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Summary

The control of conventional servo based mechatronic systems is straightforward. The dynamics of
the system can be determined and system parameters can be identified so that a controller can be
designed to realize a specified performance. Typically, the performance of the system is mainly de-
termined by the crossover frequency. When considering flexure based mechanisms this presents
several difficulties. Usually the design requires a certain compliance in the direction of manipula-
tion but high stiffness in the remaining directions. Since these mechanisms generally contain very
little internal damping the higher parasitic eigenfrequencies can become problematic for closed-loop
stability. Attempting to circumvent these through design changes can lead to unnecessary com-
plicated mechanisms and can also negatively affect the systems performance. In addition to this,
flexure based mechanisms have different mechanical properties with varying degrees of deflection
and therefore have changing frequency responses. This increases the difficulty to reach performance
goals at all angles of deflection. One way to overcome these problems is through the use of piezo-
electric elements to apply damping in the system and to reach performance objectives through all
angles of deflection.

Recently, a large stroke flexure hinge has been developed at the University of Twente to demon-
strate the use of piezoelectric elements and their ability to identify the effects of the higher order
parasitic eigenfrequencies. This research focuses on the next step in the proces; controlling the
piezoelectric elements in such a way that these negative parasitic effects are successfully damped.
Typically, some form of Resonance control is used, as other methods will lead to excessive spillover.
For this control problem a single parasitic eigenmode of the flexure hinge is chosen.

In this work, two different control methods are investigated, Positive Position Feedback (PPF) and
Resonant Feedback Control (RFC). These controllers are optimally tuned to provide the greatest
performance. Through simulations it is found that both controllers show comparable results. These
results are tested experimentally and here it is found that the same optimally tuned PPF controller
was successful in reducing the parasitic resonance for several deflections of the mechanism. RFC
was unsuccessful as it led to an instable system.
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Controller tuning for disturbance
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stroke flexure hinge

T.P.J. van Hal'

Abstract

Many concurrent precision mechanisms have flexure joints. These mechanisms are predictable since flexure joints
avoid backlash and friction. However, there are drawbacks in the form of parasitic eigenmodes that can adversely affect
performance. This is especially true when such structures are controlled in a deflected state. One way to counter this
is through the implementation of Active Vibration Damping by placing piezo elements at key points in the structure.
These piezo elements can be controlled in such a way that they suppress parasitic vibrations. The control systems
investigated in this work are Positive Position Feedback (PPF) and Resonant Feedback Control (RFC). The effect of
the parameters of these controllers on their ability to achieve damping of parasitic resonances is studied and a tuning
method is designed. This method consists of selecting a performance criterion and performing a grid search that leads
to optimal controller parameters. The performance criterion was the H2 norm of the transfer from force to displacement.
The resulting PPF controller showed an average simulated improvement of the H2 norm of 23.4% with respect to
the uncontrolled case. RFC showed an average simulated improvement of the H2 norm of 24.2% with respect to the
uncontrolled case. These results have been tested experimentally and PPF was shown to be successful in reducing
the parasitic resonance frequency for all states of deflection. Resonance peak height has been reduced by an average

of 13 dB. During testing RFC resulted in instability and was unsuccessful in reducing resonance peak height.
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Introduction

As the field of Precision Engineering developed, the demand
for smaller mechanisms rose. It is difficult to reach these
increasing performance goals with the use of typical bearing
based mechanisms as these show hysteresis and friction
effects from which the repeatability suffers greatly.

Flexures are often used to combat these effects as they
inherently lack any form of play. Mechanisms constructed
of these flexures are therefore highly predictable and this
makes for excellent repeatability [1]. Nevertheless, flexure
mechanisms have drawbacks of their own and can make
designing them difficult.

Flexure mechanisms are designed on the premise that they
allow for a degree of freedom (DOF) in a certain direction
while also providing a degree of constraint (DOC) in the
remaining directions. However, flexures are only finitely
stiff in the constrained directions, providing finite DOC'’s.
This is even more so when the mechanism is deflected as
this greatly reduces the support stiffness of the flexures [2].
Counteracting these negative effects can be done through
essentially two methods; to either improve the mechanisms
design and therefore better the DOC’s or to somehow apply
damping into the structure and thereby reducing the negative
effects of the decreasing DOC'’s.

Altering designs to overcome the decrease in DOC
generally leads to an increase in mechanism complexity and
possibly a reduction in nominal performance. Additionally,
if the maximum support stiffness is already reached
an improvement in design to overcome the decrease in
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DOC is no longer possible [3]. Therefore, it is of more
interest to investigate the application of damping into an
existing flexure mechanism. Recent studies have shown
that piezoelectric elements placed at key points in the
mechanism can act as active material [4]. These elements
are used in pairs of sensors and actuators to couple voltage
to deformation and thereby are able to detect and control
unwanted effects of the DOC'’s [5].

There has been some research into the exact placement of
these piezo-patches for the case of large stroke mechanisms.
The approach was to take into account that there are strain
limitations on the piezo elements and these need to be placed
in locations of high modal strain but limited nominal strain.
For a cross hinge case in [2] this proved to be at the base
of the flexures where they are attached to the rigid world.
Simulations have shown that active material can be a feasible
vibration suppression method in large deformation flexures
[6].

Extensive research has been performed regarding the
control of these piezoelectric elements which has yielded
several feasible controllers; Positive Position Feedback
[7; 8], Direct Velocity feedback [9; 10], Negative Derivative
Feedback [8], Resonant Feedback Control [7], and Integral
Resonant Control [11; 12].
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Naturally, the choice of the control algorithm affects the
ability to successfully apply damping on a flexure mecha-
nism and reducing known parasitic resonance frequencies.
This choice is generally left to the designer, as each of
these control algorithms have advantages and drawbacks.
However, the aforementioned control schemes for Acive
Vibration Damping can all be considered resonant control
techniques. For flexure mechanisms generally only a select
number of vibration modes are relevant and as such in these
control techniques a first- or seond order compensator is used
to control the relevant modes [8].

Aside from the algorithm, the controller settings generally
require manual tuning to achieve satisfactory performance
[13]. Additionally, little is known regarding these controllers
for a large deformation case as most of them have been
studied for small stroke mechanisms.

