) and above are used, as they require finding the pth root). However, in
the last few years, multiple fast approximate methods have been developed for performing
kNN search, offering significant improvements in terms of speed and memory required.

Classification-Reconstruction learning Classification-Reconstruction learning algo-
rithm for open-set recognition (CROSR) [45] is a method that aims in learning feature
representations that can be used to detect OOD images while also classifying images within
ID classes accurately. The open-set classifier consists of two parts: a closed-set classifier
and an ‘unknown class’ detector. Both parts utilise a deep classification-reconstruction
network. The known-class classifier leverages the supervised learned predictions and the
‘unknown class’ detector uses a reconstructive latent representation. This enables the un-
known class detector to make use of a wider pool of features that may not be discriminative
for known classes. However, the authors’ implemented the method in the less used Chainer
Framework [46] making it less attractive to be used in this work.

Feature Reconstruction Error Using PCA The authors in [5] propose a fast feature
reconstruction error (FRE)-based method for OOD and anomaly detection. This method
is based on modelling the sub-space of the feature embeddings extracted from a CNN
by applying linear principal component analysis (PCA) on them. In this approach, a
set of ID images’ feature embeddings are extracted from an intermediate (usually the
penultimate) layer of a CNN. A PCA model learns to reduce these feature embeddings into
feature vectors of a lower dimension as well as reconstruct those reduced feature vectors
back to their original dimensions. During the inference (OOD detection) phase, the input
image’s feature embedding is reduced and reconstructed using this PCA model and a
FRE is calculated. As the PCA model has been learnt the reduction and reconstruction
transformations only using ID images, a higher FRE would mean that the input image
belongs to OOD. This FRE approach can be followed either by training a single PCA
model on the whole ID dataset or using a PCA model for each class in the ID dataset.
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Furthermore, the authors also experiment with this approach with non-linear methods like
kernel PCA.

2.3.4 Training-based Methods

Minimum Others Score The method in [47] introduces a new scoring function called
minimum others score (MOS). The idea behind this method is to decompose the large
semantic space into smaller groups of subspaces which represent similar concepts of an
image (for instance, all the visually similar Fungi classes could be grouped into a group,
while all the butterflies into another). This group-based learning is done as a training
process. For each group, apart from the individual classes in it, an ‘others’ class is also
added. During the forward pass, a confidence score that the image belongs to a certain
class of the subgroup as well as to this “others” class in the subgroup is calculated using
MOS. If an input image gets a high confidence score (greater than a threshold) to be in
the “others” class in all the groups, the image is predicted to be an OOD image.

tWiSARD In [48], the authors propose a method using WiSARD [49], a weightless
neural network model. In WiSARD, for a given input, a fitness score indicating how well it
fits into each class is calculated. The input is assigned to the class for which it received the
highest fitness score. Using this WiSARD model, the similarity (or fitness score) between
the observations from training data and the known classes (in ID) is calculated to define
the boundaries between each known class. During the test time, the input‘s fitness score
is then used to estimate the probability of it not belonging to any of the known classes.

CIDER In [50], the authors propose CIDER, a Compactness and DispErsion Regularized
learning framework for OOD detection. The objective is to make different classes relatively
far apart while making the samples within each class form a compact cluster. This is done
in a hyperspherical space with the goal of having a high angular distance between clusters
of classes. The authors combine a new dispersion loss (for inter-class dispersion) and a
compactness loss (for intra-class compactness) during the training phase to achieve this.

Class Conditioned Auto-Encoder The class conditioned auto-encoder for open-set
recognition (C2AE) [51] method uses auto-encoders and a new training procedure split
into two sub-tasks: closed-set classification and open-set identification. The first half of
the method is an auto-encoder and which feeds its output to a classifier. During the first
phase of training, both the encoder and the classifier are trained to reduce the loss on
multi-class classification ID images. In the second stage of training, the encoder with
fixed weights and the decoder are trained to perfectly and poorly reconstruct the feature
embeddings of ID and OOD images respectively. During the inference stage, apart from
the classification probabilities by the classifier, a reconstruction error is calculated for each
image using the encoder-decoder pair. If this reconstruction error is higher than a set
threshold, the image is considered to be from OOD.

Outlier Exposure In [39], the authors introduce an Outlier Exposure method which in
a simple and effective way can improve existing OOD detection methods. This is achieved
by learning effective heuristics for detecting OOD inputs by exposing the model to OOD
examples. This, supposedly, makes the model more aware of the inliers, thus learning a
more conservative concept of the inliers and hence being able to discriminate the OOD
inputs. However, in order to select these outlier examples, it is required to estimate the
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distribution from which OOD images can appear during the test phase. This is not always
practical.

Self-Supervised Learning with Auxiliary Rotation Loss In [52] the authors train
a classifier with an auxiliary self-supervised rotation loss for OOD Detection. The method
is based on the observation that the maximum softmax probability maxcP (y = c|x) for an
input x is higher for in-distribution (ID) input than for OOD input. Post training with the
loss, the images from the ID test set and the OOD set are scored using the Kullback-Leibler
divergence [41]. These scores can be compared with a threshold to classify the images as
ID or OOD. Although the performance of the methods is similar to existing methods, the
authors suggest that adding the self-supervised auxiliary rotation loss to existing OOD
detection methods can further increase their performances.

Posterior sampling-based outlier mining The posterior sampling-based outlier min-
ing (POEM) framework for OOD detection is introduced in [53]. POEM selects the most
informative outlier data during the training which can help a classifier estimate a deci-
sion boundary between ID and OOD. The subset of outliers is selected from the auxiliary
outlier set using Thompson sampling in an action-reward optimisation process to build
this decision boundary. Although the results are comparable with SOTA methods, the
requirement of such a so-called auxiliary outlier set is the main drawback of the method.

Open Long-Tailed Recognition The open long-tailed recognition (OLTR) [15] method
deals with open-set recognition in long-tailed and open-ended distributions. This training
method handles imbalanced classification, few-shot learning, and open-set recognition. It
uses two concepts to do this: dynamic meta embeddings and modulated attention, for
transfer learning between head and tail and discrimination between head and tail respec-
tively. The dynamic meta embedding, in turn, is made up of two features: the direct
feature from the input image and a memory feature inspired by meta-learning. The direct
feature is used to keep the centroids for each class as far as possible. The memory fea-
ture captures visual concepts from training classes, retrieved from memory with a much
shallower model. For differentiating the ‘head classes’ from the ‘tail classes’ as well as
the open set classes, the concept of modulated attention [54] is adapted. Although the
method is complicated and requires 2 stages of training the classifier, the method is the
most promising for datasets having a long-tailed distribution.

2.3.5 Generative Methods

In the methods discussed above, while most of the methods use only the knowledge from
ID images, a few methods need examples of OOD images to estimate the ID boundaries. In
most of the OOD detection tasks, a few OOD examples can never be enough to generalise
the out-of-distribution. In this section, the methods that try to overcome this by generating
OOD images for approximating the OOD are presented.

Generative OpenMax The authors, in [55], present the Generative OpenMAX (G-
OpenMAX) method which extends the work [35] through novel class image synthesis using
GANs. The idea is that by generating the OOD images, the decision boundary between ID
images and OOD images can be better estimated using the knowledge of both distributions.
This leads to a better balance between open space and closed classification space. The
OOD images are generated using a Generative and Adversarial Network (GAN) [56] and
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are grouped into a new class. The classifier is trained with a set of known classes (ID
images) along with an additional ‘unknown class’ consisting of OOD images. The rest of
the method is similar to the OpenMAX method [35].

The work lays out multiple fundamental concepts for artificially generating images for
the unknown class. The images generated have to be highly distinct compared to the
images from the known classes while being general enough to represent as much open
space as possible. The authors also suggest that mixing parts (or features) of images from
multiple known classes is a good approximation to generate an image of an ‘unknown
class’. Doing so will result in an image that is still likely in the same domain and still
does not belong to any of the originally known classes (of ID). Since all known classes in a
given dataset are encoded by one-hot vectors, a new class image can be generated by (and
represented through) a linear combination of these known classes in latent space. However,
additional filtering is required to filter out the generated images that are similar to images
of a known class. Hence, these generated images are inferred on another classifier that
has been trained already on known classes, and only the incorrectly predicted images are
selected as candidates for the k+1 class for training.

There are multiple limitations of this method. First, the methods assume only a tiny
subspace of the open set by generating unknown class images using known classes. Second,
the authors tested the method only on simple monochrome datasets containing digits and
alphabets (MNIST [57] and HASYv2 [58]). More importantly, the authors mention that
the generation of unknown class images through this method needs at least 500 images per
class which is not always possible, especially in a biodiversity dataset.

Open Set Learning with Counterfactual Images In [59], the authors propose a
new data augmentation technique, called counterfactual image generation for open-set
recognition (OSRCI). This method uses GANs to artificially generate images that closely
resemble the images in ID classes but belong to OOD. The classifier is then trained and
tested with an additional class containing these images. A similar method, although with
a few modifications, is followed in [60].

The instability in the training of GANs, the time taken for them to converge and
the low possibility of reproducible results are the major limitations of using the GAN-
based generative OOD detection methods. Moreover, most GAN-based methods are highly
dependent on the reconstruction error for OOD detection, based on the assumption that an
in-distribution image produces a lower reconstruction error than an OOD image. However,
this idea does not work well to produce high-resolution images.

OpenGAN The OpenGAN method [61] deals with reducing the instability involved
in the training GANs for generating high-resolution novel OOD images. While most of
the previous GAN-based works concentrated on training the generator to produce the
best OOD images, in this method, the focus is to get the best discriminator to learn to
discriminate ID vs OOD images. The method uses a combination of outlier images and
generated fake images to train a discriminator that can identify the novel (or ‘unknown’)
OOD class. More importantly, the lightweight discriminator trained using the OpenGAN
method can be retrofitted to the top of an existing multi-class classifier.

Tempered Mixup Data Augmentation One of the generative methods which do not
use GANs is presented in [62]. The methods combine a novel form of the Mixup data
augmentation [63] technique with an auxiliary loss function. The Mixup augmentation
generates novel OOD images and the loss function makes the model to be less confident
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towards images from this novel class. However, the method exceeds in performance only
when compared to the methods that use an explicit novel class as an additional class for
training.

2.4 Uses of OOD detection

Apart from making computer vision models safe, reliable and robust, a few more uses of
out-of-distribution (OOD) detection are:

• Saving energy on edge devices: On an energy-constraint edge device, uploading
every image taken to the cloud can be avoided to save energy. On such devices, using
an OOD detector to identify and reject OOD images can help to prevent uploading
images that are not worth classifying.

• Prevent adversarial attacks: Adversarial attack [11] refers to the intentional
manipulation of input images intending to cause misclassification by the classifier.
A few OOD detection methods such as [43] are proven to be useful for detecting
adversarial input images.

• Cleaner datasets: OOD detection methods can be used to identify images that
are corrupted or are outliers in a set of images. This can be applied while collecting
images for making a dataset or on existing datasets to identify mislabelled or unusable
images.

• Active learning: OOD detection can be used to select the most informative samples
from a set of images for incremental learning of a classifier. Selecting such samples
can improve the training efficiency of a classifier.

• Trust in AI systems: Having a reliable classifier that is more ‘aware’ of the open-
world scenario and which makes reliable predictions can increase the trust in AI
systems that use these classifiers.
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Chapter 3

Out-of-Distribution Detection
Methods

This chapter explains the out-of-distribution (OOD) detection methods used in this re-
search on which various OOD detection experiments are performed. The list of the selected
methods from the literature and the criteria used to select these are presented in Section
3.1. The selected methods from the literature and the proposed method developed in this
research are explained in detail in 3.2.

3.1 Selecting Methods From Literature

A few of the OOD detection methods from existing literature are selected for experimen-
tation in this research. The following criteria are used to shortlist the methods:

• Retrofittable to existing classifiers Retrofitting OOD detection methods to
existing classifiers is useful in many practical scenarios where a classifier is already
trained and deployed. This can also save time and computational resources as it
eliminates the need to train a new model. This can be particularly beneficial if the
model has to be trained on large datasets.

• Do not require OOD images for calibration An OOD detection method that
requires OOD images to calibrate might show high accuracies when tested on similar
OOD images. In an open-world setting, a classifier can encounter OOD images that
are very different from the ones the model has been calibrated on. Furthermore,
making a set of calibration images that can generalise any OOD can be impractical.

• Different from each other While shortlisting the methods, it also made sure
that no two methods use similar concepts/assumptions to assign an OOD score for
an input image. It also ensured that there is a spread between methods that use
feature embeddings as well as the methods that primarily use output scores for OOD
detection.

Table 3.1 shows the OOD detection methods shortlisted by following the above crite-
ria, and a proposed OOD detection method called Entropy weighted nearest neighbour’s
distance (EnWeDi). The methods in the same category follow similar concepts of OOD
detection and can be considered variations of one another. The results for the methods in
bold are presented as the main set of results. The remaining methods are used in compar-
ison experiments to gain deeper insights into OOD detection. All the methods and their
variations are explained in detail in the next section (Section 3.2).
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Type Concept OOD Method Shortform
used in this thesis

Relevant
literature

O
ut

pu
t

sc
or

e-
ba

se
d

Probabilities from
softmax distributions

Baseline using
maximum softmax probabilty Baseline MSP [1]

Energy function
on output scores

Prediction probabilities’
energy-based method Energy [2]

Input perturbations
and temperature
scaling

Input perturbation-based
ODIN ODIN [3]

Gradients from
neural network

Gradient space-based
GradNorm GradNorm [4]

Fe
at

ur
e

em
be

dd
in

gs
-b

as
ed

Feature
reconstruction
error (FRE)

Global (entire ID dataset)
PCA based FRE method Global PCA FRE [5]

Per-class PCA based
FRE method Per-class PCA FRE [5]

Distance in
feature space

Distance to
k nearest neighbours DkNN [6]

Distance to
k nearest class centroids Centroid-DkNN concept from [29]

Density in
feature space

Simplified
Local Outlier Factor SLOF concept from [7]

Uncertainty and
distance in feature space

Entropy weighted
nearest neighbour’s distance EnWeDi proposed method

Table 3.1: List of OOD detection methods used in this research. The results for
the methods in bold are presented as the main set of results.

3.2 Out-of-Distribution Detection Methods

3.2.1 Maximum Softmax Probability : Baseline Method

A simple probability threshold-based method is proposed in [1] and has been used as a stan-
dard baseline for out-of-distribution (OOD) detection in several works ([6],[39],[4]) in the
literature. The idea is to use the (softmax) output probabilities of a trained classification
model to determine whether an input image is in-distribution (ID) or out-of-distribution
(OOD). The method is based on the assumption that for a CNN trained on the ID dataset,
the images from ID, in general, tend to have higher maximum probabilities. In contrast, for
an out-of-distribution (OOD) image, the maximum of predicted probabilities is assumed
to be lower, allowing for its detection. Figure 3.1 shows this idea. This method is called
maximum softmax probability (MSP) and is used as the baseline method in this work.

The MSP is used as the OOD score (mentioned in Equation 2.1) and is given by:

MSP (x) = maximum({Si(x) : i = 1, . . . , C)}) , (3.1)

where Si(x) is the softmax probability of an input image x belonging to the ith class (out
of C classes). If the maximum softmax probability (MSP) is below a certain threshold, the
image is considered OOD.

Being simple and computationally not expensive, the baseline method can be easily
integrated with an existing classification model. However, it is also often observed that
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Figure 3.1: Assumption behind the maximum softmax probability-based baseline
method

classifiers assign high softmax probabilities to OOD images and hence be woefully incorrect
[10, 1, 11, 12]. Therefore, the underlying assumptions made are not always valid, making
the baseline method less robust for OOD detection, thereby revealing room for better
methods.

Variations in baseline methods Apart from the maximum softmax probability, the
margin of the softmax probabilities i.e., the difference between the highest and the second
highest softmax probability is also considered as OOD detection scores. Furthermore, the
authors in [64] show that applying the concepts of these baselines on the logits instead of
the softmax probabilities can, at times, give higher OOD detection accuracies. The results
with these variations are compared in Section A.3 in the appendix.

3.2.2 Prediction Probabilities’ Energy-based Method

As mentioned in the baseline methods (Section 3.2.1), softmax probabilities often suffer
from overconfident posterior distributions for out-of-distribution (OOD) images [10, 1, 11,
12]. Hence, the OOD detection methods that rely on softmax probabilities also suffer from
this phenomenon. The Energy-based OOD detection method from [2] circumvents this by
using energy scores. The idea behind the Energy-based OOD detection method is to build
an energy function that maps an input image x to a single value called energy. The energy
value should be fairly similar among in-distribution (ID) images and OOD images while
being significantly different between the two. Figure 3.2 shows this idea.

The energy-based OOD detection score is presented below. Consider a CNN classifier
G trained on C classes, which maps an input image x to a set of C logit values using a
function g(x). Then, the free energy E(x;G) is given by:

E(x;G) = −T · log
C∑
i=1

egi(x)/T , (3.2)

where gi(x) indicates the logit corresponding to the ith class for the input image x. T is
the Temperature parameter to perform temperature scaling [36] on logits. The concept of

20



Figure 3.2: Concept of using an energy function for out-of-distribution detection

Temperature scaling is explained in Subsection 3.2.3.

3.2.3 Input Perturbation-based Method: ODIN

ODIN (Out-of-DIstribution detector for Neural networks) [3] is a method for out-of-distribution
(OOD) detection that combines two concepts - temperature scaling [36] and adding small
perturbations to the input. It was observed that adding small perturbations to the input
images along with temperature scaling the output logits can make the ID and OOD images
more distinguishable. The concepts of temperature scaling and adding perturbations as
well as combining them to develop the ODIN method are explained below.

Temperature scaling Temperature scaling [36] technique is used to calibrate the output
probabilities produced by a neural network by applying a so-called ‘temperature’ parameter
T to the logits before the softmax function is applied to them. Consider a neural network
G trained to classify C number of classes and gives output logits g(x) = (g1, ..., gC) for an
input image of x. The softmax probabilities with a temperature scaling factor of T are
calculated as:

Si(x;T ) =
egi(x)/T∑C
j=1 e

gj(x)/T
. (3.3)

When T > 1, the softmax probabilities become smoother and less peaky, resulting in a less
confident and better-calibrated classifier. As mentioned in [36], performing temperature
scaling makes the softmax probabilities to be more reliable (better calibrated).

Input perturbations In addition to temperature scaling, small perturbations are added
to an input image to increase the maximum softmax score. These small perturbations tend
to have a stronger effect on the in-distribution images than on out-of-distribution images,
making it easier to detect the latter. The perturbations are computed by back-propagating
the gradient of the cross-entropy loss with respect to the input image. The technique is
adapted from [65] where perturbations are added to the inputs to create adversarial images.
Adding perturbations to an input image x is given by:

x̃ = x− ε · sign(−∇x log(Sî(x;T )) , (3.4)

where Sî is the maximum softmax probability for x and ε is the perturbation magnitude.
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Combining input perturbations with temperature scaling The following steps
explain the ODIN method :

• Step 1: Infer input image Infer the input image on the given classifier G without
any perturbations to get the output logit scores. The classifier, (in this case, a CNN
model) was trained on an in-distribution dataset.

• Step 2: Temperature scaling On the output logits, apply temperature scaling
using Equation3.3 .

• Step 3: Generate an image with perturbations Apply softmax on logits from
step 1 and calculate the maximum softmax probability and calculate the cross entropy
loss on the logits obtained from step 2. Apply Equation3.4 to get x̃, the input image
with perturbations added.

• Step 4: Prediction probabilities for x̃ Apply steps 1 and 2 on the image with
perturbations (x̃ ) and apply softmax on the output scores obtained. The maximum
of this calibrated softmax probabilities is used as the OOD score for the input image
x.

The OOD score so obtained is compared with a threshold to determine if the input image
x is in-distribution or out-of-distribution. The general approach to threshold calculation
is explained in Subsection 2.1. The parameters T and ε are optimised while determining
this decision threshold.

3.2.4 Gradient Space-based Method: GradNorm

GradNorm [4] utilises the gradients extracted from the output layer of a neural network to
calculate the out-of-distribution (OOD) score. Specifically, gradients are backpropagated
from the Kullback-Leibler divergence (KL divergence) [41] between the softmax output
and uniform distribution. The idea behind GradNorm is that for an in-distribution image
the prediction scores tend to be high for only one of the classes. This makes the prediction
scores far from being a uniform distribution, making the aforementioned Kullback-Leibler
divergence large. The gradient norm of the Kullback-Leibler divergence would be higher
for an ID image than that for an OOD image.

