
MSc Thesis Systems & Control

Interactive Segmentation in
Space-time Memory Networks

Jochem Hendriks

Examination committee:
Dr. ir. Mark Vlutters (daily supervisor)
Prof. dr. ir. Massimo Sartori (chair)
Dr. ir. Momen Abayazid

April, 2023

Document number:
BE-919

Department of Biomechanical Engineering
Faculty of Engineering Technology
University of Twente

Abstract

The introduction of memory networks was a major development in Semi-automatic Video
Object Segmentation. In all these networks, frames are encoded into an embedding space
using a convolutional neural network. Due to this, the encoded features are abstract and
cannot be changed easily afterwards. Modifying the initial selection while retaining infor-
mation from the already made memory to help in segmentation was previously not possible.

In this research, two novel methods were devised that allow for the combining of memo-
ries from pre- and post modification of the tracked object. This allows the user to define
(partial) objects that can be removed or added to the initially selected object. One of
the methods combines in the encoded feature space whereas the other combines in the
probability space of the decoder outputs.

Tested on a made data set, both methods were able to segment in specific cases where the
unmodified network fails, although the larger memory of the methods generally did not
result in more accurate segmentation. The first devised method proved too inconsistent
for practical use but the second performed well.

The validity of using memory from one stream of stereo vision to segment both streams
was also tested. Although the made data set was limited in size, results indicate this is
possible.

2

1 Introduction

Humanoids are robots resembling the human body in various factors, such as shape. As
they are mainly designed to do physical tasks humans normally do, they have wide appli-
cations in many fields like healthcare, security or factory line work. Up until now robots
have mostly been used for specific tasks but they are steadily becoming more complex and
better at more generalized tasks. One such humanoid located at the University of Twente’s
Nakama Robotics Lab is Eve [1]. Eve is a full-sized humanoid from the company Halodi
designed for use in a wide range of fields, including retail, logistics, security and healthcare.

Figure 1: Humanoid Eve

Similar to humans, perhaps the most important way these robots obtain information from
the environment is through vision. Optic sensing can yield information for locating, en-
vironment mapping, object detection and more. Extracting useful information from an
image or a sequence of images through the use of software is one of the major tasks in the
field of computer vision. Although the field is not new, it is an area of study in which the
use of neural networks has revolutionized the field, and many tasks which were previously
considered very hard are now performed easily. Neural network are able to extract complex
features without these features needing to be handcrafted by humans.

In many environments, a robot will encounter a variety of objects, some of which it may
have never seen before. Classifying objects using traditional neural networks requires train-
ing on known objects, which means that previously unseen objects cannot be classified. It
is impossible to train using all objects, yet in many cases the tracking of these unknown
objects is required. Even without classification there are many uses to being able to
track arbitrary objects, regardless of their class. Detecting objects without object-specific
knowledge required a different training method: a network has to learn to recognize the
’objectness’ instead of specified features. For example, a bottle has a distinct colour and
shape compared to a table it is standing on and thus could be seen as a distinct object

3

even if one has never seen a bottle before.

Detecting objects and knowing their spatial location in an image (e.g. by a bounding box)
already provides useful information but a more detailed representation is a mask indicating
for every pixel in the image whether it belongs to the object or not. Such a segmentation
has many uses, for example in video editing, background removal or shape estimation [2].
Segmenting an object from the background throughout multiple frames, either in a video
or a stream, is called Video Object Segmentation (VOS), which is further divided into
categories depending on the input by the user needed to specify the object to be tracked.

Automatic Video Object Segmentation (AVOS) methods require no initialization and seg-
ment based on the salient object throughout a video. Semi-automatic Video Object Seg-
mentation (SVOS) methods require a user input on the first frame that specifies which
objects need to be tracked. Typically this is in the form of a pixel-wise mask but some
methods require other inputs. Other common inputs are bounding boxes defined by two
clicks at the corners, short scribbles drawn by the user, or a list of positive/negative
clicks which roughly indicate which regions need to be included or excluded. Interactive
Video Object Segmentation (IVOS) takes this further and can handle additional user input
throughout the video. These are often corrections on output masks of the network. IVOS
methods usually incorporate SVOS networks into a larger framework that allows for easy
segmentation of videos.

One of the main long-term goals of Eve is teleoperation wherein a person controls her
and performs tasks from a distance. For this, an IVOS method is needed which allows
this user to select objects live from the video stream. The user also needs to be able to
correct mistakes in the output while propagating, or modify the selection in case parts of
the tracked object must removed or other parts added. For ease of operating, it needs to
be simple for the user to define input while the selected object must be tracked accurately.

Specifying the object to be tracked (initialization) and subsequently outputting the loca-
tion of the object for all frames (tracking) can be seen as two different tasks. Some methods
[3] combine both, but using a separate neural network for each of these tasks is the most
common solution. Many tracking networks only take as input fully annotated masks, in
which for each pixel in the initialization frame is specified whether it includes the object.
The task of initialization such an initial mask can be done by many specialized networks
existing [4][5][6]. These translate user input in the form of clicks, scribbles or bounding
boxes to a binary mask output.

SVOS methods can be roughly classified depending on the principle behind their tracking
strategy, with fine-tuning, propagation-based and matching-based being the major classes
[7]. Methods based on online fine-tuning learn generic features from data sets and then
fine-tune network parameters from the supplied initial mask to learn object-specific fea-
tures. This online training often takes a long time, rendering these methods not very useful
when speed is a requirement. Propagation-based methods use the previous computed mask
to infer the mask for the next frame. The major problem for these methods is that they
generally cannot handle occlusion or very large frame to frame changes properly, as in these
cases the object is not clear in the previous frame. Matching-based methods construct an
embedding space from the supplied mask to capture the object’s features after which the
new frame’s features are matched against this representation to label pixels based on simi-

4

larities. Yet these methods often fail when the object of interest rotates or shifts such that
the correspondence to its initial shape is low.

A major development in SVOS methods was the introduction of the Space-Time Mem-
ory [8] (STM) network which encodes information from not one or two, but many frames
throughout a video into its memory. This allows both old and newly seen features of the
object to aid in the prediction of new masks. Almost all currently best performing SVOS
networks are improvements upon the original STM network [7]. Enhancements are often
made on STM’s non-local matching [9], frame rate [10] and lacking robustness [11]. A glar-
ing issue of STM is its ever-expanding memory bank. Its GPU usage and a major part of
the computing time scale linearly with the number of frames used for building the memory
and thus the original STM cannot handle long videos (500+ frames) using consumer-grade
hardware. The main focus of subsequent papers, such as [12], is thus on the handling of
(potentially infinitely) long videos.