To assess how a large deformation case affects the piezo
patches’ ability to register parasitic resonances and apply
damping accordingly, this work will focus on a large stroke
flexure hinge case. A demonstrator has been developed at
the University of Twente [14]. The aim of this research is
to analyze an adaptation of this demonstrator by selecting
a single parasitic mode for which a suitable controller
will be selected. For the controller, a tuning method is
proposed to avoid relying on manual tuning. This method
consists of selecting an optimisation criterion, applying
design constraints, and choosing a search algorithm. This
method leads to the selection of optimally tuned control
parameters which will be tested experimentally.

In the remainder of this paper, the large stroke flexure
hinge is introduced and a control scheme for Active
Vibration Damping is presented. Then, the tuning method
is proposed and the optimally tuned controllers are tested
experimentally. Finally, these results are discussed and
conclusions are drawn.

Large Stroke Flexure Hinge case

Previous research has led to the design of a flexure hinge
to demonstrate a novel approach of damping performance
limiting modes in large stroke flexures [14]. The hinge
consists of four leaf flexures, which are connected to a long
shuttle by effectively stacking two cross hinges on top of
each other. The orientation and dimensions of the flexures
have been selected such that minimal pivot shift is present
under deflection [15]. On the end of the stage a brass mass
of 1 kg is fixed. On the leaf flexures, stacks of piezoelectric
elements are placed to use as sensor-actuator pairs. On the
shuttle an actuator and encoder are mounted to provide
accurate rotation.

It was shown that the demonstrator is able to accurately
register several of the analysed modes present in the nominal
movement plane. This is the case when the stacks of
piezoelectric elements are placed at the base of the flexures,
i.e. where the flexures are connected to the fixed world.
These locations are known to be subject to high modal strain
but relatively low nominal strain [2; 6].

The demonstrator was previously used to sense parasitic
modes and analyse their effect on the nominal movement
transfer from torque M to angle of deflection 6. It was
found that not all of the studied modes had a clear effect,
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Figure 1. Simplified rendering of system model in undeflected
state, with leafsprings (L), piezos (V), fixed base (A), torque (M),
force (F), angle (#), and position (z)
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Figure 2. Eigenfrequency shift over nominal deflection (0) in
accordance to naming convention in [14]

mode Z was unobservable through the nominal transfer.
However, these out-of-plane modes can have a detrimental
effect on overall performance. Therefore, for the remainder
of this work only these out-of-plane modes are considered as
parasitic movement and the effect of the remaining modes
will be disregarded. To study the effects of the parasitic
resonances on this out of plane movement, the demonstrator
is supplemented with a shaker element. Details on the
design of this shaker are included in appendix A. This is a
driven two-leaf straight guide. Additionally, some changes
have been made to the frame to reduce its compliance. A
representation of the modified system is shown in figure 1.
The system is analysed through the use of modified
SPACAR software to identify the parasitic modes and their
corresponding eigenfrequencies and how these develop
under deflection [2; 6]. The simulated results for the first
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Figure 3. Identified mode shape of interest at 8.5 degrees of
deflection. Base structure ommitted for improved clarity

four parasitic resonance frequencies are shown in figure 2.
The naming convention used in this figure is in accordance
to that in previous research [14]. From this it becomes clear
that the first parasitic resonance frequency decreases most
under deflection of the nominal stage. The corresponding
parasitic mode shape is shown in figure 3 and can be best
described as a translation in z-direction of the end-effector.
This mode is selected as the mode of interest for which to
apply active vibration damping. Modal damping of 0.5%
is assumed to represent natural internal damping. Figure 4
shows the simulated frequency response from force F' to
displacement z; at 8.5 degrees nominal deflection. Here, the
peaks at 0.8 Hz and 8 Hz correspond with the designed
compliance of the nominal movement of the hinge and the
shaker element, respectively. After those, the most prominent
resonance is at 41 Hz and this corresponds with the mode
shape shown in figure 3. The remaining simulated frequency
responses of the system can be found in appendix B.

Figure 3 shows that for the mode of interest leafsprings
1 and 4 experience great strain whereas leafsprings 2 and
3 appear to experience relatively little strain. Furthermore,
as the strain in leafsprings 2 and 3 is mostly torsional their
contribution is hereafter disregarded. Leafspring 1 and 4 will
be referred to as leafspring A and B, respectively, for the
remainder of this work.

Control problem and objective

To achieve the required damping of the parasitic resonance
frequency the system is represented in the generalised plant
setting, which is shown in figure 5. Here, the transfer from
torque M to deflection angle 6 represents the main loop
(nominal motion of the hinge) and the transfer from force I
to displacement z; represents the performance loop (parasitic
motion of the hinge). The transfer from force F' to 2z
represents the movement of the shaker mass and will be
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From: Fz To: z1-displ

-60
1
—~ 80 i ]
g a A )
el 7__7_7_,__,./ ~—
E s
2 120 - ,
f=
&
S 140t
-160 T
180 T — . l
5 90+ ‘
3 \
2 0 — — .
® | |
=
[ ‘ ' ‘ (
-180 I I \ f - ‘\_Ll, .l
10° 10’ 10? 10°

Frequency (Hz)

Figure 4. Simulated bode diagram from force F’ to
displacement z; at 8.5 degrees nominal deflection. Additional
figures in appendix B
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Figure 5. Schematic for proposed active vibration control

disregarded for the remainder of this work. Both sets of
piezoelectric elements are controlled through a controller,
C(s), in order to improve the performance of the transfer
from force F' to displacement z;. For this case, both sets
of piezoelectric elements are controlled by independent
identical controllers to reduce complexity.

For Active Vibration Damping there is a multitude of
available controller varieties. However, in this work only two
controllers will be considered. These are Positive Position
Feedback (PPF) and Resonant Feedback Control (RFC). PPF
has first been introduced by [16] and has since been studied
extensively. One of the main advantages of PPF is that it is
easily implemented and therefore has been applied to many
flexible systems for Active Vibration Damping [17]. RFC is
similar to PPF as it is also easily implemented. However,
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as RFC mirrors PPF, it has almost opposite characteristics
which makes for an interesting comparison.

Positive Position Feedback

PPF is a second order controller. Its transfer is given by [8].

Kuw?
Cls) = $2 4+ 2¢wes + w?

Where K is the controller gain, (. is the controller
damping, and wc is the controller frequency. Figure 6 shows
a typical bode plot for a PPF controller. This shows that,
besides the intentional resonance behavour, PPF has low pass
filter characteristics. At w, this controller provides —90° of
phase with respect to the input. Since this is positively fed
back it can be considered negative velocity feedback and
therefore provides a damping force at the controller resonant
frequency [8].

