
University of Twente

Faculty EE-Math-CS
Department of Electrical Engineering

Supervisors dr.ir. J.F. Broenink
ir. G.H.Hilderink

June 2003

 Report 011CE2003
 Control Engineering

Department of Electrical Engineering
University of Twente

P.O.Box 217
7500 AE Enschede

The Netherlands

Joystick Controller for JIWY

Tijs Lammertink

Individual Design Assignment

 i

 i

Summary
JIWY is a mechatronic device with two rotational degrees of freedom, with a camera as its
‘end effector’. JIWY can be controlled with a joystick. Each joint is steered by a joystick axis.
The x-axis and the y-axis control the horizontal joint respectively the vertical joint.

A model of the total system has been realized and simulated in 20-sim. C++ code is generated
from the different controllers according to a new template. The code makes use of the CTC++
(Communicating Threads for C++) library, based on CSP (Communicating Sequential
Processes). The code can be compiled for all sorts of platforms. The intention was to use a
Real-Time Linux PC, but at the moment a MS-DOS PC is used, since Real-Time Linux
encounters a problem.

A position controller and a velocity controller were made to control the position respectively
the velocity of JIWY with the position of the joystick. The velocity controller seemed not
very useful because of the end-stops of JIWY. However, for alignment of JIWY the velocity
controller turned out to be very useful. The end-stops will be hit with a constant low speed.

Alignment is necessary, because the incremental encoders (measuring the position of JIWY)
only measure relative displacement and cannot measure absolute displacement. The position
controller is also used to home JIWY i.e. it returns to its alignment position when the
controller terminates.

Samenvatting
JIWY is een mechatronische opstelling met twee rotatie vrijheidsgraden, waarop een camera
geplaatst kan worden. JIWY kan dus bestuurd worden met een joystick, omdat die twee assen
heeft. De x-as en y-as sturen respectievelijk de horizontale en verticale richting aan.

Een model van het totale systeem is gerealiseerd en gesimuleerd in 20-sim. Van de
verschillende regelaars kan C++ code worden gegenereerd aan de hand van een nieuwe
template. De code maakt gebruik van de CTC++ (Communicating Threads for C++)
bibliotheek, gebaseerd op CSP (Communicating Sequential Processes). De code kan
gecompileerd worden voor allerlei soorten platforms. De bedoeling was om een Real-Time
Linux PC te gebruiken, maar op het moment wordt een MS-DOS PC gebruikt, omdat Real-
Time Linux een probleem heeft.

Een positieregelaar en een snelheidsregelaar zijn gemaakt om respectievelijk de positie en de
snelheid van JIWY te regelen met de positie van de joystick. De snelheidsregelaar bleek in
eerste instantie niet erg nuttig vanwege de end-stops op JIWY. Echter, voor het uitlijnen van
JIWY bleek de snelheidsregelaar wel degelijk nuttig, zodat de end-stops geraakt worden met
een constante lage snelheid.

Het uitlijnen is noodzakelijk, omdat de incrementele encoders (die de positie van JIWY
meten) alleen relatieve verplaatsingen kunnen meten en dus geen absolute verplaatsingen. De
positieregelaar wordt ook gebruikt om JIWY te ‘homen’. Dat wil zeggen dat hij zijn
uitlijningspositie opzoekt wanneer de regelaar eindigt.

 ii

 iii

Contents

1 Introduction..1

2 Architecture ..3
3 Modeling ...5

3.1 Introduction ... 5
3.2 Top model.. 5
3.3 Input / Output (IO).. 6
3.4 Bond graph .. 6

4 Controllers ..8
4.1 Position controller .. 8

4.1.1 Implementation .. 8
4.1.2 Digital filter ... 10
4.1.3 Simulation.. 11

4.2 Alignment .. 13
4.2.1 Introduction ... 13
4.2.2 Implementation .. 13
4.2.3 Simulation.. 14

4.3 Homing.. 16
4.4 Software architecture.. 16

5 Code Generation..18
5.1 Introduction ... 18
5.2 Template .. 18
5.3 Hierarchy... 19

6 Conclusions and recommendations..20
6.1 Conclusions ... 20
6.2 Recommendations .. 20

References...21

 iv

Preface
This project is part of the 3rd year of the Electrical Engineering study. It is called ‘The
Individual Design Assignment’.

I would like to thank my supervisors Jan Broenink and Gerarld Hilderink, because this project
was not possible without their assistance. Among other things, Gerald assisted me on the
code-generation part of this project and he came up with nice ideas about what to realize.