In all memory networks, frames are encoded into an embedding space using a convolutional
neural network. Due to this, the memory consists of encoded features which are abstract
and cannot be changed easily afterwards. This leads to issues for IVOS, such as when part
of an object needs to be added or subtracted for subsequent frames, as the existing memory
can not be used anymore. Using the same memory would cause the network to incorrectly
believe some parts need to be tracked or some parts do not, leading to wrong predictions.
Resetting the memory bank is an option but this leads to the loss of all information from
the past which was the key benefit from memory networks.

For Eve, a feature that would let a user add or remove objects while still maintaining the
state of the art segmentation accuracy provided by memory networks would be very useful.
A user could then select and deselect items on the fly without resetting the network or
running the same network multiple times in parallel. Currently, memory networks are not
able to modify the object selection on the fly without either resetting their memory or
giving false predictions.

The main goal of this research is to develop an architecture that allows for expanding or
decreasing the selection during video object propagation in a memory network, while still
using the previously made memory bank to aid in future predictions.

As Eve has not mono-ocular, but stereo vision, there may be additional benefits in using
a memory network. In theory, from the memory made with images from one camera, pre-
dictions for the other camera could also be made. Segmentation on both streams can then
be done in an efficient way. Such a segmentation of an object in both cameras has uses
like a better or more efficient depth estimation, or 3D reconstruction of objects.

Thus, a secondary goal is to test whether memory networks can accurately segment both
stereo vision streams, using a memory made from only one stream.

5

2 Background

At the start of this thesis the objectives were not fully defined yet and the stated research
goals were decided at only after substantial literature search. This section first details the
process of arriving at these objectives.

The initial aim of the research was to develop a method to segment objects throughout a
video in an unsupervised manner. By looking at edges, corners, depth or the consistency of
information throughout successive images, it is possible to distinguish objects [13]. Many
of these methods require the object to move or they focus on segmenting the salient object
in a frame [14][13], both of which are not suitable for Eve’s environment in which objects
can be static or many in the field of view. Also, as there is no user input to define the object
to track in these methods, the exact selection cannot be modified easily. For example, at
some point one may want to track just the hand instead of a full person, or a bookshelf
instead of an individual book in it.

Focusing on just the initialization and tracking of objects simplifies segmentation and is
better suits Eve’s environment. The focus of the research shifted towards designing a
framework that allows for the tracking of objects from user input where the object selec-
tion can be changed during propagation.

There exists extensive literature on the problem of tracking objects throughout frames.
Thus the choice was made to modify an existing network for Eve’s environment, where
objects must be segmented from simple user input. For the selection of this network, a list
of requirements was made to which the network must conform:

• RGB: the network must take as input a sequence of H×W ×3 input arrays, in which
H ×W is the image resolution and the 3 represent the three colors in RGB images.

• Segmentation: the output of the network must be a H ×W binary array indicating
for every pixel in the input frame whether it belongs to the tracked object or not.

• Occlusion handling: if an object disappears and reappears, the network must be able
to track it without requiring initialization again.

• Speed: the network must be able to track online, meaning it can handle streaming
where the output is given before the next frame arrives. For this a minimum of 5
output frames every second is set.

Besides these, a number of points are important considerations:

• Mask initialization: what does the network take in as input for defining the object to
be tracked. Does it require a full binary mask, clicks/scribbles or a bounding box?

• Mask modification: is it possible to modify the object selection during propagation?

• Stereo: as Eve has stereo vision, can the network take in a pair of stereo images or
is there some other way stereo images can offer an advantage?

• Number of instances: can the network handle more than one object to track? How
does this influence its speed and accuracy?

6

Using the two lists above, a literature search resulted in three different major types of
network. The first way is to use a box-initialization network, that requires only two corner
points as input from the user. Such an approach is relatively simple but due to the bound-
ing box, the object selection is less well defined and thus the tracking suffers. SiamMask
is perhaps the most well known example of such a network [3]. A second option would be
to use two different networks for initialization and propagation. The user can use the first
network to define an initial mask which is then propagated using the second network. The
separation of these two makes both more accurate as the networks can specialize more.
Given a binary mask as input, memory networks are state of the art SVOS methods which
show high accuracy in tracking. Lastly, some networks separate the entire field of view into
different objects and possibly walls or floors, from which then the user can select one. Such
methods are called Unknown Object Instance Segmentation (UOIS). Stereo vision or depth
data are often used in such networks to aid in their predictions. In table 1 an overview
of these three methods is given, including their relative performance on a number of criteria.

Method Type Examples Initialization Complexity Accuracy Depth
utilization Speed Multi-object

support
Box-initialization
methods SVOS [3] Bounding box Low Medium No High No

Track using
memory networks SVOS [8][10][12] Binary mask High High No Medium Partial

Segment
all objects UOIS [15][16][17] None High Low Yes Medium Yes

Table 1: Overview of videos in data set

Box-initialization methods are less complex and fast compared to the other methods but
suffer in accuracy. Also, for more than one object the entire network would have to be
run multiple times. Memory networks provide the highest accuracy in tracking albeit run
slower and require a full binary mask for object selection. For multi-object tracking, most
but not all operations need to be done twice so they too suffer in speed and GPU usage,
albeit less. UOIB methods excel at this but are relatively poor at accurately segmenting
individual objects.

Because of their superior tracking the choice was made to focus on the memory networks
method and specifically on how to modify their implementation to be able to change the
tracked object on the fly. Existing networks for the task of mask initialization [4][5][6] are
assumed to work well enough such that these can be used in Eve and are outside the scope
of this research.

Memory networks

Memory networks are SVOS networks first introduced in [8], in which they showed major
improvements in segmentation accuracy over existing methods. Previously, SVOS net-
works used either the previous frame or the initial user-defined frame to compare to the
new frame for which a mask prediction is required. Some methods even use both, but
the key idea behind memory networks is to use information from many frames to build
up a memory bank such that the resulting matching is very robust. By using this richer
information, the network is better at handling problems such as appearance changes and

7

occlusions.

The network finds similarities between the query frames and the memory frames by en-
coding both into a feature space which are then matched against each other. Every frame
that needs to be added to the memory goes through a convolutional network after which
the made feature space is simply concatenated to the previous ones.

In figure 2 an overview of the base space-time memory network is shown. Multiple frames
from the past are encoded with their masks and these outputs are concatenated. The query
frame is also encoded from which then a memory read operation determines which pixels
in the query frame contain the object embedded in the memory.

