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MANAGEMENT SUMMARY 

Context 

This research is conducted at a company that wants to remain anonymous, it is referred to as Company X. 

Company X is a start-up parcel carrier in the Netherlands founded at the end of 2021. Company X was founded 

by a B2C e-commerce company (ECC) which sells products from its own stock as well as products from other 

large and small retailers all over the Netherlands. Since these products need to be shipped from these retailers 

to the consumers’ homes, ECC arranges the logistical fulfilment of collecting and delivering these products. It 

is the strategic ambition of the ECC to have full control over the logistical fulfilment of its own parcels and the 

parcels from other retailers that are sold through the ECC. 

 

The logistical network is the foundation of Company X’s operations and is therefore of great importance to 

achieve its ambition of being the most reliable, efficient and sustainable parcel carrier. Company X is scaling 

fast and one of the challenges it is facing is the design of its logistical network. Currently, Company X has an 

initial plan made for them on how to design its network. However, this approach is based on simplifications 

and assumptions and does not fully enable Company X to achieve its ambition. Furthermore, with a changing 

market, Company X wants to revise this initial plan, for which it does not have the right tooling.  

 

To be able to achieve its ambition, Company X wants to become able to periodically determine the best network 

design to achieve the most efficiency in its operations. The best network minimizes the total operational costs 

while also having a robust performance over multiple scenarios. Operational costs include: 

• The operational costs of opened depots (parcel sorting, cost of materials). 

• The costs of inter-hub transportation (linehaul). 

• The costs involved with the routes that are driven from each depot to the retailers.  

 

Therefore, the goal of this research is to build a model that will enable Company X to design its network such 

that it can operate at the lowest operational costs and periodically analyse its network performance. The 

research question of this thesis is formulated as: 

 

What is the best location of and allocation to depots such that the logistical network of Company X operates at 

minimal costs? 

Method 

The main elements that need to be decided on in the design of the logistical network are the locations of hubs, 

linehaul, and which locations to service from which hub. From the literature, it becomes clear that the network 

of Company X can be modelled as a hub-and-spoke (HS) network. An HS network is characterized as a network 

type, used in various many-to-many systems, with hubs and non-hubs where large volumes are transported 

between hubs to achieve economies of scale and non-hubs are used to distribute volumes, passengers or 

information over the network. 

 

The theoretical problem that describes the challenge of designing the logistical network best is described in the 

literature as the ‘hub location routing problem’ (HLRP). HLRPs are concerned with the optimization of an HS 

network by integrating the hub locations, inter-hub structure, and operational routing cost. Using this 

literature, we have formulated the design of the logistics network of Company X as a mixed-integer linear 

program. However, due to the size of the problem, the Netherlands consists of 4070 postal zones, it is 

intractable to solve this model to optimality. Therefore, we propose a heuristic approach based on a general 

variable neighbourhood search (GVNS) to find the best possible network within a reasonable time. This GVNS 

approach is a combination of elements from the fastest heuristic approach found in literature and the heuristic 

approach that has previously been able to solve a problem in a similar (although much smaller) context. 

 

A disadvantage of this GVNS method is that it is a deterministic local search and is therefore not able to grasp 

the stochasticity and fluctuations in workload that Company X must handle. Therefore, we have expanded the 
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deterministic heuristic with a simulation component into a simheuristic-based GVNS. In the simheuristic, all 

promising solutions that are found while solving the deterministic GVNS are moved to a simulation procedure. 

This procedure evaluates the solution under multiple scenarios so that the best solutions are those who 

perform best under different circumstances. Furthermore, the best-performing promising solutions are put 

into an even more intensive simulation to gain insights into their stochastic behaviour as thoroughly as 

possible. 

 

One of the most important inputs to the model is the set of considered hub locations. To limit the required 

computation time, we cannot put in many hub locations so that the solution space of the model does not become 

too large. Therefore, based on a dataset of all industrial/commercial areas in the Netherlands, we have 

determined a limited set of 30 possible hub locations. In this research, hub locations and service areas are 

determined on a PC4 postal zone level. A PC4 postal zone contains the area in which the streets lie with the 

same four digits in the postal code. The Netherlands is divided into a total of 4070 PC4 postal zones. 

Results 

Using historical sales of the ECC, we have performed three different experiments to find the best possible 

network for Company X. In the first we used our proposed simheuristic-based GVNS to determine the best 

network for Company X. Secondly, we tested the GVNS but with a much faster simple allocation strategy for 

postal zones. Lastly, we assessed the performance of the network when we take the hub locations from the 

initial plan as input. 

 

Using the simheuristic-based GVNS and the set of possible hub locations, we have found a logistics network 

that has an average daily cost of operating of €25,290. Using the simple allocation strategy, we found a slightly 

better solution with an average daily operating cost of €24,739. Lastly, when taking the initial plan as input, 

the best solution we found has a daily operating cost of €27,262, which is worse than the other methods. 

Conclusions and recommendations 

In this research, we have created a model that describes the logistical network of Company X. The model 

enables Company X to analyse its network and build it such that it can operate at minimal costs. By expanding 

the GVNS with a simulation component into a simheuristic, we enable Company X to not only solve 

deterministic scenarios but evaluate the stochastic behaviour of these solutions. Furthermore, we performed 

three experiments in which we used our model in different ways to find the best network. We found a network 

design that improves the initial plan. 

 

While these results are positive, we have some recommendations for using the model as well as improving it. 

Because the GVNS searches for solutions in a deterministic scenario, the solutions are built based on that 

scenario. Using another deterministic scenario might lead to different choices for hub locations or service areas. 

Therefore, we advise Company X to solve the model for multiple different deterministic scenarios and make a 

final decision for the network design based on the simulated results of these solutions. In this way, the influence 

of a single scenario on the local search is decreased. Additionally, we have proposed multiple improvements to 

Company X and a direction for future work. These include, among others, improving the hub level operators 

and investigating the added value of using a multi-allocation HLRP formulation.  
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1 INTRODUCTION & RESEARCH DESIGN 

In this chapter, we introduce the companies that are involved in this research (Section 1.1). Besides this, the 

chapter provides information about the problem analysis and the scope of the research (Section 1.2), and the 

research design (Section 1.3). In Chapter 2, the relevant processes and the problem are explained. 

1.1 RESEARCH CONTEXT 
In this section, we introduce the companies that are involved in this research the E-commerce Company and 

Company X, where the research is conducted, are introduced.  

1.1.1 E-commerce Company 

The second of the three stakeholder companies is the e-commerce company (ECC). The e-commerce company 

is a Business to Consumer (B2C) company that sells all kinds of consumer products from its warehouse. Next 

to their own products, ECC also sells products that come from other retailers. The logistical fulfilment for these 

shipments is arranged by ECC. So, ECC contracts carriers to perform the logistics for the retailers.  It is the 

strategic ambition of the ECC to have full control over the logistical fulfilment of its own parcels as well as the 

parcels from other retailers that are sold by the ECC. To achieve that, Company X is built.  

 

These products are shipped directly from the retailer to the consumer.  These products must be collected first 

before they can be delivered to consumers’ houses. For other retailers, ECC makes sure that large batches of a 

product are brought to their own warehouse from where they are shipped by parcel carriers. Therefore, the 

logistical services that are performed can be separated into different groups based on the way ECC handles the 

products from third-party retailers. First, there are the products that are collected piecewise (piecewise 

parcels, PP) and have to be sorted to hand them over to other parcel carriers. Second, some products are 

shipped to the ECC's warehouse in large batches (batch parcels, BP). Both these product groups must be 

collected and sorted by Company X. 

1.1.2 Company X 

Thirdly, Company X is the company at which this research is conducted. Company X is a start-up that was 

founded at the end of 2021 and provides logistical services on behalf of the B2C E-commerce Company. They 

are responsible for the transportation of parcels. Although Company X is an independent company, it was 

created by and works solely for ECC. Company X was created to fulfil the strategic ambition of the ECC to have 

all parcel transhipments done by themselves and thus not have other third-party parcel carriers have their 

products shipped to consumers. 

 

Company X wants to be a disrupting new player in the market of logistical fulfilment. Therefore, it is its ambition 

to offer the best parcel transportation service possible by making sure it is: 

• The most reliable, meaning Company X can deliver what they promise. 

• The most efficient, offering it against the most competitive price. 

• The most sustainable, by making sure it is scalable and the environmental impact is as low as possible. 

 

At this point, Company X is only performing a small part of the collection of the two parcel types as described 

above (PP/BP). The rest is performed by other carriers. It is their ambition to grow fast and take over at least 

half of all shipments. Furthermore, Company X wants to investigate whether they can expand their services by 

also doing home delivery.  

1.2 PROBLEM ANALYSIS 
In this section, the problem is analysed in more detail. We address the challenges and desires of Company X 

that have led to the formulation of the core problem of this thesis. Furthermore, we elaborate on the scope of 

the research. For an explanation of the different logistical processes that are relevant to this research, see 

Section 2.3. 
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1.2.1 Problem Context 

Although Company X has only been founded at the end of 2021, it is growing rapidly due to the support of the 

ECC. Although many processes within the company have been worked out and set up, there remain multiple 

decisions and processes that must be worked out in detail. This includes the design of the logistical network, 

which is an important aspect of the operations of a parcel carrier as it sets the conditions in which the daily 

operations can be performed, and thus is very important for Company X to achieve their ambition. Within this 

network, multiple depots need to be placed from where routes are driven to collect (or deliver) parcels. 

 

To further explain the challenges that Company X is facing, the definition of service area must be given. A service 

area of a depot is the set of locations that together form the stops on the routes that are driven from that depot. 

As also further explained in Section 2.3.1, these stops can also include collection points. Deposit retailers (DR), 

which are retailers with small sales quantities, must bring their parcels to a collection point. The allocation of 

DRs to collection points is thus also part of the service area.  

 

Since Company X has just been founded, the logistical network, which includes depot locations and which areas 

to service from which depot, is yet to be built. Company X has an initial plan made for them on where to open 

depots and corresponding service areas. However, this plan is based on many assumptions and approximations 

and therefore does not fully enable Company X to fulfil its ambition. Therefore, Company X wants the network 

design to be more advanced and improved by means of an optimization/improvement algorithm. Because 

Company X wants to be the most reliable, efficient, and sustainable parcel carrier in the market, it wants to 

make sure that it builds its network such that it can operate most efficiently in the short as well as the long 

term. With the operation the following costs are included: 

• The operational costs of opened depots. 

• The costs of inter-hub transportation (linehaul). 

• The costs involved with the routes that are driven from each depot. 

Therefore, being able to analyse and find the best network design based on the costs above and given any 

forecast enables Company X to always have the blueprint for an optimized network when opening new depots. 

This can save costs both operating costs as well as changeover costs.  

 

Furthermore, there exist great seasonal effects on the workload for company X within both weeks as well as 

months. First of all, there is a peak workload on Mondays or Tuesdays, depending on the logistical process (see 

Section 2.2.3). The volumes on the other three days of the week are always lower. Furthermore, there exists 

great seasonality within a year, the first three quarters of the year are, overall, quite similar and steady in terms 

of volumes per week. Yet in the last quarter of the year, there is a big increase in the volume. The volume 

quantities are (more than) four times the volume per week compared to the other months of the year. Dealing 

with this peak(s) in managing their logistical network is a great challenge for Company X. 

 

On top of that, Company X currently relies heavily on the data and forecasts that are provided to them by ECC. 

The quality of this data cannot be verified other than by comparing it to what happens during daily operations. 

Besides this, the data is very aggregated, meaning it is hard to translate the forecast into workload and routes 

for specific service areas. 

 

Figure 1 The ambition and challenge of Company X 
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Therefore, to be able to operate more independently from ECC, Company X wants to build the capability to be 

able to assess and analyse strategic and tactical scenarios with a tool. A tool with these capabilities will enable 

Company X to analyse the impact of changes on their network and enables them to decide which actions need 

to be taken under which scenario. Types of questions that can be thought of in this regard are ‘how many extra 

vehicles do we need of the workload in area X increases by Y?’. 

1.2.2 Core Problem 

As described, Company X is going to build its network and thus must decide on depot locations and 

corresponding service areas. To achieve its ambition, Company X wants to find the network that minimizes 

operational costs while also having a robust performance. Besides this, Company X has the desire to be able to 

make scenario analyses on both the strategic and tactical levels. With the dependency on the forecast of the 

ECC and the great seasonal peaks, Company X must be able to independently determine what the best course 

of action is given a certain scenario or how it can organise itself as efficiently as possible. 

 

Thus, the challenge is to determine the best logistical network for Company X given a certain scenario. To solve 

this challenge, multiple smaller elements must be determined that together shape how the logistical network 

should look like, this includes: 

1. The location of depots, where collected parcels are sorted and routes depart and arrive. 

2. The sizes of the depots. 

3. The service area of the depots. 

4. The location of the collection points. 

5. The retailers that are connected to a collection point. 

6. The linehaul structure between depots. 

7. Which routes will be used. 

 

When it is possible to find the best network for a given scenario it becomes possible to determine the best 

network given a set of scenarios. Thus, providing the best network for Company X.  

1.2.3 Scope of the research 

As described in section 1.2.2, the core problem, determining the best logistical network for Company X, consists 

of seven elements. Since this research should be conducted within a time frame, we must pay attention to the 

scope of the research. Therefore, we have decided to not take all seven logistical challenges into account. 

However, we want to aim for the broadest possible approach and we, therefore, proceed as follows.   

 

The main goal of this research, determining the best logistical network, is a strategic question. This question 

contains the location and size of the depots and the corresponding service areas. So, the first three elements 

should be taken into account in this research.  

 

At first sight, linehaul and routes (questions six and seven) do not seem to be questions to be included in this 

strategic research since these are more operational questions. However, it is important to take them into 

consideration when determining the location and size of the depots and the service areas. Since the goal is to 

figure out the most cost-effective network and this can be done from scratch with no changeover costs, it is 

important to not only take into account the locations of depots, but also the costs of the whole network, 

including costs of linehaul and routing. Thus, considering both linehaul and routing provides the most realistic 

picture in terms of costs, and therefore the opportunity to build the best network. One can agree that routing 

is an operational decision and will vary every day, but for Company X in practice, routes are often similar every 

day. This makes sense since the pickup retailers are large retailers, so every day they have volume to be 

shipped. And therefore, the locations that need to be visited are (almost) always the same. The same goes for 

delivery, postal zones with a high population density are also the location where a lot of packages need to be 

delivered.  

 

Thus, the questions about depots, service areas, linehaul, and routes form the foundation of the logistical 

network and therefore we think it is important to first answer these. To keep the size of the research 
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manageable, we decided to leave out the fourth and fifth elements, the location of the collection points, and the 

connection between retailers and the collection points.  

 

The reason for this is that when considering where to locate the collection points, every retailer can become a 

collection point, which broadens the solution space tremendously. However, it is possible to take this into 

account in the model by predetermining it before solving the model and thus not considering it during the 

improvement phase. So, only making the decision once. Based on data and with the help of a greedy heuristic, 

we can estimate locations for collection points and the connection between retailers and the collection points. 

In this way, we can select the best network while taking into account all aspects, and declining the solution 

space with this delineator. The explanation of how the locations of collection points are determined and which 

retailer is connected to which collection point is explained in Section 4.4.1.  

 

To conclude, we decided that, to determine the best logistical network for Company X, we should take into 

account decisions on depots, service areas, linehaul, and routing. We also decided to predetermine the location 

of collection points and the connection between retailers and collection points to keep the problem and 

therefore solution space manageable in the limited time we have for this research.  

1.3 RESEARCH DESIGN 
In this section, the research design is described. The research goal is explained first. Whereafter, we discuss the 

research questions. 

1.3.1 Research Goal 

As derived from the problem analysis, the challenge of this research is finding the best logistical network for 

Company X. This comprises finding the best locations and sizes for depots as well as determining the 

corresponding service areas to each depot such that the expected routing costs are minimal while having 

nationwide coverage in the Netherlands. This challenge covers both the collection of parcels from retailers and 

the home delivery to consumers. As mentioned before, the logistical network is not yet built.  

 

The desired outcome of this research should be an approach (algorithm) that is able to use input like forecast, 

potential hub locations, service levels, and routing costs to determine the best logistical network for Company 

X. Next to that, Company X wants to create the tool to do strategic and tactical analyses. Therefore, the tool 

needs to be practical enough to be reusable, e.g., by analysing a forecast and determining if extra resources are 

needed given a set of available depots. 

 

These outcomes should be realized by making an (optimisation) algorithm that combines locating the depots, 

sizing the depots, and dedication of service areas such that the cost of driving the routes to visit these locations 

from the depots and the depot costs is minimized. The precise approach that the algorithm will follow will be 

based on the literature review. 

1.3.2 Research Questions 

As explained in the problem analysis, the goal of this thesis is to determine what the logistical network of 

Company X should look like. Therefore, the main question of this research is: 

 

What is the best location of and allocation to depots such that the logistical network of Company X operates at 

minimal costs? 

 

By answering the following sub-questions, we answer the main research question: 

1. How is the current logistical network design done for Company X? 

Before we start with researching and creating models, we first have to create a good understanding of the work 

that Company X has to do, which logistical processes have to be performed through the network, how the 

current network has been designed, and which resources are available. By knowing this, we know what has to 

be covered by the model we will make. This will also form the input for the mathematical model. Here we can 
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think of the number of parcels that need to be collected, but also the indirect inputs like how many parcels fit 

in a vehicle. This means that based on historical data want to determine: 

• How is the workload for Company X divided over the Netherlands? 

o How is the Dutch e-commerce market evolving? 

o The division of collection (and delivery) volumes over the country. 

o Seasonal effects within weeks and within a year. 

o Locations, volumes, and service times of retailers. 

• What are the logistical processes that need to be performed through the network? 

• How is the current logistical network designed? 

o What are the requirements? 

o What are the Key Performance Indicators? 

• What will be the available set of resources? 

o The set of available vehicles (capacity, operating cost etc.). 

o The set of depot types (capacity, operating cost, etc.) 

 

We elaborate further on these questions in Chapter 2. 

 

2. Which models exist in the literature that optimize transportation networks with depots and 

hubs? 

The first step for answering the main research question is to review the status quo in the literature regarding 

the design of logistical networks. We will search for sources that describe models that solve the same type or 

similar types of logistical networks. This includes: 

• What are the mathematical formulations of such models? 

• What are the (heuristic) approaches they use to solve these models?  

• What are the computational times of these approaches? 

• What are the strengths and weaknesses of these approaches? 

• Are there similar cases known? 

 

With the combined literature, we know whether there are proven methods to model the logistical network of 

Company X or whether we need to make adjustments or additions to these models.  

 

The answers to these questions can be found in Chapter 3. 

 

 

3. How can we model and solve the logistics network of Company X? 

From the literature review that is created by answering research question two, we know to which extent we 

can use known methods to model the logistical network. From there, we can make a mathematical model for 

Company X, if needed by making adjustments to known methods. Subsequently, based on the literature, we will 

design a (heuristic) approach to solve the mathematical model efficiently. To make a good model, we need to 

find answers to the following questions: 

• What are the assumptions needed to model the network? 

• What is the scope of the model? 

• How can we solve the logistical network of Company X?  

 

The model is explained in Chapter 4. 

 

4. What is the best logistics network for Company X in the Netherlands? 

a. What are the best parameters for the algorithm, and can we validate the outcomes? 

When the input analyses, mathematical model, and algorithm stand. It is time to test the model. Firstly, the right 

model parameters must be found, this means the parameters that give the best objective values within 

reasonable timeframes. Furthermore, we need to make sure that the outcomes of the model are an accurate 

reflection of reality and thus can be trusted. 



1 INTRODUCTION & RESEARCH DESIGN  1.3 RESEARCH DESIGN 

6 

 

b. What is the best network for Company X? 

After we have determined the best model parameters and validated that the model results are accurate 

representations of reality. We want to let the model find the best logistical network for Company X. 

c. How does this network perform compared to the initial plan and simple methods? 

Having found a network design using our model, we will test whether the model is actually of added benefit for 

Company X. Firstly, this will be done by comparing the results to the outcomes a simple approach that takes 

less time to solve. Secondly, by comparing the results to the depot locations as they are chosen in the initial 

plan of Company X.  

d. What is the sensitivity of input parameters? 

Lastly, we want to know what the impact of certain input parameters, like depot costs or vehicle capacities, is 

on the outcome of the model.  

 

The experiments and corresponding results can be found in Chapter 5. 

 

5. What are the conclusions of the research and recommendations for Company X? 

Lastly, when all the other research questions have been answered the findings have to be put together. In this 

section we will formulate a conclusion to the main research question, thus showing the optimal logistical 

network. Furthermore, recommendations will be formulated for Company X on how to use this research in the 

future so that they can make full use of it. 

 

The conclusion and recommendations can be found in Chapter 6. 
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2 CONTEXT ANALYSIS 

In this chapter, we investigate the context in which our problem exists so that the research question ‘How is the 

current logistical network design done for Company X?’ can be answered. We start by giving an overview of the 

(expected) workload for Company X (Section 2.2). This includes general trends in the Dutch e-commerce 

market and the position of ECC in it. Furthermore, we present an analysis of historical sales data of the past 2.5 

years from which we show the following characteristics for future ‘demand’ of Company X: 

• The division of collection and delivery volumes over the country. 

• Seasonal effects between days of the week and within a year. 

• The set of available vehicles (capacity, operating cost etc.). 

• Locations and volumes retailers. 
Next, we present an overview of the logistical processes that are performed by Company X (Section 2.3), explain 

the current network design process and the used key performance indicators (Section 2.4), and give an 

overview of the vehicle types and depot characteristics that will be included in the network design (Section 

2.5). 

2.1 POSTAL ZONES IN THE NETHERLANDS 
Within the Netherlands, every street has a postal code. This postal code consists of four digits and two letters, 

which together form a six-element ID, e.g., 1011 AA, that is called the PC6. Each PC6 corresponds to (parts) of 

a street such that each PC6 has a limited number of houses/buildings related to it. The next level is the PC4, 

which consists only of the digits in the postal code. The PC4 will be the main level that is looked at in the 

research, therefore when the term ‘postal zone’ is used the PC4 level is meant. The PC4 level spans over 

neighbourhoods and thus contains multiple streets. The area size of a PC4 area differs strongly, typically the 

area is bigger in more rural areas. Each PC4 is part of a PC3 area, which is the area of all PC4 areas that share 

the same first three digits, e.g. all postal zones with 145_ __, these areas lie next to each other and form a cluster. 

The last level that is relevant for this research is the PC2 level, which is the two-digit equivalent of the PC3 level. 

2.2 MARKET ANALYSIS 
In this section, we give an overview of the e-commerce market in the Netherlands, touch upon the market 

position of the e-commerce company and translate that into the workload for Company X in terms of the 

number of stops, volumes to collect, seasonal effects and how the volume is distributed over the country.  

2.2.1 E-commerce Market in the Netherlands 

The one customer of Company X is the e-commerce company (ECC) (see Section 1.1.1). This means that 

although Company X is not a player in the e-commerce market the developments of this market are of great 

importance to the business of Company X.  

2.2.1.1 Market size 

The e-commerce market is big in the Netherlands, with little over 30.5 billion euros it occupies about 84% of 

the digital revenue market. Moreover, in 2021 86.7% of all Dutch individuals shop online (Statista, 2022a), 

which is higher than the average of northern, central, and western Europe (Statista, 2022b). The market size of 

e-commerce in the Netherlands in terms of revenue has also been steadily increasing over the period 2005-

2021 (see Figure 2) and is expected to do so with 12.5% per year from 2021 to 2025 (Statista, 2022b). The 

number of orders has grown with a relatively similar pattern as the revenue to a total of 373.4 million orders 

in 2021 (Statista, 2022a). 

 



2 CONTEXT ANALYSIS  2.2 MARKET ANALYSIS 

8 

 

 
Figure 2 Total revenue of e-commerce sales in the Netherlands from 2005 to 2021 (Statista, 2022a) 

Although there is a clear significant growth trend over the last few years, this growth has been decreasing 

strongly over the last months of 2022. Due to increased energy costs and inflation that is (expected to be) 3.4% 

higher than initially forecasted (Statista, 2022b) the sales in the e-commerce market have dropped strongly. 

This is also visible in the change of revenue rates of Q1 and Q2 of 2022 of -27% and -12% respectively compared 

to the same periods of 2021 (Statista, 2022a). It must be noted that these large decreases in revenue can also 

be explained by the country not being in lock-down anymore which can lead to different spending behaviour 

by consumers. 

2.2.1.2 Competitive landscape 

Just as the revenue, the number of online shops and mail order companies has increased (even faster) over the 

last years from 40,785 in 2019 to a total of 80,770 in 2022 (Statista, 2022a). In 2020, the five largest players in 

the market account for 37% of the total net sales, the top 6-25 for 29%, the top 26-100 for 23%, and the 

remainder 12% (Statista, 2022b). This shows that there are a few well-established big players followed by a 

small group of still relatively large companies, i.e., 100 companies account for 88% of the sales and thus 80,670 

companies account for (only) 12% (assuming the division of sales in 2022 is equal to that of 2020). This shows 

that there are a lot of small companies/retailers in the market, of which multiple sell via ECC. 

2.2.1.3 Consumer preferences 

Lastly, research has been done into what the most important attributes are for consumers when doing online 

shopping. The most important attribute was a ‘fast/reliable delivery’, which relates directly to the service that 

Company X is offering, as mentioned by 40% of the almost 8800 respondents (Statista, 2022a). From this, we 

can see that having a good logistical network is of great strategic importance to e-commerce retailers, and thus 

to Company X. Furthermore, Dutch consumers are quite demanding in terms of the delivery time they expect. 

Around 30% of consumers expect a delivery time of 1-2 days, which is the highest of twelve European countries 

(Postnord, 2021). This implies that logistical networks transporting e-commerce sales in the Netherlands are 

under more pressure to deliver high service. 

2.2.2 Market position e-commerce company 

The e-commerce company (ECC) is a somewhat mature player in the Dutch e-commerce market1. They sell 

products in different types of product categories. Furthermore, they have been growing steadily, just above the 

market average. Therefore, we can assume that the growth rate of ECC will be equal to that of the whole market, 

i.e., 12.5% per year. Furthermore, ECC finds itself somewhere in the top 100 of e-commerce companies in the 

Netherlands, meaning their sales volume is around 80 million euros. 

 
1 Due to confidentiality, we cannot disclose the exact numbers. 
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2.2.3 Workload for company X 

In this section, we present the analysis of historical sales data of 2.5 years that gives an overview of the factors 

that need to be considered when designing the logistical network. This is especially relevant for the input 

datasets that will go into the model. 

2.2.3.1 Retailers 

To determine the number of locations to visit and the 

location of collection points we need to know how many 

retailers there are, what their respective sizes are in 

terms of volume per day, what their locations are 

(Figure 3)2, and how the number of retailers evolves 

over time (Figure 4)2. 

 

The number of retailers has increased quite a lot over 

the past two and a half years. Starting at selling 

products from only a few retailers a week in 2020 to 

well over 1300 retailers per week in 2022. In total, EEC 

has sold products from well over 3,455 unique retailers. 

Out of these retailers, only 200 meet the criteria to 

become a pickup retailer (PuR).  

 

Furthermore, from the data, we know how these 

retailers are spread over the country. As can be seen 

from Figure 3, there are some clear hotspots with 

regard to where retailers are located. These are the Amsterdam and Rotterdam areas in the west, Groningen in 

the north, and some places in the east and south. All white areas are areas where no retailers are located. 

 

 
2 The y-axis has been removed to maintain confidentiality 

Figure 3 Total number of retailers PC4 area2 

Figure 4 Development of unique retailers  per week2 
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2.2.3.2 Volumes per day 

In terms of the average volumes per day (see Figure 5), some observations can be made. First of all, there is a 

very clear weekly pattern to see in the data. Monday is the peak day, which follows logically from orders being 

placed over multiple days in the weekend. The Tuesday to Thursday are less but often quite the same. Lastly, a 

strong decrease can be seen on Friday and even stronger on Saturday. The total volume of packages that are 

sold through ECC can, at peaks, get over 15,000 items in a day (see Figure 6). In the short term, this volume will 

not completely be processed by Company X, but each year a larger part will be taken on. 

2.2.3.3 Seasonal Effects 

There are some seasonal effects that are visible. The first is the weekly pattern which is described above. The 

second is that there has been a steady increase in volume over the course of 2.5 years, which is quite in line 

with the growth of the e-commerce market in general. Furthermore, there is a difference in volumes between 

different periods within the same year, as can be seen in Figure 6. This is due to the fact that at the end of the 

year there are many promotional actions and national holidays for which consumers make purchases. 

 

 
Figure 6 Difference in volume per day over the course of 20212  

Figure 5 Average demand per weekday (0 is Monday) over 2.5 years2. 
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2.2.3.4 Distribution of volume over the country 

Lastly, we have investigated how the volumes are distributed over the country. We look at the level of ‘postal 

code 4 areas. In the Netherlands, there are just over 4000 of these areas. Because the outlook is relatively 

similar we do not show the division for every weekday in every period for every logistical process. Therefore, 

we show the average volume of a Monday, where it is being collected, and where it needs to be delivered (left 

and right maps in Figure 7 respectively). For collection volumes, there is a relatively equal division of locations 

over the country with the exception of the northern areas. In the design of a network, the right map is more 

interesting. There are some areas, especially in the western and southern urban areas, where much more 

deliveries must be done in comparison to others. Choosing depot locations conveniently to those areas will 

likely save a lot of costs in the routes that need to be driven. 

2.3 LOGISTICAL PROCESSES 
To better understand what type of logistical processes have to be performed by Company X, the multiple 

logistical processes need to be explained. As explained, the e-commerce party sells products that they have to 

collect from other retailers, these can be divided into two types: piecewise parcels (PP) and batch parcels (BP). 

2.3.1 Piecewise Parcel Collection 

Firstly, the group where items are collected on an item basis (PP). These retailers receive an order through the 

e-commerce company’s web shop. The next day, in the morning, Company X will come to pick up all orders that 

have been placed the day before. This needs to be done in the morning since these orders need to be delivered 

the same day (the day after ordering). If the retailer is large, Company X will come to that retailer to collect the 

parcels, these are pick-up retailers. If the retailer is small, the agreement is that the retailer brings its parcels 

to a ‘collection point’ before a certain time, these retailers are indicated as "deposit retailers" since they 

"deposit" their goods at a collection point. These collection points are located within a driving time of X3 

minutes and can be, e.g., larger retailers that would have been serviced anyway. Once all parcels are collected, 

they are sorted by Company X and handed over to other parcel carriers who will do the delivery to consumer 

homes. This process is indicated as a piecewise parcel collection (PPC). An example of the network for the PPC 

process can be seen in Figure 8. 

 

 
3 Due to confidentiality, we cannot disclose the exact numbers. 

Figure 7  The distribution of average PPC volumes on Monday and the corresponding destinations (in parcels)2 
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2.3.2 Batch Parcel Collection 

The second group are the retailers whose products are collected in larger batches and are then stocked in the 

warehouse of the e-commerce party; these are indicated as ‘batch retailers’(BR). These retailers are 

responsible for making sure that their stock at the ECC warehouse does not run out. These retailers can put out 

a request to have Company X come and pick-up a replenishment. This involves larger boxes containing multiple 

items. The collection of this type of parcels is done after the collected parcels of the first type are sorted. This 

process is indicated as a batch parcel collection (BPC). An example of the network for the PPC and BPC process 

can be seen in Figure 8 and Figure 9. 

2.3.3 Sorting 

When the PP collection is done, the parcels are sorted based on their destination. At the moment, the parcels 

are handed over to other parcel carriers, therefore the directions on which the parcels are sorted are the same 

as the depot locations of the third-party carrier. This sort is called the first sort (FS). The first sort needs to be 

done in a relatively narrow time window to be able to hand the parcels over to the third-party carrier so that 

the carrier has enough time to distribute them over the country and deliver them to customers. 

2.3.4 Linehaul 

When the parcels are sorted at a depot, they need to be transferred to other locations. For the PP collection, 

this is done by other parcel carriers who come to Company X’s depots to collect the parcels there. For BP 

collection, the parcels must be consolidated at the depot from the different collection vehicles and transferred 

to the warehouse of the e-commerce company. Transport of parcels between depot locations is referred to as 

linehaul (LH). 

2.3.5 Home Delivery 

As indicated, Company X is looking into the possibility of also taking up the home delivery process (HD). This 

process includes the delivery of piecewise parcels to the homes of customers that have placed an order. These 

parcels can come either from retailers through the PPC process or from the e-commerce company’s warehouse 

(ECW). Parcels are delivered to a depot, where they are sorted on route (second sort). From there they are 

delivered to customers’ houses. Including home delivery will also require that Company X performs additional 

linehaul transportations during the day to move parcels to the right depots. 

  

Figure 8 Schematic graph of PPC network Figure 9 Schematic graph of BPC network 
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Table 1 An overview of the used definitions 

Definition Abbr. Explanation 

Piecewise Parcels PP Parcels that contain one single customer’s order, destined for that 
customer’s home. 

