
Optimizing Data Movement for Accelerator Cards
Using a Software Cache

Steven Wijnja
University of Twente, Enschede

Abstract—Hardware accelerators are used to speed up com-
putationally expensive applications in many scientific fields.
However, offloading tasks to accelerator cards requires data to
be transferred between the memory of the host and the external
memory of the accelerator card; this data movement frequently
becomes the bottleneck for increasing accelerator performance.
In this work, we explore the use of a software cache to optimize
communication and alleviate the data-movement bottleneck by
transparently exploiting locality and data reuse. We present
a generic, application-agnostic framework, dubbed SoftCache,
that can be used with both GPU and FPGA accelerator cards.
SoftCache exploits locality to optimize data movement in a non-
intrusive manner (i.e., no changes to the algorithm are necessary)
and allows the programmer to tune the cache size, cache
organization, and replacement policy toward the application
needs. Each cache line can store data of any size, thereby
eliminating the need for separate caches for different data types.
We used a phylogenetic application to showcase SoftCache.
Phylogenetics study the evolutionary history and relationships
among different species or groups of organisms. The phylogenetic
application implements a tree-search algorithm to create and
evaluate phylogenetic trees, while hardware accelerators are used
to reduce the computation time of probability vectors at every
tree node. Using SoftCache, we observed that the total number
of bytes transferred during a complete run of the application
was reduced by as much as 89%, resulting in up to 1.7x (81%
of the theoretical peak) and 3.5x (75% of the theoretical peak)
higher accelerator performance (as seen by the application) for
a GPU and an FPGA accelerator, respectively.

Index Terms—Data movement, Software cache, GPU, FPGA,
OpenCL, RAxML, Phylogenetic likelihood function (PLF)

I. INTRODUCTION

Hardware accelerators such as Graphics Processing Units
(GPUs) and Field Programmable Gate Arrays (FPGAs) are
used to speed up computations in many scientific fields,
for example machine learning for particle physics computing
[1], deep neural networks [2], Monte Carlo simulators [3],
image processing [4], bioinformatics [5] and others. Generally,
the computationally intensive parts of the application are
offloaded to the accelerator to increase the performance of the
application. Hardware accelerators have become increasingly
popular in scientific computing due to their parallel processing
capabilities and efficient handling of large datasets. Nowadays,
an exorbitant amount of data is collected. For example, the
cost of sequencing DNA has been decreasing exponentially,
so fast that Moore’s Law can’t keep up [6]. DNA sequence
analysis is critical for advancing our understanding of genetics,
diagnosing diseases, studying evolution and unraveling the
complexities of human existence. Accelerators offer paral-
lelism and scalability to reduce the runtime of applications by

orders of magnitudes, which is necessary because processing
large amounts of data such as DNA can take days to weeks.

Offloading computational tasks to an accelerator typically
require a significant amount of data transfers, as data has to
be transferred to the accelerator to be processed and then
transferred back to the host. In some cases (depending on
the application), the output of one accelerator invocation
can be reused by subsequent accelerator invocations without
transferring anything back to the host. In other instances, the
accelerator output has to be sent back to the host after each
accelerator invocation to enable the algorithm to proceed. Both
cases, however, present opportunities for data that is either
computed or previously transferred to the accelerator to be
reused.

Optimizing communication for hardware accelerators is
extensively researched by both the industry and the scientific
community. NVIDIA introduced Unified Memory in CUDA 6
SDK [7], which uses one memory address to access both CPU
and GPU memory, and will migrate pages when necessary. The
main goal of Unified Memory is to make the programming of
GPUs easier, while also providing a high bandwidth for data
transfers.

Communication overhead poses a significant bottleneck in
cloud computing and data centers [8], [9]. Consequently,
researchers have explored the utilization of software caches for
specific applications and platforms [10]–[12]. By employing
a software cache, it is possible to mitigate the impact of
communication overhead and enhance overall performance.

GPU/FPGA accelerator cards have both on-chip and on-
board (external) memory. Here, we focus on the communica-
tion between the external memory of the host and the external
memory on the accelerator. The cost of data transfers to/from
external memory is considerably more time and energy costly
than the communication between on-chip memory and the
processing units [13]. The on-chip memory is significantly
faster than the throughput of state of the art PCI express buses.
For example, the GDDR6X memory used in the GeForce RTX
3090 has a bandwidth of 936.2GB/s, while the PCIe 4.0 x16
used by the same GPU has a bandwidth of only 64GB/s.
The I/O bandwidth is often the bottleneck when trying to
increase the performance of hardware accelerated applications
[14]–[16]. This is often caused by redundant data transfers. In
essence, data that is already stored on the accelerator does not
have to be sent again; such transfers are therefore redundant.

A significant performance increase can be achieved when
the amount of transferred data is reduced. This is especially

true for applications with a low arithmetic intensity, i.e.
applications with a low computation-to-communication ratio.
One can exploit locality by reusing this data, however this
does require that you keep track of what data is located on
the accelerator. To do this efficiently, one needs to analyze
the memory access pattern of the application, which yields
a time-consuming, application-specific solution without any
transferable benefits for other applications/domains.

Therefore, we present a software cache, dubbed SoftCache,
that is inspired by hardware caches. Hardware caches for
processors are designed to make the general case fast, and
we apply this same principle to efficiently manage the data
transfers for applications.

The objective of this work is to design a generic frame-
work for PCI-connected hardware accelerators. The frame-
work should be application-agnostic, support both GPUs and
FPGAs, and the cache should be customizable with regards to
organisation, size and replacement policies. SoftCache relies
on the OpenCL API to support both GPU and FPGA accel-
erators, but other APIs, e.g., CUDA, can also be used. The
main goal is to exploit locality to optimise data transfers. The
framework reduces the amount of data sent and thereby shorten
the time spent on communication. SoftCache is customizable
which allows us to test a variety of cache organisations,
replacement policies and different cache sizes.

The main contributions of this work are:
• We present SoftCache, a general framework that opti-

mizes data movement for accelerators in a non-intrusive
manner, i.e., no changes to the algorithm are needed,
and only minimal changes to the code are required. The
framework is customizable and supports various cache
organizations, replacement policies, and cache sizes. A
single SoftCache instance can cache different-sized data
blocks. This allows the framework to be tuned accord-
ingly to better address the application needs. Furthermore,
it supports both write-through and write-back policy,
allowing the optimization of communication in both
directions.

