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Abstract—This paper uses a design methodology for 8-bit
approximate multipliers for FPGA using the Internal Self-
Healing (ISH) methodology from a reduced design space of 4-bit
approximate multipliers. Approximate computing is an effective
method to reduce power consumption or chip area at the cost
of output quality. However, optimizations made for ASIC may
not translate entirely to FPGA, due to architectural differences.
This paper emphasizes the importance of designing specifically
for FPGA systems and presents a methodology that reduces the
design space, while still allowing for the discovery of high-quality
designs. The results show that optimized 8-bit multipliers for
area outperform some of the state-of-the-art designs. Although
power-optimized designs encountered some issues, the paper
proposes possible multipliers to challenge the current state-of-
the-art. Area-optimized designs are discussed which challenge
the state-of-the-art. This paper demonstrates the effectiveness of
the ISH methodology for designing efficient and high-quality 8-bit
approximate multipliers for FPGA, with potential applications in
error-resilient computing.

I. INTRODUCTION

Approximate computing is the process of making approxi-
mations in basic computational modules, such as adders and
multipliers, for an improved efficiency, often at the cost of
quality. This means that some parts are intentionally simplified
or removed in order to reduce for example the power consump-
tion or the chip area that is used. This however leads to the
output quality decreasing, such that it is not entirely accurate
anymore. It has been shown to be a great option for error-
resilient applications, such as image processing and neural
networks [1]–[3]. This is because approximate computing can
offer the required processing power with a high efficiency with
regard to power and chip area.

Most research done for approximate computing is done with
Application-Specific Integrated Circuits (ASIC) in mind, with
FPGA lagging behind. Because of the architectural differences
between ASIC and FPGA, any optimizations done on ASIC
might not entirely translate to FPGA [2]–[4]. Since FPGA
systems typically consume more power and require more area
it is also crucial that more optimizations are done for these
types of systems, since more gains could possibly be made
here. It is shown that when designing specifically for FPGAs,
designs can be found that outperform designs made for ASIC
adapted to fit to FPGA [2], [3], [5].

The Internal Self-Healing methodology (ISH)[1] has been
shown to work for ASIC for 4-bit, 8-bit and 16-bit approximate
multiplier designs[1] and for FPGA for approximate multiplier
4-bit systems[5]. 8-bit approximate multiplier designs have

also been made for FPGA[2], [3]. However, it is shown that
the design space for 8-bit is quite large[1] which can take quite
some time to explore[5]. Due to this large computational time
it is often not possible to do a review of the entire design
space. It is however still interesting to do reviews of at least
a part of the design space, since designs could still be found
with a good efficiency-quality trade-off. The ISH-methodology
has also not been implemented yet on FPGA for 8-bit designs.
This is why the main goal of this paper will be to design 8-
bit approximate multipliers for FPGA from a reduced design
space of 4-bit approximate multipliers while using the ISH-
methodology. The 8-bit multipliers are optimized for power
consumption or chip area, while minimzing error.

The paper layout is as follows: in section II preliminary
knowledge and previous research will be discussed. This will
also include which approximate multipliers have been consid-
ered to include in the design space. In section III the design
methodology will be discussed including which multipliers are
considered for the final design space. It also includes the tool
flow and experimental setup. Section IV presents the results
of the experiment and compares the results with the state-of-
the-art. Section V provides a conclusion after which section
VI gives some possibilities for future research.

II. BACKGROUND

When designing approximate multipliers the conventional
method often only considers systems that are fail-small, fail-
rare [6] or fail-moderate [7]. These are systems with either
small error magnitudes with higher error rates (fail-small),
low error rates with high error magnitudes (fail-rare) or a
combination with a moderate error magnitude and rate (fail-
moderate). When working in this manner, however, not all
possible designs are considered, which could result in designs
with a good efficiency-quality trade-off being missed. This is
why [1] discusses the self-healing methodology and improves
on this to make the Internal Self-Healing (ISH) methodology.
This design methodology allows systems with higher error
rates and magnitudes to be considered, which leads to a larger
design space.

