
1

Faculty of Engineering Technology
Departement of Thermal and Fluid Engineering

Engineering Fluid Dynamics research group

A physics-compatible dual field
discretization using

domain decomposition

S.D.M. de Jong
M.Sc. Thesis

04-2023

Chair:
prof. dr. ir. C.H. Venner

Internal member:
dr. H. Ozdemir

External member:
dr. I. Ostanin

Supervisors:
dr. A. Brugnoli

dr. ir. R. Rashad
dr. ir. Y. Zhang

Report number:
425

Contents

Summary 4

1 Introduction 5

1.1 Literature study . 6

1.2 Proposed method & Research questions . 6

1.3 Structure of the thesis . 8

2 Mathematical background 9

2.1 Exterior Calculus . 9

2.2 Basis Functions . 12

3 Time independent Poisson equation 15

3.1 Standard finite element formulation . 15

3.1.1 Strong formulation . 15

3.1.2 Weak formulations . 16

3.2 Space discretization of mixed boundary conditions via a domain decomposition method . 18

3.2.1 Weak formulation . 19

3.3 Numerical simulations . 21

3.3.1 Analytical solution . 21

3.3.2 Results . 22

3.3.3 Conclusion . 28

4 Time dependent Poisson equation 29

4.1 Standard finite element formulation . 29

4.1.1 Strong formulations . 29

4.1.2 Weak formulations . 30

4.2 Space discretization of mixed boundary conditions via a domain decomposition method . 31

4.2.1 The weak formulations for a decomposed domain 31

2

4.3 Time integration using the implicit midpoint scheme . 33

4.4 Numerical simulations . 34

4.4.1 Analytical solution . 35

4.4.2 Results . 35

4.4.3 Curl free flow . 37

4.4.4 Power Balance . 38

4.4.5 Conclusion . 41

5 Time Staggering 42

5.1 Time integration using a staggering implicit midpoint scheme 42

5.2 Numerical simulations . 43

5.2.1 Convergence . 43

5.2.2 Power balance . 44

5.2.3 Computational cost . 44

6 Conclusion 46

7 Recommendation 47

References 48

A Appendix 50

A.1 Firedrake simulation . 50

3

Summary

Numerical simulations are commonplace in many different applications. However, for a lot of numerical
methods the conservation laws, such as mass, momentum, energy, etc., are not preserved. Recent de-
velopments of the dual field discretization make it possible to construct numerical schemes specifically
designed to preserve the physical properties of a system. However, current physics-compatible methods
are still facing issues when solving for mixed boundary conditions, because of the use of essential bound-
ary conditions. In this work a numerical scheme is proposed for solving mixed boundary problems, while
all boundary conditions are naturally imposed. The domain is decomposed using an internal interface
such that each subdomain has homogeneous boundary conditions. First a mathematical framework is
introduced capable of describing the geometrical and topological properties of the system. By taking the
geometry and topology into account, the variables can be expressed in a more physical manner.

To show how the spatial discretization works, the proposed method is applied to time independent
Poisson problem. The Poisson equation is first expressed in exterior calculus, for its inner and outer
oriented forms. The equations are then converted into two different weak formulations based on the
different orientations. One weak formulation is applied to one subdomain, while the other is applied to
the other subdomain. The two subdomains are then coupled on the interface, which results in a dual
field discretization. The simulations take place on a unit square domain, with one Dirichlet boundary
condition and one Neumann boundary condition. The L2-error and convergence rates are found to be
similar to that of standard finite element discretizations. The curl free condition of the Poisson problem
is found to be preserved on a discrete level for one of the formulations.

Then the time dependent Poisson problem is simulated to demonstrate a temporal discretization for
physical-compatible methods. For the time integration an implicit midpoint scheme is used. The L2-
errors and convergence rates show comparable results to standard finite element methods, and the curl
free condition is preserved on one subdomain. The conservation of energy is found to be preserved on each
subdomain, and also on the entire domain coupled by the dual field method. Lastly, a time staggering
scheme was applied to reduce the computational cost of the simulation, while having no detrimental effect
on the performance of the scheme.

In conclusion, the proposed scheme is capable of meeting the curl free condition on part of the domain,
the energy is preserved on each subdomain, and additionally the energy is also conserved on the entire
domain. The time staggering scheme gave the same results as a non-staggering scheme, while significantly
reducing the computational cost.

4

1 Introduction

Numerical simulations are used in many fields of engineering. For simulating the aerodynamics of aircraft,
the hydrodynamics of ships, the electromechanical properties of robotics and many other applications.
It is vital that these simulations perform well. However, the solutions of these numerical simulations
do not always agree with the conservation laws. The absence of such conservation can lead to errors
and instabilities in numerical simulations. For example, the well-known incompressible Navier-Stokes
equations are notorious for having difficult to find analytical solutions, and thus numerical methods
are employed to find approximate solutions. However, the use of such methods creates problems with
the found numerical solutions. For instance, for the standard Taylor-Hood finite element discretization,
the error for the mass conservation is dependent on the mesh size [1]. For a reasonable mesh size, the
error can still be significant enough to cause problems. Other conservation laws such as the momentum,
helicity, energy and others, are also found to no longer be preserved when not taking care to use a proper
discretization. In some cases, this can lead to discrepancies between the numerical simulations and the
experimental data. The cause of this difference is due to the energy balance not being conserved in the
numerical schemes. For example, the lack of energy conservation can lead to earlier flow separation on
airfoils in simulations than in experimental results [2]. Furthermore, Modesti and Pirozzoli [3] found that
the shockwaves on an airfoil are in incorrect locations on an airfoil when compared to experimental data.

The mathematical equations, e.g. the Navier-Stokes equations, perfectly describe the physical system, yet
it is not straightforward to capture the physical properties in numerical simulations. That is because the
numerical simulation transforms the problem from a continuum to a discrete level. Some of the physical
properties captured on the continuum level are found to be no longer preserved on the discrete level. The
inconsistency between continuum and discrete levels was already identified as early as 1959 [4]. It was
realized that a proper spatial discretization should preserve important physical properties [5, 6].

To understand what is happening the conservation laws the geometry and topology of the underlying
problem needs to be considered. Take for example a plane in R3, which can be described by a pair of basis
directions e1 and e2, or by the normal direction of the plain n, related by the cross product e1×e2 = n.
Each of these terms is an equally valid description of the plane. This can be further generalized into
the statement that any k-dimensional object in n-dimensional space can be described by k directions
or by its complementary n − k directions. From a physical point, this means that any variable has two
complementary, but equally valid, descriptions. The velocity in R3 can be associated with a line k = 1
through the velocity potential, or by a surface n− k = 2 by means of the mass flux. These are both valid
descriptions of the velocity, and while they are connected to each other, they are obviously not equal.
Nevertheless, a lot of numerical schemes do not take this into consideration and will use them as if they
are equal. This introduces errors into the simulations which results in the lack of conservation in the
solutions.

Vector calculus is found to be lacking in differentiating between this dual representation of the physical
variables. While variables in vector calculus contain geometric and topological information, this informa-
tion is not explicitly conveyed by the mathematical description, making it difficult to use the geometry
and topology correctly. The mathematical field of Exterior Calculus (EC) is able to convey the geomet-
rical and topological information about a problem. This allows for the k-forms and n − k-forms of a
variable to be taken into account when setting up the numerical simulation.

5

1.1 Literature study

The desire to create a numerical scheme that complies with the conservation laws is not new. A lot
of research has been done on the subject and some promising schemes have been found. Yet most of
them do not consider the geometry and topology fundamental to the problem. Cai et al. [7] conducted
numerical simulations on the sine-Gordon equation with homogeneous Neumann boundary conditions
using second-order central difference with a cell-centered grid, and summation by parts operators on a
regular grid. Both methods were found to preserve the energy on a discrete level within machine precision.
Cai and Wang [8] found one method that preserves the energy, and another method which preserved the
momentum for a version of the Boussinesq equation with periodic and homogeneous boundary conditions.

To ensure the desired physical properties are preserved, a numerical method is required to properly apply
the geometrical and topological information made available by exterior calculus. The beginnings of such
methods date back surprisingly far. In the 1950’s the Whitney forms were developed [9], which are finite
elements capable of preserving certain physical properties. However, while the Whitney forms were found
to have better results [10], the mathematical understanding of why did not come about until the 1990’s
[11]. The work done in the 90’s led to the development of Finite Element Exterior Calculus (FEEC) by
Arnold et al. in the early 2000’s [12, 13, 14]. As the name suggest FEEC is a finite element method,
but it uses exterior calculus instead of vector calculus. Most notable, the finite elements used in FEEC
are based on exterior calculus [15], this allows the element to maintain the geometric and topological
properties of the problem on a discrete level.

FEEC is therefore a great candidate for creating physical-compatible discretizations. By keeping track of
the k-forms and n−k-forms of the variables, the problem can be solved in different ways. One formulation
based on the k-forms and one formulation based on the n − k-forms. These schemes can subsequently
be combined into a method that uses both forms. In literature such a method is often referred to as the
dual field method. Zhang et al. [16] suggested a mimetic dual field method capable of conserving mass,
kinetic energy and helicity for three dimensional incompressible Navier-Stokes equations with periodic
boundary condition. Brugnoli et al. [17] used a dual field discretization to conduct simulations on
the acoustic wave equation and the Maxwell equations in three dimension with mixed Dirichlet and
Neumann boundary conditions. For both formulations using the k-forms and n− k-forms separately, one
boundary condition was naturally imposed, while the other boundary condition was essentially enforced.
They found that energy is not preserved for either formulation. However, when the two systems are
combined to create a dual field method using both forms the energy was found to be preserved. This
is undesired as the energy balance in the dual field method is merely reconstructed from the individual
formulations which are not preserving the energy, preferably all systems conserve the energy on a discrete
level. It is the use of an essential boundary condition that introduces problems in the discretizations. An
essential boundary condition applies algebraic constrains, which makes them more difficult to deal with
in numerical simulations.

1.2 Proposed method & Research questions

A scheme that preserves the physics on a discrete level without the use of use any essential boundary
conditions would be desired, as such a scheme should be able to preserve the energy balance. The method
suggested here is to introduce an internal interface boundary which decomposes the domain such that
each subdomain has homogeneous boundary conditions. The proposed numerical method is to apply the
dual field formulation to the decomposed domain. Each subdomain will solve for one of the formulations

6

of the variables, i.e. one subdomain will use the k-forms while the other uses the n− k-forms. The two
subdomains are then coupled on the interface to create a dual field formulation on the entire domain.

The use of subdomains provides another opportunity for the proposed numerical scheme. Since each form
of a variable is only solved on part of the domain instead of on the entire domain, a method is proposed
to reduce the computational cost of the problem. A time staggering method is used such that for each
(half) time step the solver only has to compute part of the domain. Depending on how the domain is
decomposed, this can significantly reduce the computational domain for each (half) time step.

The proposed numerical scheme is to be a physics-compatible method. To ensure the proposed scheme
does indeed work as intended, it needs to satisfy certain conditions. This leads to the main question to
be answered in this work.

Can the physical properties be preserved discretely for problems with mixed boundary
conditions by decomposing the domain?

The main research question can be divided into subquestions. Firstly, is to ask if the physics are preserved
on each subdomain, since previous works have found that the energy can be preserved when the boundary
conditions are homogeneous, the subdomains are expected to conserve the energy exactly. Which other
physical conditions can be preserved will have to be determined. Secondly, to couple the subdomains
while preserving the physics on the whole domain. When the subquestions have been answered, the main
research questions can be answered too.

1. Are the physics preserved on each subdomain?

2. Can the subdomain be coupled such that the physics are preserved on the entire
domain?

When the first two subquestions have been answered, the proposed time staggering scheme can be im-
plemented. To ensure the energy balance is not effected by the implementation of a time staggering
scheme, the energy balance is tested again. An estimate of the computational cost of the staggering and
non-staggering methods is made to compare the different methods.

3. Is the energy balance still preserved when using a time staggering scheme?

4. How much is the computational cost reduced by using a time staggering scheme when
compared to non-staggering schemes?

To investigate how the proposed scheme functions the Poisson problem ∂ttϕ−∇2ϕ = f(x, y) is discretized
for a general domain with mixed boundary conditions, as seen in Figure 1. The time derivative and the
Laplacian ∇2 appear in a lot of problems, so the Poisson problem serves as a case study. The propsed
method can be further generalized in future work.

ϕ = u0 on Γ21, (1)

∇ϕ · n = u1 on Γ10. (2)

7

Ω

Γ21

Γ10

Figure 1: A general domain with mixed boundary conditions, with an Neumann boundary condition on
Γ10 and a Dirichlet boundary condition on Γ21.