• We evaluate SoftCache with a phylogenetic application
and three hardware accelerators, a GPU implementation
and two special-purpose, FPGA-based architectures, for
the phylogenetic likehood function. The experimental
results show that SoftCache can achieve similar perfor-
mance with related works that have been designed and
optimized specifically for the phylogenetic likehood func-
tion. Without any changes to the hardware accelerators
to improve their peak theoretical throughput, the use of
SoftCache results in 1.7x and 3.5x higher accelerator
performance, as perceived by the host application, for
the GPU and the FPGA accelerators, respectively.

A. Research questions

The research will focus on exploring ways to optimize data
movement and improve the overall performance of accelerator-
based applications in a non-intrusive manner. No changes to
the implementation of the algorithms should be needed and

only information from the explicit data movements will be
used. To properly address this problem, a research question
has been formulated:

• How can we exploit locality to optimise data movement
on systems that use PCI connected accelerator cards with
dedicated memory for I/O bound applications?

To answer the main research question, we will explore the
following sub-questions:

1) What methods are described in the literature to optimize
data movement?

2) How does the framework perform on a real application?
3) How do the different cache parameters compare to each

other?
In section II the necessary background is presented to get

a better understanding of hardware accelerators and cache
architectures. Section III explores related work and identifies
the gaps and limitations of existing methods. Section IV
describes the design of the framework and the technical details.
In section V the method of evaluation and the results are
discussed. Finally, in section VI a conclusion will be drawn
and the main research question will be answered.

II. BACKGROUND

A cache is a memory storage that is used to overcome mem-
ory access bottlenecks. A cache is used as a temporary storage
closer to the processing unit(s), which makes it possible to
retrieve data quicker. An essential feature of a cache is that it
is not visible to the application whether the data is retrieved
from the cache or the original source.

A distinction can be made between software and hardware
caches. For example, web browsers use a software cache
to store recently visited websites to load the website faster
when it is accessed again [17]. When a user visits a website,
the browser checks the cache for requested files and loads
them from there instead of downloading them again, which
reduces loading time and data transfer. Hardware caches are
used in processors, graphical processing units and hard drives.
Figure 1 illustrates a typical memory hierarchy in modern pro-
cessing systems. Each layer communicates with the adjacent
layers. The bandwidth increases and the latency decreases as
we move upwards, at the cost of size. Registers and caches
are utilised to temporarily store data and take advantage of
temporal locality, which refers to the tendency of a program
to access data that has been recently accessed or is likely to
be accessed again in the near future.

The cache framework presented in this work is a software
cache, but its architecture is inspired by hardware caches. In
this section, background information on hardware accelerators
and hardware caches is provided.

A. Hardware accelerators

Hardware accelerators are specialized hardware designed
to accelerate a specific task at a faster rate than traditional
CPUs. Graphic Processing Units (GPUs), Field-programmable
Gate Arrays (FPGAs), Digital Signal processors and Tensor
Processing Units are examples of hardware accelerators.

Registers

L1 cache

L2 cache

L3 cache

Main memory

Disk drive

B
an

dw
id

th
 in

cr
ea

se
s

Latency and size increases

Fig. 1: Memory hierarchy of a processor

To utilise the hardware accelerator, data has to be transferred
to the accelerator. The data is then processed immediately in
a streaming fashion or stored in dedicated memory on the
accelerator board. Within this work, only GPUs and FPGAs
with dedicated memory are considered, however SoftCache
can also be used on other accelerators that use dedicated
memory.

GPUs were originally developed to render graphics for
video games and multimedia applications. Nowadays they are
also used the scientific community due to their versatile and
powerful parallel processors. The newest GPUs have over
10.000 processor cores, while consumer CPUs generally only
have eight cores. This allows them to do many computations
in concurrently, which can significantly reduce the overall
execution of an application.

FPGAs on the other hand, are reprogrammable hardware
that allow the users to design digital logic circuits that matches
the computational requirements of an application. Moreover,
FPGAs provide the opportunity to tailor hardware for par-
ticular applications, enabling parallelization and pipelining
of computations for optimal performance. Pipelining within
FPGAs accelerates calculations by dividing them into smaller
segments and overlap the segments with consecutive iterations.
For example, within a loop two numbers are multiplied to-
gether, and the result is added to a sum. Without pipelining,
this would take two cycles per iteration (assuming that both
addition and multiplication takes one clock cycle). By using a
pipeline we can permit to start the next iteration of the loop
before the previous iteration finishes, effectively overlapping
the multiplication of the second iteration with the addition
of the first iteration. After filling up the pipeline, this results
in one clock cycle per iteration, instead of two. This enables
parallel processing and can reduce the overall execution time
for improved performance.

B. Cache organisations

Caches are categorized in three organisations: direct map-
ping, n-way set associative and fully associative. However,
the cache organisations can all be classified as a n-way set
associative cache. Direct mapping is essentially a m-way set
associative cache, where m is the number of cache lines, and

tag index
0
1
2

Blocks

16 bit memory address

2 bit6 bits

63

8 bits

block offsettag match?line offset

Main memory

Cache memory

Fig. 2: Memory address and cache layout for direct mapping

each set consists of exactly one line. A fully associative cache
is in essence a cache with one set and m lines per set.

1) Direct mapping: Direct mapping requires the least
amount of hardware and has a very low look-up time. The
cache memory consists of a tag, and one or more blocks
of data. The binary representation of the memory address is
divided into tag, line number and block offset.

The line number field is used to select the line within the
cache. In hardware design this is generally done by using
multiplexers. A comparator is then used to check whether the
tag field matches the tag of the cache line. If there is a match
the data from will be used, this is called a cache hit. If there is
no match, or a cache miss, the data will be transferred to the
cache and the tag will be updated. The block offset is used to
identify a unique byte or word in the main memory.

The number of bits used for the line number dictates the
size of cache. When n bits are used, the size of the cache will
be 2n lines.

Figure 2 illustrates an example of a 16-bit address and the
structure of a 64-line, 4-block direct-mapped cache. The line
number field is used to select the line within the cache. In
hardware design this is generally done by using multiplexers.