To allow for Internal Self-Healing [1] uses recursive multi-
pliers, which are multipliers where any 2n× 2n multiplier is
made of four n× n multipliers. Since these n×n multipliers
can be four different ones, internally any errors made by one
can be (partially) cancelled out by one of the other multipliers.
In this way, the advantages of the n×n multipliers can also be
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Fig. 1. 4×4 recursive multiplier which requires four 2×2 multipliers (taken
from [1])

combined to create multipliers which suit the requirements of
the 2n × 2n multiplier. The smallest binary multipliers used
in this paper are 2-bit multipliers, which multiply two 2-bit
inputs to create a 4-bit output. These 4-bit multipliers are
constructed as shown in Figure 1. The 4-bit inputs are split
into the highest and lowest bits. These split inputs are given
to the 2-bit multipliers shown resulting in 4-bit outputs, which
afterwards have to be multiplied by a certain factor depending
on which inputs were given. This is shown by the leading and
trailing zeros. This can be seen as multiplying the output of
the 2-bit multiplier by a factor, after which these outputs are
added together to get the output of the 4-bit multiplier. The
resulting equation can be seen in Formula 1:

Output4×4 = 16(AH ×BH) + 4(AH ×BL)

+4(AL ×BH) +AL ×BL

[1] (1)

Sets of 2-bit multipliers were used in previous research to
create 4×4 multipliers for FPGA [5]and 4×4, 8×8 and 16×16
multipliers for ASIC [1]. The designs of the 2-bit multipliers
and the naming convention can be found in Appendix A.

When designing approximate multipliers there are also other
ways to create approximate multipliers. When designing for
ASIC a conventional way is to target transistor or gate-level
truncations, but for FPGA this is not an option since the base
blocks are Look-Up Tables (LUTs), as has been analysed by
[2]. This means that any optimizations made for ASIC might
not transfer properly to FPGA. This is why when designing
approximate multipliers for FPGA one of the most effective
methods is to consider what each Look-Up Table (LUT) does
and what the underlying logic is that is required of the circuit.
Since the LUTs are the base block of FPGA’s the usage of
these needs to be reduced in order to gain efficiency. Reducing
the number of LUTs and the amount of LUT usage can be
done in multiple ways of which a few will be discussed. The
partial products and carrier signals can be approximated [3],
in which the amount of approximations is dependent on how
many LUTs can be removed. It is also possible to predetermine
which partial products can be combined within a single LUT
when looking at the required inputs, for which a few inputs
are then ignored [8]. More on [8], including the design, can be
seen in Appendix B. Both of these methods are quite intensive
however, since all the LUTs need to gain specific mapping to

get the correct outputs. This is why these methods are more
difficult to use to design new small approximate multipliers.

III. METHODOLOGY

To design 8-bit multipliers the recursive multiplier method
will be used, where four 4-bit multipliers will be combined.
When combining multipliers with this method the 8-bit inputs
are split into the 4 highest and 4 lowest bits, in the same
manner as with four multipliers in a 4-bit multiplier discussed
in section II. The outputs of the 4-bit multipliers in an 8-bit
multiplier are combined as shown in Formula 2:

Output8×8 = 256(AH ×BH) + 16(AH ×BL)

+ 16(AL ×BH) +AL ×BL (2)

To reduce the design space specific 4-bit multipliers need to be
selected. Since the 8-bit multipliers made will be optimized for
FPGA, the 4-bit multipliers will only be selected from methods
which also optimize for FPGA. In [5], a large number of
multipliers optimized for FPGA are discussed and compared.
However, before deciding which 4-bit multiplier will be in
the design space, the metrics for the quality and efficiency by
which these will be compared should be decided.

