
ROBOTIC BIN-PICKING PIPELINE FOR CHICKEN
FILLETS WITH DEEP LEARNING- BASED INSTANCE

SEGMENTATION USING SYNTHETIC DATA

L.M. (Marissa) Jonker

MSC ASSIGNMENT

Committee:
dr. ir. L.J. Spreeuwers

dr. ir. W. Roozing
dr. N. Strisciuglio

May, 2023

012RaM2023
Robotics and Mechatronics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

DMB DATABASE MANAGEMENT
AND
BIOMETRICS

.2854

ROBOTIC BIN-PICKING PIPELINE FOR CHICKEN
FILLETS WITH DEEP LEARNING-BASED

INSTANCE SEGMENTATION USING SYNTHETIC
DATA

Marissa Jonker

MSC ASSIGNMENT

Committee:
dr. ir. L.J. Spreeuwers

dr. N. Strisciuglio
dr. ir. W. Roozing

May, 2023

2023DMB0005
Data Management and Biometrics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Robotic Bin-Picking Pipeline for Chicken Fillets with Deep

Learning-Based Instance Segmentation using Synthetic Data
Marissa Jonker

Abstract—In the food processing industry, automation is get-
ting more common for purposes such as increased food quality
and compensation of worker shortages. An automation task such
as gripping is challenging due to deformation of the objects.
Additionally, in order to manipulate food in a specific manner,
it is important to know the location and orientation of the
food object. Due to these deformation and location problems,
automation of tasks such as bin-picking food objects is a difficult
challenge. Existing automated bin-picking methods for food
objects lack environmental awareness and the ability to recreate
the scene and objects in 3D in order to manipulate them and
avoid collisions. In this research, we present a robotic pipeline
for bin-picking of chicken fillets. The individual chicken fillets
are detected using instance segmentation via deep learning. The
instance segmentation model is trained on synthetically rendered
images of chicken fillets. Current methods for synthetic data
generation only use rigid body simulations, whereas we also
simulate the deforming physics on manually created 3D models.
Additionally, the path planning is based on a 3D reconstructed
environment, using depth data from an RGB-D camera. The
tests on the instance segmentation model with real data yield
a bbox and mask AP@50:5:95 of 0.74 and 0.68, respectively.
Finetuning the model with a small real dataset increases the APs
to 0.82 and 0.78, respectively. Tests on the full pipeline show a
planning success rate of 0.73, and an execution success rate of
0.81. We show that automation of bin-picking for chicken fillets
using synthetic data is a realistic prospect.

A supplementary video showcasing the pipeline can be found
on https://tinyurl.com/5n8v8uf7.

I. INTRODUCTION

Food processing automation is being implemented for ben-
efits such as increase of food quality, production efficiency
and waste reduction. Furthermore, using robotics in food
processing prevents workers from having to work in unpleasant
environments, such as refrigerated rooms [1], [2]. Additionally,
as there may not be enough qualified people to work in the
industry, automation could compensate for this shortage [3].
The tasks in food processing automation range from standard
automation tasks such as bin-picking, packaging, palletising
and inspection, to food-specific tasks like deboning and cutting
meat [4]. Bin-picking of food products in particular is a chal-
lenging task due to the varying shapes, textures, deformability
and poses of the food. Locating different instances of food
in a scene is a complicated task, for which nowadays often
deep learning is utilised [5]–[7]. In order to have effective
deep learning algorithms, large training datasets are required.
Especially for instance segmentation making such a dataset is
a tedious and difficult task, as every instance in each image
has to be manually annotated. Consequently, there is a rise in
interest and research in using synthetically rendered datasets
[6], [8] and the transferability of the trained models to the real
world [9].

Fig. 1: Left: Visualised 3D camera measurements with convex hull
and frame of detected chicken fillet. Right: Real bin-picking execution
on the detected chicken fillet.

The objective of this paper is to present the design of
a robotic system to perform bin-picking of a food object -
specifically chicken fillets - placed in a tray or on a flat surface
(Fig. 1). The purpose of this would be to e.g. transfer the
chicken fillets from a bin to a conveyor belt, or into a container.
When there are multiple chicken fillet instances in a pile,
one has to be selected for grasping, meaning the individual
instances should be identified. The next steps are determining
the grasping affordance, path planning and executing the path
accordingly, grasping the object, and using a robot arm to
perform manipulation to place the object in a specific pose,
for e.g. aesthetic reasons. The choice of using chicken fillets as
objects introduces some challenges: they are deformable and
have a homogeneous surface and smooth shape, which makes
it difficult to distinguish multiple instances. The deformability
and slimy surface of chicken fillets cause another issue, which
is also encountered in the grasping phase; the chicken fillet
should be grasped well enough such that it can be lifted, but
it should not be dropped or damaged.

The recent work by Ummadisingu et al. [10] addresses
a similar problem, and shows a system for food grasping
in a cluttered scene using a synthetically generated dataset.
The research bases its grasping on a fitted ellipse on the
2D segmented instances. A grasp is selected by checking
the median heights (obtained with an RGB-D camera) of
the objects to avoid gripper-object collisions with surrounding
objects. In contrast, our approach uses the depth data from the
RGB-D camera more extensively. We utilise 3D point cloud

1

https://tinyurl.com/5n8v8uf7

data to construct convex hull representations of objects to be
grasped. Additionally, we create a mesh of the rest of the scene
for path planning with collision avoidance. Consequently, we
do not only avoid gripper-object collisions, but also gripper-
scene, and object-scene collisions.

In this work, we present a full pipeline from instance
segmentation to path planning and execution. Starting with
the instance segmentation, we utilise the existing Mask R-
CNN network proposed by He et al. [11]. We develop au-
tomated image dataset generation of chicken fillets including
deformability, by using physics simulation. By masking the
depth data from an RGB-D camera with the predicted instance
masks, 3D objects of the chicken fillets and the scene are
created, which in turn are interpreted for path planning. Then
the grasp affordance is computed along the second principal
axis of the 3D chicken fillet and based on these principal axes
we place the chicken fillet in a desired pose. Although in this
work we do not explicitly address the problem of grasping a
deformable and slimy object regarding the friction, or rather
the lack thereof, the work allows for modifications such as
exchanging the grippers for ones more suitable for grasping
chicken fillets. To evaluate our method, we conduct 30 tests
on mock-up chicken fillets. The instance segmentation model
is evaluated on a real dataset to get an indication of the
transferability [9].

The main contributions of this study are:
• A full robotic bin-picking pipeline with collision avoid-

ance based on 3D scene reconstruction. We mask the
depth data from the RGB-D camera with the instance
segmentation mask to obtain a 3D representation of the
chicken fillet, which is interpreted for path planning. With
the additional 3D reconstruction of the scene, the grasp
and path planning are computed accordingly to avoid
collisions between both the robot arm, grasped object,
and scene.

• An expansion on the data generation algorithm proposed
by Karoly and Galambos [8], utilising deformable object
physics to incorporate the deformability of chicken fillets,
and applying domain randomisation [9].

