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Abstract

A least-squares finite element method (LSFEM) for the fluid-structure interaction
problem is derived. The fluid-structure interaction problems deals with the vibration
caused by an elastic structure in contact with a fluid. The fluid-structure interaction
is treated as a first-order system, after which the least-squares functional is formu-
lated using L2-norm residuals. Norm-equivalence of the least-squares functional is
proven which ensures the favorable properties of the Rayleigh-Ritz setting. As a
result, a priori error estimates are obtained for the LSFEM approximation. Further-
more, we highlight steps taken towards numerical implementation and demonstrate
convergence for a simplified test case. Finally, the least-squares functional is used as
an inherent a posteriori error estimate for a primal displacement/pressure formula-
tion.
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Introduction

1 Introduction

1.1 Background

One of the most powerful methods for the numerical approximation of partial differential
equations is the finite element method (FEM ). It is widely used in engineering, due to
its easy implementations, easy geometrical adjustments and numerical stability. Mathe-
matically, it relies on a well-founded theory for a vast majority of problems, making it
an overall beloved method. One of the reasons finite element methods work so well is
the strong link between differential equations and variational principles. A key result in
finite element methods is the so-called Rayleigh-Ritz principle, stating that FEM provides
significant computational and analytical advantages if the variational foundation is pro-
vided by a convex quadratic functional. This is why the finite element method is found to
work well for problems with an underlying unconstrained, quadratic energy minimization
principle. These are found in, for example, structural analysis, incompressible fluid flows
or electromagnetics.
For problems without the advantageous Rayleigh-Ritz setting, efficient finite element meth-
ods are often less straightforward and require an adjusted mathematical framework. For
a long time FEM has not been applied to those kind of problems. However, due to the
powerful performance of FEM, the wish arose to extend FEM to these problems. At this
point the Least-Squares Finite Element Method (LSFEM ) was introduced. The main idea
behind LSFEM is to reformulate the problem to a setting that falls into the Rayleigh-Ritz
principle. Whereas for traditional FEM the variational problem is imposed by the partial
differential equation, for LSFEM the variational problem is externally dictated based on
the equations residual. The equations residual is captured in a least-squares functional
which gives rise to the name Least-squares finite element method. Using this strategy,
almost all advantages of the Rayleigh-Ritz setting can be recovered, see for example [15].

1.2 Problem Statement

In this thesis we will approximate the free vibration modes of an elastic structure in
contact with an incompressible fluid using a least-squares finite element method. The
fluid-structure interaction plays an important role in many engineering fields and has
therefore been studied extensively, see for example [12] or [22] for an overview. Free
vibration modes occur when the system is allowed to vibrate freely. Mathematically, the
free vibration modes translate to the eigenvalues of an underlying eigenvalue problem.
The aim of this thesis is to formulate the underlying eigenvalue problem using an LSFEM
approach. The main result will be the norm-equivalence of the LS functional, resulting
in existence and uniqueness of the solution. The eigenvalueproblem is then numerically
solved.

1.3 A Standard Finite Element Setup and the Rayleigh-Ritz Set-
ting

Originally, FEM was constructed as a weighted residual method, like the Galerkin method.
The finite element approximation is chosen to satisfy the PDE in a weak sense where the
PDE is integrated against a set of weighting functions. Consider a general boundary value
problem on the bounded domain Ω ⊂ Rd with boundary Γ. The aim is to find u ∈ U such
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Introduction

that

Lu = f in Ω ,

Ru = g on Γ .

Here we assume that L is a linear differential operator, R the boundary operator and U the
desired solution space. The standard finite element approach is to multiply the solution
u ∈ U by a test function v ∈ V in a suitable space V and integrate over the domain.
Essential boundary conditions are imposed on the solution space Ug = {u ∈ U | Ru|Γ = g},
natural boundary conditions are naturally derived from the system. After multiplication
by the test function, one obtains the weak form of the problem, of which the aim is to find
u ∈ Ug such that

a(u, v) = l(v) ∀v ∈ V , (1)

with the bilinear and linear forms

a(u, v) = ⟨Lu, v⟩ and l(v) = ⟨f, v⟩ .

To discretize the system the domain is partitioned into elements and the solution space
Ug is approximated by the finite element space Uh

g on each element. The finite element
space is spanned by a set of basis functions ϕi, 0 ≤ i ≤ N . Approximating the unknown
u in Uh

g leads to the finite element solution

uh(x) =
∑
i

uiϕi(x) .

The choice of finite element space and basis functions is not unique, but affects the com-
putability of the problem. A convenient choice are basis functions that are zero on most
elements, creating a sparse system. After stating the discrete weak formulation

a(uh, v) = l(v) ∀v ∈ V ,

and choosing suitable test functions v ∈ V, we obtain a discrete system of the form

Au⃗ = f⃗ ,

which can now be solved in terms of the coefficients u⃗. The entries of the matrix A and
vector f⃗ are determined by

Aij = ⟨ϕi, vj⟩ and f⃗j = ⟨f, vj⟩

for some test function vj .

An important result in terms of existence and uniqueness of the solution is the Rayleigh-
Ritz principle, linking the problem to a convex minimization problem, [15, Proposition 1.6].
Fundamental for the Rayleigh-Ritz setting is the coercivity, continuity, and symmetry of
the bilinear form:

Definition 1.1 (Strong Coercivity). The bilinear form a(·, ·) on U×U is strongly coercive
if for some β > 0,

a(u, u) ≥ β∥u∥2U

holds for all u ∈ U .

2
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Definition 1.2 (Continuity). The bilinear form a(·, ·) on U × U is continuous if for some
α > 0

|a(u, v)| ≤ α∥u∥U∥v∥U

holds for all u, v ∈ U .

Definition 1.3 (Symmetry). The bilinear form a(·, ·) on U × U is symmetric if for any
u, v ∈ U

a(u, v) = a(v, u) .

The Rayleigh-Ritz setting then reads:

Theorem 1.1 (Rayleigh-Ritz principle). Let l(v) denote a bounded linear functional on
U and a(·, ·) denote a continuous, strongly coercive and symmetric bilinear form on U ×U .
Then, the problem (1) is equivalent to the unconstrained optimization problem: Find u ∈ Ug

that minimizes

J(u, f) =
1

2
a(u, u)− l(u) .

Indeed, the weak formulation (1) is the first order necessary condition that solutions u of
the unconstrained minimization problem must satisfy. It is straightforward to check that
the functional J(·, f) is convex and hence admits a unique solution to the minimization
problem. In fact, the restrictions made to the bilinear form are identical to the ones made in
the better-known Lax-Milgram Lemma, see e.g. [10, Chapter 4.1; Theorem 4.1.6], which
ensures existence and uniqueness for the weak formulation. The Rayleigh-Ritz setting
ensures that the finite element solution uh ∈ Uh

g is a true projection of u ∈ Ug with respect
to the inner product a(·, ·) and that the error uh − u is orthogonal to all elements in the
approximating space,

a(uh, vh) = a(u, vh) ∀vh ∈ Uh
g ,

a(uh − u, vh) = 0 ∀vh ∈ Uh
g .

1.4 Introducing the Least-Squares Finite Element Method

For problems that do not satisfy the Rayleigh-Ritz setting a least-squares finite element
method can be constructed. Here we introduce the core ideas of this approach, as described
in, for example, [15]. We consider the same problem, namely to find u ∈ U such that

Lu = f in Ω ,

Ru = g on Γ .
(2)

Instead of formulating the variational form by taking the inner-product with a test func-
tion, the least-squares method is built on the equations residual,

J(u; f, g) = ∥Lu− f∥2HΩ
+ ∥Ru− g∥2HΓ

.

Here, the data spaces are denoted by HΩ and HΓ for the domain and boundary, respec-
tively. Although the boundary conditions can be incorporated into the solution space in
some cases, adding auxiliary terms to the least-squares formulation might be beneficial due
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to its straightforward way to impose more complex boundary conditions. The variational
problem is then defined as the minimization of the least-squares functional,

min
u∈U

J(u; f, g) . (3)

As a consequence of the first order necessary condition,

d

dθ
J(u+ θv; f, g)|θ=0 = 0 ∀v ∈ U ,

the weak formulations reads as follows: Find u ∈ U such that

(Lv,Lu)HΩ + (Rv,Ru)HΓ = (Lv, f)HΩ + (Rv, g)HΓ ∀v ∈ U .

More compactly, the problem can be reformulated to

a(u, v) = l(v) ∀v ∈ U , (4)

where we define the bilinear form

a(u, v) = (Lv,Lu)HΩ + (Rv,Ru)HΓ ∀u, v ∈ U (5)

and the linear form

l(v) = (Lv, f)HΩ + (Rv, g)HΓ ∀v ∈ U . (6)

An LSFEM can now be constructed by restricting the minimization problem to a finite
element subspace Uh ,

min
uh∈Uh

J(uh; f, g) , (7)

with subsequent variational form: find uh ∈ Uh such that

(Lv,Luh)HΩ
+ (Rv,Ruh)HΓ

= (Lv, f)HΩ
+ (Rv, g)HΓ

∀v ∈ Uh .

After choosing an appropriate basis for the finite element space this leads to a discrete
system of the form

Au⃗ = f⃗ (8)

which can be solved for u⃗.

Key to the success of an LSFEM is the well-posedness of the underlying problem. In-
deed, the well-posedness is a sufficient condition for recovering the desired Rayleigh-Ritz
properties, see [15, Theorem 2.5],

Theorem 1.2 (LSFEM: Existence and Uniqueness). Assume the operator equation (2)
to be well-posed, so that there exist positive constants α1, α2 such that

α1∥u∥2U ≤ ∥Lu∥2HΩ
+ ∥Ru∥2HΓ

≤ α2∥u∥2U

holds. Furthermore assume that Uh ⊂ U . Then

• the bilinear form (5) is continuous, symmetric, and strongly coercive,
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• the linear functional (6) is continuous,

• the variational formulation (4) has a unique solution u ∈ U that is also the unique
solution of the minimization problem (3),

• the discrete variation formulation (a(uh, v) = l(v) ∀v ∈ Uh) has a unique solution
uh ∈ Uh that is also the unique solution of the minimzation problem (7),

• for some constant C > 0, u and uh satisfy the error estimate

∥u− uh∥U ≤ C inf
vh∈Uh

∥u− vh∥U ,

• the matrix A in equation (8) is symmetric and positive definite.

Note that the restrictions made are less weighty as for the Rayleigh-Ritz setting as it is
only necessary to impose the well-posedness of the problem for a conforming finite element
space Uh ⊂ U . This is one of the key strengths of LSFEM compared to the classical finite
element approach. It is also important to note that the well-posedness of the problem is
equivalent to the norm equivalence of the residual functional, namely,

α1∥u∥2U ≤ ∥Lu∥2HΩ
+ ∥Ru∥2HΓ

≤ α2∥u∥2U ∀u ∈ U

if and only if

α1∥u∥2U ≤ J(u; 0; 0) ≤ α2∥u∥2U ∀u ∈ U .

Making sure the least-squares functional is norm equivalent is hence of great importance
when constructing an LSFEM. Proving norm equivalence of the LS functional of the fluid-
structure interaction problem will be the main theoretical result of this thesis.

In addition to the beneficial Rayleigh-Ritz setting, LSFEM possesses an inherent error
estimate, which is useful for adaptive mesh refinements. Moreover, the method constructs
approximations to all variables in appropriate spaces simultaneously, simplifying the treat-
ment of interface conditions arising in physical problems. Interface conditions can either
be built directly into the solution spaces or be added as auxiliary terms to the least-squares
functional. Additionally, the construction of symmetric, positive definite matrices is com-
putationally advantageous for the discrete formulation.

Like any numerical method, LSFEM has its drawbacks, too. One can observe that LSFEM
increases the order of the variational formulation. Hence, it is disadvantageous to apply
LSFEM to higher order problems in a straightforward way. It is beneficial to reformulate
a higher order systems to a first order system before applying LSFEM, to prevent a drastic
increase in the order of the operator. Since this can often be done in multiple ways, LSFEM
is not as straightforward in these cases. Furthermore, there are often multiple choices for
data spaces and solution spaces yielding norm equivalence of the LS functional. One has
to consider that the chosen spaces result in convenient discrete methods, for example in
terms of easy construction of bases and norm evaluation.