To determine the error the difference between the correct
output and the inexact output will be used, so (yi − xi). The
self-healing methodology is used multipliers so both positive
and negative errors should be present in order to cancel out.
This is why multipliers which have some positive and some
negative errors are beneficial. This is why no absolute value of
the error will be taken at this point. The mean has to be taken
over all inputs, after which the absolute for this value has to
be taken, to be able to quantize and compare multipliers. Then
the Absolute Mean Error (AME) metric is formed, which is
shown in Formula 3:

AME = |
∑︁

∀i(yi − xi)

N
| (3)

To be able to compare multipliers of different widths this value
can be normalized by dividing over 22n, with n being the
input size. This leads to the Normalized Absolute Mean Error
(NAME) being formed, which is shown in Formula 4:

NAME =
AME

22n
(4)

This error metric will be used to compare for quality of output
of the multipliers to determine which are suitable to use in the
design space.

To compare multipliers the efficiency-quality trade-off has
to be taken into account. The quality part is already covered
in the error metric. Since the designs will be optimized for
either power or chip area a method needs to be determined
for both of these. When considering the large design space
estimations need to be done, since calculating accurate values
needs a considerably larger processing time.

The power consumption of an 8-bit multiplier can be
estimated by adding together the power of the four 4-bit
multipliers it is made of. This estimation differs a bit from
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reality in that the switching activity for a specific input distri-
bution needs to be used to determine the power consumption.
This value will differ slightly for a 4-bit multiplier if it is
part of a bigger multiplier compared to when it itself is the
highest order, since the input distribution may differ slightly.
This method still gives a reasonable estimation though, which
can be used to select a possible set of multipliers that may
be interesting. To estimate area, the area of the four 4-bit
multipliers can be added together. With this estimation the
circuit for adding together the outputs of the 4-bit multipliers is
not taken into account. This estimation is still viable however,
since the circuit required for adding together the outputs will
have approximately the same size for each combination of
4-bit multipliers. Due to this, the estimation can be used to
compare the combinations, although the designs should not be
compared with complete 8-bit designs which already include
this circuitry.

Research has been done on which 4-bit approximate mul-
tipliers are most suitable for FPGA[5]. Based on this a
selection of 4-bit approximate multipliers is found which
can be considered as suitable. The multipliers need to be
verified to determine whether they are suitable, both in quality
and efficiency, which can be done as discussed beforehand.
Afterwards, the Pareto front of 4-bit multipliers can be used
to estimate the Pareto front of 8-bit approximate multipliers,
which can then be verified as well.

A. Design Methodology

The final design methodology will be to combine selected
4-bit multipliers to make 8-bit approximate multipliers. All
combinations of multipliers will be compared on estimated
efficiency (either area or power) against calculated output qual-
ity. The output quality is determined with the NAME metric,
which makes sure that the ISH-methodology is incorporated.

B. Toolflow and Experimental Setup

To verify the 4-bit multipliers MATLAB was used to
determine the error and Vivado was used to determine the
power and chip area. In MATLAB behavioural models of
the multipliers were used, while in Vivado the multipliers
were described in VHDL. To determine the error in MATLAB
normally distributed inputs were used. To determine the power
in Vivado the same normally distributed inputs were used to
determine the switching activity. This is done because Vivado
assumes a uniform-like distribution where each input is on for
50% of the time and switches 12.5% of the time [9], which
means that the calculated power can differ from reality. More
information on using switching activity to determine can be
found in Appendix C. To determine the area described in LUTs
used, Vivado gives a standard report which is accurate. The
selected verified 4-bit multiplier can be used to make the 8-
bit multipliers. MATLAB is first used to determine the error
and estimate the power and chip area. For this, the verified
power and area of the 4-bit multipliers are used to make an
estimation. The resulting estimated Pareto front is then verified
in Vivado. The total tool flow can be seen in Figure 2.