Figure 2: Overview of base space-time memory network, from [8]

Encoding

Encoding an image into the feature space gives a high-level representation of the image
such that the network knows which features are shown where in the image. Features here
can mean to simple colors or edges but also complex combinations of these such as digits
or faces. Two different encoders are used: one for frames that are added to the memory
where the binary segmentation mask is known, and one for incoming query frames. Both
encoders are often small modifications on the structure of existing convolutions networks
such as [18], as these have been shown to encode complex features well. For the first
encoder, an additional input layer is added to the existing three input layers (for RGB) to
incorporate the input mask. For both encoders, two parallel convolutional layers are added
at the end such that they output two feature maps, called keys and values. These are 3D
tensors with shape H ×W × C where H and W are the height and width of the output
feature channels and C is the number of channels. H and W are often of size 54x30 to
retain the approximate common display ratio of 16:9 while down scaling enough such that
the resulting feature space does not become too large. When these variables are too big,
computational speed suffers and hardware memory limits may be exceeded. Yet, a higher
resolution would result in more accurate segmentation so a balance has to be found. Keys
and values from multiple frames are added to the memory by concatenation to a fourth
dimension such that the total keys/values in the memory are of shape H ×W × C × T .
This T is then equal to the number of frames encoded in the memory.

8

Memory read operation

Keys are computed to see which places in the query image corresponds to which places in
the memory image. For example, a channel might represent green edges from which it is
used to see if green edges in the query image are present somewhere in the memory too.
A visualisation of one key channel for two different images is shown in figure 3. It can
be seen the channel represent some abstract feature present in the input images but it is
unclear exactly what specific feature.

Figure 3: Example of an encoded channel from two different input images

Reading the memory to see which features in the query image correspond to the object
of interest in the stored memory can be seen as a combination of basic tensor operations.
A schematic overview is shown in figure 4 with four steps shown in red. First, at step 1,
every pixel in the query key is matched against every pixel in all the memory keys across
the channels, resulting in a HW × THW matrix. This is then normalized by the softmax
function (step 2) such that the output is a matrix of similar shape but in which now every
element is between 0 and 1 and every row sums up to 1. Now for every pixel in the query
frame it is known which pixels in the memory corresponds with it.

Figure 4: Overview of read memory operation, adapted from [8]

The memory values are used to store information of whether features belonged to the mask.
Pixels in the channels have (depending on the channel) either highly positive or negative

9

values if they were inside the mask when the image was encoded. At step 3, all the values
in the memory are multiplied with the output of the key matching such that the result is
a H ×W × C matrix where for every pixel in the channels represents where in the query
image the objects encoded in the memory is located. This is concatenated to the query
values (step 4) as these aid in accurately reconstructing the object shape.

Decoding

The final output of this read operation is the input to the decoder. This module com-
presses the channels while upscaling the pixels through a series of modules such that the
final output is a mask with similar height and width as the input images. The final values
are probabilities between 0 and 1 which serve as the one of the inputs to the memory
encoder for the next iteration in case the image is subsequently added to the memory. For
visualisation and evaluation the values are rounded so the final output mask is binary with
all pixels categorized either as belonging to the object(s) or not.

Evaluation

SVOS methods are commonly evaluated on two different metrics [2].

• Intersection over Union (IoU, also known as the Jaccard Index): a value given
in the range of [0,1] where 1 is the best possible score. It is calculated by J =
|Ŷ ∩Y |/|Ŷ ∪Y | in which Ŷ is the estimated binary mask and Y the ground truth. This
is calculated for every frame from which then the average is taken. A visualisation
is shown in figure 5. A limitation of the IoU is that poor segmentation of thin
long objects without much surface area has a relatively small penalty compared to
improper segmentation of large objects.

• Frames per second (sometimes seconds per frame): a measure of speed which shows
how many frames the network can handle every second. In practice these are not
deterministic and heavily dependant on the hardware used. For a proper comparison,
different networks must be run on the same computer.

Figure 5: Visualisation of Intersection over Union

A third metric that is commonly used is the boundary accuracy. The value indicates how
well the outer boundaries of the estimation and ground truth match. An IoU of 1 will

10

always have a maximal boundary accuracy but for some imperfect outputs it can give a
better representation of how well objects are segmented. It addresses the above mentioned
issue with the IoU although it suffers from a different problem. Very small mistakes in
segmentation may be penalized heavily as these mistakes can cause large changes in the
boundary. For this reason sometimes the mean of the IoU and the boundary accuracy
is used. However, these are not as common as IoU because computing the boundary
accuracy is more difficult as it requires bipartite graph matching. For this reason, the
boundary accuracy is not used in this research.

11

3 Methods

The goal was to develop a memory network framework that allows for modification of its
object selection while retaining the memory from the past. For this task, there are many
possible approaches. The choice was made to build solutions by altering the simplest
memory network, STM. Subsequent networks include additional features, complicating
the process of implementing changes. Although the final resulting network might have
better performance using a different backbone network, the simplicity helps in showing the
proof of concept works.

The first step was to make an overview of which methods are possible and what advantages
and disadvantages they offer. The result was a list of five options. The first three options
aim to combine memories made from both pre- and post object modification. When adding
an object, the memory combining must be done such that the output mask contains both
the initial and the added object. The fourth and fifth methods aim to alter the existing
memory such that the added object is now also included, causing the network to segment
both objects.

1. Combine in feature space. Make a separate memory each time the selection is
altered, and combine these tensors somewhere in the memory read operation. Slicing
a tensor across the T dimension at frame number s results in one tensor that includes
frames (1, 2, ..., s− 1, s) and one tensor with frames (s+ 1, s+ 2..., T − 1, T). Then
multiple different memory banks are obtained, each having a different object encoded.
If these tensors and thus different (sections of) objects can be combined somewhere in
the read memory operation, there is no need for additional encoding and/or decoding.
However, it is not known yet if there is a relatively simple way of combining the key
value tensors from different objects, and whether such a method would retain high
accuracy.

2. Combine after decoding. Slicing similar to the above option, keeping a separate
memory bank for each (partial) object but now decode each one. This way, multiple
segmentation masks are obtained. Combining these by taking the union for addition
and the intersection for subtraction gives the final output mask. In this method the
combining is done after the decoding step in figure 2. The major disadvantage is that
decoding and subsequent encoding would have to be done multiple times. Especially
if additional corrections are made to the tracked object and many different memory
banks are obtained, leading to a major drop in fps performance.