1.5 State of the Art

Finite element methods have been deeply investigated since the 1950s and developed into
a powerful tool for the numerical approximation of PDEs. Extensive research on LSFEM
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however started much later. One reason for this was that FEM first was mainly applied
to the field of structural analysis due to its good results. The underlying reason of this
beneficial behavior, the connection with the minimization of an energy functional, was
only discovered later. Only in In the 1990s, LSFEM became popular in the field of fluid
dynamics, more particularly as a method of numerically approximating the Navier-Stokes
equations, see Jiang [16] and Bochev and Gunzburger [7]. A fundamental work was pub-
lished in 2009 by Gunzburger and Bochev [15], giving an extensive overview and theoretical
foundation of LSFEM for various types of problems. Since then, it has become a popular
tool in many different application areas due to its straightforward application to a vast
majority of problems. It is widely used for problems with complex interface conditions,
see for example the model of a Stokes-Darcy flow by Münzenmaier and Starke in [21]. In
[6] a least-squares discretization for the simulation of blood flow in liver lobules is pre-
sented. An inherent error estimate and adaptive mesh refinements for first-order systems
are analyzed in [3].
Relatively few papers deal with the eigenvalue problems associated with LSFEM. In [9] a
first-order least-squares formulation for approximation of eigenvalues of Maxwells equation
is presented. More recently, in [4] various formulations for the spectral Dirichlet Laplace
problem are presented.
An LSFEM for the fluid-structure interaction has, to the knowledge of the author, not yet
been developed. Kaiser-Herold and Matthies have analyzed the movements of an elastic
beam and cylinder in a channel flow in [17] and [18]. However, this setup is different from
the setting presented here. There are various approaches for approximating the eigen-
values of the fluid-structure interaction. Examples include the work of Bermúdez et al.
[1] where several FEM formulations for the problem were developed as a follow-up of the
model described by Bermúdez and Rodŕıguez in [2]. A model including an open surface
of the structure is presented by Meddahi et al. [20] and Meddahi and Mora [19].

1.6 Outline

The structure of this thesis is as follows: Section 2 sketches the problem and introduces
all necessary notations. Section 3 introduces the mesh and finite elements. The least-
squares functional and corresponding weak formulation are derived in Section 4, with the
main result presented in Section 4.3 resulting in existence and uniqueness of the solution.
The section concludes with the construction of the finite element spaces, the discrete
formulation and an a priori error estimate. Remarks on the implementation and numerical
results of the method are presented in Section 5. These are followed by results of the least-
squares functional as error estimate for the pressure/displacement formulation in Section 6.
We conclude this thesis with an outlook in Section 7.
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Governing Equations

2 Governing Equations

We will introduce the notation for the used variables and function spaces in Section 2.1.
In Section 2.2, we describe the physical domain and derive the governing equations of the
fluid-structure interaction problem.

2.1 Notations

Assume Ω ⊂ Rd, d = 2, 3 is a bounded domain with Lipschitz boundary partialΩ with
unit normal ν. In the following sections we will denote vectors v ∈ Rd and matrices
τ ∈ Rd×d by bold symbols. Scalars are denoted by plain symbols. For τ : Ω → Rd×d and
v : Ω → Rd we define the row-wise divergence, div τ : Ω → Rd, and the row-wise gradient,
grad v : Ω → Rd×d, by

(div τ )i :=
∑
j

∂jτij and (grad v)ij := ∂jvi .

The componentwise inner product of two matrices σ, τ ∈ Rd×d is denoted σ : τ := tr(τTσ),

where tr(τ ) :=
∑d

i=1 τii and τ
T := (τji) represent the trace and the transpose of τ , respec-

tively. Furthermore, we will use standard notation for Sobolev spaces. We define:

• The space of square-integrable functions,

L2(Ω) := {v : Ω → R :

∫
Ω

|v|2 dΩ <∞} .

We use boldface to represent vector and tensor spaces, i.e.,

L2(Ω) := {v : Ω → Rd :

∫
Ω

|v · v| dΩ <∞} ,

L2(Ω) := {τ : Ω → Rd×d :

∫
Ω

|τ : τ | dΩ <∞} ,

respectively. The associated inner products are denoted by

⟨v, w⟩L2(Ω) =

∫
Ω

vw dΩ ,

⟨v,w⟩L2(Ω) =

∫
Ω

v ·w dΩ ,

⟨τ ,σ⟩L2(Ω) =

∫
Ω

τ : σ dΩ .

The associated norms are defined as ∥v∥L2(Ω) =
(
⟨v, v⟩L2(Ω)

)1/2
.

• The space of functions in L2(Ω) with weak derivatives in L2(Ω),

H1(Ω) := {v ∈ L2(Ω) : ∇v ∈ L2(Ω)}

with the norm ∥v∥H1(Ω) =
(
∥v∥2L2(Ω) + ∥∇v∥2L2(Ω)

)1/2
.

• The space of functions in H1(Ω) with vanishing trace on part of the boundary
Γ ⊆ ∂Ω,

H1
Γ(Ω) := {v ∈ H1(Ω) : v|Γ = 0} .

7
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• The space of vector fields in L2(Ω) with divergence in L2(Ω),

H(div; Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)}

endowed with the norm ∥v∥H(div;Ω) =
(
∥v∥2L2(Ω) + ∥div v∥2L2(Ω)

)1/2
. Similarly we

define the tensor space

H(div; Ω) := {τ ∈ L2(Ω) : div τ ∈ L2(Ω)} .

• The space of functions in H(div; Ω) with vanishing normal component on part of the
boundary Γ ⊆ ∂Ω,

HΓ(div; Ω) := {v ∈ H(div; Ω) : v · ν|Γ = 0} ,
HΓ(div; Ω) := {τ ∈H(div; Ω) : τν|Γ = 0} .

We furthermore recall:

• The trace space of H1(Ω), assuming a Lipschitz continuous boundary ∂Ω,

H1/2(∂Ω) := tr(H1(Ω)) = {v ∈ L2(∂Ω) | ∃ u ∈ H1(Ω) : tr(u) = v}

with the associated norm

∥v∥H1/2(∂Ω) := inf
ũ∈H1(Ω)

{∥ũ∥H1(Ω) | tr(ũ) = v} .

Lastly, we define:

• The restricted spaces

H̄(div; Ω) = {v ∈ H(div; Ω) : v · ν ∈ L2(Γ)} ,
H̄(div; Ω) = {τ ∈H(div; Ω) : τν ∈ L2(Γ)} ,

for Γ ⊆ ∂Ω. These spaces are introduced since traces of H(div,Ω) are in general not
in L2(∂Ω). The space is endowed with the norm

∥v∥H̄(div;Ω) :=
(
∥v∥2H(div;Ω) + ∥v · ν∥2L2(Γ)

)1/2
.

We furthermore introduce some additional notation: For matrices we denote the symmetric
and skew-symmetric parts respectively by

sym(τ ) =
τ + τT

2
and sk(τ ) =

τ − τT

2
.

Finally, we denote the identity matrix by δ := δd×d and define the skew-symmetric matrix
χ for the two-dimensional case as

χ =

[
0 −1
1 0

]
.

The definition for the three-dimensional case will be omitted for now due to later simpli-
fication to the two-dimensional case.

8
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2.2 The Coupled System

In this section we introduce the elastoacoustic problem that will be studied. The elastoa-
coustic problem describes the motion of an elastic structure in contact with an incompress-
ible fluid. We are specifically interested in the free vibration modes of the elastoacoustic
problem. Examples of such a setup is, for example, a steel cavity filled with water.

In our setup, the domain Ω is split into two subdomains, ΩS and ΩF representing the
solid and fluid domain, respectively. The solid domain will be governed by the equations
of linear elasticity. The solid domain surrounds the fluid domain. It will be assumed that
the boundaries of both domains, ∂ΩS and ∂ΩF , are Lipschitz continuous. The interface
of the two domains will be denoted by Σ = ∂ΩS ∩ ∂ΩF , which will be orientated by the
outward unit normal νF of ∂ΩF . The remainder of the structure boundary ∂ΩS \ Σ is
the union of a Dirichlet part ΓD ⊂ ∂ΩS and a Neumann part ΓN ⊂ ∂ΩS describing the
structure being fixed and free of stress, respectively. These boundary parts are oriented
by the unit outward normal of ∂ΩS , denoted by νS . We furthermore assume |ΓD| ̸= 0
for simplicity later on. The boundary of the fluid domain consists entirely of the joint
interface Σ. An example of this domain can be found in Figure 1.
We furthermore summarize the notation for later reference:

• ΩS : structural domain,

• ΩF : fluid domain,

• ΓD: Dirichlet boundary of structure,

• ΓN : Neumann boundary of structure,

• Σ: fluid-structure interface.

νS

νF

ΩS

ΩF

ΓN ΓN

ΓN

ΓD

Σ

Figure 1: Example of fluid and solid domains.

To describe the physical model we make various simplifications and assumptions. Firstly,
we consider homogeneous fluids with constant mass density. In addition, viscous and con-
vective effects are assumed to be irrelevant due to small velocities. Lastly, we neglect
gravity effects on the structure. As mentioned in the previous section, the least-squares
methods requires a first order system. Throughout the derivation of the model, we will
transform the governing equations to match the requirements of the least-squares method.
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Governing Equations

The following governing equations are mainly motivated by the systems described in [19],
[20] and [5].

The deformation of the elastic structure is described in terms of its displacement vec-

tor u =
[
ux uy

]T
and stress tensor σ. In the case of small displacements, we can assume

linear response of the structure. The constitutive equation for a linear elastic structure is
governed by Hooke’s Law, coupling the stress tensor σ with the linearized strain tensor
ϵ(u) := 1

2 (grad u+ (grad u)T ),

σ = Cϵ(u) = λ tr(ϵ(u)) δ + 2µ ϵ(u) .

Here λ and µ are the positive Lamé coefficients. We have introduced the elasticity operator
C : Rd×d → Rd×d and observe that the operator preserves the symmetry of the linearized
strain tensor. Furthermore, one can check that its inverse is given by

C−1σ =
1

2µ
(σ − λ

dλ+ 2µ
tr(σ) δ) .

The equation of motion follows from Newton’s second law,

div σ = −fS in ΩS ,

with fS describing an external force. The structure is fixed along the boundary part ΓD

and we impose

u = 0 on ΓD .

Along the Neumann boundary ΓN the structure is free of stress and we impose

σνS = 0 on ΓN .

The strain tensor is the symmetric part of grad u and can therefore be rewritten in terms
of grad u and its skew-symmetric part, based on the formulations in [5],

ϵ(u) = grad u− sk(grad u)

= grad u− (−1)dmχ .

The skew-symmetric matrix χ is defined in Section 2.1. The newly introduced variable m
is a scalar in the two-dimensional setting and a vector for the three-dimensional setting,
in which case the last product is substituted by the dot-product. The variable represents
the vorticity, defined by m = 1

2∇×u. In two dimensions, this yields m =
∂uy

∂x
− ∂ux

∂y
. Note

that when substituting the strain tensor in the constitutive equation, symmetry of the
stress tensor is no longer implied. Hence, we impose the following symmetry condition:

sk(σ) = 0 in ΩS .

The governing equations of the solid domain can be summarized by

div σ + fS = 0 in ΩS ,

C−1σ − grad u+ (−1)dmχ = 0 in ΩS ,

sk(σ) = 0 in ΩS ,

u = 0 on ΓD ,

σνS = 0 on ΓN ,

10
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together with coupling conditions along the interface Σ, which are still to be determined.

For the fluid domain the quantity of interest is pressure. The sound propagation in fluid
is described by the wave equation, which simplifies to the Helmholz equation for time
harmonic sound pressure. The governing equation then reads

div grad p = −ω
2

c2
p in ΩF ,

where c describes the velocity of the sound pressure wave, also known as the acoustic
speed, and is assumed to be constant. The frequencies are denoted by ω. We capture the

right-hand side by the source term fF = ω2

c2 p. The fluid domain is entirely surrounded
by the solid domain. Hence, no boundary conditions except for the interface conditions
are given. Since a least-squares finite element approach requires a first order system, we
introduce the pressure gradient π. The constitutive equation for the fluid domain then
reads

π − grad p = 0 in ΩF ,

and the governing equations rewrites to

div π = −fF in ΩF .

We can hence summarize the governing equations for the fluid domain as

π − grad p = 0 in ΩF ,

div π + fF = 0 in ΩF .

It remains to specify the coupling conditions along the interface Σ. Here, we have a kinetic
condition coupling the stress on the interface to the pressure exerted on the fluid (action-
reaction principle) and a kinematic condition, describing the fluid and solid in contact
without friction at the interface (slip condition), as is more thoroughly described in [1].
The two principles lead to coupling conditions of the form

σνF + pνF = 0 on Σ ,

∂p

∂νF
+
ρF
ρS

div σ · νF = 0 on Σ ,

where we introduce the solid and fluid densities ρS and ρF , respectively. Substituting the
pressure gradient and the solid source term, the second equation simplifies to

π · νF − ρF
ρS
fS · νF = 0 on Σ .

11
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The model for the coupled system then reads

div σ + fS = 0 in ΩS ,

C−1σ − grad u+ (−1)dmχ = 0 in ΩS ,

sk(σ) = 0 in ΩS ,

π − grad p = 0 in ΩF ,

div π + fF = 0 in ΩF ,

u = 0 on ΓD ,

σνS = 0 on ΓN ,

σνF + pνF = 0 on Σ ,

π · νF − ρF
ρS
fS · νF = 0 on Σ .

When formulating the eigenproblem the source terms are replaced by the eigenfunctions

fS = ω2ρSu and fF = ω2

c2 p with ω ∈ R the corresponding eigenvalue.