Fig. 2. Toolflow chart, the block in blue is preprocessing and verification done
to select 4-bit multipliers. The dashed outlines of the power report indicate
what has not been implemented in this thesis, for more info see section IV-A

When determining the error normally distributed inputs
were used, with the following mean (µ), standard deviation
(σ) and size of input set (N ): for 4-bit (µ = 8, σ = 1.5, N =
1000) and for 8-bit (µ = 128, σ = 22.5, N = 100 000). For
simulating the behavioural models MATLAB version 2022b
was used. For verifying the designs Xilinx Vivado version
2020.1 was used. For this, a part from the Kintex-7 series
”xc7k70tfbg484-2” was used.

The first step of verifying 4-bit multipliers leads to the sets
used to make the 8-bit multipliers. The set which will be used
to make 8-bit multipliers optimized for power can be seen
in table I. It should be noted that the power stated in this
table was not verified. Although the approximate multiplier
R4335 has a higher power and error than multiplier R1315 and
should thus not be included in the Pareto front, it will still be
included in the design space since the design space is not large
yet for the power-optimized multipliers. This means that the
processing time will not increase too greatly from including
it.

The set of 4-bit multipliers which will be used to make
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TABLE I
SELECTED 4-BIT POWER OPTIMIZED MULTIPLIERS [5], THE 2-BIT

MULTIPLIERS USED IN THESE 4-BIT MULTIPLIERS ARE SHOWN FROM
MOST SIGNIFICANT MULTIPLIER (MSM) TO LEAST SIGNIFICANT

MULTIPLIER (LSM).

Name MSM → LSM Power(µW )[5] NAME (Normal)
R1311[5] M1 M3 M1 M1 129 6.02E − 4
R1315[5] M1 M3 M1 M5 134 1.25E − 4
R4335[5] M4 M3 M3 M5 137 1.88E − 4
R1555[5] M1 M5 M5 M5 138 0.00E + 0

TABLE II
SELECTED 4-BIT AREA-OPTIMIZED RECURSIVE MULTIPLIERS [5], THE
2-BIT MULTIPLIERS USED IN THESE 4-BIT MULTIPLIERS ARE SHOWN

FROM MOST SIGNIFICANT MULTIPLIER (MSM) TO LEAST SIGNIFICANT
MULTIPLIER (LSM)

Name MSM → LSM LUT/m NAME (Normal)
R5421[5] M5 M4 M2 M1 13 4.55E − 3
R3511[5] M3 M5 M1 M1 14 5.76E − 4
R3311[5] M3 M3 M1 M1 16 5.35E − 4
R5155[5] M5 M1 M5 M5 17 4.05E − 5

TABLE III
SELECTED 4-BIT MULTIPLIERS FROM SMAPPROXLIB[8]

Name LUT/m NAME (Normal) Shorthand
SMApproxLib Approx2[8] 7 3.24E − 2 SMA24b
SMApproxLib Approx3[8] 8 2.52E − 2 SMA34b
SMApproxLib Accurate[8] 12 0.00E + 0 SMA44b

8-bit multipliers optimized for area can be seen in Table II
and Table III. The 4-bit multipliers in Table V were selected
from a verified set from [5]. These are recursive multipliers
made from 2-bit multipliers, for which the design and naming
convention can be found in Appendix A. The 4-bit multipliers
in Table III were selected from a verified set from [8].
More on these designs can be found in Appendix B and the
naming convention can be found in Table III. Although the
approximate multipliers from Table V have a higher area and
error than the accurate multiplier from Table III, these will still
be included in the design space. They will not appear often in
the Pareto front but it is interesting to test whether they have
no value at all or if they still add something.

IV. EVALUATION

A. 8-bit Power Optimized Recursive Multipliers

The behavioural models of the approximate multipliers
shown in table I were used to determine the estimated quality-
efficiency trade-off plot shown in Figure 3. The best multipli-
ers of the Pareto front from Figure 3 can be seen in table
IV. The power could not be verified for the 4-bit and 8-
bit approximate multipliers due to the limitations of Vivado
which does not report power lower than 1 mW . Since the
approximate multipliers differ from each other with only a
few µW , this does not suffice to do a proper comparison.

