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Management summary 
There are many supplies involved in providing care for patients in healthcare organizations. A hospital's 

procurement department is responsible for supplying these goods. This is a complicated task, as the 

inventory concerns a wide variety of items, tight operating schedules, and limited storage capacity. 

Furthermore, hospitals need to deal with emergency patients and other unpredictable circumstances. 

Proper inventory management and good agreements with the suppliers are necessary to guarantee the 

availability of materials. When this is not the case, it leads to disruptions of the main processes. In the 

best case, this only leads to emergency orders, which take more time and are costly. However, it can 

also affect the quality of care when materials are not available in time, which should be avoided. On the 

contrary, overstocking supplies would result in unnecessary costs and waste. Furthermore, it is 

impossible due to hospital storage capacity limitations. 

This research aims to improve local inventory management in a healthcare setting, such that the on-hand 

availability of surgical supplies increases and the amount of overstocking and number of emergency 

orders decrease. In this research, we develop a simulation model that provides users with intuitive 

experiences as they can observe how the inventory behaves over time. We perform a case study on the 

storerooms of the operations room (OR) department of Isala to determine the applicability in practice. 

Isala Hospital provides care to the inhabitants living in, or close to, the region Zwolle. Therefore, our 

research question is: 

“How can the on-hand availability of surgical supplies at the Operating Room department of Isala be 

increased by improving its inventory management?” 

The supplies in this research are classified as stock or purchase items. The first step in improving 

inventory management is by applying clear replenishment policies for these items. We performed a 

literature study to find alternative replenishment policies.  

Stock items have a constant review period and a short lead time. The lead time for stock items is usually 

less than a day as Isala is supplied multiple times per day from the external warehouse by Isala’s 

logistical partner, Hospital Logistics (HL). The mean usage of these items is higher than the usage of 

purchase items, and therefore, we use a 2-bin Kanban policy with equal bin sizes, denoted as an (R, r, 

Q) system, where the reorder point (r) equals the order quantity (Q). This system decreases the workload 

of employees and the built-in stock rotation reduces the risk of products expiring, leading to better 

ergonomics. 

Purchase items have a constant review period and stochastic lead time. The items can be classified as 

slow movers due to having a daily usage of fewer than ten units. We use an order-up-to-level 

replenishment policy with a variable order size, denoted as an (R, s, S) system to use the available 

capacity efficiently. 

In the next step, we developed a simulation model for OR department inventory management. This 

simulation model uses the developed search heuristics to find the optimal or near-optimal order 

parameters per item. The optimal order parameters found by the simulation model and its search 

heuristic significantly outperform the case study’s current order parameters in terms of item availability 

and costs. The average availability increases from 98.92% to at least 99.93% and the costs reduce by at 

least 8%. The general tendency was that for most items the current order parameters resulted in high 

inventory levels, and, consequently, high holding costs. On the contrary, other supplies in the current 

situation have order parameters which are too low. As a result, the shortage costs and number of 

stockouts increase.  

For stock items, the optimal parameters can reduce the average shortage costs by approximately €258 

per year, while the yearly average ordering- and holding costs would only slightly increase by €26 and 

€3, respectively. The optimal parameters reduce the yearly average ordering- and shortage costs of 
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purchase items by €87 and €28, respectively compared to the initial parameters, while the average 

holding costs would only slightly increase by €3 per year. When we compare the results of the service-

level model to the current parameters for all the items in the dataset (n=1,754), the average availability 

of items increases from 98.92% to 99.93%, and the total costs of the inventory system reduce by 

approximately €265,000 a year (from €3,190,000 to €2,925,000). The optimal parameters of the model 

with a cost objective increase the average availability of items to 100.00% and reduces the total costs of 

the inventory by approximately €355,000 a year compared to the current order parameters. 

By adapting the model’s base scenario, several “What-if” scenarios are conducted to observe the impact 

on the inventory system. The scenario with a varying lead time for supplies that are not delivered by HL 

shows that there are 50 purchase items with a decrease in their order parameters. These items have the 

potential to store them at HL, however, storing items at HL can entail additional costs. The other 

experiment in which we vary the demand variability shows that less variability reduces the required 

space and average costs for items with daily usage of at least ten units by 15% and 9%, respectively. 

We have four recommendations to increase the on-hand availability of surgical supplies at the OR 

department of Isala. First, we recommend implementing a 2-bin Kanban system as the replenishment 

policy for stock items and a (R, s, S) replenishment policy for the purchase items. Next, we recommend 

the OR department of Isala to use the simulation model in their decision-making about setting the order 

parameters. The order parameters should be regularly revised to cope with non-stationary demand. We 

recommend doing this at least once every six months, which requires updating the demand distributions 

and other input data. Next, it is recommended to capture the actual demand for items and the service 

level of the inventory system. More accurate data further improves the performance of the simulation 

model. Last, we recommend including the package sizes of items to find more accurate order parameters 

and possible faster computation times. 

This research contributes to the literature on healthcare inventory management. We developed a 

simulation model similar to Zhang et al. (2014). We expanded their work by including fractional lead 

times in the model. Furthermore, the search algorithm we use to find near-optimal and optimal order 

parameters is a simplified version of the algorithm developed by Kapalka et al. (1999), while we 

extended the algorithm of Esmaili et al. (2019) by also considering costs. In addition, we formulated 

two variants of the algorithm, as the 2-bin Kanban system and (R, s, S) system have varying 

characteristics concerning the order parameters. We performed a case study on the storerooms of the 

OR department of Isala to determine the model’s applicability in practice. 
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1. Introduction 
This chapter describes the context of the research conducted in five sections. Section 1.1 provides 

background information about Isala Zwolle. Section 1.2 outlines the research motivation. Then, Section 

1.3 introduces the problem. Based on this analysis, the problem-solving approach and research objective 

are defined in Section 1.4. The last section describes the scope and deliverables of the research (Section 

1.5). 

1.1 Background 
This section introduces the company, the item types, and the inventory system in the current situation. 

1.1.1 Isala Zwolle 

The healthcare sector is complex, with a wide variety of services provided to patients by healthcare 

providers. Isala is a healthcare organisation in the region of Zwolle. They provide hospital care to the 

690,000 inhabitants that live in, or close to, this region (Dillmann, 2022). At Isala the patient value 

comes in the first place. They aim to optimally recover, maintain, and enhance the patient’s quality of 

life. The organisation’s core principles are professionalism, heart and soul, and transparency. Isala 

hospital is one of the twenty-seven top clinical hospitals in the Netherlands, with a total of 1,250 

available beds (STZ, 2022). There are 427 medical specialists (394 full-time equivalents (FTE)), and a 

total of 6,797 employees (5,081 FTE) working at Isala (Isala, 2022). The two hospitals of Isala are in 

Zwolle and Meppel, these are their main facilities. The hospital in Zwolle has an operating room (OR) 

capacity of twenty, from which there are fourteen clinical ORs and six ORs available for day treatments. 

The hospital in Meppel consists of five day-treatment ORs. The other facilities of Isala, which are 

outpatient clinics, are in Kampen, Heerde, and Steenwijk.  

Without supplies, the employees of Isala cannot perform their daily tasks of helping the patients. Figure 

1 visualises the supply chain of Isala Zwolle, where the local inventory is stored in the “Department 

storerooms” and “Point of use” locations (Ahmadi et al., 2018). With the build of their new hospital in 

2012, Isala decided to change to a just-in-time (JIT) inventory system. This strategy was first introduced 

by hospitals in the US and Canada during the 1990s to reduce on-hand inventory and costs (Neve & 

Schmidt, 2022; Rivard-Royer et al., 2002). With this strategy, Isala receives the goods as closely as 

possible when needed, and therefore, has more space in the hospital for patient care. However, this 

means that they had to adjust their inventory system. Instead of a central warehouse where employees 

could pick up everything when needed, Isala outsourced its warehouse. 

 

Figure 1: Visualisation of the supply chain of Isala Zwolle. 
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The external warehouse is managed by its logistics partner, Hospital Logistics (HL). Most of the items 

the hospital uses are supplied by HL. However, some supplies are supplied directly to Isala. A more 

detailed description of the different items and suppliers is given in the next section (Section 1.1.2). 

When supplies arrive at Isala, the logistics department of Isala receives them. They bring the supplies 

to the correct department. At that department, there is another logistic employee who stores them in the 

right storerooms. The logistics department does this for all departments of Isala except for the OR 

departments. Supplies are brought to the front of the OR department by logistics; however, the OR 

department has its own logistics department, which takes the supplies and stores them in the right 

storerooms. Within an OR, no supplies are stored. When items are needed, they are picked from the 

department storerooms by an employee of OR logistics. Vila-Parrish & Ivy (2013) would describe the 

supply chain of Isala Zwolle (Figure 1) as a two-echelon supply chain. Echelons are defined as physical 

locations where supplies are stocked.  

1.1.2 Types of items 

A hospital uses many materials, from medical supplies and pharmaceuticals to equipment. The OR 

department storerooms only store surgical supplies. Therefore, only these items are included in the 

research. We distinguish three types of disposable surgical supplies: (1) stock items, (2) purchase items, 

and (3) scan-relevant items. These items are all used on a frequent base and ordered from one of the 

suppliers of Isala. Surgical instruments could also be seen as surgical supplies. However, these are not 

ordered but instead sterilized after usage in the sterile processing department, after which they can be 

used again. Therefore, we exclude these from this research.  

Stock items are products that are stored in bulk in the external warehouse of the hospital. These items 

are used daily with a relatively high volume. The items are supplied to Isala by HL multiple times per 

day. This means that HL should have enough supplies in its warehouse to fulfil the daily orders of Isala. 

However, the procurement department of Isala has contact with the suppliers about the product details 

and decides which products HL must store in the warehouse. In this way, when HL wants to replenish 

its stock levels, it only needs to place an order at the predetermined supplier.  

Purchase articles are products that are not stocked in the external warehouse of the hospital and are, 

therefore, called “non-stock” items (Landry & Beaulieu, 2013). HL may deliver purchase articles to 

Isala. When this happens, the supplier ships it to the cross-dock of HL. From there, HL sends the 

products to Isala without stocking them in the external warehouse. This is the case with articles with a 

low usage rate. However, there are three reasons why another supplier than HL "directly" sends the item 

to Isala. First, the purchase articles should be stored in a cold environment, which HL cannot provide. 

Next, the items are too big. HL delivers the products in roll containers. However, when an article does 

not fit in these containers, HL cannot supply it. Lastly, the product is too expensive. If at least one of 

the reasons is applicable for the product, it is sent to Isala by another supplier than HL.  

Scan-relevant items are also called “non-stock” items. The hospital stores them in the storerooms of a 

department. The items have a barcode such that they can be scanned when used. When this happens, the 

system’s inventory level of the item decreases. Most of the time, scan-relevant items are expensive. 

Therefore, the hospital wants to track the inventory levels of these products. Products that are also 

considered scan-relevant are implants. These are not always expensive; however, all implants have a 

unique barcode, which makes them traceable to the patient. Hospitals are obligated to register the 

implants by government regulations (Rijksoverheid, 2022). In this way, a patient can receive help 

quickly when there is something wrong with their implant. 

1.1.3 Inventory system 

As mentioned in Section 1.1.1, Isala has a two-echelon supply chain where supplies are stored at the 

external warehouse and the department storerooms at Isala. Isala owns the items at both locations; 

however, it is only responsible for the inventory (policy) at the department storerooms (in the hospital), 
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which are the warehouses at the lowest echelon where the local inventory is stored (Ahmadi et al., 2018). 

Therefore, Isala has a multi-echelon inventory system environment with an inventory control approach 

defined as independent single-echelon inventory control policies (Hausman & Erkip, 1994). The number 

of rooms varies for different departments, which could be divided over multiple levels. This is also the 

case for the OR department, which has eight storerooms divided over two floors. OR logistics employees 

prepare the containers with the items for a particular treatment. They retrieve the necessary items from 

the storerooms at the OR department. A surgery requires different supplies when performed by 

individual physicians, based on their preference card. The orders from all storerooms are combined into 

one order and sent to the supplier to replenish the department storerooms. In this system, the department 

storerooms are responsible for their stocking policies, independent of each other, suppliers, and the 

external warehouse. Therefore, they can apply replenishment policies that require a multi-item, single-

echelon system. Currently, Isala uses different control policies for (1) stock and purchase items and (2) 

scan-relevant items, see Table 1.  

Table 1: Inventory control policy per item type. 

Item type Inventory control policy Symbol 

Stock items Periodic review (R, s, S) 
 

Purchase items Periodic review (R, s, S) 
 

Scan-relevant items Continuous review (r, Q) 

 

The inventory policy for stock and purchase items is described as a periodic review system with symbols 

(R, s, S) (Ahmadi et al., 2018). Every day (R), an OR logistics employee checks the inventory by going 

by all storeroom shelves. If the inventory level is equal to or less than the “Min” value s, the employee 

scans the item to replenish the inventory up to the “Max” value S. The “Min” and “Max” parameter 

values differ per item. Even though the parameters are set, employees frequently overrule them based 

on personal experience or because physicians ask them to do so. Therefore, items may be ordered before 

the “Min” level is reached and can be ordered to a level above the “Max” level. The stock items are 

delivered on the same day unless there is a backorder, whereas purchase items have longer lead times. 

Scan-relevant items follow a different inventory policy, which can be described as a continuous review 

system with symbols (r, Q) (Ahmadi et al., 2018). As mentioned in Section 1.1.2, Isala uses a bar-code 

scanning system in an open-inventory environment. Nurses scan the item when it is used in the OR, 

which automatically decreases the number of stock items in the system. Hawa (2020) describes the bar-

code system as an active tracking system as items need to be scanned to be registered in the system. 

Whenever an inventory level for a given item reaches or goes below the “Min” value r, an order is placed 

with a constant size Q. 