PPF is considered to be insensitive to spillover due to
its high frequency roll off. However, it is very sensitive
to low frequency disturbances which causes a worsening
performance of the closed loop system at low frequencies

[7].

ey

Resonant Feedback Control

RFC is also a second order controller and its transfer is given
by [7].

Ks?
O =
(s) §2 4 2¢wes + w?

Where K is the controller gain, (. is the controller
damping, and w, is the controller frequency. Figure 6 shows
a typical bode plot for a RFC controller. This shows that,
besides the intentional resonance behaviour, RFC has high-
pass filter characteristics. At w. this controller provides
90° of phase with respect to its input. However, as this is
positive phase, for RFC to provide cancellation it is fed back
negatively.

RFC is insensitive to low frequency disturbances.
However, while closed-loop stability can be guaranteed
when the sensor/actuator pair is perfect, uncertainty at
high frequencies such as out of bandwidth dynamics may
destabilize the closed-loop system [7].

2

Resonant control vs Pure Damper

Both PPF and RFC are of the resonant controller type.
In figure 6 the typical bode diagram of a pure damper is
included in addition to those of both resonant controllers.
From this can be seen that a pure damper provides 90°
of phase at all frequencies while resonant controllers only
provide 90° of phase at their respective resonant frequencies.
Consequently, a pure damper has significantly more spillover
in comparison and therefore, resonant controllers are highly
favorable in Active Vibration Damping.

Active Damping Performance

As previously indicated, the aim is to apply damping on
the resonance frequency in the transfer from force F' to
displacement z; for the end-effector. This is achieved by
controlling piezoelectric elements that are placed on the leaf
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Figure 6. Typical bode diagram of PPF and RFC controllers
(both with K =1, (. = 0.2, w. = 10), along with that of a pure
damper

flexures. However, in order to assess the performance of
the applied active damping control, a performance criterion
is needed. The transfer from force F' to displacement z;
was selected as the performance loop as this represents the
parasitic motion of the intermediate mass. To calculate the
performance gain the H2 norm of the transfer from force F'
to displacement 27 is chosen. The H2 norm is defined as [18]:

1 oo
[|H||2 = \/%/ Trace[H (jw)® H(jw)]dw  (3)

As can be seen from equations 1 and 2, for both PPF and
RFC three control parameters are to be determined. For the
selection of these parameters, previous research often relied
on manual tuning by the designer. In this work however,
manual tuning is avoided by using a tuning method. In this,
the relations between the control parameters and the resulting
change in H2 norm of the performance loop are determined
through a grid search. Of these, the parameters that result
in the lowest H2 norm will be selected as optimal control
parameters. The resulting optimal controllers will be tested
experimentally.

Optimal parameter tuning

For both PPF and RFC the parameter sweeps are performed
within the same parameter windows. In order to increase
the applicability of the results, the parameters have been
normalized with respect to the plant properties, i.e. the
controller gain factor is expressed as a ratio of the gain
margin of the voltage to voltage transfer of leafspring A and
the controller frequency is expressed as a ratio of the parasitic
resonance frequency.
This results in the following parameter windows:

03<K<1

IA

“

0.01<(<05 (5)
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the inverse of the maximum of sensitivity, Mg 1 [19]. The 0;
maximum of sensitivity is calculated using the L., norm 01 06 04 -
which is defined as [18]: 0.8
Damping 0.01 Relative gain factor
coefficient

Ms = [S]|z., = max[S(jw)| (10)
wEeR

The minimum for the minimum distance is set at 0.3, i.e.
Mg ! > 0.3, controller parameter combinations that result in
less stability margin are disregarded.

As was shown in figure 2 the angle of deflection is of
great influence on the eigenfrequency of the parasitic mode.
The amount of deflection is presumed to also affect the
performance of the control parameter combinations as well
as their sensitivity margin. Therefore these simulations are
performed for four states of the system, equidistantly spaced
between minimum and maximum deflection. This results
in the following states; undeflected, 2.8 degrees nominal
deflection, 5.7 degrees nominal deflection, and 8.5 degrees
nominal deflection.

Sensitivity surface

The simulated results can be represented in 4D for each
controller for each state of deflection. Figure 7 shows the
results for when PPF is enabled at 8.5 degrees nominal
deflection. Figure 8 shows the results for when RFC is
enabled at 8.5 degrees nominal deflection. Here, the x, vy,
and z coordinates correspond to the normalized controller
parameters and the magenta contour lines correspond to the
sensitivity margin. The points that lie within this sensitivity
surface represent feasible controllers with the coordinates set
as their parameters. The colour scale indicates the resulting
H2 norm of the transfer from force F' to displacement z; of
the end-effector for when the resective controller is enabled.
Figures for the remaining states of deflection are included in
appendix B.

For both PPF and RFC an absolute minimum can be
found within the parameter windows. However, dealing with
potential uncertainty, an optimal region is defined for each
of the sensitivity surfaces. In this region the H2 norm value
of the performance loop differs less than two percent from
the absolute minimum, i.e. Ha op < 1.02 - Ha pir. These
regions are included in figures 7 and 8 in red.

From these simulated results it becomes clear that for both
PPF and RFC the stability margin of 0.3, represented by
the magenta lines, is mainly determined by the controller

Controller tuning for disturbance suppression in a piezo damped large stroke flexure
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Figure 7. Sensitivity surface and corresponding H2 norm
values for PPF control under 8.5 degrees of deflection with in
red the optimal region (< 2%). Additional figures in appendix B

Resonant Feedback Control
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Figure 8. Sensitivity surface and corresponding H2 norm
values for RFC control under 8.5 degrees of deflection with in
red the optimal region (< 2%). Additional figures in appendix B

gain and controller damping factors, while the controller
frequency has much less effect, as the contour of these lines
largely retains its shape with increased controller frequency.

The optimal region for PPF shows a strong correlation
between controller frequency on one side and the
combination of gain and damping on the other side. This
is such that for an increase in controller frequency both the
controller gain and controller damping should be increased
as well in order to achieve similar results. Nevertheless,
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Optimally tuned controller effects on resonance peak
From: Fz To: z1-displ

\

. I\

@ 80| I

= f

o

-

EREI

= \

2

e AN

= o N\

e \\
0 — ———r '

G 45t <

@ -

= A

o -90 "-

o )

e Uncontrolled | A

O 135 F Optimally tuned PPF ‘I
Optimally tuned RFC N S

-180

20 30 40 50 60 70
Frequency (Hz)

Figure 9. Simulated frequency response from force F' to
displacement z; under 8.5 degrees nominal deflection without
damping, with PPF damping, and with RFC damping

outside of this minimal region, PPF shows relatively good
performance as well as a strong ability to overcome model
uncertainties indicating good performance robustness.