B. 8-bit Area Optimized Recursive Multipliers

The behavioural models of the approximate multipliers
shown in tables II and III were used to determine the estimated

Fig. 3. Estimated quality-efficiency trade-off of 8-bit approximate multipliers
optimized for power. The dot colour indicates the Most Significant Multiplier

TABLE IV
ESTIMATED PARETO FRONT MULTIPLIERS OF 8-BIT POWER OPTIMIZED

MULTIPLIERS, *IT SHOULD BE NOTED THAT THE POWER IS AN
ESTIMATION AND COULD NOT BE VERIFIED BY SYNTHESIS.

MSM → LSM Power(µW )* NAME (Normal)
R1311 R1311 R1311 R1311 516 7.19E − 4
R1315 R1311 R1311 R1311 521 1.18E − 4
R4335 R1315 R1311 R1311 529 3.47E − 5
R4335 R1315 R1315 R1311 534 2.47E − 6
R4335 R1315 R1315 R1315 539 5.74E − 7

quality-efficiency trade-off plot shown in Figure 4. In this
Figure, the estimated Pareto front can be seen on the blue
line. Since this is only an estimation the estimated area has a
standard bias of approximately 9 LUTs, due to the method
of making the estimation. These multipliers can however
still be properly compared using the estimated area since
all multipliers show this approximately the same bias. The
estimated Pareto front was verified by implementing in Xilinx
Vivado which resulted in the plot seen in Figure 5. As can be
observed the area differs from Figure 4. Most notable is the
multipliers at 47 LUTs, since synthesis showed that, although
they were estimated to have a different area, in reality the
area is the same, thus the multipliers with a higher error can
be discarded. The best multipliers from Figure 5 can be seen
in Table V. As can be observed from this Table the multipliers
from Table III are more prevalent in these multipliers. Only
the multiplier with an area of 55 LUTs has a multiplier from
Table II included in its structure. This is likely due to the
higher area of the multipliers from Table II which apparently
does not outweigh the lower error in comparison with the
approximate multipliers from Table III. It could also be that
if the recursive 4-bit multipliers were predefined within the
HDL like SMApprox (see Appendix B), they might decrease
in area and would appear more in the Pareto front of 8-bit
multipliers.

C. Comparison

When comparing the proposed approximate multipliers with
[1] some observations can be done without needing to imple-
ment the other multipliers on FPGA. This is because those
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Fig. 4. Estimated quality-efficiency trade-off of 8-bit approximate multipliers
optimized for area. The dot colour indicates the Most Significant Multiplier.
The blue line indicates the estimated Pareto front.

Fig. 5. Implemented quality-efficiency trade-off of 8-bit approximate mul-
tipliers optimized for area. The multipliers from the estimated Pareto front
from figure 4 are shown.

TABLE V
PARETO FRONT OF 8-BIT AREA OPTIMIZED MULTIPLIERS

MSM → LSM LUT/m NAME (Normal)
SMA24b SMA24b SMA24b SMA24b 37 3.78E − 2
SMA44b SMA24b SMA24b SMA24b 42 4.92E − 3
SMA44b SMA24b SMA44b SMA34b 47 2.52E − 3
SMA44b SMA44b SMA44b SMA34b 52 1.63E − 4
SMA44b SMA44b R3311 SMA34b 55 5.84E − 5

multipliers are made in the same recursive manner as the
4-bit recursive multipliers made for FGPA [5]. Since the 4-
bit recursive multipliers used in this paper are optimized for
FPGA and those multipliers do not match with the 4-bit
multipliers from [1], it can be concluded that any 8-bit Pareto
front made will outperform or at least be of the same level.
Thus, since the proposed multipliers are designed with FPGA
in mind, it is likely that they outperform on FPGA. This should
however be tested when implementing the method to verify the
power.