• The synthetic dataset and with it a retrained Mask R-CNN
network [11], based on chicken fillet models. Results
both on synthetic and real-world chicken fillet images
demonstrate transferability.

This paper is organised as follows: In Sec. II we sum-
marise relevant literature. We discuss the data generation and
instance segmentation model training in Sec. III. After this we
elaborate on the pipeline in Sec. IV, where we describe the
instance segmentation to 3D object point cloud generation,
the scene reconstruction and the path planning. We discuss
the experimental setup in Sec. V, and present the results in
Sec. VI. We interpret and discuss the implementation and
its results in Sec. VII, and finally we give conclusions and
recommendations in Sec. VIII.

II. RELATED WORK

A. Bin-Picking Algorithms
While industrial bin-picking has been around for several

decades [12], it is still an actively researched topic [13]–[16].

Bin-picking algorithms usually consist of the following com-
ponents: instance segmentation, grasp planning, path planning
and execution. With the automation of the food processing in-
dustry, new bin-picking methods are introduced to account for
the vulnerability of food [10], [17]. Important factors that arise
with food objects is that they are deformable and easily dam-
aged. Therefore, collision-awareness is desired. The method
proposed by Lou et al. [16] addresses avoiding collisions
between the robot arm and the bin. However, this work does
not incorporate the object poses for specific placement, which
in the food industry is essential (for e.g. placing a chicken
fillet in a container). Contrary to this, we do implement object
pose estimation in our pipeline. The work by Ummadisingu
et al. [10] addresses collision avoidance between the grippers
and food objects. This is achieved by a grasp filtering strategy,
based on fitted ellipses to the 2D segmentation masks and the
median height obtained with an RGB-D camera. In contrast,
we reconstruct the scene in 3D, such that collisions between
the entire robot arm, grippers, and the rest of the scene are
avoided. Additionally, as the (to be) grasped object is also
reconstructed in 3D, we prevent collisions between the object
and other objects in the scene, which in turn allows for grasp
and path planning according to what is in the scene.

B. Instance Segmentation

The instance segmentation component of a bin-picking
pipeline determines whether an object is recognised and can
thus be grasped. With instance segmentation, an instance
mask per object instance is computed. Different from semantic
segmentation, where stuff is segmented (e.g. table, chicken),
instance segmentation segments all things (chicken1, chicken2,
etc.) [18]. While panoptic segmentation [19] does both (table,
chicken1, chicken2, etc.), we deem instance segmentation
sufficient for the purpose of this research, as we assume
a simple scene: a few pieces of chicken fillets positioned
on one flat surface, so everything that is not considered an
instance is automatically background. Instance segmentation
can be performed via clustering methods [13], [17], or by
using deep learning [7], [11], where a neural network is trained
on images with corresponding instance masks. As in the food
industry many types of food are processed, we consider it
more suitable to employ deep learning, such that with the
instance segmentation, we can also perform object detection,
which provides flexibility for different object classes, or for
different tasks. The model we use is the popular Mask-RCNN
as proposed by He et al. [11].

C. Synthetic Dataset for Network Training

Training on synthetically generated datasets is a powerful
tool to bootstrap segmentation networks for object detection
and instance segmentation [9]. Large training sets including
instance masks can be generated automatically. There are a
few works which look into creating such datasets, with a
modeling program such as Blender [6], [8], but these works
only use primary shapes. Existing work [10] uses realistic
3D food models for dataset generation. However, these are
simulated as rigid bodies, whereas we include deformable

2

object physics to incorporate the deformability property of the
chicken fillets, making the rendered images more realistic and
reducing the need for many different object models. By using
domain randomisation, the generalisation of a model to the
real world can be done by only using synthetic data [9], [20].
Domain randomisation implies that for example the number of
objects, the textures, the lights, and the camera viewpoints are
randomised. We use the same principle to generate a synthetic
dataset. However, finetuning on a real dataset is shown to
improve deep learning networks [6], [9]. Therefore, we also
finetune on a small real dataset.

D. Perception and World Modelling

Having a camera above the scene, as in [10], [13], is useful
for our case, since we want to grasp a piece that is easy
to reach, which would be one on top of the pile and is
not occluded or hindered by other pieces. A straightforward
way to find such a piece is by looking at the scene from
above, especially with an RGB-D camera. In many bin-picking
implementations eye-in-hand is used: the camera is attached
to the end-effector [21], [22]. The camera could also be
static, always looking in the same direction [3], [10]. Since
multi-view scan of the scene increases the accuracy of the
generated 3D data [23] and deals with object occlusions, we
attach the RGB-D camera to the end-effector of the robot
arm for the intended purpose of implementing multi-view
scene reconstruction. Since we want to take into account
the surroundings and avoid object collisions, resulting in for
example damaged chicken fillets, we use the RGB-D data
to reconstruct the scene in 3D. With 3D representations of
both the chicken fillets as well as the scene, the path is
planned accordingly, such that collisions between the objects
are avoided.

E. Path Planning

1) Object pose: A straightforward method for object pose
detection is using template matching [21]. Template matching
requires keypoints, so this method is ideal for packaged food
products such as soup cans or cookie boxes, which include
many keypoints due to both the printed labels and object shape.
However, template matching is unsuitable for chicken fillets,
due to deformation and the lack of features. Another method to
obtain the object pose is by using deep learning. Xiang et al.
[24] introduce a neural network PoseCNN, with which the
pose transformation between the camera frame and the object
frame can be determined. However, for deformable objects it is
difficult to define a pose, hence the poses of the chicken fillets
after simulating the deforming physics are not considered to be
reliable training data. Thus, we choose not to use this network.
Pohl et al. [13] show that with Principal Component Analysis
(PCA) it is possible to grasp objects. Assuming the object has
a uniform mass distribution, the principal axes are found by
performing PCA on the points in the segmented object point
cloud. We obtain the segmented point cloud by translating
the instance segmentation masks similarly to [7], where the
instance mask is projected on the depth data from an RGB-D
camera. This way, the instance can be distinguished in a point

cloud. The principal axes define the body frame of the chicken
fillet in its current shape. This means that the principal axes of
the chicken fillet might point in a different direction depending
on how the object is deformed. However, due to the nature of
PCA, we assume that the resulting body frame describes the
object pose sufficiently for grasping.

2) Grasp affordance and Path Planning: Studies show
several methods for grasp affordance generation, such as deep
learning methods [25], [26], using geometric properties [10],
[27], [28], or template matching [21]. Pohl et al. [13] compute
the grasp affordance along the second principal axis found
by PCA. We opt for the latter method due to its simplicity
and the way it utilises the already obtained results from pose
estimation. The principal axes are used in combination with
MoveIt! Task Constructor (MTC), a framework to plan the
motion for robotic manipulation, as presented by Gorner et al.
[29]. We choose to let the grasp affordances be computed using
MTC, in accordance with the principal axes.

III. INSTANCE SEGMENTATION

In this section, we elaborate on the implementation of the
instance segmentation part of the pipeline, highlighting the
synthetic dataset for training.