In the solid domain the unknowns σ, u and m are naturally sought in H(div; ΩS),
H1(ΩS) and L2(ΩS), respectively. In the fluid domain the pressure p is naturally found
in H1(ΩF ) whereas the pressure gradient π is naturally found in H(div; ΩF ). With these
natural solution spaces the trace spaces on the interface do not coincide (see [10, Chap-
ter III.1]). Traces of H(div) functions are, in general, not in L2(∂Ω). Indeed, we observe
σνF ∈ H−1/2(Σ) whereas pνF ∈ H1/2(Σ) ⊂ L2(Σ) and similarly, π · νF ∈ H−1/2(Σ)
and fS · νF ∈ H−1/2(Σ) for fS ∈ L2(ΩS). For the source term we can assume sufficient
regularity, i. e. fS ∈ H1(Ω), to ensure fS · νF ∈ H1/2(Σ) ⊂ L2(Σ). In fact, this will be

the case in the eigenvalueproblem when fS = ω2

ρS
u. The solution spaces for the stress and

pressure gradient are restricted to H̄(div; ΩS) and H̄(div; ΩF ) defined in Section 2.1. It
follows that the interface conditions are now defined on L2(Σ) and L2(Σ), respectively.
The Dirichlet and Neumann boundary conditions of the solid domain can easily be incor-
porated into the function spaces. We therefore search for the displacement u ∈H1

ΓD
(ΩS)

and the stress tensor σ ∈ H̄ΓN
(div; ΩS). We conclude by defining the product function

space

W := H̄ΓN
(div; ΩS)×H1

ΓD
(ΩS)× L2(ΩS)× H̄(div; ΩF )×H1(ΩF ) (9)

with the associated norm

∥(τ ,v, n, ξ, q)∥2W = ∥τ∥2H(div;ΩS) + ∥τνS∥2L2(Σ) + ∥v∥2H1(ΩS) + ∥n∥2L2(ΩS)

+ ∥ξ∥2H(div;ΩF ) + ∥ξ · νF ∥2L2(Σ) + ∥q∥2H1(ΩF ) .
(10)

To shorten notation, we replace the subscripts in the notation of the L2 inner products
and norms. The norms will be denoted by

∥·∥L2(ΩS) = ∥·∥S , ∥·∥L2(ΩF ) = ∥·∥F and ∥·∥L2(Σ) = ∥·∥Σ ,

the inner products by

⟨·, ·⟩L2(ΩS) = ⟨·, ·⟩S , ⟨·, ·⟩L2(ΩF ) = ⟨·, ·⟩F , and ⟨·, ·⟩L2(Σ) = ⟨·, ·⟩Σ .

All remaining norms and inner products are indicated in the usual way.

12
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The fluid-structure interaction problem then reads: For given fS ∈H1(ΩS) and fF ∈ L2(ΩF )
find (σ,u,m,π, p) ∈ W such that

div σ + fS = 0 in ΩS ,

C−1σ − grad u+ (−1)dmχ = 0 in ΩS ,

sk(σ) = 0 in ΩS ,

π − grad p = 0 in ΩF ,

div π + fF = 0 in ΩF ,

σνF + pνF = 0 on Σ ,

π · νF − ρF
ρS
fS · νF = 0 on Σ .

(11)
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3 Finite Element Spaces

In this section we introduce the finite element spaces that will be used in the analysis and
computation of the LSFEM formulation of the fluid-structure interaction. For each space,
we provide the basis functions and corresponding interpolation error bounds. We assume
Th to be a regular, triangular partition of the domain Ω. Furthermore, h denotes the mesh
size which we assume to be constant for all elements. We will denote edges by (ei)i and
vertices by (xi, yi)i.

3.1 Finite Element Approximation of H1(Ω)

The standard conforming finite element space for functions in H1(Ω) is the space of con-
tinuous piecewise polynomial functions, see for example [13, Chapter 1.1]. For a given
partition T of the domain Ω we define Vk

h ⊂ H1(Ω) as

Vk
h := {ϕ ∈ C(Ω) : ϕ|T ∈ Pk(T ), ∀ T ∈ Th} .

Here, we introduced

• Pk(T ) : The space of polynomials of degree ≤ k on an element T ,

• C(Ω): The space of continuous functions over Ω.

The finite dimensional space can be spanned by a set of basis functions, ϕi, 1 ≤ i ≤ Nh.
Lagrangian basis functions are the common choice. The polynomials in two dimensions
are formed by

Lij(x) = Li(x)Lj(y)

with the Lagrange polynomial

Li(x) =

k∏
s=0,s̸=i

(x− xs)

(xi − xs)
,

for given degrees of freedom (d.o.f.), (xs, ys). Lagrangian basis functions barely over-
lap, resulting in sparse linear systems, which in turn allow for efficient computations.
Furthermore, interelement continuity is preserved when choosing the degrees of freedom
appropriately. The standard choice of d.o.f. are depicted in Figure 2 and Figure 3 for first
and second order approximations. For higher order functions interior d.o.f. are included.
The local interpolation operator ρh : H1(T ) → Pk(T ) is then constructed to map functions
v to its finite element approximation ρh(v). Note that ρh(pk) = pk for all pk ∈ Pk(T ).
To make a meaningful approximation estimate for piecewise polynomial elements we need
to restrict the solution space to admit smoothness at least implied by H2(Ω). More
precisely, we can state the following interpolation estimate, [10, Chapter III.2, Proposi-
tion 2.2.2]:

Theorem 3.1 (Approximation Properties Piecewise Polynomial Elements). Let (Th)h≥0

be a regular family of affine partitions and let ρh : H1(T ) → Pk(T ) describe the local
interpolation operator for all T ∈ (Th) as above. Assume v ∈ Hs(Ω) with 1 ≤ s ≤ k + 1.
Then there exists a constant c independent of h such that

∥ρh(v)− v∥L2(T ) ≤ chs|v|Hs(∆T )

∥grad(ρh(v)− v)∥2L(T ) ≤ chs−1|v|Hs(∆T )

14
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where

∆T := {T ′ | T̄ ′ ∩ T̄ ̸= ∅}

the set of all neighbouring elements.

Figure 2: D.o.f. of the first order La-
grangian element

Figure 3: D.o.f. of the second order La-
grangian element.

3.2 Finite Element Approximation of L2(Ω)

The standard conforming finite elements space for L2(Ω) are piecewise polynomials of
order k,

Vk
h := {ϕ ∈ L2(Ω) : ϕ|T ∈ Pk(T ), ∀T ∈ Th} .

A zeroth order approximation leads to a piecewise constant function as the finite element
approximation, a first order approximation results in piecewise linear functions being used.
Since we do not require continuity of the elements in this setting the d.o.f. are allowed to
lie within the element. The d.o.f. are depicted in Figures 4 and 5. We denote the interpo-
lation of v by ρh(v), as in the previous section. To make any meaningful approximations
properties we need to restrict the solution space to H1(Ω). We then can formulate an
approximation error bound in a similar fashion as before, ([10, Chapter III.2, Proposi-
tion 2.2.2]):

Theorem 3.2 (Approximation Properties of Polynomial Elements). If (Th)h≥0 is a regular
family of affine partitions and ρh : L2(T ) → Pk(T ) the local interpolation operator for all
T ∈ (Th) described above. Assume v ∈ Hs(Ω) with 1 ≤ s ≤ k + 1. Then there exists a
constant c independent of h such that

∥ρh(v)− v∥L2(T ) ≤ chs|v|Hs(T ) .

3.3 Finite Element Approximation of H(div; Ω)

A suitable finite element space for H(div)-spaces can be formed using Raviart-Thomas
elements. Raviart-Thomas elements (RT-elements) are vector-valued elements and are
very well suited to approximate the spaceH(div; Ω), see [10, Chapter III.3]. The definitions
of RT-elements differ slightly across literature, in particular the definition of the order of
the elements varies. In what follows, we will use the notation presented in [10, Chapter 3]
and [13, Chapter 1], though we already note a change in definition when presenting the
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Figure 4: D.o.f. for zeroth order discontin-
uous elements.

Figure 5: D.o.f. for first order discontinuous
elements.

implementations in Chapter 5.2. On a triangular element T RT-elements of order k are
defined by

RTk(T ) = (Pk(T ))
2 + xPk(T ) ,

with Pk(T ) the polynomial space defined earlier and (Pk(T ))
2 the space of vector-valued

polynomials. The finite element space is then constructed as

Vk
h := {ϕ ∈ H(div; Ω) : ϕ|T ∈ RTk(T ), ∀T ∈ Th} .

The basis functions are described by dim(RTk(T )) = (k + 1)(k + 3) degrees of freedom.
The d.o.f. for the lowest order Raviart-Thomas element lie on the edges of the cell and
describe the value of the normal component of the flux across the faces. For higher order
RT-elements interior d.o.f. are added, see Figure 6 and Figure 7. The local interpolation
operator ρh : H̄(div;T ) → RTk(T ) is defined by∫

∂T

(ϕ− ρhϕ) · ν pk dΓ = 0, ∀ pk ∈ Rk(∂T ) for k ≥ 0,∫
T

(ϕ− ρhϕ) · pk−1 dΩ = 0, ∀ pk−1 ∈ (Pk−1(T ))
2 for k ≥ 1 .

Note that we have used a more restricted space H̄(div;T ) to ensure ϕ ·ν ∈ H1/2(∂T ). We
furthermore introduced the space

• Rk(∂T ) : The space of polynomials of degree ≤ k on each side of T ,

Rk(∂T ) = {ϕ | ϕ ∈ L2(∂T ), ϕ|ei ∈ Pk(ei), ∀ei}

where ei, 1 ≤ i ≤ 3, denote the edges of T .

One reason RT-elements approximate the H(div)-space well is that its divergence maps
onto the space of piecewise polynomial functions, see for example [10, Proposition 3.2]:

Theorem 3.3 (Divergence of RT-elements). For a triangular element T we have for
ϕ ∈ RTk(T )

div ϕ ∈ Pk(T ) and ϕ · ν|∂T ∈ Rk(∂T ) .

This ensures a good approximation of the divergence in L2(Ω) and continuity of the normal
component along edges. Note that tangential components along an edge may be discontin-
uous. For the lowest-order elements on a regular triangular mesh the local shape function
for the ith edge is given by

θi(x) =
1

2|T |
(x− xi)
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with xi denoting the opposite vertex. We can state the following approximation property,
see [10, Chapter III.3; Proposition 3.9]

Theorem 3.4 (Approximation Properties Raviart-Thomas Elements). Let Th be a regular
family of affine partitions, and let ρh: H̄(div;T ) → RTk(T ) be defined as above for every
T ∈ Th. Furthermore, assume ξ ∈Hs(T )∩H(div;T ) and div ξ ∈ Hs(T ) for 0 ≤ s ≤ k+1.
Then there exists a constant c independent of h such that

∥ξ − ρh(ξ)∥L2(T ) ≤ chs|ξ|Hs(T ) .

Moreover,

∥div(ξ − ρh(ξ))∥L2(T ) ≤ chs|div ξ|Hs(T ) .

When applying the approximation property one has to pay attention to two things. Firstly,
similar to the piecewise polynomial case, stronger regularity needs to be imposed on the
solution space in order to obtain a converging approximation property. More precisely, one
would require ξ ∈ H̄(div;T )∩H1(T ) and div ξ ∈ H1(T ). Secondly, for a function ξ to be
in H̄(div;T ) it is not sufficient to assume ξ ∈ H̄(div; Ω). To ensure ξ ∈ H̄(div;T ) one can
restrict the solution space to H(div; Ω)∩Ls(Ω), s > 2, like is done in [10, Chapter III.3.4]
or ensure, as before ξ ∈ H̄(div; Ω) ∩H1(Ω).

Figure 6: D.o.f. of the zeroth order Raviart-
Thomas Element.

Figure 7: D.o.f. of the first order Raviart-
Thomas Element.
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4 Least-Squares Functional and Finite Element Ap-
proximation

In this section we formulate the least-squares functional and define the corresponding min-
imization problem. Subsequently, the weak formulation is derived. As already mentioned
in the first section of this thesis, the least-squares functional can be formulated in various
ways. One choice presents itself in the way in which boundary and interface conditions are
imposed. This can be done strongly, by imposing them on the solution space, or weakly,
by adding auxiliary terms to the least-squares functional. We will develop both formula-
tions, with strong and weak boundary conditions, respectively, in the next two sections.
However, we will only continue analysing the latter in terms of existence, uniqueness and
error estimates in the last sections of this chapter. These results for the formulation with
strongly imposed boundary conditions can be derived in a similar way.

4.1 Formulation with Strong Interface Conditions

For the formulation with strong boundary and interface conditions all conditions are im-
posed on the solution space. In the problem of equation (11) this relates to the last two
equation defined for Σ, as well as the Dirichlet and Neumann boundary conditions. We
hence define the space, for given fS ∈H1(ΩS)

Ŵ := {(τ ,v, n, ξ, q) ∈ W | τνF = −qνF and ξ · νF =
ρF
ρS
fS · νF on Σ}

with the space W defined in (9). For a given fS ∈H1(ΩS) and fF ∈ L2(ΩF ) the simplest
least-squares functional for problem (11) is given below. We denote this functional by
F̂ : Ŵ → R, which is defined as

F̂ (τ ,v, n, ξ, q;fS , fF ) = ∥div τ + fS∥2S + ∥C−1τ − grad v + nχ∥2S + ∥sk(τ )∥2S
+ ∥ξ − grad q∥2F + ∥div ξ + fF ∥2F ,

where we considered the L2-norms on the fluid and structure domain. The least-squares
method seeks the minimizer (σ,u,m,π, p) ∈ Ŵ of F̂ ,

arg min
(τ ,v,n,ξ,q)∈Ŵ

F̂ (τ ,v, n, ξ, q;fS , fF ) .