The optimal region for RFC is bound by a narrow window
of controller damping factor, a narrow window of controller
frequency, and a wide window of controller gain factor.
Therefore the performance of the enabled RFC controller
is mostly dictated by its damping and frequency. As the
damping factor is dimensionless and the controller frequency
is set relative to the parasitic eigenfrequency this implicates
that the performance of the RFC controllers is mostly
determined by the accuracy of the system model. As the
performance outside of the minimal region lessens more
quickly compared to that of PPF it stands to reason that
RFC controllers are therefore less able to overcome model
uncertainties.

Angle of deflection

Comparing the sensitivity surface results for the 8.5 degrees
nominal deflection state with those for the remaining
deflected states, found in appendix B, it appears that,
although the absolute values for the H2 norm differ
greatly, the shape of the sensitivity surfaces differs little
under deflection. This implies that the closed-loop stability
of the system with active damping enabled is largely
unaffected by the angle of deflection. Furthermore, the
optimal tuning regions are located in approximately the
same locations for all deflected states. This implies that a
single set of normalized parameters can achieve near-optimal
performance for all angles of deflection. This is the case for
both PPF and RFC controllers. However, it should be noted
that these parameters are in normalized form, relative to the
plant properties. As previously shown, the plant properties
are affected by the angle of deflection and the controllers will
still have to account for this.

For each of the studied deflected states, the parameter sets
resulting in the absolute minimum H2 norm are determined.
The means of these parameters have been selected as the
optimally tuned control parameters. This is done for both
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Table 1. Optimally tuned control parameters
K ¢ )

PPF 0.51 0.12
RFC 0.67 0.09

1.30
1.25

Table 2. Simulated effects of optimally tuned controllers on
parasitic resonances in the frequency response from force F' to
displacement z;

0  wpar Open-loop  H2norm Freq. Peak
Magnitude Reduction  Reduction

PPF 28° 74Hz -88.5dB 24.1% 16.5dB
57° 54Hz -78.2 dB 25.1% 16.0 dB

85° 41Hz -72.8 dB 21.0% 15.3dB

RFC 28° 74Hz -88.5dB 24.2% 15.5dB
57° 54Hz -78.2 dB 26.1% 15.5dB

85° 41Hz -72.8 dB 22.4% 14.8 dB

PPF and RFC. The resulting normalized parameters are listed
in table 1.

For each of the deflected states, the parasitic frequency and
the resonance peak height are determined. These are listed in
table 2. For the determination of the resonance peak height
a modal damping of 0.5% is assumed. Additionally, table
2 lists the effects of the optimally tuned controllers on the
H2 norm of the transfer from force F' to displacement 2
and on the resonance peak height of the transfer from force
F' to displacement z;. From this it can be concluded that,
for both PPF and RFC, the optimally tuned controllers are
successful in reducing the parasitic resonance peaks for all
simulated states of deflection. However, it also shows that,
although RFC performs slightly better in reducing the H2
norm, the frequency peak is reduced less when compared
to PPF. This effect is illustrated in figure 9. It shows the
simulated transfer from force F' to displacement z; under
8.5 degrees nominal deflection, for the open-loop system,
the system with optimally tuned PPF, and the system with
optimally tuned RFC. The magnitude diagram is zoomed in
around the resonance frequency at 41 Hz. Here, it can be
seen that, while the resonance peak is lower for the optimally
tuned PPF controller, at low frequencies the magnitude is
slightly higher. As the H2 norm is defined by equation 3 this
results in a slightly higher H2 norm for PPF compared to
RFC.

Experimental Validation

To assess whether the model is an accurate representation of
the system, the simulated results are tested experimentally.
The major components of the experimental setup are listed
in table 3 and a schematic representation of the experimental
setup is shown in figure 10. Pictures of the experimental
setup are included in appendix C.

Both the nominal motion stage and the shaker element
are actuated through a PID controller. The methods through
which these controllers are designed are given by [28]. Their
cross-over frequencies are 5 Hz and 15 Hz, respectively.
Since both controllers are needed purely for retaining a given
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Figure 10. Schematic representation of the experimental setup

position of their respective stage and therefore have no effect
on the performance of the active damping their exact design
will not be discussed further.

Multiple tests are performed in order to asses whether
the optimally tuned PPF and RFC controllers are successful
in damping the chosen parasitic resonance frequency peak.
First, the system was identified without Active Vibration
Damping to determine its ability to correctly register the
parasitic resonance for the deflections in accordance to those
of the simulations; undeflected, 2.8 degrees deflected, 5.7
degrees deflected, and 8.5 degrees deflected.

The dynamics of the system are then identified with Active
Vibration Damping enabled for the four states of deflection.
This is tested for both optimally tuned controllers with
parameters as listed in table 1. In addition to the designed
controllers, four sub-optimal controllers will be tested. The
controller parameters of these are chosen such that they are
pairwise located on opposite sides of the optimally tuned
controllers alongside the two axes of the sensitivity surface
and outside of the minimal region. These variations are listed
in table 4 for both PPF and RFC. As the parameters in both
table 1 and 4 are in normalized form, the previous system

Table 3. Major components of experimental setup

Component Description
Nominal Motor Tecnotion UM3 [20]
Stage Motor controller  Escon 50/5 [21]
Encoder RLS LM10 [22]
Accelerometer Endevco 7703A-1000 [23]
Sensor M5628-P1 [24]
Actuator M5628-P1 [24]
Flexures RVS 14.310 [25]
139 x 35 x 0.3 mm
Shaker Motor Akribis AVM 30-15 [26]
Stage Encoder RLS LM13 [27]
Flexures RVS 14.310 [25]

79 x 60 x 0.2 mm

Controller tuning for disturbance suppression in a piezo damped large stroke flexure
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Table 4. Parameter variations for applied controllers

Combination K ¢ w
PPF1 051 0.12 1.58
2 051 0.12 1.05
3 035 0.09 1.30
4 0.65 0.23 1.30
RFC1 0.67 0.09 1.39
2 0.67 0.09 1.15
3 044 0.07 1.25
4 088 0.12 1.25

Nominal movement
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Figure 11. Frequency response from torque M to angle of
deflection 6 for multiple deflections

measurements were used to determine absolute controller
parameters.