The 8-bit approximate multipliers proposed by [8] can be
seen in table VI. Their designs can be found in Appendix
B. These multipliers were verified in the same manner as the
proposed 8-bit area-optimized multipliers. Since the proposed
multipliers also use a set from this paper while including more

TABLE VI
8-BIT MULTIPLIERS FROM SMAPPROXLIB[8]

Name LUT/m NAME (Normal)
SMApproxLib Approx1[8] 55 1.83E − 3
SMApproxLib Approx2[8] 47 2.95E − 3
SMApproxLib Approx3[8] 46 2.92E − 3

Fig. 6. Quality-efficiency trade-off of 8-bit approximate multipliers optimized
for area against the multipliers from SMApproxLib (blue = proposed multi-
pliers, red = SMApproxLib)

options, they will likely outperform. This can also be seen
in Figure 6. It can be observed that the proposed multipliers
indeed outperform for the largest part of the quality-efficiency
trade-off. This could be attributed to the ISH-methodology
being employed, allowing for more design options. The mul-
tiplier SMApproxLib Approx3[8] however still outperforms
the multipliers which have approximately the same area, by
having only a slightly higher error while having saving on a
LUT in comparison with the 47 LUT multiplier from Table
V. The other multipliers from [8] however are outmatched by
the multipliers designed within this paper. The 8-bit multiplier
from Table V with an area of 55 LUTs has a 30× lower error
than the multiplier from VI with the same area. The 8-bit
multiplier from Table V with an area of 42 LUTs has 4 LUTs
less than the 46 LUT multiplier from VI while having an error
of approximately the same magnitude.

From this, it can be concluded that the Pareto front for
8-bit will be as seen in table VII. Four multipliers designed
in this paper are included and one 8-bit multiplier from [8]
is also included. In the 8-bit multipliers designed within this
paper, one 4-bit multiplier from Table II is included. It can
be observed that the 8-bit multipliers designed in this paper
outperform the state-of-the-art of [8] for some of their designs.
For power a final Pareto front can not be concluded, since the
power can only be estimated.

V. CONCLUSION

The aim was to design 8-bit approximate multipliers for
FPGA using the Internal Self-Healing methodology from a
reduced design space of 4-bit approximate multipliers. The
paper discussed the importance of approximate computing and
the value of designing specifically for FPGA, since ASIC
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TABLE VII
PARETO FRONT OF 8-BIT AREA OPTIMIZED MULTIPLIERS

MSM → LSM LUT/m NAME (Normal)
SMA24b SMA24b SMA24b SMA24b 37 3.78E − 2
SMA44b SMA24b SMA24b SMA24b 42 4.92E − 3
SMApproxLib Approx3 [8] 46 2.92E − 3
SMA44b SMA44b SMA44b SMA34b 52 1.63E − 4
SMA44b SMA44b R3311 SMA34b 55 5.84E − 5

does not translate entirely well due to architectural differences.
A design methodology was proposed where 4-bit multipliers
are selected beforehand in order to reduce the design space
while making it possible to find good options. 8-bit approx-
imate multipliers optimized for area were proposed which in
some cases improved the quality of output by approximately
30× for a similar area in comparison with SMApproxLib
Approx1[8] or showed approximately 10% decrease in LUT
usage while having a similar error magnitude in comparison
with SMApproxLib Approx3[8]. Overall the 8-bit approximate
multipliers showed to be a good addition to the state-of-the-
art. Although problems were encountered with multipliers op-
timized for power, estimations were done to propose possible
multipliers to challenge the current state-of-the-art. Overall,
an effective methodology has been proposed employing the
ISH-methodology to design recursive approximate multipliers
for FPGA.

VI. FUTURE WORK

Since the power-optimized multipliers could not be verified,
it would be interesting to find a method of verification.
Based on these results further research could be conducted to
determine the optimal 4-bit and 8-bit approximate multipliers
to incorporate into larger designs.