I also would like to thank Dusko Jovanovic for his help on this project. He assisted me on the
modeling part of this project.

Enschede, June 2003

Tijs Lammertink

 1

1 Introduction
JIWY is a little tabletop robot with two rotational degrees of freedom and a camera as its ‘end
effector’ (see Figure 1). The goal of this project was to design a digital controller that drives
JIWY with a joystick. The brand new CTC++ (communicating threads for C++) library had to
be tested with this project. A model of the complete system has been made in 20-sim. This
model can be used to simulate the system and optimize the parameters of the controllers.

From 20-sim version 3.2 code generation of models is possible. C++ code is generated from
the controllers, according to a new C++ template in 20-sim, which can be compiled for all
sorts of platforms (at the moment MS-DOS is used). This code has been made with the
principles of CSP (communicating sequential processes) and it makes use of the CTC++
library. The CTC++ library makes it much easier to program event-driven and parallel control
processes then in the sequential way.

Two controllers have been made: a position controller and a velocity controller. The position
controller is used to control the position of JIWY with the position of the joystick. Because of
the mechanical end-stops in both rotations, a joystick-controlled velocity controller is not very
useful. However the velocity controller turned out to be very useful for aligning JIWY.
Alignment is necessary because the relative incremental encoders cannot measure absolute
position. Every time the controller starts, JIWY has to be aligned. Another feature that has
been made is homing: when the position controller terminates, JIWY automatically homes to
a predefined position.

Figure 1 JIWY

The joystick controller for JIWY was first intended to run on a personal computer with
RTLinux, but since there were several problems with making parallel processes, it now runs
(temporarily) on another computer with MS-DOS.

 2

RTLinux and MS-DOS have the advantage that they can achieve the time limits that are
needed for hard Real-Time behavior. In contrast to MS-DOS, Linux is open source, so the
kernels can be adjusted like one wants. RTLinux has a real-time kernel on top of Linux. The
RTLinux kernel first schedules the RTLinux tasks as highest priority tasks and Linux has the
lowest priority task.

The organization of the report is as follows. The architecture of the total system has been
described in chapter 2. Chapter 3 is on modeling the total system: the top model, the IO-part
and the bond graph are depicted. Chapter 4 describes the controllers that have been made: the
Position controller, Alignment and Homing. The Code Generation part has been illustrated in
chapter 5. The last chapter represents the conclusions and recommendations.

 3

2 Architecture
The physical architecture of the total system shows two parallel joints that can work
independently and simultaneously. See Figure 2 for what is called a CSP diagram. This
diagram shows the communication graph as well as the composition graph. The three blocks
at the bottom of the figure represent three processes that are executed sequentia lly, which is
indicated by the ‘à’ symbol. Each process consists of two parallel processes; the horizontal
joint and the vertical joint. Only the position controller makes use of the joystick. The
connections represent the nature of the time-related behavior. The joystick, the PC and the
motors are parallel to each other, which is indicated by the ‘||’ symbol. The arrows in the
upper part represent the data-flow.

Horizontal

Vertical

II

II

II

II

Position Controller

Homing

Alignment

Figure 2 CSP Diagram

Since the motor and the joystick are physical objects, they will not be programmed as
software objects. Therefore two parallel controllers with some inputs and outputs are
identified. There are serial connections between the initialization, the controllers and the end.
See Figure 3.

 4

Position Controller

Horizontal

II

Position Controller

Vertical

Homing Horizontal

Homing Vertical

Alignment Horizontal

Alignment Vertical

Figure 3 CSP Diagram

No data or whatever is flowing from one joint to another. We consider physical dependencies
between the joints neglectable. Putting both systems into one sequential system has certain
disadvantages. Therefore the controllers have been programmed in parallel. This has been
realized with the use of the CTC++ library (Communicating Threads for C++). Some
advantages of programming both systems in parallel are:

When one of the processes breaks down, the other one can continue working (like homing),
so it becomes more robust.

The two parallel processes are both shorter and interleaved than one sequential process, so
they will service events much faster.

You can use different sample frequencies for each parallel process, which is very hard to
solve when all distinguishable processes are stuffed into one sequential process. Then, each
process has to run as fast as the process with the highest sample frequency. That is not a very
efficient way of processor usage.

Parallel processes are easier to expand then one sequential process. To expend a sequential
process, the process itself has to be adapted and can result in dramatically structural changes.
When using CSP, parallel processes can simply be added without changing the existing
process(es) since CSP is compositional by nature.