1.2 Availability of surgical supplies 
Equipment and supplies are required to perform treatments. A hospital's procurement department is 

responsible for supplying these goods. This is a complicated task, as the inventory concerns a wide 

variety of items, the operating schedules are tight, and there is limited storage capacity. Furthermore, 

hospitals need to deal with emergency patients and other unpredictable circumstances. Currently, there 

is a shortage of resources all over the world (RTL Nieuws, 2022). Due to this global shortage, not all 

surgical supplies are available on time. When the initial product is not available, the procurement 

departments must look for an alternative product to ensure that treatments can still be performed as 

scheduled. Proper inventory management and good agreements with the suppliers are necessary to 

guarantee the availability of materials. When this is not the case, it leads to disruptions of the main 

processes. In the best case, this only leads to emergency orders, which take more time and are costly. 

However, it can also affect the quality of care when materials are not available in time, which should be 

avoided. Therefore, Isala wants to increase the availability of surgical supplies to their desired service 

level (see Section 2.4). 
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To have high availability of surgical supplies, the supplies should be on-hand when they are needed. 

However, due to space limitations, order sizes should be limited. Furthermore, large order sizes can lead 

to overstocking, which would result in unnecessary costs and waste. Therefore, the right balance of the 

desired service level and inventory levels is necessary. 

1.3 Problem analysis 
As described in Section 1.2, Isala’s goal is that treatments should not be delayed or cancelled due to the 

unavailability of surgical supplies. The problem analysis focuses on the inventory for the ORs in the OR 

department. This inventory contains more items than other hospital inventories as it must also deal with 

emergency patients. Currently, most of the orders with urgency are from that department. Emergency 

orders exist to prevent stock-outs; however, such orders cost the hospital additional time and money. In 

addition, it is also not an option to overstock the inventory, due to space restrictions. Different problems 

trigger an emergency order or an overstock of the department storerooms. From observing the 

inventories at the OR department and interviewing the employees, we indicate the causes and effects of 

those actions and display them in a problem cluster, see Figure 2. 

 

Figure 2: Problem cluster. 

The problem cluster visualizes the relations between the problems. From this, we find the core problem 

solved in this research. Heerkens & van Winden (2017) define the core problem as the problem whose 

solution will make a real difference. 

The core problem is “The current inventory management is not optimal”. An effect of this is that the 

inventory parameters of items are not optimal. For certain products, it means that the “Min” value is too 

low, which triggers employees to order items in advance. On the other hand, other products have too 

many items in stock. These stocks are slow movers but take up too much space and can expire when 

they are not used for a long time. In addition, in the current inventory management system, only scan-
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relevant items are tracked. The stock levels at the storerooms are unknown for stock and purchase items. 

In combination with the parameters, which are not optimal, stock levels can become too low. Then 

employees would order items with urgency to prevent stock-outs. Overstocking and emergency orders 

lead to increasing costs and time, which optimisation of inventory management could prevent. 

Another problem defined is “Employees are afraid to run out-of-stock”. This is not solely the case for 

Isala, as other hospitals experience the same behaviour (Ahmadi et al., 2018; Veral & Rosen, 2013). 

Employees can order with higher volumes, exceeding an item’s “Max” stock number. In addition, they 

often place an order before the item’s “Min” level is reached. Most of the time, employees want a feeling 

of safety. However, employees also do this because they experience an increase in demand for the item, 

or when a physician asks them to do so. If so, it also means that inventory management parameters are 

not optimal.  

1.4 Research objective 
This research aims to improve local inventory management in a healthcare setting, such that the on-hand 

availability of surgical supplies increases and the amount of overstocking and number of emergency 

orders decrease. In this research, we develop a simulation model that provides users with intuitive 

experiences as they can observe how the inventory behaves over time. The implemented search heuristic 

in the model delivers optimal or near-optimal order parameter settings of all stored items. This 

simulation model contributes to the research in healthcare inventory management. We perform a case 

study on the storerooms of the OR department of Isala to determine the applicability in practice. 

Therefore, our research question is: 

“How can the on-hand availability of surgical supplies at the Operating Room department of Isala be 

increased by improving its inventory management?” 

We divide the main research question into several sub-questions, which outline the rest of this research's 

structure and approach (see Figure 3). After answering these sub-questions, we can answer the main 

research question. 

 

Figure 3: Report structure. 

Chapter 2. Context 

Sub-question 1: “What are the characteristics of the current inventory policy used in the OR 

department of Isala?” 

- Which parameters are used in the current inventory policy, such as lead times, usage of items, 

storage space, (emergency) order frequency, costs, item dimensions, and the “Min” and 

“Max” values of stock levels?  

- How do the current storerooms look like and how much space is there for the items? 

- How is the performance of the inventory policy measured? 

- How to define the availability of surgical supplies? 

- What is Isala’s desired availability of supplies? 

 

In this chapter, we gain insight into the characteristics of the current situation of Isala regarding its 

inventory management, focusing on the OR department. We gather information about how the order 

parameters are determined and analyse the (emergency) order data. Furthermore, we determine what 

situation would be desirable for Isala, in terms of the availability of supplies. 

 



 

6 

 

Chapter 3. Literature 

Sub-question 2: “What inventory replenishment policy and approach is most applicable to different 

item types?”  

- What inventory policies exist under the assumption of lost sales? 

- What other replenishment policies are used in hospitals? 

- What inventory modelling methods to generate solutions in a healthcare setting are present 

in the literature? 

 

This chapter outlines a literature review. The review discusses inventory management replenishment 

policies and different approaches to define solutions for two item types: stock and purchase items. 

Chapter 4. Model formulation  

Sub-question 3: “How to develop an optimization approach that models inventory management?” 

- How can the objective be formulated? 

- What are the model's indices, parameters, and decision variables? 

- Which constraints should be present in the model? 

- What stochastic elements are involved in the model? 

 

We present an inventory management model formulation for Isala in Chapter 4. With this model, the 

hospital should be able to find the right balance for their inventory levels with an increase in the 

availability of items and a decrease in costs.  

Chapter 5. Experimental design 

Sub-question 4: “How should the experimental design look like?” 

- How does the model perform on theoretical experiments? 

- How does the model perform on the case study (OR department of Isala)? 

- Which KPIs are selected to compare the scenarios? 

Chapter 5 outlines the different experiments and how they are compared with each other. 

Chapter 6. Results  

Sub-question 5: “What are the results of the experiments?” 

- What are the results of the case study? 

- What are the results of the different scenarios? 

- How can we visualize the results? 

 

In Chapter 6, we visualize the results from the experimental design. 

Chapter 7. Conclusion and recommendations 

Sub-question 6: “What are the recommendations to Isala?” 

- Which conclusion can we draw from the results from Chapter 6? 

- What would be the best policy for Isala to improve its inventory management? 

- What are suggestions for further research? 

 

Based on the results from Chapter 6, we present the potential impact of our modelling approach and 

provide recommendations to Isala on how it can improve the inventory management of its OR 

department. 

1.5 Scope and deliverables 
In this section, we outline the scope of this research and the deliverables to Isala. The deliverables are 

derived from the approach mentioned in the previous section (Section 1.4). 
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1.5.1 Scope 

- Only the stock and purchase items mentioned in Section 1.1.2 are included in this research. 

- Only the inventory management and storerooms at the OR department are part of the research. 

- The picking process at the storerooms is outside the scope of this research. 

- The model we developed in this research only applies to the original items currently in the 

assortment of Isala. Even though there are currently a lot of items added to the assortment, they 

may only be temporary items and might have no sufficient data. 

1.5.2 Deliverables 

1. An analysis of the storerooms at the OR department. 

2. An overview of alternative inventory management policies. 

3. A model formulation to improve inventory management, which preferably could also be used 

at the hospital in Meppel. 

4. Results of the experimental design. 

5. Recommendation regarding inventory management of Isala. 

  



 

8 

 

2. Context 
This chapter outlines the current situation at Isala. The chapter describes the characteristics of the OR 

department's inventory management and is divided into five sections. First, we address the current 

replenishment policy, parameters, and locations of the stock and purchase items (Section 2.1). Second, 

the (emergency) order and supply processes are outlined (Section 2.2). Then, in Section 2.3, we gather 

the available order data, which we analyse to further substantiate our research as to why the current 

replenishment policy is not optimal. Next, we analyse the current service level and describe the desired 

service level (Section 2.4). We conclude this chapter in Section 2.5. 

2.1 Inventory control 
This section outlines the order parameters of the current replenishment and storage policy in use at the 

OR department of Isala. The main part of this research is to improve the inventory management, as we 

concluded that the current policy is not optimal. Therefore, it is important to identify the current policy 

and its characteristics.  

The current replenishment policy for the stock and purchase items is an (R, s, S) policy. In this policy, 

Isala uses the terms “Min” and “Max” to define the parameters for their reorder point s and order-up-to-

level S, respectively. For almost all the items, the “Max” value is twice the “Min” value with a Min 

value based on personal experience, which are influenced by several factors. The first factor is the 

storage location. Various storerooms can store the same product. However, the order parameters for a 

particular item can vary per location, dependent on the available space. The next factor is the dimension 

of an item. These are used to eyeball whether the products fit in the available space. However, no data 

is available about the specific item dimensions, which could be used to calculate the maximum number 

of items that fit into a bin. Another factor that could influence the order parameters is the package size 

of a product. Some parameters are rounded to the nearest package size quantity, as some suppliers only 

deliver full packages. The item demand also influences the order parameters. However, the demand is 

experienced based as the usage data is not stored. Another factor is the classification of an item. Items 

are not classified based on a certain method but on two categories. The first one is the item type. As 

mentioned in Section 1.1, there are three types of items at Isala (stock, purchase, and scan-relevant 

items), from which we only focus on stock and purchase items. The other category is medical or non-

medical items. According to the employees of the OR department, all medical-related items could be 

necessary for (emergency) operations. The last overlooked factor is the inventory costs because the main 

priority of the hospital is to provide care to its patients.  

When employees order an item, the order quantity is most of the time equal to the “Min” value unless 

employees expect higher demand in the upcoming days. If the latter is true, the order size is based on 

the employee’s expected demand for the item. The order parameters of an item are noted on the scan 

card. This card is attached to the bin in which the item is stored. The parameters are not regularly revised 

because the cards should then be changed as well, which is time-consuming. Therefore, the parameters 

are often not up to date and do not meet non-stationary demand. Thus, when employees expect more 

demand, they order an amount of the item based on their experience. These order sizes are mostly larger 

than necessary due to the uncertainty of the processes in a hospital. In addition, the order sizes can 

fluctuate as employees react differently when an order quantity is too low. The stock levels are too high 

for other items, resulting in unnecessary holding costs.  

2.2 Order and supply process 
This section outlines the order and supply process, and the order data. Subsection 2.2.1 describes the 

supply process, which provides additional information about the regular and emergency supply process 

compared to Section 1.1. Furthermore, it outlines the storage of the items in the OR department. After 

that, we describe the order process in Subsection 2.2.2.  
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2.2.1 Supply process 

All stock items and some purchase articles are delivered to Isala by its logistical partner, Hospital 

Logistics (HL). They supply Isala at four fixed times a day (7:00, 10:00, 13:00, and 16:15). The purchase 

articles that are not delivered by HL, are supplied by another supplier. When supplies are ordered with 

urgency, the logistics department of Isala, which receives the order, is notified in advance. They get an 

email from the supplier with information about the order. The items that are ordered with urgency are 

highlighted in this email. Once the supplies arrive at Isala, the logistics department of Isala receives 

them. They sort the supplies and bring them to the correct department.  

In the OR department, the stock and purchase items are stored over twenty-four locations divided over 

two floors. These items are strictly used at the OR department for surgery, staff, or other activities in 

this department. Articles are either stored in a bin or on a shelve, depending on the dimensions of the 

article. A storage bin consists of two space components, with each component containing the “Min” 

amount of the item. A bin can have three sizes. However, when an item cannot fit into one of the three 

different bin sizes, it is stored on a shelve.  

2.2.2 Order process 

Ordering at the OR department happens at fixed review periods in which employees scan the cards of 

the articles that need to be replenished, which is the same for stock and purchase items. Storage locations 

that contain medical supplies are reviewed every working day. The storage locations of non-medical 

items are either reviewed every working day or on Monday, Wednesday, and Friday, which is location 

dependent. Employees do not review the inventory on Saturdays and Sundays as most surgeries are 

scheduled during the week, and therefore, the demand for items at the weekend is low. 

The order size and frequency are based on the demand and order parameters of the item (see Section 

2.1). Even though the daily demand for supplies is not captured and available as data, its structure is 

displayed in Figure 4. There are several surgeries in a day, spread over multiple ORs. Most of these 

surgeries are planned except for the surgeries of emergency patients that happen ad hoc. Every surgeon 

has a way of performing a type of surgery. The preference list contains the items they need, which are 

then picked at the storage locations for surgery. 

The demand for items can fluctuate between the days because of the surgeries that are scheduled on 

certain days, changes in the schedule, the arrival of emergency patients, changes in the condition of the 

patient, and more. Fluctuations in demand result in even higher fluctuations in the order size. Another 

factor that influences the variability in order quantities is the level of outstanding backorders by the 

suppliers. However, the backorders are outside the scope of this research. 

 

Figure 4: The daily demand structure of items. 
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When the OR department needs an item with urgency, an employee places a request for order (RFO). 

An RFO is a document with the exact information about the product, which is sent to the purchasing 

department. They contact the supplier and logistics department to verify whether the order can be 

fulfilled. If possible, the emergency order is forwarded to the supplier. Otherwise, an alternative product 

should be ordered, or the procedure for which the original item was necessary should be postponed. 

2.3 Order data 
An observation in our data analysis is that the data records concern order quantities and not the actual 

demand for an item, which is common for hospitals in literature (Bijvank, 2009). As a result, the 

available data about the usage of an article is limited. To use the data in our research, we define the 

mean daily usage as the mean order quantity per working day. Other observations from our data analysis 

concern the “Min” and “Max” levels and the order sizes of items. In the remainder of this subsection, 

we outline the supplies that stand out based on the available order data of 2022. Table 2 provides a 

summary of these items. 

Table 2: Summary of outstanding items. 