Batch Parcels BP Large parcels, containing multiple similar items, that are destined for 
the e-commerce company’s warehouse. 

Pick-up Retailers PuR Large retailers (daily volume >X) that are serviced individually 
Batch Retailers BR Large retailers that ship batch parcels are serviced individually. These 

retailers can also be PuR, depending on the portfolio of products they 
offer. 

Deposit Retailers DR Small retailers (daily volume <= X) that bring (deposit) their orders to 
a collection point 

Collection Point CP A PuR or DR where parcels of DRs are aggregated to achieve full(er) 
truckloads 

E-commerce Company’s 
Warehouse 

ECW Warehouse from where the orders containing EC’s own products or 
products that have been sent by Batch Retailers. 

Depot - A location where collection or delivery routes start and end as well as 
where parcels are sorted and consolidated. 

 
Table 2 An overview of the different logistical processes   

Definition Abbr. Explanation Parcel 
Type 

Time 
Window4 

Piecewise Parcel 
Collection 

PPC Collection of PP Parcels PP Morning 

Batch Parcel 
Collection 

BPC Large parcels containing multiple similar items, 
destined for the e-commerce company’s 
warehouse. 

BP Afternoon 

Linehaul LH Transportation of parcels in-between depots 
and/or ECW. 

PP/BP Afternoon & 
Evening5 

Home Delivery HD  PP (Early) Evening 
First Sort FS The process of sorting collected parcels based on 

their destination’s depot. 
PP Early 

Afternoon 
Second Sort SS The process of sorting parcels based on delivery 

routes 
PP Late Afternoon 

 
4 Due to confidentiality reasons, the exact time windows are not mentioned.  
5 Evening for BP and potentially in the afternoon in case Company X also will perform Home Delivery. 

DR bring 

PP to CP 
PPC FS 

BPC 

PP 

LH 
SS 

BP 

LH 

HD 

Figure 10 Overview of different processes over the day (for abbreviations, see Table 1 and Table 2) 
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2.4 NETWORK DESIGN FOR COMPANY X 
As explained earlier, Company X already has had an analysis done to determine how they should roll out their 

logistical network over the Netherlands. In this section, we provide a short outline of how that network design 

has been done. Furthermore, we address the KPIs that Company X has for determining the quality of a network 

design. 

2.4.1 Network elements 
Before we explain the process of how the current network design has been made, we must first touch upon the 

decisions that Company X has to make when designing the network.  

 

• The first is the decision of which retailers should become collection points. As explained in Section 

2.3.1, the smallest retailers should deposit their goods at a collection point. To have the most efficient 

routes, this collection point must be chosen as conveniently as possible.  

• The second element is choosing the depot locations, these speak for themselves and ideally have to be 

chosen such that the daily operational cost is as low as possible today as well as in a few years.  

• When all locations in the network have been set, the third element to decide upon is the routing. 

Routing can, depending on what Company X will do in the future, be split into collection routes and 

delivery routes.  

• The last element is the linehaul. In case Company X is also going to perform delivery routes, the 

collected parcels need to be sorted at the depot and transported to other depots from where they will 

be delivered. This inter-depot shipment of parcels is the linehaul. Note that the linehaul volumes are 

the result of the chosen service areas, as the route of a parcel is bound by the depot allocations of its 

origin and destination postal zones.  

2.4.2 Current network design 
The current plan for the logistical network has been determined using some input parameters and decision 

rules. As mentioned, Company X is a start-up, therefore this modelling has been done based on historical data 

from ECC and assumptions. In this section, we provide a high-level overview of the most relevant steps.  

 

The choice for collection points is done by means of a clustering rule based on the weights of shipments and 

the requirement that any retailer should be within a driving range of at most X6 minutes from a collection point. 

These clusters are then split into subclusters based on the maximum volume or number of retailers allowed at 

one collection point. For each subcluster, the closest pick-up retailer is appointed as a collection point. 

 

Secondly, the depot locations are chosen based on spatial distribution and the weight of the delivery volume of 

PC4 areas. This means that implicitly there is a direct link between each depot and every PC4. For depot sizes, 

a predetermined set of sizes is used from which can be chosen when locating a depot. 

 

Thirdly, the routing. For the piecewise parcel collection (PPC), two scenarios of a day are simulated, one 

‘regular’ day and one for the peak season. For the batch parcel collection (BPC), one average day scenario is 

used. The routing is composed of an approximation of travel time from a depot to a PC4 area, the travel time 

and stop time within a PC4 area, and the time to travel from one PC4 area to another. For the travel time within 

a PC4 area, an approximation is used based on the density of stops and the level of urbanization of that area 

(the higher the urbanization, the lower the average speed a vehicle can drive). Note that this routing is not used 

to improve the network design, but merely to check whether the network resulting from steps one and two 

would be cost-effective. 

 

Lastly, the linehaul for PPC and BPC. The network is assumed to be fully interconnected, meaning there is a 

direct linehaul connection between every depot in the network. Furthermore, it is assumed that the linehaul 

volumes from depot A to depot B are proportional to the delivery volume weights of the corresponding areas. 

 
6 Due to confidentiality, we cannot disclose the exact numbers. 
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All in all, the initial design is a good starting point for Company X. Because of the demand-weighted approach, 

the clusters and depot locations will probably be placed in the proximity of the best locations as these will be 

the locations with the most routes. However, it also becomes clear that the design is based on many 

assumptions and approximations, especially in the routing part. Therefore, this initial design can be improved 

further in order for Company X to have the most efficient network design.  

2.4.3 KPIs for decision-making used in the current network design 

Then, it is important to know which key performance indicators (KPIs) have been used in the network design. 

Although there are multiple, the KPIs can be divided into three main categories: costs, capacity, and 

productivity. Costs include fixed costs for vehicles, depot locations, and overhead as well as variable costs like 

wage and driving costs per km. Capacity indicates the volumes that on average end up in a vehicle. Lastly 

productivity, this relates to the time spent per stop and route, i.e., the time required to perform the processes. 

2.5 TRANSPORT RESOURCES 
In the previous sections we have addressed almost all relevant information for designing the network of 

Company X. However, we still miss two inputs that we need to clarify. These are the depot types, sizes and costs, 

and the vehicle types, capacity, and operating costs.  

2.5.1 Depots 

Depots can come in various sizes, types, and locations that all influence the costs of the depot. Furthermore, the 

depots of Company X do not exist yet, which makes it even harder to make a good estimation of size, type, 

location, and thus costs. Therefore, we have made some approximations to determine which locations to take 

as input. 

 

First, the depot costs, multiple components can be distinguished: rental costs, one-time investments (capex) 

like a sorter, operational costs, and personnel costs.  Based on internal documents of Company X, when all these 

costs components are added up to account for a cost per year for different types of depots. Because at this point 

it is not possible to know how many depots of each type are required, an estimation is done on the number of 

depots of each type based on the spread of historical sales volumes over the country. Adding up these total 

yearly costs and dividing those by the number of working days in a year we get an average daily cost of opening 

a hub of €600. 

 

Secondly, the locations and number of hubs that will be considered in the model need to be determined. To do 

this, we took a publicly available dataset of all commercial areas (Dutch: industrieterrein) in the Netherlands, 

which was published by the organisation of Dutch provinces (Interprovinciaal Overleg, 2022). From this 

dataset, we selected all areas that were not yet full and had a good enough road connectivity (up to 15 minutes 

from the highway). This resulted in a subset of around 950 possible locations out of 3800 commercial areas. 

Because this dataset does not include postal zones but only the city name and the name of the commercial area, 
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we used the geopy package for python to estimate 

the postal zone of each commercial area. 

Consecutively, we determined a list of hub 

locations that ensured nationwide coverage.   

 

We created this list by calculating for each 

commercial area how many postal zones were 

within a 60-minute drive time, for which we used 

a dataset of driving times between each postal 

zone in the Netherlands that was created for the 

VPRO project ‘Nederland van Boven’ which is 

based on the Dutch ‘Nationaal Wegen Bestand’ 

(GeoDMS, 2019). The first entry on the list was 

the area that had the largest coverage. Next, we 

calculated for each commercial area how many 

postal zones they would be able to reach within 

60 minutes and chose to add the area that could 

add the most postal zones. This process is 

repeated until no more postal zones could be 

added, resulting in 15 hub locations.  

 

Since this number is not very large and does not 

provide much flexibility in choosing hub 

locations, the list is expanded. For each hub 

location in the list, the three closest other hub locations are chosen. For these three hub locations, we chose the 

location that was closest to the centre point between the three hub locations. This resulted in 15 additional hub 

locations that provided a more even spread of candidate hub locations over the country.  

 

Lastly, some candidate hub locations were positioned very close to each other. Those were moved manually to 

increase the spread of locations even more. The final selection of 30 hub locations is shown in Figure 11. 

2.5.2 Vehicles 

The characteristics of the vehicles, like capacity and 

driving range, influence the number of stops in the 

routes and thus the distances and durations of the 

routes. Furthermore, there is a fixed cost per usage 

of a vehicle and a cost per driven kilometre. Lastly, 

the driver of the vehicle needs to be paid a salary 

per hour. For this research, two types of vehicles 

are considered. The first is the large van (LV), 

which is used for the collection of piecewise and batch parcels. The second is the small van, which is used for 

home delivery because it is easier to use in highly urban areas.  

 

In reality, for each process, a mix of different vehicle types could be used to get the lowest possible routing 

costs. However, for this research, it is assumed that for each process only one vehicle type can be used. 

2.6 CONCLUSIONS ON THE CONTEXT ANALYSIS 
In this chapter we have answered the research question ‘How is the current logistical network design done for 

Company X?’. Firstly, we established an overview of the (expected) workload for Company X by looking at trends 

in the Dutch e-commerce market in the Netherlands. Important observations are the high yearly growth rates, 

which imply further growth for the coming years, and the high demands Dutch consumers have on the delivery 

process of their orders. Furthermore, we have seen that the number of retailers selling through the ECC has 

been increasing rapidly over the last few years. These retailers are spread over the Netherlands, with many 

Table 3 Vehicle characteristics  

  Small van Large van 

Fixed cost   
Cost per km   
Salary per hour   
Capacity in parcels   
Driving range in km   
* Since batch parcels are bigger, less fit in the van 

Figure 11 Candidate hub locations 

Shielded for the public version 
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postal zones that contain retailers. As can be expected, the number of retailers in urban areas is higher. 

Although the number of retailers is very high, the number of pickup retailers (200) is relatively low at only 6% 

of the total. Also, there are some clear patterns visible in daily workload within weeks and years. Within a week, 

Monday is the day with the highest workload, which is expected since orders placed during the weekend are 

also included. Furthermore, a great peak can be seen at the end of the year due to several holidays. 

 

Secondly, we looked at the different logistical processes that Company X does and possibly will perform. There 

are five processes that are performed during the day, that together form the logistical fulfilment of piecewise 

and batch parcels. Especially, the processes related to the piecewise parcels have a great impact because the 

parcels are collected and delivered on the same day. 

 

Thirdly, we looked at how the current network design has been performed. The choice for depot locations and 

service areas has been made on clustering rules and spatial distribution of postal zones to the depots weighted 

by the respective volume of each postal zone. The driving distances are approximated by the number of stops 

and level of urbanization of an area. For the linehaul, volumes are assumed to be proportional to the delivery 

volume of each hub. In this design, three KPI categories are used: costs, capacity, and productivity. This 

approach is a good starting point because of the demand-weighted clustering. However, this approach is based 

on many assumptions and approximations. Therefore, a more comprehensive approach will enable Company 

X to build a more efficient network. 

 

Lastly, we constructed a set of 30 possible hub locations to consider in the model. These are based on all 

industrial/commercial areas in the Netherlands. Furthermore, two vehicle types are distinguished that are 

used in the collection and delivery processes. 
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3 LITERATURE REVIEW 

In this chapter, we research the literature to answer the second research question ‘Which models exist in the 

literature that optimize transportation networks with depots and hubs?’. Answering this question will enable us 

to find a way to model the logistical network design of Company X. First, we will look into the literature on 

network design, after which we will address more specific parts of network design literature that are relevant 

to our problem. Lastly, we address methodologies to solve real case problems that are described in the 

literature.  

 

In the case of Company X, the design of a logistical network consists of four elements. Firstly, you need to 

determine the number, sizes, and locations of depots. Secondly, you need to assign locations/areas to depots 

to create service areas. Thirdly, you need to determine the line-haul structure. Lastly, you need to determine 

the optimal routing from all the depots to all locations that need to be served (within this research this is split 

into collection and delivery routes).  

 

In the literature, we found multiple optimization problems that relate to one or more of the above-described 

network elements. The first three elements together make up the Hub Location Problem, which is described in 

Section 3.3. The routing optimization is described by the well-known Vehicle Routing Problem, which is left out 

of scope for this literature review. Combine those two problems and you have the Hub Location Routing 

Problem, which is described in Section 3.4. A graphical representation of how the network elements relate to 

the different optimization problems is shown in Figure 12.  

3.1 NETWORK DESIGN PROBLEMS 
Network design problems arise whenever optimal choices have to be made that can be represented 

conceptually as the selection of a subset of links in a graph. Typically, these optimal choices are the result of 

complex trade-offs between various types of costs and constraints (Crainic et al., 2021). In particular, most 

network design problems involve fixed costs associated with link selection and variable costs associated with 

flows (of people, goods, information, etc.). Because of their combinatorial nature and the complexity of their 

objective functions and constraints, network design problems are inherently difficult (most of them are NP-

hard) (Crainic et al., 2021). 

 

There are a few important characteristics that determine the type of network design problem. The first 

fundamental distinction in network design problems is whether the demand can be represented as one 

 ow can we dynamically determine t e  est allocation of depots 

suc  t at t e logistical network of Company X operates at minimal 

costs?

Where to locate 
depots?

What is the Line 
haul structure?

What are the 
most ef icient 

collection routes?

Which stops are 
served by which 

depot?

What are the 
most ef icient 

delivery routes?

Vehicle routing problem 

Hub location problem

Location routing problem

Hub location routing problem

Figure 12 An overview of how different network design elements are covered in theoretical known problems. 
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commodity (possibly with multiple origins and multiple destinations) or as multiple commodities that need to 

be differentiated. The second characteristic is whether capacities are taken into account. And the third 

characteristic is the cost structure, the presence of fixed design and variable transportation costs introduce 

complex trade-offs. Making finding optimal solutions more complicated (Crainic et al., 2021). 

3.1.1 Fixed Charge Network Design Problem 

At the basis of network design problems lies the fixed charge network design problem (FCNDP). The most basic 

case is where one single commodity is transported from an origin to a destination through a graph over arcs 

and nodes. The multicommodity variant has multiple commodities and thus multiple origin and destination 

nodes (Crainic et al., 2021). Based on this model, further expansions can be made which we will not address 

due to lack of relevance to our case.  

 

The single commodity formulation for the FCNDP, given by Crainic et al. (2021), is as follows. Let 𝐺 =  (𝑁, 𝐴) 

be a directed graph, where 𝑁 is the set of nodes and 𝐴 ⊆ 𝑁2 the set of potential arcs. A limited flow capacity 

𝑢𝑖𝑗 > 0 is associated with each arc (𝑖, 𝑗). The network design problem consists of selecting a subset of arcs from 

𝐴 to satisfy a given demand at the minimum total cost. The demand to satisfy is defined at the nodes of the 

graph, which are partitioned into three subsets: 𝑁𝑜, the set of origin (source) nodes, 𝑁𝑑 , the set of destination 

(sink) nodes, and 𝑁𝑡 , the set of transhipment (intermediate) nodes. Each origin 𝑖 ∈ 𝑁𝑜  has a supply 

(availability) 𝑤𝑖 > 0 of the given commodity, each destination 𝑖 ∈ 𝑁𝑑  has a demand (request) 𝑤𝑖 < 0 of the 

same commodity, while each transhipment node 𝑖 ∈ 𝑁𝑡  has neither availability nor request, i.e., 𝑤𝑖 = 0. The net 

supply across any set 𝑆 ⊆ 𝑁 is defined as 𝑊(𝑆)  ≡  ∑ 𝑤𝑖𝑖∈𝑆 . We assume that demand is balanced, i.e., 𝑊(𝑁) =

0. 

3.1.2 Service Network Design Problem 

In their book, Crainic et al. (2021) introduce the Service Network Design problem as a starting point for 

network design problems with applications in transportation and logistics. In this problem, the supply side of 

a transport system is designed in order to meet demand in a high-quality and profitable way. Service is 

understood to be a vehicle, convoy, or train which moves through the network transporting people or freight 

loads. Service Networks are especially applicable in the context of consolidation-based transport, often 

organised in hub-and-spoke networks (Section 3.2). One can think of postal and small-package transportation 

companies, less-than-truckload (LTL) motor carriers, railroads, ocean/maritime liner navigation companies, 

and land- and water (coastal, river, etc)-based intermodal carriers. (Crainic & Hewitt, 2021). 

3.1.3 Hub Network Design Problems 

One subset of these applications of service networks is when the network design involves the location of 

consolidating hubs, hub network design. A distinguishing feature of hub networks is the use of transhipment, 

consolidation, or sorting points for commodities, called hub facilities, to connect a large number of 

origin/destination (O/D) pairs by using a small number of links (Contreras, 2021). Hub networks can be seen 

as hierarchical networks which, in their most basic form, contain two levels: an access-level network 

connecting O/D nodes to hubs, and a hub-level network connecting hub nodes between them (Contreras, 

2021). These hub network design problems were first studied from a facility location perspective, but now 

there is a specific subset that is concerned with hub locations, and their interactions, as the main decision. 

These are the hub location problems (Section 3.3). Recently, literature is published on combining hub location 

problems with collection, transfer, and delivery routing (Contreras, 2021). 

 

Hubs are facilities of various types where one or more transportation modes interact. They are intermediate 

facilities that perform switching, sorting, connecting, and consolidation/break-bulk functions for traffic (e.g., 

passengers, freight, or information) between many origins and destinations (Alumur et al., 2021; Contreras, 

2021). We can think of hubs in many-to-one and one-to-many systems as consolidation points that allow 

linehaul and local operations to be decoupled (Daganzo, 2005). 

3.1.4 Hierarchy in network decisions 

In transportation planning, there is a hierarchy in decision making which includes strategic, tactical, and 

operational decisions (Magnanti & Wong, 1984). Strategic decisions are long-term decisions related to the 
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infrastructure of transportation networks, e.g., the building of highway infrastructure. Tactical decisions are 

those concerned with the effective utilization of infrastructures and resources of existing transportation 

networks (in contrast to the acquisition of these resources). Lastly, operational decisions are short-term 

decisions, mostly related to traffic flow control, demand management or scheduling. Given our research 

question, we are dealing with decisions on a strategic, locating depots in a network, as well as tactical level, 

determining the service area for each installed depot. 

3.2 HUB-AND-SPOKE NETWORKS 
Hub-and-spoke (HS) networks are used in various network systems, for example, airline systems, and 

telecommunication systems. In the context of postal service, this network structure is commonly used (Wu et 

al., 2022). An HS network is characterized as a network type, used in various many-to-many systems, with hubs 

and non-hubs, where large volumes are transported between hubs to achieve economies of scale and non-hub 

nodes, are used to distribute volumes, passengers, or information over the different regions (de Camargo, 2013; 

Wu et al., 2020). It is known that a hub-and-spoke structure is suitable for those delivery systems where it is 

expensive or impractical to dedicate exclusive transport links to each origin-destination pair and it is a well-

known configuration in postal systems (Çetiner et al., 2010).  

 

Hub-and-spoke networks can offer some benefits in multiple cases in which we can have different possibilities 

for the number of origins, destinations, and commodities that have to be transported through the network 

(Lopes et al., 2016; Pandiri & Singh, 2021). 

• One-to-Many: one origin has to serve different destinations. 

• Many-to-One: many origins have to serve one destination.  

• Many-to-Many: many origins have to serve many destinations. 

 

As an illustration for the one-to-many case, it is assumed that each destination demands a specific number of 

items from each one of the origins and that these cannot be substituted for one another. That is, we are dealing 

here with what normally is referred to in the network optimization literature as a multi-commodity problem 

(Daganzo, 2005). 

 

In such HS networks, the consolidation of flows increases the traffic density in some (or most) route segments. 

For a transportation setting, this greater traffic density allows using larger and more cost-efficient vehicles 

(e.g., aircraft or trucks) – with appropriate trip frequencies. The reduction of unit costs comes from sharing 

fixed costs over more units of demand (e.g., passengers), and possibly from using vehicles with lower variable 

costs. Additional benefits of hub networks can come from increasing the frequencies of service on links (as a 

result of higher traffic density), and a better traffic balance across the network. Further, hubs can concentrate 

administrative and technical resources, reducing the investment, operational costs, and inventories. (Alumur 

et al., 2021) 

3.2.1 Single and multiple allocation 

Originally, HS networks were assumed to have a direct connection between every hub pair; no two non-hub 

nodes could be serviced by a direct link; non-hub nodes could be directly connected to only one of the installed 

hubs, i.e., were single allocated, or could send and receive flow through more than one of the installed hubs, i.e., 

were multiple allocated; an origin–destination demand was routed through one or at most two hubs, and 

economies of scale on inter-hub connections were represented by a discount factor (de Camargo et al., 2013). 

 

However, over the years, these assumptions have been adjusted and adapted to cope with different problems 

and applications such as the design of a ring star hub network; the location of inter-hub connections instead of 

just hubs; the minimization of the maximum travel time between any origin–destination pair; allowing at most 

three hubs on any given route between pairs of origin–destination or incomplete inter-hub connections; but 

also minimizing the maximum travel time between any origin–destination pair; projecting star-star like hub 

networks; having a tree structure connecting all installed hubs; and partitioning the points into sub-networks, 

locating at least one hub in each sub-network and routing the flow at minimum cost. (de Camargo et al., 2013) 
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3.3 HUB LOCATION PROBLEM 
The hub location problem (HLP) was first introduced by O’Kelly in 1987 (O’Kelly, 1987). Broadly speaking, 

HLPs consist of locating hub facilities, designing the hub network and determining the routing of flows 

(individuals, goods, and information) from an origin through the network to their destination, while optimizing 

a cost-based or service-based objective (Alumur et al., 2021; Campbell, 1994). Hub networks are often used in 

transportation, telecommunication, and computer systems to efficiently route commodities between many 

origins and destinations (Alumur et al., 2021; Contreras, 2021). The HLP is part of the class of NP-Hard 

problems (Contreras, 2021). 

 

The primary advantages of hub networks stem from 1) lower movement (i.e. transportation or transmission) 

costs from consolidated flows that exploit economies of scale, especially between hubs; 2) reduced costs from 

establishing a sparser network to connect many dispersed origin–destination (O–D) pairs; and 3) better service 

from allowing more frequent connections due to the consolidated flows (Alumur et al., 2021). 

 

Network hub location models include origin/destination (O/D) nodes, hub nodes (to be located), an access 

network to connect the non-hub O/Ds to hubs, and an inter-hub network connecting the hubs. On top of that, a 

key modelling decision is whether to assume a topology of the access-level, connecting O/D nodes to hubs and 

hub-level networks, connecting the hub nodes (Alumur et al., 2021; Contreras, 2021). Demand in HLPs is a 

request for service for a specified O-D pair where something (e.g., information or freight) is transported from 

an origin to a destination, possibly via one or more hubs. These hubs function as intermediate points delivering 

some desired service (e.g., sorting) (Alumur et al., 2021). 

 

Hub location-allocation has various application areas in digital data service, telecommunication networks, air 

transport, freight transportation, postal services, public and urban transportation, rail transport, and 

emergency services. (Alumur et al., 2021; Basirati et al., 2020; Contreras, 2021)  

3.3.1 Main model elements 

An HLP is generally described as a graph 𝐺 = (𝑁, 𝐸), where 𝑁 is the set of nodes representing the origins and 

destinations (non-hubs) of flows as well as the set of potential hub locations, and 𝐸 is the set of edges. For each 

node pair (𝑖, 𝑗) there is an amount of flow to be routed (𝑊𝑖𝑗) and a distance (𝑑𝑖𝑗), both non-negative, from origin 

𝑖  to destination 𝑗. Fixed costs are incorporated with each node for opening a hub, and with every edge for 

activating inter-hub arcs. These hub arcs connect hub nodes and have a unit flow cost of 𝛼 ⋅ 𝑑𝑖𝑗 , where 𝛼 is a 

discount factor to reflect economies of scale. Furthermore, each O-D path has a collection leg from the origin to 

the first hub and a distribution leg from the last hub to the destination (Contreras, 2021). 

 

Most proposed models for the HLP are mixed-integer linear programming (MILP) models, yet in recent 

literature also non-linear formulations have been proposed more often (Basallo-Triana et al., 2021). Within the 

formulations, different types of transportation variables can be defined. Flow-based variables use three index 

continuous variables to represent the flow from an origin routed through two hubs. Path-based variables use 

four subscript binary variables for selecting the route for each O-D pair through the network (Basallo-Triana 

et al., 2021). Flow-based variables have been shown to be superior in terms of solution time according to 

Alumur and Kara, yet a benders decomposition method turned out to be faster for the hub location routing 

problem formulation (Section 3.4) (Basallo-Triana et al., 2021). 

3.3.2 Assumptions 

Classic HLPs rely on some main assumptions. First, demand flows have to be routed through one or at most 

two hubs, implying that a non-hub node is directly connected to at least one hub facility. In other words: unit 

shipment from a location to a customer is independent of the route taken to visit the customer. Second, the hub 

network is considered to be fully interconnected. Third, a constant discount factor representing economies of 

scale is applied to the unit transportation cost of inter-hub connections. In several applications, these 

assumptions are reasonable and provide a good approximation of reality; in others, they may lead to 

suboptimal solutions. Furthermore, delivery costs depend only on the sum of the product of the unit shipment 
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cost from the location to the customer and the number of units delivered to that customer (Alumur et al., 2021; 

O’kelly, 1987; Real et al., 2021) 

 

Demand in HLPs is usually implied to have a common time period for all O-D pairs and HLPs are generally 

solved for a single time period which is presumed to repeat. However, in reality, demand is not static but is a 

rate of some unit per time and is generally dynamic. Furthermore, operations in a hub network take relatively 

little time whereas travelling takes much more time. In the literature on hub locations, little attention has been 

paid to the time dimension (Alumur et al., 2021).  

 

Hub location problems were developed especially for the linehaul design problem. Classical location-allocation 

problems, like the HLP, also ignore tours when locating facilities. Most HLPs use a set of assumptions that 

simplify the design and routing decisions to the point of being completely determined by the allocation 

decisions of O/D nodes to hubs. This may lead to incorrect pickup and delivery costs (Contreras, 2021; Wasner 

& Zäpfel, 2004).  

3.3.3 Topologies & Allocation Strategies 

In the design of a hub network, there are two levels, the access level and the hub level. On both levels, choices 

can be made on how the nodes are (inter)connected which will influence the way the final network will look. 

On the access level, this concerns allocation strategies. On the hub level, there are multiple network topologies 

that could be applied. 

3.3.3.1 Allocation Strategies 

In HLPs, three allocation strategies for non-hub nodes to hubs have been investigated: 1) single allocation, each 

node is assigned to one hub; 2) multiple allocation, nodes can be assigned to more than one hub; and 3) r-

allocation, each node can be assigned to at most r-hubs. Multiple allocation has been the preferred strategy, 

although, in hub location routing context, authors chose single allocation more often (Alumur et al., 2021; 

Basallo-Triana et al., 2021; Contreras, 2021).   

3.3.3.2 Topologies 

Within HLPs, the topology is of great importance. Next to fully interconnected where each hub is directly 

connected to all other hubs, we describe four different topologies: star-star, cycle-star, tree-star, and line hub 

networks, see Figure 13. Star-star hub networks consist of a set of hub nodes connected directly to a central 

hub node and every non-hub node is connected to a hub node, creating a star network on access and hub level. 

Applications can be found in satellite communication or cargo delivery networks. Tree-star networks consist 

of a set of hub nodes connected via a spanning tree. Each non-hub node is assigned to exactly one hub. 

Applications can be found in digital data services or train networks. Cycle-star networks consist of a set of hub-

nodes connected by a set of hub arcs that form a cycle, each non-hub node is connected directly to one hub. 

Applications can be found in telecommunication networks or rapid or public transit systems. Lastly, hub line 

networks consist of a set of hub nodes that are connected through a path (line) and non-hub nodes can be 

assigned to one or more hubs. Applications arise in public transportation or road networks (Contreras, 2021). 

3.3.4 Improvements 

Alumur et al. (2021) define nine themes on which the HLP models can be improved compared to existing 

literature: 1) Better model economies of scale; 2) Incorporate time in HLP models; 3) Consider more 

sophisticated objectives and multiple criteria; 4) Relate to real-world problems; 5) Integrate hub location with 

other problems; 6) Incorporate nature of the demand; 7) Use real data; 8) Obtain insights from the results; 9) 

Use the best solution approaches – and develop new ones.  
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3.4 HUB LOCATION ROUTING PROBLEM 
The hub location routing problem (HLRP) is a problem consisting of all decisions related to the locating of hubs, 

generating multiple-stop local routes for the non-hub nodes, allocating non-hubs to the installed hubs, and 

routing the flow of many origins to many destinations at a minimal cost, by which it aims to meet the demands 

by moving the individuals, goods, and information. The HLRP essentially combines the hub location problem 

with the vehicle routing problem (Basirati et al., 2020; Campbell, 1994; Çetiner et al., 2010; de Camargo et al., 

2013; Lopes et al., 2016; Nagy & Salhi, 1998; Wasner & Zäpfel, 2004). The HLRP can be thought of as a strategic 

or tactical problem (Çetiner et al., 2010). 

 

Since hub location and routing influence each other, it is imported to consider the two problems simultaneously 

(Basirati et al., 2020). Hub location-routing models include constraints on routing aspects to model multi-stop 

collection and distribution routes at hubs. Extending HLPs to hub location-routing problems allows multi-stop 

routes in the access network connecting hubs and non-hubs (Alumur et al., 2021). 

 

Just as with the HLP, within the class of HLRPs, there is a distinction between single-allocation and multi-

allocation. Single-allocation HLRPs allow non-hub nodes to be allocated to only one hub node, whereas multi-

allocation HLRPs allow for non-hub nodes to be served by multiple hub nodes (Wu et al., 2022). On top of that, 

there are different types of networks. One destination receives flow from different origins, the many-to-one 

case; or one origin node can supply many destination nodes, the many-to-one case; or thirdly many origins can 

supply many destinations, the many-to-many case (Lopes et al., 2016; Pandiri & Singh, 2021). 

 

Hub nodes are special facilities that serve as connections between origins and destinations, these are also called 

non-hub nodes. They act as consolidation centre that bundles the quantities of parcels of certain demand points 

Figure 13 Structure of (A) Cycle-star, (B) Star-star, (C) tree-star, and (D) line hub networks (Contreras, 2021) 
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to achieve economies of scale for less-than-truckload transports. Pickup and delivery routes start and end here 

(de Camargo et al., 2013; Lopes et al., 2016; Ratli et al., 2022; Wasner & Zäpfel, 2004). 

 

In general, three assumptions are considered in classic hub location-routing problems including (1) the 

network structure is based on a complete graph, (2) interactions among hubs include the discount factor 𝛼, (3) 

direct routes among non-hub nodes are forbidden (Basirati et al., 2020; Karimi & Setak, 2018). 

3.4.1 Location Routing Problems 

In the previous sections, we have seen two problems that describe two sets of decisions in the challenge of 

designing a logistical network. There is a third, well-researched, type of mathematical problem that touches 

upon network design, namely the set of location routing problems (LRP) which were introduced by Watson-

Gandy and Dohrn (1973). Location routing problems are characterized by the search for the optimal number 

and locations of distribution centres, simultaneously with the vehicle schedules and distribution routes so as 

to minimize the total system costs (Min et al., 1998). Generally, in LRP models the facilities are not connected 

and clients do not exchange flow (de Camargo et al., 2013).  

 

For readers interested in LRPs, we refer to Drexl & Schneider (2015), Zhou et al. (2016), Zhou et al. (2018), and 

Mara et al. (2021) for reviews of the LRP literature. 

3.4.2 Literature on the Hub Location Routing Problem 

The (many-to-many) hub location routing problem (HLRP) is an expansion on the classical LRP. The hub 

location routing problem was introduced first by Nagy and Salhi (1998) as the many-to-many location routing 

problem (MMLRP). They proposed a model and hierarchical heuristic solution approach in which they allowed 

pick-up and delivery on different occasions, while also applying capacity and maximum distance constraints 

(de Camargo et al., 2013; Nagy & Salhi, 1998).  

 

In this section, we will explain the literature on the HLRP structured by solution method. A complete overview 

of the different types of solution methods can be found in Figure 14. 