A. Synthetic Dataset

To generate the synthetic dataset, we use Algorithm 1 in
Blender, with the parameters from Table I. In total, we render
a dataset of 1500 images (300 scenes, 5 images of each scene).
Example images for different parameter values are shown in
Fig. 2. Before generating the dataset, we create two 3D

Algorithm 1 Generating synthetic training data

1: for 300 scenes do
2: Remove objects from last scene
3: Change texture and colour of plane to N and SC
4: for F do
5: Spawn one of the two fillet models
6: Scale, rotate model
7: Assign index pass
8: end for
9: Bake object physics

10: for L do
11: Spawn light
12: Change light colour to LC
13: Change light intensity to LI
14: end for
15: for C do
16: Spawn camera
17: Point camera at scene
18: Render image
19: end for
20: end for

models of a chicken fillet in Blender as shown in Fig. 3.
The shape of the models are created by sculpting icosphere
meshes along example images of chicken fillets. For later
simulation of the physics we prefer to use an icosphere over

3

(a) Four overlapping fillets, three light sources. (b) Two fillets, three light sources. (c) One fillet, one light source.

Fig. 2: Example images and respective instance masks of the synthetic dataset.

TABLE I: Synthetic dataset render parameters

Parameter Value Parameter name
fillets 1-5 F

light sources 1-5 L
Light colour RGB ∼ U(0, 1) LC

Light intensity 1100-1300 LI
cameras 5 C

Surface texture Fractal Perlin noise N
Surface color RGB ∼ U(0, 1) SC

a uv-sphere due to the distribution of vertices. The vertices
in icospheres are evenly distributed, whereas in uv-spheres
they are centered around an origin point. As chicken fillets
have side lobes in some cases, we let one of the models
represent this. The surface colour and texture of the fillets are
based on example images of real chicken fillets. To increase
the realism of the surface, we mimic lines of fat by adding
wave textures of a lighter colour, with a random phase offset
for generalisation. We apply physics modifiers, such that the
‘deformable object’ physics can be simulated. For our purpose
of imitating the deformability of chicken fillets, we use the
cloth modifier, including internal springs. With this modifier,
we simulate chicken fillets falling on top of each other, and
deforming as such. To obtain the instance masks, we use the
cycles render engine, and assign an index pass (integer value)
to each chicken fillet in the scene. When training the network,
the generated masks are converted to a binary mask for each
object separately. For the scenes, we assume that the fillets
are positioned on a flat surface, without any other objects in
the scene. By applying domain randomisation (Table I) we
generalise the model, making it more suitable for real life
scenarios [30]. We give the surface the chicken fillets are
placed on a random noise texture and color, and also vary
the number of chicken fillets, number of light sources and
their properties, as well as the camera positions. Per generated
scene, we spawn five virtual cameras, each taking a picture of
the scene which is added to the dataset.

Fig. 3: Chicken fillet 3D models.

B. Training Details

We train the commonly used Mask-RCNN instance sege-
mentation model [11] with ResNet-50-FPN backbone from
[31], which is initialised with pretrained weights from the
Microsoft COCO dataset [32]. We use 1280 images to train,
with a learning rate of 10−5, and weight decay of 10−8, both
heuristically determined. Furthermore, we use a batchsize of
6, for 60 epochs.

As suggested by Park et al. [6], finetuning the model on
a real-world dataset increases the performance on real data.
Therefore, we finetune the model, using a training set of
14 real images. The real data are manually annotated using
Labelme [33], which yields polygon data describing the masks.
The polygon data are converted to binary masks prior to
training and testing. Because we only want to finetune, we
choose a smaller learning rate of 10−8, and a weight decay of
10−9. We finetune the network for 10 epochs.

C. Evaluation Metrics

As input, the Mask-RCNN model expects an RGB image,
and outputs predicted binary masks, confidence scores and
bounding boxes. The trained networks are evaluated using
the standard average precision (AP) metric [34], which is
calculated using the Intersection over Union (IoU) of the
predicted and ground-truth masks:

IoU =
Area of intersection

Area of union
. (1)

The IoU indicates whether a predicted mask is a false positive
(FP) or a true positive (TP), depending on a threshold between

4

Fig. 4: Instance segmentation model training and testing process. Initially, the Mask-RCNN network is trained on synthetic data. Afterwards,
finetuning is done using real data. The testing of both versions of the model is done on the same test sets of synthetic data and real data.
The model outputs confidence scores, bounding boxes, and binary masks, with which we calculate the average precision (AP). In this figure
we overlay the predicted masks on the input images.

0 and 1 (an IoU of 1 indicates the predicted mask is identical
to the ground truth mask). We count the FPs and TPs for a
range of IoU thresholds: from 0.5 to 0.95 with steps of 0.05.
The APs are then obtained by estimating the areas under the
respective precision-recall curves using 11-point interpolation
per IoU threshold, as shown by Padilla et al. [34]:

AP =
1

11

∑︂
R∈{0,0.1,...,1}

Pinterp(R), (2)

where

Pinterp(R) = max
R̃:R̃≥R

P (R̃) (3)

and P (R̃) the precision-recall curve. We evaluate the network
by looking at the APs for IoU thresholds 0.5, 0.75, and
averaged over the complete range, commonly denoted as
AP50, AP75, and AP@50:5:95, respectively. The APs for both
the bounding box (bbox) and object mask are computed. This
is performed on the synthetic dataset (220 images) and on
a small real dataset (27 images). Fig. 4 shows the process
of which data is used for training and testing the instance
segmentation model.

IV. BIN-PICKING PIPELINE

Fig. 5 shows an overview of the full bin-picking pipeline.
In the following sections we elaborate on each block shown in
the image. The pipeline is implemented using communication
between ROS (Robot Operating System) nodes, of which the
structure can be seen in Fig. 6.

A. Perception

We start the pipeline by capturing both an RGB image, as
well as a depth image, using an Intel RealSense D435i. From
the RGB image, we obtain the instance masks by using the
trained Mask-RCNN network described in Sec. III. We select
which of the objects to pick by using the predicted 2D instance
masks confidence scores, as well as the depth data, and the
distance of each detected chicken fillet to the frame centre.
We assume that the object which is easiest to pick and least
likely to be covered by another instance is one on top of the
pile, hence we prefer the instance with the smallest median
depth. We weigh the three variables, and select the instance
based on the maximum value:

sel. instance = argmax
p

(︁
0.1cp + 0.8dp

−1 + 0.1fp
−1

)︁
, (4)

where for each predicted instance p, cp is the confidence score,
dp the median depth and fp is the sum of the x and y distances
of the chicken fillet mask centre coordinates to the frame
centre. Once an instance mask is selected, the corresponding
masked depth image is further processed. The inverse of the
selected mask is taken as a representation of the rest of the
scene and is consequently used to mask the depth image.