Symbol Items SKU’s Description 

M M1 

M2 
 

2 

17 

No consistent use of the policy 

D D1 

D2 

D3 

D4 

D5 

D6 
 

458 

1585 

534 

163 

340 

71 

Items that have a “Min” value which is lower 

than their mean daily usage. 

S S1 

S2 

S3 

S4 

S5 
 

387 

388 

389 

390 

391 

Similar items have the same order parameters. 

C C1 

C2 

C3 
 

226 

616 

1676 

Items with a “Max” inventory position of 0, 1, 

or 2 units. However, they are ordered in a fixed 

size of ten units. 

O O1 

O2 

400 

240 

Other notable items.  

 

No consistent use of the policy 

In the current policy, the “Max” inventory level is twice the “Min” value of an item, except for 

items M1 and M2. These items have a “Max” level which is ten times the “Min” value. There is no 

specific reason for these items to have that maximum storage capacity as the daily usage is significantly 

lower than the “Max” position. Furthermore, the lead time for those items is less than a day, which 

means that for the “Max” level, twice the “Min” value would satisfy demand as well. The inconsistent 

usage of the policy can confuse the employees when they need to decide on the order quantity and should 

therefore be avoided.   

High mean daily use 

We outline six items that have a “Min” value which is lower than their mean daily usage. As a result, 

the chance that one of the items runs out of stock is high. All these items are classified as medical items, 

which makes them crucial for the hospital. Item D1 has an on-hand minimum of 100 units, a mean daily 
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usage of 113, and is ordered 240 times in 2022. With such high usage numbers, the chance that the item 

runs out of stock is high. Figure 5 shows the other items with a high probability of running out of stock. 

Items D2, D3, and D4 had an order frequency of more than 180 in 2022. Whereas 

products D5 and D6 had no “Min” and “Max” values assigned to them without a specific reason. In all 

these scenarios, the order parameters are not optimal. 

 

Figure 5: Items with a high mean daily usage compared to their minimum inventory value. 

Similar items with the same order parameters 

Similar items have the same order parameters for simplicity reasons. The products S1, S2, S3, S4, and 

S5 are the same products but in different sizes. Therefore, the mean daily usage of these items varies as 

well. As a result, the order parameters for some of these products are too high, which is especially the 

case for item S5 (see Figure 6). 

 

Figure 6: Similar items with the same order parameters but with different mean daily usage. 

Neglecting the order parameters 

When the order parameters are too low, the employees have to decide how large the order quantity must 

be. The products C1, C2, and C3 have a “Max” inventory position of 0, 1, and 2 units, respectively. 

However, they are ordered in a fixed size of ten units. 
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Other items 

There are two more items that we want to outline. The first article O1, has a “Min” and “Max” value of 

100 and 200, respectively. However, the item is ordered 47 times with a mean order size of 248 in 2022. 

Indicating that the maximum inventory position is exceeded for a large part of the year. The other 

product O2, is only ordered once in 2022 and has a mean daily usage of 0.04 units. However, its order 

parameters are ten and twenty units for the “Min” and “Max”, respectively.  

Concluding, the “Min” and “Max” values of the current inventory policy are not aligned with the 

demand, and the order sizes do not correspond with the replenishment policy.  

2.4 Service level 
In this section, we first describe how we can define the availability of items as a service level. Then, we 

analyse the current situation concerning the service level. Last, we describe the desired service level. 

The availability of supplies is the same as the probability of not going out of stock in a period, defined 

as the service level alpha (Schneider, 1978). It indicates the percentage of fully fulfilled demand in a 

given time. When there is demand for a product, but it is not on hand, we refer to it as a stockout. 

Whenever this happens, the article is either derived from another storage location or arrives via an 

emergency order. However, only the emergency orders are documented via the RFO. Figure 7 shows 

the number of emergency orders for the OR department from 2017 to 2022 with an upwards trend. In 

2022, there were 414 emergency orders out of the 51,848 orders related to the OR department, which 

means that in 99.2% of the cases, there was no emergency order necessary to fulfil demand. However, 

we cannot conclude that the OR department has a current service level of 99.2%. In reality, not all 

emergency orders are correctly registered regarding its department. In 2022, there were 1,027 emergency 

orders for which the department was unknown and could have been for the OR department. Furthermore, 

it can happen that the items are supplied to the OR department in Zwolle from the hospital in Meppel 

by an employee of Isala. However, there is no insight into how often this happens. In addition, some 

items are simply taken from another storage location, what is organised by employees among 

themselves. Therefore, the current service level of the OR department of Isala is probably lower than 

99.2%.   

 

Figure 7: Number of emergency orders for the OR department from 2017 to 2022. 

For Isala, it is important to have high availability of supplies such that the daily processes in the hospital 

are not disrupted (see Section 1.2), which is even more important for medical items. Therefore, Isala has 

a desired service level of 99.9% and 98.0% for medical and non-medical supplies, respectively.  
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2.5 Conclusion 
The current replenishment policy for the stock and purchase items is an (R, s, S) policy. In this policy, 

Isala uses the terms “Min” and “Max” to define the parameters for their reorder point s and order-up-to-

level S. The values for the order parameters are based on the experience of the employees. When 

ordering, employees cannot rely on these parameters, which results in high fluctuations in inventory 

positions and order quantities. 

The order data confirmed our observation that the current inventory policy is not optimal. We outlined 

the items that stand out in our analysis. The policy is not consistently applied to some of these products. 

Other supplies have order parameters that were too high, just because similar items had those parameters 

as well. And some products have a reorder point lower than their mean daily use. As a result, these items 

have a high chance of running out of stock. 

The upwards trend in the number of emergency orders is disturbing for Isala. To overcome this, high 

availability of supplies is important such that the daily processes in the hospital can continue. To reduce 

the number of emergency orders, Isala wants to increase the availability of supplies, with a desired 

service level of 99.9% and 98% for medical and non-medical supplies, respectively. 
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3. Literature 
As discussed in Section 1.3, the current inventory management of Isala is not optimal. In this chapter, 

we answer the third research question: ‘What inventory replenishment policy and approach is most 

applicable to different item types?’. The chapter is divided into three sections. Section 3.1 covers 

inventory management policies. In the section, we distinguish replenishment policies with a periodic 

and continuous review period and inventory systems under the assumption of back ordering and lost 

sales. Section 3.2 outlines background information about different inventory modelling methods to 

obtain optimal or near-optimal solutions. Also, we discuss the benefits of each method. We conclude 

this chapter in Section 3.3. 

3.1 Inventory replenishment policies 
The inventory system of Isala can be considered as a lost-sales inventory system, as when an item is not 

on-hand but is needed for surgery, an emergency order is triggered to get the item. Therefore, we look 

for replenishment policies for lost-sales inventory management that improve the current situation of 

Isala through inventory innovations regarding single-echelon systems in healthcare or other sectors. 

Literature separates the classic models for inventory control policies into two review periods: (1) 

Periodic review and (2) continuous review. Based on the review periods, five inventory control policies 

are distinguished (Ahmadi et al., 2018). Table 3 shows these policies. In the remainder of this section, 

we first search for periodic review replenishment policies in the literature, as Isala currently uses this 

review system for their stock and purchase items. Second, we discuss replenishment policies with 

continuous review. Isala uses this type of policy for its scan-relevant items. Recent technical innovations 

like radio frequency identification (RFID) make policies with a continuous review more applicable for 

practical situations, and therefore, offer opportunities for Isala in the future. In addition, we search for 

alternative replenishment policies without the assumption of lost sales because the assumption of back 

ordering is more common in literature. 

Table 3: Classical inventory control policies, adapted from Ahmadi et al. (2018). 

Inventory control policy Notation Description 

Periodic review (R, s, S) Every review period R, if the inventory level is lower or 

equal to s, an order is placed to refill the inventory position 

to the “Max” inventory level S.  
 

 (R, r, Q) Every review period R, if the inventory level is lower or 

equal to r, an order with a constant amount Q is placed. 
 

 (R, S) Every review period R, an order is placed with an amount 

to refill the inventory position to the “Max” inventory level 

S. 
 

Continuous review (s, S) If an inventory level reaches the reorder point s, an order is 

placed to refill the inventory position to up-to-level S. 
 

 (r, Q) Whenever the inventory level of an item reaches the reorder 

point r, an order with constant size Q is placed. 

 

3.1.1 Periodic review 

This section outlines some of the available literature on inventory systems with a periodic review period, 

as summarized in Table 4. In a periodic review, each review period R, the inventory levels are checked, 

and an order is placed when necessary.  
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Table 4: An overview of inventory models with a period review replenishment policy. 

Policy Studies Method Objective Constraint Lost sales 

(R, s, S) (Bijvank, 2009)  

 
 

(Kapalka et al., 

1999) 
 

(Esmaili et al., 2019) 

 
 

(Bijvank & Vis, 

2012b) 
 

(Zhang et al., 2014) 

 
 

Exact and 

approximate 
 

Heuristics 

 
 

Heuristics 

 
 

Exact and 

approximate 
 

Heuristic and 

simulation 

Service level 
 

Costs 

 
 

Service level 
 

Costs 

 
 

Costs 

Storage 

capacity 
 

Service level 

 
 

- 

 
 

Service level 

 
 

- 

Yes 

 
 

Yes 

 
 

Yes 

 
 

Yes 

 
 

No 

(R, r, Q) (Bijvank & Vis, 

2012a)  

 
 

(Kapalka et al., 

1999) 
 

Exact and 

approximate 

 
 

Heuristics 

Capacity and 

service level 
 

Costs 

Storage 

capacity and 

service level 
 

Service level 

Yes 

 

 
 

Yes 

2-Bin 

system 

(Kanet & Wells, 

2019) 
 

Exact Costs Service level No 

(R, S) (Huh et al., 2008) 
 

(Bijvank & 

Johansen, 2012) 
 

Heuristics 
 

Exact 

Costs 
 

Costs 

- 
 

Order-size 

Yes 
 

Yes 

(R, s, c, S) (Dellaert & van de 

Poel, 1996) 
 

Exact and 

simulation 

Costs Service level No 

Hybrid (Rosales et al., 2014) 
 

Simulation Costs - No 

Linking 

patient 

schedule 

(Epstein & Dexter, 

2000) 

Simulation Costs - No 

 

Variable order size (R, s, S) policies 

Dependent on the review period, which is a periodic or continuous review,  the order-up-to-level models 

are denoted as (R, s, S) or (s, S) policy, respectively (Bijvank, 2009). Figure 8 visualizes the inventory 

levels for the order-up-to-level replenishment policies under a periodic or continuous review. Order-up-

to-level replenishment policies have a variable order size and therefore use the available capacity more 

efficiently than policies with a fixed order size Q. Kapalka et al. (1999) consider a periodic review 

single-echelon inventory system with stochastic demand and deterministic lead times under the 

assumption of lost sales. They evaluate the long-run average costs and service level for a fixed (R, s, S) 

policy. Then they would use their formulated Monotone Search Algorithm (MSA) to search for the 

optimal parameters. They found significant cost savings with their model. Esmaili et al. (2019) use a 

similar approach as Kapalka et al. (1999). They created a recursive algorithm to determine the optimal 

parameter values of the (R, s, S) replenishment policy. The system they studied has stochastic demand, 

lost sales, zero-lead time, and a target service level to be satisfied. 
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Figure 8: The on-hand inventory level (solid line) and inventory position (dashed line) for order-up-to-

level replenishment policies under (a) continuous and (b) periodic review, adapted from Bijvank (2009). 

Bijvank (2009) first developed an (R, r, Q) policy with reorder point r plus order size Q, equal to the 

storage capacity C. The order frequency that follows from that policy is used in the (R, s, S) policy. They 

conclude that a variable order size policy can significantly improve the service level. They create a 

simple spreadsheet approximation to make it more appealing for hospitals to apply the inventory rule. 

However, in the case study, the order-up-to-level S is set to the maximum storage capacity, due to storage 

space restrictions. Bijvank & Vis (2012b) develop an exact and approximate model to determine the 

reorder-point s and order-up-to-level S. This model assumes the lead time to be a multiple of the review 

period R and stochastic demand. Zhang et al. (2014) propose a spreadsheet simulation optimization 

approach that uses empirical distributions to model demand. The model provides the users with visual 

intuitive experiences and uses a local search heuristic to find near-optimal results for the (R, s, S) policy 

settings. However, the simulation model cannot cope with factional lead times.  

Fixed order size (R, r, Q) policies 

Bijvank & Vis (2012a) discuss a fixed order size (R, r, Q) policy for the point-of-use locations in a 

hospital setting. They mention that the order size in such settings usually contains fixed quantities as 

this system is transparent and easy to understand for hospital staff. In the inventory system, demand is 

stochastic and excess demand is lost. Furthermore, the lead time is assumed to be a fraction of the review 

period. They formulate a capacity model with a service level constraint and a service model with a 

capacity constraint. Kapalka et al. (1999) propose a search procedure for an (R, s, S) policy. However, 

for the (R, r, Q) policy, the order-up-to-level is equal to the fixed order size and safety stock (i.e., S = Q 

+ r). 

2-Bin system 

The literature describes a “visual” version of a periodic review (R, r, Q) system with two bins as the 2-

bin system (Kanet & Wells, 2019; Landry & Beaulieu, 2013; Landry & Beaulieu, 2010). In the system, 

the first bin contains the working item capacity with capacity Q, and the second bin contains the reserve 

items with capacity r = DL + ss, where DL is the expected demand during the lead-time period, and ss is 

the desired safety stock. Staff consumes from the working bin until its depleted. This triggers 

replenishment in the following review period, and the order is expected to arrive L periods later. This 

system has been used in a hospital setting since the late 1980s and has developed since then. An adaption 

to the system is to have two equal bins to increase simplicity,  described as a “2-equal-bin” system or 

the “2-bin Kanban”, where r = Q. According to Landry & Beaulieu (2013), the system is, in most 

situations, superior to other inventory management systems with a periodic review. A 2-bin Kanban 

system reduces the time taken for the ordering process, as counting stock levels is no longer necessary. 
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Furthermore, the built-in stock rotation reduces the risk of products expiring, leading to better 

ergonomics in high-density storage systems (Landry & Beaulieu, 2013). A recent literature review by 

Lanza-Léon et al. (2021) reflects on the benefits and barriers of applying a Kanban system in healthcare 

settings. The case study of Persona et al. (2008) shows improvement from an economic and management 

point of view. However, in the case of  “non-stock” products, the system is inefficient as the required 

quantities exceed the actual need because of the risk of a stockout. In addition, Papalexi et al. (2016) 

also experience that the effective implementation of a 2-bin Kanban system depends on the products 

used in the system. The researchers use an ABC classification method in combination with the demand 

profile to identify suitable products. Kanet & Wells (2019) extend the research on the 2-bin Kanban 

system by increasing the number of bins. They make use of the Economic Bin Quantity and the 

Economic Order Quantity in their study to determine the bin quantities and number of bins for a given 

situation. However, a limitation is that the calculations are based on a continuous review, while many 

instances without technology improvements follow a periodic review. 