GradNorm score calculation For a given input image x, consider a classifier G which
outputs predicted scores q = {qi}. Then the Kullback-Leibler divergence (KL divergence)
[41] can be used to quantify how close the predicted scores {qi} are to a reference set of
scores given by p = {pi}. This is given by

DKL(p||q) =
∑
i

pilog(
pi
qi
) = −

∑
i

pilog(qi) +
∑
i

pilog(pi) = H(p, q)−H(p) . (3.5)

In the above equation, H(p,q) is the cross entropy between the distributions p and q.
The reference set of scores p is set to be a uniform distribution given by p = u =

[ 1C ,
1
C , ...,

1
C , where C is the number of classes the classifier has been trained on. The

output prediction scores (logits) of the classifier are represented as g(x) = (g1, ..., gC) for
an input image of x. Furthermore, the softmax function is applied to these prediction
scores, along with temperature scaling [36]. Now Equation 3.5 becomes :

DKL(u||softmax(g(x))) = − 1

C

C∑
c=1

log
egc(x)/T∑C
i=1 e

gi(x)/T
−H(u) (3.6)
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where the first term is the cross-entropy loss between softmax prediction probabilities and
the uniform distribution u.

For the GradNorm score, DKL is differentiated with respect to the set of network
parameters at the final layer. If the set of network parameters is w, then the OOD score
is given by :

s(x) =∥ ∂DKL(u||softmax(g(x)))
∂w

∥p , (3.7)

where ∥ . ∥p denotes the Lp norm.
GradNorm can be implemented by calculating the cross-entropy loss between the pre-

dicted softmax probabilities and a uniform vector as the target probabilities.

3.2.5 Feature Reconstruction Error-based Methods

Feature reconstruction error (FRE) methods for out-of-distribution (OOD) detection work
by reconstructing the features of an image using a fitted transformation and then cal-
culating the reconstruction error. The reconstruction error is used as the OOD score in
Equation 2.1 to determine if an input image belongs to ID or OOD. The assumption is
that samples from the in-distribution will have a low reconstruction error, while samples
from OOD distributions will have a high reconstruction error.

Principal component analysis- A brief introduction Principal component anal-
ysis (PCA) [66] is a dimensionality reduction technique that is used to transform high-
dimensional data into a lower-dimensional representation while retaining a set fraction of
original information. PCA works by identifying the directions in the data that have the
highest variance (i.e., the directions that capture the most information about the structure
of the data). These directions are called the ‘principal components’, and the transformed
data is a linear combination of these components.

The process of PCA can be summarised as follows:

• Standardising of data The data is centred by subtracting the mean from each
feature. This ensures that the first principal component is aligned with the direction
of maximum variance, rather than the direction of the mean.

• Covariance matrix calculation The covariance matrix is calculated to capture the
relationships between the features, i.e., how the features of the data set are varying
from the mean with respect to each other.

• Eigenvalue decomposition The covariance matrix is decomposed into its eigenval-
ues and eigenvectors. The eigenvectors represent the directions of maximum variance,
and the eigenvalues represent the magnitudes, i.e., the importance of the respective
variances.

• Dimensionality reduction The number of dimensions is reduced by selecting the
top k eigenvectors, where k is the desired dimensionality of the transformed data.

3.2.5.1 Global Principal Component Analysis Feature Reconstruction Error
Method

The global PCA-based feature reconstruction error method is based on modelling the sub-
space of the intermediate features produced by a DNN. In this approach, the PCA model
trained on in-distribution images is used to reduce the dimensionality of an input image’s
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feature embedding and produce a feature embedding with fewer dimensions. The same
PCA model is used to reconstruct the original feature from its low-dimension representa-
tion. Feature reconstruction error (FRE) is the Euclidean distance between the original
feature and its reconstructed version. If the reconstruction error exceeds a certain thresh-
old, it is assumed that the input data is an out-of-distribution sample.
This idea is shown in Figure 3.3.

Figure 3.3: Concept of using feature reconstruction error using PCA for OOD
detection. PCA and PCA−1 in the figure are the forwards and inverse transforma-
tions for dimensionality reduction respectively

The following steps explain the Global PCA-based FRE.

• Step 1: Feature Embeddings Extraction Feature embeddings of the images
from the training split of the ID dataset are extracted from the penultimate layer
of the deep neural network. The deep neural network already trained to perform
the image classification task on the ID dataset can be used. However, for tasks like
anomaly detection, a DNN pre-trained on ImageNet can be used as well.

• Step 2: PCA model Training A PCA model is trained to perform linear di-
mensionality reduction on these feature embeddings while retaining the set level of
variance. The fraction of the variance of the original data that should be retained
in the reduced feature embeddings is a hyperparameter. During this training, the
PCA model learns the transformation that maps a feature embedding into a lower-
dimensional one. In other words, it learns to model the subspace of the feature
embedding. During this process, the PCA model, learns the inverse transformation
as well, i.e., to ‘reconstruct’ a lower dimensional feature embedding into its original
dimensionality.

• Step 3: Test phase During the testing phase, the feature embedding fx of the
input image x is extracted as mentioned in step 1. To this feature embedding, the
dimensionality reduction transforms τ of the trained PCA model is applied to get
the reduced feature embedding f_redx. f_redx has fewer dimensions than fx. The
inverse transformation τ−1 is applied on this reduced feature embedding to produce
the reconstructed feature embedding f_recx. f_recx is of the same dimensions as
the original feature embedding fx. The FRE can then be calculated as the l2 norm of
the difference between the original fx and reconstructed feature embedding f_recx.
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FRE is given by the equation:

FRE(x) = ∥ fx − τ−1(τ(fx)) ∥2 . (3.8)

The FRE is directly used as the OOD score for image x. The PCA model has learned
the forward and inverse transformations using the images from the ID dataset. Hence, the
assumption is that the same transformations cannot reconstruct the feature embedding of
an OOD image, leading to a higher FRE.

In this method, during the training of the PCA model, all the images (irrespective of
the classes they belong to) are considered as a single entity. Hence global modelling is
done by the PCA model, where the forward and inverse transformations are learned for
the images in the training set. This approach can be useful when the number of images
per class is relatively small to the number of dimensions of the feature embeddings. It can
also be used when there the class labels are not available.

3.2.5.2 Per-Class Principal Component Analysis Feature Reconstruction Er-
ror Method

While global modelling of the entire training set into a single PCA model has its merits, it
may not adequately model the sub-spaces of the individual classes present. In this method
of FRE, each PCA model is trained on the feature embeddings of a single class.

The method follows similar steps as the Global PCA FRE method with the following
changes:

• Step 1:Extracting the feature embeddings Same as done for the Global PCA
FRE method.

• Step 2: Training the PCA models The feature embeddings are grouped based on
their respective classes. A PCA model per each class is trained on feature embeddings
belonging to the respective class. The required variance to be maintained (or the
number of dimensions to have) in the reduced feature is kept constant across all the
models.

• Step 3: Test phase During the test phase, the feature embedding fx of an input
image x undergoes the reconstruction process through all the PCA models. The
feature reconstruction error (FRE) is calculated at all the PCA models. The lowest
of all the FREs is taken as the final OOD score.

3.2.6 Feature Embeddings’ Distance-based Methods

The core concept in all the distance-based methods is that the OOD samples are relatively
far away from a known set of ID samples in a feature embedding space. Samples are often
represented by the feature embeddings extracted from a model.

3.2.6.1 Short introduction to the k-nearest neighbours algorithm

K-nearest neighbour (kNN) is a machine learning algorithm for classification as well as
for regression and is often used due to its simplicity. The basic idea behind kNN in
a classification task is to assign a label to an unseen sample based on what its closest
neighbours (from the training/known set) are.

Here are the major steps involved in performing a kNN search:
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• Data preparation: The algorithm starts with a training data set, which contains
labelled data points. These labelled data points are represented in a space where
each dimension corresponds to a feature of the points.

• Distance calculation: To determine the closest neighbours of an unseen data point,
the algorithm calculates the distance between that data point and each of the data
points in the training set. The distance is usually calculated using a distance metric
such as Euclidean distance, Manhattan distance, or any other form of Minkowski
distance.

• k-nearest neighbours selection: The algorithm selects the ‘k’ number of data points
from the training set that is closest to the unseen data point, based on the calculated
distances. ‘k’ here is the number of neighbours to consider when making a prediction
and is a hyperparameter.

3.2.6.2 Deep k-Nearest Neighbours Method

The ‘deep k-Nearest Neighbours for OOD detection’ (DkNN) method presented in [6] is
based on the kNN algorithm. In this method, the kth nearest neighbour distance between
the feature embeddings of an input image and the images from the ID training set is
computed. This kth distance is compared with a threshold to determine if an input image
is OOD or not. Figure 3.4 shows the concept of this method.
The DkNN method uses the Facebook AI Similarity Search (Faiss) [44] - a library for
efficient similarity search for performing the kNN search, making it plausible to be used
for OOD detection even on large datasets.

Figure 3.4: Deep k-nearest neighbours method for OOD detection with an arbi-
trary k of 3.

The DkNN method is explained below:
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• Step 1: Feature extraction For each image in the training split of the in-distribution
dataset, the feature embeddings are extracted from the penultimate layer of a model.
The model was trained on the training set of the ID dataset.

• Step 2: Normalise feature embeddings The feature embeddings are normalised
by dividing each feature embedding vector by its respective 2nd-order vector norm
(vector Euclidean norm). Although not mandatory, it has been shown by the authors
of DkNN [6] that normalising feature embeddings lead to a significant improvement
in OOD detection.

• Step 3: Indexing the training feature embeddings The feature embeddings of
the training set images are indexed and added to the kNN search space using the
Faiss library. The dimensions of the search space are equal to the length of the feature
embeddings. Note that feature embeddings are not tagged with their respective class
labels. All the training set feature embeddings are treated as belonging to a single
set - in-distribution feature embeddings.

• Step 4: Setting the decision threshold As mentioned in Subsection 2.1, before
the test phase, a distance threshold is calculated. The threshold is set in such a
way that a large number (for example 95%) of a set of known in-distribution images’
distance to the k-closest image in the training set is below the threshold. The set of
validation images from the ID dataset can be used for this purpose.

• Step 5: Test phase During the test phase, the feature embedding of the test image
is extracted and normalised. A kNN search on the test image’s feature embedding is
performed which returns the distances to the k-nearest neighbours. These distances
are then sorted in ascending order and the last (kth) distance is picked as the OOD
score for the test image. The kNN search is performed using the Faiss library and
can be done on a GPU for faster execution.

• Step 6: Decision The kth distance is compared with the above-mentioned threshold.
If the OOD score of the test image is greater than the threshold, it is classified as an
OOD image.

This deep k-nearest neighbours method from the literature without any modifications
will be referred to as DkNN in short in this thesis document.

Variations of the deep k-nearest neighbours method Apart from using the distance
to the kNNs, the following metrics were also tested for suitability as OOD score in this
work :

• The mean of distances to the kNNs.

• Average of the distance to the nearest and farthest neighbour out of k neighbours.

• Other statistical representations such as mode, the median and standard deviation
on the distances to the k- nearest neighbours.

The DkNN method with these metrics as OOD score is compared in Table A.5 in the
appendix.
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3.2.6.3 Centroid-DkNN

The Centroid-DkNN is based on the concepts used in the nearest class mean (NCM)
classifier [29]. In this method, a per-class average of the normalised feature embeddings
is used instead of feature embeddings of all the images in the training set. Each averaged
feature embedding represents the centroid of the respective class. The other steps (steps 3-
6) remain the same as the DkNN method from the literature. The Centroid-DkNN method
is also called the k-nearest prototypical neighbours’ distance method.

This drastically reduces the number of feature embeddings in the kNN space. This
means that performing a kNN search is faster and requires less memory on the hardware,
making it appealing for OOD detection on low-power embedded systems. The concept
of using centroids (means) of feature embeddings from each class for OOD detection is
shown in Figure 3.5. Note that the labels of training data are required to calculate these
centroids per class. This can be done after the training of the classifier with the same
training data. However, once the centroids are found, during the test phase, the labels are
no longer required.

Figure 3.5: Using centroid of each class’s feature embedding for OOD detection.

3.2.7 Density-based Outlier Factor Methods

Methods that use only distance to the nearest neighbours for OOD detection might not
perform as expected when the different classes have varying levels of density clusters in
the feature space. For instance, in Figure 3.6, the feature embeddings of images from
various classes’ have varying levels of density in feature space. Both the points TI and
TO would have similar distances to their nearest neighbours. The feature embeddings in
C2, are relatively at a smaller distance from their respective nearest neighbours. However,
TO does not show this property with feature embeddings from C2. On the contrary, TI
and the feature embeddings in class C4 are located at similar distances to their respective
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nearest neighbours. In other words, TI and the feature embeddings in C4 have similar
densities in feature space. Hence it is more probable that TI might be an ID data point.
In this case, the point TO should have a higher score for OOD than that for TI. This can
be achieved using an OOD detection method that combines the density of the k-nearest
neighbours (kNNs) along with the distance to those kNNs.

Figure 3.6: An example of where using only the distance to the nearest neighbours
may not be useful in distinguishing between OOD image and ID image

3.2.7.1 Simplified Local Outlier Factor

A simplified version of the LOF algorithm [31] is mentioned in [7].
For a test image x, let fx be the normalised feature embedding. If the set of k nearest

neighbour feature embeddings (from the training set) of fx is given by Nxk
, then the

simplified LOF (SLOF) of fx is calculated as

SLOFk(fx) =

∑
fi∈Nxk

kdist(fx,k)
kdist(fi,k)

k
, (3.9)

where kdist(fi, k) is the distance between fi and its kth nearest neighbour. In this work,
it is the Euclidean distance between fi and its kth nearest neighbour.

The ratio kdist(fx, k)/kdist(fi, k) is a measure of the relative kth distance between fx
and fi and hence the simplified LOF is, in a way, measuring the average relative distance
between the feature embedding fx and its k neighbours.

Two other density methods - Local outlier factor (LOF) and Local distance-based
outlier factor (LDOF) were also evaluated in this work. However, to prioritise the most
relevant findings, these methods are moved to Section A.4 of the appendix.
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3.2.8 Entropy Weighted Nearest Neighbour Distance Method

For an OOD image that is visually similar to ID images, it was observed that the distance
between its feature embedding and the kth nearest neighbour (of feature embeddings from
the ID training set) is at times similar and a few times even smaller than that of an ID
image. In such cases, the underlying assumption of the DkNN method holds weak or does
not hold. Additionally, in such cases, finding the distance threshold above which an image
is classified as OOD becomes difficult.

To overcome this limitation of the DkNN method, a kNN-based non-distance metric is
explored initially in this research. In this regard the following hypothesis is made: For an
OOD image, even though the distance to its k-nearest neighbours may be comparable to that
of an ID image, the ID class to which k-nearest neighbours belong is diverse and spread
out. While, for an ID image, the majority of the k-nearest neighbours belong usually to a
single class (or relatively fewer classes). This is illustrated in Figure 3.7. In this figure, the
distance to kth nearest neighbour is similar for ID and OOD feature embedding. For the
ID feature embedding, most of the nearest neighbours (4 out of 5) belong to a single class
of ID, while for the OOD feature embedding the nearest neighbours are (almost uniformly)
spread across 3 different classes of ID.

Figure 3.7: Hypothesis behind using entropy among k-nearest neighbours in fea-
ture space for OOD detection. ID and OOD image’s feature embedding being at
similar distances to their respective kth nearest neighbour in feature space. In such
cases, using the kNN distance as the OOD score is not useful. Notice that the near-
est neighbours for OOD feature embedding are spread across 3 different classes,
while for ID most of them belong to a single class.
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Initial idea: The k nearest neighbour entropy OOD detection method From
the above-mentioned observation, the diversity in the nearest neighbours of a test image’s
feature embedding, if quantified, can be used as an OOD score. Based on this idea, the k
nearest neighbour entropy (KENT) OOD detection method is proposed. In this method,
following a kNN search for a test image’s feature embedding, a measure of uncertainty on
the classes to which the k-nearest neighbours belong is calculated using Shannon entropy
[67]. In general, entropy gives a measure of the amount of uncertainty or randomness in
a probability distribution. For OOD detection, the k nearest neighbour entropy (KENT)
between a test image’s feature embedding fx and its k nearest neighbours in feature space
is calculated by:

KENT k(fx) = −
∑

c∈CTk

nc
k
logk(

nc
k
) , (3.10)

where CTk
denotes the set of unique classes the k-nearest neighbours of fx belong to and

nc is the number of neighbours (from the set of k-nearest neighbours) belonging to the
class c (from the set of CTk

classes).
The assumption is that for an ID image x, the KENT (fx) would be low indicating

that it likely belongs to a particular class in the ID, and vice versa for an OOD image.
An advantage of the KENT method is that the OOD scores are bounded in the range

of [0,1]. A bounded OOD score is also easier to interpret, as the maximum and minimum
OOD scores are known. Furthermore, a heuristic requirement based on what makes an
input ID or OOD can be easily translated into an OOD score threshold without performing
any experiment. For instance, consider a simple heuristic such as "classify an input image
as ID if it has no more than two unique classes in the set of 9 nearest neighbours in the
feature space". With the KENT method, this can be mapped into OOD scores of [0, 0.31]
for ID and (0.31, 1] for OOD.

Entropy weighted nearest neighbour distance method The entropy calculated
from Equation 3.10 can be already used as an OOD score. However, a more robust OOD
detection method that leverages combining the distance information with the entropy of
the nearest neighbours of a test image’s feature embedding is devised. This proposed
method is called the Entropy weighted nearest neighbour’s distance (EnWeDi).

In a set of k-nearest neighbours of a fx, the EnWeDi considers distance for the first kd
nearest neighbours and the entropy of the remaining neighbours. However, this leads to
having two hyperparameters - kd and k. An assumption that the distance to the nearest
neighbour is already a robust estimation of the OODness of x can be made. Hence the
hyperparameter kd can be set to 1 thereby reducing the number of hyperparameters to 1.
With this assumption, the EnWeDi for a feature embedding fx of an input image x is given
by:

EnWeDik(fx) = kdist(fx, 1) ∗ (1 + kent∗(2,k)(fx)) , (3.11)

where kdist(fx, 1) is the distance between fx and its nearest neighbour in feature space.
kent∗ is a modification of the kent from Equation 3.10 and is given by

KENT ∗
ke,k(fx) = −

∑
c∈CTke,k

nc
k − ke + 1

logk(
nc

k − ke + 1
) , (3.12)

where ke indicates from which number of nearest neighbours onwards KENT must be cal-
culated. As mentioned above, it is set to 2 for the EnWeDi method. CTke,k

is the set of
unique classes that the k-nearest neighbours of fx excluding the first ke − 1 neighbours
belong to. nc is the number of neighbours belonging to the class c (from the set of CTke,k
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classes).

Intuition behind the EnWeDi method In practice, the EnWeDi performs a kNN
search in the feature space just like the DkNN method. After the kNN search, the distance
to the nearest neighbour is taken and the entropy (kent∗) of the remaining neighbours
excluding the nearest neighbours is calculated. Intuitively, for a feature embedding fx,
the EnWeDi method increases the distance to the nearest neighbour by scaling it up by a
factor in the range of [1,2] (kent∗ ranges from 0 to 1). Similar to the kent value, for an
OOD image, the value of kent∗ is assumed to be usually higher. Hence the distance to the
nearest neighbour, which is also assumed to be usually higher for OOD, is scaled up with
a factor >1. However, for an ID image, the kent∗ value is assumed to be smaller than that
of an OOD image. In such cases, the distance (which is assumed to be smaller for an ID
input) is ‘weighted’ with a relatively smaller factor. It is to be noted that the kent∗ can
be as low as 0 as well, in which case, the OOD score is the same as the distance to the
nearest neighbour of fx. In this way, the EnWeDi aims to overcome the limitation of the
DkNN method whose OOD scores are solely based on distance. The hypothesis behind the
EnWeDi method is validated in Section 6.4.

It is to be noted that the advantage of using the Entropy weighted nearest neighbour
distance as an OOD score can be seen only if k > 2. When k = 1, the kent∗ part in
Equation 3.11 is set to 0 as the set of points (feature embeddings) on which entropy is to
be calculated is empty. When k = 2, kent∗ becomes 0 irrespective of the input. Hence, for
k ≤ 2, the EnWeDi method is the same as the DkNN method with k = 1.
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Chapter 4

Methodology

Section 4.1 explains the proposed approach in which the difficulty of an out-of-distribution
detection problem is quantified in this work. The construction of in-distribution (ID) and
out-of-distribution (OOD) datasets to test the methods under various aspects of OOD
detection is described in Section 4.2. Section 4.3 describes the experiment setup and
Section 4.5 lists the set of experiments performed to answer the research questions. The
metrics on which the OOD detection methods are evaluated are presented in Section 4.6.

4.1 Domain Similarity Score as a Measure of OOD Detection
Difficulty

In this work, the out-of-distribution (OOD) detection methods are evaluated on various
OOD datasets each having a different level of OODness from the in-distribution (ID)
dataset. An OOD dataset, depending on the degree of domain dissimilarity with the ID
dataset, can be categorised into ‘near-OOD’, ‘intermediate-OOD’ or ‘far-OOD’. An image
from the ‘near-OOD’ dataset is highly similar (visually) to the ID images, making it difficult
for the OOD detection methods to detect them.

In this work, the concept of domain similarity from [68] is used to numerically quantify
how visually dissimilar an OOD dataset is, concerning the ID dataset. A thorough search
of the relevant literature yielded little to no OOD detection research which used domain
similarity from [68] as a measure of OOD detection difficulty.