3.4.2.1 Exact Approaches 

Due to the nature of the problem, exact approaches have been applied to small datasets of up to 100 nodes. The 

first exact solution approach was proposed by Catanzaro et al. (2011), who proposed the partitioning HLRP 

(PHLRP). This formulation consists of partitioning a network into sub-networks that each contain at least one 

hub. To solve the PHLRP, a MIP model was proposed. To decrease the required time to solve the MIP, a branch-

and-cut algorithm was proposed. This showed to successfully reduce the required time to solve instances. 

However, only instances of up to 20 nodes have been tested.  

 

Furthermore, de Camargo et al. (2013) introduced a new formulation to the many-to-many hub location routing 

problem with a total cost minimization function. This study has focused on the same shipping and discount 

coefficient and simultaneous pickup and delivery. However, there are no capacity constraints, and each non-

hub node is met once. They proposed a benders decomposition approach to determine exact solutions.  

 

Lastly, Rodríguez-Martin et al. (2014) also proposed a branch-and-cut algorithm for the HLRP with a fixed 

number of hubs, one vehicle per hub and a constrained route length. By using families of valid inequalities and 

separation algorithms, subtour elimination, and capacity constraints their branch-and-cut algorithm was able 

to solve problems with sizes of up to 50 nodes (Lopes et al., 2016). 

3.4.2.2 Heuristic Based Approaches 

After Nagy and Salhi introduced the HLRP and proposed a heuristic, the next authors to propose heuristic 

approaches for the HLRP were Wasner & Zäpfel (2004)  formulated a multi-depot hub-location vehicle routing 

model to determine the optimal location of depots and one central hub for a mid-sized postal carrier in Austria. 

They develop a seven-step local search algorithm with four feedback loops that was able to reduce the network 

cost by 14%. In their model they took all Austrian postal zones (2042) into account, making it relevant for this 

research.  
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Çetiner, Sepil, and Süral (2010) built further upon that work and formulated an HLRP model to determine the 

locations of sorting locations required in a network that services 79 cities for the Turkish Postal Services. To 

solve their HLRP formulation, they created an iterative two-stage heuristic. In the first stage hub locations are 

determined and postal offices are allocated to hubs. In the second stage, the routes within hub regions are 

determined.  

 

Seto et al. (2021) considered a formulation of the HLRP that includes time windows for pickup and delivery, 

which makes it interesting for this research and allows for direct delivery between regions next to the ‘regular’ 

linehaul. Furthermore, they created a three-step network design algorithm that uses hierarchical clustering to 

deal with the uneven distribution of commodities over rural and urban areas. The first step of the heuristic is 

to determine the commodities that are delivered via direct delivery. The second step is to determine the regions 

and the hub location within each region. The third step is to determine the delivery routes and schedule (which 

are determined using an insertion heuristic). They were able to calculate solutions to problems of up to 50 

nodes within 3 minutes.  

3.4.2.3 Population Search-Based Approaches 

Sun (2013) considered a pre-determined number of hubs and proposed a pHLRP with simultaneous pick-up & 

delivery and constraints on the depot and vehicle capacity. An ant colony optimization (ACO) was proposed to 

solve instances of 100 and 200 non-hub nodes.  

 

Mokhatari & Abassi (2014) suggested a combination of variable neighbourhood search (VNS) and particle 

swarm optimization (PSO) meta-heuristics to construct a multiple hub transport network. It was assumed that 

the hubs and vehicles have an infinite capacity that is far beyond the existing, realistic situation in hub location-

routing problems. The result of computational experiments demonstrated the superior performance of the 

proposed solution method as compared to existing algorithms.  

 

Rieck et al. (2014) presented a variant of the many-to-many location routing problem from the timber-trade 

industry in which three layers (origin, hub, destination) are taken into account. For large-scale instances, they 

created a fix-and-optimize heuristic and a genetic algorithm (GA).  

 

Bostel et al. (2015) applied the HLRP to a postal service system with simultaneous pick-up and delivery. They 

proposed a MILP and memetic algorithm (MA), a meta-heuristic combining a genetic algorithm with a local 

search to reduce premature convergence, which was able to solve instances of up to 100 nodes. They identify 

their formulation as the capacitated single allocation hub location routing problem (CSAHLRP). Lopes et al. 

(2016) proposed a biased random key genetic algorithm (BRKGA) for their p-location hamiltonian cycle 

problem, yet it performed worse than their variable neighbourhood descent.  

 

Ghaffarinasab et al. (2018) proposed a continuous approximation approach to the planar HLRP in which 

demand is uniformly distributed over a polygon service area, so there are no nodes to visit. This approach 

determines new solutions using an equation and keeps iterating until the hubs in a solution have stayed within 

a distance v apart from each other for a set number of iterations. Compared to existing algorithms for the 

problem, their two proposed solution approaches, the iterative weiszfeld-type Algorithm (IWA) and particle 

swarm optimization (PSO) perform better by providing good quality solutions quickly, i.e., 650 seconds for 10 

polygon areas for the PSO.  

 

Yang et al. (2019) provide a MILP formulation and memetic algorithm (MA) for the single allocation HLRP with 

independent pick-up and delivery and capacitated hubs. Their MA performed well on the benchmark instances 

(up to 100 nodes and 10 hub locations) compared to the CPLEX and in a reasonable time.  

 

Basirati et al. (2020) addressed a multi-allocation variant of the HLRP with time windows in which both the 

hubs and vehicles are assumed to be capacitated and distance balancing is done by a bi-objective framework. 

In their model, pick-up and delivery were not done simultaneously, but for both actions, the routes had the 
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same visiting sequence. They proposed a multi-objective imperialist competitive algorithm (MOICA), which 

was compared with a non-dominated sorting genetic algorithm (NSGA-II). The MOICA turned out to find better 

solutions for large scaled instances, requiring over 1200 seconds for instances of 100 nodes.  

3.4.2.4 Local Search-Based Approaches 

Local Search (meta)heuristics aim at exploring the solution space by moving the current solution to another 

promising solution in the neighbourhood (Mekamcha et al., 2021). Rieck et al. (2014) presented a fix-and-

optimize heuristic for their variant of the many-to-many location routing problem from the timber-trade 

industry which is suitable for large-scale instances. In the fix-and-optimize scheme, in every iteration, there is 

a subset of binary variables whose values are fixed in order to limit the dimension of the branch-and-bound 

tree and speed op the computational time.  

 

Lopes et al. (2016) proposed a variant of the MMLRP in which routes contain exactly one hub each and there is 

one additional route connecting all hubs, this variant is called the many-to-many p-location hamiltonian cycle 

problem (MMpLHP). In their article, three different solution approaches are explored: a multi-start variable 

neighbourhood descent (VND), a biased random key genetic algorithm (BRKGA), and a local solver. They 

experimented with different settings and exploration strategies for the VND and found that it performed better 

than the genetic algorithm as it provided better solutions over various test instances in less computational time.  

 

Next to the PSO, Ghaffarinasab et al. (2018) proposed an iterative weiszfeld-type algorithm (IWA). This IWA 

was able to provide equally high-quality solutions as the PSO, yet for the 10 polygon areas, it only took almost 

18 seconds.  

 

Karimi & Setak (2018) proposed a bi-objective formulation for flow shipment in an incomplete network, 

meaning it is not interconnected. They proposed a MILP formulation and a normalized weighted-sum method 

(NWS) and an ε-constrained method to solve well-known instances and a case study on the Iran Post company. 

Their method allowed them to lower computation time by 89.34% compared to their base model for the case 

study. Solving the 30-node problem in less than 1.5 hours.  

 

Abbasi et al. (2019) compared a variable neighbourhood search (VNS) approach against a benders 

decomposition and variable neighbourhood particle swarm optimization methods on the many-to-many HLRP 

as proposed by de Camargo et al. (2013). They tested 35 sample tests ranging from 10 to 1000 nodes with a 

maximum run time of 6 hours. They found that the VNS was more efficient than the VNPSO in samples of up to 

440 nodes, and with samples of up to 1000 nodes only the VNS was able to find a solution within the set time 

boundaries (5.9h for 1000 nodes). Also in maritime logistics, the HLRP can be applied.  

 

Fontes & Concalves (2021) proposed an HLRP formulation using sub-hubs, which are intersection points in 

two nearby regions allowing demand to be transported by local ships without the use of additional hubs or 

deep-sea services. To solve their formulation, they use a cutting plane approach for small, and a variable 

neighbourhood decomposition search (VNDS) for large instances. The VNDS was able to solve instances of up 

to 200 nodes in around 20 minutes.  

 

Another variant of the HLRP is introduced by Real et al. (2021), who propose the multimodal hub network 

design problem with flexible routes (MHNDPFR). Flexible routes mean that there may be a mix of hub and non-

hub nodes in a route. They propose a top-down and bottom-up ALNS heuristic (TDALNS; BUALNS) and apply 

those to benchmark instances of up to 50 nodes. The advantage of MHNDPFRs over classical models is that no 

particular topological structure such as cycles, stars or trees is assumed a priori (Real et al., 2021) allowing for 

the most cost-efficient routes.  

 

Ratli et al. (2022) built further on the findings of Lopes et al. and proposed a general variable neighbourhood 

search (GVNS). The GVNS employs a VND as a local search but does not use a completely random re-start to 

resolve local optimum traps as is the case with the variants proposed by Lopes et al. In their GVNS, the search 

sequentially explores seven different neighbourhood structures instead of only one. The results of the GVNS 
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are good as it was able to improve the best-known solutions of 691 out of 912 instances and was able to solve 

large instances fast (about 40 times faster than the VND approaches proposed by Lopes et al. (2016)).  

 

Lastly, an adaptive large neighbourhood decomposition search (ALNDS) meta-heuristic was proposed by Wu 

et al. (2022) to solve both the multi-allocation HLRP (MAHLRP) and single-allocation HLRP (SAHLRP). They 

applied both heuristics on instances of the Australian Post dataset and showed that they are more efficient than 

CPLEX and that multi-allocation can efficiently reduce operating costs compared to single allocation. Depending 

on the ‘tightness’ of the problem formulation, computation times for 70 node instances varied strongly between 

20 and 100 minutes. 

3.4.2.5 Hyper Heuristic Based Approaches 

Danach et al. (2019) proposed a hybrid hyper-heuristic approach for the capacitated single allocation p-hub 

location routing problem (CSApHLRP). The approach is hybrid since the hyper heuristic benefits from a relax-

and-cut method, more specifically the information obtained by solving the dual problem through Lagrangian 

relaxation. The low-level heuristics are guided by a learning method (reinforcement learning) known as 

association rules, this technique originates from data mining and aims to find relationships between different 

implemented heuristics to find the best series of heuristics to be applied. The largest tested instances contained 

100 nodes and 10 hubs, which were solved in over 4 minutes. 

 

Pandiri & Singh (2021) addressed the many-to-many p-location hamiltonian cycle problem (MMpLHP) variant, 

earlier described by Lopes et al. (2016). They have proposed two hyper-heuristic approaches, based on random 

and greedy selection mechanisms, that acquired much better performance in terms of solution quality as well 

as execution time compared to the BKRGA, VND, and LS proposed by Lopes et al..  

3.4.2.6 Synthesis 

Below a synthesis of the main aspects, based on the overview given by Yang et al. (2019), of the works of the 

abovementioned authors is given in Table 5. Within this table, ‘Problem Type’ gives the classification of the 

problem by the author(s). ‘Hub Capacity’ indicates whether hub capacity is taken into account by the author(s). 

‘Number of hubs’ indicates whether the number of hubs is fixed (p-hubs) or unfixed, Non-Hub Allocation 

indicates whether the author(s) use single- or multiple-allocation, ‘Routing Constraints’ indicate the type of 

routing constraints used by the author(s), ‘Solution Method’ indicates the chosen solution approach, 

‘Application/Data’ indicates the dataset that the solution approach is applied to, ‘Problem Size’ indicates the 

(largest) number of nodes that the solution approach is applied on, ‘Pick-up/Delivery’ indicates whether or not 

pick-up and delivery actions are allowed in one route. Furthermore, although it is not included, Real et al. 

(2021) consider a heterogenous fleet in contrast to other authors. 

 

As can be observed in Table 5, there are many different formulations and many different solution approaches 

for the HLRP. We see that most authors use a single allocation strategy and do not consider hub capacity. 

Furthermore, the routing constraints can be one out of four types: length, capacitated, time, or the number of 

nodes. In terms of the problem size the solution is applied to, we see mostly problem sizes of up to 200 nodes, 

which is not the size of (our) real-life cases. Except for a few exact approaches most solutions are population-

based followed by local searches. However, for the larger instance problems, we see that only local search-

based solutions are used. Lastly, the article that relates most to our problem is that of Wasner & Zäpfel (2004), 

followed by Seto et al. (2021) because of their time window formulations. In Table 4, we provide some 

abbreviations that are used in Table 5 but were not previously mentioned. 
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Table 4 Abbreviations not earlier introduced 

AP Australian Post standard data set OR-LIB Library for test data sets for OR problems 
CAB Civil Aeronautics Board data set BDA Benders Decomposition Algorithm 
TSPLIB Sample library for TSP (related) 

problems 
URAND Random data set 

TR Turkish network data set   
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Table 5 An overview of literature on the Hub Location Routing Problem 

Authors Problem Type 
Hub 

Capacity 
Number of Hubs 

Non-Hub 
Allocation 

Routing 
Constraints 

Solution Method Application/ Data Problem Size Pick-up/ Delivery 

Nagy & Salhi, 1998 MMLRP Yes Unfixed Single 
Length + 

Capacitated 
Hierarchical One instance 249 Simultaneous 

Wasner & Zäpfel, 2004 HLVRM Yes Unfixed Multi + Direct 
Length + 

Capacitated 
Hierarchical Austrian Parcel 2042 Distinct 

Çetiner et al., 2010 HLRP No p Hubs Multi Length 
Two-Stage 
Heuristic 

Turkish Postal 81 Simultaneous 

Catanzaro et al., 2011 PHLRP No Unfixed Multi Num. Nodes Branch-and-Cut Random Instances 20 Distinct 

de Camargo et al., 2013 MMHLRP No Unfixed Single Time BDA AP 100 Simultaneous 

Mokhatari & Abbasi, 2014 MMHLRP No Unfixed Single Time VNPSO Random Instances 300 Simultaneous 

Rodríguez-Martín et al., 2014 HLRP No p Hubs Single Num. Nodes Branch-and-Cut AP & CAB 50 Distinct 

Rieck et al., 2014 MMLRP No p Hubs Single + Direct Capacitated Multi-Start + GA 
Timber trade 

Industry 
140 

Distinct & 
Simultaneous 

Bostel et al., 2015 HLRP Yes Unfixed Single Num. Nodes CPLEX; MA AP postal 100 Simultaneous 

Lopes et al., 2016 MMpLHP No p Hubs Single Num. Nodes VND; BRKGA; LS 
76 instances from 

TSPLIB 
14 to 783 Simultaneous 

Kartal et al., 2017 pHLRP-SPD No P Hubs Single Num. Nodes MSA; ACO 
CAB, TR, AP, 

URAND 
400 Simultaneous 

Ghaffarinasab et al., 2018 HLRP No p Hubs Single Capacitated IWA; PSO - - Distinct 

Karimi & Setak, 2018 
(S)BO-FSS-

IHLRP 
No Unfixed Single Time NWS; ε-Constr. AP; Iran Postal 30 Distinct 

Abbasi et al., 2019 MMHLRP No Unfixed Single Time VNS 
Random Instances; 

OR-LIBRARY 
1000 Simultaneous 

Danach et al., 2019 CSApHLRP No Bounded Single Capacitated Hyper Heuristic AP 100 - 

Kartal et al., 2019 pHCVRP No p Hubs Single Num. vehicles ACS, DPSO TR, AP 200 Distinct 

Yang et al., 2019 HLRP Yes Unfixed Single Capacitated CPLEX; MA AP 100 Distinct 

Basirati et al., 2020 MMHLRP Yes Unfixed Multi 
Capacitated + Time 

+ length 
MOICA; NSGA-II CAB 100 Simultaneous 

Fontes & Goncalves, 2021 MMpHLRP(SH) No p Hubs Single/Multi None 
Cutting Plane; 

VNDS 
AP 200 - 

Pandiri & Singh, 2021 MMpLHP No p Hubs Single Num. Nodes 
HH_RAND; 
HH_GREED 

76 instances from 
TSPLIB 

14 to 783 Simultaneous 

Real et al., 2021 MHNDPFR No Unfixed Multi Time + Capacitated TDALNS; BUALNS Random; AP; CAB 50 - 

Seto et al., 2021 MMHLRP No Unfixed Multi 
Time + Capacitated 

+ Num. Nodes 
Heuristic Random Instances 50 Distinct 

Ratli et al., 2022 pHLRP No p Hubs Single Num. Nodes GVNS 
76 instances from 

TSPLIB 
14 to 783 - 

Wu et al., 2022 MMHLRP Yes Unfixed Multi Capacitated ALNDS AP 50/70 Simultaneous 

This Research MMHLRP No Unfixed Single Time + Capacitated  Dutch Parcel 4000 Distinct 
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3.5 SOLUTION APPROACHES 
In this section, we address the most interesting solution approaches from the literature (Table 5). Many authors 

use different approaches, which all have their characteristics, advantages, and disadvantages. Furthermore, 

they are difficult to compare due to the variety of application instances. Some authors use the same classical 

datasets like CAB or AP. Yet those datasets often are small and are not comparable to real-life instances.  

 

Given the size of our problem of over 4000 locations, two main characteristics are important for determining 

the suitability of a solution approach. The first is the size of the problem to which the approach has been applied 

since that is an indication that it is also suitable for our problem. The second is the computation time required 

to solve the largest instances the solution approach has been applied to, as we expect an algorithm that is fast 

on ‘smaller’ sized problems will also perform relatively fast on large-sized problems. 

 

Below we will discuss different types of approximate solution methods and their suitability. Exact methods are 

not discussed since they do not apply to the size of the problem. Furthermore, not all methods found in the 

literature will be discussed. Discussed methods are either relevant given the two criteria given above or 

because they have been applied by multiple authors. 

 

 
Figure 14 Overview of solution methods for the Hub Location Routing Problem 

3.5.1 Heuristics 

Multiple authors use some kind of heuristic approach, although mostly as part of a larger meta- or hyper-

heuristic. One heuristic that is worth investigating is that of Wasner & Zäpfel. Already in 2004, they applied a 

heuristic on an Austrian Postal Service company in a network of 2042 postal zones. This is the largest problem 

we have found in literature and therefore relevant to our research. Other heuristics as the Two-stage heuristic 



3 LITERATURE REVIEW  3.5 SOLUTION APPROACHES 

31 

 

(Çetiner et al., 2010) or continuous approximation (Ghaffarinasab et al., 2018) are not investigated due to the 

small problem instance or unrelatedness.  

 

In their heuristic, Wasner & Zäpfel build their solution sequentially and the results from one problem area form 

the constraints for the next. By means of the feedback loops, the solution is improved iteratively. Although the 

results of the method are promising (14.7% cost reduction), there is no information on the computation time 

that is required. Therefore, it is hard to assess the suitability of this method from a tractability perspective. 

Therefore, we can conclude that the sequential building of a solution is an effective approach (hence great cost 

reduction), yet it remains unknown whether this method is a practical one. 

3.5.2 Metaheuristics 

Metaheuristics are search methods that balance intensification and diversification to overcome local optima. 

Many different types of metaheuristics have been applied to the HLRP. We discuss variable neighbourhood 

search and general variable neighbourhood search as they have been applied to large problems (1000 nodes) 

or showed low computation times on relatively large problems. Furthermore, we discuss adaptive large 

neighbourhood (decomposition) search. Although often applied, we will not address population search 

metaheuristics as they have neither been applied to large problems nor showed low computation times. 

3.5.2.1 Variable neighbourhood (decomposition) search 

In a variable neighbourhood search (VNS), each iteration improvements are explored by applying different 

neighbourhood structures to one solution. Abbasi et al. (2019), applied a variable neighbourhood search on a 

large problem instance of 1000 nodes, which required over 21,000 seconds to solve. 

 

In the variable neighbourhood decomposition search proposed by Fontes & Goncalves (2021), the problem is 

decomposed into subproblems to which either a local search or a variable neighbourhood descent (VND) is 

applied. VND is a simplified VNS in which one takes an initial solution, keeps improving it within a 

neighbourhood until no better solutions can be found, and then applies a different neighbourhood following a 

predetermined sequence. This process repeats a number of 𝑘 times (Lopes et al., 2016). After a number of 𝑘𝑚𝑎𝑥  

iterations, the best solution thus far is destroyed and then the process repeats a fixed number of times. This 

method achieved solutions for instances of 200 nodes in around 1250 seconds. Its advantage is that it 

thoroughly explores different neighbourhood structures and decomposes the problem into subproblems 

(which speeds up the process). Yet, it has a stopping criterion a fixed number of iterations, which could create 

the situation that the algorithm terminates while it is still exploring promising solutions. 

3.5.2.2 General variable neighbourhood search 

The application of a general variable neighbourhood search (GVNS) to the HLRP is proposed by Ratli et al. 

(2022), which is a variant of the variable neighbourhood search. Their GVNS also employs VND as a local search 

but does not use a completely random re-start to resolve local optimum traps. Instead, it modifies the current 

solution to varying degrees to resolve a local optimum trap. Furthermore, it applies a set of different 

neighbourhood structures in a fixed sequential way, which differs from other VND approaches. All in all, their 

algorithm creates an initial solution, changes that solution, and then it applies a VND of seven sequential 

neighbourhood structures, saving the best-found solution and repeating this process until 𝑘𝑚𝑎𝑥  iterations. The 

algorithm is terminated when the maximum running time has been met. 

 

This approach has been applied on known test datasets on which it showed very good performance, improving 

691 out of the 912 known best solutions while being capped at 60 seconds. In these 912 problems, some are 

larger-sized instances of a few hundred nodes. The advantage of this approach is that it seems to attain good 

solutions in a short time, implying it is still tractable for very large problem instances. Furthermore, it is 

relatively simple to implement when the neighbourhood structures and sequence are determined. The 

exploration however is always random, and with large instances, an adaptive exploration strategy might be 

needed. 
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3.5.2.3 Adaptive large neighbourhood search 

A large neighbourhood search (LNS) is a local search framework in which solutions are relaxed (elements are 

removed from the solution) and re-optimized (these elements are placed back) leading to better solutions. This 

method was introduced by Shaw (1998). Following the LNS framework, Ropke & Pisinger (2006) proposed the 

adaptive large neighbourhood search (ALNS). In this meta-heuristic framework solutions are destroyed and 

repaired by making use of multiple neighbourhood operators. These operators are chosen based on their 

weights, and these weights are determined based on their performance. Thus, when a better solution has been 

found, the used operators’ weights are increased by a factor or decreased when a worse solution has been 

found.  

 

Real et al. (2021) proposed a framework in which they implemented two ALNS approaches which were applied 

sequentially within one iteration, one which started with determining hub locations (top-down ALNS) and one 

which started with constructing routes (bottom-up ALNS). Although this is an interesting approach, it required 

relatively high computation times (over 1500 seconds) for small instances (up to 50 nodes). Therefore, it is not 

deemed suitable enough for our problem. 

3.5.2.4 Adaptive large neighbourhood decomposition search 

As an expansion to the ALNS, Wu et al. (2022) propose an adaptive large neighbourhood decomposition search 

(ALNDS). In this framework, the destroy and repair phase is not applied to the whole solution space but only 

to a reduced solution space that corresponds to a subproblem of the original problem. For both the destroy and 

repair phases operators are used consecutively and are chosen based on their weights, which follow from the 

combined weight of that operator to be chosen as well as the weight of the subproblem at hand. Selection is 

handled by a roulette wheel mechanism. An interesting addition that Wu et al. made is that to facilitate better 

exploration, they allow non-feasible solutions to be accepted while compensating with adaptive weights. 

 

The ALNDS was applied to a limited set of nodes (70) and required relatively much computation time to solve 

(6100 seconds). Therefore, although the adaptive nature of the ALNDS seems very useful, we consider it not 

feasible to apply ALNDS in the real-life case of Company X. 

3.5.3 Hyper heuristics 

A hyper heuristic is a heuristic method that selects or generates lower-level heuristics. In HLRP literature, some 

hyper heuristics are applied, of which some showed good performance. 

 

The first hyper-heuristic is that of Danach et al. (2019), which works similarly to an ALNS. They created a 

method that uses online learning (or reinforcement learning) to iteratively determine the best series of lower-

level heuristics to apply in sequence. The weights of the lower-level heuristics are determined by their average 

objective value of the times the heuristic is applied. The hyper heuristic can choose from a set of constructive, 

improvement and perturbation heuristics. Although the problem size to which they applied the hyper heuristic 

is not very large (100 nodes) the required time to solve the largest instances is also relatively small (240 

seconds). Since it is a learning algorithm, we expect that its efficiency becomes higher when applied to larger 

problems. 

 

Lastly, Pandiri & Singh (2021) also applied a hyper-heuristic. They used two heuristics, one that has a random 

selection mechanism and one that uses a greedy selection mechanism. They applied their heuristics on larger 

instances than Danach et al. and performed well compared to methods proposed by Lopes et al. (2016). The 

computation time seems to be slightly better than that of Danach et al., yet it is growing large for larger 

problems. Therefore, the practicality (of any ALNS) for this problem is not entirely clear. 

3.6 DECISION-MAKING IN REAL-LIFE APPLICATIONS 
The hub location routing problem is, as indicated by Çetiner et al. (2010), a strategic or tactical problem. Yet, 

in the long(er) term parameters like, e.g., costs, demands, and distances tend to change or are harder to predict. 

Therefore, it is risky to make strategic decisions based on the result of solving one problem instance and can 
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lead to sub-optimal decisions (Contreras, 2015; Snyder, 2006). Especially in the case of Company X, there is 

fluctuation in the daily workload as well as the workload per month. On top of that, the demand on the network 

will also change if the e-commerce company will increase its volumes, thus longer-term forecasts also need to 

be taken into account when making such strategic decisions. Therefore, we want to find out what is been 

described in the literature to use optimization algorithms in such strategic decision-making in real-life 

applications, i.e., dealing with uncertainty.  

 

First of all, it has become clear that many authors that published on the HLRP use test data sets to compare the 

performance of their algorithm, and thus do not address how their algorithm can be used to make real-life 

strategic network design decisions (Abbasi et al., 2019; Bostel et al., 2015; Danach et al., 2019; Fontes & 

Goncalves, 2021; Gelareh et al., 2015; Ghaffarinasab et al., 2018; Kartal et al., 2017, 2019; Mokhatari & Abbasi, 

2014; Pandiri & Singh, 2021; Ratli et al., 2022; Real et al., 2021; Rodríguez-Martín et al., 2014; Seto et al., 2021; 

Wu et al., 2022; Yang et al., 2019). Furthermore, some authors do use their proposed algorithm to solve real-

life cases, yet do not specify their exact approach or only use/present one solution (Basirati et al., 2020; 

Catanzaro et al., 2011). 

 

Then some authors in HLRP literature do touch upon the topic of using algorithms for decision-making in real 

applications. Wasner & Zäpfel (2004) state that due to the size of the HLRP, practical cases are only solvable 

with problem-specific knowledge, i.e., simplification, restriction or partial linearization of the problem. 

Furthermore, they do not indicate the use of different scenarios in determining the optimal network structure. 

This implies that they use only one, representative, dataset. Çetiner et al. (2010) describe how they apply 

different parameter settings to find the cheapest network configuration. However, since they indicate that they 

lack detailed mail flow data we can only assume that have used only one input dataset on which the network is 

optimized. To deal with variable cost components that differ depending on a short or long planning term, Rieck 

et al. (2014)  chose to create one representative planning period of a week. Lastly, in their concluding remarks, 

Yang et al. (2019) indicate that decision-making for real applications of the HLRP does not reduce to 

experimenting on a single data set but involves evaluating and comparing a significant number of alternative 

scenarios and performing sensitivity analysis on significant parameters as well as assessing the robustness of 

the determined hub locations. Furthermore, having to assess many scenarios requires an efficient solution 

technique that can find realistic solutions in a reasonable time, devising such a technique was out of their scope. 

3.6.1 Stochastic & Robust Optimization 

The HLRP literature is not decisive on how to deal with decision-making in real-life applications, therefore we 

expand our scope into HLP, LRP, and facility location literature, but first, we will elaborate on decision-making. 

Rosenhead et al. (1972) divide decision-making into three categories: 

1. Certainty, all parameters are deterministic and known. 

2. Risk, there are uncertain parameters whose values are governed by known probability distributions. 

These problems are known as stochastic optimization problems, which common goal is to optimize 

the expected value of the objective function (Snyder, 2006). 

3. Uncertainty, situations and parameters are unknown as well as their probability distributions. These 

problems are known as robust optimization problems and often attempt to optimize the worst-case 

performance (minimax) of the system (Snyder, 2006).  

 

The goal of both stochastic and robust optimization is to find a solution that will perform well under any 

possible realization of the random parameters, what “performing well” means differs per application (Snyder, 

2006). Random parameters can either be continuous or described by discrete scenarios. This scenario 

approach has two main drawbacks, firstly creating good scenarios is difficult, secondly for computational 

reasons, one wants to identify a relatively small number of scenarios which limits the range of future states 

under which the decisions are evaluated (Snyder, 2006). However, the scenario approach generally results in 

more tractable models. For stochastic optimization, the most common objective is to minimize the expected 

cost. For robust optimization, the two most common measures are minimax cost and minimax regret, which 
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can often be transformed into each other. Regret is the difference between the cost of a solution in a given 

scenario and the cost of the optimal solution for that scenario (Snyder, 2006). 

 

For dealing with uncertainty in a hub location problem, Alumur et al. (2012) consider two sources of 

uncertainty. Namely, the set-up costs for hubs and demands to be transported between the hubs.  To deal with 

the first source, they propose a minimax regret model to minimize the worst-case over a finite set of scenarios. 

To deal with the second source, they propose a two-stage stochastic linear program with recourse. To deal with 

both sources simultaneously, they propose a stochastic minimax regret MIP formulation with recourse. A 

similar approach was done by Habibzadeh Boukani et al. (2016), although they used robust optimization, 

instead of stochastic programming, in a minimax formulation over five different scenarios. Yahyaei et al. (2014) 

used a design of experiments (DOE) to create many different scenarios that each was optimized on three 

different performance indicators. Lastly, we want to mention more authors applying robust optimization to the 

HLP (Khaleghi & Eydi, 2022; Shahabi & Unnikrishnan, 2014), or facility location problem (Gülpınar et al., 2013). 

 

To solve a capacitated multi-echelon location-routing problem (quite similar to the HLRP), Winkenbach et al. 

(2016) use multiple techniques in order to make their solution suitable for real-life applications. Firstly, they 

split their algorithm into two independent subproblems, and secondly by using approximations for routing 

costs instead of using explicit routing. They did not include the so-called ‘robust optimization’ in their method. 

They do, however, indicate the practical and academic relevance of doing so, especially for the robust 

optimization by making use of ‘uncertainty sets’ so that the optimal solution works well not only for a particular 

scenario but rather for a broad set of scenarios. 

 

All in all, we want to know how to make valid strategic decisions in real-life applications by making use of an, 

in principle, deterministic algorithm. We found that in the current HLRP literature, there is not much said about 

how to determine good future-proof solutions. What was said was the necessity to limit the problem size as 

much as possible and use either one representative dataset or use multiple scenarios to find good solutions. 

Expanding into HLP, LRP, and facility location literature we found that there are different categories of 

decision-making under uncertainty. Depending on the category, we found that either stochastic programming 

or robust optimization is used to find more robust solutions.  

3.6.2 Simheuristics 

Another method to deal with large complex combinatorial optimization problems (COPs) in an uncertain 

(stochastic) environment is making use of simheuristics. Simheuristics allow modellers for dealing with real-

life uncertainty in a natural way by integrating simulation into a metaheuristic-driven framework (Juan et al., 

2015). Metaheuristics benefit from different random-search and parallelization paradigms, but they often 

assume the parameters, objective and constraints to be deterministic (Chica et al., 2020; Juan et al., 2015). 

Simulation can be understood as the process of model ‘execution’ that takes a model through its evolution over 

time (Chica et al., 2020).  

 

Simheuristics allow for modelling uncertainty by making sure that the feedback from the simulation is used to 

guide the metaheuristic search process itself, and all the information obtained by the simulation component 

allows for considering a risk/reliability analysis on stochastic solutions to the stochastic optimization problem 

(Chica et al., 2020). Many authors use monte carlo simulation with their metaheuristic framework (Chica et al., 

2020). A general scheme of a simheuristic can be seen in Figure 15.  This general simheuristics approach 

described by Juan et al. (2015) has two main characteristics: 

1. It promotes a closer integration between optimization and simulation. In particular, the evaluation of 

solutions is performed not only by simulation but also by problem-specific analytical expressions. 

Hence, it mixes simulation and ad hoc approximations making them appealing for optimization, but 

they do not represent reality accurately. 