3. Combine using additional small network Train a small neural network that
takes as input two tensors which are inputs to the decoder from different memories
and make the network output a tensor that when decoded, fully segments both
objects. This combining of different memories is done at the final step of the read
memory operation. Although this solution would require the design and training
of an an additional neural network, it likely can be a very shallow and small net.
This solution would have little impact on the overall accuracy and speed of the main
network.

4. Re-encode memory frames with insertion. Storing the original RGB frames,
manually inserting (’photoshopping’) the added second object in each of these frames
and re-encoding everything would likely yield very good segmentation. Although the
re-encoding of many frames at once will cost significant time (buffering), after this

12

is done the network will run as fast as it originally did. Encoding takes roughly 30%
of the total computation time in the original STM [11] so as long as the number of
frames in the memory is not too large, the buffering time is manageable. In the read
memory operation every query pixel is matched against every memory pixel (non-
local matching), thus the location of inserting the second object in the original frames
has no influence. However, this is true for the original STM but not necessarily true
for some extensions which do use local matching. Another problem is subtraction of
(partial) objects in the tracked selection, which is unclear how to handle using this
method.

5. Run backwards in time. Keep the original RGB frames, reset the network’s
key/value memory and then using the latest mask as the initial mask, run the network
backwards in time trough the past frames. When this is done, use the new memory
as normal to predict the next mask. This may lead to issues if the added object
is not visible in a significant fraction of the memory frames, as it may then not be
represented enough in the memory for proper estimation of the next query frame. A
possible option is to not include past frames in the memory when the added object
is not present which can be done by comparison with the original masks in the
memory. There may also be mistakes in the predictions of the past frames when
running backwards, leading to the memory containing wrong information.

Due to time constraints it is not possible to implement all of these options. Thus, from the
above list two methods were picked for implementation. The first option of combining in
feature space has little to no loss of speed, and thus seems the preferable option. Combining
after the decoder is relatively straightforward to implement and offers the tracking accuracy
of the original network. This also provides a good baseline to compare the other method to.

The third option requires generating a sizeable data set, training on this data and sub-
sequent tuning of network hyperparameters which is considered too elaborate for this
research. Modifying the mask selection in both the fourth and fifth option leads to large
buffering times before the next output can be given, especially if the memory is large. This
is a significant disadvantage for Eve’s live teleoperation goals.

Method 1: Combining in feature space

For the addition of a second object (here called object B) to an object already in the
memory (object A) somewhere in the feature space, multiple attempts were made.

The first attempt was just encoding only B and adding it to the memory. The total mem-
ory now contains keys/values made from frames of A and keys/values made from frames of
B. The problem with this approach is that is leads to inconsistent outputs. Memory values
from both A and B are read but this causes the decoder to often assume that the objects are
both not in the memory. This was tested on multiple videos/objects and the results were
very inconsistent: sometimes the mask was the correct output (both objects segmented)
but more often it was partial, as shown in figure 6, or even no segmentation occurring at all.

The number of memory frames of A relative to the number of memory frames of B seemed
to influence the output, as having little frames of one object and many of another object in
the memory causes only the second object to be segmented. Another attempt was then to
weigh both keys/values based on the number of memory frames, but this still had issues.
If a certain pixel in a memory frame belonging to object A has a value of 2 and if one in

13

Figure 6: Wrong output from simple addition

another frame belonging to object B equals 3, and they’re both equally weighted by the
output of the softmax, the final segmentation may only show object B. In the memory
values, all high values contain the object but they can still differ somewhat. Even if they
were equal, the softmax may cause some to be values to be weighted more than others,
such that one may not be segmented.

Increasing all memory values to ensure the input to the decoder has high values for both
objects also failed to work as the output becomes ’jittery’ with small spots of both objects
being segmented. Decreasing all memory values causes the little to no segmentation at all.
The decoder apparently segments based upon relative values instead of absolute. Simple
addition somewhere in the key/value feature space does not seem to work and a more
complicated method is required.

A possible way to combine the tensors is to use a mathematical maximum method. Right
after step 3 in the memory read operation (see figure 4), there is a H ×W × C/2 tensor
where each feature channel C shows which pixels in the query image match the object
embedded in the memory. High values mean the object is present and low values indicate
it is not. By taking the maximum of both memory tensors for every pixel, the resulting
tensor will have both objects. An illustration of this is shown in figure 7. Here, the first
two images are input tensors from which combining results in the right tensor where both
objects can be seen present. For this specific channel the objects are clearly visible, but for
most others the encoded features are more abstract yet the principle of combining using
this method stays the same.

Figure 7: Addition of channels by taking the maximum

There are two main issues with this solution. First, the maximum between pixels of both
tensors is taken for noise too, which means it will be amplified. For the objects themselves
it is also imperfect as one object may have higher values than the other causing the de-

14

coder to only output the highest object. A second issue is that not all channels have high
values for the object being present and low values if it is not. Roughly half of the channels
show the opposite behaviour where positive and negative are switched. In these cases the
minimum can be taken instead of the maximum. However, the specific channels in which
this occurs are not consistent and differ somewhat based on the input image. This means
that when combining the memory, a check will have to be done to find out over which
channels the maximum function and over which channels the minimum function should be
applied.

A simple check is to find the median value of all pixels in a channel. Channel pixels of
the object have an sign opposite of pixels outside the object. Assuming the tracked object
is not encompassing more than half the of the query image, the median should give an
indication of whether the maximum or minimum function must be used.

Below the pseudocode of the implementation of this method is shown. It starts with two
H×W×C/2 tensors called mem1 and mem2, and outputs a tensor memnew of similar shape.

function Combine1(mem1, mem2);
memnew ← zeros(H,W,C/2);
for c in channels do

if sign(median(mem1)) < 0 then
memnew[:,:,c] ← maximum(mem1[:,:,c], mem2[:,:,c]);

else
memnew[:,:,c] ← minimum(mem1[:,:,c], mem2[:,:,c]);

end
end
return memnew

Algorithm 1: Combining memories method 1

Not shown in the pseudocode, but in case the memories need to be subtracted (for removal
of an object) the maximum and minimum switch. For deciding on which channels to apply
which function on, other methods than the median were tried. On simple test videos, using
the mean or top-k values(k = 1, 2, 5, 10, 100) showed poorer consistency in output masks
compared to using the median value.

When a third memory is added or subtracted the above algorithm can be used multiple
times with the memory from the previous iteration as one of the inputs. This allows for
sequences where some objects are added and some objects subtracted.

The full steps of the final modified read memory operation are shown below.