Note that with direct mapping a unique memory address can
only be mapped onto one specific cache line with a block offset
for the specific byte, as shown in Figure 3a. This results in a
lower cache hit ratio compared to other cache organisations.

2) Set associative: The n-way set associative cache is a
variation on the direct mapping organisation. The cache is
divided into n sets where each set contains m cache lines.
The host address is again divided into three sections: the tag,
the set index and block offset.

The set index will determine in which set the data is stored.
The tag bits are then compared with all the tags in the set.
If there is a cache hit the appropriate line will be returned. If
there is no match the data will be retrieved from main memory
and placed in respective set. The line number within the set in

Main memory Cache memory

vector 00000

vector 1

vector 2

0001
0010
0011
0100
0101

line 0
line 1
line 2
line 3

set 0

set 1

2 1

4 bit address

2 bytes per vector

1vector 3

vector 4

0110
0111
1000
1001

Set/line
index

Tag Block
offset

Main memory Cache memory

vector 00000

vector 1

vector 2

0001
0010
0011
0100
0101

line 0
line 1
line 2
line 3

3

4 bit address

2 bytes per vector

1vector 3

vector 4

0110
0111
1000
1001

Tag Block
offset

Main memory Cache memory

vector 00000

vector 1

vector 2

0001
0010
0011
0100
0101

line 0
line 1
line 2
line 3

00
01
10
11

1 2

4 bit address

2 bytes per vector

1vector 3

vector 4

0110
0111
1000
1001

Set/line
index

Tag Block
offset

(a) Direct mapping (b) 2-way set associative (c) fully associative

Fig. 3: Memory address to cache line assignment for direct mapped, set associative and fully associative caches

which the data is stored will be determined by the replacement
policy.

Set associative caches use significantly more hardware than
direct mapping. For m cache lines per set, we also need m
comparators, as well as logic to combine the results of all
comparators. An example of possible mappings for a 2-way
set associative cache is shown in Figure 3b.

3) Fully associative: A fully associative cache is essentially
a single set associative cache where a memory block can be
mapped to any of the cache lines. The host address is divided
in a tag and the block offset.

The tag bits are compared to all the entries of the cache.
Similarly to the set associative cache, if there is no match a
replacement policy will decide on which line the data will be
stored.

Fully associative caches require a comparator for every
cache line and therefore require the most hardware of all the
cache organisations. However, it does give freedom to place
the data on any cache line and therefore utilise the cache in
the most optimal way

Figure 3c shows an example of the fully associative cache.
No bits are reserved for the set/line index anymore, and instead
three bits are used for the tag and still one bit is used for block
offset. All vectors can be mapped to the all cache lines, and
the cache controller will decide to which line each vector is
mapped, based on the replacement policy.

C. Replacement policies

Associative caches use a replacement policy to determine
which data to evict from the cache when the cache is full and
new data needs to be loaded. In this work, we consider the
following strategies: random, FIFO and LRU.

1) Random: The random replacement policy selects the
cache line that has to be replaced by random. The benefit
of random replacement is that it does not require information
about the access history. The cache controller generally uses
a pseudo-random number generator to select a cache line to
evict when a new block of data is loaded into the cache.

2) FIFO: The first-in, first-out (FIFO) algorithm requires
the cache controller to keep track of the order in which lines
are loaded in the cache, and is often implemented by using a
circular buffer or a queue. The data that was first added to the
queue will be the first to be removed when a new block of

data is loaded into the cache. When a cache line is accessed,
the position in the queue does not change.

3) LRU: The least recently used (LRU) algorithm requires
the cache controller to keeps track of how often a cache line
is used/accessed. Usually this is done by storing the age as
an integer of each cache line. Whenever a cache line is used,
the age of that cache line will be reset to 0 and all other age
fields in the set will be incremented by one. The algorithm
will replace the oldest cache line when new data has to be
stored.

An alternative method is by implementing it by using a
doubly linked list, paired with a hash map for O(1) accessing
and updating the cache line. However, this does require two
data structures with O(n) space complexity.

D. Write policies

When the processor wants to write data, it first checks to
see if the address it wants to write to is present in the cache.
If the address is found in the cache, the write is considered
a ”hit”. In this case, the value in the cache can be updated,
avoiding the need to access slower main memory. However,
this approach can result in inconsistent data, as the data in
the cache may be different from that in main memory. This
can cause issues in systems with multiple devices sharing the
same main memory, such as in a multiprocessor system.

To address this problem, two techniques are commonly
used: write-through and write-back.

1) Write-through: The write-through policy not only up-
dates the cache, but also simultaneously writes to memory.
This is the most reliable way to keep data consistent between
main memory and cache.

One advantage of write-through is that it reduces the pos-
sibility of data loss or corruption. Since every write operation
updates both the cache and the main memory/storage, there is
no risk of losing data due to a power outage or system failure
before the data is propagated to the main memory/storage.
Additionally, because the main memory/storage is always
consistent with the cache, it ensures that any other component
that accesses the main memory/storage will see the most up-
to-date version of the data.

However, a disadvantage of write-through is that it can lead
to lower performance due to the increased number of memory
transfers required for each kernel call. Additionally, the larger

the size of the data in the cache, the longer the write-through
policy can take to complete, which can have a negative impact
on overall system performance. Write-through is often used in
systems where data consistency is critical.

2) Write-back: The write-back policy delays the writing of
data back to the main memory until it is absolutely necessary,
i.e. when a cache line is replaced or if the data in main memory
is used and requires to be coherent with the cache. This is
done to optimize the performance of the system by reducing
the number of memory write operations, which can be time-
consuming and can slow down the system. In the write back
policy, modified data is first written to a cache instead of
immediately being written back to the main memory.

Each cache line requires a dirty bit that indicates whether
the data has been modified (in which case it is marked dirty)
or not. When the cache controller evicts a dirty cache line, it
is will be written back to memory.

III. RELATED WORK

Several frameworks implement cache-related concepts to
reduce the number of data transfers.

SemCache [10] proposed the idea of a software cache to
reduce the amount of data transfers between CPU and GPU.
The cache translation records who reside in the software cache
contain the start address and end address of the CPU memory,
the status and the start address of the memory on the GPU.
This allows SemCache to have a variable granularity. Not
only does SemCache reduce the number of data transfers, but
it can also be extended to avoid redundant computations on
the GPU. Due to the dynamic granularity, the cache overhead
could become significant when there are many small records in
the software cache. SemCache was benchmarked on a domain
decomposition which is used for the simulation of structural
dynamics problems, that rely heavily on floating point matrix
multiplications. They achieved a performance increase of 30%
to 40% compared to the no cache implementation, by using
the write-through policy. By using the write-back policy they
achieved another 4-10%.