Domain similarity of two datasets S, T from different distributions can be treated as
the least amount of total work needed in moving all the images of dataset S to match the
distribution of dataset T . This definition of domain similarity between an in-distribution
dataset S and an out-of-distribution dataset T is measured by the earth mover’s distance
(EMD) [69] between the feature embeddings of the images from the two datasets. It is
calculated as follows:

• Distance between two classes The distance between two classes m (from dataset
S) and n (from dataset T ) is calculated as the Euclidean distance between their
centroids (mean of feature embeddings). If the set of images in m and n classes is
Im and In, and the number of images in m and n classes is represented by |Im| and
|In| respectively, then the Euclidean distance between the centroids of classes m and
n is given by:

d(m,n) = ∥
∑|Im|

i=1 fImi

|Im|
−

∑|In|
i=1 fIni

|In|
∥
2

, (4.1)
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where fImi
and fIni

are the feature embeddings of the ith image in the classes m and
n respectively.

• Distance between two datasets If there are M and N number of classes in
datasets S and T respectively, then the distance D(S, T ) between them is given
by :

D(S, T ) =

∑M
i=1

∑N
j=1 Fi,j d(mi, nj)∑M

i=1

∑N
j=1 Fi,j

, (4.2)

where d(mi, nj) is the Euclidean distance between the ith class mi of the dataset S
and jth class nj of the dataset T and is given by Equation 4.1. The optimal flow
Fi,j corresponds to the least amount of total work by solving the EMD optimisation
problem [69].

• Domain similarity The domain similarity ψ between two datasets S and T with a
distance D(S, T ) between them is given by:

ψ(S, T ) = e−γD(S,T ) , (4.3)

where γ is a scaling factor for the distance and is a hyperparameter. It is set to 0.01
in this work.

The feature embeddings used for domain similarity need to be capable of representing
the images’ high-level information in an all-encompassing unbiased manner as much as
possible. The CNN from which the feature embeddings are extracted must have been
trained on a wide varied range of image classes. Hence, for the calculation of domain
similarity score, the feature embeddings are extracted from the penultimate later (with
global average pooling) of an EfficientNetV2-M [70] trained on the large dataset ImageNet-
21K [8].

4.2 Preparing the In-Distribution and Out-of-Distribution Bio-
diversity Datasets

4.2.1 Imbalance Factor of a Dataset

In many real-world scenarios, the occurrence of certain objects is less frequent than others.
Hence class imbalance is an inherent property in the real world (and not just of biodi-
versity). Hence before preparing the in-distribution (ID) and out-of-distribution (OOD)
datasets, it is important to quantify them to build the right set of OOD experiments on
them and to understand any patterns in their OOD detection results.

The ID dataset is measured in terms of dataset size (number of images) and class
imbalance. In this work, the imbalance factor is used to quantify the disproportion between
the number of images per class in an in-distribution dataset. The calculation of the class
imbalance factor is explained below.

The imbalance factor is adapted from the Shannon diversity index-based balance factor
used in [71] and is given by:

imbalance_factor (D) = (1−
−
∑K

i=1(
|ci|
n log(

|ci|
n ))

logK
) , (4.4)

where n is the total number of images in the dataset D, K is the number of classes and
|Ci| indicates the number of images in the ith class. The range of the factor is [0, 1), and
a perfectly balanced dataset such as ImageNet [8] will have an imbalance factor of 0.
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4.2.2 Overview of the Datasets

The OOD detection methods are tested on ID datasets made from three biodiversity
datasets - Naturalis-Papilionidae [72], CUB-200-2011 [73] and the iNaturalist 2017 [74].
Each dataset covers different levels of fine-grainedness, class imbalance, and dataset size.

A short introduction about the three publicly available biodiversity datasets from which
ID and a set of OOD datasets are derived is given below.

Naturalis-Papilionidae Dataset Naturalis-Papilionidae [72] is a collection of speci-
mens of butterflies belonging to the Papilionidae family and is provided by the Naturalis
Biodiversity Center. It contains 8243 images that can be grouped into 3 hierarchical levels
– genus, species, and subspecies. In this work, the images are grouped into 112 fine-grained
classes based on the subspecies they belong to. The dataset is highly imbalanced as shown
in Figure 4.1 and has an imbalance factor of 0.3057 (using Equation 4.4).

Figure 4.1: The distribution of the number of images per class in the Papilionidae
dataset

CUB-200-2011 Dataset The Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset
[73], also known as CUB-200, contains 11,788 images of 200 bird species. With similar-
looking bird classes, the dataset is also fine-grained. However, the CUB-200 is a (nearly)
balanced dataset (imbalance factor < 0.001) with approximately 60 images per class. The
fewer number of images per class makes it challenging to model the training data distri-
bution and generalise well enough.

iNaturalist Dataset The iNaturalist species classification and detection dataset [74]
is one of the largest biodiversity datasets publicly available with 675,170 images. The
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images are grouped into 13 super categories such as Plantae (plants), Insecta (insects),
Aves (birds), Mammalia (mammals), and so on. The images are also grouped into 5,089
fine-grained classes (each representing a species), with a significant number of visually
similar classes. In this work, the iNaturalist dataset from the year 2017 is used.

A few examples from the fine-grained classes of the three datasets are shown in Figure
4.2.

Figure 4.2: Examples showing the fine-grainedness nature of the three datasets.

4.2.3 Constructing In-Distribution and Out-of-Distribution Datasets

4.2.3.1 Datasets for Near-OOD

For testing the ‘near-OOD novel class detection’ (or near-OOD detection in short) case,
the three datasets are split into ID and OOD. Going by the idea that “there is always more
to know than what you already know”, the number of ID classes is chosen to be less than
half of the dataset.

Formulating the split of a dataset into ID and OOD Consider a dataset Dorg

having Corg number of classes and a total of Norg images. The dataset is split into ID and
OOD datasets- Did andDood, with Cid and Cood number of classes respectively. The set
of classes Cid is randomly chosen without replacement from the set Corg using a uniform
distribution. The total number of images in Did is Nid and Dood is Nood. After the split
of the dataset, the following heuristic requirements are checked:

• The number of images in Did, i.e., Nid must not deviate by more than 10% of
Norg ∗ ( Cid

Corg
). This is to ensure that all the classes having a large number of images

do not entirely belong to ID or OOD split.

• Class imbalance factor: The class imbalance factor for the Did is similar to or higher
than that of Dood. This is to ensure that the ‘long-tailed’ distribution characteristics
of the original dataset are maintained in the ID dataset.

• If a subset of classes in Corg have similar concepts or are closely related to form a set
S, then it is made sure that not all of them are in Did. For instance, in the iNaturalist
dataset, a particular set of 77 classes can further be grouped into a so-called ‘super
category’ called Animalia. It is made sure that not all the 77 classes in Animalia are
in the Did dataset after the split.
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If the heuristics are not met after splitting a dataset, a few new attempts with a
different seed number are tried until the heuristics are met. Although not encountered,
if these attempts do not give ID and OOD datasets with the stated requirements, then
manually rearranging the least number of classes to meet the requirements was done.

The ID and OOD dataset splits are named using the following syntax: the original
dataset name followed by the number of classes in the corresponding splits. For instance,
the ID dataset made from the Papilionidae dataset consists of 50 classes and hence is
referred to as Papilionidae50 (or Pap.50 in short).

The dataset Did will be split into training, validation, and test sets using a stratified
split at a ratio of 80:10:10. It is made sure that each class has at least one image in these
splits as well. Table 4.1 shows the characteristics of the three datasets before and after
splitting them into ID and OOD.

Dataset Taxonomic
Hierarchy

Split Number of
classes

Number of
images

Imbalance
factor

Papilionidae Butterfly family
‘Papilionidae’

Original 112 8243 0.3057

ID: Pap.50 50 3489 0.4195

OOD: Pap.62 62 4754 0.3137

CUB200 Class ‘Aves’

Original 200 11788 0.0002

ID: CUB80 80 4737 0.0002

OOD: CUB120 120 7051 0.0004

iNatrualist Whole domain

Original 5089 675170 0.3274

ID: iNat.2100 2100 284419 0.0957

OOD: iNat.2989 2989 390751 0.0905

Table 4.1: Constructing the ID and near-OOD datasets from the Papilionidae,
CUB-200 and iNatrualist datasets.

4.2.3.2 Datasets for Intermediate- and Far-OOD

For testing the OOD detection for ‘intermediate-OOD’ and ‘far-OOD’ cases, the following
datasets are used as OOD datasets.

• Costa Rica Moths dataset: For testing the intermediate-OOD detection case on the
Papilionidae dataset, the Costa Rica Moths dataset [75] is used. The dataset contains
2310 images of moths taken similar to the images in the Papilionidae dataset. The
right half of the images are removed to make them more similar to the images in the
Papilionidae dataset.

• Places365: Places365 [76] is a large-scale scene recognition dataset created for devel-
oping algorithms for scene recognition. The dataset contains 365 scene categories,
such as beaches, streets, and forests, among others. In this work, the validation split
of the first version of the dataset containing 36500 images is used. There are no
overlapping classes between the Places365 and the ID datasets considered. However,
images from biodiversity-related classes such as ‘rain forest’, and ‘bamboo forest’ in
the Places365 dataset could be challenging to be classified as OOD images when the
ID dataset is CUB80 or iNaturalist2100. In CUB80 and the iNaturalist2100 datasets,
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a majority of the subjects (birds, animals) have ‘forest’ backgrounds. Hence for these
datasets, the Places365 dataset is considered as ‘intermediate-OOD’, while for the
Papilionidae50 dataset, it is considered as ‘far-OOD’.

• Describable Texture Dataset: Describable Texture Dataset (DTD) [77] is a collection
of textural images that covers a wide range of textures and patterns. The dataset
contains diverse textures and patterns from natural and manmade objects. There
are no overlaying concepts between the DTD dataset and the ID datasets and hence
is used as a ‘far-OOD’ case. Using the DTD as an OOD dataset provides a useful
evaluation of the generalisation ability of OOD Detection methods. The textures and
patterns in the DTD dataset are significantly different from those in the biodiversity
dataset and testing a model on these textures can provide insight into the robustness
of the methods to detect completely unseen patterns and textures.

• Random pixel images: As done in [3] and [37], a synthetic Gaussian noise dataset
and synthetic uniform noise dataset are also used as OOD Datasets. The Gaussian
noise dataset consists of 10,000 random 2D Gaussian noise images, where each RGB
value of every pixel is sampled from a Gaussian distribution with mean 0.5 and unit
variance. Similarly, the synthetic uniform noise dataset consists of 10,000 images
where each RGB value of every pixel is independently and identically sampled from
a uniform distribution on [0, 1]. These sets of images are not biased towards any
particular image class from the ID datasets and represent the set of OOD images
from which no relevant features or patterns can be extracted. The main set of results
is presented on the Gaussian noise dataset.

• ChestXRay2017: The ChestXRay2017 [78] is a medical imaging dataset that com-
prises 5857 chest X-ray images. The 5233 images from the training set of the dataset
are used as the OOD dataset. Although x-ray images do not usually appear in a
non-medical biodiversity setting, the dataset is the least similar OOD dataset to the
other ID datasets and hence is used as a set of extreme OOD example images in this
work.

The set of OOD datasets and their domain similarity scores with respect to each ID
dataset is shown in Figure 4.4.

4.2.3.3 Datasets for Anomaly Detection

This subsection explains the construction of datasets used for testing the anomaly detection
capability of the methods.

By applying 7 different types of corruptions, anomalies are added to the images in the
test set of each of the ID datasets (expect iNaturalist2100). For each ID test set, there
would be 7 corresponding anomalous (OOD) test sets. The following corruptions that are
more likely to appear while capturing images in a biodiversity environment are chosen:

• Camera-related corruptions

– ISO noise ISO noise is the random variation in brightness and/or colour in-
formation in images usually caused by bad lighting conditions or low-quality
camera sensors

• Image capturing related corruptions
Some of the common issues that occur while capturing images in the wild are covered
under this category:
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– Motion Blur Motion blur results when an image is captured when the camera,
the subject, or both are in motion.

– Defocus Defocused blur occurs when the subject is not in focus.

– Coarse dropout In this corruption, random rectangular sections of the image
are dropped or blacked out. Coarse dropout on images to mimic occlusions that
obscure the subject partially or fully.

• Weather-related corruptions
The following weather conditions that visually obstruct the subjects are chosen:

– Fog

– Rain

– Snow

Figure 4.3: Examples of images from the Papilionidae50 and CUB80 dataset with
the seven types of corruptions applied to make them anomalous

The strength of the corruptions is tuned until the test set has a classification accuracy of
50%(±0.05), i.e., half of the test set is classified incorrectly. This was done to standardise
the amount of corruption applied. Anomaly detection is tested only on the relatively
smaller Papilionidae50 and CUB80 datasets. This covers the case of anomaly detection
on long-tailed and balanced datasets respectively. Anomaly detection is not tested on the
iNaturalist2100 dataset as applying each type of corruption to get 50% accuracy on the
test set of the iNaturalist2100 dataset would be highly time-consuming and storing those
corrupted images’ datasets requires more than 1000 GB of disk space.

Figure 4.3 shows examples of these corruptions applied to the example images from
CUB80 and the Papilionidae50 dataset.
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4.3 Experiment Setup

4.3.1 Training the Convolutional Neural Network Classifier

4.3.1.1 Choice of Convolutional Neural Network Architecture

For training the classifier on the ID datasets, EfficientNetV2 [70] architecture was chosen
over other architectures due to its performance-to-parameters ratio. The use of OOD
detection for biodiversity is often in the wild where the neural networks run on low-power
embedded systems. Hence, there is a need for using models which require lower computing
power as well as time. EfficientNetV2 has better parameter efficiency and can achieve the
same or better accuracies with fewer parameters when compared with ResNet-RS [79] or
ViT [80] models [70]. Furthermore, EfficientNetV2 uses Fused-MBConv [81] blocks that can
utilise power-efficient hardware accelerators such as Edge TPU [82] which are often used to
infer models on low-power devices. Finally, EfficientNetV2 models can be trained relatively
faster. This is especially useful while training on large datasets like the iNaturalist dataset.
From the family of EfficientNetV2 models, the EfficientNetV2-M variant is chosen as it
can achieve similar accuracies as the EfficientNetV2-L (85.1% vs 85.7% on ImageNet-1K
[70]) using roughly half the number of parameters and floating point operations (FLOPs).

4.3.1.2 Training Setup and Parameters

An EfficientNetV2-M model with weights pre-trained on the ImageNet-1K [8] dataset is
trained on each of the in-distribution (ID) datasets. As mentioned earlier, 80% of each
ID dataset is used for training the corresponding model. The input size has been set to
480x480x3. Three basic data augmentations - RandomHorizantalFlip [83], RandomVerti-
calFlip [84] and RandomRotation [85] provided by the Torchvision [86] library are applied
to the input images during the training. The RandomRotation augmentation was applied
with a maximum rotation range of 45◦. All three augmentations are applied with a prob-
ability of 0.5. Stochastic gradient descent with a momentum of 0.9 has been used as the
training optimiser. Table 4.2 shows the hyperparameters used for training as well as the
accuracy (number of images correctly classified/total number of images) achieved on each
dataset’s test set.

Papilionidae50 CUB80 iNaturalist2100
Initial learning rate 0.001 0.010 0.010
Learning rate scheduler CosineAnnealingWarmRestarts [87],[88] ExponentialLR [89] ExponentialLR [89]
Batch size 16 16 16
Number of epochs 24 14 35
Accuracy 95.7 94.54 84.98

Table 4.2: Hyperparameters used for training the EfficientNetV2-M model on the
three in-distribution datasets. The accuracy stated is on the respective test sets.

4.3.2 Hardware and Software Setup

All the experiments in this work are performed on a system with the following properties:

• CPU: Intel Xeon Gold 6330 CPU @ 2.00GHz

• GPU: NVIDIA GeForce RTX 3090 with 24 Gigabytes of GPU memory
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• Python version: 3.9.13

• PyTorch version: 1.11

• CUDA version: 11.2

For PyTorch [90], the torch.backends.cudnn.deterministic and torch.backends.cudnn.benchmark
flags are set to true. The random seed number is set to 2511 wherever it is possible to do
so.

Table 4.3 lists the important libraries and the open-source code used in this work.

Method Source Comments
Baseline MSP – –
Energy – –
ODIN [91] Adapted from official implementation
GradNorm [91] Official implementation
Global PCA FRE – –
DkNN adapted from [92] Official implementation
EnWeDi – –
SLOF – –
Functionality Library Function names
Adding corruptions to
create anomaly datasets Albumentations 1.3.0 [93] CourseDropout(), Defocus(), Fog(),

IsoNoise(), MotionBlur(), Rain(), Snow()
EMD for domain similarity score pyemd 1.0.0 [94] emd()
PCA for FRE methods scikit-learn 1.1.1 [95] decomposition.PCA()
kNN search for kNN-based methods Faiss 1.7.2 [44] GpuIndexFlatL2() , IndexFlatL2()
Entropy calculation in EnWeDi scipy 1.8.1 [96] stats.entropy()

Table 4.3: List of open-source code and the libraries (and functions) used in this
work

4.4 Extracting Feature Embeddings

Most of the feature embedding-based methods mentioned in the literature section (Section
2.3) make use of the feature embeddings from the penultimate layer of a convolutional
neural network (CNN). This is because, in a CNN, the deeper layers i.e., layers closest to
the output, typically extract more abstract and high-level features from the input data.
Shallower layers extract simpler and low-level features like edges, corners, etc. Hence, the
feature embeddings extracted from the last layers are more specific to the dataset that the
CNN has been trained on. In this work, all feature-based methods are tested with two sets
of feature embeddings:

• Penultimate layer’s feature embeddings Penultimate layer feature embeddings
obtained after the global average pooling layer from Layer 8 of EfficientNetV2-M
[70]. Each feature embedding is of length 1280.

• Stacked feature embeddings Feature embeddings extracted using the global av-
erage pooling layer from all the major intermediate layers – Layer 0 to Layer 8 and
stacked one after the other to make a single feature vector of length 2608. Such a
feature embedding would represent both general as well as high-level features of the
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image. Table A.2 in the Appendix gives the list of layers from which the features are
extracted and their respective lengths.

4.5 List of Experiments

RQ1: Measurement of OOD detection difficulty The domain similarity score
(Equation 4.3) is calculated between each combination of ID and OOD datasets. The
details are mentioned in Section 4.1. The scores are shown in Figure 4.4 and will also be
indicated while presenting the corresponding results.

RQ2: Improvements to existing methods The experiments made for answering
RQ3 and RQ4 are used to find the limitations of the existing methods. Why the proposed
method - EnWeDi (explained in Section 3.2.8) performs better than the existing state-of-
the-art OOD detection method is discussed in Section 6.4.

RQ3: Effect of stacking The four feature embedding-based methods (Global PCA
FRE, DkNN, EnWeDi and SLOF) have been tested with feature-embeddings extracted
from intermediate layers (as mentioned in Section 4.4). This was done on the near-OOD
detection case on the Papilionidae50 and CUB80 datasets.

RQ4: OOD detection methods’ performance on a range of OOD detection
difficulties All the shortlisted methods (marked in bold in Table 3.1) are tested on
all the three datasets - Papilionidae50 (Pap.50), CUB80 and iNaturalist2100 (iNat.2100)
against datasets corresponding to near-, intermediate- and far-OOD. Due to the large
number of images in iNaturalist2100 (0.3 million), the task of anomaly detection is tested
only on the Papilionidae50 and CUB80 datasets. All the combinations of the ID and OOD
datasets for each OOD detection task are shown in Figure 4.4.

Each method is tested at various hyperparameters (as described in Subsection 4.5.2).
The evaluation metrics are explained in Section 4.6.

4.5.1 Effect of the Amount of In-Distribution Data Used on Feature
Embeddings-Based Methods

The feature embeddings-based methods considered in this work require a certain amount of
in-distribution data for either referencing or learning from it. For instance, the PCA-based
FRE methods require feature embeddings from the ID data to ‘train’ the PCA model.
Similarly, for kNN-based methods, the ID dataset images’ feature embeddings are required
as ‘reference’ or ‘training’ data for the kNN search.

To estimate the performance of feature embedding-based methods on smaller ID datasets,
the methods are also evaluated with subsets of ID datasets. To create such a subset from
an ID dataset, a fixed fraction of the images from each class is selected (stratified selec-
tion). The set of fractions is uniformly spaced between 0.1 (10% of each class) to 1.0 (all
the images in the class - whole dataset).

4.5.2 Setting Hyperparameters for OOD Detection Methods

1. Baseline Methods: The methods are evaluated on metrics that do not require
implicitly setting the OOD decision threshold. Hence, the Baseline MSP method
does not have any hyperparameters to set.
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(a) Papilionidae50 as in-distribution dataset

(b) CUB80 as in-distribution dataset

(c) iNaturalist2100 as in-distribution dataset

Figure 4.4: ID and OOD datasets on which the OOD detection methods are
tested. The domain similarity score (Equation 4.3) is between the OOD dataset
and the ID test set
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2. Energy: The Energy method takes the temperature (T ) hyperparameter for per-
forming temperature scaling. T has to be ≥ 1 for the method to be effective [2].
The authors in the literature on the Energy method perform an ablation study with
T ranging from 1 to 1000 and suggest that the highest accuracy can be achieved
by setting T = 1. In this research, the energy method was tested with T =
{0.1, 1, 10, 100, 1000}

3. ODIN: The ODIN method has two hyperparameters - the temperature (T ) and
the ϵ (perturbation magnitude). Similar to the Energy method, the hyperparame-
ter T is used for temperature scaling in ODIN and was set to the same values as
mentioned above. The literature of ODIN method [3], suggests experimenting with
perturbation magnitudes (ϵ) between 0.001 to 0.004. In this work, it was set to
{0.001, 0.002, 0.01, 0.1}.