1.3 Structure of the thesis

The thesis is structured as follows. In Section 2 the mathematical background necessary for understanding
the rest of the work is given. The Poisson problem is then discretized for a general domain with mixed
boundary conditions. First for the steady case, i.e. ∂tϕ = 0, to show how the spatial discretization works
for a standard finite element formulation in Section 3.1, and then for the proposed method in Section
3.2. The numerical simulations are performed on a unit square domain. Then for the time dependent
case with a zero source function, f(x, y) = 0, using an implicit midpoint scheme for the time integration
in Section 4. Finally in Section 5 a time staggering scheme is applied to the same problem as in Section
4, and the computational costs of the different methods are investigated. The appendix contains a short
explanation the code used for the simulation, with some example codes to show the more uncommon
sections of code.

8

2 Mathematical background

As mentioned in the introduction, the mathematical field of exterior calculus is used in this thesis instead
of the more commonly known vector calculus. This section is meant to provide some of the concepts
and definitions from exterior calculus required to understand the thesis. The use of exterior calculus in
this work is mainly focused on its applications in FEEC, so the concepts and definitions found in this
section are relevant to FEEC and not a general explanation of exterior calculus. For a more complete
explanation the reader is encouraged to look at other resources, such as [18, 19, 20].

A note on vector calculus in this report.

To aid those unfamiliar with exterior calculus some parts of the thesis are also provided in an
equivalent vector calculus notation, recognized by a blue box such as this one. These boxes
provide the reader with equations in vector calculus form, with a short explanation about the
equation. As the discretization in this thesis relies on concepts from exterior calculus, these vector
calculus sections do not provide an explanation of why certain steps are taken. As a final note,
these sections provide no new information so any reader familiar with exterior calculus can skip
these sections.

2.1 Exterior Calculus

To create physics-compatible numerical schemes, the orientations need to be taken into account. While
some readers might be unfamiliar with the concept of an orientation, it is likely they have used them
often without knowing about it. A preferred orientation is often used for some conventions in physics
and engineering, e.g. the outer unit normal instead of the inner unit normal, or the vorticity is positive
in counterclockwise orientation. These conventions are an arbitrary choice, that is the physics are the
same no matter the orientation.

The concept of orientations can also be applied to manifold, where any n-dimensional manifold can be
said to have two orientations, a fact that becomes more evident in lower dimensions. For example, in
1-dimension it is possible to move in only two directions, which describe the two possible orientations
of a 1-dimensional manifold, shown in Figure 2a. In 2-dimensions the directions are clockwise and
anticlockwise that show the possible orientations of a manifold in two dimensions in Figure 2b. Similar
to how the sign conventions in physics are merely a choice, one orientation is named the “True” or “Inner”
orientation, while the other is called the “Pseudo” or “Outer” orientation. In exterior calculus one can
change from one orientation to the other by means of the Hodge star operator ∗.

(a) The two orientations in R1. (b) The two orientations in R2.

Figure 2: Orientations in R1 and R2.

9

Exterior calculus uses differential forms as its fundamental objects. In general, it can be said that for an
n-dimensional manifold, it contains n+1 types of sub-manifolds, e.g. a surface contains points, lines and
surfaces. Each differential form is related to one of these sub-manifolds, so a 0-form is related to a 0-
dimensional sub-manifold, a 1-form to a 1-dimensional sub-manifold, etc., or in general a k-form is related
to a k-dimensional sub-manifold. Much like in vector calculus scalar and vector fields are connected by
operators like gradient or curl, the different k-forms are also connected by the exterior derivative d.

With the Hodge operator ∗ and the exterior derivative d, it is possible to move between different k-forms
and orientations. To see how these operators function consider a differentiable Riemann manifoldM ⊂ R
with boundary ∂M , the space of smooth differential k-forms are denoted by Ωk(M). The differential
k-forms are connected through the exterior derivative d, which maps a k-form to a k + 1-form, i.e.
d : Ωk(M) → Ωk+1(M). The orientations of the manifold M results in the inner forms Ωk(M) and
the outer forms Ω̂k(M). The inner and outer forms are connected by means of the hodge star operator
∗ : Ωk(M) → Ω̂n−k(M), which maps a k-form to its complementary n − k-form. The different k-forms
and orientations can then be connected by the use of the exterior derivative d and the hodge star operator
∗. As this work deals only with 2-dimensional problems, the complex for a 2-dimensional manifold in
Figure 3 as an example. In general, such a complex exists for any n-dimensional problem.

Ω0 Ω1 Ω2

Ω̂2 Ω̂1 Ω̂0

d d

dd

∗ ∗ ∗

Figure 3: 2D complex in exterior calculus

10

Connecting forms to scalar and vector fields.

It is possible to translate forms to their respective vector calculus equivalent, shown here for
the 2-dimensional case, for a more general and in depth explanation please see [21]. In the 2-
dimensional case, the 0-form in either orientation is identically the scalar field F . A 2-form can
then be translated to the scalar field F by means of the hodge operator, as the hodge of a 2-
form results in a 0-form (see Figure 3). To move between 1-forms and vector fields the canonical
isomorphisms ♯ and ♭ are used. The notation is inspired by musical notation and so they are
referred to as sharp ♯ and flat ♭ respectively. An inner 1-form Ω1 is turned into a vector field by ♯
and the inverse by ♭ = ♯−1. For the outer 1-form Ω̂1 a hodge has to be applied first before using
the sharp ♯. This results in two different isomorphism diagrams in 2-dimensions, for the inner and
outer forms in Figures 4a and 4b respectively.

Ω0 Ω1 Ω2

F X F

d d

∇ ∇×

id ♯ ∗

(a) Isomorphisms for the inner forms.

Ω̂0 Ω̂1 Ω̂2

F X F

d d

∇⊥ ∇·

id ♯∗ ∗

(b) Isomorphisms for the outer forms.

Figure 4: Isomorphisms for forms to scalar fields F and vector fields X in 2-dimensions.

Four different vector calculus operations appear, the gradient∇, the 2D-curl∇×, the skew gradient
∇⊥ and the divergence ∇·. One may wonder why four different operations appear. This is due to
considering the orientations. Take, for instance, the gradient ∇ : F → X has the same mapping
as ♯d : F → X. Doing the same for the other vector calculus operations it is found that

∇ = ♯d, (3)

∇× = ∗d♭, (4)

∇⊥ = ♯∗d, (5)

∇· = ∗d∗♭. (6)

The difference between the gradient and the skew gradient is that the hodge operator appears,
which changes the orientation. This is also serves as an example of why it is important to consider
the orientation.

With the basic definitions of the exterior derivative d and the hodge operator ∗, the use of exterior
calculus in FEEC can be described. In finite element method various mathematical operations have to be
performed, which have their own notations in exterior calculus. To ensure the exterior calculus notation
of these operations is understood, the definitions for the operations encountered in this work are given in
the section below.

Definition 1 (L2 inner product). The L2 inner product is defined for a smooth manifold of dimension

11

n := dim(M).

(αk, γk)M :=

∫
M

α ∧ ∗γk ∀(α, γ) ∈ Ωk(M), (7)

where ∧ is the wedge product which maps ∧ : Ωk × Ωl → Ωk+l when k, l ≥ 0 and k + l ≤ n.

Definition 2 (Duality product). For a smooth manifold of dimension n the duality product is defined by〈
αk|βn−k

〉
M

:=

∫
M

αk ∧ ∗βn−k ∀α ∈ Ωk(M),∀βn−k ∈ Ωn−k(M) (8)

Definition 3 (Duality product on the boundary). The duality product is also defined on the boundary,
where the trace operator tr is defined as the pullback of the inclusion map ι : ∂M →M , such that〈

αk|βn−k−1
〉
∂M

:=

∫
∂M

trαk ∧ trβn−k−1 (9)

Definition 4 (Co-differential). The codifferential is defined as :

d∗ := (−1)nk+n+1∗d∗ (10)

Definition 5 (Integration by parts). Integration by parts for a codifferential in a weak formulation is

(αk, d∗βk+1)M := (dαk, βk+1)M− < αk|∗βk+1 >∂M , ∀α ∈ Ωk(M),∀β ∈ Ωk+1(M) (11)

Definition 6 (Sobolev spaces). A form used in a weak formulation will then be an element of a Sobolev
space such that αk ∈ HΩk(M), where H indicates a Sobolev space. Sobolev space is defined as

HΩk(M) := {ωk ∈ L2Ωk(M)|dωk ∈ L2Ωk+1(M)}. (12)

When the trace of a form is zero on the boundary, e.g. when an essential boundary condition is applied,
the Sobolev space is limited such that

H0Ω
k(M,Γ) := {ωk ∈ HΩk(M)|trω|Γ = 0}. (13)

2.2 Basis Functions

Any finite element has a canonical basis function φ which are used to determine the unknowns on the
element. A more in depth explanation of the basis function can be found in the work of Kirby [22] or
Brugnoli et al. [17]. When a form is discretized for use in a finite element method, the discrete from then
becomes an element of a finite space, αk

h ∈ V k
h , where V k

h is a trimmed polynomial space for a triangular
element V k

h ∈ P−Ωk(∆n) [15]. The discrete form is then determined using the basis functions of the
chosen element.

Definition 7 (Discrete differential forms). The discrete version of a k-form can be written as the sum
over the total number of degrees of freedom Nk of the form at degree i times the basis function at degree
i.

αk
h =

Nk∑
i

αi
hφ

i, (14)

for αi
h ∈ R.

12

Definition 8 (Discrete inner product). The inner product of the discrete test and trial functions can be
written as

(
vkh, α

k
h

)
M

=

Nk∑
i

vkh,iφ
k
i ,

Nk∑
j

αk
h,jφ

k
j

M

=

Nk∑
j

Nk∑
i

vkh,iMijα
k
h,j = (vk)TMkαk,

(15)

[Mk]ji :=
(
φk
i , φ

k
j

)
M
, (16)

where [Mk]ji indicates row i and column j and Mk ∈ RNk×Nk .

Definition 9 (Inner product with exterior derivative). For two discrete forms ξk+1
h ∈ V k+1

h and αk
h ∈ V k

h

the inner product is expressed as (
ξk+1
h , dαk

h

)
M

= (ξk+1)TDkαk, (17)

[Dk]ji =
(
φk+1
i , dφk

j

)
M
, (18)

where the terms in (17) can be transposed such that Dk = (Dk)T , where Dk ∈ RNk+1×Nk . Furthermore,
Dk can be split into an inner product an exterior derivative operation, i.e. Dk = Mk+1Ek+1,k, with
Ek,k+1 = (Ek+1,k)T .

Definition 10 (Duality product over the boundary). The duality product over the boundary for ξn−k−1
h ∈

V n−k−1
h and αk

h ∈ V k
h is expressed as〈

ξn−k−1
h |αk

h

〉
Γ
= (ξn−k−1)TLk

Γα
k, (19)

[Lk
Γ]

j
i =

〈
φn−k−1
i |φk

j

〉
Γ
, (20)

where Lk
Γ ∈ RNn−k−1×Nk and the transpose is Lk

Γ = (−1)k(n−k−1)(Ln−k−1
Γ)T . The matrix Lk

Γ contains
all the degrees of freedom of the entire domain M , but can only be non-zero on the boundary ∂M . The
size of the matrix Lk

Γ can be reduced by taking the trace of the discrete forms.

Definition 11 (Trace of a discrete k-form). The trace of a discrete k-form αk
h ∈ V k

h can be written as
a sum of the trace of the basis functions multiplied by the k-form, which can then be shortened into the
sum of the basis functions times the k-form over the degrees of freedom on on the boundary

trαk
h =

Nk∑
i

tr(φk
i)α

k
i =

NΓ
k∑
l

ϱkl α
k
l,Γ. (21)

Definition 12 (Trace matrix). The vector of k-form βk
h ∈ V k

h , can be reduced to its components on the
boundary by using the trace matrix such that

βk
Γ = T kβk, [T k]il =

{
1, if tr(φk

j) = ϱkl ∀l = 1, · · · , N∂
k

0, otherwise ∀i = 1, · · · , Nk

(22)

The duality product on the boundary in (19) can then be expressed as〈
ξn−k−1
h |αk

h

〉
Γ
= (T n−k−1ξn−k−1)TϱkΓα

k
Γ, (23)

ϱkΓ =
〈
ϱn−k−1
i |ϱkj

〉
Γ
, (24)

13

where ϱkΓ ∈ RNΓ
n−k−1×NΓ

k and Lk
Γ is related to ϱkΓ by

Lk
Γ = (T n−k−1)TϱkΓT

k. (25)

From Equations (19) (23) the following matrix relation can be found

Lk
Γα

k = Bk
Γα

k
Γ, (26)

Bk
Γ = (T n−k−1)TϱkΓ. (27)

14

3 Time independent Poisson equation

In this section the steady Poisson problem, −∇2ϕ = f(x, y) is discretized on a domain with mixed bound-
aries as shown in Figure 1. The problem is first redefined into exterior calculus instead of vector calculus
for its application in FEEC. To obtain a physics-compatible scheme, a proper spatial discretization is
required. The spatial integration for a standard finite element formulation is shown in Section 3.1 to
be able to compare the proposed method to. The proposed method is discretized in Section 3.2. The
simulation are performed on a unit square domain, the results of which are shown in Section 3.3.