• Calculate key similarity (similar to step 1 in figure 4)

• Split resulting tensor into slices, based on which frames in which memory

• Apply softmax function to each slice (step 2)

• Split memory values into similar slices

• Calculate product of each key slice and memory slice (step 3)

• For the resulting slices, apply Combine1

15

• Concatenate query values (step 4)

• Decode to obtain mask

Once memory banks of object A and B are combined the resulting mask contains both
objects (A+B). For subsequent storing of frames the input mask is now A+B. This would
mean that for the iteration afterwards there are now 3 memory banks (A, B, A+B). Ig-
noring the last part would mean no new frames can be added to the memory but using it
makes combining involve an additional step.

To solve this issue, no separate memory bank is made for B, only for A+B. For example,
when a glass is added to an already tracked table, the second memory bank will be of
glass+table instead of just table. Due to the maximum function, false negatives of the
table in one of the memories will be compensated by the other but false positives in either
will end up in the output. For channels in which the minimum function is applied, false
negative predictions may end up in the final result whereas false positives are ignored. Be-
cause there are now multiple memory banks the chance of wrong predictions may increase
but other mistakes may be now be compensated. For the subtraction of objects, the new
input mask is the resulting object after removal of a part, not the removed part.

Solving the issue this way also means that when an object is added, both the original and
the object to be added must be present in the frame. However, when removing an object
it is not necessary for it to be visible as only the remaining parts need to be.

Method 2: Combining after decoding

The second method consists of again keeping a separate memory bank for each added
object, but now decoding each one. Then, there are multiple output masks which can be
combined to obtain the final segmentation mask. Two binary masks containing objects
that need to be added together can be combined by taking union of both masks. Similarly,
subtraction can be done by taking the intersection. However, the actual output mask of
the decoder is not a binary but consists of probabilities lying between 0 and 1. For the
visualisation and analysis of outputs, these get rounded to transform it into a binary map,
but the output mask fed back into the network is not binary. To combine two or more
probability masks, the maximum and minimum functions can again be used. If two ob-
jects in these masks need to be added, taking the maximum across both masks for every
pixel results in a mask yielding both objects. If this is then converted to a binary map by
rounding, the result is the same as when the union would be taken from both individually
rounded masks. The same is true subtracting objects: taking the minimum yields the
intersection of both objects.

Below the pseudocode of the implementation of this memory combining method is shown.
It starts with two probability masks with height and width equal to the input images, and
outputs one probability map of similar shape.

16

function Combine2(mask1, mask2);
if Addition then

masknew ← maximum(mask1, mask2);
else

masknew ← minimum(mask1, mask2);
end
return masknew

Algorithm 2: Combining memories method 2

Similarly to method 1, when a third mask is added or subtracted the above algorithm can
be used multiple times with the mask from the previous iteration as one of the inputs.

The finalized steps of the going from keys and values to output mask are alike that of
method 1 with some differences:

• Calculate key similarity (similar to step 1 in figure 4)

• Split resulting tensor into slices, based on which frames in which memory

• Apply softmax function to each slice (step 2)

• Split memory values into similar slices

• Calculate product of each key slice and memory slice (step 3)

• Concatenate query values to every product (step 4)

• Decode all these

• Apply Combine2 on each output mask from the decoder

A strategy similar to that of the first method was chosen for which mask to add to the
memory bank. Instead of using just the added part for the input mask, both the original
and the added part (A and A+B) are used. This comes with the effect that in case of
addition false positives from one memory bank end up in the final output but false negatives
do not. For subtraction of objects the opposite is true.

Evaluation

For the evaluation of the two methods, a small data set was created consisting of ten videos.
These videos are approximately 50 to 100 frames long and are selected such that different
kinds of challenging situations are included. In contrast to SVOS data sets, these videos
have not just one user defined mask at the start but multiple throughout the video, simu-
lating the addition or removal of (partial) objects by a user. The first 5 videos are self-made
whereas the other 5 are modified from the DAVIS16 [19] benchmark set by changing the
input masks. Both methods are compared to the baseline STM network, which memory
is reset every time a new input mask is given. It is common to only put every fifth or
tenth frame into the memory, as frames that are only a few hundred ms apart look very
similar and this decreases memory build up and computing time. In this evaluation every
frame is added, because for speed the networks are compared only relative to each other
and memory overloading is no issue with videos of less than 100 frames.

17

An overview table with example frames of all videos is shown in table 2. The column
addition/subtraction indicates in which frames an object is added (+) or subtracted (-).
A description of every video is also given.

• Video 1: A guitar is tracked from which then its body is removed, leaving the neck
and headstock remaining. This tests if the partial removal of an object works without
cut sections reappearing again.

• Video 2: Three objects on a desk are added after each other, but when the third is
added the first object is just outside of the image. When it appears again it must
still be segmented. As the memory of the original STM network must be reset it
is expected it will fail in this task whereas the two devised novel methods should
succeed.

• Video 3: A cup and a phone case on top of it are tracked while the camera comes
closer until the objects cover almost the entire screen. The camera then zooms out
again. This tests whether the methods are robust such that both small and large
objects are segmented correctly.

• Video 4: The fourth video includes a small plant in a pot standing on a piece of
paper. The objects and their boundaries are more complex, increasing the difficulty
of accurate segmentation.

• Video 5: A paper cup is stacked on top of a white block and both are tracked.
A paper slowly covers the objects starting with the paper cup. When the cup is
fully invisible, it must be removed from the memory such that only the white block
remains. Thus after it reappears it must not be tracked anymore. This is similar to
the first video but now the object to be removed is not visible during removal.

• Video 6: A miniature train consisting of 4 carts is riding and all four carts are first
added one by after which the first 3 are removed one by one. This tests whether the
segmentation is still accurate if many objects are added and subtracted.

• Video 7: Three moving pigs are added to the tracking separately. As the objects are
somewhat similar and constantly moving, these are likely more difficult to segment
correctly.

• Video 8: A person is sitting on a bike as it slowly moves. First only the bike is
tracked, then the rider is added and finally the bike itself is removed. At the start
of the video the bike is seen from the front and at the end from the side. Because of
this rotation, the bike and person change shape heavily complicating segmentation.

• Video 9: A man grabs a cardboard box and lays it on top of two similar boxes. First
only the grabbed box is tracked after which the other two are added. This video also
presents difficulties as the object rotates and the man partially occludes the box.

• Video 10: A dog is chasing a group of four ducks. First only the dog must be
tracked, then also two ducks from which one is then removed. The ducks move, are
partially occluded at some times and look very similar to each other. These combined
test the accuracy of the methods under complex conditions.