The dynamics of the system are identified through the use
of a chirp signal with an amplitude of 100 mA from 10 to
200 Hz as the simulated results have shown this to be the
main region of interest.

Results

The results of the system identification are shown in figures
11, 12, and 13. More details on how these results are obtained
are given in appendix D.

Figure 11 shows the measured frequency response from
torque M to angle of deflection 6 for the four states
of deflection; undeflected, 2.8 degrees nominal deflection,
5.7 degrees nominal deflection, and 8.5 degrees nominal
deflection. Figure 12 shows the measured frequency response
data from force F' to displacement z; and figure 13 shows
the measured frequency response from voltage V1a to
voltage V'1b for leafspring A. The full 5x4 system frequency
response data - with inputs M, F, V1a,V2a and outputs
0,21,22,V1b,V2b - is included in appendix D. As was
expected from the simulation results, both the frequency
responses from figures 12 and 13 show a resonance peak that
shifts from 56.4 Hz for the undeflected state to 30.1 Hz for
8.5 degrees nominal deflection. As the resonance peaks from
force F' to displacement z; correspond to those from voltage
V'1a to voltage V10, the piezoelectric elements couple with
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Figure 13. Frequency response from voltage V'1a to voltage
V15 for leafspring A for multiple deflections

the displacement effect. There is no noticeable effect of these
resonances in the frequency response from torque M to angle
of deflection § which shows that the mode from figure 3 is
unobservable in the nominal movement.

Additionally, figure 12 shows a resonance peak at 8 Hz
for all states of deflection. This corresponds to the nominal
compliance of the shaker element, as it is independent of the
angle of deflection. This is in accordance to the simulated
frequency response.

Figure 11 shows several unexpected collocated resonance
peaks, which are at 17 Hz, 29 Hz, and 46 Hz. These are
not present in the simulated frequency response. However,
as these appear to be independent of the angle of deflection
they are assumed to be caused by unknown dynamics
outside of the bounds of the system model and are therefore
disregarded.

The controller parameters were tuned such that the con-
trollers were assumed to provide near-optimal performance
for multiple deflected states of the nominal motion stage.
However, as these parameters are in normalized form, for

Controller tuning for disturbance suppression in a piezo damped large stroke flexure
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each of the deflected states both the gain margin and the para-
sitic eigenfrequency are needed. These can be gathered from
the results of the system identification. Figure 13 indicates
that the gain margin of leafspring A varies very little with
respect to a change in angle of deflection. From this it can be
concluded that, out of the three controller parameters, only
the absolute controller frequency varies greatly.

PPF

Figure 14 shows the resulting frequency responses from
force to displacement with PPF control enabled, as depicted
in figure 5, for multiple displacements. The amount of
achieved damping for these displacements is listed in
table 5. From these it can be seen that the optimally
tuned PPF controller can successfully dampen the parasitic
resonance across multiple deflections. Additionally, the
achieved resonance peak reductions are similar to those
reached in simulated results.

The achieved damping effect is less for the undeflected
state compared to those for deflected states, however this
was to be expected. As figure 2 showed, the eigenfrequency
for the parasitic mode of figure 3 drops drastically under
deflection. In the undeflected state the eigenfrequency is
close to the eigenfrequencies of several other modes that
were previously disregarded. This implicates a greater
contribution of those modes on the frequency response from
force F' to displacement z; than previously assumed.

The remaining frequency response diagrams of the system
with the optimally tuned PPF cotroller enabled are included
in appendix D.

Table 5. Experimental effects of optimally tuned PPF controller
on parasitic resonances for multiple deflections

Nominal Wpar  Open-loop  Freq. Peak
Deflection Magnitude  Reduction
Undeflected 56.4 Hz -102 dB 6 dB
2.8 degrees 45.6 Hz -94.1 dB 13.9dB
5.7 degrees 36.7 Hz -90.7 dB 15.3dB
8.5 degrees  30.1 Hz -85.2dB 16.8 dB

Closed loop - optimally tuned PPF enabled
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Figure 15. Open loop bode plot for leafspring A with the
optimally tuned RFC controller

RFC

When RFC is enabled similarly to PPF in the previous sec-
tion simulation results indicated an increase in performance
was to be expected. However, with the values for gm and
Wpar determined and the controller parameters set to those
listed in table 1, enabling the controllers led to immediate
instability. This is in spite of the selected stability margin
when the parameters were determined. Only after signif-
icantly lowering the controller parameters could a stable
system be achieved. However, this resulted in an insignificant
effect on performance of the frequency response from force
F ' to displacement z; and therefore these results are omitted.

Looking at the typical behaviour of RFC as shown in
figure 6 it becomes clear that this instability might also be
considered typical behaviour for this case. While simulated
results show an increase in performance it must be noted
that these simulations are based on a model of the system.
Due to the lack of roll-off in the chosen controller, for
the simulated performance to be achieved, the model of
the system needs to be perfect. Figure 15 shows the open-
loop frequency response of leafspring A with the optimally
tuned RFC controller, up to the sampling frequency. This
shows that instability is unavoidable. The dynamic behaviour
of the measured frequency response from Vla to V1b
differs from the simulated frequency response at high
frequencies, presumably caused by non-collocated modes.
Another contributing factor can be that in the experimental
setup more delay is present than accounted for during the
simulations.

Parameter variation

The parameter variations for PPF as listed in table 4
are divided in two categories where either the controller
frequency or the combination of controller gain and damping
is varied. As previously discussed these variations are such
that the simulated results are outside of the optimal region (<
2%) and are therefore expected to achieve less performance
compared to the chosen optimally tuned parameter settings.
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Figure 17. Frequency response from force F' to displacement
z1 with PPF enabled with gain and damping factor variations

Figures 16 shows the effect of the variation in controller
frequency on the frequency response from force F' to
displacement z;. Here, it can be seen that both an increase
and a decrease in controller frequency leads to a decrease
in applied damping on the resonance peak. There is also a
slight shift of the resonance peak noticeable. Aside from this
decrease in performance both variations appear to have no
significant effect on the regions outside of this resonance
peak.
Similarly to the previous, figure 17 shows the effect of the
variation in the parameter combination of controller gain and
controller damping. From this it can be seen that a combined
increase and a combined decrease of the parameters also both
lead to a decrease in applied damping on the resonance peak
as well as a slight shift in resonance peak. These combined
variations appear to have a more pronounced effect on the
regions outside of the resonance peak.