The Poisson problem for the steady case, is first written in exterior calculus as follows

−∗d∗dϕ0 = f0, (28)

where the boundary conditions in exterior calculus are now

trϕ0|Γ21
= u0, (29)

trσ̂1|Γ10 = û1. (30)

3.1 Standard finite element formulation

3.1.1 Strong formulation

The dual formulation solves for ϕ0 and σ1 on the entire domain. The Neumann boundary condition on
Γ10 will be naturally imposed, while the Dirichlet boundary condition on Γ21 will be essential. The strong
formulation for the dual system is given below as

d∗σ1 = f0, (31)

dϕ0 = σ1, (32)

where ϕ0 ∈ Ω0(M) and σ1 ∈ Ω1(M). The definition for the co-differential from (10) has been used. Using
the property ddα = 0 for α ∈ Ω0, which states that applying the exterior derivative on a 0-form twice
will always result in zero, [17], the structure dσ1 = ddϕ0 = 0 from (32) is found. The strong formulation
of the dual system is strongly enforcing that the exterior derivative of σ1 is equal to zero everywhere in
the domain.

Doing the same for the complementary primal formulation solving for ϕ̂2 and σ̂1. The Poisson problem
for the primal mixed formulation can be written as the strong formulation as

−dσ̂1 = f̂2, (33)

σ̂1 = −d∗ϕ̂2, (34)

where now ϕ̂2 ∈ Ω̂2(M) and σ̂1 ∈ Ω̂1(M).

15

The strong formulation in vector calculus

The strong formulation in vector calculus notation is given by

−∇ϕ = σ, (35)

∇ · σ = f(x, y). (36)

Only one strong formulation is shown here instead of the two that appear in exterior calculus, as
vector calculus notation does not convey any information about the orientation of the variable.
One can say there are two strong formulations, similar to the two in exterior calculus, but writing
them vector calculus notation will result in duplicate notation. The difference in orientation
only becomes apparent in the weak formulation when using vector calculus, so only one strong
formulation has been shown here.

3.1.2 Weak formulations

The weak formulation for the dual system is obtained by multiplying by the test functions v0 and τ1.
Given the source function f0 ∈ Ω0(M) and boundary condition û1 ∈ H−1/2Ω̂1(Γ10), find ϕ

0 ∈ HΩ0(M)
and σ1 ∈ HΩ1(M) such that(

dv0, σ1
)
M

=
(
v0, f0

)
M

+
〈
v0|∗σ1

〉
Γ10

∀v0 ∈ H0Ω
0(M,Γ21), (37)(

τ1, σ1
)
M

−
(
τ1, dϕ0

)
M

= 0 ∀τ1 ∈ HΩ1(M), (38)

subject to trϕ0|Γ21 = u0, where the term with the co-differential is integrated by parts using (11).

The basis functions from Section 2.2 can then be applied to the terms in the weak formulation to obtain
the algebraic forms. The inner product with an exterior derivative on the test function v0 can be written
as (

dv0, σ1
)
M

= (σ1)TD0v0 = (v0)T (D0)Tσ1, (39)

where the transpose is taken such that the transpose of the test function is taken. This is important
because later the transpose of the test function is eliminated from the equation. The inner product with
the known source function f0 is (

v0, f0
)
M

= (v0)TM0f0. (40)

The duality product on the boundary is〈
v0|∗σ1

〉
Γ10

= (v0)TL1
Γ10
σ̂1 = (v0)TB0

Γ10
û1, (41)

where L1
Γ10

is reduced to the boundary matrix B0
Γ10

using the trace matrix from (22). The inner product
with an exterior derivative on ϕ0 becomes(

τ1, dϕ0
)
M

= (τ 1)TD0ϕ0, (42)

where the transpose of the test function τ1 appears immediately from (17). Lastly the inner product of
two 1-forms is (

τ1, σ1
)
M

= (τ 1)TM1σ1. (43)

The problem can be rewritten to a linear problem of the form Ax = b,[
0 (D0)T

−D0 M1

](
ϕ0

σ1

)
=

[
M0 0
0 0

](
f0

f̂2

)
+

[
0 B1

Γ10

0 0

](
u0

û1

)
, (44)

16

where the left hand side contains the unknowns ϕ0 and σ1 and the right side the known source term f
and the boundary input u. Similarly for the primal system, given f̂2 ∈ Ω̂2(M) and u0 ∈ H−1/2Ω0(Γ21),

seek ϕ̂2 ∈ HΩ̂2(M) and σ̂1 ∈ HΩ̂1(M) such that

−
(
v2, dσ̂1

)
M

=
(
v2, f̂2

)
M

∀v2 ∈ HΩ̂2(M), (45)(
τ1, σ̂1

)
M

+
(
dτ1, ϕ̂2

)
M

=
〈
τ1|∗ϕ̂2

〉
Γ21

∀τ1 ∈ H0Ω̂
1(M,Γ10), (46)

subject to trσ̂1|Γ10 = û1.

The terms of the weak formulation are rewritten with the basis functions as described in Section 2.2.
The inner product with an exterior derivative of an outer form is(

v2, dσ̂1
)
M

= (v2)TD1σ̂1. (47)

The inner product is (
v2, f̂2

)
M

= (v2)TM2f̂2, (48)

the inner product of two 1-forms is again(
τ1, σ̂1

)
M

= (τ 1)TM1σ̂1. (49)

For the inner product with an exterior derivative of the test function, a transpose needs to be taken again
such that (

dτ1, ϕ̂2
)
M

= (ϕ̂2)TD1τ 1 = (τ 1)T (D1)T ϕ̂2. (50)

The duality product on the boundary is〈
τ1|∗ϕ̂2

〉
Γ21

= (τ 1)TL0
Γ21
ϕ0 = (τ 1)TB0

Γ21
u0, (51)

where L0
Γ21

is reduced to B0
Γ21

using the trace matrix from (22). The problem can then be written as a
linear problem Ax = b,

[
0 −D1

(D1)T M1

](
ϕ̂2

σ̂1

)
=

[
0 M2

0 0

](
f0

f̂2

)
+

[
0 0

B0
Γ21

0

](
u0

û1

)
, (52)

where x are the unknowns ϕ̂2 and σ̂1 and b the known inputs.

17

Weak formulations in vector calculus.

Doing the same in vector calculus for the dual system results in the weak formulation. Seek
(ϕ, σ) ∈ H1(M)×Hcurl(M) with ϕ|Γ21

= u0 such that∫
M

∇v · σdx =

∫
M

vfdx+

∫
Γ10

vσ · nds ∀v ∈ H1
0 (M,Γ21), (53)∫

M

τ · ∇ϕdx =

∫
M

τ · σdx ∀τ ∈ Hcurl(M). (54)

The Neumann boundary condition can be seen in the integral, so it naturally imposed. The
Dirichlet boundary in contrast, does not appear in the integral and thus has to be essential
imposed.
For the primal weak formulation in vector calculus notation, seek (ϕ, σ) ∈ L2×Hdiv with σ|Γ10

·n =
u1 such that∫

M

v∇ · σdx =

∫
M

vfdx ∀v ∈ L2(M), (55)∫
M

τ · σdx = −
∫
M

ϕ∇ · τdx+

∫
Γ21

ϕτ · nds ∀τ ∈ Hdiv
0 (M,Γ10). (56)

One can see that the Dirichlet boundary condition is naturally implied in the integrals. The
Neumann boundary is essential in this formulation.

3.2 Space discretization of mixed boundary conditions via a domain decom-
position method

A domain M with Neumann and Dirchlet boundary conditions on Γ10 and Γ21 respectively, is split into
two by introducing an arbitrary interface boundary Γint, as seen in Figure 5. This creates two subdomains
such thatM =M10∪M21, whereM10 is bounded by ∂M10 = Γ10∪Γint10 andM21 by ∂M21 = Γ21∪Γint21.
The interface boundaries Γint10 and Γint21 are in the same location, but are in different orientations. Most
notably the outer normal on the interfaces are in opposite directions, so Γint21 = −Γint10. For ease of
notation the interface of the M21 domain is redefined as Γint := Γint21, so that Γint10 = −Γint.

The time independent Poisson problem is to be solved on this domain using the dual field discretization.
The strong formulations for the dual and primal system are the same as for the standard method in Section
3.1.1, except that the unknowns are now contained to only part of the domain such that ϕ0 ∈ Ω0(M10),

σ1 ∈ Ω1(M10), ϕ̂
2 ∈ Ω̂2(M21) and σ̂

1 ∈ Ω̂1(M21). The weak formulation set up in a similar way, but the
domain decomposition in this problem requires coupling on the interface.

18

M21

M10

Γ21

Γ10

Γint21

Γint10

Figure 5: Domain for the domain decomposition method.

3.2.1 Weak formulation

The M10 domain will be discretized in the similar way as the dual formulation in Section 3.1. However,
here there is an extra boundary in the interior boundary Γint which has to be taken into account. For
the weak formulation for the decomposed domain, find ϕ0 ∈ HΩ0(M10) and σ

1 ∈ HΩ1(M10) such that(
dv0, σ1

)
M10

−
〈
v0|σ̂1

〉
Γint

=
(
v0, f0

)
M10

+
〈
v0|∗σ1

〉
Γ10

∀v0 ∈ HΩ0(M10), (57)(
τ1, σ1

)
M10

−
(
τ1, dϕ0

)
M10

= 0 ∀τ1 ∈ HΩ1(M10), (58)

given f0 ∈ Ω0(M10) and û1 ∈ H−1/2Ω̂1(Γ10). It can be noted here that the unknowns and the test
functions are now in the same spaces, unlike in the standard formulation where they were in different
spaces. This is because no essential boundary conditions have to be applied for the domain decomposition,
and so the trace of the test function is not always zero on the boundary and thus does not have to be
excluded from the space. Furthermore, there is no need to apply an algebraic constrained to the spaces
of the unknowns.

The weak formulation in(57) and (58) can be rewritten using the basis functions from Section 2.2,

(D0)Tσ1 −L1
Γint

σ̂1 =M0f0 +B1
Γ10
û1, (59)

M1σ1 −D0ϕ0 = 0. (60)

The weak formulation for the primal weak formulation is found in a similar way. The weak formulation
is, given f̂2 ∈ Ω̂2(M21) and u

0 ∈ H−1/2Ω0(Γ21), seek ϕ̂
2 ∈ HΩ̂2(M21) and σ̂1 ∈ HΩ̂1(M21) such that

−
(
v2, dσ̂1

)
M21

=
(
v2, f̂2

)
M21

∀v̂2 ∈ HΩ̂2(M21), (61)(
τ1, σ̂1

)
M21

+
(
dτ1, ϕ̂2

)
M21

+
〈
τ1|ϕ0

〉
Γint

=
〈
τ1|∗ϕ̂2

〉
Γ21

∀τ1 ∈ HΩ̂1(M21). (62)

The weak formulations for the primal system in Equations (61) and (62) can be rewritten using the basis

19

functions from Section 2.2,

−D1σ̂1 =M2f̂2, (63)

M1σ̂1 + (D1)T ϕ̂2 + (L1
Γint

)Tϕ0 = B0
Γ21
u0. (64)

The subdomains are coupled into one monolithic problem. Unlike the standard method, the four weak
formulations are combined into one algebraic form Ax = b instead of two separate ones. The coupling
terms on the interface boundary can be found in the A matrix,

0 (D0)T 0 −L1
Γint

−D0 M1 0 0
0 0 0 −D1

(L1
Γint

)T 0 (D1)T M1

ϕ0

σ1

ϕ̂2

σ̂1

 =

M0 0
0 0
0 M2

0 0

(f0

f̂2

)
+

0 B1

Γ10

0 0
0 0

B0
Γ21

0

(u0

û1

)
. (65)

The Poisson problem in vector calculus

The weak formulations for the M10 domain are obtained by seeking (ϕ10, σ10) ∈ H1(M10) ×
Hcurl(M10) such that∫
M10

σ10 · ∇v10dx+

∫
Γint

v10σ10 · n10ds =
∫
M10

f10v10dx+

∫
Γ10

v10σ10 · n10ds ∀v10 ∈ H1(M10),

(66)∫
M10

σ10 · τ10dsx−
∫
M10

∇ϕ10 · τ10 = 0 ∀τ10 ∈ Hcurl(M10).