B. Point Cloud Processing

From the masked depth images, we compute the point cloud
using existing conversion functions for the RealSense. Note
that the depth values in the depth image are with respect to
the camera, thus the point cloud coordinates are also with
respect to the camera. For the robot control later on, it is
desired to have these coordinates in an inertial frame, i.e. the

5

Fig. 5: The bin-picking pipeline, separated into different main tasks.

robot base frame, so we transform the points to this frame
prior to further processing. Doing so also allows us to easily
implement multi-view reconstruction later on, as all points
are transformed to the same inertial frame. Obtaining the
transformation between the frames is done using the /tf2
node (Fig. 6). The transformation is given in an xyz translation

Fig. 6: ROS computation graph. The /rgbd_processing node
performs the steps Perception, and Point Cloud Processing in Fig. 5,
using frame transforms from the /tf2 node from the ROS tf2
library. The /moveit_task_constructor node performs the
Path Planning, and /franka_control [35] the Path Execution.

t ∈ R3, and a rotation represented by a quaternion q ∈ R4.
We define the point cloud with respect to a certain frame
P<frame> as an M × 3 matrix, where M denotes the number
of points. A single point pm ∈ R3 is then defined as the mth

row of P<frame> where m = 1, 2, . . . ,M . To transform the
points from the camera frame to the inertial frame, for each
mth point in the point cloud we use

pinertial,m = (qpcamera,mqinv) + t, (5)

where q and qinv are the obtained quaternion and its inverse.
Note that to make the multiplication possible (as q ∈ R4 and
p ∈ R3) we append the point cloud P camera with a column
of 0s. The extra value is then removed prior to the addition.

To ensure that there are no outliers present to influence the
PCA and convex hull computation, we apply voxel downsam-
pling with a voxel size of 0.001 and statistical outlier removal
on the point cloud of the chicken fillet (40 neighbours and a
standard deviation of 3). Then we compute the body frame of
the selected chicken fillet by PCA on the filtered point cloud.
We determine the convex hull of the chicken fillet point cloud
using Open3D [36]; it is necessary to convert the chicken
point cloud to an actual object which can be recognised in
MoveIt! (moveit_msgs/CollisionObject), that in turn

6

computes the grasps and the manipulation path. The remainder
of the point cloud (i.e. the scene) is first downsampled to a
voxel size of 0.005, after which we compute a triangle mesh,
which makes up another CollisionObject, such that the
path planner can plan around this.

Fig. 7: Illustration of grasp affordance based on the principal axes.

C. Path Planning and Execution

The path planning is done in MTC. We publish the detected
chicken fillet instance as well as the remainder of the scene as
CollisionObject topics from the /rgbd_processing
node, after which the /moveit_task_constructor node
subscribes to these. The CollisionObject message con-
tains all point positions, the vertices of the mesh, as well as
the calculated body frame from the PCA. Then according to
the calculated body frame of the chicken, the grasp poses are
computed as in Fig. 7: the grippers closing along the second
principal axis, while approaching along the third principal axis
of the chicken fillet. As also indicated in the illustration, we
refer to the first principal component (red) as the x axis, the
second (green) as the y axis, and the third (blue) as the z axis.
We continuously use the same colours for these axes in the
remainder of this paper.

MTC is given a constant placement pose, with respect
to the base frame. Avoiding collisions is taken care of by
the CollisionObjects in MTC, which are not allowed
to collide with each other, and a possible collision in the
movement calculations rules out that movement.

After the path planning is done, we have a plan which has
to be executed by the robot arm. We do this by using position
control with /franka_control in ROS, as MTC outputs
the joint positions for the whole path.

V. EXPERIMENT SETUP

In this section we show the experiment setup and list the
materials used for testing the pipeline. Additionally, we show
multiple test cases and evaluation metrics.

A. Materials

The following materials and software are used:
• Intel RealSense D435i as RGB-D camera. The camera is

attached to the Franka Emika Panda robot end-effector
(eye-in-hand), facing in the same direction as the gripper
fingers, as can be seen in the experiment setup in Fig. 8.

Fig. 8: Experiment setup.

• The image generation and network training are done on
an external GPU on a cluster (16 GB RAM), using CUDA
11.6 and Blender 3.2.1 with Python 3.8.10. The network
training is done using similar hardware, using Pytorch.

• Franka Emika Panda 7-DOF robotic arm with its standard
parallel finger grippers.

• The pipeline from image acquisition to path planning
is implemented with ROS2, MoveIt!2 [37] and MoveIt!
Task Constructor [29].

• Silicone chicken fillet mock-ups made from Ecoflex 00-
10 and 00-30 poured into a 3D-printed mould of the
chicken fillet model (Fig. 8).

B. Test Cases
We consider three types of cases for testing, from easy

to difficult: I): one chicken fillet, II): three non-overlapping
chicken fillets, and III): three touching/overlapping chicken
fillets. The three cases are shown in Fig. 9. We define a test as
follows: one test case is chosen within which the chicken fillets
are placed in arbitrary poses. Then the pipeline is executed
once for each test. This is done five times for the three cases.

C. Evaluation Metrics
We evaluate the full pick-and-place pipeline based on suc-

cess rate of the path planning and execution. We define these
respectively as rp and re:

rp =
successfully planned paths

total planning attempts
, (6)

re =
successfully executed paths

total execution attempts
. (7)

If a planning attempt succeeds, this will count towards the
execution attempts. An execution attempt is deemed successful
if the chicken fillet is placed correctly in the placement pose.
The placement pose is constant for each test.

7

(a) Case I: one chicken fillet. (b) Case II: Three non-overlapping fillets. (c) Case III: Three overlapping chicken fillets.

Fig. 9: Three test cases for testing the pick-and-place system.

VI. RESULTS

In this section we present the results of the instance segmen-
tation, as well as the performance of the bin-picking pipeline.

A. Instance segmentation

The instance segmentation model trained on only synthetic
data, and later finetuned with real data are validated. We test
both models on synthetic and real images, and compare the
two models to see to what extent finetuning improves the
performance. Table II shows the AP scores for testing on
the synthetic and the real datasets for both the train sets. For
training on only the synthetic dataset, the mask AP@50:5:95
of testing on the synthetic data is 0.86, the bbox AP is 0.93.
The model does not perform as well on real data, with a mask
AP of 0.68, and bbox AP of 0.74. For the finetuned model,

TABLE II: Test results of box and mask AP for both datasets. The
AP scores on the real dataset are highlighted to show the improvement
of finetuning on the instance segmentation model.

Train set Test set Input AP@50:5:95 AP50 AP75

Synthetic
Synthetic bbox 0.93 0.99 0.96

mask 0.86 0.90 0.90

Real bbox 0.74 0.92 0.75
mask 0.68 0.81 0.71

Synthetic
+ real

Synthetic bbox 0.90 0.99 0.94
mask 0.83 0.90 0.90

Real bbox 0.82 0.95 0.93
mask 0.78 0.90 0.81

we see that both the bbox and mask AP@50:5:95 are lower
for the synthetic test set, to 0.90 and 0.83 respectively. The
performance on an IoU threshold of 0.5 is similar. However,
the performance on the real dataset has improved, as there is

Original test set image
Ground truth instance

masks
Predicted masks (synth.

trained model)
Predicted masks overlaid

on original image
Predicted masks

(finetuned model)
Predicted masks overlaid

on original image

Fig. 10: Instance segmentation test results. For each row from left to right: original test set image; ground truth instance masks; predicted
masks from model trained on synthetic data; predicted masks overlaid on original image; predicted masks from finetuned model; predicted
masks overlaid on original image.