2. The feedback from simulation can be used not only to evaluate solutions but also to refine the 

analytical part so that the latter can generate and/or evaluate more realistic solutions 
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The use of simheuristics comes with advantages and disadvantages. Based on the reviews of Juan et al. (2015) 

and Chica et al. (2020) the following advantages of using simheuristics can be identified: 

• Simheuristics allow decision-makers to construct and study valid models of complex systems that 

produce high-quality solutions in reasonable computing times. 

• Simheuristics allow for risk assessment of alternative solutions and sensitivity analysis. 

• Simheuristics allow for better system understanding and output analysis. 

Simultaneously, they also described some limitations of simheuristics:  

• Results are not expected to be truly provably optimal. Metaheuristics do not ensure to result in an 

optimal solution, this is amplified by using a simulation to be optimized. 

• An effort from additional stakeholders is demanded to define the system. By making use of a ‘white-

box’ paradigm, i.e. being transparent, external stakeholders are required to validate the simulation 

system. 

• More computational resources are required compared to traditional methods because of the 

integration of a simulation engine with a metaheuristic. 

• An additional trade-off in diversification versus intensification has to be made in the solutions that are 

sent to the simulation component, as the uncertainty might lead to worse solutions being selected, and 

the number of replications of the simulation as the metaheuristic proceeds. 

Lastly, Chica et al. (2020) also determined some best practices for the design and implementation of 

simheuristics: 

• Do not overload simheuristics with long simulations. Use strategies to limit the use of simulation time 

so that the metaheuristic has time to converge. For example, by using a three-stage approach in which 

Figure 15 General scheme of simheuristics for solving stochastic COPs (Juan et al., 
2015) 
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the simulation intensity is increased with the stages, each consists of less but higher quality solutions 

to evaluate. 

• Choose a simulation paradigm that is understandable to decision-makers. 

• Choose an appropriate simulation paradigm for each stage of a simheuristic. For example, use more 

computationally expensive paradigms (e.g., agent-based simulation) for the last stages while using 

lighter computational paradigms (e.g., Monte Carlo simulation) for the first stages. 

• Validate the simulation model before running the simheuristic. Make sure that the simulation is an 

accurate representation of the real-world system. 

 

Two interesting applications of simheuristics are Calvet et al. (2019), who have applied a simheuristic approach 

to the stochastic multi-depot VRP for which they could relax strong assumptions that previous works had to 

apply to solve the problem, and de Armas et al. (2017), who applied a simheuristic to the uncapacitated facility 

location problem. Both used an iterated local search (ILS) metaheuristic combined with monte carlo simulation. 

3.7 CONCLUSIONS ON LITERATURE 
In this chapter, we researched the literature to get a good understanding of network design, specifically the 

design of hub networks. We found that there are multiple optimization problems concerned with hub network 

design. Given the goal of finding a network design that minimizes the operational costs, we can conclude that 

the HLP and LRP do not provide all the required elements. We found that the class of hub location routing 

problems, which is concerned with the optimization of hub locations combined with routing costs, is the most 

suitable for our problem. Because the HLRP combines the strategic hub locations, allocation of service areas, 

and the routing it encompasses all the elements of our problem. Due to the complexity of these problems, this 

class is relatively new and has not been researched much. We have reviewed articles by 24 authors and 

examined the problem characteristics they used, and the solution approaches they applied.  

 

In the literature, we have seen many different solution methods to solve (variants of) the HLRP. Based on two 

criteria, the size to which the methods are applied and the computation time required to solve a problem 

instance, we have found three types of solution methods that might be suitable. The first is the heuristic 

approach with feedback loops of Wasner & Zäpfel since it has the most similar application.  The second is the 

(general) variable neighbourhood search that has been applied to a large problem of 1000 nodes and Ratli et 

al. and has shown very good performance in terms of computation time.  

 

Therefore, we conclude that the best solution approach for the case of Company X will be to apply a general 

variable neighbourhood search. Additionally, we looked into approaches to solve optimization problems for 

real life in which there is uncertainty to deal with. We found that there are three categories of uncertainty, 

namely certainty, risk, and uncertainty. A distinguishing factor between the latter two types if whether the 

uncertainty can be modelled using probability distributions. Additionally, we discussed simheuristics, which 

allow modellers for dealing with real-life uncertainty in a natural way by integrating simulation into a 

metaheuristic-driven framework. This method is very suitable for our problem since, due to its strategic nature, 

we have to deal with a largely deterministic dataset which in the simheuristic can be used to model 

stochasticity.  
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4 MODELLING THE OPTIMAL NETWORK 

In this chapter, we will answer the third research question ‘How can we model and solve the logistics network of 

Company X?’ by formulating a mathematical model that can solve the network of Company X. From the 

literature in the previous chapter, we know which solution methods are most suitable for solving the model 

and how to deal with stochasticity in the problem. Therefore, in this chapter, we will formulate a solution 

method that can solve the logistical network and can deal with the stochastic demand. In this chapter we will 

answer the following sub-questions: 

• What are the assumptions needed to model the network? 

• What is the scope of the model? 

• How can we solve the logistical network of Company X?  

4.1 ASSUMPTIONS AND APPROXIMATION ON POSTAL ZONES 
Because of the size and complexity of the problem, we need to make simplifying assumptions and use 

approximations instead of explicit calculations to keep the model tractable. 

4.1.1 Assumptions 

In the modelling of the HLRP for Company X, we make the following assumptions to simplify the model:  

1. We assume the backbone network, meaning the inter-hub connections, to be fully interconnected.  

2. We approximate the linehaul cost by multiplying the linehaul volume times a certain discount factor 

per parcel per kilometre 0≤α≤1.  

3. There is a finite distinct set of possible hub locations. 

4. Each hub must be associated with at least one local route. 

5. Every tour must start and end at the hub it is associated with. 

6. Collection and delivery are distinct processes and cannot happen simultaneously in the same route. 

7. There is no limit on the capacity of each hub. 

8. There is no limit on the number of vehicles that can be used. 

9. There is a minimum and maximum number of hubs that can be opened. 

4.1.2 Postal zones 

In order to keep the size of the model small, we need to aggregate the volumes and number of stops on a PC4 

postal zone level, leading to a bound on the number of stops. In the Netherlands, PC4 postal zones are the areas 

with addresses with the same numbers in their postal code.  

 

Within the Netherlands there are 4070 postal zones, providing an upper bound on the number of locations to 

consider in the model. The aggregation process is a little different per process (PPC, BPC, HD), for example 

during PPC there is a distinction between pickup retailers and deposit retailers. 

 

For the PPC process, the first step will be to determine per postal zone how many retailers there are to service. 

The second step is to determine how many pickup retailers and deposit retailers a postal zone contains. Thirdly, 

we determine per postal zone for how much volume those two groups of retailers account. For the BPC and HD 

processes, aggregating is similar but there is no distinction to make. Therefore, we can determine per postal 

zone the total volume that needs to be collected/delivered and the number of visits that need to be made. 

 

Using the volumes, we can determine how many ‘postal zones’ fit in a route. Using both the volumes and 

number of stops, a total service time of a postal zone can be determined which can be used to model how many 

postal zones fit in the process’ time window. 

4.2 HLRP DEFINITION OF THE NETWORK OF COMPANY X 
Let 𝐺 = (𝑉, 𝐸) be an undirected complete graph with vertices set 𝑉 and edge set 𝐸, with 𝐸 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗}, see Figure 
16 Example of G, without edges 
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. Let 𝐻 ⊂ 𝑉 be a subset of V containing all the vertices that can function as a hub node. Let 𝑅, 𝐷, 𝐵, and 𝐶 all be 

subsets of 𝑉  containing all vertices with pickup retailers, deposit retailers, batch retailers, and consumers 

respectively. Because each vertex represents a postal zone, it can contain multiple types of retailers as well as 

consumers and can therefore be in more than one of the aforementioned sets. Thus, 𝑉 is the union of all unique 

items in the sets 𝐻, 𝑅, 𝐷, 𝐵, and 𝐶, i.e., 𝑉 = 𝐻 ∪ {𝑅 ∪ 𝐷 ∪ 𝐵 ∪ 𝐶}.  

 

 

With each node ℎ ∈ 𝐻 a fixed cost of 𝐹𝐶𝐻ℎ is associated with opening a hub in that node. Furthermore, with 

each node 𝑖 ∈ {𝑅 ∪ 𝐷 ∪ 𝐵 ∪ 𝐶} a volume and service/stop time is associated. On top of that, every node 𝑖 must 

be allocated to a hub node. With every edge 𝑒 ∈ 𝐸 a driving distance and time cost, 𝐷𝑖𝑗  and 𝑇𝑇𝑖𝑗  respectively, is 

associated with, 𝐷𝑖𝑗 , 𝑇𝑇𝑖𝑗 ∈ ℝ+. 

 

A tour 𝑇 is a subgraph of 𝐺 such that nodes 𝑉[𝑇] form a sequence of distinct nodes {ℎ, 𝑣𝑖 , … , 𝑣𝑗 , ℎ} and edges 

(𝑖, 𝑗) ∈ 𝐸 that starts and ends with at a certain hub node ℎ. With each tour, a driving range and timespan are 

associated, 𝐷𝑅𝑡  and 𝐷𝑇𝑡  respectively.  

 

For each process, a graph 𝐶 must be created which is the union of a set of opened hub nodes and tours such 

that all nodes in the sets of vertices corresponding to that process ({𝑅 ∪ 𝐷}, 𝐵, 𝐶) are allocated to a hub and a 

tour. In the creation of these subgraphs, constraints like vehicle capacity, driving range, and time windows need 

to be satisfied. 

 

Since the network of Company X must deal with different types of logistical processes, we define a possible 

solution S  as a combined graph consisting of a set of hub nodes {ℎℎ, ℎ𝑘 , … , ℎ𝑚} ∈ 𝐻  and three subgraphs 

𝐶1, 𝐶2, 𝐶3  that represent the tours (and thus service area) for each process. Examples of subgraphs 𝐶1, 𝐶2, and 

𝐶3 can be seen in Figure 17 An example of subgraph C1, the PPC process, Figure 18 An example of subgraph C2, 

the BPC process, Figure 19 An example of subgraph C3, the HD process, and . 

 

The goal is to find the solution graph 𝑆  that minimizes the total network cost. The total network costs consist 

of the cost of opening hubs, the linehaul between depots, the locating of collection points, usage of vehicles, and 

the cost of traversing the edges for each logistical process.  

 

 

 

Figure 16 Example of G, without edges 
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Figure 17 An example of subgraph C1, the PPC process 

Figure 18 An example of subgraph C2, the BPC process 

Figure 19 An example of subgraph C3, the HD process 
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4.3 MIXED-INTEGER LINEAR PROGRAMMING MODEL 
In this section, we provide and explain the model sets, parameters, variables, and constraints. Like most authors 

in HLRP literature, we start by formulating a mixed integer linear programming model (MILP). This MILP 

formulation is inspired by the HLRP formulations of multiple authors, specifically, the time window constraints 

are inspired by Seto et al. (2021). We point out that we have formulated the model such that it represents 

reality as accurately as possible. This means that the routing in the heuristic, which will be an approximation, 

will be different than the routing in the MILP. 

4.3.1 Sets 

𝐻 Set of all possible hub postal zones 

𝑅 Set of all pick-up retailer postal zones 

𝐵 Set of all batch parcel retailer postal zones 

𝐷 Set of all deposit retailer postal zones  

𝑉 Set of all vehicles 

𝐶 Set of all delivery postal zones 

𝑃 Set of all processes (PPC, BPC, HD) 

𝑁 Combined set of all retailer postal zones ({𝐵 ∪ 𝑅 ∪ 𝐷}) 

𝐴 Combined set of all postal zones ({𝐻 ∪ 𝑅 ∪ 𝐷 ∪ 𝐵 ∪ 𝐶}) 

4.3.2 Parameters 

𝐹𝐶𝐻ℎ  Fixed Cost of opening hub ℎ 

𝑉𝑄𝑣 The capacity of vehicle 𝑣 

𝑇𝐶𝑉𝑣  Cost per hour of travelling with vehicle 𝑣 

𝑉𝐶𝑉𝑣 Cost per km of vehicle 𝑣 

𝐹𝐶𝑉𝑣  Fixed cost of using vehicle 𝑣  

𝐷𝑖𝑗  Distance between postal zone 𝑖 and postal zone 𝑗 

𝑇𝑇𝑖𝑗  Travel time to travel from postal zone 𝑖 to postal zone 𝑗 (𝑖, 𝑗) ∈ {𝐻 ∪ 𝑅 ∪ 𝐷 ∪ 𝐶} 

𝑃𝑄𝑟𝑐  Pick-up Quantity of postal zone 𝑟 meant for postal zone 𝑐 during PPC 

𝐷𝑂𝑄𝑑𝑐  Deposit Quantity in postal zone 𝑑 destinated for postal zone 𝑐 

𝐵𝑄𝑏   Pick-up Quantity of postal zone 𝑏 during BPC 

𝐷𝑄𝑖𝑐  Delivery Quantity at postal zone 𝑐 originating from postal zone 𝑖 

𝑇𝑃𝑖  Required time for serving postal zone 𝑖 

𝑇𝐴𝑖
𝑝

 First possible time of arrival at location 𝑖 for process 𝑝 

𝑆𝑉𝑣
𝑝

 Suitability of vehicle 𝑣 for process 𝑝, 𝑆𝑉𝑣
𝑝

∈ {0,1} 

𝐷𝑅𝑣 Driving Range of vehicle 𝑣 

𝐷𝑇 Maximum distance between a deposit postal zone and the collection point zone 

Figure 20 An example of the resulting linehaul of the subgraphs C1 and C3 
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𝛼 Line-haul cost per unit per km  

4.3.3 Variables 

ℎ𝑜ℎ  Variable indicating if hub ℎ is opened yes or no, ℎ𝑜ℎ ∈ {0,1} 

𝑢𝑣𝑣
ℎ𝑝

 Variable indicating if vehicle 𝑣 is used by hub ℎ during process 𝑝, 𝑢𝑣𝑣
ℎ𝑝

∈ {0,1} 

𝑞𝑣𝑣
𝑝

  Quantity of volume loaded into vehicle 𝑣 during process 𝑝 

ℎ𝑎𝑖
ℎ𝑝

 Whether or not location 𝑖 is assigned to hub ℎ 

𝜋𝑖𝑘𝑚𝑗  The total volume that from postal zone 𝑖 to postal zone 𝑗 via hub 𝑘 and 𝑚 

𝜋𝑟𝑖𝑘𝑚𝑗  The pickup volume that travels from postal zone 𝑖 to postal zone 𝑗 via hub 𝑘 and 𝑚 

𝜋𝑑𝑖𝑘𝑚𝑗  The deposit volume that travels from postal zone 𝑖 to postal zone 𝑗 via hub 𝑘 and 𝑚 

𝑑𝑜𝑑
𝑖

 Variable indicating whether or not location 𝑑 ∈ 𝐷 deposits its volume at location 𝑖 ∈ {𝑅 ∪ 𝐷} 

𝑑𝑜𝑣𝑑
𝑣  Auxiliary variable indicating whether the deposit volume of retailer 𝑑 is picked up by vehicle 𝑣 

𝑐𝑝𝑖  Whether postal zone 𝑖 contains a collection point or not 

𝑥𝑖𝑗
𝑝ℎ𝑣

 Whether vehicle 𝑣, which departed from hub ℎ, is travelling from postal zone 𝑖 to postal zone 𝑗 during 

a route in process 𝑝, 𝑥𝑖𝑗
ℎ𝑝𝑣

∈ {0,1} 

𝑡𝑎𝑖
𝑝𝑣

 The arrival time of vehicle 𝑣 for process 𝑝 at location 𝑖 ∈ 𝐴 

𝑡𝑑𝑖
𝑝𝑣

 The departure time of vehicle 𝑣 for process 𝑝 at location 𝑖 ∈ 𝐴 

𝑝𝑣𝑖
𝑝𝑣

 Volume picked up at location 𝑖 ∈ 𝑁 by vehicle 𝑣 during process 𝑝 

ℎ𝑎𝑐𝑖𝑗
𝑘𝑚  Auxiliary variable indicating if the connection 𝑖-𝑘-𝑚-𝑗 exists  

𝛽𝑖
𝑝𝑣

 fraction of volume of location 𝑖 that is picked up by vehicle 𝑣 during process 𝑝 

4.3.4 Model 

Objective: 

min z = ∑ ℎ𝑜ℎ ⋅ 𝐹𝐶𝐻ℎ  

ℎ∈𝐻

+ ∑ ∑ ∑ 𝛼 ⋅ 𝜋𝑖𝑘𝑚𝑗 ⋅

(𝑘,𝑚)∈𝐻𝑗∈𝐶𝑖∈𝑁

 𝐷𝑘𝑚 + ∑ ∑ 𝑢𝑣𝑣
ℎ ⋅ 𝐹𝐶𝑉𝑣

ℎ∈𝐻𝑣∈𝑉

+ ∑ ∑ ∑ ∑ 𝑥𝑖𝑗
ℎ𝑝𝑣

⋅ (𝑉𝐶𝑉𝑣 ⋅ 𝐷𝑖𝑗 + 𝑇𝑖𝑗 ⋅ 𝑇𝐶𝑉𝑣)

(𝑖,𝑗)∈𝐴𝑝∈𝑃ℎ∈𝐻𝑣∈𝑉

 

 

Subject to 

Hub, Vehicle, and Collection Point allocation:  

ℎ𝑎𝑖
ℎ𝑝

≤ ℎ𝑜ℎ    ∀ 𝑖 ∈ 𝑁 , ∀ 𝑝 ∈ 𝑃, ∀ ℎ ∈ 𝐻 ( 1 ) 

𝑑𝑜𝑑
𝑖 ≤ 𝑐𝑝𝑖  ∀ 𝑖 ∈ 𝑁, ∀ 𝑑 ∈ 𝐷 ( 2 ) 

𝑢𝑣𝑣
ℎ𝑝

≤ ℎ𝑜ℎ   ∀ 𝑣 ∈ 𝑉, ℎ ∈ 𝐻, ∀ 𝑝 ∈ 𝑃 ( 3 ) 

∑ 𝑑𝑜𝑑
𝑖

𝑖∈𝑁

+ 𝑐𝑝𝑑 = 1   ∀ 𝑑 ∈ 𝐷 ( 4 ) 

∑ ℎ𝑎𝑖
ℎ𝑃𝑃𝐶

ℎ∈𝐻

≥ 1   ∀ 𝑖 ∈ 𝑅 ( 5 ) 

∑ ℎ𝑎𝑑
ℎ𝑃𝑃𝐶

ℎ∈𝐻

≥ 𝑐𝑝𝑑    ∀ 𝑑 ∈ 𝐷 ( 6 ) 

ℎ𝑎𝑑
ℎ𝑃𝑃𝐶 + 1 ≥ ℎ𝑎𝑖

ℎ𝑃𝑃𝐶 + 𝑑𝑜𝑑
𝑖    ∀ 𝑑 ∈ 𝐷, ∀ 𝑖 ∈ 𝑅, ∀ ℎ ∈ 𝐻 ( 7 ) 

∑ ℎ𝑎𝑖
ℎ𝐵𝑃𝐶

ℎ∈𝐻

= 1   ∀ 𝑖 ∈ 𝐵 ( 8 ) 

∑ ℎ𝑎𝑐
ℎ𝐻𝐷

ℎ∈𝐻

= 1 ∀ 𝑐 ∈ 𝐶 ( 9 ) 

𝑑𝑜𝑑
𝑖 ⋅ 𝑇𝑇𝑑,𝑖 ≤ 𝐷𝑇   ∀ 𝑖 ∈ {𝑅 ∪ 𝐷}, ∀ 𝑑 ∈ 𝐷 ( 10 ) 
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Routing constraints:  

∑ 𝑥𝑗𝑖
ℎ𝑝𝑣

𝑗∈𝐴

= ∑ 𝑥𝑖𝑗
ℎ𝑝𝑣

𝑗∈𝐴

∀ 𝑖 ∈ 𝐴, ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃, ∀ ℎ ∈ 𝐻 ( 11 ) 

∑ ∑ 𝑥𝑖𝑗
ℎ𝑝𝑣

𝑖∈𝑁𝑗∈𝐻

≤ 1   ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃, ∀ ℎ ∈ 𝐻 ( 12 ) 

∑ ∑ 𝑥𝑗𝑖
ℎ𝑝𝑣

𝑖∈𝑁𝑗∈𝐻

≤ 1   ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃, ∀ ℎ ∈ 𝐻 ( 13 ) 

𝑥𝑖𝑖
ℎ𝑝𝑣

= 0   ∀ 𝑖 ∈ 𝐴, ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃, ∀ ℎ ∈ 𝐻 ( 14 ) 

𝑥𝑖𝑗
ℎ𝑝𝑣

= 1 − 𝑥𝑗𝑖
ℎ𝑝𝑣

   ∀ 𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝐴, ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃, ∀ ℎ ∈ 𝐻 ( 15 ) 

𝑥𝑖𝑗
ℎ𝑝𝑣

≤ ℎ𝑎𝑗
ℎ   ∀ 𝑗 ∈ 𝑁, ∀ 𝑖 ∈ 𝐴, ∀ 𝑝 ∈ 𝑃, ∀ 𝑣 ∈ 𝑉, ∀ ℎ ∈ 𝐻 ( 16 ) 

∑ ∑ ∑ 𝑥𝑖𝑗
ℎ𝑃𝑃𝐶𝑣

𝑣∈𝑉ℎ∈𝐻𝑖∈𝐴

= 1    ∀ 𝑗 ∈ 𝑅 ( 17 ) 

∑ ∑ ∑ 𝑥𝑖𝑑
ℎ𝑃𝑃𝐶𝑣

𝑣∈𝑉

= 𝑐𝑝𝑑

ℎ∈𝐻𝑖∈𝐴

    ∀ 𝑑 ∈ 𝐷 ( 18 ) 

∑ ∑ ∑ 𝑥𝑖𝑗
ℎ𝐵𝑃𝐶𝑣

𝑣∈𝑉ℎ∈𝐻𝑖∈𝐴

= 1    ∀ 𝑗 ∈ ( 19 ) 

∑ ∑ ∑ 𝑥𝑖𝑐
ℎ𝐻𝐷𝑣

𝑣∈𝑉

= 1

ℎ∈𝐻𝑖∈{𝐻∪𝐶}

    ∀ 𝑐 ∈ 𝐶 ( 20 ) 

𝑥𝑖𝑗
ℎ𝑝𝑣

≤ 𝑢𝑣𝑣
ℎ𝑝

   ∀ (𝑖, 𝑗) ∈ 𝐴, ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃, ∀ ℎ ∈ 𝐻 ( 21 ) 

∑ 𝑥ℎ𝑗
ℎ𝑝𝑣

𝑗∈𝑁

= 𝑢𝑣𝑣
ℎ𝑝

   ∀ 𝑣 ∈ 𝑉, ∀ ℎ ∈ 𝐻, ∀ 𝑝 ∈ 𝑃 ( 22 ) 

𝑥𝑖𝑗
ℎ𝑝𝑣

≤ ℎ𝑜ℎ    ∀ 𝑖 ∈ 𝐴, ∀ 𝑗 ∈ 𝐻, ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃, ∀ ℎ ∈ 𝐻 ( 23 ) 

∑ 𝑢𝑣𝑣
ℎ𝑝

ℎ∈𝐻

≤ 𝑆𝑉𝑣
𝑝

   ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃 ( 24 ) 

∑ ∑ 𝑥𝑖𝑗
ℎ𝑝𝑣

⋅ 𝐷𝑖𝑗

ℎ∈𝐻(𝑖,𝑗)∈𝑁

≤ 𝐷𝑅𝑣   ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃 ( 25 ) 

 



4 MODELLING THE OPTIMAL NETWORK  4.3 MIXED-INTEGER LINEAR PROGRAMMING MODEL 

43 

 

Time window constraints:  

𝑡𝑑𝑖
𝑝𝑣

+ 𝑇𝑇𝑖𝑗 ≤ 𝑡𝑎𝑗
𝑝𝑣

+ 𝑀 ⋅ (1 − 𝑥𝑖𝑗
ℎ𝑝𝑣

)  ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉, ℎ ∈ 𝐻 ( 26 ) 

𝑡𝑎𝑖
𝑝𝑣

+ 𝑇𝑃𝑖 ≤ 𝑡𝑑𝑖
𝑝𝑣

 + 24 ⋅ (1 − ∑ 𝑥𝑗𝑖
𝑝ℎ𝑣

𝑗∈𝐴

) ∀ (𝑖, 𝑗) ∈ 𝐴, 𝑝 ∈ 𝑃, 𝑣 ∈ 𝑉, ℎ ∈ 𝐻 

( 27 ) 

𝑡𝑎𝑖
𝑝𝑣

≥ 𝑇𝐴𝑖
𝑝

   ∀ 𝑖 ∈ 𝑅, ∀ 𝑝 ∈ 𝑃, ∀ 𝑣 ∈ 𝑉 ( 28 ) 

𝑡𝑎𝑑
𝑝𝑣

≥ 𝑇𝐴𝑑
𝑝

⋅ 𝑐𝑝𝑑   ∀ 𝑑 ∈ 𝐷, ∀ 𝑝 ∈ 𝑃, ∀ 𝑣 ∈ 𝑉 ( 29 ) 

𝑡𝑎ℎ
𝑝𝑣

≤ 𝑇𝐴ℎ
𝑝

   ∀ ℎ ∈ 𝐻, ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃 ( 30 ) 

Capacity constraints:  

𝑝𝑣𝑖
𝑃𝑃𝐶𝑣 = ∑ ∑ 𝑥𝑗𝑖

ℎ𝑃𝑃𝐶𝑣

ℎ∈𝐻𝑗∈𝐴

⋅ ∑ 𝑃𝑄𝑖𝑐 + 𝐷𝑂𝑄𝑖𝑐 ⋅ 𝑐𝑝𝑖

𝑐∈𝐶

+ ∑ ∑ 𝐷𝑂𝑄𝑑𝑗 ⋅ 𝑑𝑜𝑣𝑑
𝑣

𝑐∈𝐶𝑑∈𝐷

 

∀ 𝑖 ∈ 𝑁, ∀ 𝑣 ∈ 𝑉 

( 31 ) 

∑ ∑ 𝑥𝑖𝑗
ℎ𝑃𝑃𝐶𝑣

ℎ∈𝐻𝑖,𝑗∈𝑁

+ ∑ 𝑑𝑜𝑑
𝑖

𝑖∈𝑁

≤ 1 + 𝑑𝑜𝑣𝑑
𝑣    ∀ 𝑖 ∈ 𝑁, ∀ 𝑑 ∈ 𝐷, ∀ 𝑣 ∈ 𝑉 ( 32 ) 

𝑑𝑜𝑣𝑑
𝑣 ≤  ∑ ∑ 𝑥𝑖𝑗

ℎ𝑃𝑃𝐶𝑣    

ℎ∈𝐻𝑖,𝑗∈𝑁

∀ 𝑣 ∈ 𝑉, ∀ 𝑑 ∈ 𝐷 ( 33 ) 

𝑑𝑜𝑣𝑑
𝑣 ≤  ∑ 𝑑𝑜𝑑

𝑖

𝑖∈𝑁

 ∀ 𝑣 ∈ 𝑉, ∀ 𝑑 ∈ 𝐷 ( 34 ) 

𝑝𝑣𝑖
𝐵𝑃𝐶𝑣 = ∑ ∑ 𝑥𝑗𝑖

𝐵𝑃𝐶ℎ𝑣

ℎ∈𝐻𝑗∈𝐴

⋅ ∑ 𝑃𝑄𝑖𝑗

𝑗∈𝑁\{𝑖}

   ∀ 𝑖 ∈ 𝑁, ∀ 𝑣 ∈ 𝑉 ( 35 ) 

𝑝𝑣𝑖
𝐻𝐷𝑣 = ∑ ∑ 𝑥𝑗𝑖

𝐻𝐷ℎ𝑣

ℎ∈𝐻𝑗∈𝐴

⋅ ∑ 𝑃𝑄𝑗𝑖

𝑗∈𝑁\{𝑖}

   ∀ 𝑖 ∈ 𝑁, ∀ 𝑣 ∈ 𝑉 ( 36 ) 

𝑞𝑣𝑣
𝑝

=  ∑ 𝑝𝑣𝑖
𝑝𝑣

𝑖∈𝑁

   ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃 ( 37 ) 

𝑞𝑣𝑣
𝑝

≤ 𝑉𝑄𝑣    ∀ 𝑣 ∈ 𝑉, ∀ 𝑝 ∈ 𝑃 ( 38 ) 

Linehaul constraints:  
𝜋𝑟𝑖𝑘𝑚𝑗 = 𝑃𝑄𝑖𝑗 ⋅ ℎ𝑎𝑐𝑖𝑗

𝑘𝑚    ∀ 𝑖 ∈ 𝑅, ∀𝑗 ∈ 𝐶, ∀ (𝑘, 𝑚) ∈ 𝐻 ( 39 ) 

𝜋𝑑𝑖𝑘𝑚𝑗 = 𝐷𝑂𝑄𝑖𝑗 ⋅ ℎ𝑎𝑐𝑖𝑗
𝑘𝑚    ∀ 𝑖 ∈ 𝐷, ∀𝑗 ∈ 𝐶, ∀ (𝑘, 𝑚) ∈ 𝐻 ( 40 ) 

𝜋𝑖𝑘𝑚𝑗 = 𝜋𝑟𝑖𝑘𝑚𝑗 + 𝜋𝑑𝑖𝑘𝑚𝑗   ∀ 𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝐶, ∀ (𝑘, 𝑚) ∈ 𝐻 ( 41 ) 

ℎ𝑎𝑖
𝑘 + ℎ𝑎𝑗

𝑚 ≤ 1 + ℎ𝑎𝑐𝑖𝑗
𝑘𝑚   ∀ 𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝐶, ∀ (𝑘, 𝑚) ∈ 𝐻 ( 42 ) 

ℎ𝑎𝑐𝑖𝑗
𝑘𝑚  ≤  ℎ𝑎𝑖

𝑘𝑃𝑃𝐶   ∀ 𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝐶, ∀ (𝑘, 𝑚) ∈ 𝐻 ( 43 ) 

ℎ𝑎𝑐𝑖𝑗
𝑘𝑚  ≤ ℎ𝑎𝑗

𝑚𝐻𝐷   ∀ 𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝐶 ∀ (𝑘, 𝑚) ∈ 𝐻 ( 44 ) 

∑ ∑ 𝜋𝑖𝑘𝑚𝑗

(𝑖,𝑗)∈𝑁(𝑘,𝑚)∈𝐻

= ∑ 𝑃𝑄𝑖𝑗

(𝑖,𝑗)∈𝑁

+ 𝐷𝑂𝑄𝑖𝑗  ( 45 ) 

Sign constraints:  
ℎ𝑜ℎ ∈ {0,1}   ∀ ℎ ∈ 𝐻 

𝑢𝑣𝑣
ℎ ∈ {0,1}  ∀ 𝑣 ∈ 𝑉, ∀ ℎ ∈ 𝐻 

ℎ𝑎𝑖
ℎ𝑝

∈ {0,1}  ∀ 𝑖 ∈ 𝑁, ∀ 𝑝 ∈ 𝑃, ∀ ℎ ∈ 𝐻 

𝑑𝑜𝑗
𝑖 ∈ {0,1}  ∀ 𝑖, 𝑗 ∈ 𝑁 

𝑐𝑝𝑖 ∈ {0,1}   ∀ 𝑖 ∈ 𝑁 
𝑑𝑜𝑣𝑗

𝑣 ∈ {0,1}  ∀ 𝑗 ∈ 𝑁, ∀ 𝑉 ∈ 𝑉 

𝑥𝑖𝑗
𝑝ℎ𝑣

∈ {0,1}     ∀ 𝑖, 𝑗 ∈ 𝑁, ∀ 𝑝 ∈ 𝑃, ∀ ℎ ∈ 𝐻, ∀ 𝑣 ∈ 𝑉 

𝑞𝑣𝑣
𝑝

≥ 0 ∀ 𝑣 ∈ 𝑉, 𝑝 ∈ 𝑃 
𝜋𝑖𝑗𝑘𝑚 ≥ 0 ∀ 𝑖, 𝑗 ∈ 𝑁, ∀ 𝑘, 𝑚 ∈ 𝐻 

𝑡𝑎𝑖
𝑝𝑣

≥ 0 ∀ 𝑖 ∈ 𝑁, ∀ 𝑝 ∈ 𝑃, ∀ 𝑣 ∈ 𝑉 

𝑡𝑑𝑖
𝑝𝑣

≥ 0 ∀ 𝑖 ∈ 𝑁, ∀ 𝑝 ∈ 𝑃, ∀ 𝑣 ∈ 𝑉 

𝑝𝑣𝑖
𝑝𝑣

≥ 0 ∀ 𝑖 ∈ 𝑁, ∀ 𝑝 ∈ 𝑃, ∀ 𝑣 ∈ 𝑉 
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4.3.5 Objective and constraints explanation 

In this section, the objective function and all 45 constraints are explained. First the objective function, it 

represents the total cost of the network which consists of: 

• fixed cost of opening a hub; 

• The linehaul costs; 

• The fixed cost for using vehicles; 

• Routing costs (both travelled distance and time travelled). 