The variational formulation is obtained by applying the first order necessary condition on
each variable,

∂

∂θ
F̂ (τ + θσ,v, n, ξ, q) |θ=0 = 0 ,

∂

∂θ
F̂ (τ ,v + θu, n, ξ, q) |θ=0 = 0 ,

∂

∂θ
F̂ (τ ,v, n+ θm, ξ, q) |θ=0 = 0 ,

∂

∂θ
F̂ (τ ,v, n, ξ + θπ, q) |θ=0 = 0 .
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This yields the variational formulation: Find (σ,u,m,π, p) ∈ Ŵ such that

⟨div σ,div τ ⟩S + ⟨C−1σ, C−1τ ⟩S + ⟨sk(σ), sk(τ )⟩S
− ⟨grad u, C−1τ ⟩S − ⟨C−1σ, grad v⟩S
+ ⟨grad u, grad v⟩S
− ⟨curl u, n⟩S − ⟨curl v,m⟩S
+ ⟨mχ, C−1τ ⟩S + ⟨C−1σ, nχ⟩S
+ 2mn

+ ⟨π, ξ⟩F + ⟨div π,div ξ⟩F
− ⟨grad p, ξ⟩F − ⟨π, grad q⟩F
+ ⟨grad p, grad q⟩F

= −⟨fS ,div τ ⟩S − ⟨fF ,div ξ⟩F .

The related eigenvalue problem is obtained by setting fS = ω2ρSu, fF = ω2

c2 p.

One reason for not further exploring this approach is the difficulty in which the finite
element space would need to be constructed, which would lead to complicated numerical
implementations. However, properties of the continuous formulations follow in the same
way as for the weakly imposed formulation, as described in the remainder of this section.

4.2 Formulation with Weak Interface Conditions

Imposing the interface conditions weakly requires additional terms in the least-squares
functional. The straightforward way to do this is by measuring the residual of the in-
terface terms in the fractional Sobolev norm. Here, we need the additional requirements
τνF ∈H1/2(Σ) and ξ · νF ∈ H1/2(Σ). The solution space is then denoted by W̃, defined
by W of equation (9) with these additional constraints. The associated norm reads

∥(τ ,v, n, ξ, q)∥2W̃ = ∥τ∥2H(div;ΩS) + ∥τνS∥2H1/2(Σ) + ∥v∥2H1(ΩS) + ∥n∥2L2(ΩS)

+ ∥ξ∥2H(div;ΩF ) + ∥ξ · νF ∥2H1/2(Σ) + ∥q∥2H1(ΩF ) .

For given fS ∈H1(ΩS) and fF ∈ L2(ΩF ) this yields the functional, F̃ : W̃ → R,

F̃ (τ ,v, n, ξ, q;fS , fF ) = ∥div τ + fS∥2S + ∥C−1τ − grad v + nχ∥2S + ∥sk(τ )∥2S
+ ∥ξ − grad q∥2F + ∥div ξ + fF ∥2F
+ ∥τνF + qνF ∥2H1/2(Σ) + ∥ξ · νF − ρF

ρS
fS · νF ∥2H1/2(Σ) ,

However, the fractional Sobolev norm requires the evaluation of H1/2 norms and inner
products, resulting in an impractical least-squares method. The simplest way to circum-
vent these difficulties is to replace the H1/2(∂Ω)-norm by the L2(∂Ω)-norm. However,
this procedure results in suboptimal results, prone the loss of accuracy, as demonstrated
in [15, Chapter 12]. Stevenson elaborates on this problem in [23]. Despite this disadvan-
tage we have decided to pursue this approach, due to its simplicity and practicality. The
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least-squares functional is adjusted to

F (τ ,v, n, ξ, q;fS , fF ) = ∥div τ + fS∥2S + ∥C−1τ − grad v + nχ∥2S + ∥sk(τ )∥2S
+ ∥ξ − grad q∥2F + ∥div ξ + fF ∥2F
+ ∥τνF + qνF ∥2Σ + ∥ξ · νF − ρF

ρS
fS · νF ∥2Σ .

(12)

The least-squares method seeks the minimizer (σ,u,m,π, p) ∈ W of F ,

arg min
(τ ,v,n,ξ,q)∈W

F (τ ,v, n, ξ, q;fS , fF ) .

Applying the first order condition yields the variational formulation: Find (σ,u,m,π, p) ∈ W
such that

⟨div σ,div τ ⟩S + ⟨C−1σ, C−1τ ⟩S + ⟨sk(σ), sk(τ )⟩S
− ⟨grad u, C−1τ ⟩S − ⟨C−1σ, grad v⟩S
+ ⟨grad u, grad v⟩S
− ⟨curl u, n⟩S − ⟨curl v,m⟩S
+ ⟨mχ, C−1τ ⟩S + ⟨C−1σ, nχ⟩S
+ 2mn

+ ⟨π, ξ⟩F + ⟨div π,div ξ⟩F
− ⟨grad p, ξ⟩F + ⟨π, grad q⟩F
+ ⟨grad p, grad q⟩F
+ ⟨σνF , τνF ⟩Σ
+ ⟨pνF , τνF ⟩Σ + ⟨σνF , qνF ⟩Σ
+ ⟨π · νF , ξ · νF ⟩Σ + ⟨pνF , qνF ⟩Σ

= −⟨fS ,div τ ⟩S − ⟨fF ,div ξ⟩F + ⟨ρF
ρS
fS · νF , ξ · νF ⟩Σ .

(13)

By verifying that each term on the left-hand side is symmetric, the symmetry of the entire
left-hand side may be observed. Substituting the eigenvalues and eigenfunctions for the

source terms, fS = ω2ρSu, fF = ω2

c2 p, yields the eigenproblem:
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Find ω ∈ R, (σ,u,m,π, p) ∈ W such that

⟨div σ,div τ ⟩S + ⟨C−1σ, C−1τ ⟩S + ⟨sk(σ), sk(τ )⟩S
− ⟨grad u, C−1τ ⟩S − ⟨C−1σ, grad v⟩S
+ ⟨grad u, grad v⟩S
− ⟨curl u, n⟩S − ⟨curl v,m⟩S
+ ⟨mχ, C−1τ ⟩S + ⟨C−1σ, nχ⟩S
+ 2mn

+ ⟨π, ξ⟩F + ⟨div π,div ξ⟩F
− ⟨grad p, ξ⟩F − ⟨π, grad q⟩F
+ ⟨grad p, grad q⟩F
+ ⟨σνF , τνF ⟩Σ
+ ⟨pνF , τνF ⟩Σ + ⟨σνF , qνF ⟩Σ
+ ⟨π · νF , ξ · νF ⟩Σ + ⟨pνF , qνF ⟩Σ

= ω2

(
−⟨ρSu,div τ ⟩S − ⟨ 1

c2
p, div ξ⟩F + ⟨ρFu · νF , ξ · νF ⟩Σ

)
.

(14)

In what follows we assume that the least-squares functional, variational formulation and
eigenvalue problem are defined by equations (12), (13) and (14), respectively.

4.3 Existence and Uniqueness

As already studied in Section 1.4, the necessary condition for existence and uniqueness for
the variational formulation (13) is the norm equivalence of the least-squares functional,

α1∥(τ ,v, n, ξ, q)∥2W ≤ F (τ ,v, n, ξ, q;0, 0) ≤ α2∥(τ ,v, n, ξ, q)∥2W

for positive α1 and α2. In this section we demonstrate this key result by proving ellipticity
of the least-squares functional,

α1∥(τ ,v, n, ξ, q)∥2W ≤ F (τ ,v, n, ξ, q;0, 0)

and continuity of the least-squares functional

F (τ ,v, n, ξ, q;0, 0) ≤ α2∥(τ ,v, n, ξ, q)∥2W

separately in Section 4.3.1 and Section 4.3.2. Following the results of Theorem 4.5 and
Theorem 4.6 we will already state the desired theorem:

Theorem 4.1 (Norm equivalence). There exists positive constants α1 and α2 such that
the least-squares functional F (τ ,v, n, ξ, q;0, 0) defined in equation (12) is norm equivalent
with respect to the norm ∥·∥W defined in equation (10),

α1∥(τ ,v, n, ξ, q)∥2W ≤ F (τ ,v, n, ξ, q;0, 0) ≤ α2∥(τ ,v, n, ξ, q)∥2W .

In the remainder of this chapter we will assume that α is a generic positive constant,
possibly different at different occurrences.
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4.3.1 Ellipticity

To prove the lower bound of Theorem 4.1 we will split the least-squares functional into
terms related to the solid, fluid and interface equations and first provide lower bounds
on these functionals individually before concluding the ellipticity result in Theorem 4.5.
Therefore, the LS functional F (τ ,v, n, ξ, q;0, 0) as defined in equation (12) is split into

F (τ ,v, n, ξ, q;0, 0) = FS(τ ,v, n) + FF (ξ, q) + FΣ(τ ,v, n, ξ, q)

with

FS(τ ,v, n) = ∥C−1τ − grad v + nχ∥2S + ∥div τ∥2S + ∥sk(τ )∥2S , (15)

FF (ξ, q) = ∥ξ − grad q∥2F + ∥div ξ∥2F , (16)

FΣ(τ ,v, n, ξ, q) = ∥τνF + qνF ∥2Σ + ∥ξ · νF ∥2Σ . (17)

(A lower bound: solid functional) The lower bound of the solid functional (15) is
obtained with respect to the norm

∥(τ ,v, n)∥2WS
= ∥τ∥2H(div;ΩS) + ∥τνF ∥2L2(Σ) + ∥v∥2H1(ΩS) + ∥n∥2L2(ΩS) .

In order to obtain the ellipticity of the solid functional, we first state some useful results:

Lemma 4.1 (Korn’s inequality). Let Ω be an open bounded set in Rd with piecewise
smooth boundary. In addition suppose Γ0 has positive (d−1)-dimensional measure. Then
there exists a positive number α(Ω,Γ0) such that

∥ε(v)∥2L2(Ω) ≥ α∥v∥2H1(Ω) for all v ∈ H1
Γ0
(Ω)d

where ε(v) is the symmetric strain tensor.

Proof. See, e.g. [8, VI.3].

Lemma 4.2 (Stress Tensor Bound). For τ ∈ H(div; ΩS), there exist a positive constant
α such that

∥τ∥2S ≤ α
(
∥dev(τ )∥2S + ∥div τ∥2S

)
with the deviatoric stress dev(τ ) := 1

2µ

(
τ − 1

2 tr(τ )δ
)
.

Proof. The proof is given in [11, Lemma 3.2].

The ellipticity result for the solid functional then reads:

Theorem 4.2 (Ellipticity of the Solid Functional). There exists a positive constant α such
that

∥(τ ,v, n)∥2WS
≤ α (FS(τ ,v, n) + ⟨τνS ,v⟩Σ) + ∥τνF ∥2Σ .
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Proof. We first notice that ε(v), δ and χ are symmetric and skew-symmetric tensors, re-

spectively. Furthermore, we recall C−1τ = 1
2µ

(
τ − λ

2λ+2µ tr(τ )δ
)
. One can hence rewrite

⟨C−1τ , ε(v)⟩S = ⟨sym(C−1τ ), grad v⟩S

=
1

2µ

(
⟨τ , grad v⟩S − ⟨sk(τ ), grad v⟩S +

λ

2µ+ 2λ
⟨tr(τ )δ, grad v⟩S

)
=

1

2µ

(
−⟨div τ ,v⟩S − ⟨sk(τ ), grad v⟩S +

λ

2µ+ 2λ
⟨tr(τ )δ, grad v⟩S

)
+

1

2µ
⟨τνS ,v⟩Σ ,

where we used integration by parts and applied the prescribed boundary conditions on ΓD

and ΓN . Furthermore we conclude

⟨nχ, ε(v)⟩S = 0 and ⟨nχ, C−1τ ⟩S =
1

2µ
⟨nχ, sk(τ )⟩S .