8

an increase for the bbox and mask AP to 0.82 (+0.08) and 0.78
(+0.1), respectively. We see that for every IoU threshold the
performance of the finetuned model on real data has increased,
as expected. Fig. 10 shows a few examples of masks predicted
by the two models on the same images. It can be seen here
that the masks predicted by the finetuned model are more
similar to the ground truth masks than those predicted by the
synthetically trained model. It seems that primarily chicken
fillets with notable lines of fat are segmented incorrectly. In
these cases, we see that the predicted mask boundaries often lie
on these lines. The model does not seem to have much problem
with detecting the borders between different instances, even in
most cases where there is overlap.

The results suggest that with the domain randomisation in
generating the synthetic dataset, we are able to predict masks
close to the ground truth for the majority of the test images.
However, as the results show, we were not able to bridge the
reality gap completely. As expected, finetuning the model with
real images improved the model significantly.

B. Bin-Picking

We proceed with the results of the full bin-picking pipeline.
The tests for all three cases (single, multiple non-overlapping,
and multiple overlapping fillets) are shown in subsequent
rows of Fig. 11. We evaluate the pipeline on different cases

and difficulties to test the robustness to various orientations,
positions, overlap, and collision prevention. The results of the
experiments are summarised in Table III. We find a planning
success rate of rp = 0.87 and an execution success rate of
re = 0.69.

1) Test Case I: One chicken fillet: The tests for this case
are shown in the top row of Fig. 11. There were two tests for
which the path planning failed, shown in Figs. 11a and 11d.
The failed planning attempts are due to the calculated collision
between the Franka grippers and the convex hull of the chicken
fillets, as shown in Fig. 12. We see that an inaccurate rotation
and location of the centre of mass result in an impossible grasp
affordance for the grippers, since we compute the grasping
with the end-effector directly above the origin along the z-
axis. In both the failed planning cases, the chicken fillet
was positioned at the edge of the camera field of view.
Furthermore, we find that the maximum distance between the
gripper fingers is insufficient to grasp most fillets at their
second principal axis, causing path planning failures due to
collisions.

2) Test Case II: Multiple non-overlapping chicken fillets:
The tests for this case are shown in the middle row of Fig. 11.
For all tests a path was successfully computed. Although
the test in Fig. 11i had a successfully executed motion, the
grasp itself failed due to grasping the chicken fillet too high,

TABLE III: Results of the full bin-picking pipeline, indicating failure/success. Per case five tests were done.

Case Failed
plannings

Grasp
Executions

Successful
Grasps

Failed
Grasps

I): One Chicken Fillet 2 3 3 0
II): Multiple, Non-Touching 0 5 4 1

III): Multiple, Stacked 0 5 2 3

(a) Case I: planning fail. (b) Case I: success. (c) Case I: success. (d) Case I: planning fail. (e) Case I: success

(f) Case II: success (g) Case II: success (h) Case II: success (i) Case II: execution fail (j) Case II: success

(k) Case III: success (l) Case III: execution fail (m) Case III: execution fail (n) Case III: success (o) Case III: execution fail

Fig. 11: View of the RGB-D camera for all tests. Whether the test is a failure or a success in indicated per image. For cases II and III the
chicken fillets selected for grasping are outlined.

9

Fig. 12: Collisions between Franka gripper fingers and chicken fillet
convex hull due to rotation (top) or location (bottom) of the centre
of mass.

thus dropping it almost immediately. Inspecting the computed
grasp in Fig. 13, we see that the grasp itself will not allow a
successful pick-and-placement of the fillet, because the fillet is
not rigid but deforms when the grippers close. We see that the
calculated centre of mass is above the centre of the convex
hull. This is because we calculate the centre according to
the point cloud, of which the points are unevenly distributed,
skewing the estimated centre upwards.

Fig. 13: Computed grasp for chicken fillet in Fig. 11i. The grasp
is too high due to estimated rotation around x-axis, and inaccurate
centre of mass.

3) Test Case III: Multiple overlapping chicken fillets: The
tests for this case are shown in the bottom row of Fig. 11.
For these tests, two out of the five were successful. Similarly
to test cases (I) and (II), the calculated centre of mass for
each fillet is higher than the true centre of the object, which
is also shown in Fig. 14. While not being a problem in
most tests previously, we see that for the chicken fillets in a
slanted position, the grasping fails. For the tests in Figs. 11k
and 11n - the successful executions - the fillets are positioned
quite horizontally. The failed grasp for the test in Fig. 11m is
shown in Fig. 15.

We find that for each of the fifteen tests the calculated
centres of mass are too high compared to reality. This is due

Fig. 14: Computed grasp for chicken fillet in Fig. 11l. The grasp is
too high due to inacurrate centre of mass.

Fig. 15: Executed grasp for chicken fillet in Fig. 11m. The grasp
is too high, resulting in the fillet to slip from between the finger
grippers.

to the chicken fillet point clouds being incomplete; the parts
of the fillets not visible to the RGB-D camera do not get
converted into a point cloud. In most cases this did not result
in a grasping failure. However, in case of the execution failures
recorded in our tests, the cause was consistently grasping
the fillets too high. The instance segmentation performed as
desired.

C. Centre of Mass as Convex Hull Centre

Using only the point cloud to compute the centre of mass
of the chicken fillets yields a centre of mass that is typically
biased towards the direction of the camera, due to the dis-
tribution of point cloud data. To show that a lower estimated
centre improves the grasping execution, we compute the centre
of mass as the average of the extremes, starting with the z
component:

zc =
zmax + zmin

2
. (8)

Additionally, as we found in test case (I) that a slightly wrong
y component of the centre of mass can result in a planning
failure we recalculate it similarly to Eq. (8):

yc =
ymax + ymin

2
. (9)

As the point cloud has been complete in the x direction, we
leave the centre of mass in this axis as the mean of the points.

We repeat the three test cases for a new set shown in
Fig. 16. The results shown in Table IV demonstrate a slight
improvement for cases (II) and (III). We find a total planning
success rate of rp = 0.73 and execution success rate of
re = 0.81. We see that with the centre of mass being
computed as the centre of the convex hull, the fillets are

10

(a) Case I: planning fail (b) Case I: planning fail (c) Case I: success (d) Case I: planning fail (e) Case I: planning fail

(f) Case II: success (g) Case II: success (h) Case II: success (i) Case II: success (j) Case II: success

(k) Case III: success (l) Case III: success (m) Case III: success (n) Case III: execution fail (o) Case III: execution fail

Fig. 16: View of the RGB-D camera for all tests with centre of mass calculation using Eqs. (8) and (9). Whether the test is a failure or a
success in indicated per image. For cases II and III the chicken fillets selected for grasping are outlined.