In the beginning of this project, we were intended to use the Microsoft Sidewinder Force-
Feedback Pro. Its force-feedback can be used to feed back external forces working on the
setup.

Unfortunately no joystick driver exists that supports force-feedback for linux at the moment.
When the force-feedback feature of a joystick does not work, it becomes very slack and
therefore an analog joystick is used. The joystick that is used is the CH Flightstick Pro. A
driver for this joystick is available for RTLinux and has been made for MS-DOS.

 5

3 Modeling

3.1 Introduction
In the beginning of this project two models were needed for the same controller. One was
used for simulation purposes and another one only for generating code. Dynamic link libraries
(dll) were used to connect the inputs and outputs of the controllers to the hardware. These dll-
files could not be used with simulations; so a second model was needed for code-generation.

Now, the principles of CSP (Communicating Sequential Processes) are used with JIWY. CSP
does not consider a system from an object-oriented view, but from a process-oriented view. It
is more natural to reason about real-time issues with processes than with objects. Processes
are connected to each other via channels. The inputs and outputs of the controllers are
therefore connected to channels, so the dll-files became superfluous. Moreover, just one
model can now be used for simulations as well as for code-generation.

3.2 Top model
A model representation of the complete setup in 20-sim has been made. See Figure 5 for a
top-level model of JIWY controlled by a joystick and with end-stop simulation. The x-axis
and y-axis of the joystick are respectively used to control the horizontal and vertical joint of
JIWY (see Figure 4).

θ

ϕ

Z

X

Y

Figure 4 JIWY Rotations

The controllers have inputs from the joystick, the end-stops and the IO-part. The controller
output modulates the current source that drives the motor via the NI6024E IO-card in the PC.

JIWYIOControllersJoystick

Motor_Horizontal

Motor_Vertical

IO_XJoystick_X_axis

Joystick_Y_axis IO_Y

Position_Controller_Horizontal

Position_Controller_Vertical

Endstops_horizontal

Endstops_vertical

Figure 5 Joystick controller for JIWY

 6

3.3 Input / Output (IO)
The IO-blocks in the 20-sim model contain all the parts that are in between the controller and
JIWY, i.e. between software and physical system. See Figure 6 for what is in these blocks.

The DA-converter converts the output of the digital controller (the position- or velocity-error)
to an analog value as an electrical current. The current will be amplified and fed to the
motors.

The rotations of the axes are fed back via incremental encoders. These encoders divide one
rotation of an axis into 2000 counts. The encoder in the model below is an equation model of
the physical incremental encoder.

Encoder

A
D

DA

K

power_amp

count velocity

power_outdigital_in

Figure 6 IO-block

3.4 Bond graph
A bond graph model of a joint of JIWY has been depicted in Figure 7. JIWY has two degrees
of freedom so therefore JIWY can be modeled with two independent bond graph models. The
electrical motors are driven by PWM (pulse width modulated) current sources, which are
voltage-controlled. This means that the electrical resistances and inductances of both motors
do not matter. If they instead where driven by current-controlled voltage sources, the
electrical time constant could probably be ignored, because it lays far more away then the
mechanical time constant.

The gravitational force does not affect the horizontal joint and will be neglected for the
vertical joint.

Current_Control velocityTF
Gear

TF
Belt

1

R
Dmot

I

Jmot

R
Dcam

I

Jcam

1GY
Motor

MSf
MSf

Figure 7 JIWY Bond graph horizontal

The inertias of the camera are not causal, because their connection with the inertias of the
motors consists only of two gearings, so they are velocity dependent of each other (with a
ratio of 1 to 20). This causality problem is not a big problem for simulations, because the
‘backward differentiation’ integration method can be used in 20-sim.

 7

See Table 1 for the values of the bond graph components (A. Veltman (1988)).

Parameter Value (horizontal) Value (vertical) Description

g 0.0394 N·m/A 0.0394 N·m/A gyrator constant

Jmot 2.63·e-6 kg·m2 2.63·e-6 kg·m2 inertia of motor

Dmot 1.77·e-6 N·m·s/rad 1.77·e-6 N·m·s/rad resistance of motor

gear 4 4 transformation rate

belt 5 5 transformation rate

Jcam 4.5·e-3 kg·m2 3.0·e-3 kg·m2 inertia of construction

Dcam 1.35·e-5 N·m·s/rad 1.35·e-5 N·m·s/rad resistance of construction

Table 1 JIWY Parameters

The controllers are illustrated in the next chapter.