The norm of ε(v) can now be rewritten to

∥ε(v)∥2S = ⟨grad v, ε(v)⟩S
= ⟨−C−1τ − nχ+ grad v, ε(v)⟩S + ⟨C−1τ , ε(v)⟩S
= ⟨−C−1τ − nχ+ grad v, ε(v)⟩S

+
1

2µ

(
−⟨div τ ,v⟩S − ⟨sk(τ ), grad v⟩S +

λ

2µ+ 2λ
⟨tr(τ )δ, grad v⟩S

)
+

1

2µ
⟨τνS ,v⟩Σ . (18)

We furthermore observe

λ

4µ(2λ+ 2µ)2
∥tr(τ )δ∥2S = ⟨ 1

2µ

λ

2µ+ 2λ
tr(τ )δ,

1

2

1

2µ+ 2λ
tr(τ )δ − dev(τ )− nχ⟩S

= ⟨ 1

2µ

λ

2µ+ 2λ
tr(τ )δ,−C−1τ − nχ⟩S (19)

where dev(τ ) denotes the deviatoric part of the stress tensor defined by
dev(τ ) = 1

2µ

(
τ − 1

2 tr(τ )δ
)
. By simple calculations one can observe

⟨dev(τ ), δ⟩S = 0 and C−1τ = dev(τ ) +
1

2

1

2µ+ 2λ
tr(τ )δ
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which proves equation (19). Then, it follows from equation (18) together with equation (19)

∥ε(v)∥2S ≤ ∥ε(v)∥2S +
λ

4µ(2λ+ 2µ)2
∥tr(τ )δ∥2S

= ⟨−C−1τ − nχ+ grad v, ε(v)⟩S

+
1

2µ

(
−⟨div τ ,v⟩S − ⟨sk(τ ), grad v⟩S +

λ

2µ+ 2λ
⟨tr(τ )δ, grad v⟩S

)
+

1

2µ

λ

2µ+ 2λ
⟨tr(τ )δ,−C−1τ − nχ⟩S +

1

2µ
⟨τνS ,v⟩Σ

≤
∣∣⟨−C−1τ − nχ+ grad v, ε(v)⟩S

+
1

2µ

(
−⟨div τ ,v⟩S − ⟨sk(τ ), grad v⟩S +

λ

2µ+ 2λ
⟨tr(τ )δ, grad v − C−1τ − nχ⟩S

)∣∣∣∣
+

1

2µ
⟨τνS ,v⟩Σ

≤ α
(
∥−C−1τ − nχ+ grad v∥S∥ε(v)∥S + ∥div τ∥S∥v∥S + ∥sk(τ )∥S∥grad v∥S

+∥−C−1τ − nχ+ grad v∥S∥tr(τ )δ∥S
)
+

1

2µ
⟨τνS ,v⟩Σ

≤ αF (τ ,v, n)
1
2 (∥ε(v)∥S + ∥tr(τ )δ∥S) +

1

2µ
⟨τνS ,v⟩Σ , (20)

where the triangle inequality and Cauchy-Schwarz inequality are used in the second to last
line and Korn’s inquality is applied in the last line.
The bound of ∥nχ∥2S is obtained by observing

∥nχ∥2S ≤
∣∣∣∣⟨C−1τ + nχ− grad v, nχ⟩S − 1

2µ
⟨sk(τ ), nχ⟩S + ⟨grad v, nχ⟩S

∣∣∣∣
≤ ∥C−1τ + nχ− grad v∥S∥nχ∥S +

1

2µ
∥sk(τ )∥S∥nχ∥S + ∥grad v∥S∥nχ∥S

≤ α
(
F (τ ,v, n)

1
2 + ∥grad v∥S

)
∥nχ∥S

≤ α
(
F (τ ,v, n)

1
2 + ∥ε(v)∥S

)
∥nχ∥S ,

where a triangle inequality, a Cauchy-Schwarz inequality and Korn’s inquality were applied
consecutively. One can conclude

∥nχ∥S ≤ α
(
F (τ ,v, n)

1
2 + ∥ε(v)∥S

)
. (21)

We furthermore note

∥dev(τ )∥2S =
1

2µ
⟨τ , dev(τ )⟩S

= ⟨C−1τ + nχ− grad v, dev(τ )⟩S − ⟨nχ, dev(τ )⟩S + ⟨grad v, dev(τ )⟩S

≤ α
(
F (τ ,v, n)

1
2 + ∥ε(v)∥S + ∥nχ∥S

)
∥dev(τ )∥S

≤ α
(
F (τ ,v, n)

1
2 + ∥ε(v)∥S

)
∥dev(τ )∥S

where we substituted equation (21) in the last inequality. We can conclude

∥dev(τ )∥S ≤ α
(
F (τ ,v, n)

1
2 + ∥ε(v)∥S

)
.
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Employing the results of Lemma 4.2 combined with the above inequality yields the result

∥τ∥S ≤ ∥dev(τ )∥S + ∥div τ∥S

≤ α
(
F (τ ,v, n)

1
2 + ∥ε(v)∥S

)
. (22)

What remains is to find an upper bound for ∥tr(τ )δ∥S . This is readily done by rewriting

∥tr(τ )δ∥2S = |⟨tr(τ )δ, tr(τ )δ⟩S | = 2 |⟨tr(τ )δ, τ ⟩S |
≤ 2∥tr(τ )δ∥S∥τ∥S ,

employing the Cauchy-Schwarz inequality, yielding the upper bound

∥tr(τ )δ∥S ≤ 2∥τ∥S . (23)

Together with equation (22) we conclude

∥tr(τ )δ∥S ≤ α
(
F (τ ,v, n)

1
2 + ∥ε(v)∥S

)
. (24)

Combining equation (20) and equation (24), for all γ > 0 yields

∥ε(v)∥2S ≤ αF (τ ,v, n)
1
2

(
F (τ ,v, n)

1
2 + ∥ε(v)∥S

)
+

1

2µ
⟨τνS ,v⟩Σ

≤ γα2F (τ ,v, n)

2
+

(F (τ ,v, n)
1
2 + ∥ε(v)∥S)2

2γ
+

1

2µ
⟨τνS ,v⟩Σ

≤ γα2F (τ ,v, n)

2
+
F (τ ,v, n) + ∥ε(v)∥2S

γ
+

1

2µ
⟨τνS ,v⟩Σ ,

where we used the ϵ-inequality with γ > 0 in the second line. Choosing γ > 0 sufficiently
large yields the upper bound

∥ε(v)∥2S ≤ αF (τ ,v, n) +
1

2µ
⟨τνS ,v⟩Σ (25)

Combining equations (25), (22) and (21) we obtain the desired result

∥(τ ,v, n)∥2WS
≤ α

(
∥τ∥2S + ∥div τ∥2S + ∥ε(v)∥2S + ∥nχ∥2S

)
+ ∥τνF ∥2Σ

≤ α (F (τ ,v, n) + ⟨τνS ,v⟩Σ) + ∥τνF ∥2Σ .

(A lower bound: fluid functional) A lower bound for the fluid functional FF (ξ, q) is
given with the corresponding norm

∥(ξ, q)∥2WF
= ∥ξ∥2H(div;ΩF ) + ∥ξ · νF ∥2Σ + ∥q∥2H1(ΩF ) .

Before stating the ellipticity result we first recall an inequality of Poincaré-Friedrichs type
of the following form:

Lemma 4.3 (Inequality of Poincaré-Friedrichs type). Let Ω be a bounded connected open
set with Lipschitz boundary. Then, there there is a α(Ω) > 0 such that

∥q∥2H1(Ω) ≤ α

(
1

|∂Ω|

(∫
∂Ω

q dΓ

)2

+ ∥grad q∥2L2(Ω)

)
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Proof. This theorem is a consequence of [13, Lemma B.63] and [13, Example B.64].

Theorem 4.3 (Ellipticity of the Fluid Functional). There exists a positive constant α
such that

∥(ξ, q)∥2WF
≤ α

(
FF (ξ, q) + ⟨ξ · νF , q⟩L2(Σ) +

1

|Σ|

(∫
Σ

q dΓ

)2
)

+ ∥ξ · νF ∥2Σ .

Proof. We start by rewriting

α

(
FF (ξ, q) +

1

|Σ|

(∫
Σ

q dΓ

)2
)

≥ ∥ξ∥2F + ∥grad q∥2F + 2γ∥div ξ∥2F

− 2⟨ξ, grad q⟩F +
1

|Σ|

(∫
Σ

q dΓ

)2

≥ ∥ξ∥2F + αP ∥q∥2H1(ΩF ) + 2γ∥div ξ∥2F + 2⟨div ξ, q⟩F − 2⟨ξ · νF , q⟩Σ

≥ ∥ξ∥2F + γ∥div ξ∥2F + αP ∥q∥2H1(ΩF ) −
1

γ
∥q∥2F − 2⟨ξ · νF , q⟩Σ ,

for all γ > 0 and fixed αP originating from the Poincaré-Friedrichs inequality. This yields
the required result for γ sufficiently large.

(A lower bound: interface functional) As a last steps towards the ellipticity result
we bound the interface terms of the least-squares functional in the following way:

Theorem 4.4 (Ellipticity of the Interface Functional). There exists positive constants
0 < α1, 0 < α2 < 1 such that

α1FΣ(τ ,v, n, ξ, q) ≥ ⟨τνF ,v⟩Σ + ⟨ξ · νF , q⟩Σ +
1

|Σ|

(∫
Σ

q dΓ

)2

+ ∥τνF ∥2Σ + ∥ξ · νF ∥2Σ

− α2∥τνF ∥2Σ − α2∥v∥2H1(ΩS) − α2∥q∥2H1(ΩF ) .

Proof. We start by obtaining a bound for the boundary-integral term

1

|Σ|

(∫
Σ

q dΓ

)2

≤ 1

|Σ|

(∫
Σ

|q| dΓ
)2

≤ ∥q∥2L2(Σ) ,

where the last inequality is obtained directly by Hölders inequality. We can bound the
least-squares functional by

(2 +
1

α
)FΣ(τ ,v, n, ξ, q) ≥ (2 +

1

α
)∥τνF + qνF ∥2Σ + (1 +

1

α
)∥ξ · νF ∥2Σ

for any α > 0. Using

1

α
∥τνF + qνF ∥2Σ ≥ −αρ2∥v∥2Σ + 2ρ⟨v, τνF + qνF ⟩Σ and

1

α
∥ξ · νF ∥2Σ ≥ −α∥q∥2Σ + 2⟨ξ · νF , q⟩Σ
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for ρ > 0, one can now split the least-squares functional into

(2 +
1

α
)FΣ(τ ,v, n, ξ, q) ≥ 2∥τνF ∥2Σ + 2∥qνF ∥2Σ + 4⟨τνF , qνF ⟩Σ + ∥ξ · νF ∥2Σ

− αρ2∥v∥2Σ + 2ρ⟨τνF ,v⟩Σ + 2ρ⟨qνF ,v⟩Σ
− α∥q∥2Σ + 2⟨ξ · νF , q⟩Σ .

Furthermore, we observe

2⟨qνF , 2τνF + ρv⟩Σ ≥ −β∥2τνF + ρv∥2Σ − 1

β
∥qνF ∥2Σ

≥ −4β∥τνF ∥2Σ − βρ2∥v∥2Σ − 4βρ⟨τνF ,v⟩Σ − 1

β
∥qνF ∥2Σ

for β > 0 and obtain

(2 +
1

α
)FΣ(τ ,v, n, ξ, q) ≥ (2− 4β)∥τνF ∥2Σ + (2− 1

β
)∥qνF ∥2Σ − βρ2∥v∥2Σ + ∥ξ · νF ∥2Σ

+ (2− 4βρ)⟨τνF ,v⟩Σ − αρ2∥v∥2Σ − α∥q∥2Σ + 2⟨ξ · νF , q⟩Σ .

After reordering the terms and substituting ∥qνF ∥2Σ = ∥q∥2Σ we obtain the estimate

(2 +
1

α
)FΣ(τ ,v, n, ξ, q) ≥ (2− 4β)∥τνF ∥2Σ + ρ2(−β − α)∥v∥2Σ + (2− 1

β
− α)∥q∥2Σ + ∥ξ · νF ∥2Σ

+ (2− 4βρ)⟨τνF ,v⟩Σ + 2⟨ξ · νF , q⟩Σ .

Upper bounds for ∥q∥2L2(Σ) and ∥v∥2L2(Σ) can be obtained using standard trace theorems

(see, for example, [14, Chapter 5.5]),

∥q∥2L2(Σ) ≤ γT ∥q∥2H1(ΩF ),

∥v∥2L2(Σ) ≤ γT ∥v∥2H1(ΩS)

for some γT > 0. Now observe that we can split (2− 1
β − α)∥q∥2Σ into

(2− 1

β
− α)∥q∥2Σ = (2− 1− κ

β
− α)∥q∥2Σ − κ

β
∥q∥2Σ

for 0 < κ < 1. Applying the trace theorem only to the latter term yields the estimate

(2 +
1

α
)FΣ(τ ,v, n, ξ, q) ≥ (2− 4β)∥τνF ∥2Σ − γT ρ

2(β + α)∥v∥2H1(ΩS) + (2− 1− κ

β
− α)∥q∥2Σ

− κγT
β

∥q∥2H1(ΩF ) + ∥ξ · νF ∥2Σ + (2− 4βρ)⟨τνF ,v⟩Σ + 2⟨ξ · νF , q⟩Σ .

To finish the proof we fix κ = κT with 0 < κT < β
γT

. We furthermore require (2− 1−κT

β − α) > 0

and (2− 4β) > 0. This is satisfied for 1−κT

2 < β < 1
2 and α < κT

β . Choosing

ρ < min{1,
√

1
γT (α+β)} ensures 2− 4βρ > 0 and γT ρ

2(α+ β) < 1.

(Ellipticity results) What remains is to combine the lower bounds for the solid func-
tional, the fluid functional, and the interface functional into the desired ellipticity result:
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Theorem 4.5 (Ellipticity of the Least-Squares Functional). There exists a positive con-
stant α such that

∥(τ ,v, n, ξ, q)∥2W ≤ αF (τ ,v, n, ξ, q) .