Base-stock (R, S) policies  

Base-stock policies are a form of order-up-to-level policies. In the policy, the satisfied demand is 

immediately ordered in the upcoming review period. For such policies, the reorder level s = S – 1. 

Inventory control policies with a base stock are denoted as (R, S) or (S - 1, S) for periodic and continuous 

review, respectively (Bijvank, 2009). Huh et al. (2008) proposes a heuristic order-up-to level S based 

on two newsvendor expressions. They assume positive lead times (i.e., 1 to 4) and consider several 

stochastic demand distributions in their model. Bijvank & Johansen (2012) found that a pure base-stock 

policy is not optimal for lost-sales inventory systems, and they propose a restricted base-stock policy 

(RBSP) instead. This policy limits the order size to a maximum amount. 

(R, s, c, S) policy 

Dellaert & van der Poel (1996) extend the EOQ model to their so-called (R, s, c, S) inventory control 

policy with Poisson demands. In the model, in every review period R, if the inventory level of an item 

is lower or equal to s, all other products with the same supplier and an inventory level below the can-

order level c are also ordered to refill all the inventory positions to the “Max” inventory level S. They 

propose a simple inventory rule that calculates the s, c, and S values, with a given R. The model aims to 

minimize costs, considering the ordering and holding costs. In addition, they study the service rate of 

the model. However, any storage capacity restrictions are disregarded. 

Hybrid policy  

Rosales et al. (2014) describe a hybrid policy which combines a low-cost periodic (R, s, S) replenishment 

policy with a high-cost continuous (r, Q) replenishment option to avoid stock-outs. Every day, at the 

beginning of the shift, inventory of the point-of-use location is replenished up to level S when the 

inventory level is lower or equal to s. However, whenever the inventory level reaches a threshold r 

during the shift, a replenishment with constant size Q is triggered to prevent a stock out. In the system, 

the value of r is lower than s. They developed a parameter search engine using simulation to optimize 

the long-run average costs. Their results show that the costs, inventory levels, and the number of 

replenishments reduce when using the hybrid policy instead of solely a periodic or continuous review 

policy. 

Linking patient schedule 

Epstein & Dexter (2000) propose a simulation approach to assess the integration of the supply and 

surgery schedules. They use simulation to analyse the system in which items are ordered and delivered 

just-in-time based on planned surgeries. They conclude that it only saves costs for expensive items as 

the strategy would result in more orders compared with a sophisticated, stand-alone material 

management inventory control. However, further analyses of this strategy should be conducted to reveal 

other possible benefits. 
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3.1.2 Continuous review 

This section outlines the available literature on inventory systems with a continuous review period, as 

summarized in Table 5. The inventory levels are continuously checked, and an order is placed when 

necessary.  

Table 5: An overview of inventory models with a continuous review replenishment policy. 

Policy Studies Method Objective Constraint Lost sales 

(s, S) (Kelle et al., 2012) 

 

 
 

(Archibald, 1981) 

Approximate  

 

 
 

Exact and 

approximate 
  

Costs 

 

 
 

Costs 

Storage space 

and  

service level 
 

- 

No 

 

 
 

Yes 

(r, Q) (Hadley & Whitin, 

1963) 
 

(Johansen & 

Thorstenson, 1993) 
 

Exact and 

approximate  
 

Exact  

Costs and 

service level 
 

Costs 

- 

 
 

- 

Yes 

 
 

Yes 

2-Bin system 

with RFID 

(Rosales et al., 

2014) 
 

Exact  Costs Inventory 

balance 

No 

(S - 1, S) (Smith, 1977) Approximate  Costs - 
 

Yes 

 

Variable order size (s, S) policies  

Kelle et al. (2012) provide simplified models to set the reorder point and order up to level for an (s, S) 

replenishment system with continuous review. These parameters are based on a near-optimal allocation 

policy of stock under storage capacity and service level constraints. They performed a case study on a 

hospital pharmacy’s automated ordering system. The research supports the hospital in achieving its main 

goals: (1) to reduce the number of emergency and daily refills, and (2) to reduce holding costs. However, 

no assumption of lost sales is included in their models. Archibald (1981) developed an order-up-to-level 

policy for a continuous review inventory system with the demand that follows a compound Poisson 

process, assuming a constant lead time. 

Fixed order size (r, Q) policies 

Bijvank & Vis (2011) performed a literature review on lost-sales inventory models with an (r, Q) 

replenishment policy. They mention that the first work dates to the classical textbook of Hadley & 

Whitin (1963), in which models with an exact and approximate treatment are developed for a case with 

lost sales. In the models, at most one order is outstanding, demand is assumed to follow a Poisson 

distribution, and lead times are discrete. This work is extended by including gamma-distributed lead 

times by Johansen & Thorstenson (1993). They formulated a semi-Markov decision model to obtain 

exact solutions for the reorder point r and the order quantity Q.  

2-Bin system with RFID 

The 2-bin Kanban system is further improved with the introduction of RFID technology (Çakici et al., 

2011; Landry & Beaulieu, 2013). This technology enables the policy to change from a periodic review 

to a continuous review inventory control policy (r, Q). The 2-bin system with RFID is either on an item 

or bin level. When a company uses this technology on an item level, products have a radio transponder 

called “tags” attached to them. A tag that is within range of a reader communicates with the systems 

such that the system knows how many items are stored at every location. However, it can be 

prohibitively expensive for low-cost items (Johnson, 2002). On a bin level, the tag is attached to the 

label of a bin. When a bin empties, staff must place the label on a replenishment board connected to the 
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system. Hospital management knows the status of the stocks when the labels are removed from the bin. 

The increased visibility alerts them to potential stock-outs (Landry & Beaulieu, 2010). To improve 

inventory management for a continuous-review 2-bin system, Rosales et al. (2014) present a semi-

Markov decision model, which determines the optimal number of empty bins for replenishment.  

Base-stock (S - 1, S) policies  

In this policy, every demand is immediately reordered to the base-stock level S. The study of Smith 

(1977) presents an approximation for finding the optimal order-up-to levels S for an inventory system 

with Poisson demands, arbitrary replacement time distribution, and emergency handling costs for lost 

sales. 

3.2 Modelling methods 
The previous section outlines some of the available literature on different replenishment policies. The 

various replenishment policies can be formulated as optimization problems with one or multiple 

objectives. These objectives need to be minimized or maximized, with usually some constraints. 

Solution methods obtain the optimal or near-optimal solution to solve the optimization problem. In this 

section, we outline the modelling methods mentioned in Section 3.1 with their corresponding benefits 

and classify them into three categories. These categories are (1) exact methods, (2) non-exact methods, 

and (3) simulation.  

3.2.1 Exact methods 

Exact methods use standard processes that use mathematical principles to achieve optimal solutions 

(Saha & Ray, 2019). Many modelling approaches have been developed by researchers, which may be 

classified as deterministic, stochastic, and distribution-free approaches. Inventory problems under 

certainty are modelled as deterministic models. An EOQ-based method and mathematical programs are 

used to formulate these models. A mathematical program consists of a mathematical structure in which 

the variables represent the problem choices. These decision variables are set to minimize or maximize 

the objective function and could be restricted by constraints. A mathematical program seeks to find the 

optimal solution given a defined domain or input, also known as the global optimum (Grond, 2016). A 

stochastic approach is applied to formulate a model that includes uncertainty with complete knowledge 

of probability distribution. It is possible to use a newsvendor model in addition to mathematical 

programs and a hybrid-EOQ-based model to formulate these models. Models without complete 

knowledge of probability are formulated using distribution-free analysis approaches (Saha & Ray, 

2019). A disadvantage of exact methods is that they do not scale well to large problems, taking a 

considerable amount of processing time to find the optimal solution.  

3.2.2 Non-exact methods 

Non-exact methods are formulated to solve optimization problems. When exact methods have long 

processing times, which are not desirable in practice, they may require simplifications and 

approximation procedures to determine the solution more efficiently (Bijvank & Vis, 2012b). Two forms 

of non-exact methods are approximation algorithms and heuristics. Approximation algorithms are 

simplifications of an exact method, which guarantee to find a near-optimal solution. Heuristic algorithms 

are designed to find, generate, or select a search algorithm that may provide a sufficiently good solution 

within a ‘reasonable’ amount of time (Grond, 2016). They typically handle problems with incomplete 

or imperfect information or limited computational time better than exact algorithms or mathematical 

programs. However, the main disadvantage of heuristics is that they cannot guarantee the solution’s 

optimality (Grond, 2016).  

3.2.3 Simulation 

Robinson (2014) defines simulation as “experimentation with a simplified imitation (on a computer) of 

an operations system as it progresses through time, for better understanding and/or improving that 

system”. Usually, simulation involves the form of a set of assumptions about the system’s operation, 
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expressed as mathematical relations between the objects of interest in the system. Simulation is used 

when mathematical optimization is too complex or when real-world experiments are too expensive or 

time-consuming. Furthermore, it provides the users with visual intuitive experiences to overcome 

resistance from managers who want to deploy solutions that their teams can easily learn, accept, and use 

(Zhang et al., 2014). A disadvantage of a simulation model is that it is not an optimization method 

(Winston & Goldberg, 2004). However, it is possible to implement heuristics into it to find solutions, 

and simulation makes it possible to evaluate different replenishment policies and scenarios.  

3.3 Conclusion 
Different inventory replenishment policies exist in literature to improve the service level, decrease the 

costs, or both. Literature separates these policies into policies with a periodic or continuous review. 

Currently, Isala uses a periodic review system to control the stock and purchase items. We consider a 

different replenishment approach for stock and purchase items as these item types vary in their mean 

usage and lead time.  

Stock items have a constant review period and a short lead time. The lead time for stock items is, most 

of the time, less than a day as they are supplied multiple times per day from the external warehouse by 

Isala’s logistical partner. The mean usage of these items is higher than the usage of purchase items, and 

therefore, we use a 2-bin Kanban policy with equal bin sizes, denoted as an (R, r, Q) system, where the 

reorder point (r) equals the order quantity (Q). This system decreases the workload of employees and 

the built-in stock rotation reduces the risk of products expiring, leading to better ergonomics. 

Purchase items have a constant review period and stochastic lead time. The items can be classified as 

slow movers due to their relatively low daily usage. To use the available capacity efficiently, we want 

to formulate an order-up-to-level replenishment policy with a variable order size, denoted as an (R, s, S) 

system. 

Several modelling methods can be used to formulate the optimization problem. However, determining 

optimal parameter values for a 2-bin Kanban and (R, s, S) replenishment policy is complex and time-

consuming, making it less applicable for practice. Furthermore, the model should be appealing to use 

and easy to understand, such that managers at Isala can implement the model in practice. Therefore, we 

want to create a simulation model with a search heuristic that finds the near-optimal solution for all 

items. The simulation model will be similar to the model of Zhang et al. (2014), however, we would 

need to adjust it such that it can cope with lead times that are an integral multiple of the review period 

and factional. The heuristic will be similar to the algorithm of Kapalka et al. (1999)  and Esmaili et al. 

(2019), which they also developed for an (R, s, S) policy. In addition, the heuristic we develop is also 

suitable for the 2-bin Kanban model. With the model, we can evaluate and optimize both replenishment 

policies with a variety of parameter options.  
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4. Model formulation 
In Chapter 3, we decided to use a 2-bin Kanban system for stock items and an order-up-to-level 

replenishment policy for purchase items. Furthermore, we concluded that a simulation model with a 

search procedure is the best approach for solving the optimization problem. This chapter outlines the 

mathematical formulation of these systems and the solution approach, divided into four sections. First, 

we outline the solution design in Section 4.1. Moreover, it provides an overview of the steps of the new 

replenishment method and the model assumptions. Then, we describe the objective and constraints of 

the search heuristic in Section 4.2. In Section 4.3, we outline the local search algorithm and the reasoning 

behind its use. Section 4.4 presents the outputs from the model and the key performance indicators to 

analyse these outputs. In Section 4.5, we outline the assumptions and simplifications of the model. 

Section 4.6 describes the verification and validation of the model. We conclude this chapter in Section 

4.7. 

4.1 Solution design 
The problem involves a single-item inventory control under periodic review R, which is the same for 

stock and purchase items. We use simulation in combination with a search heuristic to find the values 

of the reorder parameter r (s) and the order quantity parameter Q (order-up-to-level parameter S) that 

minimize the costs of stock (purchase) items for a period J. This section starts with outlining the five 

steps of the simulation model. Figure 9 shows a visualisation of these steps.  

Step 1: Initialize simulation model 

In the first step, we initialize the parameters of the simulation model and the search heuristic. Section 

4.3 describes the initialization of the parameters starting reorder point and order quantity (or order-up-

to-level), the minimum reorder point and maximum order quantity (or order-up-to-level), and the 

package size, i.e., the algorithm’s decreasing/increasing step size. Section 5.3 describes how we use a 

warm-up period to set the initial inventory position. Furthermore, we set the service level per item for 

medical items to the desired service level of 0.999 and non-medical items to 0.98 (see Section 2.4). 