TABLE IV: Results of the tests on the pipeline with the centre of mass y and z components calculated with Eqs. (8) and (9).

Case Failed
plannings

Grasp
Executions

Successful
Grasps

Failed
Grasps

I): One Chicken Fillet 3 2 1 1
II): Multiple, Non-Touching 0 5 5 0

III): Multiple, Stacked 0 5 3 2

indeed grasped lower than during the first batch of tests.
Consequently, the fillets are grasped successfully more often
(re = 0.81 compared to re = 0.69). Similar to the first tests,
the failed plannings are only present for case (I). Furthermore,
we notice that for this case we have more planning failures. For
case (II), we see that all grasp plannings and executions were
successful. For case (III), two grasping attempts (Figs. 16n
and 16o) did not succeed. These failures were due to the
fillets being grasped too high. The computed grasp for one
of the tests in Fig. 17 shows that the origin of the frame is in
the middle of the chicken fillet convex hull (for the z-axis).
However, the convex hull does not represent the full chicken
fillet, due to self-occlusion and single view reconstruction of
the fillet. Even though computing the centre of mass this way
improves the grasping, the inaccurate frame rotation which
was also present during the first batch of tests (e.g. Fig. 13)
still remains.

VII. DISCUSSION

The experiment results showed that the pipeline worked as
intended, although we found that the gripper and utilisation of
one viewpoint were the main drawbacks of the system.

A. Instance Segmentation
The instance segmentation with the model trained on only

synthetic data can correctly predict chicken fillet instances,

Fig. 17: Computed grasp for fillet in Fig. 16n. Grasp execution failed
due to fillet grasped too high as consequence of self-occlusion.

both synthetic and real, as was expected [9]. However, we find
that there were some issues such as predicting one fillet as mul-
tiple, or not recognising a fillet at all. The model works quite
robustly on simple shapes, as opposed to complex shapes:
chicken fillets with lines of fat or extra parts of meat attached,
resulting in rough shapes and non-smooth surfaces. We did
not include such chicken fillet models in the synthetic dataset,
so it is unsurprising that these are incorrectly segmented. As
expected (and also proposed by Tremblay et al. [9] and Park
et al. [6]), we find that finetuning the trained model with
real images significantly improves the performance, as the
mask AP increased from 0.68 to 0.78. The visual results in
Fig. 10 show that the difficult cases wrongly predicted by the
non-finetuned model are correctly predicted by the finetuned

11

model. The model performs better on difficult shapes, but still
experiences some difficulties distinguishing lines of fat from
actual object borders. We expect altering the 3D models of the
chicken fillets to include such lines more clearly will improve
the performance of the model regarding the aforementioned
issue. Additionally, if the shape of the chicken fillet 3D model
is made more realistic, we expect the transferability of the
model trained on a newly rendered dataset to be improved.

B. Bin-Picking Pipeline

Overall, we find from the tests that the pipeline performs
as desired. We are able to successfully perform pick-and-
placement on detected chicken fillets. The issues in the system,
resulting in planning and execution failures, are due to in-
complete point cloud data. The execution failures were due to
the fillets being grasped too high. When estimating the centre
of mass as the middle of the extreme values as opposed to
the point cloud mean, we find that the grasping execution is
more robust. However, grasping failed consistently for chicken
fillets in highly inclined configurations. Estimating the centre
of an object based on the average of the extremes will likely
cause problems for different objects, or if more deformation is
present. In our case, using only two points worked because the
shape of the mock-up fillets is rather symmetric. The results
do show that an accurate computation of the centre of mass
is essential for grasping success.

As shown in the tests, we find that the path planning fails
when the centre of mass is slightly off the true middle, because
one of the grippers will then collide with the convex hull
of the chicken fillet. To counter this, we would encourage
to implement multi-view reconstruction to the pipeline. For
test case (I) it was found that for chicken fillets positioned
toward the edge of the field of view, the planning success
rate was lower as opposed to those more in the middle. This
can be explained by looking at the obtained point clouds,
as these are only based on one view. Viewing the scene
from multiple viewpoints should increase the accuracy of
the reconstruction and thus the performance of the pipeline.
Multi-view reconstruction was initially implemented, but due
to software incompatibilities this could not be tested on the
actual robot.

For the grasping, we suggest using different grippers than
the Franka finger grippers we used for our tests. These grippers
are not optimal for grasping fillets, as they try to grasp a
deformable object while having only two small squares as
grasping surface. So deformation of the grasped objects is
almost certain, possibly resulting in a placement where the
fillets are deformed. Furthermore, we compute the convex hull
for a static scene, not taking into account possible deforming
of the object while the pick-and-place is executed, and thus not
guaranteeing collision-avoidance. Even for successful grasps,
since the test fillets were not slippery, we expect the grippers to
experience difficulty grasping real chicken fillets. Additionally,
the maximum width between the grippers makes it difficult
to consistently compute the grasp affordance, as was found
with the planning failures due to an inaccurate centre of mass.
Furthermore, when working with objects that are touching

each other, the gripper fingers will likely not be able to grasp
them due to being too thick. Therefore, we suggest using
thinner grippers with a larger grasping surface, with a larger
distance between the gripper fingers than is currently the case.

VIII. CONCLUSION

In this paper, we presented an automated robotic system for
bin-picking of chicken fillets from piles, using deep learning
based instance segmentation and 3D object and world recon-
struction from depth data. The pipeline consists of perception,
point cloud processing, pick-and-place computation, and pick-
and-place execution. We validated the instance segmentation
on images of real chicken fillets and obtain the average
precision (AP). Experiments on the pipeline were done to
obtain its planning and execution rate, by testing on mock-
up chicken fillets.

We have shown that by training the instance segmentation
model on our synthetically rendered images, we can detect
real chicken fillet instances in a scene. Additionally, finetuning
the segmentation model on a small real dataset was shown to
improve the instance segmentation accuracy on real chicken
fillets, increasing the mask AP@50:5:95 from 0.68 to 0.78.

Depth data from the RGB-D camera was used to recon-
struct a 3D simulated environment for the robot. With this
environment in mind, the path planning is computed such that
collisions are avoided. The tests on the pipeline with the centre
of mass as the point cloud mean showed a planning success
rate of 0.87 and a execution success rate of 0.69. Using a centre
in the middle of the convex hull showed a planning success
rate of 0.73 and an improved execution success rate of 0.81.
In some cases, depending on the location of the chicken fillets
with respect to the RGB-D camera, we found that the 3D
reconstruction of the objects is incomplete, resulting in failed
planning or failed grasp execution. We suggest implementing
multi-view reconstruction to counter this issue.

The instance segmentation was tested on real chicken fillets,
but the grasping only on mock-up objects. The results of
the instance segmentation suggest that a path can be planned
for real chicken fillets, should they be segmented and recon-
structed correctly. As the full pipeline was not deployed on
real chicken fillets, but on objects without shiny and slippery
surface, it has yet to be shown that the depth data is obtained
correctly, and whether the grasping performs similarly. We
expect improved grasping results with different grippers.