 8

4 Controllers
There are two ways to control the setup. The first one is to control the position of JIWY with
the joystick. The second one is to control the velocity of JIWY with the joystick. Because of
the end-stops of JIWY, velocity control is less useful. However, for alignment it would turn
out to be very useful. See Figure 8 for a position controller.

4.1 Position controller

4.1.1 Implementation

offset for alignment

controllerin

out
position

endstops

SignalLimiter
K

1

K1

K
1

K2

PID
SP

MV s

Controller

Filter_X

K
1

Div2

SignalLimiter2

K
1

K3

Figure 8 Position controller

A joystick has been connected to the input of the controller and provides the desired position
for both joints of JIWY. A simple PID-controller is used to control JIWY. The position
feedback is subtracted from the input, which results in a position-error. This error has to be
steered to zero as fast and accurate as possible. The motors are driven by voltage-controlled
current sources. The outputs of the controllers are connected to the inputs of the voltage-
controlled current sources.

The joystick uses potentiometers to measure the x-y position. This method is not very
accurate, because of the potentiometers and the logics of the joystick port in the PC. The
boundaries of the axes are also not very accurate and do not always have the same values.
Therefore we use a signal limiter to clip the boundaries at a certain value, so the joystick
returns always the same value if it is pushed in his maximum position (positive or negative).
To suppress noise, digital filters have been included that filter the output values of the
joystick.

The K1 and K2 blocks are necessary to express the input and the position feedback in a same
unit, otherwise they are not deductible. It is converted into radians, because that is the most
natural unit. Moreover the position can be better recognized when it is expressed in radians.

The K1 block converts the joystick input to the axis position in radians. In terms of radians
the maximum rotation between the end-stops is 5,47 rad for the x-axis and 2,01 rad for the y-
axis. (This has been measured with the incremental encoders). The joystick we are using has
no straight transfer function between the real position of the joystick and its returned value,
because of the analog potentiometers the joystick makes use of. The maximum returned
values (i.e. when the joystick is pushed against the borders) vary around 450 till 550 in the

 9

positive direction and around -450 till -550 in the negative direction. This holds for both axes.
To get straight boundaries around the joystick axes, the signal limiters clip the joystick
outputs at 450 and -450 (see Figure 9) which results in a fixed joystick range of 900.

X

Y
550

450

0

 0 450 550

Figure 9 Joystick range

To ensure that the joystick ranges for both axes are linearly mapped and exactly fitted in the
axes ranges, the conversion constants have to be the joystick ranges, divided by the axes
ranges in radians:

6,164
47,5

900
1 ===

rangeradians
rangejoystick

K x

8,447
01,2

900
1 ===

rangeradians
rangejoystick

K y

These values have been rounded off upwardly to prevent hitting the end-stops.
The K2 block converts the position feedback from the incremental encoders to the measured
axes positions in radians. The incremental encoders divide a rotation into 2000 counts. So the
conversion constants K2 have to be:

3,318
2

2000
][

22 ====
πradiansrotation

rotationencoder
KK yx

The distance between the two end-stops of the x-axis and y-axis can be measured with a small
program that just displays the output of the incremental encoders. These distances are
respectively about 1740 and 640 counts.

See Table 2 for the constants.

 X Y

Joystick 900 900

Encoder 1740 640

Radians 5,47 2,01

Rotation Range

Degrees 313 115

K1 164,6 447,8 Conversion Constant

K2 318,3 318,3

Table 2 Ranges and constants

 10

The incremental encoders measure relative position and cannot measure absolute position, so
the controller does not know the absolute position of JIWY. Therefore JIWY has to be
aligned each time the controller (re)starts. The alignment controller aligns JIWY by finding
its end-stops. The encoder-outputs at the end-stops are passed on to the position controller. In
the ‘div2’-blocks the offsets are calculated from these end-stops. These offsets will be added
to the inputs from the joystick continuously. One way to align has been described below.

Generally JIWY starts at a random position, which will be called the initial position. From
this position, steer JIWY with a constant velocity (direction does not matter) until it reaches
its first end-stop and save the relative position at this end-stop (x1). (This velocity cannot be
too high, because then it would hit the end-stop to hard). After that, steer JIWY into the other
direction until it reaches its second end-stop and save the relative position at this end-stop
(x2). Now, the distance d and the center c between the end-stops can be computed:

1221 xxxxd −=−=

22
1221 xxxx

c
+

=
+

=

These computations show that the end-stops are equivalent, because they are interchangeable.

JIWY has fixed end-stops, so the distance between x1 and x2 is known if it is measured once.
This information can be used to save time, because is not necessary that JIWY finds both end-
stops to compute the distance in between, because this distance is already known.