(67)

The weak formulation in vector calculus on the M21 domain is to find (ϕ21, σ21) ∈ L2(M21) ×
Hdiv(M21) such that

−
∫
M21

v21∇ · σ21dx =

∫
M21

f21v21dx ∀v21 ∈ L2(M21),

(68)∫
M21

τ21 · σ21dx+

∫
Γ21

ϕ21τ21 · n21ds−
∫
Γint

ϕ21τ21 · n21ds =
∫
M21

ϕ21∇ · τ21dx ∀τ21 ∈ Hdiv(M21).

(69)

The two subdomains can be coupled in the interface boundary, where information can travel
between the two systems. By using the fact that on a continuum level σ|Γint10

= σ|Γint21
and

n10 = −n21 on Γint, the stress in normal direction on the interface can be written as σ10 · n10 =
−σ21 · n21. This means the integral term in (66) can be written as∫

Γint

v10σ10 · n10dS −→ −
∫
Γint

v10σ21 · n21ds. (70)

The integral term on the interface on theM21 domain (see (69)) can be coupled to theM21 domain
by observing that ϕ21 = ϕ10 on Γint. So the integral term in the weak formulation becomes∫

Γint

ϕ21τ21 · n21ds −→
∫
Γint

ϕ10τ21 · n21ds. (71)

20

3.3 Numerical simulations

In this section numerical simulations are conducted to determine the validity of the proposed scheme.
An analytical solution is used, to be able to calculate the L2-errors for each simulation, so the standard
methods can be compared to the proposed method. The L2-errors are further used to determine the
convergence rates of the variables of the different schemes. These convergence rates can be compared
to the expected theoretical convergence rates to ensure the simulations were performed correctly. A
comparison of the L2-error and the convergence rates of the different schemes is then made to see if
the proposed method differs from the standard methods in terms. The curl of σ is then plotted for the
standard formulations to see if the curl free condition of the Poisson problem is maintained on the discrete
level.

The numerical simulations are performed on a unit square. For the domain decomposition method the
interface is a diagonal line from the lower left to the upper right corner as shown in Figure 6a. The mesh
used for solving the problem is a structured triangular mesh as shown in Figure 6b. The finite elements
that are used are the Continuous Galerkin element for the 0-form ϕ0, the Nédélec first kind H(curl)

for the inner 1-form σ1, the Discontinuous Galerkin element for the 2-form ϕ̂2 and a Raviart-Thomas
element for the outer 1-form σ̂1. The open source finite element solver Firedrake [23] has been used for
the simulations. A more in depth explanation of how the simulation is set up in Firedrake can be found
in Appendix A.1.

M10

M21

Γ21Γ10 Γint

(a) Domain for the domain decomposition method. (b) The structured triangular mesh for a spatial step of
h = 4.

Figure 6: The decomposed unit square domain and an example mesh used for the simulations.

3.3.1 Analytical solution

The analytical solution used to analyze the different static methods is

g(x, y) = cos(ωxx) sin(ωyy), (72)

the source term is then
q(x, y) = (ω2

x + ω2
y) cos(ωxx) sin(ωyy). (73)

21

The exact solutions are related by the hodge operator as following

ϕ0ex = g, ϕ̂2ex = ∗g, f0 = q,

σ1
ex = dg, σ̂1

ex = ∗dg, f̂2 = ∗q.
(74)

For the analytical solution ωx = ωy = 1 has been used. The exact solution is taken as the boundary
condition so u0 = ϕ0ex and û1 = σ̂1

ex.

Analytical solution in vector calculus

The exact solutions in vector calculus notation are given by

ϕ = g, (75)

σ = ∇g, (76)

f = q. (77)

3.3.2 Results

The results for ϕ0 and σ1 from the dual formulation have been plotted in Figure 7. The spatial step is
calculated as h = L

Nel
, where L is the length of each side, i.e. L = 1 for a unit square, and Nel the number

of elements on each side. The results for ϕ0 seem to include more elements than the spatial step h would
suggest. This is because the Firedrake function used to plot the results uses Gaussian interpolation to
smooth out the result. Nevertheless, as the spatial step h gets smaller the resulting figures can be seen
to get smoother. The results for ϕ0 are continuous over the domain, because the 0-form defined on the
Continuous Galerkin element. A CG element always has some degrees of freedom on the vertices of a
finite element [15], so bordering elements share the degrees of freedom on their shared vertices. This
results in continuous results over the domain.

22

(a) ϕ0 for a spatial step of h = 1
4
. (b) ϕ0 for a spatial step of h = 1

8
. (c) ϕ0 for a spatial step of h = 1

16
.

(d) σ1 for a spatial step of h = 1
4
. (e) σ1 for a spatial step of h = 1

8
. (f) σ1 for a spatial step of h = 1

16
.

Figure 7: The results from the dual formulation over the domain M .

The results for ϕ̂2 and σ̂1 from the primal formulation have been plotted in Figure 8. The results for ϕ̂2

are observed to be discontinuous over the domain. This is because a 2-form is defined on a Discontinuous
Galerkin (DG) element. The degrees of freedom for a DG element are found on the faces of the element
[15], this means that when two elements border each other there are no shared degrees of freedom. This
allows for discontinuities between the different elements as seen in Figures 14b.

23

(a) ϕ̂2 for a spatial step of h = 1
4
. (b) ϕ̂2 for a spatial step of h = 1

8
. (c) ϕ̂2 for a spatial step of h = 1

16
.

(d) σ̂1 for a spatial step of h = 1
4
. (e) σ̂1 for a spatial step of h = 1

8
. (f) σ̂1 for a spatial step of h = 1

16
.

Figure 8: The results from the primal formulation over the domain M .

The visualization software Paraview [24] has been used to plot the results for the domain decomposition
method in Figure 9. The results are continuous on the M10 domain and discontinuous on the M21

domain, due to the use of CG and DG elements respectively. The two domains in Figure 9 can be easily
distinguished, but it is not immediately clear what is happening on the interface. Therefore the values of
ϕ0, σ1, ϕ̂2 and σ̂1 have been plotted on a line from the top left corner the bottom right corner in Figure
10. For ϕ0 and ϕ̂2 a discontinuity can be seen on the interface. For the coarser mesh (see Figure 10a) the
gap is larger than for the finer mesh in Figure 10b. The discontinuity is getting smaller with decreasing
mesh size.

(a) ϕ0 on M10 and ϕ̂2 on M21 for a
spatial step of h = 1

4
.

(b) ϕ0 on M10 and ϕ̂2 on M21 for a
spatial step of h = 1

8
.

(c) ϕ0 on M10 and ϕ̂2 on M21 for a
spatial step of h = 1

16
.

Figure 9: The results for ϕ0 and ϕ̂2 over the domain M for different spatial steps.

24

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

(a) ϕ0, σ1, ϕ̂2 and σ̂1 for a spatial step of h = 1
4
.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

(b) ϕ0, σ1, ϕ̂2 and σ̂1 for a spatial step of h = 1
16
.

Figure 10: Results from the domain decomposition method on a line from (x = 0, y = 1) to (x = 1, y = 0).

The convergence rates for ϕ0 and σ1 from the dual system using the standard mixed element method
are shown in Figures 11 for polynomial degrees s = 1, s = 2 and s = 3. To compare the convergence
rates the theoretical convergence rates have also been plotted as hs, where h is the spatial step and s the
degree. The convergence rate of hs indicates the theoretical convergence rate of an order s system, e.g.
h1 is a first order system.

The L2-errors for ϕ0 can be seen to exhibit superconvergence, i.e. the convergence rate is faster then the
polynomial degree spatial step hs, the convergence rates for ϕ0 is instead hs+1. This is in accordance with
findings from Yonke and Yanhong [25], which found that for and element in HΩ0 the optimal convergence
rate is rate is hs+1. However, it should be noted that this result was found for problems with homogenous
boundary conditions, and not specifically proven for mixed boundary conditions. Nevertheless, finding a
convergence rate of hs+1 for ϕ0 ∈ HΩ0 for a mixed boundary problem is not unusual.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−9

−8

−7

−6

−5

−4

−3

−2

lo
g 1

0(
L2
)

Degree=1
h2

Degree=2
h3

Degree=3
h4

(a) Convergence rate for ϕ0.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−6

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(b) Convergence rate for σ1.

Figure 11: Convergence rates for ϕ0 and σ1 using the standard mixed element method.

The convergence rates for ϕ̂2 and σ̂1 using the standard mixed element formulation on the primal system
have been plotted in Figure 12, where hs is the convergence rate of an order s system. The convergence
rates for ϕ̂2 and σ̂1 are found to be the same as hs for a degree of s.

25

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−6

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(a) Convergence rates for ϕ̂2.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−6

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(b) Convergence rates for σ̂1.

Figure 12: Convergence rates for ϕ̂2 and σ̂1 using the standard mixed element method.

The convergence rates for ϕ0, σ1, ϕ̂2 and σ̂1, on M10 and M21 respectively, have been plotted in Figure
13. The results can be compared to the convergence rates from the standard mixed element formulation
from Figures 11 and 12. The convergence rates are found to be the same for almost all cases. Indicating
that the introduction of an interface in the domain has no significant effect on the accuracy of the
simulation. The convergence rate of ϕ0 for a degree of s = 2 is found to be hs instead of hs+1. This is a
bit unexpected and there is no obvious explanation. It is not a problem with higher polynomial degrees
as s = 3 is converging with hs+1 again, so it seems it only occurs for the second degree.

26

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−8

−7

−6

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h2

Degree=2
h3

Degree=3
h4

(a) Convergence rates for ϕ0.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−6

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(b) Convergence rates for σ1.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−6

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(c) Convergence rates for ϕ̂2.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−6

−5

−4

−3

−2

−1
lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(d) Convergence rates for σ̂1.

Figure 13: Convergence rates for ϕ0, σ1, ϕ̂2 and σ̂1 using the domain decomposition method.

In Section 3.1.1 the relation dσ1 = 0 was found to be strongly enforced. To check that dσ1 is indeed zero
everywhere in the domain the value of dσ1 has been plotted in Figure 14a. The value of dσ1 is found
to be in the order of 10−13 everywhere in the domain. This means the exterior derivative of σ1 is zero
within machine precision in the entire domain. The opposite is found when doing the same for the primal
formulation in Figure 14b, where the d∗σ̂1 has been plotted over the domain. The value is non-zero in
large parts of the domain, so the structure is not being preserved when the primal formulation is used.

27

(a) The curl of σ1 is within machine precision every-
where on the domain.

(b) The curl of σ̂1 is not within machine precision across
the domain.

Figure 14: The curl free condition of the Poisson problem is not found for every discretization.

3.3.3 Conclusion

The proposed domain decomposition method using dual field discretization was compared with the stan-
dard finite element formulations based on the inner and outer forms respectively. The L2-errors and
convergence rates of the different variables were found the be the same for different polynomial degrees,
so the numerical performance of the proposed method is equal to that of the standard finite element
formulations. The curl free condition of the Poisson problem was observed within machine precision on a
discrete level for the dual formulation. However, for the primal formulation the curl of σ̂1 was not found
to be zero everywhere in the domain, so the primal formulation cannot be used if the curl free condition
is to be preserved.

28

4 Time dependent Poisson equation

The time dependent Poisson equation on a domain with a Neumann boundary condition on Γ10 and
a Dirichlet boundary condition on Γ21, as seen in Figure 1. The time dependent Poisson equation in
exterior calculus notation is given as

∂ttϕ
0 − ∗d∗dϕ0 = 0. (78)

The second order differential equation is split into two first order differential equations by using the
definitions of p0 and ψ1

p0 := ∂tϕ
0, (79)

ψ1 := dϕ0, (80)

where p0 ∈ Ω0(M), ψ1 ∈ Ω1(M). The boundary conditions are then given as

trp0|Γ21 = u0 on Γ21, (81)

trψ̂1|Γ10 = û1 on Γ10. (82)

4.1 Standard finite element formulation

4.1.1 Strong formulations

The strong formulation for the dual system can then be obtained by substituting Equations (79) and (80)
in (78), which results in

∂tp
0 = −d∗ψ1, (83)

∂tψ
1 = dp0, (84)

where d∗ is the definition of the co-differential, see (10). From (84) the structure d∂tψ
1 = ddp0 = 0

can be found by using the property ddα = 0 for α ∈ Ω0(M) [17]. The exterior derivative of ψ1 remains
constant over time, so dψ1 = 0 at any time instant if the initial conditions are such that dψ1 = 0 at
t = 0. This relation is also true for the weak formulation and should be preserved on the discrete level,
as is discussed in Section 4.4.3.