DyManD [12] consists of a memory allocation system, run-
time library and compiler passes. The run-time library also
makes use of a software cache, containing an ordered map of
the base address, size and state. It allocates memory per block,
which unfortunately leads to issues with false sharing when
allocation units on the same page is frequently used by both the
CPU and GPU. This results in unnecessary transfers because
the allocation unit may be coherent, but the page is not, and
therefore the whole page is transferred. DyManD tries to fix
this by using heuristics to arrange the memory in such a way
that this can be partly avoided. DyManD was benchmarked
on 24 different programs ranging from calculations on matrix
multiplications to more complex data structures, such as linked
lists, graphs and other complex data structures. DyManD
achieved a geometric mean speed-up of 4.21x over the best
sequential versions.

Asai et al. [18] proposed an extension to Apache Spark.
Apache Spark is an open-source data processing engine de-

veloped specifically for handling large datasets. Its main aim
is to offer high computational speed, scalability, and flexibility
to meet the needs of Big Data. The extension implicitly avoids
redundant data transfers between the CPU and GPU without
any code modifications. Apache Spark uses so called resilient
distributed datasets (RDD), which are immutable elements that
can be distributed across the nodes of a cluster system. The
general run-time behaviour of Apache Spark causes redundant
data transfers because it transfers data from the CPU to
the GPU, executes the kernel for the RDD and transfers
back the results to the CPU, regardless of the continuation
of operations. Their extension identifies GPU-isolated RDDs
by analysing the dependencies. If a RDD is GPU-isolated
the results will be cached and used for the next operation.
To exploit the re-use of RDD the cached data is lazily
deleted, using the Least Recently Used (LRU) policy. Their
proposed method reduced the data transfer time by 96% on
a logistic regression problem. However, one limitation of the
proposed extension is its dependency on the Apache Spark
framework, which restricts its applicability to specific types of
data processing tasks or algorithms. Additionally, the extension
is only compatible with NVIDIA GPUs, further narrowing its
usability.

dlmCL [19] proposes the idea of unifying the host and
device memory into one object, similar to CUDA’s unified
memory [20]. For devices with shared memory access it does
not allocate buffers on the device, but instead maps the device-
visible virtual addresses to physical addresses. These are
buffers are so called zero-copy buffers and drastically reduce
the number of data transfers. dlmCL is mainly an abstraction
of openCL features that will implicitly make zero-copy buffers
for devices with shared memory, such as integrated GPUs.
dlmCL does not improve the performance for dedicated GPUs,
it is actually slightly worse due to some overhead.

There are also several frameworks that reduce the number
of data transfers by using compiler techniques. OmpMemOpt
[21] applies a data flow analysis during compile time for par-
tial redundancy elimination. The data transfers are optimized
by using lazy code motion techniques. Invariant computations
are moved out of loops and it eliminates duplicate compu-
tations in a computation path. OmpMemOpt was tested on
ten different benchmarks and achieved a geometric speed-
up of 2.3x and managed to reduce the number of bytes that
were transferred by 50%. However, since they use compiler
optimizations, the solution only works on static data transfers
patterns.

Other methods such as pinned memory can also speed up the
communication drastically, as explained by Rasch et al. [22].
Data in a pinned memory area does not have to be copied to
a temporary buffer before it is transferred to the accelerator.
It can directly use direct memory access (DMA) transfers to
send and receive data. However, this does not reduce amount
of data that is transferred.

The works discussed so far have primarily utilised GPUs.
Related to FPGAs, Wei et al. [23] proposes Layer Conscious
Memory Management framework (LCMM) for Deep Neural

Networks (DNN) that are ran on an FPGA. To reduce the re-
quired on-board memory they analyse the lifespan of different
feature tensors to look for opportunities for them to share the
same buffer. This is done on the computation graph by the
means of graph coloring algorithms. However, the core part
of the framework is their memory allocation algorithm DNNK
(DNN Knapsack). DNNK allocates on-board memory for
some layers while other layers access the data from off-chip
memory, depending on whether the layer is memory bound or
computation bound. They achieve a performance increase of
1.36x compared to previous designs on ResNet. Their work
stores frequently accessed data close to the processing unit in
a static manner, unlike a cache where the buffer content can
be replaced. The latter has the opportunity to be more efficient
with the right replacement policy.

Alachiotis et al. [16] optimized data movement for a phy-
logenetic application that reconstructs and evaluates phylo-
genetic trees on FPGAs. They cache the nodes in the tree
which contain the probability vectors. By using a direct
mapped software cache that stores the probability vectors, they
managed to reach 75% of the maximum effective accelerator
performance. They only cache data that is transferred from the
main memory to the accelerator, and overlapped computation
with the data transfers from accelerator to host.

Knoben [11] implemented a software cache for FPGAs,
however his design can only store data of the same size, and
multiple cache instances are needed to store the different sized
nodes of the tree-based algorithms. Furthermore, it can not use
the full size of the accelerator’s on-board memory due to the
fact that the cache size has to be a power of two.

There are also a number of frameworks available to make
the communication with FPGAs easier [24], [25]. However,
none of them reduces the number of data transfers. The
frameworks reviewed in this section optimize data movement
in various ways, including caching, but none of the frameworks
is customizable to accommodate different applications and/or
platforms. Furthermore, the caching methods related to FPGAs
are only suitable for a specific application or data structure.

IV. FRAMEWORK DESIGN AND IMPLEMENTATION

A novel framework, dubbed SoftCache, has been designed
to optimize the data movement between host and accelerators.
Regarding the design requirements, SoftCache should be a
generic and application-agnostic framework to alleviate the
data-movement bottleneck by utilizing temporal locality. Soft-
Cache should be able to be used with minimal code changes
and no changes to the algorithm should be necessary. The
framework should allow the programmer to tune the cache
size, cache organization, and replacement policy towards the
application needs. Furthermore, it should support both GPUs
and FPGAs. In this section the architecture and implementa-
tion of SoftCache will be discussed.