Step 2: Determine demand 

In the second step, the simulation loops over the days (j = 1 to J) to simulate how the inventory behaves 

for a given policy setting. Figure 10 shows an overview of this simulation process. The remainder of 

this step description explains the process in more detail. Every day starts with determining the expected 

demand, which takes the order data of the item as input (see Chapter 5). After that, we calculate the start 

on-hand inventory and the inventory position. The on-hand inventory position is equal to the products 

which are physically in stock. The inventory position is the on-hand inventory position plus the 

outstanding orders. Then, we determine whether we should replenish the item. An item should be 

replenished when the current day is a review period and the inventory position is equal to or below the 

reorder point. If we do not need to order the item, we determine if there was a stockout and calculate the 

shortage, i.e., the number of products that were not on stock. Otherwise, we determine the order quantity 

and the demand during lead time first. Next, we calculate the end on-hand inventory, which is always 

equal to or greater than zero, as we assume that the demand during a stockout is lost, or equivalently, 

satisfied from an alternative source. The day ends with calculating the day’s realized demand, which is 

the expected demand minus the shortage.  

 

 

Figure 9: Overview of simulation model steps. 
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Figure 10: Inventory system simulation process. 

Step 3: Calculate the service level and costs 

After the simulation model has run over the days, it calculates the service level and the costs for a given 

reorder point r (s) and order quantity Q (order-up-to-level S) setting. Section 4.2 describes how these 

are calculated. Based on these calculations, the simulation models continues to the next iteration. 

Step 4: Next iteration 

There are three possibilities on how the simulation model continues when it is in the next iteration step, 

based on the decision of the search algorithm. These options are: 

1. For a particular item i, the parameter setting changes. Depending on the current parameter value 

and the corresponding service level and costs, both the reorder point r and order quantity Q 

either increase or decrease in the case of the 2-bin Kanban System. Based on the (R, s, S) policy, 

the reorder point s and the order-up-to-level S can also increase or decrease separately. Return 

to step 2. 

2. The simulation model continues with the next item i + 1. This happens when, for item i, the 

search heuristic goes beyond the lower or upper bound of the search area. In addition, for 

particular scenarios, the search algorithm can stop and continue to the next item when the costs 

do not improve or the service level is below the threshold (see Section 4.3). Return to step 2. 

3. Go to step 5: ‘Store output’. When the search algorithm has found the best settings for every 

item in the list, it terminates, and the simulation model continues to the next step. 

Section 4.3 provides a more comprehensive description about the reasoning and flow of the search 

algorithm.  

Step 5: Store output 

After the simulation has looped over all items on the list, the output data of all these items are stored. 

The output data consist of: 

- The reorder point r (s) and order quantity Q (order-up-to-level S) setting for every stock 

(purchase) item. 

- The costs and service level of the corresponding setting. 

- The number of stockouts, number of orders, and average inventory level of every item. 

- The shortage and fill rate of all items. 

Once we have the output data of every item, we create an overview of these data in Excel. 
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4.2 Objectives and constraints 
This section outlines the objective function of both proposed replenishment policies. First, we formulate 

the objective function and constraints of the 2-bin Kanban system. After that, we describe the objective 

function and constraints of the (R, s, S) policy, which has only minor modifications to the 2-bin Kanban 

model.  

4.2.1 2-Bin Kanban 

In the 2-bin Kanban system, an order is placed with a fixed size Q (equal to r) when the inventory level 

in a period falls below the reorder point r. In this system, the costs are a combination of ordering, 

holding, and shortage costs per product i, where i = 1 to I.  
 

Ordering costs 

The ordering costs consist of a fixed order cost, A, and the cost per unit that is ordered, c. The ordering 

cost only incur when the current day is a review period and the on-hand inventory position, X, is less 

than or equal to the reorder point r. We define the ordering costs as: 

𝑂{𝑋𝑖𝑗 ≤ 𝑟𝑖}(𝐴𝑖 + 𝑐𝑖𝑄𝑖),               (1) 

where, 

𝑂{∙} = indicator function of set {∙}, 

𝑋𝑖𝑗 =  inventory position of product i in period j, 

𝑟𝑖 = reorder point of product i, 

𝐴𝑖 = fixed order costs of product i, 

𝑐𝑖 = per-unit ordering cost of product i, 

𝑄𝑖 = order quantity of product i. 
 

Holding costs 

The holding costs consist of the holding cost rate, h, times the cost per unit, c (same as for the ordering 

costs Equation 1), multiplied by the on-hand inventory at the start of period j. We define the holdings 

costs as: 

ℎ𝑖𝑐𝑖𝑋𝑖𝑗
+,                  (2) 

where, 

ℎ𝑖 = holding cost rate of product i, 

𝑐𝑖 = per-unit ordering cost of product i, 

𝑋𝑖𝑗
+ = max(x, 0), on-hand inventory of product i at the start of period j. 

 

Shortage costs 

The shortage costs include the fixed emergency order costs, K, and the costs per lost demand. The cost 

per lost demand is equal to the shortage of the item, 𝑋−, multiplied by the cost per unit c (same as for 

the ordering costs Equation 1). This only occurs when there is a stockout in period j. We define the 

shortage costs as: 
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𝑃{𝑋𝑖𝑗
− < 0}(𝐾𝑖 + |𝑐𝑖𝑋𝑖𝑗

−|),                  (3) 

where, 

𝑃{∙} = the indicator function of set {∙}, 

𝑋𝑖𝑗
− = min(x, 0), shortage of product i at the end of period j, 

𝐾𝑖 = the emergency order costs for product i, 

𝑐𝑖 = the per-unit ordering cost of product i. 
 

Objective function 

Using the cost mentioned above and the decision variables, r and Q, we formulate the objective function 

(Equation 4), which aims at minimizing the costs for the 2-bin Kanban systems: 

𝑚𝑖𝑛 ∑ [𝑂{𝑋𝑖𝑗 ≤ 𝑟𝑖}(𝐴𝑖 + 𝑐𝑖𝑄𝑖) + ℎ𝑖𝑐𝑖𝑋𝑖𝑗
+ +  𝑃{𝑋𝑖𝑗

− < 0}(𝐾𝑖 + |𝑐𝑖𝑋𝑖𝑗
−|)]

𝐽
𝑗=1        (4) 

This objective is subject to the following constraints: 

𝛼𝑖 ≥  �̅�𝑖,                     (5) 

𝑟𝑖 =  𝑄𝑖,               (6) 

𝑟𝑖, 𝑄𝑖 ≥ 0 integer.             (7) 

Even though shortage costs are involved in the objective function, the solution is constrained to meet at 

least the desired service level �̅�, which is defined as the probability of not going out of stock in a review 

period (Schneider, 1978). Whenever there is a stockout, the articles are either derived or taken from 

another storage location or arrive via an emergency order. In both cases, it disrupts the daily process in 

the hospital, which should be avoided. Therefore, we use service level α, which is calculated as follows: 

𝛼𝑖 = 1 −  [ 
1

𝐽
∑ 𝑆𝑡𝑜𝑐𝑘𝑜𝑢𝑡𝑖

𝐽
𝑗=1 ]             (8) 

4.2.2 (R, s, S) policy 

For the system with an (R, s, S) policy, an order with a variable size (equal to S - X) is placed when the 

inventory level in a period falls below the reorder level s. Also, in this system, the costs are again a 

combination of ordering, holding, and shortage costs. For product i, where i = 1 to I, the holding and 

shortage costs are equal to these costs for the 2-bin Kanban system with Equations 2 and 3, respectively. 

The ordering costs are defined as: 
 

Ordering costs 

The ordering costs are again composed of a fixed and per unit costs (see Equation 1). However, the order 

size, S – X, varies per period j. Thus, we define the ordering costs as: 

𝑂{𝑋𝑖𝑗 ≤ 𝑠𝑖}(𝐴𝑖 + 𝑐𝑖(𝑆𝑖 − 𝑋𝑖𝑗)),            (9) 

where, 

𝑂{∙} = indicator function of set {∙}, 

𝑋𝑖𝑗 = inventory level of product i in period j, 

𝑠𝑖 = reorder level of product i, 
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𝐴𝑖 = fixed order costs of product i, 

𝑐𝑖 = per-unit ordering cost of product i, 

𝑆𝑖 = order-up-to level of product i. 
 

Objective function 

Using these costs and the decision variables, s and S, we formulate the objective function (Equation 10), 

which minimizes the costs for the (R, s, S) policy: 

𝑚𝑖𝑛 ∑ [𝑂{𝑋𝑖𝑗 ≤ 𝑠𝑖}(𝐴𝑖 + 𝑐𝑖(𝑆𝑖 − 𝑋𝑖𝑗)) +  ℎ𝑖𝑐𝑖𝑋𝑖𝑗
+ +  𝑃{𝑋𝑖𝑗

− < 0}(𝐾𝑖 + |𝑐𝑖𝑋𝑖𝑗
−|)]

𝐽
𝑗=1                 (10) 

This objective is subject to the following constraints: 

𝛼𝑖 ≥  �̅�𝑖,                   (11) 

𝑠𝑖 ≤  𝑆𝑖 − 1,             (12) 

𝑠𝑖 , 𝑆𝑖 ≥ 0 integer.           (13) 

We use Equation 8 to calculate the service level α for product i, which is the same as for the 2-bin 

Kanban system (see Section 4.2.1).   

4.3 Search Algorithm 
This section outlines the search heuristic of our simulation optimization approach. In this study, we 

formulate a search algorithm based on the monotone search algorithm (MSA) proposed by Kapalka et 

al. (1999) and the recursive algorithm of Esmaili et al. (2019). We simplified the algorithm of Kapalka 

et al. (1999) by reducing the number of steps, while we extended the algorithm of Esmaili et al. (2019) 

by also considering the cost. The algorithm is described as a local search heuristic that iteratively 

determines the best reorder point and order-up-to-level (or order quantity) for a given article. The benefit 

of using such algorithms is that it assumes monotonicity to reduce computation time. More specifically, 

for a fixed S, “if the service level of (s, S) is lower than the required service level, there is no need to 

check policies (s-1, S), (s-2, S), …, because they will fail to provide the required level of service” 

(Kapalka et al., 1999). They recognise the same pattern for the costs with a fixed S, which always 

increases when s increases. However, for our search algorithm, we can only assume monotonicity for 

the service level since the shortage costs disrupt this for the costs. We formulate two variants of the 

algorithm, as the 2-bin Kanban system and (R, s, S) system have varying characteristics concerning the 

order parameters. The upcoming sections describe the algorithms for each of the systems in more detail. 

4.3.1 2-Bin Kanban system 

The algorithm search procedure for the 2-bin Kanban system (stock items) is visualised in Figure 11. 

The procedure starts by initializing the parameters. The upper bound (Qmax) of the search area is the 

maximum inventory position given by 𝑈𝐵 = 𝑚 ∗ (mean order size + 2), where m is a number chosen 

such that 𝑈𝐵 > max order size. Furthermore, we multiply it with a value which is two units more than 

the mean order size to account for low mean order sizes. Kapalka et al. (1999) propose to use a multiple 

of the EOQ + Safety Stock for the upper bound. However, we always increase or decrease both r and 

Q. As a results, the algorithm reaches the upper bound faster than in the case of Kapalka et al. (1999). 

Therefore, we propose to use the mean order size instead. We found that m = 6 is more than adequate 

in a wide range of test situations based on the order data. The lower bound is the minimum reorder point 

(rmin), which is 0. When the parameters are set, the tool starts searching from the starting point for the 

first setting that satisfies the service level constraint. The algorithm either reaches the upper bound and 

stops, or it finds a setting and continues the search to find a solution with lower costs. When the 

algorithm continues its search, it decreases the reorder point and order quantity by one unit until the 
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solution no longer satisfies the service level constraint. Some products are only allowed to be ordered 

in fixed-packed sizes (batch sizes) of, for instance 10 units. In this case, the reorder point and order 

quantity would both decrease by 10 units. During this process, the setting with the least amount of costs 

is stored. Since we assumed monotonicity there is no need to check policies  (r – 1, Q – 1), (r – 2, Q – 

2), …, once the service level of (r, Q) is lower than the required service level because they will fail to 

satisfy the desired service level as well. To reduce the execution time, we want to start at a point which 

is near the optimal solution. Therefore, a good starting point for the 2-bin Kanban search algorithm is r 

and Q equal to the Economic Bin Quantity (EBQ), which is the optimal bin quantity for a 2-bin Kanban 

system unless its value is lower than the summation of the demand during lead time and the safety stock 

(Kanet & Wells, 2019). The EBQ is equal to 
𝐸𝑂𝑄

√3
.  

 

Figure 11: The flowchart of the 2-bin Kanban search algorithm. 

4.3.2 (R, s, S) policy 

Figure 12 shows the algorithm search procedure for the purchase articles with an (R, s, S) policy. For 

this policy, the algorithm first initializes its parameters. Even though the search procedure is different 

for the 2-bin Kanban system, we found that the same procedures apply to the lower bound (smin) and 

upper bound (Smax) of the (R, s, S) system, based on test situations with the data set. In these situations, 

the algorithm found a solution for all the items. Then, the tool starts its search at the minimum reorder 

value s = 0 and an order-up-to-level S = s + 1. Next, it iterates over four steps to find the near-optimal 

setting: In the first step, both s and S increase by one unit each with every iteration until the tool either 

reaches the upper bound and stops or finds an (s, S) setting that satisfies the service level constraint and 

has higher costs than the previous setting with the lowest costs. The current order parameters setting is 

stored, and we return to the setting with the best costs (s = s – 1, S = S – 1). In Step 2, the algorithm 

decreases the reorder point s while S remains unchanged to find the lowest reorder point that satisfies 

the service level constraint for that specific order-up-to-level. When the reorder point is lower than the 

minimum reorder point or the service level constraint cannot be satisfied, the algorithm returns to the 

stored setting (Step 3). From there, the tool does the procedure of Step 2 until it does not satisfy one of 

the constraints anymore. In the last step, it increases the order-up-to-level S while s stays unchanged 

until it reaches the maximum order-up-to-level value or the order-up-to-level S is larger than the 

summation of the reorder point and the EOQ. 
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Figure 12: The flowchart of the (R, s, S) search algorithm. 