4. GradNorm: GradNorm method also uses the temperature (T ) parameter for tem-
perature scaling. From the literature of GradNorm [4], "T = 1 is optimal, while either
increasing or decreasing the temperature will degrade the performance". However,
for a fair comparison, GradNorm was evaluated with temperatures T = {0.1, 1,
10, 100, 1000} (same as Energy and ODIN). Additionally, from the ablation studies
done by authors of GradNorm, the following hyperparameters are set:

• Applying GradNorm applied at the last layer gives higher accuracies than when
applied on shallow layers (layers near input). Hence, GradNorm is applied only
at the last layer in this work. Accordingly, the weights from the final fully
connected layer of the CNN are considered as the set of parameters w in the
Equation 3.7.

• Using L1 norm in GradNorm OOD score calculation (Equation 3.7) gives better
results than any other Lp norm. Hence, in this work, the L1 norm is used in all
experiments of GradNorm.

5. Global PCA FRE Method: For PCA, the fraction of the variance (σ) of the
training set’s feature embeddings that should be retained in the reduced feature
embeddings is the hyperparameter. The literature of the Global PCA FRE method
[5] does not mention any ablation studies or the value of σ used for the results. Hence,
in this research, σ was set with uniformly spaced values from 0.9 to 0.99. Along with
this, the method was also tested on these extreme values: {0.6, 0.8} (low variance
retention) and {0.995, 0.999} (high variance retention).

The same list of hyperparameters was used for the Per-class PCA FRE method when
experimenting on the Papilionidae50 and CUB80 datasets. For the iNaturalist2100,
the Per-class PCA method takes more than 90 hours to test on all the OOD datasets.
Hence, the Per-class PCA FRE method was tested with σ = {0.8, 0.9 0.95,0.98}

6. DkNN: For DkNN, the value of k used for the kNN search is the hyperparameter.
In the corresponding literature [6], the method was evaluated with 10 different values
of k ranging from 1 to 5000. From the results presented in the same literature, it is
observed that setting k greater than the number of images per class in the balanced
ID dataset will not improve the OOD detection accuracy. However, in this research,
except for the CUB80 dataset, the other ID datasets are not balanced in terms of
the number of images per class. Hence, the value of k was set as following:
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• For the Papilionidae50 dataset, the average number of images per class is 62.
Hence, k is set from 1 to 62 (both inclusive). Additionally, 20 more values of k
are sparsely selected from the range of 63 to 450.

• For the CUB80 dataset, the value of k is set with uniformly spaced values from
1 to 50 (the average number of images per class in CUB80 is 47). Furthermore,
20 more k values ranging between 60 and 450 are chosen.

• For the iNaturalist2100 dataset, the value of k is set with uniformly spaced
values from 1 to 50. Additionally, 10 more values of k from the range of 50 to
2000 are chosen.

7. EnWeDi: Since the EnWeDi method is proposed as an improvement to the DkNN
method, for a fair comparison, the values of k used for DkNN are used for EnWeDi
as well.

8. SLOF: SLOF method was experimented with the same list of k values used for
DkNN and EnWeDi.

4.6 Evaluation

All the out-of-distribution (OOD) detection problems in this work are treated as binary
classification problems. Following the literature, the in-distribution images are considered
positive examples and the OOD images are considered negative examples throughout this
thesis.

For most of the OOD detection applications, the objective is usually to prevent OOD
images from getting classified as belonging to ID (to reduce the open space risk). For
instance, in autonomous driving, the objective is not to identify the maximum number of
unknown objects as unknown objects. Instead, the objective is to prevent an unknown
object from being a known object. Therefore, it is apt to consider OOD images as negative
examples.

4.6.1 Threshold Independent Metric - Area Under the Receiver Oper-
ating Characteristics Curve

To classify whether an input image is in-distribution or out-of-distribution, the OOD deci-
sion function (Equation 2.1) requires a threshold on the OOD score. However, specifying
a threshold depends upon the trade-offs between the number of acceptable false negatives
(fn) and false positives (fp) and can vary from application to application. Hence, in this
work, the area under the receiver operating characteristic curve (AUROC), a threshold-
independent performance evaluation [97] metric is used. The ROC curve is a graph showing
the true positive rate (TPR = tp/(tp+fn)) and the false positive rate (fpr = fp/(fp+tn))
and indicates the performance of a classification model at various possible classification
thresholds. For a binary OOD detection problem, the AUROC value can be interpreted as
the probability that an ID image (treated as positive) has a greater detection score than an
OOD image [98]. Hence, a random guess OOD detection method would have an AUROC
value of 0.5, while a perfect OOD detection method would have an AUROC of 1 (or 100%).

4.6.2 Threshold Dependent Evaluation Metrics

In a few applications, the OOD detector is required to meet certain operation requirements
in terms of true positive rate (TPR) at a fixed false positive rate (FPR) or vice-versa. Two
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such metrics - FPR at N% TPR and TPR at N% FPR are also used to evaluate the
OOD detection methods in this research. Unlike AUROC, these metrics represent the
performance of the OOD detection methods at a fixed threshold. These metrics can be
especially useful in cases where the OOD detection methods achieve a very high and/or
similar AUROC value.

False Positive Rate at N% True Positive Rate False positive rate (FPR) at N% true
positive rate (TPR) or FPR@TPRN is an important evaluation metric for OOD detection
as it measures the ability of an OOD detection method to not classify OOD images as
belonging to ID while maintaining a certain level of TPR (classifying ID images as ID). A
lower FPR@TPRN value indicates better performance. Lower FPR@TPRN implies that
there is a smaller chance of OOD images triggering false alarms (OOD images getting
classified as ID images) when the OOD method can classify N% of the ID images correctly.
This metric is useful when the objective is to have a set fraction (N%) of the ID samples
to be classified as ID.

True Positive Rate at N% False Positive Rate True positive rate (TPR) at N%
false positive rate (FPR) or TPR@FPRN is useful in an application when the acceptable
false positive rate can not exceed a certain value. In such cases, the decision threshold
is set to a value such that the OOD detection method does not classify more than N%
of OOD images as ID. For instance, consider an image classification model deployed to
identify the species of a crop plant in an agriculture field. In such cases, misclassifying
an invasive plant species (OOD) as a crop plant can lead to potentially harmful effects on
the crops. In such cases, the false positive rate (invasive species getting classified as crop
species) is fixed at a low value (such as 5%).

4.6.3 Choice of Evaluation Metric Based on OOD Detection Difficulty

Near-OOD detection: Out of all the OOD detection tasks considered in this work, the
near-OOD detection task is the most difficult. Hence, the methods are evaluated on all
three evaluation metrics - AUROC, TPR@FPRN and FPR@TPRN. Following the liter-
ature, for the TPR@FPRN and FPR@TPRN, the methods are compared at the require-
ments of TPR@FPR5 and FPR@TPR95. These requirements strike a reasonable trade-off
between finding OOD images and classifying ID images. Consider the above-mentioned
crop-plant scenario where it can be difficult to differentiate between a weed plant and a
crop plant (near-OOD). While attaining a 1 % FPR or 99% TPR could be too ‘uncompro-
mising’, having 10% FPR or only 90% TPR could be too ‘forgiving’. Hence a 5% FPR or
a 95% TPR could serve as attainable yet realistic requirements.

Intermediate- and far-OOD detection: For the relatively easier OOD detection
tasks, such as intermediate- and far-OOD detection tasks, TPR@FPR5 and FPR@TPR95
could be too lenient. Once again, consider the above-mentioned crop-plant scenario. In
such cases, it is not crucial to identify objects from far-OOD such as farm animals as OOD.
However, from a user’s perspective, a farm animal must not be classified as a crop plant,
i.e., a low false positive rate is preferred. However, this is (supposed to be) relatively easier
than the near-OOD task and many OOD detection methods can attain a high TPR at
requirements such as 5% FPR. Therefore, the results of the methods are compared at a
stricter requirement of TPR@FPR1.
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Anomaly detection: In anomaly detection applications, anomalous images getting clas-
sified as non-anomalous must be prevented as much as possible. Hence, more often than
not, a predetermined maximum false positive rate is set and the anomaly detection ca-
pability of the methods is measured under this specific threshold for false positives. The
goal is then to classify as many true positives (non-anomalous images) as positives at the
set false positive rate. Therefore the results for anomaly detection are presented with the
evaluation metric - true positive rate at a 1% false positive rate (TPR@FPR1).

4.7 Inference Time Measurement

The inference time of the OOD detection methods (and their variants) is measured on the
three ID datasets. Inference time was measured from the time the input image is available
in memory until the OOD detection score was generated by the methods. For the score-
based methods, the inference time includes the time taken for the forward propagation of
the CNN model. Similarly, for the feature embeddings-based methods, the time taken to
extract the features(from the penultimate layer) is included in the inference time.

The inference time of each OOD detection method is measured on a test set of 10,000
OOD images and the average inference time is calculated for each method. To avoid the
influence of the time taken for GPU warm-up, the inference time measured on the first
test image is discarded.

For PCA-based methods, the fraction of the original data’s variance to be retained was
set to 95%. For methods that require a kNN search, k was set to 100. Faiss [44] can be
configured to take advantage of the parallelisation capabilities of a GPU for a (presumably)
faster kNN search. Hence, the inference time of the kNN-based methods is measured with
two configurations - kNN search using CPU and kNN search using GPU. For the other
methods, the hyperparameters do not have any influence on the inference time.
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Chapter 5

Results

The results of near-out-of-distribution (near-OOD) detection, anomaly detection and inter-
mediate/ far-OOD detection of selected methods are presented in Sections 5.1, 5.2 and 5.3.
The effect of the amount of reference ID data on the OOD detection accuracy for feature
embeddings-based methods is shown in Section 5.4. In Section 5.5, the inference time of
OOD detection methods is presented. Section 5.6 shows the results of applying kNN- and
PCA FRE-based methods per class instead of applying them globally. The results with
feature embeddings stacked are shown in Section 5.7.

Choice of hyperparameters For an OOD detection method, operating on a fixed hy-
perparameter might not give the best results across all the OOD detection tasks. However,
once deployed in an open world, a particular method needs to perform out-of-distribution
detection for any type of OOD. Changing hyperparameters on-the-fly for each type of OOD
is not practical as it would require predicting the type of OOD an input image belongs to.

The near-OOD task is often more frequently encountered by a real-world classifica-
tion application than other tasks. Hence, the results presented for all the tasks (near-,
intermediate/far-OOD and anomaly detection) are obtained by using the hyperparame-
ters that gave the highest AUROC on the near-OOD tasks for the respective datasets
(hyperparameter optimisation). One exception to this is the case of evaluating the near-
OOD detection with a fixed operating TPR or FPR requirement (Subsection 5.1.2). In
such cases, since the OOD detection task needs to achieve a certain requirement, the
methods are compared at hyperparameters that achieve the best possible FPR@TPR95 or
TPR@FPR5.

5.1 Near Out-of-Distribution

In Subsection 5.1.1, the methods are compared in terms of area under the receiver operating
characteristic curve (AUROC) - a threshold-independent metric. In Subsection 5.1.2 the
methods are compared against a specific set of acceptable false positive rates and required
true positive rates.

5.1.1 Threshold Independent Accuracy Performance - AUROC

5.1.1.1 Papilionidae50 Dataset

The AUROC values of the 8 OOD detection methods are shown in Figure 5.1. The proposed
method - Entropy weighted nearest neighbour’s distance (EnWeDi) achieves the highest
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AUROC value outperforming the DkNN method by more than 5%. More often than
not, the feature embeddings-based methods perform better than the score-based methods
(MSP, Energy, ODIN, and GradNorm). With an AUROC value of 84.81%, the maximum
softmax probability (MSP) baseline method is already helpful in distinguishing between
ID and OOD images and is not the worst performing method.

Figure 5.1: Results on the near-OOD detection on the Papilionidae50 dataset.

5.1.1.2 CUB80 Dataset

Figure 5.2: Results on the near-OOD detection on the CUB80 dataset.
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On the CUB80 dataset, as shown in Figure 5.2, using the AUROC metric for evaluating the
methods does not reveal much difference between the near-OOD detection capabilities of
the methods. The AUROC values for 6 out of 8 methods are within the range of 85.0% to
87.5% giving very little insight into which method performs the best on the well-balanced
CUB80 dataset for the near-OOD detection problem. Hence, as it will be shown in the
next subsection, evaluating the methods at a fixed threshold value is more useful in this
case.

However, a few interesting observations can be drawn from the results. The Global
PCA FRE method, which was the second best method for near-OOD detection on the
Papilionidae50 dataset, does not show a similar capability on the CUB80 dataset. It can
also be seen that with an AUROC of 55.77 %, the GradNorm method performs the worst
on the CUB80 dataset, almost similar to a random ID vs OOD classifier.

5.1.1.3 On the iNaturalist2100 Dataset

Testing the near-OOD detection task, on the large long-tailed distribution dataset iNatu-
ralist2100 breaks a few of the patterns observed in the results on the above two datasets.
ODIN method achieves the highest AUROC, although it outperforms the EnWeDi method
by a small margin of 0.3%. It is to be noted that ODIN was the best-performing method
for the Papilionidae50 and CUB80 datasets in the set of output scores-based methods. The
Energy method shows similar OOD detection performance as the Baseline MSP method.
An interesting result was how poorly the Global PCA FRE, a feature-based method, per-
formed in this case. It can also be observed that the DkNN and EnWeDi methods are in
the top 3 methods (in terms of AUROC) for all three datasets, with EnWeDi performing
better than DkNN in all the cases.

Figure 5.3: Results on the near-OOD detection on the iNaturalist2100 dataset.
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5.1.2 OOD Detection Performance on Specific Operation Requirements

As mentioned earlier, in this subsection, the results shown are obtained using the
hyperparameters that give the lowest FPR@TPR95 and highest TPR@FPR5
values for each method.

5.1.2.1 Papilionidae50 Dataset

Figures 5.4a and 5.4b show the ROC curves for achieving the lowest FPR@TPR95 and
highest TPR@FPR5 possible by each method respectively.

The proposed method - EnWeDi achieves the best (lowest) FPR@TPR95 with a sig-
nificant margin of more than 12% from the next best method (DkNN). With a very high
FPR@TPR95 of 61.74%, the Global PCA FRE method which achieved the second highest
AUROC in this OOD detection task does worse than the Baseline MSP method (50.88%).
It is also observed that all 8 methods can achieve a significantly lower FPR@TPR95 when
compared to a random guess classifier which would have a 95% FPR@TPR95.

(a) FPR@TPR95 (lower is better) (b) TPR@FPR5 (higher is better)

Figure 5.4: ROC curves for achieving the lowest FPR@TPR95 (left) and highest
TPR@FPR5 (right) for each method for the task for near-OOD detection on the
Papilionoidae50 dataset

Although the DkNN method performed worse than EnWeDi and Global PCA FRE
methods in terms of AUROC when set with the right hyperparameters, it achieves the
highest TPR@FPR5 (75.94%). This means that the DkNN method correctly identifies 75
out of 100 ID images as ID, while wrongly identifying only 5 out of 100 OOD images as
ID, resulting in a false alarm rate of 5%. Another important observation from the ROC
curves in Figure 5.4b is that the DkNN method would achieve a high true positive rate (∼
35%) even at a stricter false positive rate of 1%. After the DkNN method, the EnWeDi and
Global PCA FRE methods achieve a high TPR@FPR5 of 63.10 and 60.70% respectively.
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Out of 100 ID images, the GradNorm method can classify 10 more ID images correctly
than a random guess classifier.

5.1.2.2 CUB80 Dataset

Figures 5.5a and 5.5b show the ROC curves for achieving the best possible FPR@TPR95
and TPR@FPR5 by each method for the task of near-OOD detection on the CUB80 dataset
respectively.

(a) FPR@TPR95 (lower is better) (b) TPR@FPR5 (higher is better)

Figure 5.5: ROC curves for achieving the lowest FPR@TPR95 (left) and highest
TPR@FPR5 (right) for each method for the task for near-OOD detection on the
CUB80 dataset

The EnWeDi method again outperforms all the methods in terms of achieving the lowest
FPR@TPR95 (50.05%). ODIN, Energy and DkNN perform similarly with an FPR@TPR95
of ∼54%. GradNorm performs similarly to a random guess classifier and its ROC curve
conforms with the AUROC of 55.77% and FPR@TPR95 of 92.77%. With an FPR@TPR95
of 78.32%, the Global PCA FRE method is only better than GradNorm.

In terms of TPR@FPR5, there is not a significant difference between the methods for
the task of near-OOD detection on the CUB80 dataset. The EnWeDi achieves the highest
TPR@FPR5 (53.28%). Surprisingly, the Baseline MSP method performs outperforms all
the remaining methods with a TPR@FPR5 of 52.62%. Although most of the methods,
except GradNorm and Global PCA FRE, achieve a TPR@FPR95 of around 47%-52%.
This difference may not be significant. As an example, the DkNN method can identify one
more ID image as ID for every 100 ID images than the ODIN method at a threshold that
achieves 5% FPR in those methods.
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5.1.2.3 iNaturalist2100 Dataset

Figures 5.6a and 5.6b show the ROC curves for achieving the best possible FPR@TPR95
and TPR@FPR5 by each method for the task of near-OOD detection on the iNaturalist2100
dataset.

(a) FPR@TPR95 (lower is better) (b) TPR@FPR5 (higher is better)

Figure 5.6: ROC curves for achieving the lowest FPR@TPR95 (left) and highest
TPR@FPR5 (right) for each method for the task for near-OOD detection on the
iNaturalist2100 dataset

The ODIN method achieves the best (lowest) FPR@TPR95 of 75.49 % on the iNatu-
ralist2100 dataset. The Baseline MSP and the Energy methods achieve similar but slightly
worse FPR@TPR95. The ODIN method performs similarly to the EnWeDi method at most
of the operating points but achieves a 3% lower FPR@TPR95. In terms of the TPR@FPR5
metric, ODIN outperforms the EnWeDi method by a marginal (∼0.5%) value. The En-
ergy and the Baseline MSP methods are outperformed by the ODIN, EnWeDi and DkNN
methods. Overall, for the iNaturalist2100 dataset, considering AUROC, FPR@TPR95 and
TPR@FPR5, the ODIN method performs the best but only marginally better than the
EnWeDi method.

5.2 Anomaly Detection

For anomaly detection, the out-of-distribution (OOD) dataset is the set of in-distribution
(ID) test images with various corruptions applied to make the ID images ‘anomalous’.
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5.2.1 Long-Tailed Dataset

The results for the anomaly detection on the Papilionidae50 dataset are shown in Table
5.1.

Anomaly detection on the Pap.50 dataset (TPR@FPR1)

Methods
Iso
noise
(ψ : 0.70)

Motion
blur
(ψ : 0.68)

Defocus

(ψ : 0.69)

Coarse
dropout
(ψ : 0.69)

Fog

(ψ : 0.71)

Rain

(ψ : 0.68)

Snow

(ψ : 0.78)

Average

(ψ : 0.70)

Baseline
MSP 72.99 0.53 0.00 18.98 5.62 63.64 35.83 28.23

Energy
(T = 1) 73.26 0.00 0.00 27.81 0.00 64.71 0.53 23.76

ODIN
(T=1.0, ϵ=0.001) 89.04 9.89 0.00 14.17 10.70 60.16 71.66 36.52

GradNorm
(T=1) 55.08 0.00 0.00 42.78 0.00 90.64 0.00 26.93

Global PCA
FRE (σ=0.99) 98.66 99.47 100.00 99.47 100.0 100.0 96.79 99.20

DkNN
(k=2) 99.47 96.79 98.40 100.00 99.47 100.0 99.72 99.12

EnWeDi
(k=250) 99.73 92.78 99.73 99.20 96.79 100.00 99.73 98.28

SLOF
(k=23) 95.71 97.34 100.00 98.44 98.61 98.94 98.10 97.92

Table 5.1: Anomaly detection results on a long-tailed dataset. ID: Papilionidae50
test set, OOD: ID with corruptions added. The OOD detection performance is
measured as TPR at a fixed FPR of 1%. ψ indicates the the domain similarity
score between the OOD dataset and the test set of the ID dataset

For the long-tailed Papilionidae50 dataset, the output score-based methods perform
poorly for the task of anomaly detection at a strict requirement of 1% FPR. For instance,
at 1% FPR, GradNorm fails to classify any non-anomalous images as non-anomalous for
4 out of 7 types of corruptions. However, it can not be straightaway inferred that these
methods are incapable of distinguishing between anomalous and non-anomalous images.
The reasons for this are discussed in Subsection 6.2.2.