Doing the same for the outer forms p̂2 and ψ̂1 to find the primal strong formulation,

∂tp̂
2 = dψ̂1, (85)

∂tψ̂
1 = −d∗p̂2. (86)

The exterior calculus identity dα = 0 for α ∈ Ωn(M), dim(M) = n, which states that the exterior
derivative of a top form is equal to zero. From that statement it is found that d∂tp̂

2 = 0. While taking
the exterior derivative of a top form is equal to zero, it has no practical meaning. This means that there
is no structure preserved weakly in this formulation. The structure that is being strongly enforced is that
∂tp̂

2 = dψ̂1.

29

Strong formulation in vector calculus

The strong formulation in vector calculus can be obtained from p = ∂tϕ and ψ = ∇ϕ, which
results in

∂tp = ∇ · ψ, (87)

∂tψ = ∇p. (88)

As with the steady case in Section 3.1.1, the strong formulation in vector calculus notation gives
no indication of the orientation of the variables.

4.1.2 Weak formulations

The weak formulation for the inner forms is found by taking the inner product of the test functions v0

and τ1 with p0 and ψ1 respectively. Given û1 ∈ H−1/2Ω̂1(Γ10), seek p
0 ∈ HΩ0(M) and ψ1 ∈ HΩ1(M)

such that

(v0, ∂tp
0)M = −(dv0, ψ1)M+ < v0|∗ψ1 >Γ10

∀v ∈ H0Ω
0(M,Γ21), (89)

(τ1, ∂tψ
1)M = (τ1, dp0)M ∀τ ∈ HΩ1(M), (90)

subject to trp0|Γ21 = u0. The weak formulation can be put into its algebraic form by using the basis
function from Section 2.2,[

M0 0
0 M1

](
∂tp

0

∂tψ
1

)
=

[
0 −(D0)T

D0 0

](
p0

ψ1

)
+

[
0 B1

0 0

](
u0

û1

)
. (91)

The weak formulation for the primal system is found in a similar way. Given u0 ∈ H−1/2Ω0(Γ21), find

p̂2 ∈ HΩ̂2(M) and ψ̂1 ∈ HΩ̂1(M) such that(
v2, ∂tp̂

2
)
M

=
(
v2, dψ̂1

)
M

∀v2 ∈ HΩ2(M), (92)(
τ1, ∂tψ̂

1
)
M

= −
(
dτ1, p̂2

)
M

+
〈
τ1|∗p̂2

〉
Γ21

∀τ1 ∈ H0Ω
1(M,Γ10), (93)

subject to trψ̂1|Γ10
= û1.

The primal weak formulation can be written its algebraic form using the expressions from Section 2.2,

[
M2 0
0 M1

](
∂tp̂

2

∂tψ̂
1

)
=

[
0 D1

(−D1)T 0

](
p̂2

ψ̂1

)
+

[
0 0
B0 0

](
u0

û1

)
. (94)

30

Weak formulation in vector calculus

To obtain the weak formulation in vector calculus notation the variables need to be transformed to
scalar and vector spaces such that p ∈ C∞(M) and ψ ∈ X(M). For the dual system the equivalent
weak formulation in vector calculus, seek (ϕ, σ) ∈ H1(M)×Hcurl(M), with ϕ|Γ21

= u0, such that

∫
M

v∂tpdx = −
∫
M

∇v · ψdx+

∫
Γ10

vψ · nds ∀v ∈ H1
0 (M,Γ21), (95)∫

M

τ · ∂tψdx =

∫
M

τ · ∇pdx ∀τ ∈ Hcurl(M). (96)

The structure preserving identity d∂tψ
1 = 0 can be expressed in vector calculus form as the 2D-

curl of ∂tψ. The vector calculus identities ∇ × (A + B) = ∇ × A + ∇ × B and ∇ × (λA) =
λ(∇×A)+(∇λ)×A are used to rewrite the expression. The curl of ψ is found to remain constant
over time, so for an irrotational flow the initial conditions have to be chosen such that ∇×ψ = 0,

∇× ψ(t+∆t) = ∇× ψ(t). (97)

The primal weak formulation for in vector calculus is as follows. Seek (ϕ, σ) ∈ L2(M)×Hdiv(M)
such that ∫

M

v∂tpdx =

∫
M

v∇ · ψdx ∀v ∈ L2(M), (98)∫
M

τ · ∂tψdx = −
∫
M

p∇ · τdx+

∫
Γ21

pτ · nds ∀τ ∈ Hdiv
0 (M,Γ10), (99)

subject to σ|Γ10
· n = u1.

4.2 Space discretization of mixed boundary conditions via a domain decom-
position method

In this section the time dependent Poisson problem is solved using the dual field discretization. A domain
M is decomposed with an internal interface in the same way as described in Section 3.2, resulting in two
subdomainM10 andM21, as shown in Figure 5. The strong formulations are the same as for the standard
formulations, except that the variables are now limited to their respective subdomain, so ϕ0 ∈ Ω0(M10),

σ1 ∈ Ω1(M10), ϕ̂
2 ∈ Ω̂2(M21) and σ̂

1 ∈ Ω̂1(M21).

4.2.1 The weak formulations for a decomposed domain

The weak formulations are derived in a similar way to the weak formulations in Section 4.1.2. The
difference is that the weak formulations are limited to their respective subdomains and there is now a
term on the interface boundary. For the dual system seek p0 ∈ HΩ0(M10) and ψ1 ∈ HΩ1(M10), given

31

û1 ∈ H−1/2(Γ10), such that(
v0, ∂tp

0
)
M10

= −
(
dv0, ψ1

)
M10

+
〈
v0|ψ̂1

〉
Γint

+
〈
v0|∗ψ1

〉
Γ10

∀v0 ∈ HΩ0(M10), (100)(
τ1, ∂tψ

1
)
M10

=
(
τ1, dp0

)
M10

∀τ1 ∈ HΩ1(M10). (101)

The dual weak formulation can be written as sums of the basis functions, as described in Section 2.2,
which gives

M0∂tp
0 = (−D0)Tψ1 +L1

Γint
ψ̂1 +B1û1, (102)

M1∂tψ
1 =D0p0. (103)

For the primal system on the M21 subdomain, given u0 ∈ H−1/2Ω0(Γ21), find p̂2 ∈ HΩ̂2(M21) and

ψ̂1 ∈ HΩ̂1(M21) such that(
v2, ∂tp̂

2
)
M21

=
(
v2, dψ̂1

)
M21

∀v2 ∈ HΩ2(M21), (104)(
τ1, ∂tψ̂

1
)
M21

= −
〈
τ1|p0

〉
Γint

−
(
dτ1, p̂2

)
M21

+
〈
τ1|∗p̂2

〉
Γ21

∀τ1 ∈ HΩ1(M21). (105)

The primal weak formulation can be written in algebraic form using the expressions from Section 2.2,

M2∂tp̂
2 =D1ψ̂1, (106)

M1∂tψ̂
1 = −(L1

Γint
)Tp0 − (D1)T p̂2 +B0u0. (107)

From the subdomains M10 and M21 the system of equations can be created by combining Equations
(102), (103), (106) and (107). The system has the form of Mẋ = Jx + Bu, where M is a diagonal
matrix and J is skew-symmetric. The coupling on the interface is done in the J matrix by the L1

Γint
and

(L1
Γint

)T terms,
M0 0 0 0
0 M1 0 0
0 0 M2 0
0 0 0 M1

∂tp

0

∂tψ
1

∂tp̂
2

∂tψ̂
1

 =

0 −(D0)T 0 L1

Γint

D0 0 0 0
0 0 0 D1

−(L1
Γint

)T 0 −(D1)T 0

p0

ψ1

p̂2

ψ̂1

+

0 B1

0 0
0 0
B0 0

(u0

û1

)
.

(108)

32

Weak formulation in vector calculus

The weak formulation on the M10 subdomain to seek (ϕ10, σ10) ∈ H1(M10) × Hcurl(M10) such
that ∫

M10

v10∂tp10dx = −
∫
M10

ψ10 · ∇v10dx+

∫
Γint

v10ψ10 · n10ds

+

∫
Γ10

v10ψ10 · n10ds ∀v10 ∈ H1(M10), (109)∫
M10

τ10 · ∂tψ10dx =

∫
M10

τ10 · ∇p10dx ∀τ10 ∈ Hcurl ∗M10). (110)

For the weak formulation for the M21 subdomain in vector calculus, seek (ϕ21, σ21) ∈ L2(M21)×
Hdiv(M21) such that∫

M21

v21∂tp21dx =

∫
M21

v21∇ · ψ21dx ∀v21 ∈ L2(M21), (111)∫
M21

τ21 · ∂tψ21dx = −
∫
Γint

p21τ21 · n21ds−
∫
M21

p21∇ · τ21dx

+

∫
Γ21

p21τ21 · n21ds ∀τ ∈ Hdiv(M21). (112)

The weak formulation as given in Equations (109), (110), (111) and (112) are not yet coupled on
the interface Γint. The coupling is done in the same way as for the steady case in Section 3.2,
specifically Equations (70) and (71).

4.3 Time integration using the implicit midpoint scheme

For the temporal integration scheme some special care has to be taken in choosing a method. The
structures preserved by the spatial discretization should also be preserved for the temporal discretization.
Most importantly the power balance needs to be preserved. The method used here is the implicit midpoint
rule. The implicit midpoint rule is a so called symplectic method, which are well suited for preserving the
physical properties of a system [26]. Aoues et al. [27] showed that the implicit midpoint rule is able to
preserve the energy exactly on the discrete level for some linear systems. The implicit version has been
chosen, instead of the explicit version, because any explicit Runge-Kutta method cannot be symplectic
[28]. Furthermore, the implicit midpoint scheme is also unconditionally stable. The midpoint rule used
here is a second order system. Although a fourth order midpoint method has been developed [29] and
shown to work when implemented [30]. The extra computational demands are not worth it for this work,
but the fourth order method should be considered when applying structure preserving schemes to real
world applications.

The general form of the temporal problem is given as

Mẋ = Jx+Gu, (113)

where x are the unknowns to be solved and u the inputs. The time derivative and midpoint value of x

33

are approximated by

ẋ ≈ xk+1 − xk

∆t
, (114)

xk+ 1
2
≈ xk+1 + xk

2
, (115)

where the subscript k indicates the time step.

Substituting Equations (114) and (115) into (113) and rewriting so all the xk+1 terms are on the left and
all the xk terms on the right, gives the midpoint integration scheme,

(M − ∆t

2
J)xk+1 = (M +

∆t

2
J)xk +∆tGuk+ 1

2
. (116)

The expressions forM , J and G are taken from the system in (108). Substituting these expressions into
(116) gives a linear problem of the form ak+1 = Lk.

p0, ψ1

p̂2, ψ̂1
p0, ψ1

p̂2, ψ̂1

û1

u0

t t+ ∆t
2 t+∆t

Figure 15: Flow chart midpoint integration method.

4.4 Numerical simulations

Now that the spatial and temporal discretizations for the time dependent Poisson problem have been
explained, numerical simulations have to be conducted to test the performance of the proposed scheme.
First an analytical solution is provided to analyze the L2-error and subsequently the convergence rates
of the different schemes. The numerical performance of the proposed scheme can then be compared to
the standard finite element formulations. Furthermore, the curl free condition of the Poisson equation is
investigated for each scheme by plotting the curl of σ over time. The power balance is then plotted for
each simulation to determine if the energy is preserved on a discrete level.

The simulation are again performed on a unit square as shown for the decomposed domain in Figure 6a.
The mesh is a structured triangular mesh as shown in Figure 6b. The finite elements are the same as for
the steady case, the Continuous Galerkin element for the 0-form ϕ0, the Nédélec first kind H(curl) element

for the inner 1-form σ1, the Discontinuous Galerkin element for the 2-form ϕ̂2 and a Raviart-Thomas

34

element for the outer 1-form σ̂1. A time step of ∆t = 1
1000 has been used for all simulation. The time

step was chosen such that the spatial error is dominant over the temporal error. The open source finite
element solver Firedrake [23] has been used to simulate the time dependent Poisson problem. A more
detailed explanation of the simulation set up can be found in Appendix A.1.