A. Architecture

The architectural overview is shown in Figure 4. The
architecture of OpenCL applications generally consist of three

Algorithm

OpenCL Kernel

OpenCL

SoftCache

Host

Accelerator

Fig. 4: High level overview of the SoftCache framework

layers: the algorithm, OpenCL API and the OpenCL kernels
that run on the accelerator.

SoftCache is a layer between the application and the
OpenCL API. SoftCache uses the same function names as the
OpenCL API and can be used with minimal code modifica-
tions. The framework calls the corresponding OpenCL API
functions when necessary and coordinates/controls the data
transfers.

B. Overview of components

Figure 5 shows an overview of the software compo-
nents. An object of Cache class can be created by passing
the command line arguments or by passing the arguments
for organisation, replacementPolicy, cacheSize
and nrOfSets (if the set associative cache organisation is
chosen).

Multiple objects of Cache can be used if multiple software
caches are needed. This is mainly used for FPGAs where each
Super Logic Region (SLR) has its own memory bank.

The number of cache lines is determined by the constructor
of the class with argument cacheSize. As opposed to a
hardware cache, the cache line can store data of any size and is
not fixed by the application. The CacheLine struct consists
of a flag, tag, deviceAddress, size and age field:

• flag indicates whether the data that is referenced by the
cache line is located on the CPU, Accelerator or both.
This is similar to the dirty bit in a hardware cache. The
enumerated flag is more verbose than the dirty bit and
supports the option to write-back policy, where data is
not immediately sent back to the host.

• tag is a pointer to the data on the host device. Unlike
hardware caches, where the tag is a bit-field of the
address, here the complete address is stored regardless of
the cache organisation. This is required to be able to store
any data size and simplifies the design. Whenever data is
written to the accelerator, the pointer to the data will be
compared to one or more tags in the cache, depending on

0..*

1

<<struct>>
CacheLine

+ flag: Flag
+ tag: pointer
+ deviceAddress: cl_mem
+ size: size_t
+ age: unsigned int

<<Enumuration>>
Organisation

DIRECT_MAPPING
SET_ASSOCIATIVE
FULLY_ASSOCIATIVE

<<Enumuration>>
ReplacementPolicy

LRU
FIFO
RANDOM

Cache

- nrOfSets: Int
- nrOfLines: Int
- nrOfLinesPerSet: Int
- organisation: Organisation
- replacement: ReplacementPolic
- cacheLines: Array<CacheLine>

+ Cache(organisation,
 replacementPolicy,
 cacheSize,
 nrOfSets)
+ Cache(argc, argv)

+ createBuffer()
+ enqueueWriteBuffer()
+ enqueueReadBuffer()
+ enqueueNDRangeKernel()

+ setDirtyFlag(tag, flag)
+ writeBack(host_ptr)
+ printCache()
+ printTimeProfile()
+ resetCache()
+ resetTimers()

<<Enumuration>>
Flag

CPU
ACCEL
BOTH

Fig. 5: Component overview of SoftCache

the cache organisation. The tag is also used as argument
in the setDirtyFlag method. The framework does not
detect changes in the data on the host, therefore when data
is altered the setDirtyFlag method should be called
to ensure coherence.

• deviceAddress points to a memory location on the
accelerator. When createBuffer is called, memory
will be allocated on the accelerator and the address to
this buffer will be returned. When data is written to the
accelerator, it must be written to one of the buffers.

• size stores the size of the data object. The size is used to
keep track how much data is allocated on the accelerator,
and in the future it could be used for more sophisticated
replacement policies.

• age is used to store the age of the cache lines. The age
is used for replacement policy algorithms, see subsec-
tion IV-D.

C. Cache indexing

As described in subsection II-A, hardware caches use a bit-
field of the memory address to compute the index of the cache
line, in direct mapped caches, or the set in set associative
caches. However, this comes with some limitations. The block
size should be a power of two, and equal for all cache lines,
and the number of cache lines also needs to be a power of
two.

These limitations have a big impact on the flexibility and
efficiency of the cache. For example, when processing trees,
the leaves and nodes of the tree can be of different sizes. To be
able to store both, a naive approach would require the block
size to be equal to the largest data block. This would leave a
significant amount of memory unused.

Similarly, we would like to utilise the full memory space of
the accelerator. For example, when using a GPU that has 6GB
of RAM, only 4GB can be utilised with this approach, since
232 = 4GB, and the next step would be 233, which is 8GB.
Overprovisioning does not work in this case, because memory
addresses would be mapped to accelerator memory that may
not exist.

Instead of using a bit-field to compute the index, it’d be
more efficient to use all the bits of the memory address to
compute the index. Therefore a hash table approach is used
for direct mapping and set associative cache organisations.
To the best of our knowledge, there are no alternatives for
bit-fields/hash tables to directly map the memory addresses
to a line/set index. However, since the main goal of direct
mapping and set associative caches is to reduce the overhead
for adding and removing entries, alternative data structures
such as balanced search trees could also be used as an
alternative to direct mapping/set associative caching. The hash
table approach is used as it is closely related to the hardware
architecture of caches, and it has the lowest time complexity
of O(1) for search, insert, and delete.

The hash function in Equation 1 is used to compute the
index:

i = p mod n (1)

where i is the index of the respective cache set, p is unsigned
integer representation of the pointer to the host memory
location and n is the number of cache sets. The hash function
functionally works the same as bit-fields when the number of
lines in a cache is a power of two, with the same limitations.
Therefore the cache size should be carefully chosen.

To ensure an equal distribution of the keys, the cache size
should be a prime number. One additional requirement is
needed for the cache size. When taking the modulo of the
number of possible memory addresses (on a 64-bit system
this is 264) with a prime number, and the result is 1, this
essentially means that p mod n is simply the sum of the
binary representation of the address, which will result in many
collisions. Therefore the cache size should be a prime number
and p mod n ̸= 1. Additionally, the size of the data that is
stored in the cache should not be a multiple of n. While this
imposes limitations on the cache size, it does allow the use of
almost the entire memory space since there are many prime
numbers to choose from. Given the cache size, SoftCache will
find the closest prime number which satisfies the constraints.