All the feature embeddings-based methods achieve a TPR@FPR1 of more than 90%
across different corruptions. Specifically, the Global PCA FRE method achieves the highest
average TPR@FPR1. The Global PCA FRE method and the DkNN method also exhibit
a consistent performance in anomaly detection for the Papilionidae50 with TPR@FPR1
more than 96% across corruptions.

5.2.2 Balanced Dataset

The results for the anomaly detection on the CUB80 dataset are shown in Table 5.2. On
the balanced CUB80 dataset, the discrepancy in anomaly detection capability between the
score-based and feature embeddings-based methods is relatively smaller when compared to
that on the long-tailed Papilionidae50 dataset. The Global PCA FRE method outperforms
all the methods in all the cases of corruption, except one (with a very small margin of 0.2%).
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Anomaly detection on the CUB80 dataset [TPR@FPR1 ]

Methods
Iso
noise
(ψ : 0.77)

Motion
blur
(ψ : 0.79)

Defocus

(ψ : 0.79)

Coarse
dropout
(ψ : 0.80)

Fog

(ψ : 0.77)

Rain

(ψ : 0.77)

Snow

(ψ : 0.81)

Average

(ψ : 0.79)

Baseline
MSP 23.80 10.48 36.90 30.57 34.28 31.44 47.82 30.76

Energy
(T = 10) 23.80 6.77 37.77 35.15 31.22 28.60 55.24 31.22

ODIN
(T=1.0, ϵ=0.001) 24.89 7.64 16.59 26.64 23.14 18.56 52.18 24.23

GradNorm
(T=10) 7.86 7.42 10.26 10.26 19.21 19.00 9.39 11.91

Global PCA FRE
(σ=0.9) 48.47 23.58 62.45 56.33 67.90 67.25 60.26 55.18

DkNN
(k=4) 33.41 19.21 39.74 43.89 55.02 54.15 55.02 42.92

EnWeDi
(k=47) 36.90 23.14 46.51 37.77 58.30 56.55 58.30 45.35

SLOF
(k=19) 35.15 16.16 46.07 41.05 50.87 57.42 60.48 43.89

Table 5.2: Anomaly detection results on a balanced dataset (CUB80 dataset).
ID: CUB80 test set, OOD: ID with corruptions added. The OOD detection per-
formance is measured as TPR at a fixed FPR of 1%. ψ indicates the the domain
similarity score between the OOD dataset and the test set of the ID dataset

Another interesting observation is that in a set of ID images with and without motion blur,
at 5% FPR, the methods could identify less than 25% of ID images as belonging to ID.

5.3 Intermediate and Far Out-of-Distribution Detection

For the intermediate- and far-OOD detection, almost all the methods show a great capa-
bility of detecting intermediate- and far-OOD images across the three ID datasets. Hence,
comparing them on the AUROC metric did not provide much information to draw any con-
clusion. As mentioned earlier (in Section 4.6), the methods are compared at TPR@1%FPR
metric in this section.

5.3.1 Papilionidae50 Dataset

For the Papilionidae50 dataset, the Costa Rica moths dataset is used as an intermediate-
OOD dataset. The Places365, DTD (textures), Gaussian noise and ChestXRay datasets
are considered to be far-OOD datasets where increasing levels of OODness are in that
order. The results are shown in Table 5.3.
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Intermediate and Far OOD on Pap.50 dataset (TPR@1%FPR)

Methods
Costa

Rica Moths
(ψ : 0.71)

Places365

(ψ : 0.64)

DTD

(ψ : 0.63)

Gaussian
noise

(ψ : 0.59)

ChestXRay

(ψ : 0.60)

Average

(ψ : 0.63)

Baseline
MSP 13.10 22.99 51.60 99.73 61.76 49.84

Energy
(T = 1) 0.00 21.66 64.71 100.00 76.20 52.51

ODIN
(T=1.0, ϵ=0.001) 77.27 49.73 82.35 100.00 77.81 77.43

GradNorm
(T=1) 0.00 1.60 93.32 100.00 97.06 58.40

Global PCA FRE
(σ=0.99) 99.73 100.00 100.00 100.00 100.00 99.95

DkNN
(k=2) 100.00 100.00 100.00 100.00 100.00 100.00

EnWeDi
(k=250) 99.73 99.73 100.00 100.00 100.00 99.89

SLOF
(k=23) 98.13 99.73 99.73 100.00 100.00 99.52

Table 5.3: Intermediate- and far-OOD results for the Papilionidae50 dataset mea-
sured using the TPR@FPR1 metric. The ψ under each dataset name indicates the
domain similarity score between the OOD dataset and the test set of the ID dataset.

For the intermediate-OOD case, a sharp contrastive range of TPR@FPR1 values can
be seen among the methods. Four out of 8 methods achieve 100% TPR@FPR1, while 2
(Energy and GradNorm) out of 8 methods have a 0% TPR@FPR1 value. The remaining
methods exhibit well-spread-out TPR@FPR1 values. The ROC curves, shown in Figure
5.7, reveal more information. It can be seen that although the three least performing
methods - Baseline MSP, Energy and GradNorm have AUROC values in the range of 70%-
80%, their ROC curves follow different paths to achieve this AUROC. For GradNorm,
using any decision thresholds to achieve an FPR of less than 18% will lead to a 0% TPR.
For Energy, this cut-off is at around 8% of FPR. Furthermore, from the ROC curves, it
can be seen that the GradNorm method can achieve a lower FPR at a TPR value of 95%
when compared to that of the Energy method.

For the far-OOD case, the feature-based methods outperform the score-based methods
at all levels of OODness. An interesting finding is that a lower TPR@FPR1 value is
achieved by most of the methods for the Gaussian noise images than for the chest X-ray
images. The ChestXRay dataset is slightly more similar (higher ψ) to the Papilionidae50
dataset than the Gaussian noise dataset.
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Figure 5.7: ROC curves for the case of intermediate-OOD detection on the Pa-
pilionidae50 dataset.

5.3.2 CUB80 Dataset

For the CUB80 dataset, the Places365 dataset is considered as belonging to intermediate-
OOD. The DTD (textures), Gaussian noise and ChestXRay, in that order, are considered
to be far-OOD. The results are shown in Table 5.4.

Even at a low FPR of 1%, all the methods except the Baseline MSP method achieve a
TPR value of above 90% across different levels of ‘OODness’. Except for the density-based
method (SLOF), the Gaussian noise proved to be very easily distinguishable from OOD
by all the methods.

57



Intermediate- and Far-OOD on CUB80 dataset (TPR@1%FPR)

Methods Places365
(ψ : 0.75)

DTD
(ψ : 0.73)

Gaussian noise
(ψ : 0.70)

ChestXRay
(ψ : 0.68)

Average
(ψ : 0.71)

Baseline
MSP 90.83 87.99 100.00 98.91 94.43

Energy
(T = 10) 99.13 98.25 100.00 100.00 99.35

ODIN
(T=1.0, ϵ=0.001) 98.25 97.38 100.00 99.56 98.80

GradNorm
(T=10) 93.67 94.54 100.00 100.00 97.05

Global PCA FRE
(σ=0.9) 99.78 99.78 100.00 100.00 99.89

DkNN
(k=4) 99.78 99.78 100.00 100.00 99.89

EnWeDi
(k=47) 99.56 98.25 100.00 99.34 99.29

SLOF
(k=19) 91.70 91.05 96.29 92.58 92.91

Table 5.4: Intermediate- and far-OOD results for CUB80 dataset measured using
the TPR@FPR1 metric. The ψ under each dataset name indicates the domain
similarity score between the OOD dataset and the test set of the ID dataset.

5.3.3 iNaturalist2100 Dataset

For the iNaturalist2100 dataset, the Places365 dataset and the DTD (textures) dataset are
considered intermediate-OOD. The Gaussian noise and ChestXRay datasets are considered
far-OOD datasets.

Table 5.5 shows the TPR@FPR1 achieved by the OOD detection methods for intermediate-
and far-OOD cases on the iNatrualist2100 dataset. For the intermediate-OOD case, unlike
the Papilionidae50 and CUB80 datasets, on the iNaturalist2100 dataset, none of the meth-
ods achieve a TPR higher than 70% at a 1%FPR.

The DkNN and EnWeDi methods perform similarly to each other and achieve the
highest TPRs at a 1% FPR. The ODIN method, which outperformed both of these methods
for the near-OOD case, performs significantly worse in this case. Interestingly, the Baseline
MSP method outperforms the ODIN method on 3 out of 4 OOD datasets.

While the Global PCA FRE method performed poorly (with an AUROC of 59.44%) on
the near-OOD detection task (Figure 5.3 in Section 5.1), it performs competently on the
far-OOD detection task and even outperforms all the methods for Gaussian noise dataset.

An interesting pattern seen among all three datasets is that a significant number of
methods showed a lower TPR when tested on chest X-ray images as OOD than on Gaussian
noise.
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Intermediate and Far OOD on iNat.2100 dataset(TPR@1%FPR)

Methods Places365
(ψ : 0.76)

DTD
(ψ : 0.74)

Gaussian noise
(ψ : 0.69)

ChestXRay
(ψ : 0.68)

Average
(ψ : 0.72)

Baseline
MSP 51.74 55.40 71.29 66.43 61.22

Energy
(T = 100) 8.17 2.36 47.69 15.35 18.39

ODIN
(T=1.0, ϵ=0.001) 37.01 46.76 83.22 40.00 51.75

GradNorm
(T=10) 5.82 1.77 40.90 11.41 14.97

Global PCA FRE
(σ=0.97) 38.48 60.83 99.99 83.10 70.60

DkNN
(k=1) 69.30 76.00 89.37 97.28 82.99

EnWeDi
(k=15) 69.29 76.01 89.37 97.29 82.99

SLOF
(k=4) 8.39 17.08 12.96 47.49 21.48

Table 5.5: Intermediate- and far-OOD results for the iNaturalist2100 dataset were
measured using the TPR@FPR1 metric. The ψ under each dataset name indicates
the domain similarity score between the OOD dataset and the test set of the ID
dataset.

5.4 Effect of the Amount of In-Distribution Data Used on
Feature Embeddings-based Methods

In this section, the results for feature-based OOD detection methods with a limited set of
reference ID data are presented.

5.4.1 Distance-, Entropy- and Density-based Methods

Figure 5.8 shows the OOD detection performance of the distance-based (kNN), density-
based (SLOF), and entropy-weighted distance-based (EnWeDi) methods with limited data
in the feature space (kNN search space). Figures 5.8a and 5.8b show the cases of long-tailed
(Papilionidae50) and balanced (CUB80) in-distribution datasets respectively.

The density-based method (SLOF) shows significant improvement with adding more
ID reference data until 40% of the data is added. For the distance-based DkNN method,
this highly depends on the ID dataset. In the case of a long-tailed ID dataset, the DkNN
shows only a marginal improvement in OOD detection when adding more data into the
kNN search space. On the balanced dataset, doing the same shows a noticeable increase in
the OOD detection performance. However, the gain diminishes as more data is added. For
the EnWeDi method, which is distance-based and entropy-based, having more data points
in feature space leads to an increase in OOD detection accuracy on long-tailed as well as
balanced datasets.

Overall, it can be seen that adding ID reference data to the feature space increases the
near-OOD detection performance for the distance-, entropy- and density-based methods.
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However, the methods exhibit diminishing returns in terms of OOD detection capability
after a certain amount of data in the feature space.

(a) case: near-OOD on long-tailed ID dataset (b) case: near-OOD on balanced ID dataset

Figure 5.8: Effect of using limited ID reference data on the distance, density, and
entropy-weighted-distance based methods. A 0.1 on the x-axis implies that 10% of
the training data is used in feature space

5.4.2 Feature Reconstruction Error-based Methods

The results of varying the amount of data used for modelling the subspace of the in-
distribution show interesting results depending on the method (per class or global) and
the type of dataset it is tested on. The results for near-OOD detection for Global and
Per-class PCA FRE methods are shown in Figures 5.9 and 5.10 respectively. The x-axis
on the plots is the variance (σ) that needs to be maintained in a feature embedding when
reducing it to fewer dimensions using PCA.

Global PCA FRE Method: For the Global PCA FRE method, increasing the amount
of data for modelling the ID subspace results in an increase in AUROC on the Papilion-
idae50 dataset. As can be seen in Figure 5.9, the increase depends on the value of σ chosen.
It is also seen that after a certain value of σ, the OOD detection (in AUROC) drops. The
higher the amount of data used, the lower the value of σ after which the AUROC drops.
However, for the balanced CUB80 dataset, this does not apply. The OOD detection per-
formance does not improve much ( <4%) by using more data to model the ID subspace.
Surprisingly for the CUB80 dataset, using 10% of data for training the PCA model gives
similar results as using 100% data.

Per-class PCA FRE Method: For the Per-class PCA FRE method, using more data
for subspace modelling shows higher detrimental effects on OOD detection on the long-
tailed Papilionidae50 dataset at higher σ values. This implies that for the Per-class PCA
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FRE method, choosing a lower value for the σ hyperparameter results in better OOD de-
tection. As shown in Figure 5.10, the Per-class PCA FRE method, when tested on the
CUB80 dataset using more data to model the ID subspace, does not show much improve-
ment irrespective of the value of the hyperparameter (σ) chosen. Increasing the amount
of data for subspace modelling results in less than 3% improvement in AUROC on the
CUB80 dataset.

Figure 5.9: Effect of using limited data to model the in-distribution subspace for
the Global PCA FRE method. An α of 0.1 implies 10% of the ID data is used for
subspace modelling.

Figure 5.10: Effect of using limited data to model the in-distribution subspace
for Per-class PCA FRE method. An α of 0.1 implies 10% of the ID data is used for
subspace modelling.
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In conclusion, for very small datasets (around 400 images), the PCA FRE-based meth-
ods can be used for OOD detection safely only if the datasets are balanced. The results
for a related topic (Per-class versus Global PCA) are presented in Section 5.6.

5.5 Inference Time of OOD Detection Methods

Figure 5.11 shows the per-image OOD detection inference time with respect to the AUROC
achieved by the methods on the iNaturalist2100 dataset.

5.5.1 Score-based methods

The Baseline MSP method and Energy method are the fastest out of the selected methods.
The OOD detection inference time of these methods is approximately equal to the time
taken by a forward pass on the CNN model used. The ODIN and GradNorm methods,
which require the calculation of gradients with respect to the output layer of the CNN
model, take significantly more time to calculate the OOD detection score when compared
to other score-based methods. The inference times for ODIN and GradNorm are 160.2 ms
and 109.1 ms respectively. It was observed that the score-based methods exhibit similar
inference times across the ID datasets and hyperparameters.

Figure 5.11: Inference times of OOD detection methods (and their variants) on
the iNaturalist2100 dataset
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5.5.2 kNN-based methods

On the iNaturalist2100 dataset, when the kNN search for the DkNN and EnWeDi method
is performed on a GPU, the inference time (per image) is approximately 4 milliseconds
more than a forward pass on the CNN model. When the kNN search for these methods is
performed on a CPU instead of a GPU, the OOD detection is around 4 times slower on
the iNaturalist2100 dataset. For instance, the inference time is 130.0 ms instead of 31.4
ms for the DkNN method.

However, the significant increase in the inference time when kNN search is performed
on the CPU instead of a GPU is only observed when the ID dataset is large such as the
iNaturalist2100 dataset (for which there are around 0.2 million feature embeddings in the
kNN search space). For instance, on the Papilionidae50 dataset, when the kNN search is
performed using the CPU, the DkNN and the EnWeDi methods take 37.8 ms and 37.9 ms
respectively, while the same using a GPU is 29.7 ms and 29.9 ms respectively.

As the DkNN method (on GPU) is already fast, the advantage of using the Centroid-
DkNN method in terms of OOD detection speed is marginal. On the iNaturalist2100
dataset, the Centroid-DkNN method takes 30.6 ms for OOD detection per image (which
is 0.8 ms less than the DkNN method for the same). Similarly, using less amount of ID
data in feature space also does not lead to any significant improvement in inference speed.
Interestingly, the Centroid-DkNN method takes only 31.7 ms (around 1 ms more) when
the kNN search is performed on a CPU instead of a GPU. The density-based method,
SLOF, is slower than the distance-based methods (DkNN, Centroid-DkNN and EnWeDi).
However, the difference is significant only when the kNN search is performed on a CPU
for a large dataset such as the iNaturalist2100 dataset.

5.5.3 PCA-based methods

With an average inference time of 34.5 ms, the Global PCA FRE method is slightly slower
(by 3 ms) than the DkNN and EnWeDi methods. The Global PCA FRE method’s inference
time is similar across the three ID datasets. However, its per-class variant, the Per-class
PCA FRE method’s inference time largely depends on the ID dataset. More specifically,
the inference time is directly proportional to the number of classes in the dataset. While
this method takes 610.0 ms on the iNaturalist2100 dataset, it takes 51.2 ms on the CUB80
dataset.

5.6 Per-Class and Global Approach to Distance-based and
Feature Reconstruction Error-based Methods

The distance-based method and the PCA FRE-based methods can also be implemented
at a class level instead of at the dataset (global) level. The Per-class PCA FRE method is
described in Subsection 3.2.5.2 and the DkNN method at a class level is the Centroid-DkNN
method (described in Subsection 3.2.6.3). The comparison of applying the two approaches
for the task of near-OOD detection is shown in Figure 5.12.

For the long-tailed Papilionidae50 data set, it can be inferred that applying the DkNN
and PCA FRE approaches at the dataset level instead of the class level provided better
OOD accuracy. However, for the balanced CUB80 dataset, applying these methods at the
class level (instead of the dataset level) leads to an improvement in OOD accuracy. For the
kNN-based method, the improvement is insignificant. The improvement is more noticeable
for the PCA FRE-based approach where the increase in AUROC from the global to per-
class method is more than 7%. The reason why applying these approaches per class for

63



OOD detection is beneficial for one type of dataset and detrimental for another is discussed
in Section 6.6.

Figure 5.12: Effect of applying feature embeddings-based methods - DkNN and
feature reconstruction error based methods globally (entire ID dataset as a single
entity) and per-class. The results are shown for the task of near-OOD detection on
the Papilionidae50 (left) and CUB80 (right) datasets

5.7 Effect of Stacking

As mentioned in Section 4.4, the feature embeddings can be extracted from all the 9
major layers (layer.8 to layer.0 ) of EfficientNetV2-M [70] and stacked to form a single
feature embedding. The near-OOD detection performance with penultimate layer feature
embeddings and stacked feature embeddings are compared in Figure 5.13.

For the Papilionidae50 dataset, it can be observed that using stacked features improves
OOD detection significantly. The range of increase in AUROC ranges from 2.2% - 6.8%,
with the DkNN method getting benefited the most. However, for the CUB80 dataset,
stacking the features drastically reduces the OOD detection capability of the methods.
The AUROC values reduce in the range of 6.4% to 12.3%. Interestingly, with stacking, the
DkNN method which benefited the most on the Papilionidae50 dataset, gets significantly
affected by the same on the CUB80 dataset - a huge drop of 12.3% in AUROC. This
discrepancy in OOD performance between datasets is discussed and a method to avoid the
degradation of OOD performance when stacked is proposed in Section 6.5.
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Figure 5.13: Effect of stacking the feature embeddings on near-OOD detection
on the Papilionidae50 (left) and CUB80 (right) datasets.
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Chapter 6

Discussion

In this chapter, most of the comparisons and discussions around the results are focused
on the near-OOD detection task as this is a more challenging task. Moreover, a classifier
deployed in an open world may encounter images from near-OOD more often than images
from far-OOD. For instance, a system that is trained to classify preserved butterfly species
in a biodiversity centre is expected to encounter new species of butterfly species more often
than species of completely different insects. Furthermore, as shown in Section 5.3, many
methods can achieve a high AUROC on the intermediate- and far-OOD detection tasks
but, but do not perform as well for near-OOD detection tasks.

6.1 Suitability of Using Domain Similarity for Measuring OOD-
ness

This section discusses the approach used for answering the research question: "For a given
in-distribution dataset, how can the difficulty of detecting OOD images from a particular
OOD dataset be quantified?"

To quantify the OOD detection difficulty, the concept of domain similarity between in-
distribution and out-of-distribution was used. For a given ID dataset, the domain similarity
measures to a set of OOD datasets were in coherence with the subjective categorising of
them into near-, intermediate- and far-OOD. For instance, for the CUB80 birds dataset,
intuitively the order in which the OOD datasets would be most to least similar would be
CUB120 (birds), CUB80 (ID) with corruptions applied, Places365 (due to backgrounds),
textures (patterns) and then Gaussian noise (featureless). The domain similarity measures
indicate the same order as well.