The way the pipeline is constructed makes it possible to
add multiple improvements without needing to make excessive
alterations. For instance, the grippers could be exchanged to
be more suitable for the objects in question. We already use
two different chicken fillet models in the dataset generator,
so we could easily add a different object. Then the network
could be trained for multiple objects. Additionally, the network
could be expanded such that bins can be detected to place the
chicken in.

So in conclusion, we showed a promising pipeline for bin-
picking of chicken fillets, which can be improved even further.

12

REFERENCES

[1] G. A. Nayik, K. Muzaffar, and A. Gull, “Robotics and Food
Technology: A Mini Review,” Journal of Nutrition & Food
Sciences, vol. 05, no. 04, 2015, ISSN: 21559600. DOI: 10 .
4172/2155-9600.1000384.

[2] D. G. Caldwell, S. Davis, R. J. Moreno Masey, and J. O. Gray,
“Automation in Food Processing,” in Springer Handbook of
Automation, Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 1041–1059. DOI: 10.1007/978-3-540-78831-7{\ }
60.

[3] E. Misimi, E. R. Øye, A. Eilertsen, et al., “GRIBBOT –
Robotic 3D vision-guided harvesting of chicken fillets,” Com-
puters and Electronics in Agriculture, vol. 121, pp. 84–100,
Feb. 2016, ISSN: 01681699. DOI: 10.1016/j.compag.2015.11.
021.

[4] U. Arachchige, S. Chandrasiri, and A. Wijenayake, “Devel-
opment of automated systems for the implementation of food
processing,” Journal of Research Technology & Engineering,
vol. 3, no. 1, pp. 2022–2030, Jan. 2022.

[5] N. Aditama and R. Munir, “Indonesian Street Food Calorie
Estimation Using Mask R-CNN and Multiple Linear Regres-
sion,” in 2022 Second International Conference on Power,
Control and Computing Technologies (ICPC2T), IEEE, Mar.
2022, pp. 1–6, ISBN: 978-1-6654-5858-0. DOI: 10 . 1109 /
ICPC2T53885.2022.9776804.

[6] D. Park, J. Lee, J. Lee, and K. Lee, “Deep Learning based
Food Instance Segmentation using Synthetic Data,” in 2021
18th International Conference on Ubiquitous Robots (UR),
IEEE, Jul. 2021, pp. 499–505, ISBN: 978-1-6654-3899-5. DOI:
10.1109/UR52253.2021.9494704.

[7] S. Yarnchalothorn, N. Damrongplasit, S. Chumkamon, and
E. Hayashi, “Real-Time Instance Segmentation and Point
Cloud Extraction for Japanese Food,” Proceedings of the SICE
Annual Conference 2020, pp. 338–342, Sep. 2020.

[8] A. I. Karoly and P. Galambos, “Automated Dataset Generation
with Blender for Deep Learning-based Object Segmentation,”
in 2022 IEEE 20th Jubilee World Symposium on Applied
Machine Intelligence and Informatics (SAMI), IEEE, Mar.
2022, pp. 000 329–000 334, ISBN: 978-1-6654-9704-6. DOI:
10.1109/SAMI54271.2022.9780790.

[9] J. Tremblay, A. Prakash, D. Acuna, et al., “Training Deep
Networks with Synthetic Data: Bridging the Reality Gap by
Domain Randomization,” Apr. 2018.

[10] A. Ummadisingu, K. Takahashi, and N. Fukaya, “Cluttered
Food Grasping with Adaptive Fingers and Synthetic-Data
Trained Object Detection,” in 2022 International Confer-
ence on Robotics and Automation (ICRA), IEEE, May 2022,
pp. 8290–8297, ISBN: 978-1-7281-9681-7. DOI: 10 . 1109 /
ICRA46639.2022.9812448.

[11] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-
CNN,” Mar. 2017.

[12] A. Cordeiro, L. F. Rocha, C. Costa, P. Costa, and M. F. Silva,
“Bin Picking Approaches Based on Deep Learning Tech-
niques: A State-of-the-Art Survey,” in 2022 IEEE International
Conference on Autonomous Robot Systems and Competitions
(ICARSC), IEEE, Apr. 2022, pp. 110–117, ISBN: 978-1-6654-
8217-2. DOI: 10.1109/ICARSC55462.2022.9784795.

[13] C. Pohl, K. Hitzler, R. Grimm, A. Zea, U. D. Hanebeck, and
T. Asfour, “Affordance-Based Grasping and Manipulation in
Real World Applications,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE,
Oct. 2020, pp. 9569–9576, ISBN: 978-1-7281-6212-6. DOI:
10.1109/IROS45743.2020.9341482.

[14] H. Tachikake and W. Watanabe, “A Learning-based Robotic
Bin-picking with Flexibly Customizable Grasping Conditions,”
in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), IEEE, Oct. 2020, pp. 9040–9047,
ISBN: 978-1-7281-6212-6. DOI: 10 .1109 / IROS45743 .2020 .
9340904.

[15] J. Guo, L. Fu, M. Jia, K. Wang, and S. Liu, “Fast and Robust
Bin-picking System for Densely Piled Industrial Objects,” Dec.
2020.

[16] X. Lou, Y. Yang, and C. Choi, “Collision-Aware Target-Driven
Object Grasping in Constrained Environments,” Apr. 2021.

[17] T. B. Jørgensen, S. H. N. Jensen, H. Aanæs, N. W. Hansen,
and N. Krüger, “An Adaptive Robotic System for Doing Pick
and Place Operations with Deformable Objects,” Journal of
Intelligent & Robotic Systems, vol. 94, no. 1, pp. 81–100, Apr.
2019, ISSN: 0921-0296. DOI: 10.1007/s10846-018-0958-6.

[18] A. M. Hafiz and G. M. Bhat, “A survey on instance segmen-
tation: state of the art,” International Journal of Multimedia
Information Retrieval, vol. 9, no. 3, pp. 171–189, Sep. 2020,
ISSN: 2192-6611. DOI: 10.1007/s13735-020-00195-x.

[19] A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollar,
“Panoptic Segmentation,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE, Jun.
2019, pp. 9396–9405, ISBN: 978-1-7281-3293-8. DOI: 10 .
1109/CVPR.2019.00963.

[20] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and
P. Abbeel, “Domain Randomization for Transferring Deep
Neural Networks from Simulation to the Real World,” Mar.
2017.

[21] D.-J. Kim, R. Lovelett, and A. Behal, “Eye-in-hand stereo
visual servoing of an assistive robot arm in unstructured
environments,” in 2009 IEEE International Conference on
Robotics and Automation, IEEE, May 2009, pp. 2326–2331,
ISBN: 978-1-4244-2788-8. DOI: 10 . 1109 / ROBOT . 2009 .
5152821.