4.3.5.1 Hub & Collection Point allocation 

Constraint ( 1 ) makes sure that a location can only be allocated to a hub if that hub is opened. Constraint ( 2 ) 

allows a deposit retailer 𝑑 only to deposit its volume in postal zone 𝑖 if this zone contains a collection point. 

Constraint ( 3 ) prohibits vehicles to be allocated to unopened hubs.  Constraint ( 4 ) makes sure that a deposit 

retailer either drops its volume or is a collection point itself. Constraints ( 5 )–( 9 ) indicate for each process 

that the postal zones that need to be visited are allocated to a hub. Here, constraint ( 7 ) makes sure that a 

deposit retailer in postal zone 𝑑  is allocated to the same hub as the postal zone to which it is allocated. 

Constraint ( 10 ) indicates that the postal zone 𝑖 to which the deposit retailers in postal zone 𝑑 deposit their 

products cannot be more than 𝐷𝑇 hours away. 

4.3.5.2 Routing constraints 

Constraint ( 11 ) is a balance flow constraint. Constraints ( 12 ) and ( 13 ) indicate that each vehicle can only 

enter and leave a hub once. Constraint ( 14 ) makes sure that a vehicle cannot travel to itself. Constraint ( 15 ) 

makes sure that a vehicle cannot travel back to the location that it came from. Constraint ( 16 ) makes sure that 

a location cannot be visited from hub ℎ if it is not allocated to hub ℎ. Constraints ( 17 ) – ( 20 ) make sure that 

every postal zone that needs to be visited is visited. Constraint ( 21 ) makes sure that a postal zone can only be 

reached by a used vehicle. Constraint ( 22 ) makes sure that each used vehicle departs from the hub it is 

allocated to. Constraint ( 23 ) makes sure that a movement by vehicle 𝑣 that is used by hub ℎ can only be done 

if that hub is opened. Constraint ( 24 ) makes sure that for each process vehicles can only be used when they 

are suitable for that process and simultaneously makes sure that per process a vehicle can only be allocated to 

one hub. Lastly, constraint ( 25 ) makes sure that a vehicle cannot drive more than its maximum driving range. 

Because, each vehicle must depart from a depot, can only enter and leave a node once, and cannot travel back 

to the node it came from, no sub-tours can exist. 

4.3.5.3 Time window constraints 

Constraints ( 26 ) and ( 27 ) make sure that when during process 𝑝 vehicle 𝑣 drives to a postal zone the arrival 

time is equal to the departure time of the previous postal zone plus the travel time and that the departure time 

at a postal zone is equal to its arrival time plus its service time. Constraints ( 28 ) – ( 30 ) make sure that vehicles 

arrive after the start of the time window at postal zones and are back at the hub before the end of the time 

window. 

4.3.5.4 Capacity constraints 

The capacity constraints, ( 31 ) – ( 38 ), make sure that the volumes going into vehicles are calculated correctly. 

Constraint ( 31 ) makes sure that the volume picked by vehicle 𝑣 at postal zone 𝑖 during PPC is equal to the own 

pickup retailer’s volume of that location plus the volume of all deposit retailers that deposit their parcels there 

(indicated by 𝑑𝑜𝑣) and the volume of zone 𝑖’s own deposit retailers. Constraints ( 32 ) – ( 34 ) form an AND-

constraint indicating that volume deposited by retailers in postal zone 𝑑 at a collection point in postal zone 𝑖 is 

transported by vehicle 𝑣 if both 𝑑 is connected to collection point 𝑖 and zone 𝑖 is visited by vehicle 𝑣. Constraint 

( 35 ) and ( 36 ) calculate the volumes to be collected and delivered at batch parcel retailers and consumers 

respectively. Constraint ( 37 ) calculates the volume loaded in vehicle v during process p and constraint ( 38 ) 

makes sure that this volume does not exceed the capacity. 

4.3.5.5 Linehaul constraints 

Constraint ( 39 ) calculates the pickup volume that travels from postal zone 𝑖 via hubs 𝑘 and 𝑚 to postal zone 𝑗 

by multiplying the pickup volume at 𝑖 destined for 𝑗 times the variable indicating whether or not the connection 
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between 𝑖-𝑘-𝑚-𝑗 exists Constraint ( 40 ) does the same but for the deposit volume of postal zone 𝑖 which can 

be routed differently due to the collection point allocation. The total volume that travels from postal zone 𝑖 to 

postal zone 𝑗 is determined by constraint ( 41 ). Constraints ( 42 ) – ( 44 ) form an AND-constraint indicating 

that the connection 𝑖-𝑘-𝑚-𝑗 only exists if zone 𝑖 is allocated to hub 𝑘 during PPC and location 𝑗 is allocated to 

hub 𝑚 during HD. Constraint ( 45 ) makes sure that the total linehaul volumes are equal to the total volumes to 

be shipped. Constraint ( 44 ) is similar to ( 42 ), only does this constraint represent that the connection 𝑑-𝑘-𝑚-

𝑗 between a postal zone 𝑑’s deposit retailers and a customer 𝑗 can only exist if deposit retailers in 𝑑 deposits 

their volumes at a collection point in postal zone 𝑖 and zone 𝑖 is allocated to hub 𝑘 during PPC and postal zone 

𝑗 is allocated to hub 𝑚 during HD. Constraint ( 45 ) makes sure that the total of all volumes shipped between 

postal zones 𝑖 and 𝑗 is equal to the volume from zone 𝑖 destined for zone 𝑗. 

4.3.6 Testing the model 
To make sure that the mathematical model is correct, we have tested it for a very small instance with three possible hub 
locations and ten postal zones represented as nodes in a two-dimensional plane. To keep the model simple, only the PPC (0) 
and HD (1) processes are used. Nodes 0-6 contain pickup retailers, and thus are in set 𝑅. Nodes 7-9 contain only deposit retailers 
and are thus in set 𝐷. All postal zones have consumers to whom parcels must be delivered and thus are in set 𝐶. There are four 
tours available for PPC, and three for HD, which are smaller. The resulting network, see Figure 21 Solution of the MILP model 
for a very small test instance of 10 nodes 

, opens one hub, from which one tour visits all the nodes in 𝑅. All nodes in 𝐷 deposit their volumes at other 

nodes, indicated by the orange, green, and red lines. For the HD process, two tours are required to visit all the 

nodes. The required run time to solve this small instance is 2404 seconds. 

The routes are as follows: 

• Process 0: hub-1-0-3-6-5-4-2-hub 

• Process 1: hub-2-4-9-5-6-hub 

• Process 1: hub-8-3-7-1-0-hub 

  

Figure 21 Solution of the MILP model for a very small test instance of 10 nodes 
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4.4 GVNS-BASED HEURISTIC  
The number of variables required to model the network grows very large, with theoretically every postal zone 

being a possible hub location the number of variables can grow to 40704 = O(1012). Since the model is a MILP 

model, solving it becomes intractable very quickly. Even more so with the number of variables in the model, 

that we need to handle. Therefore, we devised a heuristic approach to find high-quality solutions within a 

reasonable time. 

 

From the literature, we know that there is a wide variety of heuristic algorithms that have been applied to 

HLRPs. For our problem, we found that the most applicable methods are the heuristic with feedback loops of 

Wasner & Zäpfel (2004) due to the similar application case and the general variable neighbourhood search 

(GVNS) of Ratli et al. (2022). In our heuristic approach, we have combined these two methods. 

 

In this section, we will address the creation procedure of the initial solution, the used operators, and the 

separate procedures that are used in the GVNS. 

4.4.1 Creating an initial solution 

The creation of an initial solution consists of two steps, the initial hub opening and allocation and the collection 

point opening and allocation. 

4.4.1.1 Hub opening and allocation 

For the creation of the initial solution, we will consider three different procedures. The quality of each 

procedure is evaluated in experiment 3 in Section 5.3.3. 

 

The first procedure is a random procedure. It starts by choosing a number of hubs to open. This number is a 

random number, 𝑥, between the minimum and the maximum number of hubs that are allowed to be opened, 

these values are given as input to the procedure. Consecutively, randomly 𝑥 hubs are chosen to be opened. Then 

for each postal zone, it is determined how long the driving time is to each opened hub and the hub that has the 

least driving time is chosen. This is repeated until each postal zone is allocated. 

 

The second procedure is a greedy clustering approach, see lines 1-16 of Algorithm 1. The procedure takes in a 

predefined number of hubs to open 𝑘. If 𝑘 is not passed, it is chosen to be the ceiling of the average of the 

minimum and maximum number of hubs that are allowed to be opened. Then, the service area of each hub is 

determined by taking the set of postal zones that have a drive time of up to 60 minutes to the hub. While the 

number of opened hubs is less than 𝑘, the hub is chosen that adds the highest number of postal zones to the set 

of zones that are already serviced (i.e., are in the service area of an earlier opened hub). If no hubs add new 

postal zones, the hub is chosen that has the best average drive time to the hubs in its service area. After a new 

hub has been determined, that hub is opened and the list of serviced postal zones is updated. When 𝑘 hubs are 

opened, all postal zones are assigned to the hub to which they have the lowest driving time and the costs 

(demand-weighted driving time) are calculated. 

 

The third procedure is a continuation of the greedy clustering approach and is described in Algorithm 1. It 

starts by determining the clusters in a greedy manner. Subsequently, it will try to improve the hub locations. 

This is done by testing whether moving a hub to a neighbouring hub location yields an overall improvement. 

Because a single hub location change might not make the overall solution better while multiple changes might 

yield an improvement, we introduced a diversification variable 𝑑𝑖𝑣𝑒𝑟𝑠. This variable is initialized at 1, thus we 

start by trying to move the first hub that is in the 𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠 set to the location of its closest neighbour. If this 

yields an improvement, we save the new best set of opened hubs and costs and reset the variables for 

diversification and the number of unsuccessful tries. The more iterations in which no better solution is found, 

the more hubs are replaced to other locations. When there have been 𝑘 iterations in which no improvement is 

found, the algorithm terminates and the best hub locations are used as initial solution. 
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Algorithm 1: Initial Solution 
 Function 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑘): 
1 𝒊𝒇 𝑘 = ∅ 𝒕𝒉𝒆𝒏: 

2  𝑘 =  ⌈
𝑚𝑖𝑛𝑁𝑢𝑚𝐻𝑢𝑏𝑠+𝑚𝑎𝑥𝑁𝑢𝑚𝐻𝑢𝑏𝑠

2
⌉ 

3 𝒇𝒐𝒓 ℎ = 1 𝑡𝑜 |ℎ𝑢𝑏𝑠| 𝒅𝒐: 
4  𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑟𝑒𝑎ℎ ← 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒_𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐴𝑟𝑒𝑎(ℎ, 𝑡𝑖𝑚𝑒 = 60) 
 𝒆𝒏𝒅 
5 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑, 𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠 = ∅ 
6 𝒘𝒉𝒊𝒍𝒆 |𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠| < 𝑘 𝒅𝒐: 
7  𝑛𝑒𝑤𝑍𝑜𝑛𝑒𝑠 ← 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑁𝑒𝑤𝑍𝑜𝑛𝑒𝑠(𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑) 
8  𝒊𝒇 |𝑛𝑒𝑤𝑍𝑜𝑛𝑒𝑠| > 0 𝒕𝒉𝒆𝒏: 
9   𝑎𝑑𝑑𝐻𝑢𝑏 ← 𝑎𝑟𝑔𝑚𝑎𝑥ℎ∈𝐻(𝑛𝑒𝑤𝑍𝑜𝑛𝑒𝑠ℎ) 
10  𝒆𝒍𝒔𝒆: 
11   𝑎𝑑𝑑𝐻𝑢𝑏 ← 𝑎𝑟𝑔𝑚𝑖𝑛ℎ∈𝐻(𝑎𝑣𝑔𝑇𝑖𝑚𝑒ℎ) 
12  𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑 ← 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑 ∪ 𝑛𝑒𝑤𝑍𝑜𝑛𝑒𝑠𝑎𝑑𝑑𝐻𝑢𝑏  
13  𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠 ← 𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠 ∪ {𝑎𝑑𝑑𝐻𝑢𝑏} 
 𝒓𝒆𝒑𝒆𝒂𝒕 
14 𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑜𝑠𝑡𝑎𝑙𝑍𝑜𝑛𝑒𝑠𝑇𝑜𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐻𝑢𝑏( ) 
15 𝑏𝑒𝑠𝑡𝐻𝑢𝑏𝑠 ← 𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠 
16 𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡𝑠 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑇𝑖𝑚𝑒( ) 
  
17 𝑑𝑖𝑣𝑒𝑟𝑠 = 1 
18 𝑡𝑟𝑖𝑒𝑠 =  0 
19 𝒘𝒉𝒊𝒍𝒆 𝑡𝑟𝑖𝑒𝑠 ≤ 𝑘 𝒅𝒐: 
20  𝑛𝑒𝑖𝑔ℎ𝐻𝑢𝑏𝑠 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝐹𝑜𝑟𝐸𝑎𝑐ℎ𝐻𝑢𝑏( ) 
21  𝒇𝒐𝒓 𝑠 =  1 𝑡𝑜 𝑑𝑖𝑣𝑒𝑟𝑠 𝒅𝒐: 
22   𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠 ← 𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠 \ {𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠𝑠} 
23   𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠 ← 𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠 ∪ {𝑛𝑒𝑖𝑔ℎ𝐻𝑢𝑏𝑠𝑠} 
  𝒆𝒏𝒅 
24  𝐴𝑠𝑠𝑖𝑔𝑛𝑃𝑜𝑠𝑡𝑎𝑙𝑍𝑜𝑛𝑒𝑠𝑇𝑜𝐶𝑙𝑜𝑠𝑒𝑠𝑡𝐻𝑢𝑏( ) 
25  𝑐𝑜𝑠𝑡𝑠 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐷𝑒𝑚𝑎𝑛𝑑𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑇𝑖𝑚𝑒( ) 
26  𝒊𝒇 𝑐𝑜𝑠𝑡𝑠 < 𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡𝑠 𝒕𝒉𝒆𝒏: 
27   𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡𝑠 ← 𝑐𝑜𝑠𝑡𝑠 
28   𝑏𝑒𝑠𝑡𝐻𝑢𝑏𝑠 ← 𝑜𝑝𝑒𝑛𝐻𝑢𝑏𝑠 
29   𝑡𝑟𝑖𝑒𝑠 ← 0 
30   𝑑𝑖𝑣𝑒𝑟𝑠 ← 1 
31  𝒆𝒍𝒔𝒆: 
32   tries ← tries + 1 
33   divers ← divers + 1  
 𝒓𝒆𝒑𝒆𝒂𝒕  
  

 

4.4.1.2 Collection point opening and allocation 

Next to the allocation of postal zones to hubs, there is also the allocation of postal zones to collection points. 

Although the improvement of collection point locations is out of scope for this research, we need to model them 

to get accurate results. Therefore, we have created a greedy approach to locating and allocating to collection 

points.  

 

The main idea is that ideally the collection points are located in postal zones that need to be visited anyway 

because large retailers are located there. Thus, as initialization, a list is created of all postal zones and the 

corresponding volume of pickup retailers that is sorted in descending order. Starting at the top of the list we 

check if the postal zone contains a collection point, whether it is allocated to a collection point, and whether it 

has a collection point within the maximum allowed range. If the postal zone is not allocated to a collection point, 
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neither has one itself nor has none nearby, then a collection point is opened in the postal zone and it gets 

allocated to itself. If the postal zone is not allocated but has collection points within range, it gets allocated to 

the closest collection point.  

 

Because we first evaluate the postal zones with pickup retailers, the number of additional stops due to 

collection points remains as low as possible and thus is a good approximation of the best collection point 

network. 

4.4.2 Neighbourhood structures 

In designing the logistical network there need to be made decisions on multiple levels: the hub level, the service 

area level, and the routing level. Therefore, for each level, we use different neighbourhood structures that 

represent the decisions that can be made on that level. 

 

On the hub level, we have neighbourhood structures that together form the hub-level neighbourhood 𝑁ℎ: 

• add_hub: randomly add a hub that is currently unopened and assign all the postal zones that lie within 

a range of 𝑚𝑖𝑛𝑇𝑖𝑚𝑒𝑇𝑜𝐻𝑢𝑏 minutes to the newly opened hub. 

• remove_hub: randomly remove a hub that is currently opened and assign all the postal zones in the 

service area of that hub to the closest opened hub. A hub can only be closed if the number of opened 

hubs is above a certain threshold. 

• swap_hubs: randomly choose one opened hub and one closed hub. Close the opened hub and open the 

previously closed hub. Assign the service area of the previously opened hub to the previously closed 

hub. 

On the service area level, we have the neighbourhood structures that together form the service area level 

neighbourhood 𝑁𝑠𝑎: 

• move_zone_PC2: move a whole PC2 area from the service area of one hub to another. The choice for 

the PC2 area to move is made by taking either the PC2 area that has the largest average distance to the 

allocated hub, the largest average drive time to the allocated hub or randomly each with a probability 

of 1/3. 

• move_zone_PC3: move a whole PC3 area from the service area of one hub to another. The choice for 

the PC2 area to move is made by taking either the PC3 area that has the largest average distance to the 

allocated hub, the largest average drive time to the allocated hub or randomly each with a probability 

of 1/3. 

• swap_zones: choose two postal zones randomly and swap their hub allocations for all processes. 

• move_zone_Allp: choose a postal zone and move it to the service area of one of the opened hubs for 

each of the processes. With a probability of 1/3 the chosen postal zone has the largest average distance 

to its allocated hub, with a probability of 1/3 the chosen postal zone has the largest average travel time 

to its allocated hub, and with 1/3 probability the choice is made randomly.  

• move_zone_1p: choose a postal zone and move it to the service area of one of the opened hubs for one 

of the processes. With a probability of 1/3 the chosen postal zone has the largest distance to its 

allocated hub during that process, with a probability of 1/3 the chosen postal zone has the largest 

travel time to its allocated hub during that process, and with 1/3 probability the choice is made 

randomly.  

Lastly, there is the routing level. To keep the model tractable, there is only one operator on this level which 

forms the routing neighbourhood 𝑁𝑟𝑜𝑢𝑡𝑒: 

• Determine_Routing: this operator determines the total routing length, duration, and the number of 

routes per hub using the well-known savings heuristic of Clarke & Wright for the capacitated vehicle 

routing problem. In this algorithm, there is a single hub and a set of locations to visit. Every location 

will be connected directly to the hub. After which for each location pair (𝑖, 𝑗) a saving is calculated by 

𝑆𝑖𝑗 = 𝐶𝑖0 + 𝐶0𝑗 − 𝐶𝑖𝑗 , where 0 is the hub and 𝐶𝑖𝑗  is the cost of travelling from location 𝑖 to location 𝑗. A 

savings list is created in which all location pairs (𝑖, 𝑗) are sorted descending based on savings. The 

locations are added to routes starting at the top of the savings list until the list has been exhausted 
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(Clarke & Wright, 1964). An addition is that we included a penalty cost for each link that takes more 

than one hour to traverse. This penalty is included to avoid long distances in the allocation of postal 

zones that do not fit in other routes. These allocations can occur when single postal zones contain more 

volume than the capacity of a vehicle and are added as single-stop routes. This implementation is 

chosen to not have to add the complexity of dividing a single postal zone over multiple vehicles. The 

value chosen for the penalty is €250.  

 

To spend the computation time to improve the service areas and not fix them, there is also an operator that 

assigns every postal zone to the closest hub. This operator can be used to reset the service areas after the hub 

locations have been ‘shuffled’ so that the service area operators can be used to improve those service areas. 

4.4.3 General Variable Neighbourhood Search 

The main algorithm is the general variable neighbourhood search (GVNS), see Algorithm 2. In this algorithm, 

both the shaking procedure and the variable neighbourhood descent procedure are called to find high-quality 

solutions. The function takes a solution, a 𝑘𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥 , and neighbourhoods 𝑁 as input. The  𝑇𝑚𝑎𝑥  puts a limit on 

the duration of the algorithm and such forms the stopping criterion. The parameter 𝑘𝑚𝑎𝑥  denotes the maximum 

number of iterations that may be performed within a single shake. Choosing 𝑘𝑚𝑎𝑥  is important as it determines 

the level of diversification of the GVNS. It is known that for high values of 𝑘𝑚𝑎𝑥  the GVNS behaves like a random 

multi-start heuristic since the characteristics of the best-known solution get lost. Therefore, we want to keep 

the value of 𝑘𝑚𝑎𝑥  as low as possible while still getting high-quality results (Ratli et al., 2022). 

 

Algorithm 2: General Variable Neighbourhood Search  
 Function 𝐺𝑉𝑁𝑆(𝑆𝑜𝑙, 𝑘𝑚𝑎𝑥 = {𝑘𝑚𝑎𝑥

0 , 𝑘𝑚𝑎𝑥
1 𝑘𝑚𝑎𝑥

2 }, 𝑇𝑚𝑎𝑥 = {𝑇𝑚𝑎𝑥
0 , 𝑇𝑚𝑎𝑥

1 , 𝑇𝑚𝑎𝑥
2 },  

 𝑁 = {𝑁0, 𝑁1, 𝑁2}): 
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = {𝑁ℎ , 𝑁𝑠𝑎 , 𝑁𝑟𝑜𝑢𝑡𝑒} = {𝑁0, 𝑁1, 𝑁2}  

1 𝑆𝑜𝑙 ← 𝐼𝑛𝑡𝑖𝑎𝑙_𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑆𝑜𝑙) 
2 𝑇 ← 𝐶𝑃𝑈_𝑇𝑖𝑚𝑒( ) 
3 𝒘𝒉𝒊𝒍𝒆  𝑇 ≤ 𝑇𝑚𝑎𝑥

0  𝒅𝒐: 
4  𝑘 ← 1 
5  𝒘𝒉𝒊𝒍𝒆  𝑘 ≤ 𝑘𝑚𝑎𝑥  𝒅𝒐:  
6   𝑘 ← 𝑘 + 1 
7   𝑆𝑜𝑙′ ← 𝑆ℎ𝑎𝑘𝑖𝑛𝑔(𝑆𝑜𝑙, 𝑘, {𝑁0})   
8   𝑆𝑜𝑙′′ ← 𝑀𝑢𝑙𝑡𝑖_𝐿𝑒𝑣𝑒𝑙_𝑉𝑁𝐷(𝑆𝑜𝑙′, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠)   
9    𝒊𝒇 𝑆𝑜𝑙′′𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑆𝑜𝑙 𝒕𝒉𝒆𝒏: 
10    𝑆𝑜𝑙 ← 𝑆𝑜𝑙′′ 
11    𝑘 ← 1 
  repeat 
12  𝑇 ← 𝐶𝑃𝑈_𝑇𝑖𝑚𝑒( ) 
 repeat 
13 return Sol 

 

A graphical representation of the functioning of the GVNS over multiple levels is displayed in Figure 22 

Graphical representation of working of GVNS algorithm on multiple levels.. The algorithm starts on the hub 

level, where the GVNS is started with the parameters and neighbourhood corresponding to the first level 

(𝑘𝑚𝑎𝑥
0 , 𝑇𝑚𝑎𝑥

0 , 𝑁0). Within this GVNS an initial solution is created (but only on the hub level). Then while the run 

time has not exceeded the set limit and the number shake variable 𝑘 has not reached the maximum value, three 

steps are performed. The first is the shaking procedure, which creates a new solution, the more iterations no 

improved solution has been found the greater the shake. After the shake, a variable neighbourhood descent 

(VND) procedure is called. This procedure takes in the shaken solution 𝑆𝑜𝑙′ which it improves by sequentially 

applying the neighbourhood structures for that level. After the VND has been finished, the resulting solution 

𝑆𝑜𝑙′′ is compared to the best solution up to that moment 𝑆𝑜𝑙. If 𝑆𝑜𝑙′′ is better, it becomes 𝑆𝑜𝑙 and the shake 

variable 𝑘 is reset to 1, after which the process starts over. Only on the hub level, between the shaking and VND 

procedure, the operator is called that assigns each postal zone to the closest hub. This is done to prevent the 
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service area level GVNS to improve very bad service areas, which takes a lot of time due to the routing 

calculation, allowing the solution to converge faster. 

 

Please note that the inputs of 𝑘𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥 , and 𝑁  are all sets. This is because the heuristic calls the same 

procedure, but on a lower level, to determine the best possible lower-level solution as input to itself. Therefore, 

the settings for the lower-level procedure calls must be passed to the highest-level GVNS. Each time a lower-

level GVNS is called, the sets with settings that are passed are excluding their first element (element 0). 

Therefore, regardless of the level the GVNS is on, the first element of the sets 𝑘𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥 , and neighbourhoods 

𝑁 determine the settings for that level. The passing of the sets is done in the variable neighbourhood descent 

(Section 4.4.5). 

 

The calling of lower-level GVNS procedures can go down until the routing level where the VND is replaced with 

the routing heuristic which is immediately returned to the higher service area level, so there is no improvement 

on the routing. The ‘exchange’ of solutions and best improvements between each level form the feedback loops 

like in the heuristic of Wasner & Zäpfel (2004). 

4.4.4 Shaking Procedure 

Like in Ratli et al. (2022), each iteration of the GVNS starts by calling a shaking procedure, see Algorithm 3. This 

procedure performs a fixed set of 𝑛𝑢𝑚_𝑠ℎ𝑎𝑘𝑒 iterations in which it chooses an operator out of a given set of 

operators and modifies a solution consecutively and returns a changed solution. An import distinction from the 

variable neighbourhood descent is that this procedure aims to diversify and not to improve the solution. 

 

Algorithm 3: Shaking Procedure 
 Function 𝑆ℎ𝑎𝑘𝑖𝑛𝑔 (𝑆𝑜𝑙, 𝑛𝑢𝑚_𝑠ℎ𝑎𝑘𝑒, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠): 
1  𝒇𝒐𝒓  𝑘 = 1 𝑡𝑜 𝑛𝑢𝑚_𝑠ℎ𝑎𝑘𝑒 𝒅𝒐:  
2   Operator ← random.choice(operators) 
3   Sol ← Operator(Sol)  
  end 
4 𝒓𝒆𝒕𝒖𝒓𝒏 𝑆𝑜𝑙 

 

Figure 22 Graphical representation of working of GVNS algorithm on multiple levels. 
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4.4.5 Multi-Level Variable Neighbourhood Descent 

After the shaking procedure has been performed, the multi-level Variable Neighbourhood Descent (Algorithm 

4) is called. This function is based on the Basic Sequential Variable Neighbourhood Solution that is used by Ratli 

et al. (2022) and is extended with the feedback loops as used by Wasner & Zäpfel (2004) to include the effect 

of lower-level performance in higher-level decisions. As input, the function takes a starting solution and a set 

of neighbourhoods as operators of which the last is always the determine_routing operator. It sequentially goes 

through the neighbourhood structures of the first neighbourhood in the set. While in higher-level 

neighbourhood structures (𝑁ℎ , 𝑁𝑠𝑎 ) it will also call a GVNS in the lower level to include the best possible 

performance on a lower level in the quality assessment of solutions at the higher level. 

 

Algorithm 4: Multi-Level Variable Neighbourhood Descent 
 Function 𝑀𝑢𝑙𝑡𝑖_𝐿𝑒𝑣𝑒𝑙_𝑉𝑁𝐷(𝑆𝑜𝑙, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠, 𝐺𝑉𝑁𝑆_𝑝𝑎𝑟𝑎𝑚): 

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = {𝑁ℎ , 𝑁𝑠𝑎 , 𝑁𝑟𝑜𝑢𝑡𝑒} = {𝑁0, 𝑁1, 𝑁2}  
1 𝑘 ← 1 
2  𝒘𝒉𝒊𝒍𝒆  𝑘 ≤ |𝑁0| 𝒅𝒐:  
3   𝑆𝑜𝑙′ ← 𝑁0(𝑘)(𝑆𝑜𝑙)   
4   𝑘 ← 𝑘 + 1 
5   𝑰𝒇 |𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠| > 1 𝒕𝒉𝒆𝒏: 
6     𝑆𝑜𝑙′′ ← 𝐺𝑉𝑁𝑆(𝑆𝑜𝑙′, 𝑁 − {𝑁0}, 

                𝑘𝑚𝑎𝑥 − {𝑘𝑚𝑎𝑥
0 }, 𝑇𝑚𝑎𝑥 − {𝑇𝑚𝑎𝑥

0 }) 
7    𝒊𝒇 𝑆𝑜𝑙′′ 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑆𝑜𝑙 𝒕𝒉𝒆𝒏: 
8     𝑆𝑜𝑙 ← 𝑆𝑜𝑙′′ 
9     𝑘 ← 1 
10   𝒆𝒍𝒔𝒆: 
11    𝑆𝑜𝑙 ←Sol’ 
  repeat 
12 Return Sol 

4.5 SIMHEURISTIC-BASED GVNS 
Because a single deterministic scenario does not provide a good indication of whether a network design 

performs well in other scenarios. To deal with the stochastic nature of the problem, the deterministic GVNS will 

be expanded by making use of simulation. 

 

The simheuristic expansion, as shown in Algorithm 5, requires some additional lines to the deterministic GVNS 

in Algorithm 2. The first is line 2, here an empty set is initialised which will be used to save all promising 

solutions that the GVNS will come across in. The next added line is line 10, this line makes sure that each time 

an improved solution is found in the deterministic GVNS it is tested in a quick simulation for a small number of 

scenarios to have some indication of its stochastic performance. In line 13, this shortly simulated solution is 

added to the list of promising solutions and saved for when the GVNS is finished. Lastly, line 15 contains the 

intensive simulation procedure which takes the 𝑚  best solutions from the list of promising solutions and 

evaluates them in an intensive simulation with a high number of scenarios. The final result will be a list of the 

best-performing solutions and some statistical analysis of their performance. 

 

Note that the GVNS with simulation is only called on the highest level. The Multi_Level_VND procedure will call 

the ‘regular’ GVNS when going down through the different levels. This must be done to make sure that only 

solutions that are evaluated on each level are marked as promising and thus no simulation efforts are spent on 

non-fully evaluated solutions. 
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Algorithm 5: General Variable Neighbourhood Search with simulation 
 Function 𝐺𝑉𝑁𝑆(𝑆𝑜𝑙, 𝑘𝑚𝑎𝑥 = {𝑘𝑚𝑎𝑥

0 , 𝑘𝑚𝑎𝑥
1 𝑘𝑚𝑎𝑥

2 }, 𝑇𝑚𝑎𝑥 = {𝑇𝑚𝑎𝑥
0 , 𝑇𝑚𝑎𝑥

1 , 𝑇𝑚𝑎𝑥
2 },   

 𝑁 = {𝑁0, 𝑁1, 𝑁2}): 
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑠 = {𝑁ℎ , 𝑁𝑠𝑎 , 𝑁𝑟𝑜𝑢𝑡𝑒} = {𝑁0, 𝑁1, 𝑁2}  

1 𝑆𝑜𝑙 ← 𝐼𝑛𝑡𝑖𝑎𝑙_𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑆𝑜𝑙) 
2 𝑝𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← ∅ 
3 𝑇 ← 𝐶𝑃𝑈_𝑇𝑖𝑚𝑒( ) 
4 𝒘𝒉𝒊𝒍𝒆  𝑇 ≤ 𝑇𝑚𝑎𝑥

0  𝒅𝒐: 
5  𝑘 ← 1 
6  𝒘𝒉𝒊𝒍𝒆  𝑘 ≤ 𝑘𝑚𝑎𝑥

0  𝒅𝒐:  
7   𝑘 ← 𝑘 + 1 
8   𝑆𝑜𝑙′ ← 𝑆ℎ𝑎𝑘𝑖𝑛𝑔(𝑆𝑜𝑙, 𝑘, {𝑁ℎ ∪ 𝑁𝑠𝑎})   
9   𝑆𝑜𝑙′′ ← 𝑀𝑢𝑙𝑡𝑖_𝐿𝑒𝑣𝑒𝑙_𝑉𝑁𝐷(𝑆𝑜𝑙′, 𝑁)   
10   𝒊𝒇 𝑆𝑜𝑙′′𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑆𝑜𝑙 𝒕𝒉𝒆𝒏: 
11    𝑆𝑜𝑙 ← 𝑄𝑢𝑖𝑐𝑘_𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑆𝑜𝑙′′) 
12    𝑘 ← 1 
13    𝑝𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝑝𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ∪ {𝑆𝑜𝑙} 
  repeat 
14  𝑇 ← 𝐶𝑃𝑈_𝑇𝑖𝑚𝑒( ) 
 repeat 
15 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝐼𝑛𝑡𝑒𝑠𝑖𝑣𝑒_𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛({𝑆𝑜𝑙1, … , 𝑆𝑜𝑙𝑚} ⊆ 𝑠𝑜𝑟𝑡𝑒𝑑(𝑝𝑟𝑜𝑚𝑖𝑠𝑖𝑛𝑔𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠)) 
16 𝒓𝒆𝒕𝒖𝒓𝒏 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

 

Both the quick and intensive simulations follow the same procedure, which is shown in Algorithm 6, which is a 

monte carlo simulation. 