Proof. Combining Theorem 4.2, 4.3 and 4.4 yields an upper bound of the form

∥(τ ,v, n, ξ, q)∥2W ≤ β (FS(τ ,v, n) + FF (ξ, q) + ⟨τνS ,v⟩Σ + ⟨ξ · νF , q⟩Σ) +
1

|Σ|

(∫
ΩF

q dΓ

)2

+ ∥τνF ∥2Σ + ∥ξ · νF ∥2Σ
≤ β (FS(τ ,v, n) + FF (ξ, q) + FΣ(τ ,v, n, ξ, q))

+ α∥τνF ∥2Σ + α∥v∥2H1(ΩS) + α∥q∥2H1(ΩF )

with 0 < α < 1 and β > 0. Reordering the terms and scaling the inequality yields the
desired result.

4.3.2 Continuity

The continuity of the LS functional follows from a more straightforward manner than the
ellipticity of the functional. We prove continuity of the functional by rewriting the terms.

Theorem 4.6 (Continuity of the Least-Squares Functional). There exists a positive con-
stant α such that

∥(τ ,v, n, ξ, q)∥2W ≥ αF (τ ,v, n, ξ, q) .

Proof. One starts by bounding the LS functional by

F (τ ,v, n, ξ, q) ≤ ∥C−1τ∥2S + ∥grad v∥2S + ∥nχ∥2S + ∥div τ∥2S + ∥sk(τ )∥2S
+ ∥ξ∥2F + ∥grad q∥2F + ∥div ξ∥2F
+ ∥τνF ∥2Σ + ∥qνF ∥2Σ + ∥ξ · νF ∥2Σ .

It remains to bound each term individually. Firstly,

∥C−1τ∥2S ≤ 1

(2λ)2
∥τ∥2S +

1

(2λ)2
λ2

(2λ+ 2λ)2
∥tr(τ )δ∥2S ,

which together with the bound given in equation (23) yields

∥C−1τ∥2S ≲ ∥τ∥2S .

Furthermore, one can rewrite

∥sk(τ )∥2S ≤ ∥sk(τ )∥2S + ∥sym(τ )∥2S = ∥τ∥2S and ∥nχ∥2S = 2∥n∥2S .

F (τ ,v, n, ξ, q) ≲ ∥τ∥2S + ∥grad v∥2S + ∥n∥2S + ∥div τ∥2S
+ ∥ξ∥2F + ∥grad q∥2F + ∥div ξ∥2F
+ ∥τνF ∥2Σ + ∥q∥2Σ + ∥ξ · νF ∥2Σ .

Lastly, applying a standard trace theorem as in the precious section

∥q∥2L2(Σ) ≤ γT ∥q∥2H1(ΩF )

concludes the proof after substituting each of the above terms.
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Proving the continuity of the least squares functional concludes the proof of Theorem 4.1.
This ensures that the (discrete) variational formulation (13) has a unique solution, as a
result of Theorem 1.2.

4.4 Finite Element Approximation

To discretize the variational problem defined in Section 4.2, suitable finite element spaces
need to be constructed. The choice of finite element spaces has great impact on the ac-
curacy and convergence of the method. In what follows we will assemble the conforming
finite element space Wh ⊂ W by constructing an approximation space for each individual
subspace. The finite element space will therefore be built by five distinct finite element
spaces, Wh = Vτ

h × Vv
h × Vn

h × Vξ
h × Vq

h, where the superscripts indicate the related quan-
tity. As a consequence, we are looking for finite element spaces Vτ

h ⊂ H̄ΓD
(div; ΩS),

Vv
h ⊂ H1(ΩS) and Vn

h ⊂ L2(ΩS) in the structural domain ΩS . For the fluid domain we

need to define Vξ
h ⊂ H̄(div; ΩF ) and Vq

h ⊂ H1(ΩF ).

Let T S
h and T F

h be regular, triangular partitions of the domains ΩS and ΩF , respec-
tively. Let h denote the mesh size in both domains which we assume to be constant for
all elements. For simplicity, we will assume the triangulations to be compatible along the
interface Σ, meaning vertices of both meshes to overlap on the interface. We will further-
more denote edges by (ei)i and vertices by (xi, yi)i.

The finite element spaces Vv
h and Vq

h are constructed by continuous piecewise polyno-
mials, as described in Section 3.1. For the velocity, each entry of the vector-valued space
is constructed separately. The essential Dirichlet boundary conditions are easily imposed
on the function space and we define

Vv
h,k := {vh ∈ C(ΩS) : vh|T ∈ Pk(T ), ∀ T ∈ T S

h and vh|ΓD
= 0} .

Here we introduce Pk(T ), the vector-valued polynomial functions up to degree k. For the
fluid domain we define the finite element space for the pressure by

Vq
h,k := {qh ∈ C(ΩF ) : qh|T ∈ Pk(T ) ∀ T ∈ T F

h } .

It remains to fix the order of the of the approximations, k. Since it is desirable to obtain
good approximations of the quantities as well as their first derivatives, an order of k ≥ 1
will be necessary to capture both.

The vorticity can be discretized by piecewise polynomial functions, following Section 3.2,

Vn
h,k := {ϕ ∈ L2(ΩS) : ϕ|T ∈ Pk(T ) ∀T ∈ T S

h } .

The error bound in Theorem 3.2 suggests k ≥ 0 to be sufficient for convergence in h.

The stress in the structural domain and the pressure gradient in the fluid domain are
discretized by Raviart-Thomas elements, as described in Section 3.3. The finite element
space for the stress is constructed by combining two RT-elements. The essential Neumann
boundary conditions can readily be incorporated into the function space,

Vτ
h,k := {τ |T ∈ H̄(div; ΩS) | τ ∈ RTk(T ) ∀ T ∈ T S

h and τν|ΓN
= 0} .
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Here,RT (T ) is the tensor function space constructed by assembling two elements, ϕ1, ϕ2 of

the vector function space RT (T ), τ =
[
ϕ1 ϕ2

]T
. The pressure gradient is approximated

in the space

Vξ
h,k := {ξ ∈ H̄(div; ΩF ) | ξ ∈ RTk(T ) ∀ T ∈ T F

h } .

To obtain accurate representations of the stress and pressure gradient we desire good ap-
proximations of the functions and its divergence. Following Theorem 3.4, choosing k ≥ 0
is sufficient for convergence.

The finite element space for the fluid structure interaction is then constructed by

Wh,k := Vτ
h,k × Vv

h,k+1 × Vn
h,k × Vξ

h,k × Vq
h,k+1 .

with order k. Note the increased order of Vv
h,k+1 and Vq

h,k+1 in this definition.

4.5 Discrete Variational Formulation

The finite element space gives rise to the discrete least-squares functional, Fh : Wh,k → R,

Fh(τh,vh, nh, ξh, qh;fS , fF ) = ∥div τh + fS∥2S + ∥C−1τh − grad vh + nhχ∥2S + ∥sk(τh)∥2S
+ ∥ξh − grad qh∥2F + ∥div ξh + fF ∥2F
+ ∥τhνF + qhνF ∥2Σ + ∥ξh · νF +

ρF
ρS
fS · νF ∥2Σ

(26)

and minimization problem

arg min
(τh,vh,nh,ξh,qh)∈Wh,k

Fh(τh,vh, nh, ξh, qh;fS , fF ) (27)

over the finite dimensional space Wh,k. The associated variational formulation reads:
Find (σh,uh,mh,πh, ph) ∈ Wh,k such that

⟨div σh,div τ ⟩S + ⟨C−1σh, C−1τ ⟩S + ⟨sk(σh), sk(τ )⟩S
− ⟨grad uh, C−1τ ⟩S − ⟨C−1σh, grad v⟩S
+ ⟨grad uh, grad v⟩S
− ⟨curl uh, n⟩S − ⟨curl v,m⟩S
+ ⟨mhχ, C−1τ ⟩S + ⟨C−1σh, nχ⟩S + 2mhn

+ ⟨πh, ξ⟩F + ⟨div πh,div ξ⟩F
− ⟨grad ph, ξ⟩F − ⟨πh, grad q⟩F
+ ⟨grad ph, grad q⟩F
+ ⟨σhνF , τνF ⟩Σ
+ ⟨phνF , τνF ⟩Σ + ⟨σhνF , qνF ⟩Σ
+ ⟨πh · νF , ξ · νF ⟩Σ + ⟨phνF , qνF ⟩Σ

= −⟨fS ,div τ ⟩S − ⟨fF ,div ξ⟩F + ⟨ρF
ρS
fS · νF , ξ · νF ⟩Σ

(28)

for all (τ ,v, n, ξ, q) ∈ Wh. Existence and uniqueness for the discrete formulation is again
given by Theorem 1.2 in conjunction with norm equivalence of the continuous least-squares
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functional. The corresponding eigenvalueproblem then reads:
Find ωh ∈ R, (σh,uh,mh,πh, ph) ∈ Wh,k such that

⟨div σh,div τ ⟩S + ⟨C−1σh, C−1τ ⟩S + ⟨sk(σh), sk(τ )⟩S
− ⟨grad uh, C−1τ ⟩S − ⟨C−1σh, grad v⟩S
+ ⟨grad uh, grad v⟩S
− ⟨curl uh, n⟩S − ⟨curl v,m⟩S
+ ⟨mhχ, C−1τ ⟩S + ⟨C−1σh, nχ⟩S + 2mhn

+ ⟨πh, ξ⟩F + ⟨div πh,div ξ⟩F
− ⟨grad ph, ξ⟩F − ⟨πh, grad q⟩F
+ ⟨grad ph, grad q⟩F
+ ⟨σhνF , τνF ⟩Σ
+ ⟨phνF , τνF ⟩Σ + ⟨σhνF , qνF ⟩Σ
+ ⟨πh · νF , ξ · νF ⟩Σ + ⟨phνF , qνF ⟩Σ

= (ωh)
2

(
−⟨ρSu,div τ ⟩S − ⟨ 1

c2
p,div ξ⟩F + ⟨ρFu · νF , ξ · νF ⟩Σ

)

(29)

4.6 Convergence Analysis and Error Estimates

In addition to existence and uniqueness to the minimization problem (27), Theorem 1.2
also ensures the quasioptimality of the least-squares solution:

Theorem 4.7 (Quasioptimality of the LS approximation). Let (σ,u,m,π, p) ∈ W bet
the solution of (11) and let (σh,uh,mh,πh, ph) ∈ Wh,k be the solution of (28). Then

∥(σ − σh,u− uh,m−mh,π − πh, p− ph)∥W
≤ α inf

(τh,vh,nh,ξh,qh)∈Wh,k

∥(σ − τh,u− vh,m− nh,π − ξh, p− qh)∥W

for some α > 0.

An inherent a posteriori error estimate is given by the discrete LS functional. Moreover,
the LS functional gives insight into the error distribution over the domain, creating the
option to apply adaptive mesh refinement methods. To obtain an a priori error estimate
we will first state the interpolation estimate for the space Wh:

Theorem 4.8 (Approximation Property Finite Element Space). Let Πh : W → Wh,k be
the global interpolation operator described in the previous sections. Furthermore assume

σ ∈Hk+1(ΩS) ∩ H̄ΓN
and div τ ∈ Hk+1(ΩS) ,

u ∈Hk+2
ΓD

(ΩS) ,

m ∈ Hk+1(ΩS) ,

π ∈ Hk+1 ∩ H̄(div; ΩF ) ,

p ∈ Hk+2(ΩF ) .

Then we obtain the interpolation estimate

∥(σ,u,m,π, p)−Πh(σ,u,m,π, p)∥W ≤ αhk+1∥(σ,u,m,π, p)∥W .
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Proof. The theorem follows from the approximation estimates presented in Theorem 3.1,
Theorem 3.4 and Theorem 3.2.

We can now formulate an a priori error esimator:

Theorem 4.9 (A priori error estimate). Let (σ,u,m,π, p) ∈ W be the exact solution to
the system (11). Let (σh,uh,mh,πh, ph) ∈ Wh,k be the solution to (28). Furthermore
assume

σ ∈Hk+1(ΩS) ∩ H̄ΓN
and div τ ∈ Hk+1(ΩS) ,

u ∈Hk+2
ΓD

(ΩS) ,

m ∈ Hk+1(ΩS) ,

π ∈ Hk+1 ∩ H̄(div; ΩF ) ,

p ∈ Hk+2(ΩF ) .

Then

F (σh,uh,mh,πh, ph;fS , fF ) ≤ αhk+1∥(σ,u,m,π, p)∥W

for some α > 0 and given fS ∈H1(ΩS), fF ∈ L2(ΩF ).

Proof. Using the continuity of the LS functional, Theorem 4.6,

F (σh,uh,mh,πh, ph;fS , fF ) = F (σ − σh,u− uh,m−mh,π − πh, p− ph;0, 0)

≤ α∥(σ − σh,u− uh,m−mh,π − πh, p− ph)∥W
≤ αhk+1∥(σ,u,m,π, p)∥W .

In the last step we used Πh(σ,u,m,π, p) = (σh,uh,mh,πh, ph) and applied the interpo-
lation estimate of Theorem 4.8.