So it may be sufficient to find one end-stop and then directly compute and find the center.

4.1.2 Digital filter
The analog joystick we use contains a lot of noise in its output signal. Closer analysis showed
that the noise seemed to be digital spikes, which are generated by the counter logics of the
analogue joystick input. Therefore a digital filter was designed to suppress this noise (D.
Jovanovic). 20-sim has an integrated filter editor. With this editor a 4th order low-pass
Butterworth filter was designed.

The transfer function of such a filter is:

()
4 3 2

0 1 2 3 4
4 3 2

0 1 2 3 4

a z a z a z a z a
H z

b z b z b z b z b
+ + + +

=
+ + + +

The parameters are dependent on the sample-frequency Fs and the cut-off frequency Fc.

The parameters of this transfer function are shown in Table 3.

Numerator Denominator

Fs 100 Fc 2

a0 0.000416599204407 b0 1.0

a1 0.001666396817626 b1 -3.180638548875

a2 0.002499595226439 b2 3.861194348994

a3 0.001666396817626 b3 -2.112155355111

a4 0.000416599204407 b4 0.438265142262

Table 3 Filter parameters

When the sample-frequency of a joint is changed, another filter has to be designed, because
the parameters of the filter depend on it.

 11

4.1.3 Simulation
From simulation results concluded is that a PID controller seemed to control JIWY well
enough. The optimal derivative time constant τd for this controller depends on the inertias and
dampers connected to JIWY. For example, if you attach a camera then τd has to be adjusted to
minimize overshoot. Lowering τi only worsens the response. Figure 10 and Figure 11 show
the response of the horizontal respectively the vertical part of the model. The parameters of
the controllers and end-stops are listed in Table 4.

Parameter Value (horizontal) Value (vertical) Description

K 300 900 proportional gain

τd 0.4 0.22 derivative gain

N 10 10 tameness constant

τi 1000 1000 integral gain

end-stop[1] -1100 240

end-stop[2] 640 -400

Table 4 Parameters

0 1 2 3 4 5 6 7 8 9 10
time {s}

S
P

_H
or

iz
on

ta
l

M
V

_H
or

iz
on

ta
l {

ra
d}

C
on

tr
ol

_H
or

iz
on

ta
l

-3

-2

-1

0

1

2

-3

-2

-1

0

1

2

-2500

-1500

-500

500

1500

2500

Figure 10 Simulation of Position Controller (Horizontal Part)

The joystick starts at a value of 0. First, JIWY will be aligned, according to the values of the
end-stops. At t = 1 and t = 5 the horizontal axis of the joystick takes a value of 300 and -500.
These step-functions are filtered by the digital filters. In the simulation the joystick output and
the position feedback are plotted in radians since that will make it easier to compare.

 12

Three simulations are made with different τd (0.3, 0.4 and 0.5). For the first step-function, 0.4
seems a good value, but for the second step 0.5 is better. Since such steep functions are less
probable, τd = 0.4 has been chosen.

For the vertical joint simulations are made with different τd (0.15, 0.22 and 0.3). τd = 0.22
seems to be the optimal value.

0 1 2 3 4 5 6 7 8 9 10
time {s}

S
P

_V
er

tic
al

M
V

_V
er

tic
al

 {r
ad

}

C
on

tr
ol

_V
er

tic
al

-1

-0.5

0

0.5

-1

-0.5

0

0.5

-2000

-750

500

1750

Figure 11 Simulation of Position Controller (Vertical Part)

Again the joystick starts at a value of 0 and after that JIWY will be aligned. At t = 2 and t = 6
the vertical axis of the joystick takes a value of -300 and 500.

Normally controllers are optimized in such a way that the outputs of the controllers do not
exceed the maximum input value of the DA-converters. Otherwise the current through the
motors will be clipped, which results in non-linear behavior. The block ‘SignalLimiter2’
models that behavior.

In this case the controllers are optimized in such a way that the outputs of the controllers do
exceed the maximum input value of the DA-converters for a short time during the simulation.
Clipping happens mainly when step-functions are used for the joystick. According to the
simulations clipping for a short time does not result in unstable and/or unwanted behavior in
the position of JIWY. Since step-functions are not very likely as a joystick output, the
controller output does not clip often in reality. Tests have shown that clipping for a short time
does not result in unstable and/or unwanted behavior. So the advantage remains that JIWY
becomes faster and much stronger.