While it may not be straightforward to measure the accuracy of the domain similarity in
a standardised manner, a simple pseudo-validation on the suitability of domain similarity
as a measure for OOD detection difficulty was done. Figure 6.1 shows the correlation
between the domain similarity between a given ID and OOD dataset and the accuracy
(AUROC) of the OOD detection task between them. Two output-score based and two
feature embeddings-based OOD detection methods, all of which use different concepts for
OOD detection, are shown.
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(a) For CUB80 ID dataset (b) For iNaturalist2100 ID dataset

Figure 6.1: Domain similarity scores vs AUROC for two datasets. DkNN and
Global PCA FRE are feature embeddings-based methods while Energy and ODIN
are output score-based methods

The domain similarity vs AUROC curves mostly shows the expected relation - as
the domain similarity between ID and OOD dataset decreases, easier it is to distinguish
between the images from them and therefore higher the AUROC. As it can be seen, the
domain similarity - AUROC relation mostly follows the same trend across the four methods
irrespective of whether they are feature-embeddings-based, or output-score based.

6.1.1 Domain Similarity and Model Architecture Dependency

In this research, the domain similarities are calculated using feature embeddings of ID and
OOD images extracted from an EfficientNetV2-M model pre-trained on ImageNet-21K [8].

To check if the domain similarity is dependent on the model architecture, it was
also calculated using other models of various architectures - MobileNet V3-L [99], BiT-
ResNet101V2 [100] and EfficientNetV2-L [70]. On different models, although the domain
similarity scores have a different numerical range, the OOD datasets will be arranged in
the same order of OODness with these domain similarity scores as well.

For instance, Figure 6.2, shows the domain similarity scores calculated for the Papilion-
idae50 dataset and corresponding OOD datasets. Except at one instance (MobileNet-v3-L
between ChestXRay dataset and Gaussian noise dataset), all the OOD datasets follow a
similar trend of domain similarity across different architectures. The domain similarity
scores calculated using different architectures for CUB80 and iNaturalist2100 are shown in
Figures A.1 and A.2 in the appendix.
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Figure 6.2: Domain similarity scores using different model architectures

6.1.2 Comparison With Existing Works for Measuring the Difficulty of
OOD Detection

In [23], the authors propose the openness factor as an estimate for OOD detection difficulty.
This factor is solely determined by the number of classes in ID and OOD datasets and not
based on the similarity between them. For an ID dataset with 50 classes of bird species,
the openness factor with an OOD dataset of 50 classes of new (OOD) bird species and
50 classes of x-ray images would be the same. Whereas the proposed approach of using
domain similarity would represent the significant difference between them. Furthermore,
the openness factor is difficult to quantify for real-world applications as it is challenging
to estimate the number of possible OOD classes that could be encountered by a classifier.
Hence the openness factor can vary highly based on the subjective context of making a
category of OOD images into a class.

In [101], the confusion log probability (CLP) metric as a measure to estimate OOD
detection difficulty is introduced. The CLP needs an ensemble of classifiers to be trained
on a dataset containing a union of the ID and OOD datasets. For each combination of
the ID-OOD dataset, a new ensemble of classifiers needs to be trained. This could be
time (and energy) consuming and may not be ideal if the ID and/or the OOD datasets are
large (or many). The proposed domain similarity approach needs only a single off-the-shelf
classifier that is already trained on a wide variety of images or a classifier that is trained
on the ID dataset.

Another approach to estimating OOD detection difficulty is presented in [102]. In this
method, OOD detection difficulty is estimated at a class level i.e., the OOD classes within
an OOD dataset are grouped into categories that indicate varying levels of OOD detection
difficulty. This method is based on the assumption that if images belonging to a particular
OOD class have high prediction confidences on the classifier trained on the ID dataset,
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then that class is more difficult to be detected as an OOD class. This approach can be
extended to measure OODness (and OOD detection difficulty) at the dataset level as well.
However, the work was published towards the end of this research work (February 2023),
leaving limited time to implement and compare it with the domain similarity approach.

6.2 Interesting Results on OOD Detection

In this section, a few surprising/interesting results achieved by the OOD detection methods
in the previous chapter are discussed.

6.2.1 DkNN Method Achieving a 75% TPR@FPR5 on the Near-OOD
Detection

On the Papilionidae50, it can be seen in Figure 5.4b that the DkNN method can achieve a
very high TPR of 75% while meeting a 5% FPR requirement for the near-OOD detection
case. A hypothesis on how the DkNN method achieves this is presented here.

A hypothesis that can be derived from the underlying idea behind the DkNN method is
For an input image from ID, the k-nearest neighbours in the feature space majorly consist
of the feature embeddings from the same class from the ID training/reference set. From
observations, it can be said that this hypothesis holds in most cases. With this preface,
consider the following scenario: a feature embedding fx from the ID test set belongs to an
ID class Cfx which has |Cfx | number of feature embeddings in the feature space. When
k >> |Cfx |, then the probability that the kth nearest neighbour for fx is from Cfx is very
low.

The DkNN method achieves this high TPR when the hyperparameter k is set to 150.
This means, for an input image, the OOD score assigned is the distance to its 150th nearest
neighbour in the feature space. In the Papilionidae50 dataset, more than 90% classes have
less than 150 images. The two contradicting questions that then arise are "Shouldn’t an
ID test image that has less than 150 images per class in the feature space mostly likely get
classified incorrectly when k ≥ 150?". If the hypothesis holds most of the cases, then "How
is a high TPR possible even though the images belonging to 90% of the classes are most
likely getting misclassified?".

In the Papilionidae50 dataset, the training set (reference set), as well as the test set, are
long-tailed. Even though 45 out of 50 classes have less than 150 images, 77% of the feature
embeddings in the feature space belong to the rest 10% of the classes (5 out of 50), each of
which has more than 150 images per class. The rest 23% of the feature embeddings belong
to 45 classes, out of which 35 classes have less than 10 images per class. The ID test set
follows a similar ratio in the distribution of images per class. Hence, the following scenario
could be leading to the reported 75% TPR: At k = 150 a precise distance threshold can be
set which is just smaller than the distance to the 150th nearest neighbour for 5% of OOD
images. In the ID dataset, per 100 images, 23 images belong to classes having less than
150 images per class. Even if all 23 images are misclassified as OOD, out of the remaining
77 images, 75 images are classified correctly as ID.

This is also the reason why the TPR increases very slowly after reaching 77% in the
ROC. Even a small decrease in the distance threshold leads to a large number of OOD
images getting classified as IDs, thereby leading to a rapid increase in the false positive
rate. This can be seen in Figure 5.4b.

This indicates that for a long-tailed dataset, the value of k chosen for the DkNN method
to achieve a true positive rate requirement, significantly depends on the dataset.
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Note that the class(label) information was used only for the above discussion and the
DkNN method does not require any class(label) information for OOD detection.

6.2.2 0% TPR@FPR1 for Anomaly Detection on the Papilionidae50
Dataset

For the task of anomaly detection on the Papilionidae50 dataset, a few methods such as
GradNorm and Energy achieved 0% TPR@FPR1 as shown in Table 5.1. However, it is to
be noted that methods that show a 0% TPR at 1% FPR can not be considered completely
incapable of detecting anomalies for two reasons:

• Meeting the stern requirement of having an FPR ≤ 1% could be too harsh on some
of the methods which are capable of meeting slightly relaxed FPR requirements. For
instance, as shown in Figure 6.3a, the Energy method has a TPR value of 0.0 at 1%
FPR, but a TPR value of 96.79% at 5% FPR.

• It is to be considered that the methods are not operated with hyperparameters that
are specific to this strong requirement. It has been observed that using a different
set of hyperparameters can make respective methods achieve this requirement in
anomaly detection. For instance, as shown in Figure 6.3b, the energy method can
achieve a non-zero TPR@FPR1 when the temperature parameter of the method is set
to 1000. Although this decreases the overall anomaly-detecting capability (measured
using AUROC).

(a) TPR at a slightly relaxed requirement of FPR (b) TPR at 1%FPR at different hyperparameters

Figure 6.3: ROC curve for Energy method for the task of anomaly detection on
ID: Papilionidae50, OOD: ID applied with Defocus corruptions.

In summary, achieving 0% TPR@FPR1 for anomaly detection is a strict requirement,
and some methods may still be capable of detecting anomalies with slightly relaxed FPR
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requirements or adjusted hyperparameters. Nonetheless, the trade-offs between meeting
this requirement and overall anomaly-detecting capability should be considered.

6.3 Selecting the Best OOD Detection Method

In this section, using the results from the previous chapter, the research question "What are
the OOD detection methods that can consistently achieve the best accuracies over different
OOD difficulties when measured across a range of evaluation metrics?" will be discussed.

In the case of near-OOD detection, except on the CUB80 dataset, the difference in
AUROC achieved by the methods is significant enough to choose one over the other. The
proposed method - EnWeDi performs the best consistently across the datasets. For the
iNaturalist2100, the input-perturbations-based method - ODIN outperforms the EnWeDi
method (by 0.3%) for the task of near-OOD detection but does not show this performance
consistently across other OOD detection tasks or datasets. Furthermore, in ODIN, for
each input image, a new image with perturbations added to the input is generated, which
must also be inferred from the model. This would reduce the overall throughput (number
of outputs per unit time) by at least 50% of the classifier model. As shown in Figure
5.11, the ODIN method is at least 5 times slower than the EnWeDi method. If enough
computation resources and memory is available, the EnWeDi method can be pipe-lined
with the classifier model’s inference.

When the requirement is to achieve a higher TPR at a set rate of false positives, then
based on the results, both DkNN and EnWeDi methods can be chosen. However, the DkNN
method achieves 10% higher TPR than the EnWeDi method on the Papilionidae50 dataset.
A hypothesis on how the DkNN method achieves this interesting result was discussed in
Subsection 6.2.1.

For the task of anomaly detection, the Global PCA FRE method outperforms all the
methods when tested on the Papilionidae50 and the CUB80 datasets. More importantly, it
achieves ∼ 10% higher TPR@FPR1 than the second-best method (EnWeDi) on the CUB80
dataset. This is in coherence with the literature of the PCA-based FRE method [5], where
it performs similarly to, and in a few cases outperforms the current state-of-the-art anomaly
detection methods.

However, The Global PCA FRE method does not show decent OOD detection per-
formance on a dataset having a large number of classes such as the iNaturalist2100. In
the Global PCA FRE method, a single PCA model is used to model the subspace of the
entire ID dataset. For datasets with a large number of categories/classes, a single subspace
model is too generalised that even an image from the OOD dataset gets a low feature re-
construction error. To solve this, the Per-class PCA FRE approach can be followed, where
each class’s subspace is modelled individually and can lead to a better OOD performance.
However, a per-class approach for the iNaturalist2100 dataset is not practical as it requires
performing forward and inverse transformations of dimensionality reduction 2100 times on
an input image’s feature embedding. As shown in Figure 5.11, the Per-class PCA method
is 18 times slower than the Global PCA FRE method in this case. The Per-class PCA
FRE method also does not perform well when the ID dataset has a class with very few
images such as the Papilionidae50 dataset. The reasons for this are discussed in detail in
Section 6.6.

For intermediate- and far-OOD, most of the methods achieve similar and near-perfect
OOD detection accuracies on the Papilionidae50 and CUB80 datasets. With iNatural-
ist2100 as ID and Places365 dataset as OOD, the only DkNN and EnWeDi methods achieve
a TPR@FPR1 of more than 50% when 3 out of 8 methods achieve less than 5% for the
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same.

Distilling the results From the results in Sections 5.1 (near-OOD detection), 5.2
(anomaly detection) and 5.3 (intermediate- and far-OOD), it is observed that not all the
OOD detection tasks are equally difficult. For instance, on the CUB80 dataset, for the
task for intermediate- and far-OOD detection, all the methods (except the Baseline MSP
in one case), achieve true positive rates above 90% even at the strong requirement of 1%
false positive rate. For such cases, the difference in OOD performance between methods
is marginal and hence comparing methods is trivial. Therefore from the set of results pre-
sented in the above-mentioned sections, the two most difficult OOD detection tasks per
dataset covering different types of evaluation metrics are chosen and are shown in Figure
6.4. This helps to understand the consistency of the methods across various aspects of
the OOD detection tasks, across requirements and types of datasets to pick a method that
performs competently overall.

Figure 6.4: Radar graph showing the performance of methods across various
aspects of OOD detection, types of datasets and requirements (evaluation metrics)
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Overall, it can be seen that the EnWeDi method consistently performs competently
across all three datasets and different evaluation metrics.

Figure 6.5 summarises the OOD detection methods recommended for different scenarios
based on the results and discussion above.

Figure 6.5: OOD detection method recommendations for different scenarios

Ease of implementation and retrofitting Apart from the quantitative metrics, choos-
ing an OOD detection method based on ease of implementation, retrofitting and explain-
able OOD detection is discussed below. The Baseline MSP is the easiest OOD detection
method as the OOD decision is made by comparing the maximum of the already calculated
softmax prediction probabilities with a threshold. However, it is not the most robust OOD
detection method due to the underlying assumptions it is based on. The Energy method
is the next simplest method to implement as it can be retrofitted by adding the energy
equation (Equation 3.2. ODIN and GradNorm require backpropagating through the last
layer of the neural network to calculate gradients. All the output score-based methods do
not need any ID images (expect to set the decision threshold) and hence can be added
to an existing classifier even when the training (ID) data is no longer available. For all
the feature embeddings-based methods, images from the ID dataset (and their labels, de-
pending on the method) are required. For PCA FRE-based models, the ID data is not
required during the testing phase, whereas the feature embeddings of the ID images are re-
quired even during the testing phase for DkNN, EnWeDi and SLOF variants. The EnWeDi
method can also provide more reasoning on why a particular input image is classified as
ID or OOD. This is explained in Subsection 6.4.3.
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6.4 Proposed Method - Entropy Weighted Nearest Neigh-
bours Distance

The discussion in this section is related to the research question "What improvements can
be made to the existing OOD detection methods to further improve their accuracy for the
task of OOD detection on fine-grained and long-tailed in-distribution datasets?"

In this research, the Entropy weighted nearest neighbour’s distance (EnWeDi) for OOD
detection is proposed. In this section, the hypothesis behind the method is validated. A
few reasons with examples have been presented that show why EnWeDi is a better OOD
detection method. Next, the method’s ability to perform ‘explainable OOD detection’
is discussed. The list of limitations of the method is presented and an improvement is
proposed. Finally, a few points to make the EnWeDi method more feasible to implement
and use are listed.

As the DkNN method is closest conceptually and in terms of performance for most of
the OOD detection tasks, the EnWeDi method is compared against it in this section.

6.4.1 Validation of the Hypothesis Behind the EnWeDi Method

The EnWeDi method is based on the hypothesis that an OOD image will have nearest
neighbours belonging to multiple classes while the ID image will have nearest neighbours
belonging to (mostly) a single class. This information is leveraged by the EnWeDi method
to distinguish between the ID and OOD image examples. Using this uncertainty informa-
tion (quantified as entropy) and combining it with the distance to the nearest neighbour,
the EnWeDi method further extends the separation between the ID scores from the OOD
scores.

(a) case: in-distribution (b) case: out-of-distribution

Figure 6.6: The number of classes in k-nearest neighbours for ID and OOD images.
A set of 400 random images each from the CUB80 test set and CUB120 dataset are
taken as ID and OOD
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The hypothesis about the uncertainty can be validated by Figure 6.6, which shows the
number of classes the nearest neighbours belong to in the feature space for a set of 400
randomly chosen ID and OOD images. The images from the CUB80 dataset and CUB120
dataset are taken as ID and OOD respectively. For the kNN search, the value of k is set at
25, which is half of the average number of images per class in the CUB80 training dataset.
As can be seen, around 85% of the ID images have nearest neighbours belonging to a single
class, while for the OOD images, only 28% of the images have nearest neighbours belonging
to a single class.

The next subsection illustrates how the EnWeDi method improves the separation be-
tween ID and OOD in two cases specific to near-OOD detection.

6.4.2 Example Cases of the EnWeDi Method Outperforming the DkNN
Method

Case 1: When distances to the nearest neighbours for ID and OOD are similar
In a fine-grained novel-class detection, the near-OOD samples are visually highly similar
to the ID classes. Hence the distance to the kth nearest neighbour for an OOD image is at
times comparable to that of an ID image, making it hard to set a decision threshold.

Figure 6.7: The case of an ID and OOD image being at similar distances to their
respective nearest neighbours in the feature space. The d underneath each nearest
neighbour is the Euclidean distance between that neighbour and the test image.

An example is shown in Figure 6.7. In this example, the distances to the k nearest
neighbours with k = 9 for the ID test image and OOD test image are highly similar. With
the DkNN method, the OOD scores would be the distance to the kth nearest neighbour
and hence the ID image and the OOD image would get an OOD score of 0.79 and 0.80
respectively. In this case, unless the threshold for the OOD detection was pre-determined
to be in between the narrow range of 0.79 and 0.80, the DkNN method would classify both
images as belonging to the same distribution (either as ID or OOD). However, for the OOD
image, even though the distances to the k-nearest neighbours are similar to that of the ID
image, it is observed that the k-nearest neighbours do not belong to the same class. By
quantifying this uncertainty and combining it with the distance to the nearest neighbour,
the EnWeDi method assigns the OOD score of 0.73 and 0.89 for the ID and OOD image

75



respectively, making it easier to distinguish between them.

Case 2: When distances to the nearest neighbours for an OOD image are
smaller than that of an ID image It has also been observed that there are instances
of the ID image’s distance to its kth nearest neighbour being greater than that of a near-
OOD image. One such example is shown in Figure 6.8 from the near-OOD detection case
on the CUB80 dataset. In such cases, the DkNN method, which uses the distance to
the kth nearest neighbour, performs terribly by classifying the ID image as OOD and/or
the OOD image as ID. The DkNN method would assign ID and OOD images the OOD
score of 0.78 and 0.67 respectively (distances to the 9th nearest neighbour). Whereas, the
EnWeDi method would assign scores of 0.64 and 0.96 for the ID image and the OOD image
respectively, hence increasing the chance of classifying them correctly.

6.4.3 Explainable OOD Detection

Apart from the improved OOD detection capability, the EnWeDi (as well as DkNN) method
can also provide an ‘explainable OOD score’ - an aspect of OOD detection that has been
quite overlooked in the literature. Since the EnWeDi method uses labelled feature embed-
dings of the reference ID dataset, it can provide better insights into why an input image
is classified as ID or OOD when compared with other methods in this work.

For instance, as shown in Figure 6.8, for the OOD input image, the OOD score can
be explained in terms of the 3 classes it is most visually similar. Furthermore, although
the EnWeDi method uses only the distance to the nearest neighbour for calculating the
OOD score, a kNN search anyway results in the distances for the k-nearest neighbours.
These distances can be further used to understand how closely an input image resembles a
particular ID class. If the reference feature embeddings are indexed i.e., they can be traced
to the images to which they belong, then an OOD score of an input can be traced to the
reference set of images as well.

Note that the DkNN method can also give most of the insights mentioned above if
the required information (image labels, feature embeddings-image mapping) is available.
However, if this information is available, one might as well use the EnWeDi method instead
of the DkNN method for improved OOD detection.

6.4.4 Limitations of the EnWeDi Method

Since EnWeDi depends on the class labels, it can not be applied when labelled train-
ing/reference ID images are not available. Furthermore, the EnWeDi method relies on
entropy to outperform other methods. Calculation of entropy assumes ‘variety’ in the in-
puts, i.e., the number of classes represented in the feature space is more than one. This
assumption can not be applied to OOD detection tasks where the number of ID classes
is one. For instance, anomaly detection for industrial applications (as seen in the MVTec
dataset [103]) could have a single ID class labelled ‘Good’ or ‘Defect-free’. In such cases,
the EnWeDi method performs as the DkNN method set with k = 1.

6.4.5 Feasibility of the EnWeDi Method

It is to be noted that the EnWeDi method requires performing a k-nearest neighbour
(kNN) search on the feature embeddings which is demanding in terms of computations
and memory required. Therefore, although it achieves high OOD detection accuracies, it
may not be the most ideal method for deploying on edge devices with limited resources

76



(a) Test image from ID

(b) Test image from OOD

Figure 6.8: An example case where the distance to the kth nearest neighbour of
an ID image is greater than that of an OOD image
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especially when the ID dataset is large. A combination of the below ideas can be used to
make the kNN searches and thereby the EnWeDi method more feasible

• Using fewer feature embeddings to represent the ID dataset in the feature space.
This can be done in multiple ways.

– Random stratified sampling The simplest way is to use feature embeddings
of a certain fraction of randomly selected images from each class in the dataset.
As shown in Figure 5.8, even with only 10% images from each class, the EnWeDi
achieves better OOD detection accuracy than other methods with 100% of the
data on the Papilionidae50 dataset. However, on the CUB80 dataset, at least
30% of the dataset was required to achieve the same. It is also to be noted that
with 30% of ID data, on both datasets, the EnWeDi method can already attain
OOD accuracy that is reasonably close to that when the whole dataset is used.

– Coreset sampling Instead of random sampling, a Coreset selection [104] of
the images can be done to select the most informative samples from a class or
dataset.

• Dimensionality reduction of feature embeddings Despite the high dimensional-
ity, many points in the feature space do not correspond to realistic natural images [5].
This means that the high-dimensional feature embeddings contain sparse informa-
tion and can be reduced to fewer dimensions without losing much of the information.
Therefore principal component analysis (PCA) or similar dimensionality reduction
methods can be applied to the feature embeddings to represent them in subspaces
of a (fixed) fewer dimensions before adding them to the kNN search space (feature
space).