Besides an a priori estimator, Theorem 4.9 ensures convergences for sufficiently smooth
exact solutions.
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5 Numerical Implementations

We will formulate the matrix equations of the fluid-structure interaction in Section 5.1
followed by some notes on the implementation. In Section 5.2 we state the numerical
results for the implementation.

5.1 Matrix Formulation

Rewriting the discrete variational formulation (29) to a matrix equation requires the eval-
uation of inner products of basis functions. By doing so, we obtain a system of the the
form
Aσ Aσ,u Aσ,m 0 Cσ,p

AT
σ,u Au Au,m 0 0

AT
σ,m AT

u,m Am 0 0
0 0 0 Bπ Bπ,p

CT
σ,p 0 0 BT

π,p Bp



σ⃗
u⃗
m⃗
π⃗
p⃗

 = (ωh)
2


0 0 0 0 0

−ρSFT
σ,σ 0 0 0 0

0 0 0 0 0
0 ρFE

T
u,ξ 0 0 − 1

c2Fπ,p

0 0 0 0 0



σ⃗
u⃗
m⃗
π⃗
p⃗


where on the left-hand side A indicates operators associated with the solid domain, B
indicates operators associated with the fluid domain and C indicates operators associated
with the interface. The subscripts refer to the related quantities, for example Aσ,u is as-
sociated with the bilinear form −⟨grad u, C−1τ ⟩S and AT

σ,u with −⟨C−1σ, grad v⟩S . On
the right-hand side we denote by Fσ,u the operator associated with ⟨u,div τ ⟩S , Fπ,p with
⟨p, div ξ⟩F and Fu,ξ with ⟨u · νF , ξ · νF ⟩Σ.

The matrix on the left-hand side is symmetric and positive-definite. This is ensured by the
Rayleigh-Ritz-like setting of Theorem 1.2. Clearly, symmetry of the right-hand side is not
given. It is useful to rewrite the system to obtain symmetric matrices at both sides. One
way to achieve this is to rewrite the system to an equivalent symmetric formulation, as is
done in [4] or [1]. However, in our case, this step is not as straightforward and we have
therefore decided to leave the system in its original form. This choice has the disadvantage
that we cannot draw any conclusions about whether the system has real eigenvalues.
For the implementations of the problem we construct two separate finite element systems,
one for the fluid domain and one for the solid domain. For simplicity, we rewrite the
system to [

AS C
CT AF

] [
x⃗S
x⃗F

]
= (ωh)

2

[
FS 0
E FF

] [
x⃗S
x⃗F

]
where the matrices for the solid, fluid and structural part are combined. To be able to
apply standard eigenvalue solvers we rewrite the system to

1

(ωh)2

[
AS C
CT AF

] [
x⃗S
x⃗F

]
=

[
FS 0
E FF

] [
x⃗S
x⃗F

]
and solve for 1

(ωh)2
. The computation of the matrices AS , AF , FS and FF are is done in

the usual manner, and is carried out using the build-in functions of FEniCS. Computing
the coupling matrices C and E is, to the knowledge of the author, not directly possible in
FEniCS and will therefore be calculated manually. We now proceed with the definitions
of C and E. To keep calculations as simple as possible, we consider the lowest order
finite element space Wh,0. Note that the order of Raviart-Thomas functions is defined
differently in FEniCS and that the lowest order corresponds to the definitions provided
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below. Furthermore, Raviart-Thomas tensor and vector elements are constructed using
VectorElement and FintieElement, respectively. In total, we employ the following spaces
in FEniCS :

σ ∈ VectorElement(’RT ’, 1)

u ∈ VectorElement(’CG ’, 1)

m ∈ FiniteElement(’DG’, 0)

π ∈ FiniteElement(’RT’, 1)

p ∈ FiniteElement(’CG’, 1)

We start by manually obtaining the operators for ⟨phνF , τνF ⟩Σ and ⟨σhνF , qνF ⟩Σ for the
lowest-order Raviart-Thomas elements and first-order Lagrangian elements. The proce-
dure is as follows:

Let ei denote the edges associated with the solid mesh and ψi, 0 ≤ i ≤ N the corre-
sponding Raviart-Thomas basis function. One can readily show that ψi · νS |ej = δi,j is
constant along the edge ej . The basis functions for the Raviart-Thomas tensor space are

now constructed using τlk =

[
ϕT

l

ϕT
k

]
, with (ϕl)l≥0 the basis function for the Raviart-Thomas

vector space.
We denote the Lagrangian basis functions by ψi, 0 ≤ i ≤ N and compute

⟨phνF , τlkνF ⟩Σ = ⟨phνF ,
[
ϕT

l

0

]
νF ⟩el + ⟨phνF ,

[
0
ϕT

k

]
νF ⟩ek

= ⟨

(
N∑
i=0

piψi

)
νF ,

[
−1
0

]
⟩el + ⟨

(
N∑
i=0

piψi

)
νF ,

[
0
−1

]
⟩ek

= −νF,x
|el|
2
pl−1 − νF,x

|el|
2
pl − νF,y

|ek|
2
pk−1 − νF,y

|ek|
2
pk

=
[
−νF,x

|el|
2 −νF,x

|el|
2 −νF,y

|ek|
2 −νF,y

|ek|
2

]
pl−1

pl
pk−1

pk

 ,

(30)

where νF,x and νF,y denote the first and second component of the normal vector. Similarly,
for a Lagrangian basis function qi with nonzero value on ei and ei−1:

⟨σhνF , qiνF ⟩Σ = ⟨σhνF , qiνF ⟩ei−1
+ ⟨σhνF , qiνF ⟩ei

= ⟨
[
σ1
i−1ϕ

T
i−1

σ2
i−1ϕ

T
i−1

]
νF , qiνF ⟩ei−1

+ ⟨
[
σ1
iϕ

T
i

σ2
iϕ

T
i

]
νF , qiνF ⟩ei

= ⟨
[
−σ1

i−1

−σ2
i−1

]
, qiνF ⟩ei−1 + ⟨

[
−σ1

i

−σ2
i

]
, qiνF ⟩ei

= −|ei−1|
2

νF,xσ
1
i−1 −

|ei−1|
2

νF,yσ
2
i−1 −

|ei|
2
νF,xσ

1
i −

|ei|
2
νF,yσ

1
i

=
[
− |ei−1|

2 νF,x − |ei−1|
2 νF,y − |ei|

2 νF,x − |ei|
2 νF,y

]
σ1
i−1

σ2
i−1

σ1
i

σ2
i .



(31)

Equations (30) and (31) define the rows of the matrices C and CT . It is easy to see that
the constructed matrices are indeed transposes of each other.
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For the matrix on the right-hand side let ξi denote the lowest order Raviart-Thomas
element. Then,

⟨uh · νF , ξi · νF ⟩Σ = ⟨uh · νF , ξi · νF ⟩ei = ⟨uh · νF , 1⟩ei

=
[
|ei|
2 νF,x

|ei|
2 νF,y

|ei|
2 νF,x

|ei|
2 νF,y

]
u1i−1

u2i−1

u1i
u2i


for uh approximated by first order Lagrangian vector elements. This forms the entries of
the matrix E and concludes drawing up the discrete system.

5.2 Numerical Results

For the numerical experiment we consider a two-dimensional steel container filled with
water, more precisely, we use the same setup as introduced by Bermudez et al. in [1].
Typical quantities are, see for example [1] or [19],

• νP = 0.35 ,

• E = 1.441011 Pa ,

• ρS = 7700 Kg/m 3 ,

• ρF = 1000 Kg/m 3 ,

• c = 1430 m/s .

The elasticity modulus E and Poisson ratio νP give rise to the Lamé coefficients by

λ =
EνP

(1 + νP )(1− 2νP )
and µ =

E

2(1 + νP )
.

The fluid domain will cover the unit square, the solid domain encloses the fluid domain,
as shown in Figure 8. The structure is fixed at the bottom and is free of stress at all
other boundaries. A regular triangular mesh is constructed for the domains, as shown in
Figure 9. Both meshes are constructed such that the vertices on the interface coincide
and the mesh diameter of both meshes coincides. We furthermore define the refinement
parameter N to be linear to the number of element layers across the thickness of the solid.
An example of the mesh is shown in Figure 9, where N = 2 is adopted. Note that the
diameter h of the mesh is halved if the refinement parameter is doubled. The number
of cells for both meshes as well as the number of d.o.f. of each formulation are listed in
Table 1. The eigenvalue problem is constructed as described in Section 5.1. The computed
eigenfrequencies (ωh)i for the first three modes are listed in Table 2. Several eigenfunctions
are shown in Figure 10. Here, we plotted the first eigenfunction for meshes with N = 4 and
N = 8 to compare the same eigenfunctions on different meshes. Furthermore, the third
eigenfunction for N = 4 is depicted. Here, the obtained eigenvalue is close the reference
case by Bermudez et al. described in the next section, and comparison of the eigenfunctions
is of interest.
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ΩS

ΩF

0.125m 1.00m 0.125m

0.125m

1.00m

0.125m

ΓD

Figure 8: Steel cavity with water inside.

Figure 9: Meshes for the solid domain (left) and the fluid domain (right) for N = 2.

Table 1: Number of cells and d.o.f. in each subdomain.

N cells ΩS cells ΩF d.o.f. ΩS d.o.f. ΩF

2 288 512 1728 1089
4 1152 2048 6336 4225
8 4068 8192 24192 16641
16 19584 32768 94464 66049

Table 2: First eigenfrequencies in [rad/s].

Mode N = 2 N = 4 N = 8 N = 16

1st 214.4287 69.8921± 48.5747j 79.3296 68.4049± 10.5005
2nd 340.2275± 148.8240j 129.2544± 47.4294j 137.9913 70.2523
3rd 349.5590 279.5397 174.5258 + 61.9401j 70.3725
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(a) Eigensolutions corresponding with ω1 for N = 4

(b) Eigensolutions corresponding with ω1 for N = 8.

(c) Eigensolutions corresponding with ω3 for N = 4.

Figure 10: Examples of eigenfunctions at several levels of refinement.
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The lack of convergence of the results in Table 2 suggests that the developed method does
not produce meaningful results at this stage. Comparing these results to the results pre-
sented in [1], we observe that the real parts of the eigenvalues obtained here are within the
same range as [1] for some specific settings. Despite this, there is no complete agreement.
In addition, the eigenvalues do not converge when refining the mesh. This could have var-
ious reasons. Firstly, we constructed the least-squares functional using solely L2-norms.
As already mentioned in Section 4, replacing the trace-norms in the LS functional yields
suboptimal results. In [23], Stevenson elaborates on the effects and suggests precondi-
tioning of the LS functional whenever replacing norms. Secondly, taking a closer look at
the conditioning of the eigenvalueproblem shows some cause for computational issues. In
particular, the Lamé coefficients are of order µ ≈ 1010 and λ ≈ 1011. The inner products

use the evaluation of
(

λ
2µ(2µ+2λ)

)2
. This fact, in combination with aiming for a small

eigenvalue of the form 1
(ωh)2

, is expected to yield inaccurate results. Comparing the eigen-

functions depicted in Figure 10 with the expected results presented in the next section also
implies faulty results. Not only is the solution for refined meshes not consistent, physical
interpretation is also not evident.

To verify whether convergence improves when different values of µ and λ are chosen we
run additional simulations with the made-up constants

• λ = 100 Pa,

• µ = 10 Pa.

The remaining constants are unchanged. The results can be found in Table 3.

Table 3: First eigenfrequencies in [rad/s] with λ = 100 and µ = 10.

Mode N = 2 N = 4 N = 8 N = 16

1st 965.4107 986.8243 981.0819 981.1344
2nd 988.5367 984.3537 984.5058 984.3174
3rd 1016.6279 1012.3534 1011.4935 1011.5444
4th 1595.9532 1258.5902 1251.9838 1251.9068
5th 1770.5451 1551.0105 1548.3767 1560.2639

Although the method shows convergence the computed order of convergence on each step
does not give a precise indication yet. The obtained orders of convergence are given in
Table 4. The first eigenmodes for the structural displacement and the fluid pressure are
shown in Figure 11. The eigenfunction of the fluid pressure describe a plausible eigenmode.
For the structural displacement, a physical interpretation is not as apparent, as we would
expect the largest displacements along the Neumann boundary. While the convergence
of the eigenvalues provides confidence in the obtained numerical results for this made-up
setting, verification by comparison with literature is unfortunately not possible.
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Table 4: Convergence order with λ = 100 and µ = 10.

Mode order α4 order α8

1st 1.899 6.772
2nd 4.781 −0.309
3rd 2.314 4.0782
4th 5.674 6.423
5th 6.381 −2.174

Figure 11: Structural displacement (left) and fluid pressure (right) for ω1, λ = 100, µ = 10
and N = 16.
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6 Least-Squares Functional as Error Estimator

Additionally to deriving a finite element formulation, the LS functional can also be ex-
ploited as an error estimate for otherwise derived discrete models. In this section, we
first present the pressure/displacement formulations for the fluid structure interaction.
Subsequently, we apply the LS functional as error estimator and present numerical results.