1) Direct mapping: In direct mapped caches the number of
sets is equal to the number of cache lines. On a cache look-up,
Equation 1 is used to find the respective set. Since the host
memory is generally significantly larger than the accelerator
memory, it is possible that multiple host memory addresses are

mapped to the same location on the accelerator. To prevent
this, cache lines that are transferred to the accelerator, will
be locked until the kernel is executed. If two (or more)
host memory addresses are mapped to the same location the
accelerator, the second address will be mapped to a random
cache line that is not yet locked. This ensures that data on
the accelerator is not overwritten until the kernel is executed.
After kernel execution the lines will be unlocked.

2) Set associativity: similarly to the direct mapped organ-
isation, the number of sets should be a prime number and p
mod n ̸= 1, where p is again the unsigned integer represen-
tation of the host memory address, and n is the number of
sets in the cache. Given the number of sets, SoftCache will
automatically find the closest prime number that satisfies the
constraints.

The cache is divided into N sets, each set containing an
equal number of cache lines. On a cache look-up, Equation 1 is
used to find the respective set. Within the set, the host memory
address is compared to the tags in the cache iteratively.

The replacement policies described in subsection IV-D is
used to decide which cache line to evict within a set, if no
match is found.

3) Fully associativity: To find the matching cache line in
fully associative caches, the tag of each cache line has to be
compared with the host address. Generally, in hardware caches
this is done with n comparators for n cache lines, however in
software we can simply iterate through all the cache lines until
a matching tag is found. If no match is found, the replacement
policies described in subsubsection IV-D1 will be used to
decide which cache line should be evicted. Note that, unlike
in direct mapping and set associative configurations, a fully
associative cache does not impose any limitations to the cache
size, but the cache control overhead is significantly higher.

D. Replacement policies

Set associative and fully associative caches use replacement
policies to determine which cache line should be replaced. For
simplicity, only three replacement policies have been imple-
mented. Random replacement (RR), first-in first-out (FIFO)
and least recently used (LRU) are the most commonly used
replacement algorithms. They are effective and have low
overhead cost.

There is one potential issue that can occur when using a
software cache for host-accelerator communication. Generally,
for every kernel call multiple data transfers are required.
Therefore it is possible that the data sent in an earlier data
transfer is overwritten before the kernel is executed. To prevent
this from happening, cache lines that were sent will be locked
until the kernel is executed. If the replacement policy selects
a locked cache line, it will pick a random non-locked cache
line to replace.

1) Random replacement: When a cache line needs to be
replaced, a random line is selected from the set of available
lines. For fully associative caches this can be any line. In
n-way set associative caches a random line is selected from
the set that matches the memory address. A pseudo random

number generator is used to select a random line. This means
that any line in the set could be replaced, regardless of
how frequently or recently it was accessed. The random
replacement policy has a low execution overhead. The update
time complexity is O(1).

2) First-in first-out: The FIFO policy is implemented as a
pointer to the last cache line in a set. This results in an update
time complexity of O(1). When a new block of data is added
to cache, the pointer is incremented by one, and the line the
pointer points to is replaced. The pointer wraps around to first
element of the cache ones it exceeds the number of lines of
the set. This ensures that the first element that was added to
the cache, will also be the first element that will be evicted.

3) Least-recently used: To support the Least-recently used
policy additional information about the cache line has to be
stored. A field that stores the age of the cache line is added.
When the cache is used, the age of all cache lines is increased.
If there is a cache hit, the age of that specific cache line is
reset to zero. The cache line with the oldest age will be evicted
on replacement.

The complexity of updating a cache line is O(n) where n
is the number of lines in a set. This is due to the fact that the
line with the highest age counter has to be found, and the age
of each line has to be updated.

E. Write policies

SoftCache supports write-through and write-back, which
apply to data transfers from the device to the host. Write-
through writes data back to the host after each kernel invo-
cation. Write-back will write back data to the host memory
on a cache line replacement and the data can be transferred
back explicitly by calling the writeBack method with the
respective host pointer. If no argument is given, all cache lines
with ACCEL flag will be transferred back to the host. The dirty
bit is implemented as an enumerated type with the states CPU,
ACCEL or BOTH.

V. EVALUATION

In this section we are going to evaluate the software cache
on a phylogenetic application. In section V-A the phyloge-
netic application will be described. Section V-B describes the
experimental setup that is used to perform the experiments.
Section V-C describes the results of using various replacement
policies. Section V-D compares direct mapping, 3-way set
associative and 5-way associative caching, using the best re-
placement policy. Section V-E describes the effect of different
cache size. In section V-F the performance of the application
is evaluated using the best configurations.

A. Phylogenetic analysis

We initially describe the phylogenetic application that is
used to showcase SoftCache. The phylogenetic analysis starts
with the acquisition of DNA sequences, as depicted in Fig-
ure 6a. The DNA sequences are then aligned using computa-
tional tools to create a multiple sequence alignment as depicted
in Figure 6b. The MSA allows for comparison of nucleotide

Bulldog AGATACAACTGGC

Schnauzer AGTTAAGTACA

German shepherd AGTGTAATTAGCA

Wolf AGTGAATCGACTA

(a) Dog breeds and their DNA sequences

Bulldog AGATACAACTGGC---

Schnauzer --AGTTAAGTACA---

German shepherd -AGTGTAATTAGCA--

Wolf --AGTGAA-TCGACTA

(b) Multiple sequence alignment (MSA)

Bulldog

Standard Schnauzer

German shepherd

Wolf

(c) Phylogenetic tree

Fig. 6: The DNA sequences are aligned to create the multiple
sequence alignment, which is then used to create a phyloge-
netic tree. Adapted from [16].

or amino acid sequences between different organisms and
highlights regions of conservation and divergence. Once the
MSA is generated, it will be used to construct a phylogenetic
tree, as shown in Figure 6c. The phylogenetic tree shows
the evolutionary relationships between the organisms based
on the sequence data. The length of branches indicate the
evolutionary distance and the genetic divergence between the
organisms.

There are many different tree topologies possible based on
the same sequence data. Subtree pruning and regrafting (SPR)
is used to explore alternative tree topologies. A subtree is
pruned from the tree, and is regrafted to another part of the
tree, as shown in Figure 7a and 7b. This creates a new topology
that may be more optimal. The phylogenetic likelihood func-
tion is than used to give a score to each tree. The phylogenetic
likelihood function (PLF) is recursively invoked to evaluate the
given phylogenetic tree. The phylogenetic tree is represented
as binary tree, and the PLF is invoked by traversing the tree
in post-order. Starting at the tips and working its way to the
root of the tree. This process is depicted in Figure 7c.