For the area-optimized multipliers, a set of twelve 4-bit
multipliers was used to make the 8-bit multipliers. It would
be interesting to expand this set by incorporating more 4-
bit multipliers to explore a larger design space. To ensure
that the processing time does not become too great, any 4-
bit multipliers that did not make it into the 8-bit multipliers
from the Pareto front could be excluded from the set.

The designed 8-bit multipliers could be applied to real
applications or data to determine if they still offer the same
advantages. Radio astronomy processing could be a potential
application to be tested on. Based on the results, the design
methodology could be adapted to incorporate different test data
or estimations during the design space reduction step.
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APPENDIX

A. 2-bit approximate multipliers

For the design of the 8-bit multipliers two different types
of multipliers were used. The 4-bit recursive multipliers
were made from 2-bit (approximate) multipliers. The naming
convention for a 4-bit recursive multiplier is Rabcd, with
a, b, candd being the 2-bit multipliers it is made of. An
example can be seen in R4335, which is the combination of the
2-bit multipliers M4, M3 twice and M5, from most significant
(in this case M4) to least significant multiplier (in this case
M5). The behaviour of each 2-bit multiplier can be seen in
table VIII-XII and the logic of each 2-bit multiplier can be seen
in figure 7-11. In the tables with behaviour the miscalculations
are shown in grey.

TABLE VIII
BEHAVIOUR OF APPROXIMATE MULTIPLIER M1 [10] (TAKEN FROM[5])

B A 00 (0) 01 (1) 10 (2) 11 (3)

00 (0) 0000 (0) 0000 (0) 0000 (0) 0000 (0)
01 (1) 0000 (0) 0001 (1) 0010 (2) 0011 (3)
10 (2) 0000 (0) 0010 (2) 0100 (4) 0110 (6)
11 (3) 0000 (0) 0011 (3) 0110 (6) 0111 (7)

TABLE IX
BEHAVIOUR OF APPROXIMATE MULTIPLIER M2 [11] (TAKEN FROM [5])

B A 00 (0) 01 (1) 10 (2) 11 (3)

00 (0) 0000 (0) 0000 (0) 0000 (0) 0000 (0)
01 (1) 0000 (0) 0000 (0) 0010 (2) 0010 (2)
10 (2) 0000 (0) 0010 (2) 0100 (4) 0110 (6)
11 (3) 0000 (0) 0010 (2) 0110 (6) 1001 (9)

TABLE X
BEHAVIOUR OF APPROXIMATE MULTIPLIER M3 [12] (TAKEN FROM [5])

B A 00 (0) 01 (1) 10 (2) 11 (3)

00 (0) 0000 (0) 0000 (0) 0000 (0) 0000 (0)
01 (1) 0000 (0) 0001 (1) 0010 (2) 0011 (3)
10 (2) 0000 (0) 0010 (2) 0100 (4) 0110 (6)
11 (3) 0000 (0) 0011 (3) 0110 (6) 1011 (11)

TABLE XI
BEHAVIOUR OF APPROXIMATE MULTIPLIER M4 [1] (TAKEN FROM [5])

B A 00 (0) 01 (1) 10 (2) 11 (3)

00 (0) 0000 (0) 0000 (0) 0000 (0) 0000 (0)
01 (1) 0000 (0) 0001 (1) 0010 (2) 0011 (3)
10 (2) 0000 (0) 0010 (2) 0100 (4) 0110 (6)
11 (3) 0000 (0) 0011 (3) 0110 (6) 0101 (5)

TABLE XII
BEHAVIOUR OF ACCURATE MULTIPLIER M5 (TAKEN FROM [5])

B A 00 (0) 01 (1) 10 (2) 11 (3)

00 (0) 0000 (0) 0000 (0) 0000 (0) 0000 (0)
01 (1) 0000 (0) 0001 (1) 0010 (2) 0011 (3)
10 (2) 0000 (0) 0010 (2) 0100 (4) 0110 (6)
11 (3) 0000 (0) 0011 (3) 0110 (6) 1001 (9)

Fig. 7. Logic of approximate multiplier M1 [10] (taken from [1])