[22] D. Kaljaca, N. Mayer, B. Vroegindeweij, A. Mencarelli, E. v.
Henten, and T. Brox, “Automated Boxwood Topiary Trimming
with a Robotic Arm and Integrated Stereo Vision,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, Nov. 2019, pp. 5542–5549, ISBN: 978-
1-7281-4004-9. DOI: 10.1109/IROS40897.2019.8968446.

[23] D. Kaljaca, B. Vroegindeweij, and E. Henten, “Coverage
trajectory planning for a bush trimming robot arm,” Journal of
Field Robotics, vol. 37, no. 2, pp. 283–308, Mar. 2020, ISSN:
1556-4959. DOI: 10.1002/rob.21917.

[24] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN:
A Convolutional Neural Network for 6D Object Pose Estima-
tion in Cluttered Scenes,” Nov. 2017.

[25] F.-J. Chu, R. Xu, and P. A. Vela, “Real-World Multiobject,
Multigrasp Detection,” IEEE Robotics and Automation Letters,
vol. 3, no. 4, pp. 3355–3362, Oct. 2018, ISSN: 2377-3766. DOI:
10.1109/LRA.2018.2852777.

[26] M. Sun and Y. Gao, “GATER: Learning Grasp-Action-Target
Embeddings and Relations for Task-Specific Grasping,” IEEE
Robotics and Automation Letters, vol. 7, no. 1, pp. 618–625,
Jan. 2022, ISSN: 2377-3766. DOI: 10 . 1109 / LRA . 2021 .
3131378.

[27] B. Calli, M. Wisse, and P. Jonker, “Grasping of unknown
objects via curvature maximization using active vision,” in
2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IEEE, Sep. 2011, pp. 995–1001, ISBN: 978-1-
61284-456-5. DOI: 10.1109/IROS.2011.6094686.

[28] D. Kanoulas, J. Lee, D. G. Caldwell, and N. G. Tsagarakis,
“Visual Grasp Affordance Localization in Point Clouds Using
Curved Contact Patches,” International Journal of Humanoid
Robotics, vol. 14, no. 01, p. 1 650 028, Mar. 2017, ISSN: 0219-
8436. DOI: 10.1142/S0219843616500286.

[29] M. Gorner, R. Haschke, H. Ritter, and J. Zhang, “MoveIt!
Task Constructor for Task-Level Motion Planning,” in 2019
International Conference on Robotics and Automation (ICRA),
IEEE, May 2019, pp. 190–196, ISBN: 978-1-5386-6027-0.
DOI: 10.1109/ICRA.2019.8793898.

[30] D. Horvath, G. Erdos, Z. Istenes, T. Horvath, and S. Foldi,
“Object Detection Using Sim2Real Domain Randomization for

13

https://doi.org/10.4172/2155-9600.1000384
https://doi.org/10.4172/2155-9600.1000384
https://doi.org/10.1007/978-3-540-78831-7{_}60
https://doi.org/10.1007/978-3-540-78831-7{_}60
https://doi.org/10.1016/j.compag.2015.11.021
https://doi.org/10.1016/j.compag.2015.11.021
https://doi.org/10.1109/ICPC2T53885.2022.9776804
https://doi.org/10.1109/ICPC2T53885.2022.9776804
https://doi.org/10.1109/UR52253.2021.9494704
https://doi.org/10.1109/SAMI54271.2022.9780790
https://doi.org/10.1109/ICRA46639.2022.9812448
https://doi.org/10.1109/ICRA46639.2022.9812448
https://doi.org/10.1109/ICARSC55462.2022.9784795
https://doi.org/10.1109/IROS45743.2020.9341482
https://doi.org/10.1109/IROS45743.2020.9340904
https://doi.org/10.1109/IROS45743.2020.9340904
https://doi.org/10.1007/s10846-018-0958-6
https://doi.org/10.1007/s13735-020-00195-x
https://doi.org/10.1109/CVPR.2019.00963
https://doi.org/10.1109/CVPR.2019.00963
https://doi.org/10.1109/ROBOT.2009.5152821
https://doi.org/10.1109/ROBOT.2009.5152821
https://doi.org/10.1109/IROS40897.2019.8968446
https://doi.org/10.1002/rob.21917
https://doi.org/10.1109/LRA.2018.2852777
https://doi.org/10.1109/LRA.2021.3131378
https://doi.org/10.1109/LRA.2021.3131378
https://doi.org/10.1109/IROS.2011.6094686
https://doi.org/10.1142/S0219843616500286
https://doi.org/10.1109/ICRA.2019.8793898

Robotic Applications,” IEEE Transactions on Robotics, pp. 1–
19, 2022, ISSN: 1552-3098. DOI: 10.1109/TRO.2022.3207619.

[31] Y. Li, S. Xie, X. Chen, P. Dollar, K. He, and R. Gir-
shick, “Benchmarking Detection Transfer Learning with Vi-
sion Transformers,” Nov. 2021.

[32] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft COCO:
Common Objects in Context,” May 2014.

[33] K. Wada, Labelme: Image Polygonal Annotation with Python,
2022. [Online]. Available: https : / / github . com / wkentaro /
labelme.

[34] R. Padilla, S. L. Netto, and E. A. B. da Silva, “A Survey
on Performance Metrics for Object-Detection Algorithms,”
in 2020 International Conference on Systems, Signals and
Image Processing (IWSSIP), IEEE, Jul. 2020, pp. 237–242,
ISBN: 978-1-7281-7539-3. DOI: 10.1109/IWSSIP48289.2020.
9145130.

[35] Franka Emika, ROS integration for Franka Emika research
robots. [Online]. Available: https://github.com/frankaemika/
franka ros.

[36] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A Modern
Library for 3D Data Processing,” Jan. 2018.

[37] S. Chitta, “MoveIt!: An Introduction,” in Robot Operating
System (ROS) The Complete Reference (Volume 1), A. Koubaa,
Ed., vol. 625, Switzerland: Springer International Publishing
Switzerland, 2016, ch. 3, pp. 3–27, ISBN: 978-3-319-26054-9.
DOI: 10.1007/978-3-319-26054-9.

14

https://doi.org/10.1109/TRO.2022.3207619
https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://github.com/frankaemika/franka_ros
https://github.com/frankaemika/franka_ros
https://doi.org/10.1007/978-3-319-26054-9

	Introduction
	Related Work
	Bin-Picking Algorithms
	Instance Segmentation
	Synthetic Dataset for Network Training
	Perception and World Modelling
	Path Planning
	Object pose
	Grasp affordance and Path Planning

	Instance Segmentation
	Synthetic Dataset
	Training Details
	Evaluation Metrics

	Bin-Picking Pipeline
	Perception
	Point Cloud Processing
	Path Planning and Execution

	Experiment Setup
	Materials
	Test Cases
	Evaluation Metrics

	Results
	Instance segmentation
	Bin-Picking
	Test Case I: One chicken fillet
	Test Case II: Multiple non-overlapping chicken fillets
	Test Case III: Multiple overlapping chicken fillets

	Centre of Mass as Convex Hull Centre

	Discussion
	Instance Segmentation
	Bin-Picking Pipeline

	Conclusion