6.4.6 EnWeDi with k Correction

The entropy calculation of the EnWeDi method works best if the number of images per
each class (in the feature space) is greater than the value of ‘k’ chosen. However, when this
is not the case, the entropy calculated does not fully represent the measure of uncertainty.
An example of this is shown in Figure 6.9. Here, the value of k is set to 9 but the ID input
image belongs to a class that has only 2 images in the feature space. These two images are
found as the two nearest neighbours for the input image. Hence, intuitively it can be said
that the image most likely belongs to ID. The distance to the nearest neighbour (which is
used in the calculation of the OOD score) is low and indicates that the image belongs to
ID. However, the entropy calculated will indicate that the image might not be belonging
to ID.

To overcome this, the ‘Entropy weighted nearest neighbour’s distance with k-correction’
or ‘EnWeDiCo’ method as an extension of EnWeDi method is proposed. In this method,
after a kNN search, the nearest neighbour’s class is noted. If all the images belonging to
this class are already found in the kNN search, then the entropy is set to 0.

Furthermore, it can also be observed that there is a significant difference in the distance
to the 2nd nearest neighbour and the 3rd nearest neighbour. This information can be used
in addition to the k-correction.
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Figure 6.9: Example case where the entropy calculation in EnWeDi can be im-
proved. The k hyperparameter for the method is set at 9 while the number of
images belonging to the ID class is only two.

Due to time constraints, this method was not completely evaluated in this work. The
benefits and limitations of the EnWeDiCo method can be an interesting direction to explore
in future.

6.5 To Stack or Not to Stack the Feature Embeddings

In this section, the research question "What is the effect of stacking feature embeddings
from the intermediate layers of a convolutional neural network on the accuracies of the
OOD detection methods that make use of feature embeddings?" is discussed.

As mentioned in Section 4.4, in this work, the feature embeddings-based methods are
also tested on the feature embeddings extracted from the intermediate layers and stacked.
From the results shown in Section 5.7, it can be seen that this improves the OOD detection
capability of the methods when tested on the Papilionidae50 dataset but reduces the same
on the CUB80 dataset. In this section, a hypothesis on why this happens and a solution
to prevent the degradation of OOD performance seen on the CUB80 dataset is proposed.

6.5.1 What Do the Intermediate Layers Capture?

To understand the effect of stacking of feature embeddings on OOD detection, it is first
required to understand what information is extracted from each layer. More specifically,
the differences between what each intermediate layers in the CNN represent, specific to
the images from the Papilionidae50 and CUB80 datasets are to be understood. This was
done by visualising the feature activation maps at each layer from the CNN trained on the
respective ID datasets. At each intermediate layer, a feature activation map is extracted
by taking the mean along the ‘channel’ axis on the absolute of the outputs (before the
global average pooling layer) from that layer. Figure 6.10 shows these feature activation
maps obtained at various intermediate layers for an ID image from the Papilionoidae50 and
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CUB80 datasets. As can be seen from the feature activation maps, the deeper layers (for
instance, layer 8 and layer 7) capture features more specific to the object of importance
in the image. Whereas, the initial layers (for instance, layer 0 to layer 2) extract general
features such as edges and global textures.

Figure 6.10: Feature activation maps using EfficientNet-V2-M trained on respec-
tive datasets. Layer 8 is the closest to the output

6.5.2 Why Stacking Features is Not Always Useful for OOD Detection

Through the feature activation maps shown in Figure 6.10, a hypothesis is made to reason
why stacking the feature embeddings was beneficial and detrimental for OOD detection on
the Papilionidae50 and CUB80 datasets respectively.

A typical image from the CUB80 dataset consists of the subject (the bird) and the
background (cage, tree trunks, etc). As it can be seen in Figure 6.10, the feature embed-
dings extracted from intermediate layers contain a significant amount of information about
the background as well. Hence, in a stacked feature embedding vector, a significant num-
ber of components contain information belonging to the background. Furthermore, images
from OOD, especially from near-OOD (other species of birds) have similar backgrounds as
the ID as well. This makes the stacked feature embedding of an ID and OOD image more
similar to each other, thereby reducing the OOD detection capability of the methods.

For the Papilionidae50 dataset, the images are taken with subjects (butterflies) on a
plain background. This background is almost featureless, i.e., the convolutional layers of
the CNN do not extract any significant amount of features from this background. This
means that (almost) all the features extracted from intermediate layers belong to the
subject itself. Hence, a stacked feature embedding of an image from the Papilionidae50 (and
Papilionidae62 OOD) dataset contains more information on the subject when compared
to the feature embedding taken only from the penultimate layer (layer 8), thereby leading
to an increase in the OOD detection accuracy.

6.5.3 Towards a Solution to Make OOD Detection with Stacked Features
Embeddings Robust

In this subsection, a solution to prevent the degradation of OOD performance with stacked
feature embeddings is proposed. The solution is based on the idea that using a feature
activation map from the penultimate layer, one can find the approximate position of the
subject of importance (such as a bird in the CUB80 dataset) and thereby be able to isolate
it from the background as much as possible. The process is explained below.
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Figure 6.11: An example of how AutoCrop is applied to get a feature embedding
with non-subject (background) information filtered out

First, a feature activation mask is created by applying a threshold condition on the
intensities of the feature activation map obtained from the penultimate layer. A point with
an intensity less than the set threshold is marked as 0 (false) in the mask and vice versa.
In the mask so obtained, the location of 1s (true) represents the approximate location of
the subject. The threshold is a hyperparameter and was set to 30% of the highest intensity
value of the feature activation map. This mask is then applied along the channel axis of
the feature activation maps obtained from the intermediate layers. Note that the mask is
scaled to match the size of the feature activation maps of intermediate layers. The feature
embeddings are then extracted by applying the global average pool on the masked feature
activation maps. These steps are shown in Figure 6.11. The assumption is that these
feature embeddings when stacked would contain considerably less information about the
background and hence must be able to prevent degradation of OOD performance. This
proposed solution is called ‘AutoCrop’ feature embeddings in this work.

6.5.4 Results of the Proposed ‘AutoCrop’ Solution

Figure 6.12 shows the AUROC for near-OOD detection on the CUB80 dataset with and
without the proposed AutoCrop solution. With AutoCrop, stacking feature embeddings
from shallower layers prevents the huge drop in AUROC for OOD detection, making it
a better way to stack the feature embeddings. Furthermore, with AutoCrop there is a
small improvement of 0.3% and 0.6% of AUROC on the DkNN and Global FRE PCA
method even without stacking the feature embeddings. It has been observed that using
AutoCrop on the Papilionidae50 dataset does not show any significant improvement in
OOD detection.
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Figure 6.12: Results on near-OOD detection for the CUB80 dataset with and
without the proposed AutoCrop solution

Overall, AutoCrop is a robust (and safe) way of stacking feature embeddings for the
task of OOD detection. Ways to further improve the AutoCrop solution for stacking feature
embeddings can be explored in future research.

6.6 Global vs Per-Class Approach to OOD detection Meth-
ods

As shown in Section 5.6, the kNN-based and feature reconstruction error (FRE)-based
OOD detection methods can be applied ‘globally’ by considering the whole ID dataset as
a single entity or can be applied per each class in the ID dataset. This section provides
an analysis and tries to provide a direction on when to use each approach. A few reasons
why a particular approach improves the OOD detection accuracy for a particular dataset
and decreases the same for another dataset are hypothesised.

For both kNN-based and PCA FRE-based methods, the global approach can be con-
sidered as a semi-supervised OOD detection approach and is the only way when the labels
of ID images are not available. This could be the case when an OOD detection method
needs to be appended to an existing classifier which is already trained. However, applying
these methods per class have a few advantages as well.

In the case of the kNN-based OOD detection methods, using a per-class method i.e,
Centroid-DkNN reduces the number of feature embeddings in the feature space. For in-
stance, the reduction is about 47x for the CUB80 with 80 ID classes and 108x for the
iNaturalist2100 dataset with 2100 ID classes. The increase in kNN search speed due to
this depends on the hardware used (as shown in Section 5.5). In general, this results in
a faster kNN search which can be performed with fewer computations (and therefore less

82



energy) and a smaller memory requirement. This makes the Centroid-DkNN a better al-
ternative to the DkNN method for deploying on-edge and low-power devices, especially for
large datasets. However, as seen in Figure 5.12 applying Centroid-DkNN lead to a decrease
in AUROC for the near-OOD detection task on the long-tailed Papilionidae50 dataset.

In general, a larger number of feature embeddings are required to make a well-representative
and robust centroid for a class of images. The centroid made from a few images does not
generalise well and is an under-representation of the class.

In the long-tailed Papilionidae50 dataset, the number of images per class is quite low
for most of the classes. For instance, in the training split of the dataset, 70% of the classes
(35 out of 50) have less than 10 images and 50% of the classes have less than 5 images. The
centroids created for these classes would not be accurate representations for the respective
classes and hence could be the reason behind the decrease in the OOD detection. Hence, for
better OOD detection accuracy, it is recommended to use the per-class kNN-based method
only when there are enough images per class to get close representations of the classes.
The optimal number of feature embeddings required for a given dataset depends on various
factors, including the number of images in the dataset, the complexity of the dataset, and
the number of dimensions in the embeddings. On the other extreme, if too many images
are used for creating the centroid, the centroid could be too specific to the images of the
training set and an overfit representation of the class which might not generalise well to
other ID images of the same class.

For the PCA FRE method, when compared with the global approach, the per-class
approach led to a decrease (of 4%) in the overall AUROC for near-OOD detection task on
the long-tailed Papilionidae50 dataset but lead to a significant increase (>8%) for the same
on the CUB80 dataset. In the global approach, the whole dataset is considered as a single
entity which might not adequately model the feature spaces underlying structures. The
per-class approach takes advantage of the multiple well-separated clusters in the feature
space, each of which corresponds to a separate class. Modelling the feature subspaces
separately for each class often results in much better OOD performance [5] as shown by
the results on the CUB80 dataset.

However, the per-class approach would require more computations and memory when
compared to the Global approach. This is because, instead of a single principal compo-
nent analysis (PCA) model for the entire dataset, multiple PCA models, one for each class,
need to be trained (which is done offline), stored and executed for inference. A PCA model
essentially consists of Eigen values and Eigen vectors of the covariance matrix of dimen-
sionality reduction. Performing dimensionality reduction and reconstruction of the feature
embedding involves computationally expensive and power-hungry matrix multiplications.

On the contrary, on the Papilionidae50 dataset, using the per-class approach does not
increase OOD performance. The reason is again tied to the number of images per class
in the Papilionidae50 dataset. As principal component analysis (PCA) is based on the
correlation between the variables (dimensions) of feature embeddings, to derive a reliable
PCA, a considerable number of feature embeddings (ID images) is required. As mentioned
earlier, 50% of the classes have less than 5 images per class which question the accuracy
and reliability of the PCA models trained on those classes. Furthermore, in [5] the authors
also suggest using the Global PCA FRE method when the number of images per class is
relatively small to the dimensions of feature embeddings (1280 in this case).

In general, when the dataset contains many small classes, which is a common trait
in biodiversity datasets, it is recommended to use the global method over the per-class
methods.
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Approach to check the suitability of Per-class PCA FRE method on a given
dataset There are multiple rules of thumb laid out on the minimum number of samples
required for PCA. However, the authors in [105] show that the rules of thumb are not
reliable and that the minimum number of samples required for a reliable PCA depends on
various factors. These factors include the number of dimensions of the samples and the
extent to which the set of principal components can explain the variance inherent in the
samples. This is also reflected in the results shown in Figure 5.12. Therefore, the following
heuristic is proposed to know if there are enough images per class to follow the per-class
approach. One of the signs of an unreliable PCA model is instability. This can be found
out by cross-validation (bootstrap) on the PCA model :

1. Choose the class with the least number of images in the ID dataset.

2. Choose 90% of the images from that class and extract feature embeddings for these
images.

3. Create a PCA model with a fixed amount of variance to be retained.

4. Calculate the average feature reconstruction error (FRE) on the remaining 10% of
the images.

5. Repeat steps 2-4 multiple times with different sets of images in each iteration.

6. If the deviation in the average FREs obtained by different PCA models is within an
acceptable range, then the per-class approach can be followed.

6.7 Deploying OOD Detection Methods on Low-Power Edge
Devices

While this work has focused on analysing existing and developing new OOD detection
methods for biodiversity datasets, it is also important to discuss the practicality of deploy-
ing these methods on low-power edge devices. The following points can be used as starting
points for research on deploying OOD detection methods on low-power edge devices.

• Investigating the impact of model compression and quantisation tech-
niques on OOD detection accuracy. Model compression and quantisation tech-
niques can significantly reduce the size and computational requirements of the clas-
sifier. But this also has an impact on classification accuracy. Future research could
explore how different OOD detection methods perform in terms of accuracy and speed
on quantised models. A design methodology to deploy OOD detection methods using
quantised models is presented in [106].

• Optimised OOD detection methods based on the target hardware Future
research could explore the development of novel OOD detection methods or optimise
existing OOD detection methods for deploying on hardware with limited resources.
For instance, the trade-offs between speed, memory requirement and accuracy of
various fast and approximate kNN search algorithms can be tested specifically on
the hardware on which the kNN-based OOD detection method will be deployed.
OOD detection methods that take advantage of the existing hardware accelerators
on the target device can be researched.
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• Power Consumption of OOD Detection Methods While many existing OOD
detection methods have been developed for high-powered computing environments,
there is a need for new methods that are specifically designed for low-power devices.
Power consumption of the OOD detection methods is still very limited research. In
[107], the authors optimise an anomaly detection solution and estimate its power
consumption on an FPGA.

• Model Splitting for OOD detection An interesting approach to OOD detection
to save computations is EARLIN (EARLy OOD detection for Collaborative INfer-
ence)[108]. EARLIN partitions a trained model (using model splitting [109]) and
deploys only a few shallow layers of it on the edge device and the rest on the cloud.
The smaller partition of the model is used to get an initial estimate of the OODness
of the input image. This estimate is used to decide whether to upload the image for
further processing on the cloud.

• Pre-Inference OOD Detection On low-power edge devices, usually the image is
captured on the edge device and is uploaded to the cloud where the heavy deep learn-
ing model inferencing is done. However, uploading an image is quite power-hungry,
hence if the edge device could detect or estimate to a reasonable degree that an in-
put image is OOD, it could potentially save power by not uploading that input to
the cloud. However, inferencing an image on deep neural networks is also computa-
tionally expensive. Therefore if possible, approximate OOD detection methods that
could detect OOD images (at least far-OOD images) as OOD without using neural
networks can be explored. For instance, the method presented in [110] makes use
of features extracted from scale-invariant feature transform (SIFT) [111] to perform
OOD detection. Although SIFT features might not perform as well as the features
extracted from a CNN, in [112] the authors show that, in terms of the computation
cost and the time taken, SIFT is better than CNNs. Similarly, the authors in [113]
propose a method that extracts visual and textural features from an image using
classic image processing algorithms such as Haralick features [114] to detect previ-
ously unseen images. The key to identifying new scenes was based on a co-occurrence
matrix which is a lookup table containing information about which species appear in
which environmental conditions.

6.8 Limitations

Beyond accuracy and inference time of OOD detection methods The OOD
detection methods in this work are not compared in terms of the memory required to
execute them. OOD detection methods that require a large amount of memory may not
be feasible to use in resource-constrained environments, such as on mobile devices or in
real-time systems.

OOD detection on various CNN architectures The EfficientNetV2-M [70] CNN
model was used in all the experiments in this work. The choice is motivated by reasons
mentioned in Subsection 4.3.1. Trying OOD detection methods on CNN models of different
sizes and different architectures could give insights into the consistency of OOD detection
capabilities of the method across those models. This would have also been useful in un-
derstanding if a particular OOD detection method is better suited for a particular type of
CNN architecture.
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Reduced number of experiments on the iNaturalist2100 dataset With more
than 0.2 million images, the iNaturalist2100 dataset posed a challenge in terms of the time
taken for each experiment. For the case of near-OOD detection, the number of images to
be tested is around 0.5 million images. Hence, experiments such as the effect of stacking
feature embeddings or the effect of using a reduced amount of data on the OOD detection
are performed with a reduced set of hyperparameters on the iNaturalist2100, to corroborate
the results shown on the other two datasets. Anomaly detection on iNaturalist2100 is also
not tested for the same reasons.

Measuring fine-grainedness of the dataset In this work, the fine-grainedness of
the datasets is not measured. The fine-grainedness of the dataset could be measured
either by extending the concepts used in domain similarity or by using other granularity
measurements such as [115]. Measuring the fine-grainedness of a dataset before and after
splitting into ID and OOD for testing could be a better way to categorise the OOD test
case into near-, intermediate- or far-OOD.
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Chapter 7

Conclusions and Future Work

This chapter provides the conclusion of the presented research as well as provides directions
of possible future research.

7.1 Conclusion

The problem of out-of-distribution (OOD) detection has gained significant attention in
recent years due to the increasing need of employing computer vision models in real-world
applications. Making computer vision models ‘open-world ready’ is crucial for ensuring
the reliability and safety of the systems which rely on these models.

Despite the growing interest in OOD detection, OOD detection for long-tailed and
fine-grained datasets, such as biodiversity datasets, has not received much attention in
the literature and therefore the performance of existing OOD detection methods on such
datasets is still largely unknown. This is important as these datasets more closely resemble
the distribution of objects in the real/open world, where certain classes are more abundant
than others, and rare or unseen classes may occur.

To bridge this gap, the question that this research aims to answer is: "For in-
distribution datasets, with fine-grained and long-tailed characteristics, what
is the best retrofittable out-of-distribution detection method that achieves high
accuracy for the task of OOD detection across OOD datasets with varying dif-
ficulty?"

To conclude this research, the research question is addressed by answering the sub-
questions.

RQ1: "For a given in-distribution dataset, how can the difficulty of detecting
OOD images from a particular OOD dataset be quantified?" Previous works
have either neglected to measure the OOD difficulty or have just presumed it subjectively.
In this work, the domain similarity score has been used as a way to measure the OODness
of a dataset. It was shown that these scores mostly align with the supposition that a
lower domain similarity score between two datasets implies the OOD detection between
them is more difficult. The domain similarity score is also less dependent on the choice of
CNN architecture. However, there are a few instances in the anomaly datasets for which
the domain similarity scores do not agree with the OOD detection scores or the intuition
of OOD detection difficulty. For instance, for a given image, a new image generated
by adding ‘motion blur’ is intuitively more similar than that for an image with ‘coarse
dropout’ corruption applied. The OOD scores also indicate the same. However, the domain
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similarity scores calculated on these sets of images do not conform to this. This leaves for
further investigation and improvement in quantifying the OOD detection difficulty.

RQ2: "What improvements can be made to the existing OOD detection meth-
ods to further improve their accuracy for the task of OOD detection on fine–
grained and long-tailed in-distribution datasets?" The limitations of the underly-
ing hypothesis of the DkNN method (which already achieved relatively high OOD detection
accuracies) were identified in this research. These limitations are more applicable when
the OOD detection task is between a fine-grained ID dataset and a near-OOD dataset. For
instance, the DkNN method relies entirely on the distance to the k-nearest neighbour for
OOD detection. It was observed that the distance to the k-nearest neighbour in feature
space is not always higher for an OOD image than an ID image. In such cases, the DkNN
method fails to distinguish between ID and OOD images. The proposed EnWeDi method
overcomes these limitations by using entropy weighted nearest neighbours distance. The
EnWeDi achieves higher OOD detection accuracy than DkNN in 10 out of 14 cases and
performs similarly to the DkNN method in 3 out of 14 cases. In only one experimental
setup the DkNN method performs better than the EnWeDi method - the case of achieving
a high TPR at a low FPR on the long-tailed Papilionidae50 dataset. Finally, the inference
time of the EnWeDi method is not more than 0.3 ms than that of the DkNN method.

RQ3: "What is the effect of stacking feature embeddings from the intermediate
layers of a convolutional neural network on the accuracies of the OOD detec-
tion methods that make use of feature embeddings?" It can be inferred that the
effect of stacking feature embeddings from intermediate layers increases the OOD detection
accuracies significantly if the images in the datasets contain the subject of classification
and an almost featureless background. The increase depends on the method and ranges
from 2.7% to 6.7% in AUROC.

In cases where a significant portion of the images is background, the stacking of features
degrades the OOD detection accuracy (the highest drop in AUROC was 12.3%). For such
cases, ‘AutoCrop’ - a safe and reliable approach to stacking is proposed. The Autocrop
method attempts to remove the background from an image so the feature embeddings
extracted from the image belong (more exclusively) to the subject. Using Autocrop on
such datasets prevented the degradation in OOD performance and lead to a small (<1%
in AUROC) improvement in OOD detection. The benefits of Autocrop on OOD detection
on other datasets is a promising direction for future work.