 

Algorithm 6: Simulation Procedure 
 Function 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑆𝑜𝑙, 𝑛𝑢𝑚_𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠): 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ← ∅ 
1 𝒇𝒐𝒓  𝑟𝑒𝑝 = 1 𝑡𝑜 𝑛𝑢𝑚_𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝒅𝒐:  
2  𝑅𝑎𝑛𝑑𝑜𝑚. 𝑠𝑒𝑒𝑑( )  ←  𝑟𝑒𝑝 
3  𝑆𝑜𝑙′ ← 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜(𝑟𝑒𝑝)  
4  𝑆𝑜𝑙′′ ← 𝑁𝑟𝑜𝑢𝑡𝑒(𝑆𝑜𝑙′) 
5  𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ∪ {𝑆𝑜𝑙′′} 
 end 
6 𝒓𝒆𝒕𝒖𝒓𝒏 𝑚𝑒𝑎𝑛(𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒) 

4.6 CONCLUSIONS ON MODELLING THE BEST NETWORK 
In this chapter, we have formulated a mixed-integer linear program to mathematically describe how to find the 

best logistical network of Company X. To keep the model from growing to large, an aggregation of volumes and 

stops on a postal zone level has been applied, providing an upper bound on the number of stops equal to the 

number of postal zones in the Netherlands. However, even with the aggregation the number of variables that 

this model requires grows very large. Therefore, the model becomes intractable very quickly and is not useful 

to find the best possible network in the real-life case. Therefore, we have formulated a general variable 

neighbourhood search (GVNS) that connects decisions on the hub, service area, and routing level via a multi-

level variable neighbourhood descent procedure. 

 

Since the GVNS is a deterministic approach that, in principle, is not capable to capture the seasonal fluctuations 

in workload over time, we have expanded the GVNS to a simheuristic-based GVNS. In this simheuristic, 

promising solutions that are found while solving the deterministic GVNS are passed to a simulation procedure 

which tests the solutions’ performance under multiple scenarios. The enables us to provide a final solution 

based on the performance over multiple scenarios.  
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5 NUMERICAL EXPERIMENTS 

In this chapter, we want to find out what the best depot locations and accompanying service areas are for 

Company X to answer the fourth research question ‘w at is t e  est logistics network for Company X in t e 

Netherlands?’. In Section 5.1, the experimental design is discussed. In Section 5.2, we elaborate on the data 

instances used for different experiments. Section 5.3 will describe the results of the parameter tuning and 

model validation. In Section 5.4, the found best network for Company X is presented, while Sections 5.5 and 5.6 

place these results into context by comparing them to other designs and methods (5.5) and by performing 

sensitivity analyses (5.6). 

5.1 EXPERIMENTAL DESIGN 
Before we discuss the experimental design, we first introduce the technical specifications of the hardware on 

which the experiments are performed. Experiments 4 and 5 are performed on a computer with an i5-1145G7 

processor with a speed of 2.6 GHz and 16 GB of RAM. Experiments 1-3, 6, 7, 8, and 9 are performed on a virtual 

machine using sixteen Inter Xeon CPUs with a speed of 3.1 GHz and 64 GB of RAM. The GVNS algorithm is 

written in Python 3.10.8, using the Spyder 5.3.3 IDE. 

 

To answer the fourth research question, ‘what is the best logistics network for Company X in the Netherlands?’, 

and put the findings into context, several experiments need to be performed. Answering this question consists 

of four sub-questions, listed below, each with its own set of experiments of which the results should give the 

information required to answer them.  

5.1.1 What are the best parameters for the algorithm, and can we validate the outcomes? 

• Experiment 1: Parameter Tuning 

In this experiment, we determine how many iterations for each level (𝑘𝑚𝑎𝑥 ) are needed to achieve good 

convergence of the solution. Good convergence is considered to be when the objective value has stabilized. A 

trade-off has to be made between finding the best possible solution and the required computational time.  

• Experiment 2: Performance of different operators  

In this experiment, we test the performance of each operator. Performance is measured by comparing the 

objective of the GVNS without an operator with the performance of the GVNS with all operators while 

comparing the required computational time. Furthermore, we test in which order the operators should be used 

to get the best results. 

• Experiment 3: Impact of the initial solution 

In this experiment, we test different procedures to create an initial solution to find out which procedure is best 

to get high-quality solutions. The better the quality of the initial solution, the better the final solution the 

algorithm can find. 

• Experiment 4: Model Validation 

In this experiment, we compare the outcome of the routing used in the GVNS to the routing optimization 

software of company X to validate the accuracy of the used routing. For the goal of this research, it is important 

that the model correctly describes the effect of hub locations and service areas on the routing cost. Thus, for a 

set of depot & service area configurations, the routing costs from the model should show the same relative 

changes as the costs that are found by the optimization software. 

• Experiment 5: Required number of replications for quick & intensive simulation  

In this experiment, we determine how many replications are needed during the quick and intensive simulations 

to get a sufficiently small confidence interval. Since the quick simulations are done during the GVNS, the number 

of replications should be such that within a reasonable time, the smallest possible confidence interval can be 

computed.  For the intensive simulation, the time required to perform the simulation is less of an issue because 

it is done after the GVNS has finished. We want to determine the number of replications required to get an as 

small as possible confidence interval. 
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5.1.2 What is the best network design for Company X using the simheuristic-based GVNS? 

• Experiment 6: Results of the simheuristic-based GVNS  

We test the simheuristic-based GVNS to determine the best depot locations and service areas. We use the 30 

chosen possible hub locations and the median day scenario. The result is the network design with the lowest 

operational costs. 

5.1.3 How does the found network design compare to other methods & designs? 

• Experiment 7: Performance compared to a simple heuristic  

In the simheuristic-based GVNS, the decision for hub locations and service areas is made by taking the routing 

costs into account. This enlarges the solution space for the algorithm which takes a lot more time to execute. 

Therefore, we want to know what the performance of the algorithm is when we use a simple allocation strategy 

for creating the service areas and thus only use the routing costs to determine the hub locations. This will 

require less computational power and thus allows for more time to explore different hub locations and might 

therefore be a good or better alternative to the simheuristic-based GVNS. 

• Experiment 8: Performance of initial network design  

In this experiment, we determine what the network costs would be if we take the current network design as 

input. The algorithm will then search for the best service area allocation for the given depot locations. This 

experiment provides a baseline for the network costs to compare the results of experiments 6 and 7 to. 

5.1.4 What is the sensitivity of input parameters? 

Experiment 9: Sensitivity analysis on the depot locations and other costs   

To better understand the behaviour of the algorithm, we test to which extent the solution changes if the values 

of input parameters are changed. This enables us to get insights into the impact and sensitivity of certain 

parameters. We test the effects of changing the hub opening costs, fixed vehicle costs, variable cost per km, 

hourly costs for vehicles, time windows for different processes, and linehaul costs. Each parameter is tested for 

50%, 75%, 100%, 125%, and 150% as compared to the values that are used in the earlier experiments. 

5.2 DATA INSTANCES 
For the experiments in this chapter, different data instances are used. Because of the large size of the problem, 

it is not feasible to test every experiment on the full problem. Therefore, instances of different sizes are created 

which are explained in the section. 

5.2.1 Small test instances 

The experiments that are performed for tuning the algorithm settings will be run using the test data instances. 

These instances consist of postal zones that are drawn randomly from the large historical dataset and thus can 

be located anywhere in the Netherlands. Because too small instances lead to solutions with only one opened 

hub, which is not representative and does not allow for good testing of the operators, we need to use instances 

that will need to open multiple hubs. We found that instances that consist of 300 postal zones are not too small 

to be representative but also do not become too large to be unpractical. In these instances, the ten hub locations 

that are in the initial plan are taken as possible locations. The volumes of each postal zone are taken out of a 

relatively busy day from the historical dataset.  

 

These test data instances are used for experiments 1-3. 

5.2.2 Large test instance 

Additional to the small test data instances a larger instance is required. This instance is a set that consists of 

1054 postal zones which make up the more densely populated part in the west of the Netherlands. In this set, 

multiple days as well as different combinations of four opened hub locations are used to create different service 

areas. These service areas are used in experiment 4 to validate the routing accuracy in the model and 5 in 

combination with the simulation instances (Section 5.2.4) to determine the required number of replications. 
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5.2.3 Real average instance 

To determine the best network for Company X, we need an instance that describes the distribution of workload 

over the Netherlands as best as possible. For the deterministic part, the GVNS, we use an average scenario so 

that the GVNS does not underestimate nor overestimate the network costs.  We have chosen the median day in 

terms of total volume over all postal zones from our historical dataset and used that day has the average 

scenario in the GVNS. The disadvantage of this approach is that not every postal zone is included and therefore, 

the allocation of service areas is biased towards this specific scenario. This bias is countered to some extent by 

the simulation procedures but is not fully erased. 

 

Although, we consider each postal zone, taking the average workload for each logistical process for each postal 

zone is a very poor approach. This approach results in a situation in which every postal zone has to be visited 

because each has a nonzero average. This results in many routes that need to be driven and thus a large 

overestimation of the total network costs compared to an average day based only on the total volume of that 

day. 

5.2.4 Simulation instances 

A difficulty is that there exist great seasonal fluctuations between days, and thus finding a dataset that grasps 

these fluctuations well is (nearly) impossible. Therefore, to deal with these fluctuations, the GVNS is expanded 

with a simulation component to a simheuristic. For this simulation part of the simheuristic-based GVNS, it is 

necessary to create scenarios. Ideally, the scenarios are created based on probability distributions. However, 

the scenarios consist of multiple interrelated variables per postal zone, making fitting probability distributions 

a large task. In this research, we must scope and are not able to do the work required to do a complete 

simulation study.  

 

Therefore, for this research, we use a large historical dataset from the e-commerce company out of which real 

days can be drawn that can be used as scenarios for the future. Since Company X is a start-up, it will need to 

build up the number of postal zones it services and thus also the total volumes that it transports. Therefore, it 

can be reasonably assumed that these scenarios form an accurate prediction for future workload because the 

total volumes in these scenarios will be reached by Company X in a few years. Moreover, these scenarios consist 

of real days that have happened in the past, making them accurate representations of reality. 

 

The simheuristic expansion of the GVNS involves two parts: the quick simulation and the intensive simulation. 

The first is meant to create a quick assessment of the quality of promising solutions the GVNS comes across, 

whereas the intensive simulation is meant to give a thorough assessment of the best solutions found during the 

GVNS search.  Therefore, we need a small number of scenarios for the quick simulation and a large number of 

scenarios for the intensive simulation. 

 

The creation of scenarios is as follows, also shown in Algorithm 7: 

1. Taking the historical dataset and determining the total volume of sales per day.  

2. Filter out non-representative days that have less than 3.000 parcels as these are not expected to occur 

in the future anymore. 

3. Sort the days by total volume. 

4. Divide the days into buckets, the number of buckets is equal to the number of scenarios required for 

the quick or intensive simulation. 

5. From each bucket, randomly choose a day to be used for a scenario. 

6. For each day determine: 

a. The volumes per process per postal zone 

b. The number of stops per process per postal zone 

c. The volumes that need to travel between each pair of postal zones 
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Algorithm 7: Creation of simulation scenarios 
 Function 𝐶𝑟𝑒𝑎𝑡𝑒𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠(ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝐷𝑎𝑡𝑎): 
1 𝑑𝑎𝑡𝑎𝑆𝑒𝑡 ← 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑇𝑜𝑡𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝐷𝑎𝑡𝑎)  
2 𝑑𝑎𝑡𝑎𝑆𝑒𝑡 ← 𝐹𝑖𝑙𝑡𝑒𝑟(𝑑𝑎𝑡𝑎𝑆𝑒𝑡, 𝑡𝑜𝑡𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒, 3000)  
3 𝑑𝑎𝑡𝑎𝑆𝑒𝑡 ← 𝑆𝑜𝑟𝑡(𝑑𝑎𝑡𝑎𝑆𝑒𝑡, 𝑡𝑜𝑡𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒) 
4 𝑑𝑎𝑡𝑎𝑆𝑒𝑡 ← 𝐶𝑟𝑒𝑎𝑡𝑒𝐵𝑢𝑐𝑘𝑒𝑡𝑠(𝑑𝑎𝑡𝑎𝑆𝑒𝑡, 𝑡𝑜𝑡𝑎𝑙𝑉𝑜𝑙𝑢𝑚𝑒, 𝑛𝑢𝑚_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠) 
5 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ← ∅ 
6 𝒇𝒐𝒓 𝑏 = 1 𝒕𝒐 𝑛𝑢𝑚_𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 𝒅𝒐: 
7  𝑑𝑎𝑦 ← 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑐ℎ𝑜𝑖𝑐𝑒(𝑑𝑎𝑡𝑎𝑆𝑒𝑡, 𝑑𝑎𝑡𝑎𝑆𝑒𝑡𝑏𝑢𝑐𝑘𝑒𝑡 = 𝑏) 
8  𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ← ∅ 
9  𝒇𝒐𝒓 𝑧 = 1 𝒕𝒐 |𝑧𝑜𝑛𝑒𝑠| 𝒅𝒐: 
10   𝑣𝑜𝑙𝑢𝑚𝑒𝑧

𝑝
← 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑉𝑜𝑙𝑢𝑚𝑒(𝑑𝑎𝑦, 𝑧, 𝑝)   ∀ 𝑝 ∈ 𝑃 

11   𝑛𝑢𝑚𝑆𝑡𝑜𝑝𝑠𝑧
𝑝

← 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑡𝑜𝑝𝑠(𝑑𝑎𝑦, 𝑧, 𝑝)   ∀ 𝑝 ∈ 𝑃 
12   𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑧,𝑑 ← 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑉𝑜𝑙𝑢𝑚𝑒𝑠(𝑑𝑎𝑦, 𝑧, 𝑑)   ∀ 𝑑 ∈ 𝑧𝑜𝑛𝑒𝑠  

13   𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ← 𝑠𝑖𝑛𝑔𝑙𝑒𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ∪ {𝑣𝑜𝑙𝑢𝑚𝑒𝑧
𝑝∈𝑃

, 𝑛𝑢𝑚𝑆𝑡𝑜𝑝𝑠𝑧
𝑝∈𝑃

, 𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑧,𝑑∈𝑧𝑜𝑛𝑒𝑠 } 
  end 
14  𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ← 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 ∪ {𝑠𝑐𝑒𝑛} 
 end 
15 𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 

5.3 MODEL TUNING, TESTING, AND VALIDATION 
In this section, the experiments related to the tuning and performance of the model are discussed. 

5.3.1 Experiment 1: Parameter tuning 

Important parameters in the GVNS algorithm are the values of 𝑘𝑚𝑎𝑥 , which determine the level of 

diversification that will be used to avoid the traps of local optima. The proposed GVNS framework operates on 

multiple levels, the hub and service area level, and thus a combination of two parameters must be chosen. It is 

known that for large values of 𝑘𝑚𝑎𝑥  the VNS tends to behave like a random multi-start heuristic, i.e., a heuristic 

that randomly restarts without the features of the current best solution (Ratli et al., 2022). Yet, we still want to 

find high-quality solutions meaning the algorithm must be able to escape from local optima. 

 

To test which combination of 𝑘𝑚𝑎𝑥  values for both the hub level (𝑘max
0 ) and service area level (𝑘max

1 ) is the best, 

the GVNS is tested on the different small test scenarios (see Section 5.2.1). For each run, the same initial solution 

is chosen, so that the quality of the initial solution has no impact on the outcome of the GVNS. For each 

combination of 𝑘𝑚𝑎𝑥  values, ten scenarios are solved. The results are summarised in Table 6. 

 
Table 6 Results of experiment 1: Parameter tuning 

   Objective Time (s) 
Exp 𝒌𝐦𝐚𝐱

𝟎  𝒌𝐦𝐚𝐱
𝟏  Min Max Mean St. Dev. Min Max Mean St. Dev. 

1.1 3 3 6,341 8,591 7,479 708 36 138 73 35 
1.2 3 5 6,748 8,531 7,581 638 43 252 125 64 
1.3 3 8 6,942 8,314 7,541 526 102 330 204 75 
1.4 5 3 6,412 8,603 7,450 647 57 351 147 94 
1.5 5 5 6,624 8,509 7,556 610 113 468 229 106 
1.6 5 8 6,038 8,134 7,387 615 67 440 273 116 
1.7 8 3 6,423 8,096 7,375 605 105 254 173 48 
1.8 8 5 6,255 8,337 7,459 663 146 461 276 102 
1.9 8 8 6,387 8,366 7,555 568 206 627 393 155 

 

Based on the performance on the objective value, it becomes clear that experiments 1.6 and 1.7 are the top 

performers on the mean objective value, with values below 7,400. Furthermore, looking at the run times the 

best-performing settings are those of experiments 1.1, 1.2, and 1.4, which all have a mean run time under 150 
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seconds.  For the run time, this result is expected since these are the experiments that have the lowest levels of 

diversification. For the mean objective, the results show that the best solutions are not found using the highest 

levels of diversification, which seems to be in line with the statement of Ratli et al. to not have too large values 

for 𝑘𝑚𝑎𝑥 . Concluding, we will use the settings of experiment 7 for the remainder of this research. These settings 

yield the best average result, and they do provide good results in a reasonable time. 

5.3.2 Experiment 2: Operator performance 

To understand the functioning of the model, we investigate the performance of every single operator. To test 

this, we have defined nine experiments in which a single operator is excluded. The first experiment includes all 

operators to provide a benchmark to compare the other experiments, note that this is experiment 1.7. 

 

Each experiment is performed ten times, using the small test data instances (Section 5.2.1). For each 

experiment the minimum, maximum, mean, and standard deviation of both the objective value and run time 

are determined. The results of the experiments are presented in Table 7. 

 
Table 7 Results of experiment 2: Operator performance 

 Missing 
Operator 

Objective Time (s) 
Exp Min Max Mean St. Dev. Min Max Mean St. Dev  

1.7 None 6,423 8,096 7,375 605 105 254 173 48 
2.1 add_hub 6,830 8,607 7,580 661 67 171 114 35 
2.2 remove_hub 7,062 8,899 8,340 581 11 30 18 5 
2.3 swap_hubs 6,398 8,537 7,634 636 37 210 95 52 
2.4 move_zones_PC2 6,694 8,053 7,432 447 67 235 118 55 
2.5 move_zones_PC3 6,388 8,049 7,472 518 54 214 116 59 
2.6 swap_zones 6,342 8,784 7,690 718 53 311 127 77 
2.7 move_zone_Allp 6,231 8,468 7,532 711 60 210 129 54 
2.8 move_zone_1p 6,748 8,186 7,487 496 47 172 104 38 

 

There are a few things that stand out from these results. The mean objective of experiment 2.2 is much higher 

than those of the other experiments. Furthermore, the operator move_zones_PC2 has the lowest objective 

value, followed by the move_zones_PC3 operator. 

 

The high average value for the remove_hub operators is understandable. The test is performed on a small 

instance of 300 postal zones, and from the results, we see that most final solutions have only three hubs opened, 

while the initial solution has six. Therefore, not being able to remove a hub disables the algorithm from finding 

better solutions, hence also the low average run times. Little improvements mean that the algorithm progresses 

quicker since there is no reset in the diversification parameter 𝑘. 

 

Less expected is the lower value for the move_zones_PC2 and move_zones_PC3 operators. Understandably, the 

impact of all operators on the service area level (experiments 2.4-2.8) is lower than those of the hub-level 

operators since hub-level operators have a bigger impact on the network. However, between the service area 

operators, we would expect the move_zones_PC2 and move_zones_PC3 operators to have a bigger impact on 

the objective than the operators that move single postal zones, because they move larger areas at once. The 

result implies that the improvement in service areas lies mostly in the replacements of single postal zones and 

less in the movement of multiple. 

 

The last important observation is that the average performance of all experiments is worse than that of the 

experiment with no excluded operators. This means that from these experiments no operator has shown such 

performance that we should exclude it from the algorithm. 

 

Another element in evaluating the performance of the operators is by assessing the order in which they are 

applied. Since there can be variations on two levels with three and five operators respectively, the total possible 
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combinations that would need to be assessed is 3! + 5! = 6 + 120 = 126. This number is too large to assess all 

the possibilities within the timeframe of this research. We can however test the hub level as this concerns only 

6 combinations.  

 

Different orders for the ‘add_hub’, ‘remove_hub’, and ‘swap_hubs’ operators (AH, RH, SH resp.) are tested while 

keeping the order of the lower-level operators equal. Each experiment is tested for the ten small test instances 

(see Section 5.2.1), using no time restrictions, a fixed initial solution, and 𝑘𝑚𝑎𝑥  settings as found in experiment 

1. The results are presented in Table 8. 

 
Table 8 Results of experiment 2: Operator order 

 Operator  
Order 

Objective Time (s) 
Exp Min Max Mean St. Dev. Min Max Mean St. Dev. 

2.9 AH-RH-SH 6,051 8,091 7,292 614 88 337 188 80 
2.10 AH-SH-RH 6,749 8,804 7,583 677 77 288 159 66 
2.11 RH-AH-SH 6,399 8,334 7,452 613 50 217 110 57 
2.12 RH-SH-AH 6,052 8,294 7,509 672 78 199 108 36 
2.13 SW-AH-RH 6,556 8,101 7,488 543 59 251 129 55 
2.14 SW-RH-AH 6,231 8,287 7,467 609 57 154 107 34 

 

In Table 8, we can see that the performance differences are not very large. However, experiment 2.10 is the 

best-performing setup. It has the best mean objective value and has achieved the best-observed value for a 

single run. The run time of this setup is longer, but that is a consequence of finding a better solution, as that 

resets the diversification parameters. 

 

Concluding, in this experiment we have seen some unexpected results. The impact operators move_zones_PC2 

and move_zones_PC3 showed to be the lowest, while it was expected that these would have a larger impact. 

Regardless, the performance of each experiment in which an operator was excluded was worse than the 

performance of the experiment with all operators, meaning no operator can be excluded. Furthermore, the 

order in which the hub level operators are applied was tested and the order ‘add_hub’-‘remove_hub’-

‘swap_hubs’ was found to be the best performing one. Therefore, in further experiments, the operators (and 

their order) will be applied as introduced in Section 4.4.2. 

5.3.3 Experiment 3: Impact initial solution 

The quality of the initial solution can have a great impact on the final solution of the GVNS. Having a bad starting 

solution means that the algorithm has to spend time getting to a reasonable solution while having a good 

starting solution allows the algorithm to spend that same time on finding a really good solution. Therefore, we 

will investigate the impact of using different procedures to determine an initial solution. As explained in Section 

4.4.1.1, we have three different procedures: the random solution, the greedy clustering and the improved 

clustering.  

 

In this experiment, we test each procedure for the ten small test instances (see Section 5.2.1). The values for 

𝑘𝑚𝑎𝑥  are [8, 3] as determined in experiment 1 and the run time is not limited. For both the clustering 

procedures a value for the number of hubs 𝑘 needs to be given as input, therefore we test these procedures 

with the values of 4, 5, 6, 7, and 8 for parameter 𝑘. These are chosen by taking the ceiling of the average between 

the minimum number of hubs to open (1) and the maximum number of hubs (10), which is 6, and take a range 

of ± 2. The results of these runs are shown in Table 9 
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Table 9 Results of experiment 3: Impact of the initial solution 

  
Initial Solution 

Objective Time (s) 
Exp Min Max Mean St. Dev Min Max Mean St. Dev. 

3.1 Random 6,535 8,704 7,532 695 68 322 153 76 
3.2 GrdCls_k4 6,514 8,029 7,367 523 74 251 139 62 
3.3 GrdCls_k5 6,586 8,133 7,507 530 86 242 147 49 
3.4 GrdCls_k6 6,760 8,271 7,467 547 82 242 147 50 
3.5 GrdCls_k7 6,231 8,401 7,593 642 62 240 138 64 
3.6 GrdCls_k8 6,608 8,274 7,553 520 64 389 175 91 
3.7 ImprCls_k4 6,342 8,065 7,375 586 84 203 126 39 
3.8 ImprCls_k5 6,342 8,291 7,532 596 44 362 168 95 
3.9 ImprCls_k6 6,231 8,268 7,382 614 49 313 151 75 
3.10 ImprCls_k7 6,301 8,159 7,440 630 115 300 196 54 
3.11 ImprCls_k8 6,342 8,545 7,552 639 109 233 170 35 

 Avg. GrdCls 6540 8222 7497 552 74 273 149 63 
 Avg. ImprCls 6312 8265 7456 613 80 283 162 60 

 

From Table 9 it becomes clear that the random initial solution does not have the best mean objective 

performance and has the biggest variance (as can be expected). Therefore, this procedure for creating an initial 

solution is not deemed to be a good one. The greedy clustering procedure has mixed performance, both the 

best and worst mean objectives are found using the greedy clustering procedure. Also, the four best 

performances in terms of standard deviation are done by the greedy clustering. For the improved clustering 

procedure, we can see that the second, third, and fourth performances on the mean objective are the result of 

the improved clustering. Looking at the averages over the five greedy clustering experiments and the five 

improved clustering experiments, we can see that the improved clustering approach has a better average mean 

objective and also has a better average minimum mean objective. 

 

However, the detailed output (see Appendix C) showed that the initial solution generated by the greedy and 

improved clustering procedure is the same for each scenario. Thus, the better performance of the improved 

clustering cannot be explained by the starting solution since these are the same. It turns out that for seven 

opened hubs (exp. 3.10) the runs of the improved clustering procedure were able to reach better solutions, 

which largely explains the slightly better average performance of the improved clustering. Since the best 

solutions have either three or four opened hubs, the algorithm has to spend more time on improving the bad 

start solution of seven opened hubs and thus has a lower probability of finding good solutions. Due to the 

randomness in the search, the algorithm happened to find some better solutions when the initial solution was 

made using improved clustering. 

 

Concluding, although the performance of both clustering procedures is quite similar and the starting solutions 

are similar for each scenario, we will use the improved clustering. For larger instances, the improved clustering 

procedure could improve the initial solution compared to the greedy procedure. 

5.3.4 Experiment 4: Model validation 

Company X makes use of a route optimization software package to plan the daily routes. By using this software 

package, we can create estimates of future route lengths, durations, and the number of routes. These estimates 

can be used to test how accurate the routing costs are that the GVNS model takes into account when calculating 

the network costs. 

 

For this experiment, we use the larger test instances consisting of 1054 postal zones and considered four 

possible hub locations (see 5.2.2). Based on 10 days from the historical sales dataset, we created different 

scenarios in which one or more hubs are opened and each postal zone is serviced from an opened hub. The 

route optimization software gets a volume to be transported per postal zone and a set of opened hubs. The 

software determines which postal zone to service from which hub while searching for the minimal costs of 
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routes. The output of the software is a list with routes, from this list we can determine for each opened hub: 

which zones the hub services; how many routes are used; what the total travelled distance is; and what the 

total duration of the routes together is. This resulted in 165 hub-service area combinations and corresponding 

route distances, durations and number of routes. 

 

Consecutively, we used the Clarke & Wright savings algorithm to determine routes using the same hub-service 

area combinations. This resulted in a total route distance, total route duration, and a number of routes to 

compare with the outcomes of the route optimization software. For these three characteristics the mean 

percentage error (MPE) and mean absolution percentage error (MAPE) are determined. Since finding the best 

possible routing is not the goal of this model, we also determine the MPE and MAPE on the estimates relative 

to the mean of both the routing software as the Clarke & Wright heuristic. The idea is that when creating service 

areas using routing costs, the exact costs are as not as relevant as accurately reflecting changes in the service 

area in the routing costs. For example, if the routing software estimates the total distance at 1.5 times the 

average routing distance, the heuristic should also result in a distance of approximately 1.5 the average 

distance. The MPE and MAPE are calculated by equations ( 46 ) and ( 47 ), respectively, where 𝑆𝑖  indicates the 

value for distance, duration, or number of routes as determined by the optimization software, and 𝐻𝑖  the values 

found by the heuristic for the corresponding instance. 

𝑀𝑃𝐸 =
1

𝑘
∑

𝑆𝑖 − 𝐻𝑖

𝐻𝑖

𝑘

𝑖=1

⋅ 100% ( 46 ) 

 

𝑀𝐴𝑃𝐸 =
1

𝑘
∑

|𝑆𝑖 − 𝐻𝑖|

𝑆𝑖

𝑘

𝑖=1

⋅ 100% ( 47 ) 

 

The results are summarized in Table 10. First of all, there is some difference between the results of the 

optimization software and the heuristic. This is expected since Clarke & Wright is a greedy constructive 

heuristic and thus would not perform as well as the optimization software package. The negative MPE values 

show that the distance and duration found by the heuristic are generally higher than those of the optimization 

software. However, the deviations for the duration of the routes are not very high. Because the duration of 

routes is the major cost component, this implies that the heuristic method is suitable for our application. When 

looking at the performance relative to the mean better performance can be seen for both the distance and 

duration of routes. This shows that the heuristic does respond quite similarly to changes in service areas as the 

optimization software. Furthermore, based on the outcomes of both methods the corresponding 

costs are calculated. Especially the MPE for costs to mean is 

very low, implying that on average the outcomes of both 

methods in terms of costs change similarly when service 

areas change. 

 

All in all, because of the high values for the MPE and MAPE, it 

can be concluded that the Clarke & Wright savings heuristic 

does not perform as well as the optimization software, but 

this is expected. However, for the performance relative to the 

mean, the differences are much smaller. Therefore, it does 

reflect the changing service areas well enough to be used to 

assess the impact of service areas on the routing costs and 

can be used in our GVNS model.   

5.3.5 Experiment 5: Required number of simulations 

During the quick and intensive simulation modules of the simheuristic, the mean and average performance of 

a solution are determined. For these results to be of high enough quality, we must find the minimum required 

number of replications that need to be performed to get results with high enough significance. The quick 

simulation is performed during the GVNS, therefore we want to get a reasonable level of significance (e.g. 90% 

Table 10 Results of experiment 4: Model validation 

Performance C&W  
v. routing software 

MPE MAPE 

Distance -0.4514 0.4956 
Duration -0.0506 0.0988 
Number of Routes 0.1099 0.4836 
Costs -0.0842 0.2272 
Distance to Mean -0.0349 0.2287 
Duration to Mean 0.05 0.086 
Num. Routes to Mean 0.1721 0.4878 
Costs To Mean -1.884e-17 0.2082 
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or 95%) while not having to spend too much computation time. For the intensive simulation, we want to have 

a higher level of significance and the required computation time can be longer because these simulations are 

performed after the GVNS procedure. However, because the historical dataset includes about 500 days, there 

is a limit on the number of replications we can run. Therefore, we have to find the highest level of significance 

under 500 replications. 

 

To determine the required number of replications, the minimum number of replications must be found for 

which the half width of the confidence interval (𝛿) relative to the mean (�̅�) is smaller than the relative error 𝛾′ 

(Law, 2014). The mean and confidence interval are found by taking a given solution, i.e., fixed hub and service 

area allocation, for which 500 replications are performed. In each replication, a random day from the historical 

dataset is chosen and the routing is calculated using the Clarke and Wright heuristic after which the total 

network costs can be calculated. 

 

For each replication 𝑖, the mean network costs and the sample variance are calculated by taking 

 �̅� =
1

𝑖
⋅ ∑ 𝑥𝑘

𝑘=𝑖
𝑘=1  and 𝑆2 =

1

𝑖
⋅ ∑ (𝑥𝑘 − �̅�)2𝑘=𝑖

𝑘=1  respectively. Then for each replication, it is checked whether 

equation ( 48 ) holds. In this equation, the relative error is given by 𝛾′ =
𝛾

1+𝛾
 and the confidence interval half-

width is given by 𝛿 =  𝑡𝑛−1,1−
𝛼

2
⋅ √

𝑆2

𝑛
. The replication number for which the equation holds for both itself and all 

following replications is the minimum number of required replications. 

𝑡
𝑛−1,1−

𝛼
2

⋅ √𝑆2

𝑛

�̅�
<  𝛾′ 

( 48 ) 

We have tested this equation for three confidence levels 𝛼 = 0.05, 𝛼 = 0.02, and 𝛼 = 0.01. For each level of alpha 

holds that 𝛾 =  𝛼. The results are shown in Figure 23 Confidence interval half-width relative to the mean for α 

= 0.05, Figure 24 Confidence interval half-width relative to the mean for α = 0.02, and Figure 25 Confidence 

interval half-width relative to the mean for α = 0.01. From the figures, we can conclude that after 12 replications 

we can achieve a relative error on the average network costs of 0.05 at a significance level of 95%. Similarly, 

we find that for a significance level of 98%, we achieve a relative error of 0.02 after 106 replications and that 

after 500 replications the relative error has not passed below the required level and thus a significance of 99% 

cannot be achieved. 