Fig. 8. Logic of approximate multiplier M2 [11] (taken from [1])

Fig. 9. Logic of approximate multiplier M3 [12] (taken from [1])

Fig. 10. Logic of approximate multiplier M4 [1] (taken from [1])

Fig. 11. Logic of accurate multiplier M5 (taken from [1])
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B. SMApproxLib Multipliers [8]

For the design of the 8-bit multipliers two different types of
multipliers were used. The multipliers from [8] are based on
not allowing the synthesizing tool any freedom, but instead
designing the entire multiplier using HDL primitives. This
means that the LUTs are predefined within the HDL, for which
three different configurations are predefined. These are then
combined to create a general n × n multiplier which can be
seen in Figure 12.

Fig. 12. Implementation of SMApproxLib Multipliers [8] (taken from [8])

The basic accurate multiplier described above is adapted in
a few ways to make approximate multipliers. ”For Approx2
and Approx3 they propose to not use any chain adders at all,
but group partial products together into single layers that are
either implemented using one or two LUT6 2 primitives”[5].
This can be seen in Figure 13 and Figure 14. Approx3 differs
from Approx2 in that it uses a view extra inputs for the middle
groups to increase the accuracy.

Since the designs can be used for any n×n size multiplier,
the structure of a 4-bit and an 8-bit design should be discussed.
The structure for the 4-bit design is similar to what is shown
in Figure 13a, with N being 4. This means that only one green
layer is required for a 4-bit Approx2 or Approx3 multiplier.
For 8-bit the array multiplier can be seen in Figure 15.
This shows that to implement an 8-bit Approx2 or Approx 3
multiplier, two structures as shown in Figure 13a are required,
with five green layers per structure.

Fig. 13. Implementation of Approx2 and Approx3 [8] (taken from [8])

Fig. 14. Implementation of the green part in Approx2 and Approx3 [8] (taken
from [8])

Fig. 15. 8× 8 array multiplier (taken from [8])
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C. Determining power for specified switching activity

Xilinx Vivado should be used, with a design which has been
confirmed to be functioning as desired. In this tutorial Xilinx
Vivado version 2020.1 is used. Xilinx Vivado can be used
by first going to X2Go (https://caesdoc.ewi.utwente.nl/x2go).
Here in the terminal Vivado can be loaded in by running the
following commands:

1) ”module avail” can be run to check which version of
Vivado are available.

2) ”module load module” needs to be run to load in
a specific application. In this case Xilinx Vivado
v2020.1 is used, so the command is ”module load
xilinx/vivado/2020.1”.

3) ”vivado” needs to be run as command to start up Xilinx
Vivado. This will start up an instance of Xilinx Vivado.

After Vivado has been started up and your design project is
loaded in the following steps should be followed:

1) Synthesize and implement your design. Resolve any
encountered errors.

2) In Vivado under ”Flow > Settings > Simulation Settings
> Simulation” go to the simulation tab, as shown in
figures 16 and 17. Change ”xsim.simulate.saif scope*”
to the module for which you want to know the power
as shown in figure 17. This will most often be the unit
under test (UUT).

3) Below this set “xsim.simulate.saif*” to the name under
which you want the output SAIF file to have, as shown
in figure 18.

4) Simulate your design to output a SAIF file.
5) Read out the SAIF file by running ”read saif

{file name}” in the TCL console, with {file name}
being the location and name of your previously named
SAIF file. An example is shown in figure 19.

6) Report the power by running “report power” in the TCL
console, as shown in figure 20.

7) You will now get a report of your power in the TCL
Console, which can be used to see your power usage
for a specific input.

Fig. 16. Location of simulation settings option

Fig. 17. Location of the Simulation tab within the Simulation Settings

Fig. 18. Example names of ”xsim.simulate.saif scope*” and
”xsim.simulate.saif*” shown within Simulation tab

Fig. 19. Example command line to read out a SAIF file

Fig. 20. Example command line to report power
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