 13

4.2 Alignment

4.2.1 Introduction
The incremental encoders measure relative position and cannot measure absolute position, so
the controller does not know the absolute position of JIWY at turning on the system.
Therefore JIWY has to be aligned on power on. This is to ensure that the positive and
negative ranges of the rotation have the same length. If JIWY is not aligned when the
controller starts running, it may become unstable or hit an end-stop, which may damage
JIWY.

Aligning can be done in two ways: manually or automatically. Manually aligning will not be
very accurate compared with automatically, because the encoders can measure the position of
JIWY much more accurate then a human ever could. So a nice way of alignment would be
automatically.

4.2.2 Implementation
Alignment has been implemented in four steps.

From the initial position, use the velocity controller to rotate left until the end-stop is reached.

Use the position controller to steer back to the initial position. That position is where the
relative encoders return zeros.
The reason why the ‘rotate right’ model will not be executed right after ‘rotate left’ is only to
safe time. At the moment the first end-stop has been found, you know that the second end-
stop will lie somewhere behind the initial position. So you can steer with a high velocity back
to the initial position and then look for the second end-stop at a lower velocity.

From the initial position, use the velocity controller to rotate right until the end-stop is
reached.

Start the position controller, which initially finds the center, because it continuously adds an
offset to the input of the joystick.

These steps will be executed sequentially for each joint. However, these two sequential paths
can be executed parallel.

A model of the alignment controller has been depicted in Figure 12.

JIWYIOController

Motor_HorizontalIO_XVelocity_Control_Left_Horizontal

Motor_VerticalIO_YVelocity_Control_Left_Vertical

Figure 12 Alignment

See Figure 13 for the contents of the alignment controller. The only difference between the
left and right is the direction of the velocity (sign of the constant). Again a PID-controller is
used.

 14

tame differentiator

control

feedback

endstop_control

K
1

K2

-1z
∫

K

N

PID
SP

MV s
Controller1

Constant1

Figure 13 Alignment velocity controller

The position feedback will be differentiated to velocity with a tame differentiator; otherwise
the numerical noise will be amplified too much.

4.2.3 Simulation
Virtual end-stops have been implemented to simulate the real end-stops. These are located in
the IO-submodel (see Figure 14), because the end-stop is realized in hardware and therefore
no code has to be generated from it. As can be seen from the simulation (see Figure 15) a
virtual end-stop will make the velocity go to zero when the encoder output equals a randomly
chosen value of 1500.

digital_in power_out

velocitycount

K

power_amp

A
D

DA

Encoder

Virtual_Endstop

Figure 14 IO

See Figure 15 and Figure 16 for a simulation of the horizontal respectively the vertical
velocity controller, turning left. It turns left until the end-stop is reached. See Table 5 for
the parameters of the controller.

Parameter Value (horizontal) Value (vertical) Description

K 400 400 proportional gain

τd 0.04 0.04 derivative gain

N 10 10 tameness constant

τi 1000 1000 integral gain

vleft 5 5

vright -5 -5

 Table 5 Parameters

 15

model

0 0.5 1 1.5 2
time {s}

fe
ed

ba
ck

_h
or

iz
on

ta
l

co
nt

ro
l_

ho
riz

on
ta

l

ve
lo

ci
ty

_h
or

iz
on

ta
l

ou
tp

ut

0

500

1000

1500

-1000

250

1500

2750

-1

1.5

4

6.5

4.6

4.85

5.1

5.35

Figure 15 Simulation of Velocity Controller (Horizontal Part)

A velocity of 5 rad/s is reached after more than 1 second. In about 1,5 second the end-stop is
hit.

model

0 0.5 1 1.5 2
time {s}

fe
ed

ba
ck

_v
er

tic
al

co
nt

ro
l_

ve
rti

ca
l

ve
lo

ci
ty

_v
er

tic
al

ou
tp

ut
_v

er
tic

al

0

500

1000

1500

-1000

250

1500

2750

-1

1.5

4

6.5

4.6

4.85

5.1

5.35

Figure 16 Simulation of Velocity Controller (Vertical Part)

The vertical velocity controller is a little bit faster, because the inertia is smaller.

 16

Like the position controllers, these controllers are also optimized in such a way that the
outputs of the controllers just exceed the maximum input value of the DA-converters.

The velocity controller that turns right is exactly the same as the one that turns left, except for
the sign of the velocity. So a simulation of that one will not be given. Possible little
differences in the bond graph for turning left and turning right are neglected. These
differences may exist, because the cables between the turning parts and the fixed world may
result in different frictions.