The phylogenetic likelihood function is a fundamental
concept in the field of phylogenetics, which seeks to infer
evolutionary relationships between species based on molecular
data, which can be either DNA or protein sequences. The evo-
lutionary relationships are represented by a phylogenetic tree.
The inner nodes represents common ancestors and the leaves
of the tree represent the species that are being investigated.
However, there are many possible tree topologies which have
to be evaluated to find the most likely topology. The number
of possible tree topologies also increase exponentially with the
number of species under investigation. For example, for 100
taxa the number of unrooted trees is 1.70 ∗ 10182, i.e. more
trees than the number of atoms in the known universe. To
understand the phylogenetic likelihood function, it is important

0

1

5

4

A C

32

B

D

(a) Pruning

0

1

5

4

A C

32

B

D

(b) Regrafting

0

1

5

4

A C

32

B

D

VR

(c) Traversal

Fig. 7: Rearranging using a sub-tree-pruning-and-regrafting
(SPR) move. In the first step, the red sub-tree is pruned. A
new branch is created between the nodes A and C and the
old one removed. In the second step the sub-tree is reattached
to branch between C and 4. During this process, the branch
between C and 4 is removed, and two new branches are
created. In order to evaluate the tree, the PLF in Equation 3
is used to traverse the tree in post-order: A = PLF (0, 1),
D = PLF (2, 3), B = PLF (D, 4), C = PLF (B, 5) and
finally V R = PLF (A,C). V R is then used to calculate the
likelihood of the tree with Equation 4 and 5. Adapted from
[16].

to first consider the transition probability for a given nucleotide
to change from from one state to another, i.e. for a nucleotide
A to transform to a nucleotide A, C, G or T , which can
be thought of as a continuous-time Markov process which
relies on a transition rate matrix Q. Matrix Q in this context
describes the transition probability of a nucleotide. The Q
matrix is a 4×4 matrix for DNA data, and a 20×20 matrix for
amino acids. Matrix Q can then be used to calculate nucleotide
substitution probability matrix P for a given branch length t:

P (t) = eQt (2)

which gives the probability for all 16 possible transitions for
DNA.

When analyzing aligned sequences it is generally assumed
that every column represents an independent realisation of
the Markov process under a fixed tree. Which means that
the likelihood of the alignment is simply the product of the
likelihoods of each nucleotide. The calculation is done in post-
order, starting at the tip nodes and working up to the root of
a binary tree. The partial likelihood vectors are stored at the
internal nodes. The partial likelihood L⃗u

I (c) is the probability
vector for site c of the input alignment at the inner node I ,
given the left and right child nodes. The vector contains the
four probabilities for u ∈ N and N = {A,C,G, T}. The

partial likelihood vector is defined by the recursive equation:

L⃗u
I (c) =

(∑
s∈N

Pu→s(tl)L⃗s
X(c)

)(∑
s∈N

Pu→s(tr)L⃗s
Y (c)

)
(3)

where Pu→s(t) is the probability for a nucleotide to go from
state u to state s, given a branch length t. L⃗s

X and L⃗s
Y are

the partial likelihood vectors of the left and right child nodes,
respectively.

When the root of the tree is reached, the probability vector
L⃗s
vr(c) is used to calculate the final likelihood LH . First, the

likelihood of site c is calculated with

l(c) =
∑
s∈N

πsL⃗s
vr(c) (4)

where πs, s ∈ N and N = {A,C,G, T} are the prior
probabilities observing nucleotides A, C, G, and T at the vir-
tual root. The final likelihood score is the sum of logarithmic
likelihood scores per site l(c):

LH =

m∑
c=1

log(l(c)) (5)

The process is repeated for different tree topologies. After
the likelihood is found, the tree topology is rearranged using a
sub-tree-pruning-and-regrafting (SPR) move. First a subtree is
selected and detached from the tree, which is called pruning.
The subtree is then attached to a different branch, which is the
regrafting step. This results in a new tree topology to evaluate.

There are many phylogenetic tools that can be used for eval-
uation, however in this work we use RAxML [26]. RAxML is
a popular software tool used for phylogenetic analysis, which
employs advanced algorithms to construct accurate and well-
supported trees from molecular sequence data. The PLF in
Equation 3 takes up a substantial amount of the execution
time, accounting for up to 95% of the total time required for
tree construction.

During the traversal of the tree, parent nodes become the
child nodes in subsequent PLF calls.The accelerator takes the
two child nodes and uses the PLF to compute the probability
vector of the parent node. By using a software cache, nodes
that have already been located on the accelerator are not sent
again, reducing the amount of data transfer required.

There is a lot of opportunity to accelerate the PLF. However,
previous attempts were limited by data movement between the
host and accelerator, and not the computational capabilities
[14], [16], [27]. The leaves of the tree consists of DNA or
protein sequences, each sequence contains m alignment sites.
The inner nodes with the probability vectors. The inner nodes
consist m ∗ S ∗ C double precision values, where m is the
number of alignment sites, S is the number of states (4 for
DNA and 20 for protein), and C is the factor used to account
for rate heterogeneity among alignment sites. This results in
a vast amount of data per node.

The results of the PLF are needed by the host for branch
length optimization. There are two functions in RAxML

that uses the resulting probability vectors, sumGAMMA and
evaluate. sumGAMMA pre-computes the element-wise prod-
uct of the probability vectors and is used for the Newton-
Raphson procedure to optimize the branch lengths of the
tree. Before optimizing the branch length, the PLF function
is called to ensure that the probability vectors are up to date.
evaluate is called on the virtual root using the equations
from 4 and 5. Therefore, it is important that the corresponding
nodes are transferred back to the host for processing. This
is important to consider when optimizing the data movement
from accelerator back to host.

B. Experimental setup

The experiments are initially conducted on a NVIDIA
GeForce GTX 1060 graphics card on a personal computer,
with a AMD Ryzen 5 1600X processor running at 3,6GHz.