4.4.1 Analytical solution

The analytical solution can be constructed from the temporal and spatial parts of the possible solutions,

f(t) = 2 sin(ωtt) + 3 cos(ωtt), (117)

g(x, y) = cos(ωxx) sin(ωyy) (118)

where ωt =
√
ω2
x + ω2

y. The exact solutions will then have to form of

p0ex = g
df

dt
, p̂2ex = ∗g df

dt

ψ1
ex = fdg, ψ̂1

ex = ∗fdg
(119)

The analytical solution used here is obtained by taking ωx = ωy = 1. The boundary conditions are taken

to be the exact solution on the boundary, such that u0 = trp0ex|Γ21
and û1 = trψ̂1

ex|Γ10
.

Analytical solution in vector calculus

The analytical solution can be obtained in vector calculus by translating the exterior calculus
forms into scalars and vector functions. p0ex → F is identically the scalar, while ∗p̂2ex → F . The

inner 1-from translates to a vector function by ♯ψ1
ex → X and the outer form by ♯∗ψ̂1

ex → X, see

Figures 4a and 4b. This means the values of p0 and ψ1 are the same as p̂2 and ψ̂1 in vector
calculus, so the expression for the analytical solutions are

pex = g
df

dt
, (120)

ψex = f∇g. (121)

4.4.2 Results

To ensure the simulations are behaving as expected the convergence rates for the conventional method
and the domain decomposition method are analyzed. Since the same problem is solved on the same mesh,
the effect of the interface on the L2-error can also be found by comparing the errors of the two methods.
The convergence rates of p0 and ψ1 obtained from the conventional method have been plotted in Figure
16. Where hs are the theoretical convergence rates for a polynomial degree of s. A polynomial degree
of s = 1 is a first order spatial integration method, meaning that if the value of h is halved so is the
L2-error. The convergence rates for ψ1 in Figure 16b are as expected. The convergence rate for p0 is seen
to be hs+1 for a polynomial degree of s = 1. The convergence rate of 0-forms is hs+1 for homogeneous
boundary conditions [25], so finding a convergence rate of hs+1 for mixed boundary conditions is not
unexpected. The convergence rates for p0 does seem to slow down for higher polynomial degrees. For a

35

polynomial degree of s = 2 the convergence rate is between hs and hs+1, and for s = 3 the convergence
rate is observed to be hs.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−7

−6

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h2

Degree=2
h3

Degree=3
h4

(a) Convergence rate for p0.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−6

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(b) Convergence rate for ψ1.

Figure 16: Convergence rates for p0 and ψ1 for the conventional method.

The convergence rates for the primal formulations are shown in Figure 17. The convergence rates for p̂2

and ψ̂1 agree with the theoretical convergence rates of hs.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−5

−4

−3

−2

−1

0

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(a) Convergence rate for p̂2.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(b) Convergence rate for ψ̂1.

Figure 17: Convergence rates for p0 and ψ1 for the conventional method.

The convergence rates for p0, ψ1, p̂2 and ψ̂1 from the domain decomposition method have been plotted
in Figure 18. The convergence rate of p0 in Figure 18a is again hs+1 for a polynomial degree of s = 1.
For the higher degrees s = 2 and s = 3 the convergence rates are found to be hs. The convergence rate
for s = 2 is again slower when compared to the standard finite element formulation in Figure 16a. The
same result was found for the steady case in Section 3.3. The convergence rate of ψ1 on M21 is shown in

36

Figure 18b, and p̂2 and ψ̂1 on M21 can be seen in Figures 18c and 18d respectively. All three variables
show a convergence rate equal to their polynomial degree, e.g. s = 1 gives h1.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−7

−6

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h2

Degree=2
h3

Degree=3
h4

(a) Convergence rate of p0.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(b) Convergence rate of ψ1.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−5

−4

−3

−2

−1

0

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(c) Convergence rate of p̂2.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−6

−5

−4

−3

−2

−1

0

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(d) Convergence rate for ψ̂1.

Figure 18: Convergence rates for p0, ψ1, p̂2 and ψ̂1 for the domain decomposition method.

4.4.3 Curl free flow

From the strong formulation of the dual formulation in (84), the relation d∂tψ
1 = 0 can be found. The

vector calculus equivalent for taking an exterior derivative of a 1-form in 2D, is to take the 2D-curl of
ψ. The 2d-curl over time on the subdomain M10 can be seen to be within machine precision in Figure
19a. To make sure that the 2d-curl is non-zero on the M21 domain, d∗ψ̂1 is calculated on M21. The
hodge operator is necessary to transfer to the inner orientation, as the 2d-curl is only present in the inner
orientation in two dimensions. In the Firedrake code, this means the values of ψ̂1 need to be interpolated
from a Raviart-Thomas element to a Nédélec first kind H(curl) element before calculating the 2d-curl.
The 2d-curl of ψ over time is shown in Figure 19b. The curl is observed to be a smooth function with
magnitude of 10−3, so it is not within machine precision.

37

0.0 0.2 0.4 0.6 0.8 1.0
Time

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

∫ M
10
dψ

1

1e−15

(a) dψ1 over time on the subdomain M10.

0.0 0.2 0.4 0.6 0.8 1.0
Time

−3

−2

−1

0

1

2

3

∫ M
21
d
*ψ̂

1

1e−3

(b) d∗ψ̂1 on the subdomain M21.

Figure 19: dψ1 and d∗ψ1 from the domain decomposition method.

4.4.4 Power Balance

The energy contribution of a k-form in the domain is given by

Hk =
1

2

(
αk, αk

)
M
. (122)

The change of energy over time is then

Ḣk =
(
αk, ∂tα

k
)
M
. (123)

The weak formulations in (89) and (90) are valid for any v0 and v1 , so v0 and v1 are set to p0 and ψ1

respectively. This results in (
p0, ∂tp

0
)
M

+
(
u1, ∂tu

1
)
M

=
〈
p0|ψ̂1

〉
∂M

(124)

Using (123) and Ḣ10 = Ḣ1 + Ḣ0, it can be rewritten as

ḢM
10 =

〈
p0|ψ̂1

〉
∂M

, (125)

where the superscript M indicates the domain. So the energy balance is preserved on the continuum
level, for both weak formulations. On the discrete level the energy conservation can be checked by setting

the test functions to the midpoint value, e.g. v0 to
pk+1
0 +pk

0

2 , where the subscript now indicates the form.
The discrete energy balance is(

pk+1
0 + pk0

2
,
pk+1
0 − pk0

∆t

)
M

+

(
ψk+1
1 + ψk

1

2
,
ψk+1
1 − ψk

1

∆t

)
M

=
〈
p
k+ 1

2
0 |ψ̂k+ 1

2
1

〉
∂M

. (126)

Doing the same derivation for the primal formulation on the entire domainM , the discrete power balance
is found to be(

p̂k+1
2 + p̂k2

2
,
p̂k+1
2 − p̂k2

∆t

)
M

+

(
ψ̂k+1
1 + ψ̂k

1

2
,
ψ̂k+1
1 − ψ̂k

1

∆t

)
M

=
〈
p
k+ 1

2
0 |ψ̂k+ 1

2
1

〉
∂M

. (127)

38

The power balance can be preserved on a discrete level when using the correct method. For the conven-
tional problem the essential boundary condition causes issues. The right hand sides of (127) shows that
the inputs at the boundary need to be evaluated at the midpoint. However, when applying an essential
boundary condition the value is set to the integer time step k + 1. This causes the energy conservation
to break down on a discrete level, as can be seen in Figure 20. The application of an essential boundary
condition actually solves for a different power balance [17].

0.0 0.2 0.4 0.6 0.8 1.0
Time

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

Ḣ
−
PW

k
+

1 2

1e−2

(a) Power balance for dual formulation

0.0 0.2 0.4 0.6 0.8 1.0
Time

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Ḣ
−
PW

k
+

1 2

1e−3

(b) Power balance for primal formulation

Figure 20: The power balance for the standard method.

The domain decomposition method does not contain any essential boundary conditions, so the problems
caused by them do not occur. The introduction of an interface does create two subdomains that need to
be checked for energy conservation. Due to the interface, the terms on the boundary for each subdomain
now contain a duality product on the interface,

PW
k+ 1

2

M10
=
〈
p
k+ 1

2
0 |ψ̂k+ 1

2
1

〉
Γ10

+
〈
p
k+ 1

2
0 |ψ̂k+ 1

2
1

〉
Γint

, (128)

PW
k+ 1

2

M21
=
〈
p
k+ 1

2
0 |ψ̂k+ 1

2
1

〉
Γ21

+
〈
p
k+ 1

2
0 |ψ̂k+ 1

2
1

〉
Γint

. (129)

The energy change in the M10 domain ḢM10
10 , can be determined in similar way as ḢM

10 , by doing the
same for the weak formulations in Equations (100) and (101), now limited to the subdomain M10. The
discrete power balances are then(

pk+1
0 + pk0

2
,
pk+1
0 − pk0

∆t

)
M10

+

(
ψk+1
1 + ψk

1

2
,
ψk+1
1 − ψk

1

∆t

)
M10

=
〈
p
k+ 1

2
0 |ψ̂k+ 1

2
1

〉
∂M10

, (130)(
p̂k+1
2 + p̂k2

2
,
p̂k+1
2 − p̂k2

∆t

)
M21

+

(
ψ̂k+1
1 + ψ̂k

1

2
,
ψ̂k+1
1 − ψ̂k

1

∆t

)
M21

=
〈
p
k+ 1

2
0 |ψ̂k+ 1

2
1

〉
∂M21

, (131)

for the M10 and M21 subdomains respectively. The discrete power balance for the M10 and M21 domains
are then preserved on a discrete level if Equations (130) and (131) hold true. The discrete power balance

39

for the entire system can then be found by adding Equations (130) and (131) together, which results in(
pk+1
0 + pk0

2
,
pk+1
0 − pk0

∆t

)
M10

+

(
ψk+1
1 + ψk

1

2
,
ψk+1
1 − ψk

1

∆t

)
M10

+

(
p̂k+1
2 + p̂k2

2
,
p̂k+1
2 − p̂k2

∆t

)
M21

+

(
ψ̂k+1
1 + ψ̂k

1

2
,
ψ̂k+1
1 − ψ̂k

1

∆t

)
M21

=
〈
p
k+ 1

2
0 |ψ̂k+ 1

2
1

〉
Γ10

+
〈
p
k+ 1

2
0 |ψ̂k+ 1

2
1

〉
Γ21

,

(132)

where the interface terms on the right hand sides have disappear, due to the minus introduced by
Γint10 = −Γint21.

0.0 0.2 0.4 0.6 0.8 1.0
Time

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Ḣ

(a) The Ḣ for the total domain M .

0.0 0.2 0.4 0.6 0.8 1.0
Time

−1.5

−1.0

−0.5

0.0

0.5

1.0

Ḣ
−
PW

k
+

1 2

1e−13

(b) The power balance for the whole domain M .

0.0 0.2 0.4 0.6 0.8 1.0
Time

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

Ḣ
−
PW

k
+

1 2

1e−13

(c) Power balance for M10.

0.0 0.2 0.4 0.6 0.8 1.0
Time

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Ḣ
−
PW

k
+

1 2

1e−13

(d) Power balance for M21.

Figure 21: The energy conservation for the domain decomposition method.

The energy change over time Ḣ, and the power balances for M10, M21 and the total domain M have
been plotted in Figures 21. Figure 21a shows how the energy changes over time in the entire domain

40

M . The difference between Ḣ and PW k+ 1
2 over the entire domain M can be seen in Figure 21b. The

results is random noise in the order of 10−13, which means the error is within machine precision, so the
power balance is preserved exactly. The results for the power balances of the subdomains M10 and M21,
have been plotted in Figures 21c and 21d respectively. The errors are again random values in the order
of 10−13 for both subdomains, so the power balance is being preserved exactly. The results from Figures
21 show that use of domain decomposition makes it possible to preserve the power balance on a discrete
level.

4.4.5 Conclusion

The time dependent Poisson equation was discretized for the dual and primal systems using a standard
finite element formulation. For the proposed scheme the time dependent Poisson equation was discretized
using the dual field method on a decomposed domain. The L2-errors and convergence rates for the four
different variables were determined. The proposed method was found to have no significant difference
compared to the standard finite element methods when it comes to the numerical performance of the
schemes. The inner 0-form showed a convergence rate of hs+1, while the other forms had a convergence
rate of hs.

The integral of the curl of σ1 and σ̂1 were calculated on the subdomain M10 and M21 respectively. The
curl on the subdomain M10, using the using the dual formulation, was found to be within the order
of 10−15 over time. The curl on the M21 domain, which used the dual formulation, was not zero over
time. The curl free condition was thus valid on a discrete level on the subdomain which used the dual
formulation, but not on the subdomain which used the primal formulation. The result of this is that part
of the domain will never meet the curl free condition if the domain decomposition method is used.