4.3 Homing
When the stop button of the joystick is pressed, JIWY automatically homes, before the
controller terminates. In this case that will be the center. This could easily be implemented:
Just use the position controller and connect the center values to the input channels instead of
the joystick. So no other model had to be made. For this assignment it may be a bit
superfluous, but for big machines in the industry homing may be very important.

The total software architecture that is made out of the position controller, alignment and
homing is illustrated in the next paragraph.

4.4 Software architecture
See Figure 17 for the software architecture of the total system as it is implemented. There are
two parallel processes, which consists both of five sequential processes. The position
controller is connected to the joystick button via the alternative operator. This means that per
step a random choice will be made which process is executed. Alignment passes the end-stop
values on to the position controller via parameter transfers.

Code will be generated from these processes. This is explained in the next chapter.

 17

VelocityControl
LeftVertical

PositionControl
BackVertical

VelocityControl
RightVertical

PositionController
Vertical

Homing

?

Joystick
Button

Steering
Vertical @ T

Feedback
Vertical @ T

Reference
Vertical @ T

leftmax

rightmax

µ
[not stop]

stop

µ
[not stop]

stop

µ
[not stop]

stop

µ
[not stopv]

stop

µ [not stop]

stop

VelocityControl
LeftHorizontal

PositionControl
BackHorizontal

VelocityControl
RightHorizontal

PositionController
Horizontal

Homing

?

Joystick
Button

Steering
Horizontal @

T

Feedback
Horizontal @

T

Reference
Horizontal @

T
leftmax

rightmax

µ
[not stop]

stop

µ
[not stop]

stop

µ
[not stop]

stop

µ
[not stopv]

stop

µ
[not stop]

stop

2 2

Figure 17 Software Architecture

 18

5 Code Generation

5.1 Introduction
In this project code will be generated for each controller. Figure 18 shows how a digital
controller is realized, starting with a 20-sim model.

Compile for

MS-DOS

Code-generation

Processes

C++ Code

CSP Template

20-Sim Model

Figure 18 Code Generation

5.2 Template
20-sim uses templates to generate code of a model or a part of it. 20-sim 3.2 comes with four
templates: stand-alone C (whole model or a submodel), a C function, or a Simulink S
function. But you are also free to make your own templates. 20-sim makes use of so called
‘tokens’. A token is a placeholder for model-dependent information. For instance in the code
generation dialog, the target destination directory contains the name of the selected submodel
by default. Since this information is not yet known when the targets.ini file is created, a
specific token that refers to this name is used instead.
To make use of CSP to program the controllers, a new template has been made. The existing
submodel-template could be used to generate code of only one submodel. The CSP-template
had to be extended such that it can generate code for one or more submodels, located in one
model. An important change that has been made therefore is that the name of the submodel in
the code of the template had to become a token instead of a predefined name. All global
functions and variables now have the token %SUBMODEL_NAME% in their name to care
for unique names.

The CSP-template is still under construction, because at the moment 20-sim has a few
shortcomings with generating code for a system, which will make use of CTC++
(Communicating Threads for C++):

• Lack of information to generate processes in a generalized way.

• The impossibility of modeling a system with a hierarchical overview for its different
controllers.

At the moment you have to connect the ports of the model in 20-sim to the channels by hand
in the source code. The ports namely get numbers that are determined by the code generation.
Then the information of the names of the ports is lost. It would be much easier if the ports of
the model in 20-sim will automatically become channels in C++.

The different processes (in this case: alignment, controlling by joystick and homing) cannot
easily be put in one overall 20-sim model. If you have different controllers in one system (in
this case: JIWY) and want to change something (like names or parameters) in the system,
then you have to adapt all the models every time. This costs a lot of time and moreover it is
sensitive for mistakes. Also code-generation costs too much time. For each controller, the
code has to be generated separately.

A nice feature for the future of 20-sim may be to support a hierarchical project structure with
different controllers for the same system. Then it becomes possible to easy switch between
models and so on.

 19

The generated C++ code can be compiled for all sorts of platforms. At the moment a pc with
DOS is used. But also a pc with RTLinux can be used or for example a DSP.

5.3 Hierarchy
It is important to think about the hierarchy of the source-code and the names of models and
subdirectories. One reason is that the overview gets lost very easily.

Every submodel will return in a separate class in C++, so spaces in names of submodels are
not allowed. Also 20-sim does not allow spaces in names of models. Therefore the choice has
been made to use underscores instead of spaces for all names. The underscores are not very
beautiful, but once such a choice has been made, changing all the names costs too much time.