RQ4: "What are the OOD detection methods that can consistently achieve
the best accuracies over different OOD difficulties (from RQ1) when measured
across a range of evaluation metrics?" Based on the findings from this research, it
can be concluded that the proposed method EnWeDi consistently outperforms other OOD
detection methods in terms of accuracy across different OOD difficulties and evaluation
metrics. It outperforms all the considered methods in 5 out of 14 cases and performs
similarly (<1% difference in the corresponding evaluation metric) to the best performing
method in the remaining 7 out of 9 cases. Methods that outperform the EnWeDi in a
few cases do so in only those cases and show worse performance in other cases or are too
slow. For instance, the ODIN method outperforms the EnWeDi method by 0.1% (AU-
ROC) for near-OOD case on the iNaturalist2100 dataset but shows 6% worse AUROC
for near-OOD case on the Papilionidae50 dataset. The ODIN method is also at least 5
times slower than the EnWeDi method. These results suggest that EnWeDi is a promising
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method for OOD detection. EnWeDi method (just as any other OOD detection method)
has to be validated on more datasets to identify any opportunities for further improvement.

7.2 Future Works

"There is more to see than can ever be seen." Despite significant progress in OOD de-
tection, there remains a need for further research to improve the accuracy, efficiency, and
applicability of existing methods in real-world scenarios.

Training techniques that improve OOD detection accuracy Training techniques
that can be used during the training phase of the classifier to increase the OOD detection
performance can be explored. For instance, it has been shown in [6] that training a model
with supervised contrastive learning (SupCon) [116] increases the OOD detection capability
of the DkNN method. The authors of the Energy method [2] also show that using the
Energy function (Equation 3.2) as a loss function for training the classifier further improves
the OOD accuracy.

It has been shown in [117], that using Mixup [63] augmentation can improve calibration
and predictive uncertainty in neural networks. Similarly, data augmentation techniques
such as CutMix [118], Cutout[119] and AugMix [120] are useful in regularising a neural
network and providing less over-confident prediction probabilities. Such data augmentation
techniques can be explored for improving the OOD detection capabilities of the Baseline
MSP or other score-based detection methods.

Most prediction probabilities-based OOD detection methods in this work and the lit-
erature rely on assumption that the prediction probabilities are not over-confident. Apart
from the temperature scaling [36], techniques such as logit normalisation [121] can be used
to reduce the neural network overconfidence, which might improve the OOD detection
accuracy.

Deploying OOD detection methods on edge devices Deploying OOD-detection
methods on low-power edge devices is a common requirement in a biodiversity setting. As
a future work, optimising OOD detection methods to run on given constraints as well as
their performance on smaller architectures and quantised model can be analysed. Designing
efficient OOD detection methods in combination with techniques such as model-splitting
[109] can be further researched. Multiple ideas on deploying the OOD detection methods
are also discussed in Section 6.7.

OOD detection beyond image classification task In this work, OOD detection
methods are analysed for the task of image classification. However, the underlying concepts
of these methods can be extended to be used for OOD detection for other computer vision
tasks such as multi-label classification, object detection and semantic segmentation. For
instance, an ‘unknown-aware’ object detection method is presented in [13] and is compared
with the Energy, Baseline MSP and ODIN methods adapted for the task of the object
detection. Another OOD detection method for the task of object detection is presented in
[122]. Similarly, [123] and [124] present OOD detection methods for image segmentation
tasks.

Exploring these areas of research can pave the way for more robust OOD detection
methods which can improve the safety and reliability of artificial intelligence systems by
enabling them to ‘know the unknown’.
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Appendix A

Appendix

A.1 Experimental Setups Used for OOD Detection in Liter-
ature

The experimental setups- ID and OOD datasets and the model architectures on which
existing OOD detection methods from literature are evaluated are shown in Table A.1.

A.2 Lengths of Feature Embeddings Extracted from Various
Major Layers of EfficientNetV2-M

Table A.2 shows the 9 layers of EfficientNetV2-M [70] and the lengths of the feature
embeddings extracted from them.

Layer in
EfficientNetV2-M

Feature embedding’s
length

Layer 8 1280
Layer 7 512
Layer 6 304
Layer 5 176
Layer 4 160
Layer 3 80
Layer 2 48
Layer 1 24
Layer 0 24

Table A.2: Lengths of feature embeddings extracted from various major layers of
EfficientNetV2-M
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Method Published Datasets Model

OpenMax [35] Nov-15
ID: ImageNet; OOD: Fooling images by [10] ,
Images from the 360 classes of ImageNet-2010
that are not included in ImageNet-2012

BVLC AlexNet pre-trained on ImageNet

(Baseline)
MSP [1] Oct-16

Setup-1 - ID: CIFAR-10 and CIFAR-100; OOD: SUN, Gaussian noise images
Setup 2- ID: MNIST ; OOD: Omniglot, notMNIST,
CIFAR-10BW (gray-scaled CIFAR-10) ,
Gaussian and uniform noise images

For CIFAR-10 and CIFAR-100:
40-4 wide residual network
For MNIST:MLP with 3 layers,
256 neuron-wide FC network

ODIN [3] Jun-17
ID: CIFAR-10 and CIFAR-100; OOD: Tiny ImageNet, LSUN,
Gaussian and uniform noise images
Misc.:iSUN for fine-tuning hyperparameters

DenseNet (Depth L=100, growth rate k = 12)
and WideResNet (WRN-28-10)
both pre-trained on CIFAR-10
and CIFAR-100

Generative
OpenMax [55] Jul-17

Setup 1- ID: MNIST (0-5 digit classes); OOD: Remaining 4 classes of MNIST
Setup 2- ID: HASYv2 (60 classes having 500+ images),
OOD: Remaining 35 classes of HASYv2

Uses GAN and Classifier
(Custom architectures of both
classifier and generator/discriminator are
shown in the paper)

Deep k Nearest
Neighbours [43] Mar-18

Setup 1- ID: MNIST ; OOD: NotMNIST
Setup 2- ID: SVHN , OOD: CIFAR-10
Setup 3- ID: GTSRB
Additionally for setup 1 and 2:OOD - ID + geometric transformations
All three setups - OOD: ID images + adversarial attacks

Custom CNN with 3 convolutional layers
and 2 fully-connected (FC) layers

CROSR [45] Dec-18
ID: CIFAR-10, CIFAR-100, SVHN, Tiny ImageNet; OOD: ImageNet, LSUN.
Additional experiment:Each ID dataset is
split equally to make ID and OOD datasets

For MNIST:7 Layer CNN network with 5
convolutional layers and 2 FC layers.
Others:A 13 layers CNN;
and DenseNet (Depth L = 100,
growth rate k = 24)

Outlier
Exposure [39] Dec-18 Setup 1- ID: SVHN, CIFAR-10 and CIFAR-100 ; OOD: 80 Million tiny images

Setup 2- Tiny ImageNet, Places365 ; OOD: ImageNet-21k

For Places365: ResNet-18
For other datasets: WideResNet
both pre-trained on ImageNet

C2AE [51] Apr-19
ID and OOD datasets made by splitting each dataset
Datasets used:MNIST, SVHN, CIFAR-10 and Tiny ImageNet
Additionally - OOD: OOD dataset made from CIFAR-100 (for CIFAR-10 ID)

U-Net inspired custom network
with an auto-encoder,
a classifier and a decoder.

OLTR [15] Apr-19
Setup 1- ID: ImageNet-LT; OOD: Non Overlapping classes from ImageNet-2010
Setup 2- ID: Places-LT ; OOD: PlacesExtra69
Setup 3- ID: MS1MArcFace-LT ; OOD: MegaFace Benchmark

Setup 1- ResNet-10 trained from
scratch on ImageNet-LT
Setup 2- ResNet-152 pre-trained on
ImageNet fine-tuned for PlacesLT
Pretrained ResNet-50 (for MS1MT)
ImageNet-LT; Places-LT

Generalised
ODIN [37] Mar-20

ID: SVHN, CIFAR-10, and CIFAR-100
OOD: Tiny ImageNet(crop),
Tiny ImageNet(resize), LSUN-Crop, LSUN-Resize,
iSUN, Uniform random images,
and Gaussian noise image

DenseNet (Depth L=100,
growth rate k = 12),
WideResNet (WRN-28-10)
(did not specify pre-trained or not)

Tempered
Mix-up [62] Sep-20

Setup 1- ID: CIFAR-10; OOD: Tiny ImageNet (178 non-overlapping classes)
Setup 2- ID: MNIST; OOD: EMNIST-Letters
Setup 3- ID and OOD: Same as OpenMax ([35])

Setup 1- ResNet-32 pre-trained on CIFAR-10
Setup 2- LeNet++ trained on MNIST
Setup 3- ResNet-18 pre-trained on ImageNet

Energy-based
OOD detection [2] Apr-21

IDs:SVHN, CIFAR-10, and CIFAR-100 ; OOD: Textures, SVHN,
Places365, LSUN-Crop , LSUN-Resize, and iSUN
Misc.:Outlier dataset:Tiny ImageNet disjoint from CIFAR-10 and CIFAR-100

WideResNet pre-trained on
CIFAR-10 and trained on each
ID dataset separately

MOS [47] May-21
ID: ImageNet; OOD: iNaturalist (110 classes not in ImageNet),
SUN and Places365 (50 classes from each that
are non-overlapping with ImageNet), DTD: All classes

Google BiT-S models as feature
extractor in all experiments.
The models are trained on ImageNet-1k,
with ResNetv2 architectures
(specifically BiT-S-R101x1 for main results)

GradNorm [4] Oct-21 same as MOS [47] same as MOS [47]

OpenGAN [61] Oct-21

Setup 1- ID: MNIST 0-5 digit classes; OOD: MNIST 6-9 digit classes
Setup 2- ID: 5 classes OF CIFAR-10; OOD: remaining 5 class of CIFAR-10
Setup 3- SVHN (ID: 0-5 digit classes; OOD: 6-9 digit classes
Setup 4- ID: Randomly selected 20 classes from TinyImageNet,
OOD: Remaining 180 classes of Tiny ImageNet

ResNet-18 trained on ID for each
setup as the discriminator in GAN
(Note:There are more setups aiming
at segmentation and pixel-level OSR
and are not mentioned here)

ReAct [40] Nov-21 ID: ImageNet; OOD: iNaturalist (110 classes not in ImageNet), DTD (Textures)
SUN and Places365 (50 classes non-overlapping classes with ImageNet) . ResNet-50 pre-trained on ImageNet

CIDER [50] Mar-22 Same as MOS [47] ResNet-18 for CIFAR-10,
ResNet-32 for CIFAR-100

PCA FRE-based [5]
OOD detection Mar-22

Setup 1- ID: CIFAR-10, CIFAR-100, OOD: SVHN, LSUN
Setup 2- ID: SVHN, OOD: CIFAR-10, LSUN
Setup 3- (Anomaly detection) MVTec

ResNet-18 for CIFAR-10,
Wide-ResNet for CIFAR-100,
ResNet-20 for SVHN
EfficientNet-B5 for Anomaly detection

POEM [53] Jun-22

ID: CIFAR-10 (setup 1), CIFAR-100 (setup 2)
OOD (for both setups): SVHN, DTD, Places365, LSUN-crop,
LSUN-resize, and iSUN
Misc.:Down sampled version of ImageNet (ImageNet-RC) as
auxiliary outlier dataset

DenseNet-101

Distance to the
k-nearest neighbours
DkNN [6]

Jun-22

Setup 1- ID: CIFAR-10,
OOD: DTD, SVHN, Places365,
LSUN-C, and iSUN
Setup 2- Same as MOS

Setup 1- ResNet-18 trained on CIFAR-10
Setup 2- ResNet-50 trained on ImageNet

Table A.1: An overview of the datasets and model architectures used in different
DNN-based methods (sorted chronologically). Note: Unless specified, the ImageNet
dataset refers to the ImageNet-1K from ILSVRC2012.
References Datasets:80 Million tiny images [125], CIFAR10 and CIFAR100 [126],
DTD [77], EMNIST [127], GTSRB [128], HASYv2 [58], ImageNet [8], iNatu-
ralist [74], iSUN [129], LSUN [130], MegaFace Benchmark [131], MNIST [57],
MS1MArcFace [132], MVTec [103], NotMnist [133], Omniglot [134], Places [76],
SUN [135], SVHN [136], TinyImageNet [137]
Network architectures:AlexNet [138], DenseNet [139], EfficientNet-B5[140],
LeNet [141], ResNet [142], WideResNet [143],
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A.3 Variants of the Baseline Method

In this section, the variants of the Baseline MSP method are described and compared.

A.3.1 Softmax Probability Margin

This OOD detection method is an extension of the first baseline MSP. Instead of the MSP of
an image, the margin (difference) between the highest softmax probability and the second
highest softmax probability is taken as the OOD score. This baseline is called softmax
probability margin (SPM). The underlying assumption for this method is that a classifier
tends to be uncertain about the class to which an out-of-distribution image belongs, making
the softmax probabilities nearly identical for all classes. This makes the margin between
the highest and the second-highest softmax probabilities to be low. Whereas, the opposite
can be assumed to be true for an in-distribution image, and hence the margin would be
higher. softmax probability margin (SPM) for an input image x is given by:

SMP (x) = SsortedC (x)− SsortedC−1
(x) , (A.1)

where Ssorted is the set of softmax probabilities sorted in ascending order given by the
classifier trained on a total of C classes. SsortedC (x) and SsortedC−1

(x) are the highest
softmax probability and the second-highest softmax probability for an input image x.
Similar to the MSP, the SPM score can be compared against a predetermined threshold
to classify an input as ID or OOD.

A.3.2 Results

Table A.3 shows the comparison of the baseline methods when applied on logits and when
applied on softmax probabilities for an OOD detection task. As mentioned in [64], the
Baseline MSP method when applied on the logits gives better OOD performance.

Method

ID: Pap.50;
OOD: Places365
(TPR@FPR1)

↑

ID: CUB80;
OOD: Places365
(TPR@FPR1)

↑

ID: iNat.2100;
OOD: Places365
(TPR@FPR1)

↑
Maximum softmax
probability (MSP) 22.99 90.83 51.75

Softmax probability
margin (SPM) 21.39 89.74 50.93

Maximum
of output logits 22.46 99.13 54.33

Output logits
margin 13.37 88.21 49.68

Table A.3: Comparison of OOD detection performance between the variants of
baseline methods

A.4 Additional Density-based Methods

Two more density-based methods were evaluated but are not presented in the main results.
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A.4.1 Local Outlier Factor

The Local outlier factor (LOF) method is a popular density-based method introduced in
[31] for detecting the existing outliers in a dataset. The core concept of the LOF method
is combining the DkNN method along with a so-called ‘reachability distance’ between the
data points. LOF when adapted for OOD detection consists of the following steps :

• Reachability distance: The reachability distance is the maximum distance between
two points, where one point is considered to be reachable from the other if it is closer
than a given radius. In other words, the reachability distance between two points is
a measure of how easily one point can be reached from another.

• Local reachability density: The local reachability density (LRD) is the key concept
in the LOF algorithm. It is a measure of how dense the neighbourhood of a data
point is, with respect to its k-nearest neighbours. A point with a high LRD implies
that it has a dense neighbourhood. The LRD of a point is defined as the inverse of
the average reachability distance of its k-nearest neighbours. For a test image x, let
fx be the normalised feature embedding. If the set of k nearest neighbour feature
embeddings (from the training set) of fx is given by Nxk

, then the LRD of fx is
calculated as:

lrdk(fx) =
1∑

fi∈Nxk
reach_distk(fx,fi)

k

, (A.2)

where reach_dist() is the reachability distance and is calculated as :

reach_distk(fx, fi) = maximum {kdist(fi, k), dist(fx, fi)} , (A.3)

where kdist(fi, k) is the distance between fi and its kth nearest neighbour and
dist(fx, fi) is the distance between fx and fi. In this work, the dist(fx, fi) func-
tion returns the Euclidean distance between fx and fi.

• Local outlier factor: LOF measures the degree of ‘outlierness’ of a data point by
comparing the local density of the point with the local densities of its k-nearest
neighbours. Using the LRD Equation A.2, the LOF for the feature embedding fx
can be calculated as:

LOFk(fx) =

∑
fi∈Nxk

lrdk(fi)
lrdk(fx)

k
. (A.4)

In a way, LOF is the ratio of the average reachability distance of its k-nearest neighbours
(kNNs) to its reachability distance. The intuition behind this definition is that a point
with a high LOF score is an outlier if its kNNs are much denser than it is. Conversely, a
point with a low LOF score is not an outlier if its kNNs are similarly dense. To classify
test points as ID or OOD, a threshold is chosen such that points with a LOF score above
the threshold are classified as outliers. The choice of threshold is based on the distribution
of the LOF scores for the validation set of the in-distribution data.

A.4.2 Local Distance-based Outlier Factor

The authors in [32] introduce the local distance-based outlier factor as a better alternative
to the Local outlier factor for the task of outlier detection, especially when the data points
are scattered.
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LDOF uses the relative position of a test data point to its neighbours in the training
set to measure the degree to which the data point deviates from its neighbourhood [32].
The higher the LDOF value for a data point, the more likely that it is an outlier. In this
work, LDOF-based OOD is implemented in the following steps:

• Indexing the normalizing train feature embeddings The normalised feature
embeddings are indexed and added to the kNN search space. Elaborate step-by-step
details are given in steps 1-3 in the kNN section (Subsection 3.2.6.2)

• kNN distance of a test image’s feature embedding The kNN search is per-
formed on the feature embedding fx of the test image x. Let Nxk

be the set of
the k-nearest neighbours in the training set for the feature embedding fx. Then the
distances from fx to all the feature embeddings in the set Nxk

are averaged. This
can be mathematically represented by the following equation:

dfx =
1

k

∑
fi∈Nxk

dist(fi, fx) , (A.5)

where k is the number of neighbours, Nxk
is the set of these neighbouring feature

embeddings. dist() function is a function that calculates a distance metric between
two points. In this work, the distance metric is chosen to be Euclidean distance.

• Calculation of inner distance A so-called ‘inner distance’ is calculated for fx.
This is the average distance among the set of neighbours in Nxk

. This is given by:

Dfx =
1

k ∗ (k − 1)

∑
fi,fi′∈Nxk

,i ̸=i′

dist(fi, fi′ ) . (A.6)

• Calculation of LDOF The local distance-based outlier factor for feature embedding
fx is given by :

LDOFk(fx) =
dfx
Dfx

. (A.7)

The LDOF is directly used as the OOD score in the OOD decision Equation 2.1.

A.4.3 Results

The results for near-OOD detection are shown in Table A.4. Overall, the LOF method
outperforms the other two methods. However, the SLOF method is computationally less
expensive (compared to LOF) and achieves similar OOD detection performance. This was
also the main motivation to show the SLOF method in the main results.

ID: Pap.50;
OOD: Pap.62

ID: CUB80;
OOD: CUB120

ID: iNat.2100;
OOD: iNat.2989

Method AUROC
↑

TPR@FPR1
↑

FPR@TPR99
↓

AUROC
↑

TPR@FPR1
↑

FPR@TPR99
↓

AUROC
↑

TPR@FPR1
↑

FPR@TPR99
↓

LOF 86.01 39.57 65.78 85.85 20.74 79.86 75.4 10.77 94.18
SLOF 85.34 10.96 68.81 85.02 22.93 85.52 74.77 10.3 94.25
LDOF 79.71 9.36 69.02 79.56 20.96 87.97 53.69 3.06 96.83

Table A.4: Comparison of OOD detection performance of the density-based meth-
ods on the near-OOD detection task
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A.5 Results - Variants of DkNN Method

As mentioned in Subsection 3.2.6.2, instead of the distance to the kth nearest neighbour,
a few other statistical methods are also considered as OOD scores. Table A.5 shows these
results.

ID: Pap.50;
OOD: Pap.62

ID: CUB80;
OOD: CUB120

ID: iNat.2100;
OOD: iNat.2989

OOD Score
calculated using

AUROC
↑

TPR@FPR1
↑

FPR@TPR99
↓

AUROC
↑

TPR@FPR1
↑

FPR@TPR99
↓

AUROC
↑

TPR@FPR1
↑

FPR@TPR99
↓

Distance to the kth

NN (Regular DkNN) 86.56 56.42 69.81 86.60 23.14 75.71 80.59 17.85 96.10

Mean of distance to
NN and kth NN 90.21 58.56 64.66 86.66 24.02 78.06 80.59 18.66 96.00

Mean of distances
to k NNs 87.23 60.70 64.66 86.62 24.02 78.14 80.59 17.85 96.00

Mode of distances
to k NNs 86.21 6.42 69.73 86.43 22.49 77.19 80.59 17.88 96.09

Median of distances
to k NNs 86.72 50.27 64.66 86.60 24.02 75.71 80.59 17.85 96.10

Standard deviation
of distances to k NNs 87.06 60.96 64.26 86.62 24.02 78.07 80.59 17.85 96.01

Table A.5: Near-OOD detection results for the variants of the DkNN method.
NN is short for nearest neighbour.

A.6 Domain Similarity and Model Architecture Dependency

Figures A.1 and A.2 show the domain similarity scores calculated using different architec-
tures for CUB80 and iNaturalist2100 datasets respectively.

Figure A.1: Domain similarity scores using different model architectures for
CUB80 dataset
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Figure A.2: Domain similarity scores using different model architectures for iNat-
uralist2100 dataset
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