Additional diagrams are in appendix D as well as the
results for additional deflected states. These additional
deflected states demonstrate similar behaviour.
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Discussion and Recommendations

When comparing the experimental system identification
results from appendix D with the simulated results from
appendix B it becomes apparent that the system model
contains slight inaccuracies since the frequency response
data deviates from the simulated data. Figure 18 shows
this comparison for the frequency response from force F'
to displacement z;. Some of these inaccuracies are likely
caused by neglected dynamics. Additionally, the exerimental
frequency response shows a greater resonance peak in
undeflected state than in the simulated data. This is to
be expected as in undeflected state the model assumes
the leafsprings to be perfectly aligned and as such the
flexure hinge has great overall support stiffness. However, in
practice, the leafsprings are most likely slightly misaligned
and therefore the overall support stiffness is reduced.

As the model is the basis for which the controller
parameters have been tuned, it should be noted that these
inaccuracies potentially mean the tuned parameters are also
inaccurate. However, the applied controllers are shown to be
effective in damping the parasitic resonance from force F'
to displacement z; in both the simulated frequency response
and the experimental frequency response, with similar
performance. Therefore, it can be concluded that the model is
an adequate representation of the system and the underlying
assumptions are valid. This means any improvement of the
system model can only lead to a further improvement in
performance. Furthermore, figure 18 shows that, although
the resonance peaks vary in frequency and height, both
frequency responses show highly similar behaviour. As
the controller parameters are derived in normalised form
these variations in frequency and height of the parasitic
resonance are therefore irrelevant. It should be noted that
these qualitative differences are relevant when comparing
PPF and RFC controllers. Due to the lack of high frequency
roll-off of RFC these qualitative differences are the probable
cause for the experienced instability.

The system identification of the experimental setup, as
well as the simulated system identification both show that,
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although the effect is noticeable, the studied mode is
registered less by the top leafspring (B) than the bottom
leafspring (A) as the bottom leafspring is more affected
by gravity. However, since the piezoelectric patches are
controlled identically in the current setup, this implies that
the contribution of the top leafspring to the attenuation of
the resonance peak is also less. This opens up possibilities
for further research to determine whether different parameter
settings for each of the leafsprings will improve overall
performance with respect to disturbance rejection with
possibly multi-mode suppression. This can be done by
utilizing a differential voltage signal with a single controller
or through the control scheme as depicted in figure 5 but
with separate distinctive controllers. Alternatively, applying
modal decomposition could be used to further investigate
what modes have the greatest negative effect on overall
performance and to better target those modes effectively.

In undeflected state the currently investigated controllers
show only a limited performance increase compared
to the deflected states but the resonance peak from
force F' to displacement z; was still present. This
might indicate a greater contribution of the perpendicular
leafsprings on performance than previously assumed which
implicates these were wrongfully disregarded. This should
be investigated further by placing additional piezoelectric
elements on the perpendicular leafsprings. However, these
leafsprings will likely experience mostly torsional strain
when the system is in undeflected state. Even if the
piezoelectric elements are selected accordingly, a significant
increase in performance in undeflected state might prove
difficult to achieve as torsion is challenging to couple with
piezoelectric elements. The additional piezoelectric elements
can be beneficial if the modal decomposition approach is to
be used, as the amount of modes that can be decomposed is
limited to the amount of sensors in the system.

Conclusion

A large stroke piezo damped flexure hinge has been extended
with a second stage. This system has been developed for its
ability to register parasitic modes of the end effector outside
of the nominal movement plane. The displacement of the
end effector in the direction perpendicular to the nominal
movement has been selected as the mode of interest. For
this mode an Active Vibration Damping control scheme
has been presented. In this setup two controllers, Positive
Position Feedback and Resonant Feedback Control, have
been optimally tuned and compared for their performance
in damping the selected parasitic mode. The tuning of the
control parameters has been done through the proposed
tuning method. The chosen performance criterion was the H2
norm of the transfer from force F' to displacement z;. A grid
search has been performed to determine optimal parameters
for several deflected states and the means of these parameters
have been selected. This resulted in an optimally tuned PPF
controller and an optimally tuned RFC controller. Both of
these controllers have been tested experimentally.
Experimental results show that the piezoelectric elements
are able to register parasitic end-effector modes that are not
visible in the nominal movement transfer. Although RFC
showed similar simulated performance, its implementation
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in the experimental setup led to instability and as such was
an ineffective controller. PPF was proven to be an effective
controller for damping the resonance of the mode of interest.
Through parameter variation it has been shown that optimal
controller parameters have been found for PPF. This has been
proven for multiple states of deflection, although less so in
undeflected state.

Through this work further insight was provided into how
active vibration damping controller parameters can be tuned
and this can ultimately lead to methods for optimal controller
design in active vibration damping.

In this work the controllers have been limited to PPF
and RFC and both of these controllers showed promising
performance in simulations. Nevertheless only PPF proved to
be an effective controller as RFC led to instability. Although
the results from RFC show that high-frequency gain should
be considered in a physical setup and the amount of feasible
controllers might be limited by this, it is worth investigating
how other control methods would perform in a similar setup.

Acknowledgements

The author wishes to thank; Prof. Dr. Ir. D.M. Brouwer
PDEng, Dr. Ir. W. B. Hakvoort, Ir. B. Seinhorst, and everyone
else who has contributed to this article.

References

[1] S. Smith, Flexures: Elements of Elastic Mechanisms. 08 2000.
[2] B. Seinhorst, M. Nijenhuis, and W. Hakvoort, “Design of a
large deflection compliant mechanism with active material
for vibration suppression,” in European Society for Precision
Engineering and Nanotechnology, Conference Proceedings,
pp. 123-126, 2022.
[3] M. Naves, R. Aarts, and D. Brouwer, “Large-stroke flexure
hinges: Building-block-based spatial topology synthesis
method for maximising flexure performance over their entire
range of motion,” Mikroniek, vol. 57, no. 3, pp. 5-9, 2017.
[4] S. Peruvazhuthi and S. Gopalakrishnan, “Review on the use
of piezoelectric materials for active vibration, noise, and flow

control,” Smart Materials and Structures, vol. 29, 02 2020.
[5]
[6]

A. Preumont and K. Seto, “Active control of structures,” 2008.
B. Seinhorst, M. Nijenhuis, and W. Hakvoort, “Feasibility of
active material vibration suppression in a large stroke flexure
hinge,” IFAC-PapersOnLine, vol. 55, no. 27, pp. 166-171,
2022.