Different models are used for the position controller and for alignment, so two subdirectories
are made. The code of Homing has been placed in another directory. It makes use of the
position controllers from \JIWY\Position_Controller\. JIWY has two joints, so every
controller is implemented twice. Therefore each controller always has two subdirectories
(horizontal and vertical). Alignment has been divided in turning left and turning right,
because they could not be put in one overall model. This leads to the following directories:

• \JIWY\Position_Controller\Position_Controller_Horizontal\
• \JIWY\Position_Controller\Position_Controller_Vertical\
• \JIWY\Alignment\Velocity_Control_Left_Horizontal\
• \JIWY\Alignment\Velocity_Control_Left_Vertical\
• \JIWY\Alignment\Velocity_Control_Right_Horizontal\
• \JIWY\Alignment\Velocity_Control_Right_Vertical\
• \JIWY\Homing\
• \JIWY\Common\

The controllers make use of common code, which is located \JIWY\Common\. But each
controller also has its own C++ code. These files are stated below and are located in each
directory except for the common directory.

• %SUBMODEL%.cpp
• %SUBMODEL%.h
• %SUBMODEL%process.cpp
• %SUBMODEL%process.h

The token of a submodel in 20-sim is %SUBMODEL% and it will be used for the names of
the source code files for each controller to take care for unique files. The
%SUBMODEL%.cpp file contains the calculations of the model and the
%SUBMODEL%process.cpp file contains the declaration and the execution of the process.

The file main.cpp is located in \JIWY\. This file has to be written manually, because it
contains the declaration of processes and channels. In this file the different processes are
executed in parallel with the following statement:

Parallel *par = new Parallel;

Two sequential declarations are made. One for the horizontal joint and another one for the
vertical joint. This with the following statement:

Sequential *seq = new Sequential;

Each sequence contains five processes. They are added with the following statement:

seq->add(process);

The different sequential processes are added to one parallel process:

par->add(seq);

 20

6 Conclusions and recommendations

6.1 Conclusions
The step-wise refinement approach works. Verification by simulation of the model and
validation and testing of the realization seems to be a good design trajectory for the
realization of real-time parallel controllers.

CSP can be used very well to consider control systems. Two controllers can easily be
programmed as two parallel processes with the CTC++ library. It is also easy to expand and
add new processes, because existing processes do not have to be changed. The CTC++ library
is like a higher abstraction level, which makes it easier for the user to program parallel
processes.

The code-generation tool of 20-sim is a nice way to realize digital controllers, because the
controllers can first be tested by simulation in 20-sim. Even if just a little is known about
programming languages, digital controllers can be realized that are made of C++ code.

6.2 Recommendations
There is always a difference between the model and the real system. Among other things, the
parameters of the components of the bond graph are not totally right and gravitation effects
have been neglected. It is difficult to see if the controller behaves like the model does. For
exact validation of the controllers, the positions of the joystick and JIWY and the controller-
output should be saved to a file. This data can then be compared with the simulation. For
example by exporting the data from the simulation to Matlab and plotting it together with the
data from the file.

If joystick drivers for linux become available that support force-feedback, this feature can be
used to feed back external forces that are working on JIWY. The force-feedback feature
should be put in new processes to let the existing processes intact.

 21

References
Amerongen, J. van and Vries, T.J.A. de (1998), Digitale Regeltechniek , Universiteit Twente,
Enschede

Breedveld, P.C. and Amerongen, J. Van (1994), Dynamische Systemen: modelvorming en
simulatie met bondgrafen, Open Universiteit, Heerlen, 90 358 1302 2

Broenink, J.F. and G.H. Hilderink (2001), A structured approach to embedded control
systems implementation, 2001 IEEE Conference on Control Applications, Sept 5-7, Mexico

Hilderink, G.H., (2001), Communicating Threads for C++ - A White Paper, Faculty of
Electrical Engineering, Control Engineering, University of Twente, Enschede, The
Netherlands.

Jovanovic, D, Hilderink, G.H, Broenink, J.F, (2002), A Communicating Threads case study:
JIWY, Communicating Process Architectures 2002, pp. 231-330. Reading, United Kingdom

Groothuis M. (2001), 20-Sim code generation for PC/104 target, Faculty of Electrical
Engineering, Control Laboratory, University of Twente, Enschede, The Netherlands

Stephan R.A. (2002), Real-time Linux in Control Applications Area, Faculty of Electrical
Engineering, Control Laboratory, University of Twente, Enschede, The Netherlands

Veltman A. (1988), Regelen en modelleren van een 2-assige camera-opstelling, Faculty of
Electrical Engineering, Control Laboratory, University of Twente, Enschede, The Netherlands