The power balance was determined for both the standard finite element formulations and the proposed
dual field formulation. The power balance was not maintained for either of the standard finite element
formulations. The power balance for the proposed method was found to be within machine precision on
the subdomains M10 and M21. On the coupled domain M the energy balance remained within the order
of 10−13 over time, so it can be said that the energy is preserved on a discrete level for the proposed
method.

41

5 Time Staggering

5.1 Time integration using a staggering implicit midpoint scheme

The spatial integration for the time staggering method is similar as in Section 4. The weak formulations
are again Equations (100) and (101) for the M10 domain and (104) and (105) for the M21 domain. The
subdomains are solved separately so the algebraic forms are set up for each subdomain. The difference
with the monolithic method in (108), is that the coupling on the interface no longer occurs in the J
matrix. The coupling terms on the interface become an input in a separate matrix instead,[

M0 0
0 M1

](
∂tp

0

∂tψ
1

)
=

[
0 −(D0)T

D0 0

](
p0

ψ1

)
+

[
0 L1

Γint

0 0

](
p̂2

ψ̂1

)
+

[
0 B0

Γ10

0 0

](
u0

û1

)
, (133)

[
M2 0
0 M1

](
∂tp̂

2

∂tψ̂
1

)
=

[
0 D1

−(D1)T 0

](
p̂2

ψ̂1

)
+

[
0 0

−(L1
Γint

)T 0

](
p0

ψ1

)
+

[
0 0

B0
Γ21

0

](
u0

û1

)
. (134)

The M10 domain has been chosen to be determined at the integer time steps, e.g. k. The M21 domain
is calculated at the half time steps, e.g. k + 1

2 . The initial conditions for p0 and ψ1 on M10 are set to

p0ex and ψ1
ex at time t = 0. The initial conditions for p̂2 and ψ̂1 on M21 are set to p̂2ex and ψ̂1 at time

t = ∆t
2 . The results of the M10 domain are calculated first for the time step k + 1. They can then be

used as the input on the interface to determine the results for M21 at time step k + 3
2 . Which can then

be used in turn as an input for M10 for the time step k + 2. A flow chart of the time integration can be
seen in Figure 22

p0, ψ1p0, ψ1

û1

p̂2, ψ̂1

u0

p̂2, ψ̂1

t t+ ∆t
2 t+∆t t+ 3∆t

2

Figure 22: A flow chart of the staggered time integration.

42

5.2 Numerical simulations

5.2.1 Convergence

The convergence rates for p0 and ψ1 on M10 and p̂2 and ψ̂1 on M21 have been plotted in Figures 23. The
convergence rates are as expected, with the 0-form p0 as hs+1 for a degree of s = 1 and hs for a degree
of s = 2 and s = 3. The other convergence rates for ψ1, p̂2 and ψ̂1 are hs. The results are similar to
the convergence rates from the non-staggering method in Figures 18, so the staggered method does not
sacrifice on accuracy when compared to the monolithic method.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−7

−6

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h2

Degree=2
h3

Degree=3
h4

(a) Convergence rate for p0.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−5

−4

−3

−2

−1

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(b) Convergence rate for ψ1.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−5

−4

−3

−2

−1

0

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(c) Convergence rate for p̂2.

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
log10(h)

−6

−5

−4

−3

−2

−1

0

lo
g 1

0(
L2
)

Degree=1
h1

Degree=2
h2

Degree=3
h3

(d) Convergence rate for ψ̂1.

Figure 23: Convergence rates for the time staggering method.

43

5.2.2 Power balance

The power balance is determined in the same way as in Section 4.4.4, only (131) is shifted by half a time
step due to the staggering. The left hand side of (131) is now determined at the half time step and the
right hand side at the integer time step. The power balance for the subdomains M10 and M21 are shown
in Figures 24a and 24b respectively. The power balance is conserved within machine precision for both
subdomains.

0.0 0.2 0.4 0.6 0.8 1.0
Time

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Ḣ
−
PW

k
+

1 2

1e−13

(a) Power balance for the M10 domain.

0.0 0.2 0.4 0.6 0.8 1.0
Time

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Ḣ
−
PW

k
+
1

1e−13

(b) Power balance for the M21 domain.

Figure 24: The power balance for the time staggering scheme.

5.2.3 Computational cost

There are a few reason to implement a time staggering scheme instead of a monolithic scheme as in
Section 4. The main reason is time staggering reduces the computational cost for each (half) time step.
Comparing (108) with (133) and (134), the size of the matrix in (108) is much bigger than individual
matrices from the time staggering method. When a program like Firedrake solves the problem, it needs
to invert these matrices. A smaller matrix is less computationally demanding than a larger matrix. This
makes it more efficient when compared with other time staggering methods which do not use domain
decomposition. The methods without domain decomposition calculate the degrees of freedom over the
entire domain each half time step, instead of only on part of the domain.

How much the computational cost is reduced by staggering is hard to predict, because it depends on
multiple factors. Firstly, how the domain is decomposed. The interface is an arbitrary line that splits
the domain into subdomains, so these subdomains do not have to be of the same size. Secondly, even if
the subdomains are of the same size, they could be using different finite elements. For instance, p0 uses
Continuous Galerkin (CG) elements while p̂2 uses Discontinuous Galerkin (DG) elements. For a single
element with the lowest polynomial degree, the CG elements will have three degrees of freedom, while
the DG will have only one [15]. Lastly, programs like Firedrake are not simply inverting the matrices,
the code is instead using highly optimized methods. How these methods work and how they effect the
computational cost is beyond the scope if this work.

44

The size of the matrix is dependent on the number of degrees of freedom that need to be solved for. To
get an idea of the computational cost of each method the number of degrees of freedom solved at each
(half) time step is investigated. The relation between geometry and degrees of freedom is used here.
Namely that the degrees of freedom depend on the number of faces, edges and vertices. The mesh used
is a structured triangular mesh, this allows for some general expressions for the number of faces, edges
and vertices.

The number of faces on the entire domain is found to be FM = 2h2 and the number of vertices VM =
(h+ 1)2. The Euler characteristic for a 2-dimensional orientable manifold with no holes and one border
can then be used to relate the number of faces and vertices to the number of edges [31],

E = F + V − 1. (135)

The number of edges, faces and vertices of a surface in R2 can then be related to each other, which can
then used to determine the number of edges for the entire domain,

EM = 3h2 + 2h. (136)

When the domain is decomposed, the number of faces in half the domain, e.g. M10, is FM10
= h2 and

the number of vertices is VM10
=
∑h+1

n=1 n = (h+1)(h+2)
2 . Using the Euler characteristic from (135) the

number of edges can be determined,

EM10
=

3h2 + 3h

2
. (137)

Now that the number of Faces, edges and vertices are known, the number of degrees of freedom can be
determined. The Continuous Galerkin (CG) element of a degree of 1 has a number of degrees of freedom
equal to the number of vertices. The Nédélec first kind H(curl) (N1curl) element and the Raviart-Thomas
(RT) elements of degree 1 a number of degrees of freedom equal to the number of edges. The Discontinuous
Galerkin (DG) elements of degree 0 have the number of faces as the number of degrees of freedom.

The dual formulation uses CG and N1curl, so on a square domain it has N10 = 4h2 + 4h+ 1 degrees of
freedom, on half the domain it will have Nhalf

10 = 2h2 + 3h+ 1. The primal formulation, which uses DG

and RT elements, has N21 = 5h2 + 2h degrees of freedom on the entire domain and Nhalf
21 = 5

2h
2 + 3

2h

on half the domain. From these equation we find N10 < N21 for h ≥ 3 and similarly Nhalf
10 < Nhalf

21

for h ≥ 4, so the primal formulation uses more degrees of freedom for finer meshes. This is because the
number of faces, associated with DG elements, grows faster with decreasing mesh size.

One might expect that if the domain is cut in half, the number of degrees of freedom is also halved.
However, it can be determined that 1

2N10 = Nhalf
10 − h − 1

2 and 1
2N21 = Nhalf

21 − 1
2h, thought for large

values of h it does tends towards half the number of degrees of freedom. For the decomposed domain
without time staggering we find N10 < Nhalf

10 +Nhalf
21 < N21. In fact since the interface is an arbitrary

line, it can be places closer and closer to Γ10 until M10 ∩M = M , and similarly for the other domain
until M21 ∩M =M . This means that for the decomposed domain without time staggering, the number
of degrees of freedom will always be between N10 and N21.

To summarize, for a two dimensional structured triangular mesh, the primal formulations requires more
degrees of freedom than the dual formulation. For the domain decomposition without time staggering,
the number of degrees of freedom will be larger than using only a dual formulation, but smaller compared
to only using a primal formulation. Lastly, for the time staggering method the number of degrees of
freedom for each subdomain is nearly halved. The dual formulation also uses less degrees of freedom than
the primal formulation when the domain is halved.

45

6 Conclusion

A numerical scheme is proposed where the domain was decomposed such that for each subdomain the
boundary conditions are naturally incorporated. The power balance is found to be preserved discretely
on each individual subdomain. The subdomains have been coupled using the dual field method such that
the energy is also conserved on the entire domain. Unlike existing energy preserving schemes [17] where
the energy is reconstructed from the dual and primal formulation that do not preserve the energy, the
energy is conserved in all systems for the proposed method.

Furthermore, the introduction of an internal interface boundary does not lead to an increase in the L2-
error when compared to standard finite element discretizations. So proposed method does not sacrifice
in accuracy. However, when the curl free condition was analyzed for the proposed method. It was found
that the resulting integral of the curl is zero on the subdomain that uses the dual formulation, but on
the subdomain that employs the primal formulation the curl free condition is not valid. That means by
using the proposed method, part of the domain will never meet the curl free condition.

Finally, a time staggering integration scheme was applied to the time dependent Poisson equation. It was
found to still preserve the energy, and the L2-error was comparable to the non-staggering method. The
computational cost was estimated by looking at the number of degrees of freedom in the domains of the
different schemes. The time staggering scheme is found to be able to significantly reduce the number of
degrees of freedom to be solved for each (half) time step when compared to non-staggering schemes.

46

7 Recommendation

The beginnings of a dual field method with domain decomposition have been created in this work. The
proposed method shows promising results, but a lot of work is still to be done before it can be applied
to real world applications. To advance the usefulness of the method, some recommendations for future
work are suggested in this section.

Firstly, the only domain used in this work was a simple unit square domain. While suitable for academic
works such as this, simulations in industry are almost never performed on such simple domains. Although
in a mathematical sense the proposed method should work on any arbitrary domain, it is important to
show this with actual numerical results.

Secondly, the simulations were performed for mixed boundary problems with one Neumann and one
Dirichlet boundary conditions. However, even simple problems, such as a channel flow, can have more
than two boundaries. For any added boundary an additional interface must be introduced for the proposed
method to function as intended. The extra interfaces will introduce more coupling terms in the weak
formulation which will make the problem harder to solve.

Thirdly, the interface used to divide the domain in the simulation was a straight diagonal line. For more
complex domain shapes a straight line interface will not always be possible. Simulation with interfaces
with an arbitrary shape should be performed. For those interfaces the mesh will have to be adapted to
take the shape of the internal face into account. This can have an effect on the accuracy, convergence
rates and the local mesh refinement.

Fourthly, a second order implicit midpoint scheme was used for the time integration part of the problem.
As already mentioned in Section 4.3, a fourth order implicit midpoint scheme has been developed which
should be suitable for the method used in this work. Using a fourth order scheme instead of a second
order scheme could significantly effect the accuracy of the results.

Finally, the problems solved by the proposed method are of a port-Hamiltonian nature. The port-
Hamiltonian systems have certain properties that can be beneficial to the computational time of the
simulation. Every matrix A ∈ Cn,n can be split into A = H+S with H = 1

2 (A+A∗) and S = 1
2 (A−A∗),

where A∗ indicates the Hermitian or conjugate transpose of A. For Hamiltonian systems this splitting
is not merely a mathematical operation, but it occurs naturally and has a physical meaning [32]. The
splitting of the matrix can be used in numerical schemes to improve performance by preconditioning the
system. The Hermitian and skew-Hermitian splitting (HSS) can be applied to linear problems to reduce
the computational times. Güdücü et al. [32] compared Widlund’s method, Rapoport’s method and L-
GMRES to the standard GMRES method for linear problems with the form of Ax = b. They found a
significant reduction in computational time for Widlund’s, Rapoport’s and the L-GMRES methods when
compared with the GMRES method. The computational time of the problems presented in this work
could be similarly improved by implementing these preconditioning methods.

47

References

[1] Sergey Charnyi, Timo Heister, Maxim A Olshanskii, and Leo G Rebholz, On conservation laws of
navier–stokes galerkin discretizations, Journal of Computational Physics, (2017), 337:289–308.