 

Figure 23 Confidence interval half-width relative to the mean for α = 0.05 
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Performing 12 replications takes around 30 seconds, which is relatively short. Meaning that this is a suitable 

number of replications for the quick simulation that is performed during the GVNS. Furthermore, we can 

achieve a significance of 98% by performing 106 replications. This takes little under 300 seconds and is, 

therefore, suitable for intensive simulation that is performed when the GVNS is finished.  

 

 

 

 

 

Figure 24 Confidence interval half-width relative to the mean for α = 0.02 

Figure 25 Confidence interval half-width relative to the mean for α = 0.01 
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5.4 RESULTS OF SIMHEURISTIC-BASED GVNS 
In this experiment, we evaluate the results of running 

the proposed simheuristic-based GVNS on the real 

average instance to find the best network for Company 

X. The model is run with the settings as found in 

experiment 1, thus we use the values 8 and 3 for 𝑘max
0  

and 𝑘max
1  respectively. The initial solution is created 

using 10 opened hubs, similar to the number in the 

initial design. Furthermore, because of time restrictions 

for doing this research, the model run time is limited to 

48 hours to have results on time. Because of the 

strategic nature of the problem, the model does not 

have to be used very frequently and thus letting it run 

for a long time is no problem in practice. 

 

During the GVNS procedure, no promising solutions 

were found, meaning that the resulting solution is the 

initial solution. This solution was investigated more 

thoroughly during the intensive simulation. The 

resulting total network cost is on average €25,290 and 

has a standard deviation of €5,244.  

 

Looking at the solution, see Figure 26 Network design 

determined by the simheuristic-based GVNS, we see the 

ten opened hub locations. Three of these hubs are in locations we would not expect them to be. Firstly, in 

Section 2.2.3.2, we found that in the northern parts of the Netherlands, there is a relatively low demand per 

postal zone. However, three hubs are opened in the north, which we expect to be more than required. Secondly, 

the hub in the purple area is located quite northerly while we would expect it to be located near Amsterdam 

since there the workload is much higher. Lastly, the hub in the Zeeland province (lower left). This is an area 

with low population density and thus less workload. We would expect that moving this hub more westwards 

would yield a better solution. 

 

To test whether these changes would improve the solution, we manually removed the upper left hub, moved 

the hub with the purple service area near Amsterdam, and the Zeeland hub more westwards. This solution was 

investigated by putting it into the intensive simulation, which resulted in an average network cost of €24,739 

and a standard deviation of €5,387. Thus, in contrast to our expectations, the changed solution performs worse. 

 

Concluding, the simheuristic-based GVNS has not shown to be capable of finding better solutions than its initial 

solution. This initial solution has an average network cost of €25,290. Based on the workload analysis in Section 

2.2.3.4, we expected that we could manually improve this solution. However, based on the simulation results, 

we were not able to do so. 

5.5 RESULTS COMPARED WITH OTHER METHODS 
To be able to assess the added value of our proposed simheuristic-based GVNS approach, we need to compare 

its results to other methods. Therefore, we tested what the resulting network design would be if we would use 

a simple service area allocation method and we tested what the network costs would be with the hub locations 

of the initial plan. The difference in objective between these results and the simheuristic-based GVNS indicates 

its added value for Company X.  

Figure 26 Network design determined by the simheuristic-
based GVNS. 
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5.5.1 Experiment 7: Comparison of GVNS to a simple heuristic 

In this experiment, we test how the simheuristic-based GVNS compares to a method with a simple service area 

allocation method. Since this simple allocation is much less expensive in terms of computational efforts, it is 

useful for Company X to know whether similar or better results can be attained using the simple approach. 

 

We use the same GVNS framework, however, we 

do not use the operators on the service area level 

as presented in Section 4.4.2, but replace those 

with a single operator that will assign each postal 

zone to the opened hub that is closest by. This 

means that we implicitly assume that there exists 

a direct connection between each postal zone and 

the hub it is allocated to, making this approach 

similar to solving an HLP. However, in contrast to 

an HLP, the routing costs are determined still to 

make sure we can compare its outcomes to those 

of the simheuristic-based GVNS.  

 

The model is run with the same settings as the 

simheuristic-based GVNS. During the GVNS, one 

promising solution was found which was put into 

an intensive simulation. The resulting total 

network cost is on average €24,739 and with a 

standard deviation of €5,259.  This network 

design is shown Figure 27. In this experiment, the 

initial solution, which is the result of experiment 6, 

was improved by removing a hub in the north.  

 

We can conclude that the simple approach, under these settings, performs slightly better than our proposed 

simheuristic-based approach. Due to the simple allocation strategy for postal zones, less time is spent on finding 

better service areas and thus more time can be spent by the algorithm to adjust the hub locations. However, 

only closing one hub and not finding other promising solutions is not much of an improvement compared to 

the initial solution. Also, in experiment 6 we did not see an improvement. This could indicate that the search 

process on the hub level is not effective enough at the moment. 

 

Therefore, we have performed some additional tests where we have tested the simple approach for the ten test 

instances to be able to compare the simheuristic-based GVNS and the simple approach with each other, see 

Table 11. From these results, we can conclude that the performance of both approaches is very similar for the 

test instances with the simheuristic-based GVNS having a better mean objective.  

 
Table 11 Results of the simple approach compared to simheuristic-based GVNS for test instances 

  
Approach 

Objective Time (s) 
Exp Min Max Mean St. Dev. Min Max Mean St. Dev  

1.7 SH-GVNS 6,423 8,096 7,375 605 105 254 173 48 
7.2 Simple Method 6,236 8,238 7,377 645 51 146 91 27 

 

Concluding, using the simple allocation strategy we have found a solution that is slightly better than that of the 

simheuristic-based GVNS. This solution is found by closing one hub compared to the initial solution. Because 

both the GVNS and the simple approach do not find other promising solutions, we expect that the search on the 

hub level is not effective enough. To be able to compare the performances of both methods we applied the 

Figure 27 Network design using the simple allocation method. 
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simple approach to the test instances and compared those results with the outcomes of experiment 1.7. From 

these results, we can conclude that the simheuristic-based GVNS performs better. 

5.5.2 Experiment 8: Comparison to initial network design 

To determine the quality and added value of our simheuristic-based GVNS approach, we determined the 

performance of the initial network design. In this initial network, ten hub locations have been determined 

based on demand-weighted clustering rules (see Section 2.4).  

 

For this experiment, we have used simheuristic-based GVNS but left out the hub level. The ten hub locations of 

the initial design are given as input to the model, after which the service area and routing operators are applied 

to find the best possible service area allocation for these ten hubs. 

 

Because the hub level is excluded, the settings for the values of 𝑘𝑚𝑎𝑥  as determined in experiment 1 are not 

applicable. Instead of using a 𝑘𝑚𝑎𝑥  of 3 we chose to set the value of 𝑘𝑚𝑎𝑥  to 5, to allow for some more 

diversification so that there is a greater likelihood of finding the best service areas for the hub locations.  

 

The GVNS procedure found promising solutions, which were investigated more thoroughly in the intensive 

simulation. The six solutions performed very similarly, with the average over all scenarios ranging from 

€27,261 to €27,2977. Furthermore, we found that the standard deviation increased with the average value of 

each solution, so there is one solution which performs best in both the average as well as the variance over the 

network costs.  

 

The objective that is found while improving the initial network design is significantly higher than that of the 

simheuristic-based GVNS (+€1,972) and the simple allocation strategy (+€2,522). Meaning both those methods 

can find a better network design than the initial plan. 

5.6 SENSITIVITY ANALYSIS 
In this experiment, we test the impact of different inputs on the objective value of the GVNS. By doing so we get 

a better understanding of the impact of certain parameters and can test how sensitive the model is to these 

input parameters. If the model is sensitive to changes in certain input parameters, we know that Company X 

must either avoid or attend to changing that parameter. 

 

We have looked at different input parameters related to hubs, vehicles, process characteristics, and linehaul: 

hub opening cost; PPC duration; HD duration; fixed vehicle cost; hourly vehicle cost; cost per km; vehicle 

capacity; vehicle driving range; and the linehaul cost factor. Each parameter is tested for five levels 50%, 75%, 

100%, 125%, and 150%, each level is relative to the values that are used in the previous experiments. While 

changing the value of one parameter, all the other parameters are kept equal. Therefore, the settings for the 

100% case are the same for every single experiment.  

 

Furthermore, these experiments are run using the test instances of 300 postal zones and 10 possible hub 

locations (see Section 5.2.1). To better test the impact of the input parameters we fixed the starting solution for 

each run, in this way the quality of the starting solution cannot influence the performance of each run. Due to 

time constraints for performing this research, each experiment setting is only performed once.  The impact of 

changing the different input parameters on the objective value can be found in Table 12. Apart from the impact 

on the objective value, we looked at the effects on the number of opened hubs, total route length, total route 

duration, the total number of routes, and linehaul costs. These results can be found in Appendix F. 

 

 

 

 
7 The solutions found in this experiment can be seen in Appendix E. 
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Table 12 Results of experiment 9: Sensitivity Analysis 

 
Input parameter 

Objective 
Exp 50% 75% 100% 125% 150% 

9.1 Hub opening cost 6,692 7,255 7,861 8,444 8,941 
9.2 PPC duration 8,139 8,060 7,956 7,513 8,248 
9.3 HD duration 8,424 7,854 8,189 7,579 7,643 
9.4 Fixed vehicle cost 7,344 8,129 7,956 7,786 7,937 
9.5 Hourly vehicle cost 6,458 7,158 7,689 8,283 9,040 
9.6 Cost per km 7,678 7,796 7,825 7,866 7,691 
9.7 Vehicle capacity 7,876 8,228 7,634 7,894 7,989 
9.8 Vehicle driving range 8,132 8,188 7,642 7,560 7,711 
9.9 Linehaul cost factor 7,685 7,688 7,956 7,602 7,964 

 

The resulting objective values, which can be seen in Table 12, are not changing monotonically to the change of 

the investigated input factor. There are two possible causes that should be considered when looking at these 

results. Firstly, the experiments are only performed once and thus it can happen that due to randomness the 

presented outcome is a bad one. Secondly, the results in Table 12 should be looked at in combination with the 

results presented in Appendix F. Because of the large number of variables, the increase in cost from one 

parameter can be ‘compensated’ by making different choices on other cost factors.  

 

Furthermore, from both Table 12 and Appendix F it becomes clear that the two largest cost factors are the hub 

opening costs and routing costs, the linehaul costs are almost neglectable. It must be noted that in these 

objective values, the penalty costs are included. These are relatively high because the zones are spread over 

the Netherlands but with only 300 there is no reason to open more hubs and thus there will be large distance 

allocations. Looking at individual parameters, we see that there are four that have a big impact on the total 

costs. These are the hub opening cost, fixed vehicle cost, vehicle cost per hour, and cost per km. Especially the 

cost per hour has a very big impact on the routing costs that range from 2,258 to 5,218 for the costs ranging 

from 50% to 150%. This effect clearly shows in the objective, the range of the objective value is the largest for 

the cost per hour. The parameter that has the second biggest impact is the hub opening costs. When the hubs 

are cheaper, more are opened which leads to lower routing costs. 

 

While the changes in the fixed, km, and hourly costs for vehicles are represented in an expected way in the 

routing costs, the total route length, duration, and the number of routes do not respond similarly. Even more 

so, for the highest values of cost per km and cost per hour, the largest route lengths and durations are observed. 

We believe this is caused by the Clarke & Wright heuristic. In building the routes, the heuristic does not take 

the cost parameters into account. These are used only to create the cost and savings matrix, but these will not 

change the order in which stops are added to the routes since all values in these matrices change proportionally 

to the parameter value. The heuristic does take capacity, time, and driving range constraints into account. For 

changes in the time window (duration PPC, HD) and driving range parameters, we can see a monotonic change 

in route lengths, duration, and number of routes. For the capacity parameter, there is no clear pattern visible 

in the resulting route length, duration, and number of routes. We expect that for the used test instance, the 

vehicle capacity is not a constraining factor and therefore does not show the same results as time windows and 

driving range. 

 

Overall, we can see that the network costs consist mainly of routing and hub opening costs. Furthermore, we 

have seen that some parameters have a large impact on the total network cost, the biggest are the cost per hour 

for a vehicle and the costs of opening a hub. When Company X can keep these as low as possible, they can lower 

their network costs. The constraining factors of time windows and driving range also have a negative impact 

on the routing costs, so the larger they are the lower the routing costs. We would also expect this behaviour 

from the vehicle capacity, however, from these experiments we could not observe a clear relationship between 

the capacity and the routing costs, which might be due to the instance size. 
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5.7 CONCLUSION ON NUMERICAL EXPERIMENTS 
In this chapter, we aimed to answer the question ‘w at is t e  est logistics network for Company X in t e 

Net erlands?’. To do so, we first determined the model settings. We found that the settings that resulted in the 

best objective value were to use a kmax level of 8 and 3 for the hub and service area levels respectively. We also 

tested the performance of the operators and assessed the order in which they are applied on the hub level. We 

found that there is a difference in performance between the operators but using all of them yields better 

solutions than excluding one. On the hub level, the best order to apply the operators has been found to be 

‘add_hub’-‘remove_hub’-’swap_hubs’ Furthermore, we found a discrepancy between the routing costs of our 

routing heuristic and the routing software of Company X. However, it does seem reasonably able to capture the 

effect of changing service areas on routing, making it useful enough for our model. Also, we determined that 

the required number of replications in the quick and intensive simulations needed to be 12 and 106 to attain 

confidence intervals of 95% and 98% respectively. 

 

Looking at the network design resulting from the simheuristic-based GVNS, we see that the best network 

operates at €25,290 per day. Furthermore, we found that using a simple allocation method for the service areas 

performed slightly better at €24,739 and that the initial plan of Company X performs worse with on average 

€27,261 per day. Thus, the best network design has been found by the simple allocation method. 

 

Furthermore, while performing and analysing both experiments 6 and 7, we found some improvement points 

to increase the efficiency of the model. Currently, not a lot of new, better-performing, solutions are found, which 

can be caused by the operators being not efficient enough. Therefore we recommend improving the operators 

to not only make changes randomly. To be able to compare the simheuristic-based GVNS and the simple 

allocation method, we compared them based on the ten small test instances and found that the simheuristic-

based GVNS performed better. 

 

From performing all the different experiments, we can draw another conclusion. The GVNS takes a 

deterministic scenario as input. We found that the choice for this scenario has a great impact. We would want 

to include each postal zone in this scenario since each could be serviced in one of the processes. However, doing 

so leads to a scenario that contains many (small) stops, leading to way higher routing costs than what can be 

seen when solving a scenario taken from the historical dataset. Therefore, we have chosen to use the median 

day, based on the total volume, as the deterministic scenario for the GVNS. 
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6 CONCLUSIONS & RECOMMENDATIONS 

In this chapter, we summarise the research findings, draw conclusions and give recommendations for further 

research. We do so by answering the last research question ‘What are the conclusions of the research and 

recommendations for Company X?’.  

6.1 CONCLUSIONS 
In this research, we investigated how to model the most efficient and robust logistical network for Company X 

to enable them to achieve their ambition to be the most reliable, efficient, and sustainable parcel carrier in the 

Netherlands. To do so, the main research question is ‘W at is t e  est location of and allocation to depots suc  

that the logistical network of Company X operates at minimal costs?’. This model must be able to determine the 

network that minimizes the operational costs by including the costs for opening hubs, linehaul, and the cost of 

routes while also assessing its performance given multiple scenarios. 

 

We found that in the literature the hub location routing problem is the framework that describes all these 

elements and is therefore suitable for this model. We modelled the network of Company X using a MILP 

formulation. Due to the size of the problem, using exact optimization becomes intractable. Therefore, we have 

proposed a heuristic approach that combines elements from the fastest method found in literature and the 

most suitable method for the context of Company X. The resulting heuristic is a general variable neighbourhood 

search that aims to find the best configuration on the hub level as well as the service area level. Using a 

deterministic GVNS does not capture the stochasticity that exists in the workload of Company X. Because of the 

strategic nature of the problem as well as the desire of Company X to have a robust network design, 

incorporating stochasticity is required. Therefore, we have expanded the GVNS approach into a simheuristic-

based GVNS in which the most promising solutions found by the GVNS are simulated to assess their 

performance under multiple scenarios of parcel volumes. 

 

In the numerical experiments, the simheuristic-based GVNS found a network that consists of ten hub locations 

and operates, on average, at €25,290 per day. The simple service area allocation method resulted in a network 

consisting of ten hub locations that operates, on average, at €24,739 per day, which is slightly better. The 

results were also compared to the initial plan for the network design that was made for Company X. This initial 

plan consists of ten hub locations and achieves an average performance of €27,261 per day, which is 8.4% 

worse than the simple method. Therefore, we can say that we have created a model that improves the 

operational cost of the network. 

6.2 RECOMMENDATIONS FOR FUTURE RESEARCH AND LIMITATIONS 
During this research, we found interesting results that will help Company X in the design of the logistics 

network. However, we also faced limitations and had to make decisions that could be solved in future works.  

6.2.1 Limitations 

A limitation of the chosen implementation of the GVNS framework lies in the different levels, namely the hub, 

service area and routing levels. We have chosen to implement separate GVNS on different levels of the problem. 

This allowed us to determine the best possible service area allocation for a given set of hub locations. 

Furthermore, using different levels makes the algorithm applicable to both strategic decisions (when hub 

locations are to be determined) and tactical decisions (when hub locations are fixed). The downside however 

is that the algorithm is spending computation time on improving the service area allocation of a bad set of hub 

locations. It would be more beneficial to, somehow, be able to assess the solution quality in an earlier stage so 

that computation time is spent more usefully. 

 

Furthermore, assumptions are made for both the model and the input data. These assumptions have an impact 

on the outcomes of the model and thus can be a limitation. An example is the set of 30 possible hub locations 
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that were generated. These determine the possible outcomes and choosing 30 other locations might have given 

us different results.   

6.2.2 Recommendations for future work 

Partly due to the above-mentioned limitations, the model and the tool built into this research can be further 

improved to provide more value to its users and insights into hub location routing problems. We have two 

recommendations that relate to the usage of the model and five recommendations to improve the model, which 

are listed in order of complexity.  

 

In terms of using the model, the first recommendation is to research which deterministic scenario is best to use 

in the GVNS. We found that using a suitable scenario is of great importance since it can have a large impact on 

the network costs as well as impose a bias on the resulting solutions. Furthermore, a single scenario is never a 

perfect representation, therefore we recommend performing the GVNS on multiple different deterministic 

scenarios. This will result in a more elaborate list of promising solutions, which differ more strongly from each 

other, and thus a higher likelihood of finding the best logistical network. Secondly, in the experiments, only one 

improved solution was found. We recommend changing the termination criteria of the model such that while 

the time limit has not been reached, the diversification parameter 𝑘 is reset so that the search continues. 

 

With regard to improving the model, we have several recommendations. The first is to adjust the hub level 

operators to not only make changes randomly but also include some logic on which the choice for hubs to add, 

remove, or swap is based. By doing so, better solutions might be found before the termination criteria are met. 

The second recommendation is to model the hub opening cost in a more advanced way. In this research, we 

assumed a fixed opening cost for each hub independent of hub size. In reality, the cost of opening a hub is very 

much dependent on the size of the hub. Both in terms of asset costs as well as the cost of handling the volumes. 

Therefore, modelling the hub costs more accurately by, for example, piecewise linear formulations results in a 

more accurate model. The third recommendation is to draw the scenarios in the simulation procedure from 

probability distributions instead of using historical days as scenarios. This will make the model more scalable 

for the future and allows for flexibility in the scenarios that can be tested. The fourth recommendation is 

expanding the problem formulation as a multi-allocation problem. The current model formulation allows postal 

zones to be serviced from only one hub. However, it is interesting to investigate whether allowing postal zones 

to be serviced from multiple hubs leads to higher operational/routing efficiency due to better usage of vehicle 

capacity. The fifth recommendation is to find a better alternative for the Clarke & Wright heuristic to determine 

the routing cost. The major disadvantage of this method is that it requires more computation time when the 

problem size increases. On top of that, it is a constructive heuristic and thus will always yield an overestimation 

of the actual routing costs. Therefore, the model would perform better when a more accurate and scalable 

method would be implemented to determine the routing in this model. The last recommendation is that we 

recommend Company X to look into a way to incorporate the placing of and allocation to collection points in 

the routing. When the model is able to do so, it becomes possible to determine the best locations for these 

collection points which would further improve the efficiency of Company X’s network. 

6.3 CONTRIBUTIONS TO LITERATURE AND PRACTICE 
In this research, we propose a simheuristic-based general variable neighbourhood search to solve the many-

to-many hub location routing problem. This research contributes to the HLRP literature in multiple ways. There 

are not many publications on the hub location routing problem. The combination of hub locations, service areas 

and routing costs is relevant to be researched since these decisions are related to each other. By applying the 

HLRP to the network design of Company X, we expand the research on the HLRP. Also, apart from many authors 

in the HLRP field, our research was applied to a real-life (sized) case of Company X. The size of the case of 

Company X is large, presenting a challenge in the solving of the HLRP which is typically hard to solve because 

it is essentially a combination of two NP-Hard problems. Still, this research contributed to the formulation of 

models that are able to solve this problem for real-life instances. Additionally, to the best of our knowledge, the 

largest instance in the HLRP literature to date consisted of 2042 locations (Wasner & Zäpfel, 2004). The case 

in this research is considerably larger with a total of 4070 postal zones that are considered. On top of that, this 
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research considers three logistical processes in contrast to the regular collection and delivery processes. 

Therefore, this research contributes to the literature by providing a method to solve HLRPs on a much larger 

instance. Lastly, this research is the first to propose a simheuristic approach for the HLRP. By doing so we 

created a model that is able to yield robust results given uncertain future scenarios and is also able to deal with 

HLRPs in a context of strong fluctuations in workload. Additionally, the number of authors that have included 

stochasticity in their HLRP formulations is to the best of our knowledge only one, and therefore this research 

is the second to include stochasticity in solving the HLRP. 

 

Apart from the contributions to literature, we also provided a practical contribution to Company X. First of all, 

we determined an improved network with a cost reduction of 8.4%. Besides this, and maybe even of more 

value, the tool that we built in this research can be used by company X to achieve its ambition. The tool that 

was developed is a very detailed model, containing many elements related to the design of the logistical 

network. In the implementation, a lot of work is put into making sure the model is expandable and adaptable 

to future situations. Therefore, this tool enables Company X to do much more detailed network analyses in the 

future and will help them to achieve their goals of having a robust, efficient, and sustainable logistical network. 
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Appendix A. RESULTS OF EXPERIMENT 1 
Table 13 Results of experiment 1 

Run 𝒌𝐦𝐚𝐱
𝟎  𝒌𝐦𝐚𝐱

𝟏  Value Run 
time 
(s) 

Start hubs Open hubs Total route 
length 

Total 
route 
duration 

Total 
num. 
routes 

1 3 3 7,688 86 [0, 2, 3, 7, 8, 9] [3, 8, 9] 2,170 114 15 
2 3 3 6,341 47 [0, 2, 3, 7, 8, 9] [0, 7, 8] 1,813 93 14 
3 3 3 7,624 70 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,954 127 16 
4 3 3 8,591 94 [0, 2, 3, 7, 8, 9] [3, 4, 5, 7] 2,089 128 15 
5 3 3 6,961 36 [0, 2, 3, 7, 8, 9] [3, 7, 8, 9] 1,840 102 15 
6 3 3 7,060 45 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,827 102 14 
7 3 3 8,149 51 [0, 2, 3, 7, 8, 9] [3, 8, 9] 2,164 128 16 
8 3 3 8,276 121 [0, 2, 3, 7, 8, 9] [0, 6, 7] 2,250 125 17 
9 3 3 7,144 45 [0, 2, 3, 7, 8, 9] [2, 7, 8, 9] 1,618 92 13 
10 3 3 6,952 138 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,929 117 15 
11 3 5 7,632 131 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,216 114 15 
12 3 5 6,748 43 [0, 2, 3, 7, 8, 9] [2, 3, 7, 8, 9] 1,668 90 14 
13 3 5 7,600 197 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,994 128 16 
14 3 5 8,531 127 [0, 2, 3, 7, 8, 9] [0, 2, 3, 6, 8] 1,927 125 16 
15 3 5 7,933 62 [0, 2, 3, 7, 8, 9] [0, 1, 3, 8, 9] 1,773 99 15 
16 3 5 7,102 142 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,939 106 14 
17 3 5 8,378 135 [0, 2, 3, 7, 8, 9] [0, 2, 3, 8] 2,080 127 16 
18 3 5 8,036 252 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,187 125 17 
19 3 5 6,894 71 [0, 2, 3, 7, 8, 9] [0, 3, 6] 1,743 97 13 
20 3 5 6,953 86 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,929 118 15 
21 3 8 7,686 330 [0, 2, 3, 7, 8, 9] [3, 8, 9] 2,180 114 15 
22 3 8 6,946 131 [0, 2, 3, 7, 8, 9] [0, 2, 3, 7, 8] 1,671 90 15 
23 3 8 7,778 214 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,056 129 16 
24 3 8 7,911 184 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,085 128 15 
25 3 8 7,809 174 [0, 2, 3, 7, 8, 9] [2, 3, 9] 2,069 106 15 
26 3 8 7,014 290 [0, 2, 3, 7, 8, 9] [0, 3, 6] 1,920 105 14 
27 3 8 8,057 291 [0, 2, 3, 7, 8, 9] [0, 1, 2, 3, 6] 1,851 118 16 
28 3 8 8,314 102 [0, 2, 3, 7, 8, 9] [0, 2, 7, 8] 2,077 122 17 
29 3 8 6,942 162 [0, 2, 3, 7, 8, 9] [0, 7, 8] 1,712 97 13 
30 3 8 6,953 166 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,929 118 15 
31 5 3 7,688 270 [0, 2, 3, 7, 8, 9] [3, 8, 9] 2,170 114 15 
32 5 3 6,412 58 [0, 2, 3, 7, 8, 9] [3, 7, 8, 9] 1,752 91 14 
33 5 3 7,624 107 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,954 127 16 
34 5 3 7,829 175 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,073 128 15 
35 5 3 6,898 122 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,925 104 15 
36 5 3 7,172 57 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,907 105 14 
37 5 3 8,094 127 [0, 2, 3, 7, 8, 9] [0, 2, 3, 6] 2,052 128 16 
38 5 3 8,603 103 [0, 2, 3, 7, 8, 9] [0, 1, 4, 7, 8] 1,950 121 17 
39 5 3 6,894 99 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,730 97 13 
40 5 3 7,290 351 [0, 2, 3, 7, 8, 9] [0, 3] 2,149 121 15 
41 5 5 8,226 137 [0, 2, 3, 7, 8, 9] [2, 3, 7, 8, 9] 1,985 110 15 
42 5 5 6,624 158 [0, 2, 3, 7, 8, 9] [0, 7, 8] 1,871 93 14 
43 5 5 7,824 236 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,051 129 16 
44 5 5 7,881 247 [0, 2, 3, 7, 8, 9] [3, 8, 9] 2,042 127 15 
45 5 5 6,897 157 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,925 104 15 
46 5 5 7,060 468 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,827 102 14 
47 5 5 7,930 315 [0, 2, 3, 7, 8, 9] [2, 3, 6, 9] 2,010 126 16 
48 5 5 8,509 186 [0, 2, 3, 7, 8, 9] [1, 2, 4, 7] 2,141 123 17 
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Table 13 Results of experiment 1 

Run 𝒌𝐦𝐚𝐱
𝟎  𝒌𝐦𝐚𝐱

𝟏  Value Run 
time 
(s) 

Start hubs Open hubs Total route 
length 

Total 
route 
duration 

Total 
num. 
routes 

49 5 5 7,261 113 [0, 2, 3, 7, 8, 9] [0, 7] 1,933 100 13 
50 5 5 7,351 276 [0, 2, 3, 7, 8, 9] [2, 3, 9] 1,994 118 15 
51 5 8 7,634 346 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,217 114 15 
52 5 8 6,038 293 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,796 92 14 
53 5 8 7,770 397 [0, 2, 3, 7, 8, 9] [3, 4, 8] 2,011 127 16 
54 5 8 7,948 440 [0, 2, 3, 7, 8, 9] [1, 3, 4, 8] 1,864 123 15 
55 5 8 6,961 137 [0, 2, 3, 7, 8, 9] [3, 7, 8, 9] 1,840 102 15 
56 5 8 7,060 235 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,827 102 14 
57 5 8 8,134 243 [0, 2, 3, 7, 8, 9] [3, 8, 9] 2,130 127 16 
58 5 8 7,785 351 [0, 2, 3, 7, 8, 9] [3, 8, 9] 2,125 124 17 
59 5 8 7,144 67 [0, 2, 3, 7, 8, 9] [2, 7, 8, 9] 1,618 92 13 
60 5 8 7,394 217 [0, 2, 3, 7, 8, 9] [2, 3, 9] 2,003 118 15 
61 8 3 8,096 131 [0, 2, 3, 7, 8, 9] [2, 6, 7, 9] 2,065 112 15 
62 8 3 6,423 120 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,843 93 14 
63 8 3 7,624 210 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,954 127 16 
64 8 3 8,065 181 [0, 2, 3, 7, 8, 9] [0, 6, 7, 8] 2,013 122 16 
65 8 3 6,893 105 [0, 2, 3, 7, 8, 9] [0, 3, 7, 8] 1,817 102 15 
66 8 3 6,902 207 [0, 2, 3, 7, 8, 9] [0, 6, 7] 1,985 107 15 
67 8 3 8,031 190 [0, 2, 3, 7, 8, 9] [2, 6, 7, 9] 1,997 127 16 
68 8 3 7,736 254 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,178 125 17 
69 8 3 6,894 135 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,730 97 13 
70 8 3 7,089 202 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,974 118 15 
71 8 5 7,690 424 [0, 2, 3, 7, 8, 9] [3, 8, 9] 2,125 114 15 
72 8 5 6,255 237 [0, 2, 3, 7, 8, 9] [0, 7, 8] 1,815 90 14 
73 8 5 7,845 218 [0, 2, 3, 7, 8, 9] [3, 7, 8, 9] 1,891 126 16 
74 8 5 8,337 166 [0, 2, 3, 7, 8, 9] [2, 3, 7, 8, 9] 1,893 124 16 
75 8 5 6,897 288 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,925 104 15 
76 8 5 7,128 319 [0, 2, 3, 7, 8, 9] [0, 2, 7] 2,041 107 15 
77 8 5 8,157 259 [0, 2, 3, 7, 8, 9] [2, 3, 6, 7, 9] 1,932 124 16 
78 8 5 8,035 461 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,184 125 17 
79 8 5 7,296 146 [0, 2, 3, 7, 8, 9] [7, 8, 9] 1,747 97 13 
80 8 5 6,952 245 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,929 117 15 
81 8 8 7,652 483 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,164 113 15 
82 8 8 6,387 627 [0, 2, 3, 7, 8, 9] [0, 1, 3, 8] 1,674 90 14 
83 8 8 7,822 469 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,049 129 16 
84 8 8 7,910 360 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,084 128 15 
85 8 8 6,898 228 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,925 104 15 
86 8 8 7,360 424 [0, 2, 3, 7, 8, 9] [0, 3] 2,205 110 15 
87 8 8 8,366 206 [0, 2, 3, 7, 8, 9] [2, 7, 8, 9] 2,057 128 16 
88 8 8 7,977 606 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,185 125 17 
89 8 8 7,466 212 [0, 2, 3, 7, 8, 9] [0, 7, 8, 9] 1,634 95 13 
90 8 8 7,708 316 [0, 2, 3, 7, 8, 9] [2, 7, 9] 2,036 119 15 

 

  



APPENDIX B RESULTS OF EXPERIMENT 2    

 

77 

 

Appendix B. RESULTS OF EXPERIMENT 2 
Table 14 Results of experiment 2: Operator performance 

Run Operator Value Run time (s) Run Operator Value Run time (s) 