18

Nr. Nr. of frames Addition/subtraction Example frame Ground truth

1 100 0+,27-

2 57 0+,13+,28+

3 94 0+,15+

4 56 0+,22-

5 76 0+,13-

6 78 0+,5+,11+,17+,37-,45-,51-

7 78 0+,22+,44+

8 78 0+,34+,58-

9 49 0+,28+

10 85 0+,19+,44-

Table 2: Overview of videos in data set

19

Visual inspection of output frames compared to ground truth masks can give a good im-
pression of the overall accuracy and failure cases. However, the evaluation will be also
quantified using two metrics. The IoU will be used to measure the accuracy of the segmen-
tation and the relative speed will be compared using frames per second averaged across a
whole video. For the IoU, frames with masks that are user defined are not taken into the
calculation.

Stereo data set

To measure how well predictions for one camera in a stereo setup can be made using
memories of the other camera, a small data set was created using a Stereolabs ZED camera.
Although only three videos are included, this can still give a decent indication on the
validity on stereo segmentation from one stream’s memory.

• Video 1: A large plastic pair of scissors is moved in front of the camera. It changes
shape and is also out of the field of view multiple times.

• Video 2: A trolley with multiple objects laying on top is seen. A second object
added while the initial object is just outside of the screen. Similar to video 2 in the
first data set, this is a case where the original STM is expected to fail as it cannot
retain information from the first object while the second is added.

• Video 3: A small box and a bottle are both tracked from which then the box is
subtracted. What complicates segmentation in this video is the fact the both are
rotated and at some point one occludes the other.

An overview table with example frames of all videos is shown in table 3. The example
frames are from the left stream.

Video nr. Nr. of frames Addition/subtraction Example frame Ground truth

1 73 0+

2 73 0+,35+

3 73 0+,27-

Table 3: Overview of videos in stereo data set

Frames from the left camera are used as input to the encoders from which the memory
is used to segment the streams from both cameras. Ground truths were defined for both
streams from which IoUs can be calculated. This way a comparison can be made between
the left and right side to see whether the (slight) change in shape and place of the tracked
objects reduces the accuracy of the predictions.

20

4 Results

This sections details the results of the developed methods on the two data sets. For ref-
erence, method 1 is the combining in feature space method and method 2 combines after
the decoder.

The situations presented in the videos are meant to be difficult or illustrative cases and thus
not proportional to typical usage. Because of this, the average IoU of all videos combined
is not an ideal metric and it is more useful to look at the IoU of each video individually.
Also, as the metric itself does not show what exactly goes wrong, visual inspection of the
output of each method on each video provides additional insight.

The results of the evaluation on the first data set are shown in figure 8.

Figure 8: IoU results on made data set

In the first video the second method performs on par with the original network whereas
the first method outperforms both. The original STM wrongly predicts part of the of the
body guitar belonging to the neck and the same mistake is present in method 2 too. This
can be clearly seen in some frames as shown in figure 9. However, the subtraction of the
majority of the body works in all cases.

The second video is a case where the original network was assumed to fail, which it does.
As its memory is reset on addition or subtraction, it is not possible to recover the object
outside the image when it becomes visible again. Method 2 does succeed in this, showing
its intended improvement. Even though it is present in its memory, method 1 fails to
segment this object.

All three networks score IoUs above 0.95 on the third video, showing an object going from

21

(a) Original STM (b) Method 1 (c) Method 2

Figure 9: Example evaluation from video 1

small to large to small again is still segmented correctly. The second method scores slightly
lower as there are slightly more small fluctuations in its output masks.

Whereas method 2’s IoU was only off by 0.02 compared to the other networks in video
3, it is plain wrong on video 4. As shown in figure 10, only a small part of the paper is
segmented and even some spots on the ground are false positives. The second method also
segments the same spot falsely, whereas the original network does not.

All 3 networks experience difficulty on the fifth video. The original STM only segments half
the paper block and also has some small regions of false positives. Method 2 suffers from
the same issues, although the false positives occur in slightly different frames. The first
memory combining method however, segments the white block but also a part of the paper
cup, showing the subtraction was not done thoroughly. The outputs are shown in figure 11.

The trains in the sixth video are all segmented very well. Mistakes made due to complex
shape of the individual wagons are small, leading to high IoUs. This shows both addition
and subtraction of many objects works well for each of the methods.

Differences in IoUs of over 0.2 are present between the outputs of both combining methods
in video seven. The original STM and the second method perform well although both show
some false positives due to the complexity of the objects. Method 2 performs poorly as it
does not segment the added second and third pig at all. After the user defines the extra
objects they immediately disappear, as if they were not present in the memory.

All three perform decent on the eighth video. Each method made some small mistakes
due to the complex shape and rotation of the objects. The second method seems to suffer
slightly more from this.

22

(a) Original STM (b) Method 1 (c) Method 2

Figure 10: Example evaluation from video 4

(a) Original STM (b) Method 1 (c) Method 2

Figure 11: Example evaluation from video 5

23

The outputs on video nine are very similar for each network. Before addition, the original
network (and thus the two other methods) have trouble tracking the box due to it changing
shape and being occluded. Still, in all cases the addition of the other boxes works well.

The final video again shows major differences between method 1 and 2. The original STM
and method 2 both achieve good segmentation on the dog but have issues with the rela-
tively small and identical looking ducks. Method 1 suffers from the same issue as in video
seven where the object to be added disappears after a few frames.

Overall, the results of the second combining method are very similar to that of the original
network with two differences. It performs slightly worse with differences in IoUs <0.02
on some videos, which are exactly the videos that involve the removal of objects. Yet
it has the major advantage of being able to segment objects that were deleted from the
memory in the original STM, as the second video shows. The first combining method is
very inconsistent. It outperforms in terms of IoU on some videos, but this is due to the
original network and the second method having large false positive or false negative areas.
It performs equally or even better than the other networks in some videos but suffers severe
issues in other videos as entire added objects are sometimes not segmented at all.

Speed

The speeds of the three tested networks are shown in figure 12. These are calculated from
the total run times and the number of frames in the video. Thus, these indicate an average
across all frames. In practise, the speed of the two memory combining methods depends
on the number of objects inside the memory which means these are slower towards the end
of a video.
The original STM suffers no loss of speed when additional objects are added or subtracted

and is therefore always the fastest option. Due to the expanding memory, it is slower on
long videos when many frames are already encoded and the key and value tensors are
large. The two combining methods are both slower, although in videos where only one
modification is made to the tracked object (videos 1, 3, 4, 5, 9) the difference is smaller,
roughly a 30% reduction. This is opposed to video 6, in which both memory combining
methods suffer heavily in speed. Although method 2 needs to decode multiple times, it is
seems to be faster than method 1 in all cases.