4.4 Model outputs 
We use two main KPIs to measure the performance of the various interventions. These KPIs are: 

Costs 

The costs are a combination of the holding, ordering, and shortage costs. A more detailed explanation 

of the costs calculations is provided in Section 4.2. The costs KPI does not apply to the model objective 

in which we only consider the service level constraint. 

Service level 

The service level is defined as the availability of an item, which is the probability of not going out of 

stock in a review period. 

Other outputs from the model are the number of orders, average inventory level, fill rate, and the number 

of stockouts. These outputs have less impact on decision-making. However, they can still support certain 

decision-making as it provides the user with more information about the scenarios. 

4.5 Assumptions and simplifications 
Various assumptions and simplifications are made to model the inventory of the OR department. This 

section provides an overview of them. 

1. The lead time of stock items that are delivered by HL is assumed to be constant based on the 

agreed order and delivery times between Isala and HL.  
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2. The lead time of stock items that are supplied by other suppliers and purchase articles is assumed 

to be between three to five days, which is justified by subject-matter-experts (SMEs) from Isala. 

3. Lead time demand is the fraction of the day demand during lead time. This is only calculated 

for stock items, as purchase items have a lead time of at least one day. Therefore, the lead time 

demand for purchase articles would be equal to the daily demand times of the lead time days. 

4. The end inventory of a day is always equal to or greater than zero. We assume that demand that 

is not realized via the original location, is either fulfilled via an emergency order or taken from 

another storage location. 

5. We assume that the inventory position at a review day is reviewed at the beginning of the day. 

6. Only workdays with a total of ten hours are considered in the simulation. Since, most of the 

operations are scheduled on those days. Also, it is not possible to place regular orders outside 

office hours.  

7. There are no backorders at suppliers. Therefore, it is always possible to order the necessary 

items. 

8. We assume that the supplier always delivers the correct items.  

4.6 Verification and validation 
According to Robinson (2014), it is not possible to prove that a model is valid. Therefore, model 

verification and validation are concerned with creating enough confidence in the model so it can be used 

for decision-making. We define verification as correctly translating the conceptual model into a 

computer model. Whereas validation concerns whether the simulation model is an accurate 

representation of reality for the particular objectives of the study (Law, 2015). 

To verify the model, we applied seven out of the eight verification techniques of Law (2015). These 

applied techniques are: 

1. Write and debug the computer program in modules or subprograms. To maintain an overview 

of the various processes, the model consists of multiple modules with multiple subprograms and 

functions.  

2. More than one person should review the model. The model has been verified by multiple experts 

of Isala and by an independent researcher. 

3. Simulate a variety of settings. We run the model for 1,754 items that all have different 

characteristics. Furthermore, we vary parameters in the experiments (see Section 5.2). 

4. Use a “trace” to debug the program. We traced the steps of the simulation model by visualizing 

the inventory process, demand, and results on a sheet (see Appendix A). Furthermore, we used 

the debugger during the construction of the model. 

5. Run the model under simplifying assumptions. At the start, we mainly ran the model for a few 

items and used constant parameters. Later we added more variability into the model. 

6. Observe animations of the simulation output. By observing the visualization of the inventory 

position and process of items, possible errors were detected and redressed. 

7. Compute the sample mean and sample for each simulation input probability distribution, and 

compare them with the historical mean and variance. We did this partly as only the historical 

mean of the demand is available for comparison. 

The technique that we did not apply in the verification of the model is using a commercial simulation 

package to reduce the amount of programming. However, we decided to use Excel which is not a 

simulation package. However, the program is broadly used at Isala, which increases useability. Even 

though, we did not use all verification techniques, we believe that the conceptual model is correctly 

translated into the computer program. 

To validate the model, we cannot compare the model outputs with the current situation of the real system 

as the data records do not concern actual demand for items, and Isala has no information on the current 

service levels (see Section 2.3 and Section 2.4). Instead, we did two other steps to validate the model. 
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First, we showed the simulation model, its process, and the results to several SMEs at Isala for validation. 

Once they believed that the simulation model represent reality sufficiently well, we continued with 

running experiments (Kleijnen, 1998). The aim of running various experiments is to detect the effect of 

changing a particular parameter (see Section 5.1.2). With a sensitivity analysis we want to derive 

conclusions about the importance of the parameters. 

4.7 Conclusion 
Our simulation model consists of five steps to simulate the inventory system of Isala and to find near 

optimal or optimal order parameters for all items. In this simulation, the order parameters are the 

decision variables. First, we initialize the simulation model and set the item's order parameter setting. 

Then, we determine the demand for a certain item i. Next, we calculate the costs and service level for 

the item. Based on these calculations, we return to step 2 with another order parameter setting for the 

same product or with the order parameters of the next item i + 1. We store the outputs of the model 

when there are no items left to simulate.  

We measure the performance of the model by two KPIs, which are the costs and availability of an item 

for a certain order parameter setting. In addition, we store the number of orders, number of stockouts, 

average inventory, and fill rate to support certain decision-making as it provides the user with more 

information about the scenarios. To construct the model, we made several assumptions and 

simplifications. We verified these assumptions, and the overall model by using seven out of the eight 

verification techniques of Law (2015). We validated the model by first showing it to experts of Isala and 

then ran various experiments with it. 
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5. Experimental design 
This chapter outlines the experimental design of the simulation model, which we described in Chapter 

4. This chapter is divided into four sections. Section 5.1 describes the input demand distributions of the 

model. These include the demand input and various parameter options for the holding cost rate, ordering 

costs, and demand variability. Section 5.2 outlines the various experimental parameters and the 

experimental scenarios. Then, we present the experimental setup in Section 5.3. We conclude this 

chapter in Section 5.4. 

5.1 Input demand distributions 
We have to specify the demand probability of the items to carry out the simulation using random inputs. 

There are a variety of distributions that can be used in the simulation model. These can be split into three 

main types, presented in Table 6.  

Table 6: Types of distributions, adapted from Robinson (2014). 

Distribution Description 

Continuous distributions For sampling data that can take any value across a range 
 

Discrete distributions For sampling data that can take only specific values across a range 
 

Approximate distributions Used in the absence of data 

 

It is preferred to use a continuous distribution over a discrete distribution, whereas it is preferred to use 

a discrete distribution over an approximate distribution (Law, 2015). However, it is not possible to fit a 

continuous distribution in every situation. We need to identify the category of the collected data to select 

which distribution we use in our model.  

- Category A data is available. This category of data is collected previously or is known. For this 

data it is important that it is accurate and in the right format for the simulation model. 

- Category B data is not available but collectable. To collect the data, it might require conducting 

interviews with experts or observing the real-world system. 

- Category C data is not available and not collectable. It can be too time-consuming to observe a 

real-world system or the system is not operational. 

An observation in our data analysis is that the data records concern order quantities and not the actual 

demand for an item, which is common for hospitals in literature (Bijvank, 2009). As a result, the 

available data about the usage of an article is limited. Furthermore, we cannot collect the usage data as 

it would take too much time to count the usage of all the items for a given period. Therefore, we classify 

it as category C data. 

There are two main ways of dealing with category C data. We can either estimate the data or treat the 

data as an experimental factor rather than a fixed parameter (Robinson, 2014). The unobtainable data at 

Isala is the exact usage of an item, further referred to as the demand. However, we can estimate the 

average demand of an item by taking its mean order quantity per working day. Based on the average 

demand, we can split the items into two categories: slow-moving and high demand items.  

Slow-moving products have an average daily demand lower than 10 units. For these items, it is important 

to be able to deal with discrete units. A Poisson distribution is a discrete distribution which is appropriate 

to use for slow-moving items when the observed standard deviation is within 10% of the square root of 

the average daily demand (Silver et al., 2017). We cannot confirm this statement as the observed 

standard deviation is part of the unobtainable data. However, literature support the assumption that 

demand of items in a hospital environment follows a Poisson distribution (Epstein & Dexter, 2000; 

Bijvank & Vis, 2012a). Therefore, we make this assumption for slow-moving items.  
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High demand products have an average daily demand of at least 10 units. For these items, Silver et al. 

(2017) suggest using a normal distribution to simulate the demand, which Dellaert & van de Poel (1996) 

also assume in their research. A drawback of this continuous distribution is the possibility of generating 

a random variable with a negative value when the variance is relatively large. However, we cannot 

collect information about the variance of the items demand. Instead of using a fixed variance, we use 

experimental factors for the variance to mean (VTM) ratio, similar to Bijvank & Vis (2012b). We 

determine the variance by multiplying  the average demand with the VTM ratio. It is important that the 

VTM value does not result in a variance which is to large. Otherwise, we should truncate the normal 

distribution such that the generated value is always non-negative. Another approach to simulate the daily 

demand of high-demand products to overcome the absence of data is to use approximate distributions. 

The simplest form of approximate distribution is the uniform distribution. We can use a similar approach 

for this distribution as for the normal distribution, where we use a multiple of the mean to set the a and 

b boundaries, which are the minimum and maximum values. The normal distribution and uniform 

distribution are both used in separate scenarios to simulate the demand for high-demand items. 

5.2 Experiments 
This section first outlines the various parameters we use in the experiments. Next, we provide an 

overview of the scenarios and their corresponding parameter values. 

5.2.1 Experimental parameters 

There are two main reasons for designing various experiments for the simulation model. First, we want 

to acquire insight into the performance of the search heuristic with its corresponding replenishment 

policies in the base situation and compare the performance to the current order parameters. We run this 

experiment for a model with the cost objective that is explained in Section 4.2 and with a service-level 

model. The service-level model determines the order parameter settings that take up the least amount of 

storage capacity while satisfying the service-level constraint. The information about the model 

performances helps Isala by determining the order parameter settings for their items. Table 7 shows the 

parameters of the base situation. Second, we perform a “what-if” analysis on two parameters, lead time 

and demand variability, to observe their impact on the order parameters. In an experiment, we vary a 

certain parameter while the other parameters remain fixed (ceteris paribus) and compare the cost 

objective outcomes. In each scenario, we consider 1,754 items, and we use the normal or uniform 

distribution and Poisson distribution for high-demand items and slow-moving items, respectively. The 

parameters that vary are the holding cost rate, h, fixed ordering costs, A, lead time of suppliers other 

than HL, and the demand variability of high-demand items. The fixed ordering costs for products are 

different for the supplier HL, A (HL), and other suppliers, A (Other). By varying the holding cost rate 

and the fixed ordering costs we want to see if the simulation model can cope with various parameters. 

We vary the lead time to gain insight into supplying an item via HL instead of another supplier. Demand 

variability is a topic that gets more attention from the experts from Isala. However, the impact is not 

clear. We want to get more insight into this by varying the variability of high-demand items. These 

parameters vary as follows: 

h {0.05, 0.30, 0.60, 1} 
 

A (HL) {0, 1, 5, 10} 
 

A (Other) {0, 5, 22.50, 60} 
 

Lead time (Other) {0.5 or 0.8,    Uniform (3, 5)} 
 

VTM (Normal) {0.5, 1, 2} 
 

a, b (Uniform) {(0.7, 1.3), (0.5, 1.5), (0.2, 1.8)}  
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Table 7: Base situation parameters. 

Category Parameter value   

Holding cost rate h    

 0.30    
     

Fixed ordering costs A (HL)  A (Other suppliers)  

 1  22.50  
     

Stockout costs K    

 50    
     

Demand variability VTM (Normal) high-demand items  VTM (Poisson) slow-moving products 

 2  1  
     

Lead time HL  Other suppliers  

 0.5 or 0.8  U (3, 5)  

 

Holding cost rate and fixed ordering costs (HL) 

We vary the holding cost rate, h, and fixed ordering costs of HL, A (HL), parameters similar to the 

factors that Neve & Schmidt (2022) used in their experiments. In the base scenario, we use a holding 

cost rate of 30% (per year). This number is similar to the holding cost rate Dellaert & van de Poel (1996) 

used in their research for storage in the sterile department (29.5%). Furthermore, in the base scenario, 

we assume that the fixed ordering costs of HL are €1.    

Fixed ordering costs (Other) 

The factors for the fixed ordering costs of other suppliers, A (Other), are based on available data, with 

zero costs being the minimum, an average of €22.50, and a maximum of €60. Furthermore, we added a 

fixed ordering cost of €5 for convenience regarding the calculations. With the experiments, we want to 

get insight if these costs have a noticeable impact on the order parameters of purchase items.  

Stockout costs 

The stockout costs, K, remain constant in the experiments. An expert of Isala approximates that the cost 

of an emergency order would be around €225. However, not every stock out triggers an emergency 

order, as items can also be taken from another storage department. Nevertheless, employees of Isala 

always spend time handling a stockout. Therefore, we set the stockout costs, K, to €50. 

Lead time 

Based on expert suggestions, the lead time (Other) is between three and five working days. As there is 

no clear indication of the probability per lead time, we assume that it is uniformly distributed on the 

interval (3, 5). In consultation with HL is it also possible to store purchase items in their warehouse. The 

items would then be classified as stock items instead of purchase items with the main advantage that 

they would have a shorter lead time. Items that are delivered by HL are scanned at a fixed interval time 

window, which is location dependent. The items are also delivered at a fixed time. Therefore, we can 

assume that all the items that are delivered by HL have a constant lead time, which is either 0.5 or 0.8 

working days, depending on the location the item is stored in. Isala is curious about the effect of 

supplying the purchase items via HL on the order parameters. 

Demand variability 

We set the parameters for the VTM of high-demand items similarly to the parameters Bijvank & Vis 

(2012b) used in their experiments. In the current situation, the variability of demand is relatively high. 

Isala is curious about the effect of less variability on demand on the order parameters. Furthermore, we 
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want to gain insight into the effect when demand is uniformly distributed. We also use boundaries that 

result in even higher variability of demand. These boundaries are set in collaboration with an expert 

from Isala.  

The demand for slow-moving products follows a Poisson distribution. The VTM ratio is always 1 for a 

Poisson demand distribution.  