[2] Donghyun You, Frank Ham, and Parviz Moin, Discrete conservation principles in large-eddy simula-
tion with application to separation control over an airfoil, Physics of Fluids, (2008), 20(10):101515.

[3] Davide Modesti and Sergio Pirozzoli, A low-dissipative solver for turbulent compressible flows on
unstructured meshes, with openfoam implementation, Computers & Fluids, (2017), 152:14–23.

[4] Norman A Phillips, An example of non-linear computational instability, The atmosphere and the
sea in motion, (1959), 501:504.

[5] Gennaro Coppola, Francesco Capuano, and Luigi de Luca, Discrete energy-conservation properties
in the numerical simulation of the navier–stokes equations, Applied Mechanics Reviews, (2019),
71(1).

[6] Akio Arakawa, Computational design for long-term numerical integration of the equations of fluid
motion: Two-dimensional incompressible flow. part i, Journal of computational physics, (1997),
135(2):103–114.

[7] Wenjun Cai, Chaolong Jiang, Yushun Wang, and Yongzhong Song, Structure-preserving algorithms
for the two-dimensional sine-gordon equation with neumann boundary conditions, Journal of Com-
putational Physics, (2019), 395:166–185.

[8] Jiaxiang Cai and Yushun Wang, Local structure-preserving algorithms for the “good” boussinesq
equation, Journal of Computational Physics, (2013), 239:72–89.

[9] Hassler Whitney, Princeton mathematical series: Geometric integration theory, Princeton University
Press, (1957).

[10] Jin-Fa Lee and Zachary Sacks, Whitney elements time domain (wetd) methods, IEEE Transactions
on Magnetics, (1995), 31(3):1325–1329.

[11] Alain Bossavit, Whitney forms: A class of finite elements for three-dimensional computations in
electromagnetism, IEE Proceedings A (Physical Science, Measurement and Instrumentation, Man-
agement and Education, Reviews), (1988), 135(8):493–500.

[12] Douglas N Arnold, Differential complexes and numerical stability, arXiv preprint math/0212391,
(2002).

[13] Douglas N Arnold, Richard S Falk, and Ragnar Winther, Finite element exterior calculus, homolog-
ical techniques, and applications, Acta numerica, (2006), 15:1–155.

[14] Douglas Arnold, Richard Falk, and Ragnar Winther, Finite element exterior calculus: from hodge
theory to numerical stability, Bulletin of the American mathematical society, (2010), 47(2):281–354.

[15] Douglas N Arnold and Anders Logg, Periodic table of the finite elements, Siam News, (2014),
47(9):212.

[16] Yi Zhang, Artur Palha, Marc Gerritsma, and Leo G Rebholz, A mass-, kinetic energy-and helicity-
conserving mimetic dual-field discretization for three-dimensional incompressible navier-stokes equa-
tions, part i: Periodic domains, Journal of Computational Physics, (2022), 451:110868.

48

[17] Andrea Brugnoli, Ramy Rashad, and Stefano Stramigioli, Dual field structure-preserving dis-
cretization of port-hamiltonian systems using finite element exterior calculus, arXiv preprint
arXiv:2202.04390, (2022).

[18] Ralph Abraham, Jerrold E Marsden, and Tudor Ratiu, Manifolds, tensor analysis, and applications,
volume 75, Springer Science & Business Media, (2012).

[19] Joseph J Rotman, An introduction to algebraic topology, volume 119, Springer Science & Business
Media, (2013).

[20] Günter Schwarz, Hodge Decomposition-A method for solving boundary value problems, Springer,
(2006).

[21] Marián Fecko, Vector calculus in two-dimensional space, arXiv preprint arXiv:2201.05470, (2022).

[22] Robert C Kirby, Algorithm 839: Fiat, a new paradigm for computing finite element basis functions,
ACM Transactions on Mathematical Software (TOMS), (2004), 30(4):502–516.

[23] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T.
McRae, Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly, Firedrake: automating
the finite element method by composing abstractions, ACM Trans. Math. Softw., (2016), 43(3):24:1–
24:27.

[24] James Ahrens, Berk Geveci, and Charles Law, Paraview: An end-user tool for large data visualiza-
tion, The visualization handbook, (2005), 717(8).

[25] Yongke Wu and Yanhong Bai, Error analysis of energy-preserving mixed finite element methods for
the hodge wave equation, SIAM Journal on Numerical Analysis, (2021), 59(3):1433–1454.

[26] Denis Donnelly and Edwin Rogers, Symplectic integrators: An introduction, American Journal of
Physics, (2005), 73(10):938–945.

[27] Said Aoues, Damien Eberard, and Wilfrid Marquis-Favre, Canonical interconnection of discrete
linear port-hamiltonian systems, In: Proc. , 52nd IEEE Conference on Decision and Control. IEEE,
(2013), 3166–3171.

[28] Jesus M Sanz-Serna, Symplectic integrators for hamiltonian problems: an overview, Acta numerica,
(1992), 1:243–286.

[29] JM Sanz-Serna and L Abia, Order conditions for canonical runge–kutta schemes, SIAM Journal on
Numerical Analysis, (1991), 28(4):1081–1096.

[30] J De Frutos and JM Sanz-Serna, An easily implementable fourth-order method for the time inte-
gration of wave problems, Journal of Computational Physics, (1992), 103(1):160–168.

[31] Moustafa M Salama, M Higazy, and Saleh Omran, Algebraic topological approach for grid generation
of certain manifolds, International Journal of Applied Engineering Research, (2018), 13(8):6225–
6233.

[32] Candan Güdücü, Jörg Liesen, Volker Mehrmann, and Daniel B Szyld, On non-hermitian positive
(semi) definite linear algebraic systems arising from dissipative hamiltonian daes, SIAM Journal on
Scientific Computing, (2022), 44(4):A2871–A2894.

[33] Tomasz Salwa and Onno Bokhove, Linear mixed fluid-structure interaction system, https:

//www.firedrakeproject.org/demos/linear_fluid_structure_interaction.py.html, [Online;
accessed 25-April-2023].

49

https://www.firedrakeproject.org/demos/linear_fluid_structure_interaction.py.html
https://www.firedrakeproject.org/demos/linear_fluid_structure_interaction.py.html

A Appendix

A.1 Firedrake simulation

Firedrake is an open source program that calculates solutions to weak formulations for a given mesh.
Firedrake was used with Pycharm and a custom Docker image. The simulation starts by defining the
required finite elements for the simulations. One easily missed thing here is that the input on the natural
boundary is defined on another finite element type. For example, û1 uses a Raviart-Thomas element while
ϕ0 and σ1 use Continuous Galerkin and Nédélec first kind respectively. The Raviart-Thomas element
will still have to be properly defined in the code to correctly apply the boundary input. The N1 and CG
spaces are combined into mixed element space, the RT space is not in this mixed space as ϕ0 and σ1 do
not use RT.

1 P_0 = FiniteElement ("CG", triangle , deg)

2 P_1 = FiniteElement (" N1curl", triangle , deg)

3

4 P_1_out = FiniteElement ("RT", triangle , deg)

5

6 V_1 = FunctionSpace(mesh , P_1)

7

8 V_0 = FunctionSpace(mesh , P_0)

9 V_1_out = FunctionSpace(mesh , P_1_out)

10

11 V_10 = V_1 * V_0

The next big issue is the analytical solution. While the Firedrake program suggest that the elements are
based on differential forms in exterior calculus. Underneath the code the elements are actually described
in vector calculus. This becomes a problem for the 1-forms in two-dimensions, from Figure 4 we see
that to go from a vector field requires a sharp operator ♯ : Ω1 → X. The Firedrake documentation is
suggesting that it is performing this transformation while it is in fact doing no such thing. The user will
have to translate the 1-forms to a vector field on paper themselves before putting it in the code.

The nice thing about using Firedrake is that it able to transfer from weak formulations to algebraic form
automatically. That means that the large matrixes, e.g. (65), do not have to be created by the user, so
the weak formulation can be used directly.

1 a_form10 = inner(v_1 , u_1) * dx - inner(v_1 , grad(p_0)) * dx - inner(grad(v_0), u_1) * dx

2 L_form10 = -v_0 * dot(u_1_out , n_vec) * ds - inner(v_0 , f_source) * dx

Those are the main things to mention when simulating standard finite element formulations in Firedrake.
For the proposed method things can get a bit more complicated due to the domain decomposition. The
coupling on the interface requires information of all the degrees of freedom and variables on the interface.
To obtain this information is not straightforward in Firedrake, because the indexing of the different
degrees of freedom is not consistent. That is, the degrees of freedom with index 1 can be nowhere near
the dof with index 2. A method had to be found to ensure the calculation were performed in the correct
place. The best method was found to be the use of an exclusion boundary condition, which works as
follows. Firstly, all the finite element spaces were defined on the entire domain, not just the subdomain
the are used in. Then an indicator was used such that it is 1 on the desired domain and 0 everywhere
else, by using the Firedrake functions par loop. It should be noted that the code segments form this
point onwards have been based on an advanced Firedrake tutorial [33], where the code has been edited
wherever necessary.

50

1 def Indicator(DGspace , sub_domain):

2 # DGspace : A Discontinuous Galerkin FunctionSpace of degree 0

3 # sub_domain : The domain the indicator function is applied to

4 I = Function(DGspace) # Function in DG

5 par_loop (("{[i] : 0 <= i < f.dofs}", "f[i, 0] = 1.0") ,

6 dx(sub_domain),

7 {"f": (I, WRITE)},

8 is_loopy_kernel=True)

9 return I

The stepfunction can be used to create a Firedrake function that assign a value to the degrees of freedom
in the finite element space.

1 def StepFunction(I,H):

2 # I : An indicator function

3 # H : The heaviside step Function for the desired FunctionSpace

4 par_loop (("{[i] : 0 <= i < A.dofs}", "A[i, 0] = fmax(A[i, 0], B[0, 0])"),

5 dx,

6 {"A": (H, RW), "B": (I, READ)},

7 is_loopy_kernel=True)

8 return H

The Heaviside step function I can then be used to create an exclusion boundary condition. The Firedrake
function DirichletBC is redefined into a new type of boundary condition. What this boundary condition
does is that it tells the solver not to use any data from part of the domain, thereby excluding that part of
the domain from the solver. In this way the domain decomposition method is implemented in the code.

1 class MyBC(DirichletBC):

2 def __init__(self , V, value , markers): # (sub)space , value , function on space

3 # Call superclass init

4 # We provide a dummy subdomain id.

5 super(MyBC , self).__init__(V, value , 0)

6 # Override the "nodes" property which says where the boundary

7 # condition is to be applied.

8 self.nodes = np.unique(np.where(markers.dat.data_ro_with_halos == 0)[0])

There is one more problem on the interface, there are two versions of each variable on the interface, one
from Γint10 and on from Γint21. When coupling on the interface the solver has to use the correct one
for the simulation to work. In fact, if it is not specified the program crashes. While this needs to be
done for any variable used on the interface the easiest to explain is the normal vector. Firedrake defined
the normal as the outward unit normal, but the interface is an internal interface so which direction is
the outward normal? Firedrake uses signs ”+” and ”-” to indicate the different sides, but it is again
not consistent with its use, i.e. not all ”+” signs have to be on the left side of the interface. Luckily,
we already have defined an indicator function when creating the exclusion boundary condition. This
indicator is useful because it is 1 on one side of the interface and 0 on the other side. The direction of
the normal on the interface can then be enforced by

1 def interface_val(I, variable):

2 # I : Indicator Function

3 # var : Variable

4 return I("+") * variable ("+") + I("-") * variable ("-")

51

	Summary
	Introduction
	Literature study
	Proposed method & Research questions
	Structure of the thesis

	Mathematical background
	Exterior Calculus
	Basis Functions

	Time independent Poisson equation
	Standard finite element formulation
	Strong formulation
	Weak formulations

	Space discretization of mixed boundary conditions via a domain decomposition method
	Weak formulation

	Numerical simulations
	Analytical solution
	Results
	Conclusion

	Time dependent Poisson equation
	Standard finite element formulation
	Strong formulations
	Weak formulations

	Space discretization of mixed boundary conditions via a domain decomposition method
	The weak formulations for a decomposed domain

	Time integration using the implicit midpoint scheme
	Numerical simulations
	Analytical solution
	Results
	Curl free flow
	Power Balance
	Conclusion

	Time Staggering
	Time integration using a staggering implicit midpoint scheme
	Numerical simulations
	Convergence
	Power balance
	Computational cost

	Conclusion
	Recommendation
	References
	Appendix
	Firedrake simulation