Stereo

The IoU results of the stereo vision tests are shown in figure 8.

In video 1, all methods output exactly the same but the right stream seems to have a
slightly lower accuracy compared to left. All IoUs are not very high (< 0.75), as the scis-
sors are often blurry, and thus the exact definition of where the object starts is not as well
defined as in other videos.

In the second video, the IoUs of both combining methods (0.96) are much higher than that
of the original network (0.86). Visual inspection shows both track the initial object well
but, as shown in figure 14, the original network is unable to segment the second object at
all.

24

Figure 12: Average frames per second of methods on data set

In the third video, all methods perform well at the start and track the initial object
correctly. All three also have trouble accurately segmenting the remaining bottle in the
final frames. STM performs best with method 2 being close as it segments the bottle only
slightly worse. Method 1 fails to fully remove the first object in one of the final frames. It
also has significant trouble fully covering the second bottle. Figure 15 shows an example
frame in which the differences in output are visible. For the right stream, the IoUs of the
original STM and method 2 are slightly higher than than that of the left stream, whereas
method 1’s accuracy slightly suffers.

25

Figure 13: IoU results of stereo test

(a) Original STM (b) Method 1 (c) Method 2

Figure 14: Example evaluation from stereo video 2

5 Discussion

The main goal of this research was to design an architecture that allows for the modifica-
tion of the user’s selection during mask propagation while still using the old memory bank
for aiding in predicting. Previously, this was not possible as memory networks cannot han-
dle such modifications of their memory or allow multiple memory banks to be combined.
The results indicate the two devised methods are capable of generating outputs such that
multiple objects can be combined, showing the initial object selection can be modified
successfully.

In terms of accuracy, STM and the second memory combining method are very close to
each other. This difference being small makes sense as the decoder output mask from
method 1’s last memory slice is the same as the final output mask of STM. The advantage
of combining is clearly shown in video 2 where the original STM is incapable of segmenting
all objects whereas method 2 does this correctly. However, besides video 2, the IoU of the
second method is always equal or slightly lower compared to the original network. When
adding objects in method 2, if one of the memory banks causes the decoder to output false
positives, these also end up in the final mask. The same is true for false negatives when

26

(a) Original STM (b) Method 1 (c) Method 2

Figure 15: Example evaluation from stereo video 3

subtracting and as a result, the segmentation is often slightly worse.

In spite of that, this loss in accuracy could be offset by the combining methods having
more frames ’stored’ and thus having more material to compare to, yet this does not oc-
cur. There seem to be no cases where after addition the initial object that is now present in
multiple memory banks is segmented more accurately. One reason for this could be is that
the rotating objects included in the videos (video 6 to 10) do not change shape severely.
If objects are static, not many frames are needed to segment the object as it always looks
similar and additional memory will have little use. There are no videos in which there is a
sequence of an object rotating, addition of a second object and the original object rotating
back. In such a situation, the additional memory of the object before its first rotation is
more likely to aid in the prediction of the final frames.

The inconsistency of the first method indicates the combining of memories does not always
result in both memories being present in the new tensor. This means the min-max opera-
tion shows severe deficiencies. For finding out over which channels the maximum needs to
be applied and which the minimum, using the median value of pixels is an imperfect way.
The median can be positive while the encoded object also has positive values, causing the
wrong operation to be applied. Also, even when the right operation is chosen, one object
could have relatively higher values than the other causing the other object to not appear
after decoding.

What is interesting is that in video 3 method 1 still performs well. At some point the ob-
ject encompasses over half the screen meaning the median may be negative when it should
be positive or vice versa. However, when two memory slices are combined, the median is
calculated from the first and in the first of these slices the object was still small.

Speed

As expected, the original STM is always the fastest network. It involves no additional
computations for combining and after the modification of an object its memory is reset so
the memory tensors are small. This is also the reason it runs faster in videos with more
frequent resets and explains the variation between the 10 videos.

The developed methods are not very far off in terms of speed compared the original STM,
considering that they keep every frame of the video in their memory. The difference is the
largest in video number 6 as it has the most user defined masks and thus requires the most
combining operations.

27

Although it has to decode multiple times when multiple objects are in its memory, the
second method is nonetheless faster than the first method. This is because finding the
maximum or minimum and also calculating the median requires iterating over every single
pixel. This needs to be done for every channel, which takes a long time, seemingly even
longer than decoding. It must be said here that the coding of the implementations is not
optimized for speed. Decoding takes a set amount of time which cannot easily be reduced
whereas the tensor combining of method 1 can likely be sped up. For adding three or more
memories, the maximum operation can be applied once over three tensors instead of two
times across two. Also, calculating the median of every channel likely does not have to be
done multiple times for combining three or more memories.

Stereo test

A second goal was to test whether memory networks can accurately segment in both stereo
vision streams, using a memory made from only one stream. Although in theory this should
be possible due to the differences between streams being small, it had not been experi-
mentally confirmed yet. The results show the differences in accuracy are small and thus it
confirms it is possible to segment both streams from one memory.

The first stereo video involved no addition or subtraction and thus no memory combining.
In that case all three networks behave similarly and thus all output masks and IoUs are the
same. The segmentation on the right stream seems to be slightly less accurate compared
to the left stream but it is difficult to find the exact reason for this. As the view of the
object differs to some degree between the two streams, predictions made with the memory
of the other stream may not be ideal. However, the object is sometimes visible in only one
of the streams or it may be more blurry in one of them, so a direct comparison between
the IoU of left and right is not perfectly fair. This means that with minor differences it is
not possible to say what exactly causes the variance between left and right.

The second stereo video again involved a case where addition was done while the origi-
nally initialized object was out of view. Therefore, it is no surprise the two combining
methods perform better than the original network, which is inherently unable to segment
correctly here. No differences between the segmentation accuracy of left and right are visi-
ble which shows again that segmenting using memory frames from the other eye works well.

It is surprising the accuracy of the right stream seems slightly higher than that of the left
stream for the original STM and method 2. This is probably due to noise from earlier
mentioned reasons. Method 1 again shows its inconsistency due to not properly removing
an object, again likely caused by the maximum/minimum on the tensor not combining
good enough consistently. Method 2 performs slightly worse than STM, due to similar
reasons as in the mono vision data set.

These findings show that memory networks are a good option to segment stereo streams as
they provide high accuracy while requiring much less time than double that of segmenting
one stream. This can be done in Eve but also in any other robot or application where
segmenting both stereo streams has use cases.