5.2.2 Overview experiments 

We categorize the experiments into four categories: model verification, base scenario, lead time, and 

demand variability. The experimental parameters in the model verification category are the holding cost 

rate and the fixed ordering costs of HL and other suppliers. We used this category mainly to verify our 

model and did not include them in Chapter 6. However, we can conclude that our model can handle 

various parameters and that the fixed ordering costs of other suppliers do not have a noticeable impact 

on the order parameters of purchase items. We do outline the outputs of the other three categories in 

Chapter 6. Table 8 shows a summary of all experiments, which includes the varying parameter, the 

number of experiments, and a description. We perform a total of eleven experiments.  

Table 8: Summary of the experiments. 

Category Parameter Experiments Values Description 

1. Base 

scenario 

- 3 From Table 7 We compare the outputs of the current 

order parameters and the parameters 

chosen by the search heuristic for a cost 

and service-level objective. 
     

2. Lead time 

(purchase 

articles) 

Lead time 

(Other) 

2 {Lead time HL, 

U(3, 5)} 

Run the experiments on the model with 

cost objective and gain insight into the 

items with lowered order parameters. 
     

3. Demand 

variability 

VTM 
 

U(a, b) 

6 {0.5, 1, 2} 
 

{(0.7, 1.3),     

(0.5, 1.5),     

(0.2, 1.8)} 

Run the experiments on the model with 

cost objective and gain insight into the 

change in the order parameters. 

 

5.3 Experimental setup 
In this section, we determine the initial conditions, the run length, and the number of replications. We 

consider two model outputs, costs and average inventory, to determine those numbers for the base 

scenario. To save time, we take the same experimental setup for all experiments, instead of determining 

them separately. 

5.3.1 Initial conditions 

We can set the initial conditions in two ways. We can run a warm-up period for the model or take initial 

conditions from the real system (Winston & Goldberg, 2004). As there is no accurate data available 

about the usage and inventory levels of items, we determine the initial conditions by running a warm-

up period. With a warm-up period, we delete the observations from the beginning of the simulation. 

These observations depend on initial conditions and therefore do not representative of steady-state 

behaviour. 

We use Welch’s graphical method to determine the length of the warm-up period. With this method, we 

estimate when the system reaches a steady state performance by visually inspecting the time-series data 

(Law, 2015). We make five independent replications with a run length of 520 days. For each ith 

observation, we calculate the mean. Then we use a moving average of 5 (w=5), for which the plot is 

reasonably smooth. Figure 13 shows the plots of the moving averages of the costs and the average 
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inventory. From this figure, we estimate that the output seems stable after 50 days. Therefore, we decide 

to use a warm-up period of 50 days. 

 

Figure 13: Determining the warm-up period for two model outputs, using Welch's graphical method. 

5.3.2 Run length and number of replications 

The model should run much longer than the length of the warm-up period to obtain sufficient data (Law, 

2015). We decided to run the model for 260 days, which is one year in working days. The total run 

length of one replication of the simulation would then be 310 days including the warm-up period. 

With the sequential procedure, we decide how many replications provide us with an acceptable estimate 

of the simulation models mean performance (Law, 2015). With a relative error 𝛾 = 0.05, and a 

significance level 𝛼 = 0.05, the maximum number of replication necessary for our simulation model is 

three. Therefore, we use three replications in our simulation. Appendix B displays the sequential 

procedure for the cost and average inventory outputs.  

5.4 Conclusion 
We designed various experiments to determine the performance of the simulation model. The parameters 

that vary in those experiments are the holding cost rate, h, fixed ordering costs, A, lead time of suppliers 

other than HL, and the demand variability of high-demand items.  
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6. Results 
This chapter outlines the results of the simulation model for the various scenarios and parameter settings 

of Chapter 5. Section 6.1 compares the results of the base scenario with the current order parameter 

settings and for a cost objective and service level model. Section 6.2 shows the performance of each 

experimental scenario. We conclude this chapter in Section 6.3. 

6.1 Base scenario results 
This section compares the performances of the costs and service-level model to the order parameters of 

the current replenishment policy in the case study. In the simulation, all item types are replenished 

according to the policy of the item type, i.e., stock items have a constant order size, and purchase articles 

have a variable order size. In reality, it could also happen that stock items have variable order sizes. 

However, we assume that stock items have a fixed order quantity, as this assumption holds for most 

historical orders, and the replenishment policy was intended to work that way. 

Table 9 shows a summary of the performance of the models (with n=1,754), in which the cost and 

service-level models outperform the current order parameters in terms of service level and costs. The 

average order parameters of the service-level model are lower than the current ones. Nevertheless, on 

average, it results in a higher service level, fewer costs, and fewer stock-outs. With the decrease in the 

order parameters, less inventory space is necessary for the items. For the model with a cost objective, 

the required storage capacity increases by 16% (comparing the optimal order-up-to-level S (or r + Q, 

depending on the item) with the current one). On the contrary, the service-level model reduces the 

required space by 29%. Furthermore, the workload of employees reduces because they need to spend 

less time on emergency orders. And the average costs are significantly lower for the cost- and service-

level model compared to the current order parameters, as the yearly average costs reduce by €204 and 

€152, respectively. 

Table 9: Summary of the base scenario results. In the table, the Min is equal to the reorder point s (r) 

and the Max is equal to the order-up-to-level S (r + Q). 

Model Average 

Min 

Average 

Max 

Service level (%) Costs per year (€) Number of stock-

outs per year 
 

   Average SD Average SD Average SD 

Current 7.5 15.8 98.92% 0.14% €1,819 €148 2.8 
 

0.4 

Service-

level 

5.4 11.3 99.93% 0.05% €1,667 €136 0.2 
 

0.1 

Cost 8.9 18.3 100.00% 0.00% €1,615 €134 0.0 0.0 

 

Figure 14b shows how the average costs are divided into the ordering, holding, and shortage costs. The 

ordering costs are only slightly lower for the current order parameters at the cost of significantly higher 

holding- and shortage costs. For some items, the models decrease the order parameters while still 

maintaining the desired service level criterion. This results in a lower average holding cost. Whereas, 

the order parameters increase for items that fail to satisfy the service level criterion, which results in 

lower average shortage costs. 

Most of the items in this experiment are stock items (n=1,383). The other items are classified as purchase 

items (n=371). We used a different replenishment policy for them. Table 10 shows a summary of the 

item types in the experiment. For stock items, the optimal parameters can reduce the average shortage 

costs by approximately €258 per year, while the yearly average ordering- and holding costs would only 

slightly increase by €26 and €3, respectively. The optimal parameters reduce the yearly average 

ordering- and shortage costs of purchase items by €87 and €28, respectively compared to the initial 
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parameters, while the average holding costs would only slightly increase by €3 per year. Appendix C 

contains a more comprehensive summary of the stock and purchase items.  

Table 10: Summary of the base scenario results per item type. In the table, the Min is equal to the 

reorder point s (r) and the Max is equal to the order-up-to-level S (r + Q). 

Model Item type Average 

Min 

Average 

Max 

Average            

service level (%) 

Average costs (€) 

Current Stock 9.3 19.5 98.65% €2,073 

 Purchase 0.9 2.1 99.94% €872 
 

Service-level Stock 6.9 14.0 99.93% €1,879 

Purchase 0.2 1.2 99.95% €874 
 

Cost Stock  11.2 22.6 100.00% €1,844 

 Purchase 0.2 2.2 99.99% €760 

 

Overall, the models significantly outperform the current parameters in the base scenario. When we 

compare the results of the service-level model to the current parameters for all the items in the dataset 

(n=1,754), the average availability of items increases from 98.92% to 99.93% (Figure 14a), and the total 

costs of the inventory system reduce by approximately €265,000 a year (from €3,190,000 to 

€2,925,000). The optimal parameters of the model with a cost objective increase the average availability 

of items to 100.00% and reduces the total costs of the inventory by approximately €355,000 a year, 

compared to the current order parameters.  

Other results of the models are found in Appendix C, which contains all the stored output of the base 

scenario. 

 

Figure 14: The (a) service level and (b) average costs per year for the current order parameters, service-

level model order parameters, and cost model order parameters. 

6.2 Experimental scenario results 
In this section, we outline the results of the experimental scenarios. Subsection 6.2.1 contains the results 

of the model with a varying lead time of other suppliers, which only includes the purchase items. In 

Subsection 6.2.2, we outline the results of various demand variabilities for high-demand items.  

6.2.1 Varying lead time (Others) results 

We test this experiment with the cost model and a data set of n=371 purchase items. Using the lead time 

of HL would reduce the average Min level and Max level by 58% and 14%, respectively, compared to 
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the lead times of the base scenario. However, the analysis shows that the order parameters only change 

for 50 items, which is 13%. For these items, the total Max level reduces by 65 units. The order 

parameters remain the same for the other supplies (n=321).  

Appendix D shows the items that can reduce their order parameters by delivering them via HL. However, 

it does not automatically mean that Isala should do this. Items that are delivered by HL are stored in 

their warehouse, which can also be seen as Isala’s external warehouse. These are the property of Isala, 

as HL stores them specifically for Isala. Isala receives an invoice from HL if they deliver the items or if 

the items can no longer be used because they have expired. As a result, storing items at HL can entail 

additional costs that fall outside the scope of this research. 

6.2.2 Varying demand variability results 

We test this experiment with a data set of n=89 high-demand items for six scenarios. Table 11 shows 

the performance of the scenarios with the cost model. The demand variability of Scenario 1 is equal to 

the base scenario. The results of the scenario are quite close to the results of Scenario 5. The demand 

variability is higher for Scenario 6. These results are, therefore, worse with an increase in the average 

Min, Max, and costs compared to the base scenario. A lower demand variability significantly reduces 

the average Min, Max, and costs of the inventory system. Scenarios 2, 3, and 4 have average costs per 

year of €7,211, €6,901, and €6,868, respectively. A VTM ratio of 0.5 (Scenario 3) reduces the required 

space and average costs for high-demand items by 15% and 9%, respectively compared to the base 

scenario. 

Table 11: The performance of the demand variability scenarios with the cost model order parameters. 

In the table, the Min is equal to the reorder point s (r) and the Max is equal to the order-up-to-level S 

(r + Q). 

Scenario Parameter value Average Min Average Max Average costs per year (€) 

1. (Base) VTM 2 59.1 118.2 €7,611 
 

2. VTM 1 54.0 108.0 €7,211 
 

3. VTM 0.5 50.4 100.9 €6,901 
 

4. U(0.7, 1.3) 52.4 104.9 €6,868 
 

5. U(0.5, 1.5) 59.2 118.4 €7,322 
 

6. U(0.2, 1.8) 69.4 138.7 €8,021 

 

6.3 Conclusion 
The optimal order parameters found by the simulation model and its search heuristic significantly 

outperform the case study’s current order parameters. While the performance of the service-level model 

and the cost model are quite similar. The general tendency was that for most items the current order 

parameters resulted in high inventory levels, and, consequently, high holding costs. In the contrary, other 

supplies in the current situation have order parameters which are too low. As a result, the shortage costs 

and number of stock outs increase. When we compare the results of the service-level model to the current 

parameters for all the items in the dataset (n=1,754), the average availability of items increases from 

98.92% to 99.93%, and the total costs of the inventory system reduce by approximately €265,000 a year 

(from €3,190,000 to €2,925,000). The optimal parameters of the model with a cost objective increase 

the average availability of items to 100.00% and reduces the total costs of the inventory by 

approximately €355,000 a year, compared to the current order parameters. 

The scenario with a varying lead time for suppliers other than HL shows that there are 50 purchase items 

with a decrease in its order parameters. These items have the potential to store them at HL, however, 

storing items at HL can entail additional costs that fall outside the scope of this research. 



 

38 

 

The other experiment in which we vary the demand variability shows that less variability can reduce the 

required space and average costs for high-demand items by 15% and 9%, respectively. 
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7. Conclusions and Recommendations 
This chapter is divided into three sections. First, we answer the main research question in Section 7.1. 

Then in Section 7.2, we outline the recommendations for Isala. And Section 7.3 describes the discussion 

of this research.  

7.1 Conclusion 
In this section, we answer the main research question. This question is formulated as follows: 

“How can the on-hand availability of surgical supplies at the Operating Room department of Isala be 

increased by improving its inventory management?” 

Since no information on current service levels is available, we set the desired service levels for medical 

and non-medical items at 99.9% and 98.0%, respectively. The inventory management of stock and 

purchase items must improve to achieve these service levels. 

Stock items have a constant review period and a short lead time. The lead time for stock items is, most 

of the time, less than a day as they are supplied multiple times per day from the external warehouse by 

Isala’s logistical partner. The mean usage of these items is higher than the usage of purchase items, and 

therefore, we use a 2-bin Kanban policy with equal bin sizes, denoted as an (R, r, Q) system, where the 

reorder point (r) equals the order quantity (Q). This system decreases the workload of employees and 

the built-in stock rotation reduces the risk of products expiring, leading to better ergonomics. 

Purchase items have a constant review period and stochastic lead time. The items can be classified as 

slow movers due to having a daily usage of fewer than ten units. To use the available capacity efficiently, 

we use an order-up-to-level replenishment policy with a variable order size, denoted as an (R, s, S) 

system. 

We have developed a simulation-optimization system for OR department inventory management. This 

simulation-optimization approach uses one of the two developed search heuristics to find the optimal or 

near-optimal order parameters, depending on the item type. The optimal order parameters found by the 

simulation model and its search heuristic significantly outperform the case study’s current order 

parameters. The general tendency was that for most items the current order parameters resulted in high 

inventory levels, and, consequently, high holding costs. On the contrary, other supplies in the current 

situation have order parameters which are too low. As a result, the shortage costs and number of 

stockouts increase.  