6.1 The Pressure-Displacement Formulation

To avoid the inaccurate results obtained by the LS formulation described in the previous
section, we resort to the pressure-displacement formulation of the fluid-structure interac-
tion problem presented by Bermudez et al. in [1]. Here, the primal formulation of the
problem is kept,

div σ(u) + ω2ρSu = 0 in ΩS ,

∆p+
ω2

c2
p = 0 in ΩF ,

u = 0 on ΓD ,

σ(u) = 0 on ΓN ,

σ(u)νF + pνF = 0 on Σ ,

1

ρF

∂p

∂νF
− ω2u · νF = 0 on Σ .

Note that σ adopted here is not the same as σ used in previous sections. Instead, σ is the
function describing

σ(u) = C(ϵ(u)) ,

describing Hooke’s Law. The weak form reads: Find ω ∈ R and 0 ̸= (u, p) ∈ V such that

⟨σ(u), ϵ(u)⟩S + ⟨ 1

ρF
∇p,∇q⟩F − ⟨p,v · νF ⟩Σ

= ω2⟨ρSu,v⟩S + ω2⟨ 1

ρF c2
p, q⟩F + ω2⟨u · νF , q⟩Σ ∀(v, q) ∈ V ,

for V := H1
ΓD

(ΩS) ×H1(ΩF ). Approximating the solution space with appropriate finite
element spaces leads to the matrix formulation[

KS −C
0 1

ρF
KF

P

] [
US

P

]
= (ωh)

2

[
MS 0
CT 1

ρF c2M
F
P

] [
US

P

]
.

This problem is ill-conditioned, prompting Bermudez et al. to solve[
KS −C
0 δ 1

ρF
KF

P

] [
US

P

]
= η2

[
MS − δKS δC

δCT δ
(

1
ρF c2M

F
P − δKF

P

)][US

P

]

with η2 = (ωh)
2/[1 − δ(ωh)

2]. This reformulation assures a symmetric positive definite
right hand side, provided that δ > 0 is sufficiently small. For a more detailed derivation
we refer to the paper by Bermudez et al..
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6.2 Numerical Results: Pressure-Displacement Formulation

Numerical validation is carried out using the same setup as described in Section 5.2. The
finite element spaces for the displacement u and pressure p, Vh = Vv

h,1 × V1
h,1 are chosen

as the spaces of first-order piecewise polynomial functions, identical to the LS setting
previously presented. With meshes as in Section 5.2, we note the degrees of freedom for
both subdomains in Table 5. It is worth mentioning that the number of d.o.f. in this setting
is significantly smaller than used in Section 5.2. This is a direct result of the absence of
various variables in the approach used in this section.

Table 5: Number of cells and d.o.f. in each subdomain for the pressure/displacement
formulation.

N cells ΩS cells ΩF d.o.f. ΩS d.o.f. ΩF

2 288 512 432 289
4 1152 2048 1440 1089
8 4068 8192 5184 4225
16 18432 32768 19584 16641

Table 6: Eigenfrequencies for the pressure/displacement formulation in [rad/s].

Mode N = 2 N = 4 N = 8 N = 16

1st 87.9299 66.9007 63.7641 63.2626
2nd 299.9612 237.3229 227.1345 225.3493
3rd 480.5712 384.5606 367.7761 364.9972

The given experiment yields the eigenfrequencies presented in Table 6. These frequencies
coincide with the results found by Bermudez et al.. The corresponding eigenfunctions for
the first three eigenmodes for the mesh with refinement parameter N = 4 are depicted in
Figure 12. The measured order of convergence of the eigenvalues is 5

2 , as given in Table 7.

Table 7: Order of convergence of the eigenvalues with the pressure/displacement formula-
tion.

Mode order α4 order α8

1st 2.74512 2.64488
2nd 2.62012 2.51277
3rd 2.51606 2.59454
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(a) Displacement and pressure for ωh,1.

(b) Displacement and pressure for ωh,2.

(c) Displacement and pressure for ωh,3.

Figure 12: First three eigenfunctions obtained at N=4. For each eigenfunction, the dis-
placement (left) and pressure (right) are shown.
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6.3 Least-Squares Functional as Error Estimator

To utilize the LS functional as an error estimate one first has to compute the missing
quantities, σ, m and π. These quantities are obtained by projecting the variables to finite
element spaces used in the LS setting. These spaces are Vτ

h,0, Vn
h,0 and Vξ

h,0, respectively.
Using

σ = C−1ϵ(u) ,

m =
1

2
∇× u ,

π = grad p ,

the variables are obtained by solving

⟨Cσ, τ ⟩S = ⟨ϵ(u), τ ⟩S ∀τ ∈ Vτ
h,0 ,

⟨m,n⟩S = ⟨1
2
∇× u, n⟩S ∀n ∈ Vn

h,0 ,

⟨π, ξ⟩F = ⟨grad p, ξ⟩F ∀ξ ∈ Vξ
h,0 .

The LS functional can now readily be evaluated over both subdomains. The terms defined
over the interface are assembled manually, similarly as is done in Section 5.1. To gain
more insight into the behavior of the LS functional, we split the function into its separate
subfunctionals

F (τ , ξ, n, ξ, q) = FS1(τ ,v) + FS2(τ ,v, n) + FS3(τ ) + FF1(ξ, q) + FF2(ξ, q) + FΣ1(τ , q) + FΣ2(ξ)

with

FS1(τ ,v) = ∥div τ + ω2ρSu∥2S ,

FS2(τ ,v, n) = ∥C−1τ − grad v + nχ∥2S ,

FS3(τ ) = ∥sk(τ )∥2S ,

FF1(ξ, q) = ∥ξ − grad q∥2F ,

FF2(ξ, q) = ∥div ξ + ω2

c2
p∥2F ,

FΣ1(τ , q) = ∥τνF + qνF ∥2Σ ,

FΣ2(ξ) = ∥ξ · νF − ω2ρFu · νF ∥2Σ .

For the first eigenvalue, the errors for each subterm are listed in Table 8. Firstly, we see
that FS3 is consistently zero. This is a result of the construction of σ and follows directly
from the symmetry of ϵ(u). For this reason we omit FS3 from further discussion. All other
terms, except for FS1, are converging towards zero with mesh refinement. The reason why
the first term is not converging is not entirely clear, one can however note that the error
of the FS1 is relatively large. This could again be due to the physical coefficients λ, µ
and ω2ρS being of order 1010. Although the errors of the interface functionals seem to
converge, the errors are relatively large. Here, too, we observe that these errors contain
terms that depend on µ, λ, and ω2ρF .

The order of convergence for some subfunctionals are listed in Table 9. For FS2 and
FF1 the order is at least one, whereas we observe second order convergence for FF2. These
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Table 8: Evaluation of FS1
, FS2, FF1, FF3 for ω1 on various meshes.

FS1 FS2 FS3 FF1 FF3

N = 2 5.1111915e+19 1.5959672e−06 0 4.6850155e−06 1.1144903e−08
N = 4 5.1829593e+19 4.7395440e−07 0 1.2602854e−06 1.3157121e−09
N = 8 5.6563338e+19 1.3573087e−07 0 5.0983766e−07 2.4303798e−10
N = 16 6.8310894e+19 4.0580186e−08 0 2.4596621e−07 5.5167141e−11

FΣ1 FΣ2

N = 2 1.1276993e+17 3.2504259e+13
N = 4 3.3814788e+16 1.3847004e+13
N = 8 1.9770806e+16 9.7743548e+12
N = 16 1.9632179e+16 8.6919628e+12

rates of convergence are also shown in Figure 13. For the interface terms we do not mea-
sure an order of convergence.

The lack of convergence for the interface terms is better understood when studying the
error as a function of space. The distribution of the error over the domain is shown in
Figure 15 and Figure 14. From these figures, it becomes clear that the error is largest
at the corners of the domain. This is not surprising, since the corners of the domain are
expected to give rise to singularities of the solution. It also stands out that the error
distribution of FS1 is large on the entire domain, with expected peaks in the corners. This
could suggest a scaling problem of the variable σ.
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Figure 13: FS2, FF1 and FF3 shown as function of the total number of d.o.f..

order α4 order α8 order α16

FS2 1.7516 1.8040 1.7419
FF1 1.8943 1.3056 1.0516
FF2 3.0825 2.4366 2.1393
FΣ1 1.7377 0.7743 0.0102
FΣ2

1.2311 0.5025 0.1693

Table 9: Convergence order of FS2, FF1, FF2 and FΣ1.
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(a) FS1. (b) FS2.

(c) FS3. (d) FF1.

(e) FF2.

Figure 14: Error distributions ofthe subfunctionals for ω1 with N = 4.
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(a) FS . (b) FF .

Figure 15: Error distributions of the structure functional FS = FS1 +FS2 +FS3 and fluid
functional FF = FF1 + FF2 for ω1 for N = 4.
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7 Conclusions and Outlook

7.1 Conclusions

The goal of this thesis was to investigate the least-squares finite element method for the
fluid-structure interaction spectral problem. LSFEM has the advantage that it requires
weaker restrictions as sufficient condition for existence and uniqueness in comparison with
standard finite element methods. The only required condition is the norm-equivalence of
the least-squares functional.
The fluid-structure interaction describes a linear elastic structure in contact with a fluid.
The problem has been rewritten to a first order system, utilizing stress, displacement and
vorticity in the elastic domain and pressure and the pressure gradient in the fluid domain.
A finite element space was constructed using H(div)-conforming Raviart-Thomas elements
in combination with piecewise polynomial functions. Standard approximation properties
were provided.
Several least-squares formulations have been developed, giving rise to the corresponding
variational formulations. A least-squares functional using L2-norm residuals and weakly
imposed boundary conditions has been analyzed further. The main theorem stated norm-
equivalence of the LS functional. Norm-equivalence resulted in various advantageous prop-
erties of the (discrete) formulation, in particular, existence and uniqueness of the solution.
The discrete formulation has been developed using the presented finite element spaces. As
a consequence of norm-equivalence of the LS functional and the standard approximation
properties an a priori error estimate was formulated. An a posteriori error estimate fol-
lowed directly from the least-squares functional.
A numerical experiment describing a steel container filled with water was presented. In
the numerical experiment we did not obtain any satisfactory results for the given com-
putational setup. However, convergence of eigenvalues was observed in a simplified test
case. Nonetheless, the physical implications of the eigenfunctions in this case remained
unclear. Since this particular setup could not be compared with prior research, no decisive
conclusions on the effectiveness of the LS method could be made.
Finally, the LS functional was applied as an a posteriori error estimate for different for-
mulations of the fluid-structure interaction problem. Employing the LS functional as an
a posteriori error estimate for the displacement/pressure formulation was only partially
successful since not all terms of the LS functional converged with mesh refinements. Con-
vergence for some parts of the LS functional could be demonstrated.

7.2 Outlook

With the numerical results not yielding the desired outcome, much progress can still be
made when applying LSFEM to the fluid-structure interaction problem. Possible future
research directions are summarized in the list provided below.

• Scaling of the eigenproblem As we have seen in Section 5.2, one of the computa-
tional problems may be the scaling of the problem. An obvious next step is to scale
the LS functional, in the spirit of preconditioning, and investigate how scaling the
problem can lead to a better conditioned problem.

• Solving the source problem The developed least-squares functional only describes
the source problem with source term fS and fF . Only later, the variational formu-
lation is extended to describe the eigenvalue problem. To better understand why
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the numerical implementations of the eigenvalue problem do not converge, a simple
setup of the source problem could be constructed.

• Treatment of boundary terms The LS functional analysed utilizes L2 norms to
capture the residual on the interface, instead of the fractional Sobolev norm. As
mentioned in Section 4, this yields suboptimal results. Stevenson states in [23] that
the fractional Sobolev norms can be replaced by equivalent efficiently computable
quantities. Developing an LS functional utilizing these fractional Sobolev norms
would therefore be of interest.

• Implementations While implementing the numerical experiment, we ran into some
restrictions of the FEniCS platform. As mentioned in Section 5.1, inner products
over the joint interface Σ cannot be easily constructed. Assembling the coupling
matrices manually is prone to manual errors and can easily lead to mistakes. Fur-
thermore, FEniCS could not handle inner products with Raviart-Thomas elements
in all settings which was quite inconvenient and might be the cause of errors. To
circumvent these problems, implementations using a different platform could be con-
sidered.

• Sloshing modes Once the numerical model delivers satisfactory results an inter-
esting next step would be to expand the model with an open boundary of the fluid.
This scenario includes sloshing movements which are common in physical examples.
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A Nomenclature

ΩS structural domain
ΩF fluid domain
ΓD Dirichlet boundary
ΓN Neumann boundary
Σ fluid structure interface
νS outward normal on structural domain
νF outward normal on fluid domain
C elasticity operator
sym(·), sk(·) symmetric and skew-symmetric tensor parts
ϵ(·) linearized strain tensor
δ identity matrix
χ skew-symmetric matrix
ρS structure density
ρF fluid density
c acoustic speed
E, µP elasticity modulus and Poisson ratio
λ, µ Lamé coefficients
fS source term
fF source term
σ structural stress tensor
u structural displacement vector
m structural vorticity
π fluid pressure gradient
p fluid pressure