28

6 Conclusion

The initial research objective was to develop a method for Eve to segment objects through-
out a video in an unsupervised manner. After a literature search a more specific goal was
arrived at: to design an architecture that allows for the modification of object selection in
a memory network while still using previously made memories for predictions. For this,
two different methods were devised. The focus was exclusively on combining memories,
not on initialization or the exact implementation details in Eve. One method uses the
feature space of keys and values to combine whereas the other combines in the probability
space that the decoder outputs. These were implemented on top of the existing memory
network STM.

Both methods are able to segment objects in cases where the original network fails. Out of
the two approaches, the first one shows promising results on some videos but severely lacks
consistency and fails to segment simple objects in others. This makes it unsuitable for
practical use. The second method does succeed in providing high accuracy while showing
one advantage of memory combination: addition when the original object is out of view.
A larger memory bank resulting in more accurate segmentation is not seen in other cases
but this may be due to the limited objects and situations in the made data sets.

Both methods suffer in speed when compared to the original network but it is difficult to
quantify the exact extent of this. If the number of memory banks is not too large, this
likely does not pose an issue for usage in Eve. Also, the implementation of the second
method is not optimized for speed and there may be significant improvements possible in
computation efficiency.

A secondary goal was to test whether memory networks can accurately segment both stereo
vision streams, using a memory made from only one stream. The results of the stereo test
indicate it is likely possible to do this without a major reduction in accuracy, but the
limited size of the data set means it is hard to quantify the exact extent of this. These
results align with the expectation that accurate predictions are possible as objects look
very similar in both eyes.

Recommendations

First of all, a larger data set could provide more insight into the changes in accuracy the
second implementation has. Especially videos of cases where good segmentation requires
the larger total memory of the combining methods. When looking at larger data sets, cal-
culating the boundary accuracy can also yield more insight as a combination of boundary
accuracy and intersection over union is more telling than just one of both.

Implementation of the second proposed method in another baseline network can be ben-
eficial as many such improvements upon STM exist, although it differs on a case by case
basis how straightforward this implementation is. In, for example STCN [11], the network
structure is very much alike, meaning the implementation could be similar as in STM while
offering better speed and accuracy due to an improved key affinity calculation.

Directly evaluating the time it takes for certain computations in the combining of mem-
ory banks could yield more insight into the additional computing time a method takes.
Comparing the frames per second as done in this work can give indications but a truly fair

29

comparison is hard in this way and measuring the exact time spent on combining opera-
tions would give a better indication of speed.

The stereo data set is also limited in size and can thus can not provide more than indi-
cations. In videos where the object is always visible in both eyes, switching the streams
and averaging can remove the influence of some factors. Currently, some differences in IoU
between the left and right eye can be caused by the object segmenting more accurately
due to chance. If the same video is run through the network again, but now with memo-
ries made from the other eye, averaging across both ways provides a more robust evaluation.

Lastly, instead of using just one for input to the memory encoder, using both streams may
improve the accuracy. Slightly different views of the object are not incorporated and this
richer representation in the memory may allow for more precision during segmentation.
Another option is to use the stream in which the object’s previous mask was the largest.
Then, if the object is only party visible in one stream, the other stream is used as input
to the memory.

30

References

[1] Halodi Robotics. Eve homepage. https://www.halodi.com/eve, 2022. Accessed:
2023-01-20.

[2] Mingqi Gao, Feng Zheng, James JQ Yu, Caifeng Shan, Guiguang Ding, and Jungong
Han. Deep learning for video object segmentation: a review. Artificial Intelligence
Review, pages 1–75, 2022.

[3] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast
online object tracking and segmentation: A unifying approach. In Proceedings of
the IEEE/CVF conference on Computer Vision and Pattern Recognition, pages 1328–
1338, 2019.

[4] Konstantin Sofiiuk, Ilia Petrov, Olga Barinova, and Anton Konushin. f-brs: Rethink-
ing backpropagating refinement for interactive segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8623–
8632, 2020.

[5] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Modular interactive video object
segmentation: Interaction-to-mask, propagation and difference-aware fusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 5559–5568, 2021.

[6] Xi Chen, Zhiyan Zhao, Yilei Zhang, Manni Duan, Donglian Qi, and Hengshuang
Zhao. Focalclick: Towards practical interactive image segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1300–1309, 2022.

[7] Wenguan Wang, Tianfei Zhou, Fatih Porikli, David Crandall, and Luc Van Gool.
A survey on deep learning technique for video segmentation. arXiv preprint
arXiv:2107.01153, 2021.

[8] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video object seg-
mentation using space-time memory networks. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 9226–9235, 2019.

[9] Hongje Seong, Junhyuk Hyun, and Euntai Kim. Kernelized memory network for video
object segmentation. In European Conference on Computer Vision, pages 629–645.
Springer, 2020.

[10] Haochen Wang, Xiaolong Jiang, Haibing Ren, Yao Hu, and Song Bai. Swiftnet: Real-
time video object segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1296–1305, 2021.

[11] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethinking space-time networks
with improved memory coverage for efficient video object segmentation. Advances in
Neural Information Processing Systems, 34:11781–11794, 2021.

[12] Ho Kei Cheng and Alexander G Schwing. Xmem: Long-term video object segmenta-
tion with an atkinson-shiffrin memory model. In European Conference on Computer
Vision, pages 640–658. Springer, 2022.

31

https://www.halodi.com/eve

[13] Emanuela Haller and Marius Leordeanu. Unsupervised object segmentation in video
by efficient selection of highly probable positive features. In Proceedings of the IEEE
international conference on computer vision, pages 5085–5093, 2017.

[14] Xiankai Lu, Wenguan Wang, Chao Ma, Jianbing Shen, Ling Shao, and Fatih Porikli.
See more, know more: Unsupervised video object segmentation with co-attention
siamese networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3623–3632, 2019.

[15] Christopher Xie, Yu Xiang, Arsalan Mousavian, and Dieter Fox. Unseen object
instance segmentation for robotic environments. IEEE Transactions on Robotics,
37(5):1343–1359, 2021.

[16] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmen-
tation and support inference from rgbd images. In European conference on computer
vision, pages 746–760. Springer, 2012.

[17] Maximilian Durner, Wout Boerdijk, Martin Sundermeyer, Werner Friedl, Zoltán-
Csaba Márton, and Rudolph Triebel. Unknown object segmentation from stereo im-
ages. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4823–4830. IEEE, 2021.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[19] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-
Hornung. A benchmark dataset and evaluation methodology for video object segmen-
tation. In Computer Vision and Pattern Recognition, 2016.

32

	Introduction
	Background
	Methods
	Results
	Discussion
	Conclusion