For stock items, the optimal parameters can reduce the average shortage costs by approximately €258 

per year, while the yearly average ordering- and holding costs would only slightly increase by €26 and 

€3, respectively. The optimal parameters reduce the yearly average ordering- and shortage costs of 

purchase items by €87 and €28, respectively compared to the initial parameters, while the average 

holding costs would only slightly increase by €3 per year. When we compare the results of the service-

level model to the current parameters for all the items in the dataset (n=1,754), the average availability 

of items increases from 98.92% to 99.93%, and the total costs of the inventory system reduce by 

approximately €265,000 a year (from €3,190,000 to €2,925,000). The optimal parameters of the model 

with a cost objective increase the average availability of items to 100.00% and reduces the total costs of 

the inventory by approximately €355,000 a year, compared to the current order parameters. 

By adapting the model’s base scenario, several “What-if” scenarios are conducted to observe the impact 

on the inventory system. The scenario with a varying lead time (Others) shows that there are 50 items 

with a decrease in its order parameters. These items have the potential to store them at HL, however, 

storing items at HL can entail additional costs. The other experiment in which we vary the demand 

variability shows that less variability can reduce the required space and average costs for items with a 

daily usage of at least ten units by 15% and 9%, respectively. 
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7.2 Recommendations for practice 
This section outlines three recommendations for Isala based on this research. 

Change the replenishment policies of stock and purchase items 

The first step in improving inventory management is by applying clear replenishment policies. 

Currently, stock and purchase items are replenished according to a (R, s, S) policy. The order sizes 

fluctuate a lot as they are either equal to the item’s “Min” value or based on personal experience. 

Changing the replenishment policy of stock items to a 2-bin Kanban system with equal bin sizes reduces 

this fluctuation and decreases the workload of employees. Furthermore, the built-in stock rotation 

reduces the risk of products expiring, leading to better ergonomics. We recommend keeping a (R, s, S) 

replenishment policy for purchase articles. These items are ordered less frequently than stock items, 

which reduces the impact of fluctuating order sizes on the system. A benefit of using a (R, s, S) policy 

is that it uses the available storage capacity more efficiently than policies with constant order sizes. 

Implement and use the simulation model 

We recommend the OR department of Isala to use the simulation model in their decision-making about 

setting the order parameters. Implementing the model gives more insight into the inventory management 

process. The visual intuitive experience that it provides to its users could overcome possible resistance 

during the implementation of the model. The order parameters should be regularly revised to cope with 

non-stationary demand. We recommend doing this at least once every six months, which requires 

updating the demand distributions and other input data. Once the system is implemented in the OR 

department and provides positive results. It should be expanded to other departments in the hospital, 

which, to the best of our knowledge, requires little change to the model when these other departments 

use similar data records as the OR department. 

Capture the actual demand for items and the service level of the inventory system 

It is recommended to capture the actual demand for items and the service level of the inventory system. 

More accurate data further improves the performance of the simulation model. With the right 

information, it is easier to see improvement in the system. And items with a lower service level than 

desired are detected faster. 

Expand the use of package sizes in the model 

The data set used in the experiments only concerns items with a package size of one unit. However, the 

model should handle other sizes as well. We recommend including the package sizes of items to find 

more accurate order parameters and possible faster computation times. 

7.3 Discussion 
This section is divided into three subsections. Subsection 7.3.1 describes the contribution of this research 

to theory. Subsection 7.3.2 explains this research’s contribution to practice. In Subsection 7.3.3, we 

describe the limitations of this research and the suggestions for further research. 

7.3.1 Contribution to theory 

This research contributes to the literature on healthcare inventory management. We developed a 

simulation model similar to Zhang et al. (2014). We expanded their work by including fractional lead 

times in the model. Furthermore, the search algorithm we use to find near-optimal and optimal order 

parameters is a simplified version of the algorithm developed by Kapalka et al. (1999), while we 

extended the algorithm of Esmaili et al. (2019) by also considering costs. In addition, we formulated 

two variants of the algorithm, as the 2-bin Kanban system and (R, s, S) system have varying 

characteristics concerning the order parameters. We performed a case study on the storerooms of the 

OR department of Isala to determine the model’s applicability in practice. 
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7.3.2 Contribution to practice 

This research supports Isala in its decision-making on its inventory management. We provide insight 

into the current situation and an overview of alternative inventory management policies. The simulation 

model helps by setting the order parameters of items and a better understanding of the inventory process. 

The near-optimal or optimal order parameters found by the simulation model significantly outperform 

the current parameters in terms of service level and costs. Increasing the service level from 98.92% to 

100.00% and reducing the total costs from €3,190,000 to €2,835,000 per year. Furthermore, slight 

adjustments to the model could make it possible to further expands its use in the rest of the hospital.  

7.3.3 Limitations and further research 

Some of the limitations of this research are:  

- Since the available data about the lead time of other suppliers includes backorders and 

emergency orders it does not represent the actual lead time. Therefore, we assumed that the lead 

time of other suppliers is uniformly distributed between three to five working days based on 

information of the experts at Isala. 

- Excel is used to simulate the inventory of Isala. Using Excel results in high calculation times 

and a lot of VBA coding as the program is not optimal for simulations. However, Excel is widely 

known and available in the healthcare sector. Making it more likely to be implemented into 

practice. Therefore, it was a suitable option for this research. 

- There are no data records available of the actual demand for a certain item. Instead, we used the 

order data of 2022. 

Furthermore, we give some suggestions for further research: 

- Research the effect of the 2-bin Kanban system with RFID technology on an item and bin level. 

- Perform further research on the decision of which items to store at HL.  

- Incorporate the capacity per storage location when determining the optimal order parameters, 

which changes it from a single-item inventory system to a multi-item one.  

- Expand to a multi-echelon supply chain in which also the external warehouse of Isala, which is 

the storage at HL, is considered. 

 

 

 

 

 

 

 

 

 

  



 

42 

 

References 
Ahmadi, E., Masel, D. T., Metcalf, A. Y., & Schuller, K. (2018). Inventory management of surgical 

supplies and sterile instruments in hospitals: a literature review. Health Systems, 134-151. 

Archibald, B. C. (1981). Continuous review (s,S) policies with lost sales. Management Science, 1171-

1177. 

Bijvank, M. (2009). Service Inventory Management: solution techniques for inventory systems without 

backorders.  

Bijvank, M., & Johansen, S. (2012). Periodic review lost-sales inventory models with compound 

Poisson demand and constant lead times of any length. European Journal of Operational 

Research, 106-114. 

Bijvank, M., & Vis, I. F. (2011). Lost-sales inventory theory: A review. European Journal of 

Operational Research, 1-13. 

Bijvank, M., & Vis, I. F. (2012a). Inventory Control for Point-of-Use Locations in Hospitals. The 

Journal of the Operational Research Society, 497-510. 

Bijvank, M., & Vis, I. F. (2012b). Lost-sales inventory systems with a service level criterion. 

European Journal of Operational Research, 610-618. 

Çakici, Ö. E., Groenevelt, H., & Seidmann, A. (2011). Using RFID for the management of 

pharmaceutical inventory — system optimization and shrinkage control. Decision Support 

Systems, 842-852. 

Dellaert, N., & van de Poel, E. (1996). Global inventory control in an academic hospital. International 

Journal of Production Economics, 277-284. 

Dillmann, R. (2022, September 12). Together, we make Isala! Retrieved from www.iris.isala.nl. 

Epstein, R. H., & Dexter, F. (2000). Economic Analysis of Linking Operating Room Scheduling and 

Hospital Material Management Information Systems for Just-In-Time Inventory Control. 

Economics and Health Systems Research, 337-343. 

Esmaili, N., Norman, B. A., & Rajgopal, J. (2019). Exact analysis of (R, s, S) inventory control 

systems with lost sales and zere lead time. Naval Research Logistics, 123-132. 

Grond, M. O. (2016). Computational capacity planning in medium voltage distribution networks. [Phd 

Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]: Technische Universiteit 

Eindhoven. 

Hadley, G., & Whitin, T. (1963). Analysis of Inventory Systems. Englewood Cliffs: Prentice-Hall. 

Hausman, W. H., & Erkip, N. K. (1994). Multi-Echelon vs. Single-Echelon Inventory Control Policies 

for Low-Demand Items. Management Science, 597-602. 

Hawa, T. (2020). Reimagining the Operating Room Inventory as a Center of Savings. Master of 

Applied Science, University of Toronto. 

Heerkens, H., & van Winden, A. (2017). Solving Managerial Problems Systematically. Groningen: 

Noordhoff Uitgevers. 

Huh, W. T., Janakiraman, G., Muckstadt, J. A., & Rusmevichientohg, P. (2008). Asymptotic 

Optimality of OrderUp-To Policies in Lost Sales Inventory Systems. Management Science, 

404-420. 



 

43 

 

Isala. (2022, October 5). Feiten en cijfers. Retrieved from www.isala.nl: https://www.isala.nl/over-

isala/bestuur-en-organisatie/feiten-en-cijfers/ 

Johansen, S., & Thorstenson, A. (1993). Optimal and approximate (Q,r) inventory policies with lost 

sales and gamma-distributed lead time. International Journal of Production Economics, 179-

194. 

Johnson, E. (2002). Quad wants to be a Savi player in agribusiness. Case study: 6-0015: Tuck School 

of Business Dartmouth, Glassmeyer/McNamee Center for Digital Strategies. 

Kanet, J., & Wells, C. (2019). Setting bin quantities for 2-Bin Kanban systems (version 3). Omega, 

142-149. 

Kapalka, B. A., Katircioglu, K., & Puterman, M. L. (1999). Retail inventory control with lost sales, 

service constraints, and fractional lead times. Production and Operations Management, 393-

408. 

Kelle, P., Woosley, J., & Schneider, H. (2012). Pharmaceutical supply chain specifics and inventory 

solutions for a hospital case. Operations Research for Health Care, 54-63. 

Kleijnen, J. (1998). Validation of simulation, with and without real data. 

Landry, S., & Beaulieu, M. (2010). Achieving lean healthcare by combining the two-bin kanban 

replenishment system with RFID technology. International Journal of Health Management 

and Information, 85-98. 

Landry, S., & Beaulieu, M. (2013). The Challenges of Hospital Supply Chain Management, from 

Central Stores to Nursing Units. In B. Denton, Handbook of Healthcare Operations 

Management (pp. 465-482). Springer New York, NY. 

Lanza-Léon, P., Sanchez-Ruiz, L., & Cantarero-Prieto, D. (2021). Kanban system applications in 

healthcare services: A literature review. The International Journal of Health Planning and 

Management, 2062-2078. 

Law, A. M. (2015). Simulation Modeling and Analysis. New York: McGraw-Hill Education. 

Neve, B. V., & Schmidt, C. P. (2022). Point-of-use hospital inventory management with inaccurate 

usage capture. Health Care Management Science, 126-145. 

Papalexi, M., Bamford, D., & Dehe, B. (2016). A case study of kanban implementation within the 

pharmaceutical supply chain. International Journal of Logistics Research and Applications, 

239-255. 

Persona, A., Battini, D., & Rafele, C. (2008). Hospital efficiency management: The just-in-time and 

Kanban technique. International Journal of Healthcare Technology and Management. 

Rijksoverheid. (2022, October 5). Registratie van implantaten. Retrieved from www.rijksoverheid.nl: 

https://www.rijksoverheid.nl/onderwerpen/medische-hulpmiddelen/registratie-van-

implantaten 

Rivard-Royer, H., Landry, S., & Beaulieu, M. (2002). Hybrid stockless: A case study. Lessons for 

health-care supply chain integration. International Journal of Operations & Production 

Management, 412-424. 

Robinson, S. (2014). Simulation: The Practice of Model Development and Use. Basingstoke: Palgrave 

Macmillan. 



 

44 

 

Rosales, C. R., Magazine, M., & Rao, U. (2014). Point-of-Use Hybrid Inventory Policy for Hospitals. 

Decision Sciences, 913-937. 

RTL Nieuws. (2022, July 20). RTL Nieuws. Retrieved from www.rtlnieuws.nl: 

https://www.rtlnieuws.nl/onderzoek/artikel/5322022/ziekenhuizen-tekort-medische-

materialen-operatie-uitgesteld 

Saha, E., & Ray, P. K. (2019). Modelling and analysis of inventory management systems in 

healthcare: A review and reflections. Computers & Industrial Engineering. 

Schneider, H. (1978). Methods for Determining the Re-order Point of an (s, S) Ordering Policy when a 

Service Level is Specified. The Journal of the Operational Research Society, 1181-1193. 

Silver, E. A., Pyke, D. F., & Thomas, D. J. (2017). Inventory and Production Management in Supply 

Chains. Boca Raton: Taylor & Francis Group. 

Smith, S. A. (1977). Optimal inventories for an (S-1,S) system with no backorders. Management 

Science, 522-528. 

STZ. (2022, October 19). STZ ziekenhuizen. Retrieved from www.stz.nl: https://www.stz.nl/over-

ons/stz-ziekenhuizen/ 

Veral, E., & Rosen, H. (2013). Can a focus on costs increase costs? Hospital Material Management 

Quarterly, 28-35. 

Vila-Parrish, A. R., & Ivy, J. S. (2013). Managing Supply Critical to Patient Care: An Introduction to 

Hospital Inventory Management for Pharmaceuticals. In B. Denton, Handbook of Healthcare 

Operations Management (pp. 447-463). New York, NY: Springer. 

Winston, W. L., & Goldberg, J. B. (2004). Operations Research: Applications and Algorithms. 

Belmont: Thomson/Brooks/Cole. 

Zhang, X., Meiser, D., Liu, Y., Bonner, B., & Lin, L. (2014). Kroger Uses Simulation-Optimization to 

Improve Pharmacy Inventory Management. Interfaces, 70-84. 

 

 

 

  



 

45 

 

Appendix A: Visualization of the simulation model 
 

 

 

 

 

 

  

Figure 15: Visualization of the simulation model. 
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Appendix B: Sequential procedure 
 

 

Figure 16: Sequential procedure with the costs. 

 

Figure 17: Sequential procedure with the average inventory position. 
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Appendix C: Simulation model output 
 

Table 12: Summary of the average output. 

 

Table 13: Summary of the average output per item type. 
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Appendix D: List of SKUs 
 

Table 14: List of the SKUs with a decrease in the order parameters when delivered by Hospital 

Logistics. 

 

 