Q. Mao and S. Pietrzko, Positive Position Feedback (PPF)
Control, pp. 213-265. London: Springer London, 2013.

H. Syed, “Comparative study between positive position

[7]

[8]
feedback and negative derivative feedback for vibration
control of a flexible arm featuring piezoelectric actuator,”
International Journal of Advanced Robotic Systems, vol. 14,
p. 172988141771880, 07 2017.

M. J. Balas, “Direct velocity feedback control of large space
structures,” Journal of Guidance and Control, vol. 2, no. 3,
pp. 252-253, 1979.

B. Yang, “Vibration control of gyroscopic systems via direct

91

[10]
velocity feedback,” Journal of Sound and Vibration, vol. 175,
no. 4, pp. 525-534, 1994.

Controller tuning for disturbance suppression in a piezo damped large stroke flexure
hinge

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

A. Al-Mamun, E. Keikha, C. S. Bhatia, and T. H. Lee,
“Integral resonant control for suppression of resonance in
piezoelectric micro-actuator used in precision servomecha-
nism,” Mechatronics, vol. 23, no. 1, pp. 1-9, 2013.

S. S. Aphale, A. J. Fleming, and S. O. R. Moheimani,
“Integral resonant control of collocated smart structures,”
Smart Materials and Structures, vol. 16, p. 439, feb 2007.

M. L. Friswell and D. J. Inman, “The relationship between
positive position feedback and output feedback controllers,”
Smart Materials and Structures, vol. 8, p. 285, jun 1999.

V. den Ouden, “Design of a piezo damped flexure hinge
demonstrator,” Master’s thesis, University of Twente, August
2022.

M. Naves, M. Nijenhuis, W. Hakvoort, and D. Brouwer,
“Flexure-based 60 degrees stroke actuator suspension for a
high torque iron core motor,” Precision engineering, vol. 63,
pp. 105-114, May 2020.

T. K. Caughey, “Dynamic response of structures constructed
from smart materials,” Smart Materials and Structures, vol. 4,
p. A101, mar 1995.

J. Shan, H.-T. Liu, and D. Sun, “Slewing and vibration control
of a single-link flexible manipulator by positive position
feedback (ppf),” Mechatronics, vol. 15, no. 4, pp. 487-503,
2005.

MathWorks, Matlab 2023a Control system toolbox documen-
tation. Available at: https://nl.mathworks.com/help/control/
ref/dynamicsystem.norm.html.

J. van Dijk, “System and control design 2,” 2013.

Tecnotion, UM Series Ironless datasheet. Available at: https:
/Iwww.tecnotion.com/products/ironless-motors-um-series/.
Maxon, ESCON 50/5 Servocontroller datasheet.  Avail-
able at: https://www.maxongroup.com/maxon/view/product/
control/4-Q-Servokontroller/409510.

RLS, LM 10 Encoder datasheet. Available at: https://www.rls.
si/eng/lm10-linear-and-rotary-magnetic-encoder-system.
Endevco, Piezoelectric datasheet.
Available at: https://buy.endevco.com/accelerometer/
7703a-accelerometer-2.

accelerometer

Smart Material, Macro Fiber Composite Overview. Available
at:  https://www.smart-material.com/MFC-product-mainV2.
html.

Hasberg Schneider GmbH, Material Technical Information.
Available at: https://www.hasberg-schneider.de/en/services/
technical-information/.

Akribis Systems, AVM Series Technical Data.  Avail-
able at: https://akribis-sys.com/products/voice-coil-motors/
avm-series.

RLS, LM 13 Encoder datasheet. Available at: https://www.rls.
si/eng/lm13-magnetic-linear-and-rotary-encoder-system.

J. van Dijk and R. Aarts, “Analytical one parameter method
for pid motion controller settings,” in Proceedings of the IFAC
Conference on Advances in PID Control, WeC2.4, pp. 1-0,
University of Brescia, 2012.






Appendix A

Shaker element design

The second motion stage of the setup is to be used as a shaker element to accurately determine the
transfer of the tip of the first motion stage from force to displacement. In previous research this has
been done through the use of a mode impact hammer, though it was decided to integrate a shaker in
the setup to ease experimental verification.

A.1 Requirements

The design requirements of the shaker element are the following:

» The shaker element should constrain all degrees of freedom except for translation in z-direction.

» The parasitic resonance frequency on which damping is to be applied shifts with nominal de-
flection. To prevent interference on the parasitic resonance the eigenfrequencies of the shaker
element should be outside of this region. Therefore, the first eigenfrequency should be below
10 Hz and the second eigefrequency should be above 100 Hz.

» The previously used end-effector was a brass mass of aroud 0.75kg. The new design should
be of similar mass to retain the applicability of previously drawn conclusions.

A.2 Constraints

In addition to the previous requirements there are several constraints. These mainly revolve around
equipment availability. Although these are not

» The available encoder is a RLS LM13. The LM13 is a contactless high-speed linea magnetic
system designed for linear or rotary motion sensing. It has a resolution of 1um. [27]

» The available actuator is an Akribis AVM30-15. The AVM30-15 is a permanent-magnet direct
drive voice coil motor. It has a stroke length of 15 mm and can apply a continuous force of
4.63N. [26]

* The available flexure material is RVS 14.310. It is a chromium nickel stainless steel alloy with a
Young’s module of 190 GPa and a shear module of 73 GPa. [25]
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Shaker element simulated transfer
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Figure A.1: Shaker element model Figure A.2: Shaker bode
Table A.1: Leafspring dimensions Table A.2: Modal frequencies

Parameter Value Mode Frequency (Hz)

Length 79 mm 1 6.049

Width 60 mm 2 205.1

Thickness 0.2 mm 3 264.9

4 298.5

A.3 Dimensions

The previous has led to the design of a simple two leaf parallel straight guide shown in figure A.1.
The dimensions of the two leafsprings are listed in table A.1. The design has been analysed through
the use of SPACAR software. The projected movement mass sag due to gravity is around 6.7 mm
which is within the maximum stroke of the VCM. Furthermore, the total mass of the shaker element
is around 0.6kg which is expected to be close enough to the previously used mass for the model to
be accurate.