1 None 8,096 131 46 move_zone_PC2 7,172 86 
2 None 6,423 120 47 move_zone_PC2 8,053 118 
3 None 7,624 210 48 move_zone_PC2 7,733 183 
4 None 8,065 181 49 move_zone_PC2 6,894 67 
5 None 6,893 105 50 move_zone_PC2 7,089 235 
6 None 6,902 207 51 move_zone_PC3 7,956 127 
7 None 8,031 190 52 move_zone_PC3 6,388 54 
8 None 7,736 254 53 move_zone_PC3 7,850 81 
9 None 6,894 135 54 move_zone_PC3 7,880 154 
10 None 7,089 202 55 move_zone_PC3 7,237 65 
11 add_hub 8,607 171 56 move_zone_PC3 7,060 80 
12 add_hub 6,830 67 57 move_zone_PC3 8,049 214 
13 add_hub 8,224 149 58 move_zone_PC3 7,715 204 
14 add_hub 7,884 146 59 move_zone_PC3 7,374 56 
15 add_hub 6,893 77 60 move_zone_PC3 7,212 121 
16 add_hub 7,337 115 61 swap_zones 8,311 311 
17 add_hub 8,091 96 62 swap_zones 6,342 83 
18 add_hub 8,043 105 63 swap_zones 8,147 90 
19 add_hub 6,942 81 64 swap_zones 7,828 107 
20 add_hub 6,952 137 65 swap_zones 7,298 53 
21 remove_hub 8,887 18 66 swap_zones 7,604 68 
22 remove_hub 7,062 16 67 swap_zones 8,784 147 
23 remove_hub 8,603 17 68 swap_zones 8,037 198 
24 remove_hub 8,899 14 69 swap_zones 6,838 96 
25 remove_hub 7,952 13 70 swap_zones 7,712 114 
26 remove_hub 8,240 21 71 move_zone_to_hub_Allp 7,903 210 
27 remove_hub 8,865 23 72 move_zone_to_hub_Allp 6,231 92 
28 remove_hub 8,525 30 73 move_zone_to_hub_Allp 8,272 111 
29 remove_hub 7,866 11 74 move_zone_to_hub_Allp 8,468 82 
30 remove_hub 8,505 17 75 move_zone_to_hub_Allp 6,915 198 
31 swap_hubs 8,134 77 76 move_zone_to_hub_Allp 7,298 71 
32 swap_hubs 6,398 37 77 move_zone_to_hub_Allp 7,985 151 
33 swap_hubs 7,624 152 78 move_zone_to_hub_Allp 8,037 147 
34 swap_hubs 8,254 57 79 move_zone_to_hub_Allp 6,963 60 
35 swap_hubs 7,616 77 80 move_zone_to_hub_Allp 7,248 169 
36 swap_hubs 7,258 73 81 move_zone_to_hub_1p 7,879 151 
37 swap_hubs 8,537 75 82 move_zone_to_hub_1p 6,748 47 
38 swap_hubs 7,918 210 83 move_zone_to_hub_1p 7,598 130 
39 swap_hubs 6,974 73 84 move_zone_to_hub_1p 7,829 105 
40 swap_hubs 7,629 124 85 move_zone_to_hub_1p 7,259 82 
41 move_zone_PC2 7,653 139 86 move_zone_to_hub_1p 7,226 100 
42 move_zone_PC2 6,694 91 87 move_zone_to_hub_1p 8,186 172 
43 move_zone_PC2 7,724 116 88 move_zone_to_hub_1p 8,081 78 
44 move_zone_PC2 7,836 68 89 move_zone_to_hub_1p 6,975 76 
45 move_zone_PC2 7,473 75 90 move_zone_to_hub_1p 7,090 98 
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Table 15 Results of experiment 2: Operator order  

Run Operator 
Order 

Value Run 
time (s) 

start hubs open hubs Total 
route 
length 

Total 
route 
duration 

Total 
num. 
routes 

1 AH-RH-SH 7,652 277 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,164 113 15 
2 AH-RH-SH 6,051 229 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,803 92 14 
3 AH-RH-SH 7,623 121 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,954 127 16 
4 AH-RH-SH 7,881 337 [0, 2, 3, 7, 8, 9] [3, 8, 9] 2,042 127 15 
5 AH-RH-SH 6,893 88 [0, 2, 3, 7, 8, 9] [0, 3, 7, 8] 1,817 102 15 
6 AH-RH-SH 7,015 165 [0, 2, 3, 7, 8, 9] [0, 3, 6] 1,920 106 14 
7 AH-RH-SH 8,091 135 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,147 128 16 
8 AH-RH-SH 7,733 242 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,173 125 17 
9 AH-RH-SH 6,894 166 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,730 97 13 
10 AH-RH-SH 7,089 121 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,975 118 15 
11 AH-SH-RH 7,990 248 [0, 2, 3, 7, 8, 9] [0, 3, 6] 2,309 117 15 
12 AH-SH-RH 6,749 114 [0, 2, 3, 7, 8, 9] [1, 3, 8] 1,865 94 14 
13 AH-SH-RH 8,007 152 [0, 2, 3, 7, 8, 9] [3, 6, 8, 9] 1,897 126 16 
14 AH-SH-RH 8,022 145 [0, 2, 3, 7, 8, 9] [3, 4, 5, 8] 1,930 124 15 
15 AH-SH-RH 7,238 107 [0, 2, 3, 7, 8, 9] [0, 7, 8] 1,959 104 15 
16 AH-SH-RH 7,172 137 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,907 105 14 
17 AH-SH-RH 8,803 288 [0, 2, 3, 7, 8, 9] [0, 1, 3] 2,262 125 16 
18 AH-SH-RH 8,037 198 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,187 125 17 
19 AH-SH-RH 6,871 128 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,743 95 13 
20 AH-SH-RH 6,947 77 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,927 117 15 
21 RH-AH-SH 7,709 101 [0, 2, 3, 7, 8, 9] [3, 8, 9] 2,170 114 15 
22 RH-AH-SH 6,398 53 [0, 2, 3, 7, 8, 9] [3, 7, 8, 9] 1,745 91 14 
23 RH-AH-SH 7,624 86 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,954 127 16 
24 RH-AH-SH 8,334 71 [0, 2, 3, 7, 8, 9] [2, 7, 8, 9] 2,028 127 15 
25 RH-AH-SH 6,893 50 [0, 2, 3, 7, 8, 9] [0, 3, 7, 8] 1,817 102 15 
26 RH-AH-SH 6,912 162 [0, 2, 3, 7, 8, 9] [0, 6, 7] 1,939 106 14 
27 RH-AH-SH 8,087 181 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,148 128 16 
28 RH-AH-SH 8,023 104 [0, 2, 3, 7, 8, 9] [2, 3, 8, 9] 2,005 121 17 
29 RH-AH-SH 7,261 79 [0, 2, 3, 7, 8, 9] [0, 7] 1,933 101 13 
30 RH-AH-SH 7,284 217 [0, 2, 3, 7, 8, 9] [3, 6, 8, 9] 1,877 113 15 
31 RH-SH-AH 7,633 100 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,217 114 15 
32 RH-SH-AH 6,052 78 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,803 92 14 
33 RH-SH-AH 8,148 85 [0, 2, 3, 7, 8, 9] [0, 2, 7, 8] 1,977 127 16 
34 RH-SH-AH 8,012 100 [0, 2, 3, 7, 8, 9] [0, 3, 6, 8] 1,995 121 16 
35 RH-SH-AH 7,328 94 [0, 2, 3, 7, 8, 9] [2, 3, 8, 9] 1,862 103 15 
36 RH-SH-AH 7,219 130 [0, 2, 3, 7, 8, 9] [2, 7, 9] 1,951 106 15 
37 RH-SH-AH 8,294 81 [0, 2, 3, 7, 8, 9] [0, 2, 7, 8] 2,052 127 16 
38 RH-SH-AH 8,035 118 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,184 125 17 
39 RH-SH-AH 7,027 95 [0, 2, 3, 7, 8, 9] [3, 7, 8, 9] 1,606 95 13 
40 RH-SH-AH 7,338 199 [0, 2, 3, 7, 8, 9] [7, 8, 9] 1,946 117 15 
41 SH-AH-RH 7,634 132 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,217 114 15 
42 SH-AH-RH 6,556 59 [0, 2, 3, 7, 8, 9] [0, 2, 3, 8] 1,721 91 14 
43 SH-AH-RH 8,101 118 [0, 2, 3, 7, 8, 9] [1, 2, 3, 4] 2,030 128 16 
44 SH-AH-RH 7,828 89 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,073 128 15 
45 SH-AH-RH 7,328 96 [0, 2, 3, 7, 8, 9] [2, 3, 8, 9] 1,862 103 15 
46 SH-AH-RH 7,243 106 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,929 106 15 
47 SH-AH-RH 8,091 179 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,147 128 16 
48 SH-AH-RH 8,082 152 [0, 2, 3, 7, 8, 9] [3, 7, 8, 9] 2,047 123 17 
49 SH-AH-RH 6,934 109 [0, 2, 3, 7, 8, 9] [0, 7, 8] 1,719 96 13 
50 SH-AH-RH 7,077 251 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,972 118 15 
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Table 15 Results of experiment 2: Operator order  

Run Operator 
Order 

Value Run 
time (s) 

start hubs open hubs Total 
route 
length 

Total 
route 
duration 

Total 
num. 
routes 

51 SH-RH-AH 7,936 68 [0, 2, 3, 7, 8, 9] [3, 7, 8, 9] 2,044 112 15 
52 SH-RH-AH 6,231 84 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,803 93 14 
53 SH-RH-AH 7,599 106 [0, 2, 3, 7, 8, 9] [0, 3, 8] 1,994 128 16 
54 SH-RH-AH 7,829 77 [0, 2, 3, 7, 8, 9] [0, 3, 8] 2,073 128 15 
55 SH-RH-AH 7,410 57 [0, 2, 3, 7, 8, 9] [0, 3, 8, 9] 1,833 101 15 
56 SH-RH-AH 7,085 121 [0, 2, 3, 7, 8, 9] [2, 6, 7, 9] 1,749 102 15 
57 SH-RH-AH 8,287 133 [0, 2, 3, 7, 8, 9] [2, 3, 8, 9] 2,041 128 16 
58 SH-RH-AH 8,036 148 [0, 2, 3, 7, 8, 9] [0, 7, 8] 2,187 125 17 
59 SH-RH-AH 7,301 123 [0, 2, 3, 7, 8, 9] [2, 3, 6, 9] 1,676 96 13 
60 SH-RH-AH 6,952 154 [0, 2, 3, 7, 8, 9] [3, 8, 9] 1,929 117 15 
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Appendix C. RESULTS OF EXPERIMENT 3 
Table 16 Results of experiment 3 

Run Procedure Value Run 
time 
(s) 

Start hubs Open hubs Total 
route 
length 

Total 
route 
duration 

Total 
num. 
routes 

uu1 Random 8,095 195 [5, 7, 1, 3, 4] [0, 1, 3, 8] 2,079 112 15 
2 Random 6,535 177 [9, 0, 4] [0, 1, 7, 8] 1,688 91 14 
3 Random 7,599 118 [5, 7, 9, 3, 6, 2, 8, 4, 0] [0, 3, 8] 1,994 128 16 
4 Random 8,704 68 [9, 2, 5, 1, 4, 0, 8, 3, 7] [1, 2, 3, 6, 9] 1,895 125 16 
5 Random 6,961 89 [9, 2, 4, 7, 8, 6] [3, 7, 8, 9] 1,840 102 15 
6 Random 7,163 106 [3, 1, 6, 0, 4, 2, 8, 7] [3, 6, 8, 9] 1,738 101 14 
7 Random 8,363 218 [1, 9] [2, 7, 8, 9] 2,059 128 16 
8 Random 7,723 322 [9, 8, 5, 4, 6, 1] [0, 3, 8] 2,173 125 17 
9 Random 6,894 115 [0, 9, 8, 4, 3] [0, 3, 6] 1,743 97 13 
10 Random 7,284 121 [3, 1, 6, 0, 8, 7, 5] [3, 6, 8, 9] 1,875 113 15 
11 GrdCls_k4 7,634 142 [0, 3, 7, 8] [0, 3, 8] 2,217 114 15 
12 GrdCls_k4 6,513 138 [0, 3, 7, 8] [1, 3, 8, 9] 1,720 91 14 
13 GrdCls_k4 7,624 251 [0, 3, 7, 8] [3, 8, 9] 1,954 127 16 
14 GrdCls_k4 7,829 172 [0, 3, 7, 8] [0, 3, 8] 2,073 128 15 
15 GrdCls_k4 6,893 85 [0, 3, 7, 8] [0, 3, 7, 8] 1,817 102 15 
16 GrdCls_k4 6,983 74 [0, 2, 6, 7] [0, 2, 6, 7] 1,819 104 15 
17 GrdCls_k4 7,945 231 [0, 2, 6, 7] [2, 3, 6, 9] 1,973 125 16 
18 GrdCls_k4 8,029 110 [0, 3, 7, 8] [0, 3, 7, 8] 2,095 123 17 
19 GrdCls_k4 6,878 107 [0, 3, 6, 7] [0, 3, 8] 1,746 95 13 
20 GrdCls_k4 7,338 78 [0, 3, 7, 8] [7, 8, 9] 1,946 117 15 
21 GrdCls_k5 7,835 122 [0, 3, 4, 7, 8] [0, 3, 4, 8] 2,110 108 15 
22 GrdCls_k5 6,586 101 [0, 1, 3, 7, 8] [0, 3] 2,024 95 14 
23 GrdCls_k5 7,822 179 [0, 3, 6, 7, 8] [0, 7, 8] 2,049 129 16 
24 GrdCls_k5 8,095 134 [0, 3, 4, 7, 8] [0, 6, 7, 8] 2,006 121 16 
25 GrdCls_k5 7,371 86 [0, 3, 6, 7, 8] [0, 3, 5, 8] 1,877 103 15 
26 GrdCls_k5 7,014 159 [0, 2, 3, 6, 7] [0, 3, 6] 1,920 106 14 
27 GrdCls_k5 8,133 242 [0, 2, 3, 6, 7] [3, 8, 9] 2,130 127 16 
28 GrdCls_k5 7,945 201 [0, 3, 6, 7, 8] [0, 3, 6, 8] 2,100 123 17 
29 GrdCls_k5 7,180 110 [0, 1, 3, 6, 7] [0, 3] 1,939 100 13 
30 GrdCls_k5 7,090 135 [0, 3, 4, 7, 8] [0, 3, 8] 1,974 118 15 
31 GrdCls_k6 7,861 133 [0, 2, 3, 4, 7, 8] [3, 4, 5, 8] 2,112 107 15 
32 GrdCls_k6 6,760 172 [0, 1, 2, 3, 7, 8] [2, 3, 6, 9] 1,796 93 14 
33 GrdCls_k6 7,599 242 [0, 2, 3, 6, 7, 8] [0, 3, 8] 1,994 128 16 
34 GrdCls_k6 8,271 87 [0, 3, 4, 6, 7, 8] [3, 4, 7, 8] 1,990 126 15 
35 GrdCls_k6 7,193 164 [0, 3, 4, 6, 7, 8] [3, 4, 8] 2,025 106 15 
36 GrdCls_k6 7,172 112 [0, 1, 2, 3, 6, 7] [0, 3, 8] 1,907 105 14 
37 GrdCls_k6 8,197 113 [0, 1, 2, 3, 6, 7] [1, 2, 4, 6, 7] 1,911 126 16 
38 GrdCls_k6 7,768 177 [0, 1, 3, 6, 7, 8] [3, 8, 9] 2,113 123 17 
39 GrdCls_k6 6,893 82 [0, 1, 2, 3, 6, 7] [0, 3, 6] 1,743 97 13 
40 GrdCls_k6 6,952 184 [0, 3, 4, 6, 7, 8] [3, 8, 9] 1,929 117 15 
41 GrdCls_k7 7,926 200 [0, 2, 3, 4, 5, 7, 8] [3, 8, 9] 2,249 115 15 
42 GrdCls_k7 6,231 104 [0, 1, 2, 3, 4, 7, 8] [0, 3, 8] 1,803 93 14 
43 GrdCls_k7 7,822 224 [0, 2, 3, 4, 6, 7, 8] [0, 7, 8] 2,049 129 16 
44 GrdCls_k7 8,401 62 [0, 1, 3, 4, 6, 7, 8] [1, 3, 4, 6, 7, 8] 1,717 121 16 
45 GrdCls_k7 7,642 66 [0, 2, 3, 4, 6, 7, 8] [1, 2, 3, 4, 7, 8] 1,693 99 15 
46 GrdCls_k7 7,234 106 [0, 1, 2, 3, 4, 6, 7] [0, 1, 6, 7] 1,843 104 14 
47 GrdCls_k7 8,133 240 [0, 1, 2, 3, 4, 6, 7] [0, 3, 6] 2,182 130 16 
48 GrdCls_k7 8,141 151 [0, 1, 2, 3, 6, 7, 8] [0, 1, 3, 6, 7] 1,948 120 17 
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Table 16 Results of experiment 3 

Run Procedure Value Run 
time 
(s) 

Start hubs Open hubs Total 
route 
length 

Total 
route 
duration 

Total 
num. 
routes 

49 GrdCls_k7 7,251 95 [0, 1, 2, 3, 4, 6, 7] [0, 1, 3, 8] 1,629 95 13 
50 GrdCls_k7 7,151 132 [0, 1, 3, 4, 6, 7, 8] [0, 3, 8] 1,991 118 15 
51 GrdCls_k8 7,690 146 [0, 2, 3, 4, 5, 6, 7, 8] [3, 8, 9] 2,125 114 15 
52 GrdCls_k8 6,608 389 [0, 1, 2, 3, 4, 6, 7, 8] [0, 3] 2,009 94 14 
53 GrdCls_k8 7,863 200 [0, 1, 2, 3, 4, 6, 7, 8] [1, 3, 4, 8] 1,878 126 16 
54 GrdCls_k8 7,881 200 [0, 1, 2, 3, 4, 6, 7, 8] [3, 8, 9] 2,042 127 15 
55 GrdCls_k8 7,240 98 [0, 2, 3, 4, 5, 6, 7, 8] [0, 3, 4, 8] 1,866 103 15 
56 GrdCls_k8 7,172 206 [0, 1, 2, 3, 4, 6, 7, 9] [0, 3, 8] 1,907 105 14 
57 GrdCls_k8 8,205 158 [0, 1, 2, 3, 4, 5, 6, 7] [3, 6, 8, 9] 2,042 126 16 
58 GrdCls_k8 8,274 95 [0, 1, 2, 3, 4, 6, 7, 8] [0, 5, 6, 7] 2,046 121 17 
59 GrdCls_k8 7,296 64 [0, 1, 2, 3, 4, 6, 7, 9] [7, 8, 9] 1,747 97 13 
60 GrdCls_k8 7,307 193 [0, 1, 2, 3, 4, 6, 7, 8] [0, 7, 8] 1,997 119 15 
61 ImprCls_k4 7,890 141 [0, 3, 7, 8] [0, 3, 7, 8] 2,103 112 15 
62 ImprCls_k4 6,342 84 [0, 3, 7, 8] [0, 7, 8] 1,813 93 14 
63 ImprCls_k4 7,624 130 [0, 3, 7, 8] [3, 8, 9] 1,954 127 16 
64 ImprCls_k4 7,909 203 [0, 3, 7, 8] [0, 7, 8] 2,081 128 15 
65 ImprCls_k4 6,830 104 [0, 3, 7, 8] [0, 3, 8] 1,902 103 15 
66 ImprCls_k4 6,983 123 [0, 2, 6, 7] [0, 2, 6, 7] 1,819 104 15 
67 ImprCls_k4 8,065 90 [0, 2, 6, 7] [0, 2, 6, 7] 2,029 127 16 
68 ImprCls_k4 7,877 179 [0, 3, 7, 8] [0, 3, 6] 2,228 124 17 
69 ImprCls_k4 6,894 91 [0, 3, 6, 7] [0, 3, 6] 1,743 97 13 
70 ImprCls_k4 7,336 117 [0, 3, 7, 8] [0, 3, 4, 8] 1,888 117 16 
71 ImprCls_k5 8,060 268 [0, 3, 4, 7, 8] [0, 3, 6] 2,263 116 16 
72 ImprCls_k5 6,342 105 [0, 1, 3, 7, 8] [0, 7, 8] 1,813 93 14 
73 ImprCls_k5 7,924 147 [0, 3, 6, 7, 8] [0, 1, 3, 8] 1,891 126 16 
74 ImprCls_k5 8,291 199 [0, 3, 4, 7, 8] [0, 3, 6] 2,093 128 15 
75 ImprCls_k5 7,375 62 [0, 3, 6, 7, 8] [0, 3, 6, 7, 8] 1,780 101 15 
76 ImprCls_k5 6,908 174 [0, 2, 3, 6, 7] [0, 6, 7] 1,998 107 15 
77 ImprCls_k5 8,031 137 [0, 2, 3, 6, 7] [2, 6, 7, 9] 1,997 127 16 
78 ImprCls_k5 7,701 362 [0, 3, 6, 7, 8] [0, 3, 8] 2,186 125 17 
79 ImprCls_k5 7,256 44 [0, 1, 3, 6, 7] [0, 1, 6, 7] 1,640 95 13 
80 ImprCls_k5 7,429 181 [0, 3, 4, 7, 8] [0, 6, 7] 2,030 119 15 
81 ImprCls_k6 7,686 218 [0, 2, 3, 4, 7, 8] [3, 8, 9] 2,180 114 15 
82 ImprCls_k6 6,231 160 [0, 1, 2, 3, 7, 8] [0, 3, 8] 1,803 93 14 
83 ImprCls_k6 7,599 133 [0, 2, 3, 6, 7, 8] [0, 3, 8] 1,993 128 16 
84 ImprCls_k6 7,828 119 [0, 3, 4, 6, 7, 8] [0, 3, 8] 2,073 128 15 
85 ImprCls_k6 6,830 117 [0, 3, 4, 6, 7, 8] [0, 3, 8] 1,902 103 15 
86 ImprCls_k6 6,913 193 [0, 1, 2, 3, 6, 7] [0, 6, 7] 1,939 106 14 
87 ImprCls_k6 8,268 49 [0, 1, 2, 3, 6, 7] [0, 1, 2, 3, 6, 7] 1,809 118 16 
88 ImprCls_k6 7,993 313 [0, 1, 3, 6, 7, 8] [0, 3, 5, 8] 2,028 122 18 
89 ImprCls_k6 7,180 99 [0, 1, 2, 3, 6, 7] [0, 3] 1,939 100 13 
90 ImprCls_k6 7,290 109 [0, 3, 4, 6, 7, 8] [3, 4, 5, 8] 1,935 117 16 
91 ImprCls_k7 8,159 186 [0, 2, 3, 4, 5, 7, 8] [0, 3, 8, 9] 2,062 112 15 
92 ImprCls_k7 6,301 178 [0, 1, 2, 3, 4, 7, 8] [0, 3, 6] 1,895 94 14 
93 ImprCls_k7 7,585 234 [0, 2, 3, 4, 6, 7, 8] [0, 3, 8] 1,995 127 16 
94 ImprCls_k7 7,948 300 [0, 1, 3, 4, 6, 7, 8] [1, 3, 4, 8] 1,864 123 15 
95 ImprCls_k7 6,898 130 [0, 2, 3, 4, 6, 7, 8] [3, 8, 9] 1,925 104 15 
96 ImprCls_k7 6,990 182 [0, 1, 2, 3, 4, 6, 7] [0, 6, 7] 2,007 107 15 
97 ImprCls_k7 8,039 115 [0, 1, 2, 3, 4, 6, 7] [0, 1, 2, 3, 6] 1,892 119 16 
98 ImprCls_k7 8,023 179 [0, 1, 2, 3, 6, 7, 8] [2, 3, 8, 9] 2,005 121 17 
99 ImprCls_k7 6,916 232 [0, 1, 2, 3, 4, 6, 7] [0, 6, 7] 1,729 97 13 
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Table 16 Results of experiment 3 

Run Procedure Value Run 
time 
(s) 

Start hubs Open hubs Total 
route 
length 

Total 
route 
duration 

Total 
num. 
routes 

100 ImprCls_k7 7,543 219 [0, 1, 3, 4, 6, 7, 8] [1, 2, 4, 7] 1,880 116 16 
101 ImprCls_k8 7,922 233 [0, 2, 3, 4, 5, 6, 7, 8] [3, 4, 8] 2,250 111 15 
102 ImprCls_k8 6,342 155 [0, 1, 2, 3, 4, 6, 7, 8] [0, 7, 8] 1,813 93 14 
103 ImprCls_k8 7,823 174 [0, 1, 2, 3, 4, 6, 7, 8] [0, 7, 8] 2,051 129 16 
104 ImprCls_k8 7,881 125 [0, 1, 2, 3, 4, 6, 7, 8] [3, 8, 9] 2,042 127 15 
105 ImprCls_k8 7,193 180 [0, 2, 3, 4, 5, 6, 7, 8] [3, 4, 8] 2,025 106 15 
106 ImprCls_k8 7,441 203 [0, 1, 2, 3, 4, 6, 7, 9] [0, 8] 2,285 112 15 
107 ImprCls_k8 8,545 178 [0, 1, 2, 3, 4, 5, 6, 7] [0, 2, 5, 7] 2,149 129 16 
108 ImprCls_k8 8,133 109 [0, 1, 2, 3, 4, 6, 7, 8] [0, 1, 6, 7] 2,016 120 17 
109 ImprCls_k8 7,292 174 [0, 1, 2, 3, 4, 6, 7, 9] [3, 4, 5, 8] 1,709 97 13 
110 ImprCls_k8 6,947 170 [0, 1, 2, 3, 4, 6, 7, 8] [3, 8, 9] 1,927 117 15 
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Appendix D. RESULTS OF EXPERIMENTS 6, 7, AND 8 
Table 17 Results of experiments 6, 7, 8 

 Solution 
 Simheuristic GVNS 

Experiment 6 
Simple method 
Experiment 7 

Initial Plan 
Experiment 8 

Hub costs 6,061 5,455 6,061 
Linehaul costs 5,553 5,550 5,420 
Routing costs 12,614 12,656 12,582 
DO-point cost 727 727 727 
Penalty cost 334 351 2,471 
Total 25,271 24,739 27,261 
    
Num. hubs 2 1 2 
Num. routes 83 83 84 
Total route km 8,448 8,521 8,354 
Total route duration 320 322 319 
Hub costs 6,061 5,455 6,061 
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Appendix E. RESULTS OF EXPERIMENT 8 

The contents of this appendix have been shielded because of their relevance to the company. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 1 Solution 2 
Average € 27,261.18 Average € 27,263.98 
Standard Deviation € 5,606.83 Standard Deviation € 5,609.16 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution 3 Solution 4 
Average € 27,277.03 Average € 27,296.48 
Standard Deviation € 5,611.75 Standard Deviation € 5,624.62 

 

Shielded for the public version 

 

 

Shielded for the public version 
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Solution 5 Solution 6 
Average € 27,296.48 Average € 27,296.67 
Standard Deviation € 5,624.63 Standard Deviation € 5,625.05 

 

  

Shielded for the public version 
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Appendix F. RESULTS OF EXPERIMENT 9 
Table 18 Results of experiment 9: Sensitivity analysis - objective 

 
Input parameter 

Objective 
Exp 50% 75% 100% 125% 150% 

9.1 Hub opening cost 6,692 7,255 7,861 8,444 8,941 
9.2 PPC duration 8,139 8,060 7,956 7,513 8,248 
9.3 HD duration 8,424 7,854 8,189 7,579 7,643 
9.4 Fixed vehicle cost 7,344 8,129 7,956 7,786 7,937 
9.5 Hourly vehicle cost 6,458 7,158 7,689 8,283 9,040 
9.6 Cost per km 7,678 7,796 7,825 7,866 7,691 
9.7 Vehicle capacity 7,876 8,228 7,634 7,894 7,989 
9.8 Vehicle driving range 8,132 8,188 7,642 7,560 7,711 
9.9 Linehaul cost factor 7,685 7,688 7,956 7,602 7,964 

 

Table 19 Results of experiment 9: Sensitivity analysis – opened hubs8 

 
Input parameter 

Number of opened hubs 
Exp 50% 75% 100% 125% 150% 

9.1 Hub opening cost 1.70 1.13 1.13 0.85 0.85 
9.2 PPC duration 1.13 1.13 1.13 0.85 1.42 
9.3 HD duration 0.85 0.85 1.13 0.85 1.13 
9.4 Fixed vehicle cost 0.85 0.85 1.13 0.85 0.85 
9.5 Hourly vehicle cost 1.13 1.13 0.85 0.85 0.85 
9.6 Cost per km 1.13 0.85 1.13 1.13 0.85 
9.7 Vehicle capacity 0.85 1.13 0.85 1.13 0.85 
9.8 Vehicle driving range 0.85 1.13 0.85 0.85 1.13 
9.9 Linehaul cost factor 0.85 0.85 1.13 0.85 1.13 

 

Table 20 Results of experiment 9: Sensitivity analysis –Hub opening costs 

 
Input parameter 

Hub opening costs 
Exp 50% 75% 100% 125% 150% 

9.1 Hub opening cost 1,818 1,818 2,424 2,273 2,727 
9.2 PPC duration 2,424 2,424 2,424 1,818 3,030 
9.3 HD duration 1,818 1,818 2,424 1,818 2,424 
9.4 Fixed vehicle cost 1,818 1,818 2,424 1,818 1,818 
9.5 Hourly vehicle cost 2,424 2,424 1,818 1,818 1,818 
9.6 Cost per km 2,424 1,818 2,424 2,424 1,818 
9.7 Vehicle capacity 1,818 2,424 1,818 2,424 1,818 
9.8 Vehicle driving range 1,818 2,424 1,818 1,818 2,424 
9.9 Linehaul cost factor 1,818 1,818 2,424 1,818 2,424 

 

  

 
8 Relative to the average 
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Table 21 Results of experiment 9: Sensitivity analysis – Linehaul costs 

 
Input parameter 

Linehaul costs 
Exp 50% 75% 100% 125% 150% 

9.1 Hub opening cost 40 30 30 38 28 
9.2 PPC duration 38 37 39 37 31 
9.3 HD duration 27 37 38 28 37 
9.4 Fixed vehicle cost 24 31 39 24 24 
9.5 Hourly vehicle cost 30 38 37 37 37 
9.6 Cost per km 29 27 38 26 24 
9.7 Vehicle capacity 28 38 24 37 38 
9.8 Vehicle driving range 37 29 37 24 38 
9.9 Linehaul cost factor 37 37 39 25 38 

 

Table 22 Results of experiment 9: Sensitivity analysis – Total routing costs 

 
Input parameter 

Total routing costs 
Exp 50% 75% 100% 125% 150% 

9.1 Hub opening cost 3,473 3,585 3,585 3,866 3,642 
9.2 PPC duration 3,820 3,746 3,715 3,691 3,625 
9.3 HD duration 3,962 3,805 3,723 3,567 3,551 
9.4 Fixed vehicle cost 3,452 3,508 3,715 3,932 4,084 
9.5 Hourly vehicle cost 2,258 2,919 3,754 4,462 5,219 
9.6 Cost per km 3,401 3,714 3,698 3,707 3,913 
9.7 Vehicle capacity 3,676 3,721 3,780 3,579 3,866 
9.8 Vehicle driving range 3,894 3,646 3,707 3,782 3,547 
9.9 Linehaul cost factor 3,750 3,753 3,715 3,785 3,573 

 

Table 23 Results of experiment 9: Sensitivity analysis – Total number of routes 

 
Input parameter 

Total number of routes 
Exp 50% 75% 100% 125% 150% 

9.1 Hub opening cost 15 15 15 15 15 
9.2 PPC duration 16 16 15 15 15 
9.3 HD duration 18 16 15 14 13 
9.4 Fixed vehicle cost 15 15 15 15 15 
9.5 Hourly vehicle cost 15 15 15 15 15 
9.6 Cost per km 15 15 15 15 15 
9.7 Vehicle capacity 15 15 15 15 15 
9.8 Vehicle driving range 17 16 15 15 15 
9.9 Linehaul cost factor 15 15 15 15 15 
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Table 24 Results of experiment 9: Sensitivity analysis – total route length 

 
Input parameter 

Total route length (km) 
Exp 50% 75% 100% 125% 150% 

9.1 Hub opening cost 1,852 2,112 2,112 2,309 2,205 
9.2 PPC duration 2,124 2,059 2,057 2,099 1,935 
9.3 HD duration 2,391 2,226 2,123 2,107 1,910 
9.4 Fixed vehicle cost 2,164 2,252 2,057 2,217 2,217 
9.5 Hourly vehicle cost 2,082 2,072 2,125 2,154 2,182 
9.6 Cost per km 2,004 2,210 2,056 2,112 2,179 
9.7 Vehicle capacity 2,243 2,100 2,217 2,082 2,309 
9.8 Vehicle driving range 2,279 2,150 2,139 2,206 2,030 
9.9 Linehaul cost factor 2,172 2,170 2,057 2,228 2,041 

 

Table 25 Results of experiment 9: Sensitivity analysis – routing duration 

 
Input parameter 

Total route duration (hr.) 
Exp 50% 75% 100% 125% 150% 

9.1 Hub opening cost 104 107 107 117 109 
9.2 PPC duration 114 112 113 113 109 
9.3 HD duration 118 114 113 108 110 
9.4 Fixed vehicle cost 113 109 112 114 114 
9.5 Hourly vehicle cost 108 108 114 113 115 
9.6 Cost per km 106 115 112 108 114 
9.7 Vehicle capacity 110 112 114 107 117 
9.8 Vehicle driving range 116 108 112 114 106 
9.9 Linehaul cost factor 114 114 112 114 107 

 

 

 