The modal frecuency results from SPACAR are listed in table A.2. The first eigenfrequency of
the shaker element is around 6 Hz which is well below the lower boundary of 10 Hz. The second
eigenfrequency is around 205 Hz which is well above the upper boundary of 100 Hz. After incorpo-
ration of the shaker element in the complete system model these values shift slightly as the base of
the shaker is no longer rigidly connected to the fixed world but instead it is fixed to the first stage.
The resulting first eigenfrequency of the shaker is around 8.5 Hz which is also well below the lower
boundary. Figure A.2 shows the bode magnitude diagram of force F' to displacement z, for both the
isolated shaker element and the shaker element incorporated in the system model where the shift in
the first eigenfrequency is clearly visible. It should be noted that the second eigenfrequency of the
shaker element, at around 200 Hz, is not visible in figure A.2 as it is an internal leafspring mode, i.e.
has no effect on z-displacement of the movement mass.
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Simulation results

B.1 System Model Frequency Response

Figure B.1 shows the full 5x4 system - with inputs M, F, V1a,V2a and outputs 6, z1, 2o, V1b, V20 -
simulated frequency response for four states of deflection; undeflected, 2.8 degrees nominal deflec-
tion, 5.7 degrees nominal deflection, and 8.5 degrees nominal deflection. For these results a modal
damping of 0.5% is assumed.

B.2 Parameter Sweeps

The parameter sweeps over the controller gain, controller damping, and controller frequency have
been performed for both controller options, PPF and RFC, for three deflected states; 2.8 degrees
nominal deflection, 5.7 degrees nominal deflection, and 8.5 degrees nominal deflection. The results
of these parameter sweeps are included in this appendix.

Positive Position Feedback

Figure B.2 shows the simulation results with PPF enabled at 2.8 degrees nominal deflection. Here
figure B.2a shows the sensitivity surface as seen from the frequency-damping plane, figure B.2b
shows the sensitivity surface as seen from the damping-gain plane, and figure B.2d shows the sen-
sitivity surface as seen from the freuency-gain plane. Figure B.2c shows an isometric view of the
sensitivity surface. This display style is used throughout this appendix.

Figure B.3 shows the simulation results with PPF enabled at 5.7 degrees nominal deflection and
figure B.4 shows the simulation results with PPF enabled at 8.5 degrees deflection.

Resonant Feedback Control

Similar to PPF, figures B.5, B.6, and B.7 show the simulation results with RFC enabled at 2.8 degrees,
5.7 degrees, and 8.5 degrees nominal deflection, respectively.
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Figure B.1: Simulated frequency response of the open-loop system
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Figure B.7: 2D projection for H2 norm calculations for RFC under 8.5 degrees of deflection
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Appendix C

Experimental setup

In this appendix several pictures are included of the experimental setup where figure C.1 shows an
overview of the setup, figure C.2 shows the top view of the setup in undeflected state, and figure C.3
shows the top view of the setup in deflected state at 8.5 degrees nominal deflection.

Figure C.2: Undeflected state of experimental Figure C.3: Deflected at 8.5 degrees nominal
setup deflection of experimental setup
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Appendix D

Experimental results

D.1 Frequency Response Estimate

The dynamics of the system identified through the use of a chirp signal. This method is used for
both with and without active damping enabled. Normally these results can be classified as open-
loop behaviour and closed-loop behaviour. However, as the dynamics of the flexure hinge change
drastically with a change in nominal deflection, it is crucial to retain certain positions during testing.
Therefore, in this case the system identification results are classified as “partially open-loop" and
"closed loop". Figure D.1 illustrates this difference. Here, P(s) refers to the open-loop transfer of the
system and P(s), the area shaded in grey, refers to the partially open-loop transfer. The frequency
response data of this partially open loop system is shown in figure D.2.

~P(s)

PID VCM

PID nominal

- + —

M \ »{+ » ©

c " -]
V1ib > ‘—] Via
V2b > ‘r] V2a

Figure D.1: Schematic for partially open-loop system P(s) used for system identification

D.2 Optimally tuned PPF controller

Figure D.3 shows the frequency response data of the closed loop system, with the optimally tuned
PPF controller enabled.
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Figure D.2: Frequency response estimate of the partially open-loop system P(s) as depicted in figure

D.2
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Closed loop - optimally tuned PPF
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Figure D.3: Frequency response estimate of the closed-loop system with the optimally tuned PPF

controller enabled
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D.3 Frequency variation

The frequency variations have been performed for three deflected states; 2.8 degrees nominal de-
flection, 5.7 degrees nominal deflection, and 8.5 degrees nominal deflection. Figure D.4 shows the
results of these variations for the 2.8 degrees nominal deflection case. Here, figure D.4a shows the
frequency response of force F, to displacement z; around the parasitic resonance frequency. Figure
D.4b shows the accompanying frequency response of voltage V'1a to voltage V1b. Similarly, figures
D.5 and D.6 show the frequency variation results for the 5.7 degrees nominal deflection and 8.5
degrees nominal deflection cases, respectively.

D.4 Gain/damping variation

The gain/damping variations have been performed for three deflected states; 2.8 degrees nominal
deflection, 5.7 degrees nominal deflection, and 8.5 degrees nominal deflection. Figure D.7 shows
the results of these variations for the 2.8 degrees nominal deflection case. Here, figure D.7a shows
the frequency response of force F, to displacement z; around the parasitic resonance frequency.
Figure D.7b shows the accompanying frequency response of voltage V'1a to voltage V'1b. Similarly,
figures D.8 and D.9 show the frequency variation results for the 5.7 degrees nominal deflection and
8.5 degrees nominal deflection cases, respectively.
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Figure D.4: Optimally tuned PPF and frequency variations for 2.8 degrees nominal deflection
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(b) Frequency response data from voltage V' 1a to voltage V'1b

Figure D.5: Optimally tuned PPF and frequency variations for 5.7 degrees nominal deflection
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Figure D.6: Optimally tuned PPF and frequency variations for 8.5 degrees nominal deflection
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2.8 degrees nominal deflection - PPF with gain/damp. variations
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Figure D.7: Optimally tuned PPF and gain/damping variations for 2.8 degrees nominal deflection
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Figure D.8: Optimally tuned PPF and gain/damping variations for 5.7 degrees nominal deflection
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Figure D.9: Optimally tuned PPF and gain/damping variations for 8.5 degrees nominal deflection
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