For the experimental setup memory access traces are ex-
tracted from the RAxML application for multiple number of
sequences and alignment patterns. The memory trace files
contain the indices of the xVector or yVector, as well
as the case number. The xVector and yVector contain
the inner and tip nodes, respectively. There are three different
cases to consider: tip-tip, tip-inner and inner-inner. Tip-tip
takes as input two tip nodes and computes the inner parent
node. The tip-inner case takes one tip node and one inner node
to compute the inner parent node. And finally the inner-inner
case takes two inner nodes as input as computes the parent
inner node.

In the experimental setup two vectors are created that
replicate the xVector and yVector of the RAxML appli-
cation, using the same size and memory layout as the original
application. A basic kernel has been developed to mimic the
functionality of the newviewIterative function, which
is responsible for most of the program’s execution time and
can benefit greatly from acceleration. Additionally, since the
kernel is just a basic kernel, it is possible to replace the kernel
execution time with results from previous work to get an
estimate of the performance increase by utilizing caching.

For evaluation we use the byte hit ratio, a standard metric
that is often used in evaluating web caching methods [28].
The byte hit ratio is the ratio between the total amount
of bytes that are served by the cache, divided by the total
amount of bytes that would’ve been sent without caching. This
includes transfers from host to device, as well as transfers
from device to host. Since SoftCache is used to cache data
of different sizes per cache line (the tips of a phylogenetic
tree are strings whereas the inner nodes are arrays of double-
precision floating-point numbers), the cache hit ratio is not a
good indication of performance. The byte hit ratio is directly
related to the time spent on data transfers, and therefore an
important metric to consider.

1) Parameters: For the phylogenetic likelihood function
there are three parameters that have a large impact on the
execution time and on the performance of the cache: the
number of taxa, the number of distinct alignment patterns and
whether the data is DNA or protein.

The number of taxa has a direct influence on the size of the
tree. Since a binary tree is used to represent the species, there
will n−2 inner nodes and n tip nodes, where n is the number
of taxa. Since SoftCache stores the nodes in the cache, it will
have an impact on the hit ratio. If the number of lines in the
cache exceeds the number of nodes in tree, you would get the
theoretical maximum hit ratio.

However, for large data it is not possible to store all the data
on the accelerator, and therefore the cache size will be smaller
than the number of nodes in the tree, which will have an
impact on the cache hit ratio. The size of the data depends on
the number of taxa, the number of distinct alignment patterns
and the type of data.

For the evaluation of hit ratio, 1000 alignment patterns is
used with 100, 250, 500 and 1000 taxa. The cache size will
be set on 16 and 32 lines. For the evaluation of expected
speed-ups 15 taxa is used with a distinct number of alignment
patterns ranging from 3590 to 250.000. The number of taxa
and the number of distinct alignment patterns are chosen
based on the values used by Izquierdo-Carrasco et al. [27]
to facilicate comparisons with related work.

C. Replacement policies

The replacement policy has a large impact on the byte hit
ratio. The most optimal replacement policy should discard
data that are not used for the longest time in the future. This
experiment is conducted to find the best replacement policy for
the phylogenetic application. The experiment is performed on
a 3-way, 5-way and fully associative cache with 32 cache lines,
to see if the best replacement policy varies between different
cache organisations. For the same reason, the experiment is
performed on various number of sequences.

The effect of the cache replacement policy is heavily
dependent on memory access pattern of the application. Since
the phylogenetic application does a post-order tree traversal,
it is expected that recency-based policies, such as LRU and
FIFO, will perform well. The random replacement policy is
expected to perform mediocrely.

Figure 8 shows the byte hit ratio for a 3-way, 5-way and
fully associative cache, respectively, for various replacement
policies. It is noticeable that the pattern of all three figures
is the same. There are no significant differences between the
different cache organisations. LRU performs the best in all
three cases, FIFO is slightly worse, and the random replace-
ment policy scores the worst. Since the RAxML application
traverses the phylogenetic trees in post-order traversal, it
makes sense to evict old nodes first. However, it is interesting
that a generic replacement policy that randomly replaces lines
still performs quite well.

As expected, the byte hit ratio decreases when the number
of taxa increases. This is due to the fact that the ratio between
cache lines and the number of taxa becomes smaller.

We can reduce the number of bytes transferred by up to
52.25% using write-through and 88.96% by using a write-
back policy. It should be noted that with the write-through
policy we can only reduce the number of bytes transferred

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

100 250 500 1000

B
yt

e
h

it
 r

at
io

Number of sequences

FIFO LRU Random

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

100 250 500 1000

B
yt

e
h

it
 r

at
io

Number of sequences

FIFO LRU Random

(a) Write-through and write-back for 3-way set associative cache

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

100 250 500 1000

B
yt

e
h

it
 r

at
io

Number of sequences

FIFO LRU Random

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

100 250 500 1000

B
yt

e
h

it
 r

at
io

Number of sequences

FIFO LRU Random

(b) Write-through and write-back for 5-way set associative cache

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

100 250 500 1000

B
yt

e
h

it
 r

at
io

Number of sequences

FIFO LRU Random

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

100 250 500 1000

B
yt

e
h

it
 r

at
io

Number of sequences

FIFO LRU Random

(c) Write-through and write-back for fully associative cache

Fig. 8: Byte hit ratio for LRU, FIFI and Random replacement
policies

by roughly two-thirds, since every kernel call requires two
transfers from host-to-device and one transfer from device-to-
host, and by using write-through only the number of host-to-
device transfers can be reduced. In the general case, all three
transfers are of the same size, with the exception when tip
nodes are transferred.

D. Cache organisations

In subsection V-C we found that the best replacement policy
for this application is LRU. In order to find the best cache
organisation, we compare the different cache organisations
with using the best replacement policy. The experiment is
performed on different number of sequences to see if there
are any variances between them. The number of cache lines is
set to 32. Traditionally, fully associative caches are known to
perform the best, and that is also expected in this case. Fully
associative caches offer the most flexibility in terms of where
a specific memory block can be placed in the cache.

In Figure 9 shows the results of this experiment. For the set
and fully associative caches, the LRU replacement policy is
chosen since it is the replacement policy with highest byte hit

0,00%

50,00%

100,00%

100 250 500 1000

B
yt

e
h

it
 r

at
io

Direct mapping 3-way set associative 5-way set associative Fully associative

(a) Write through

0,00%

50,00%

100,00%

100 250 500 1000

B
yt

e
h

it
 r

at
io

Direct mapping 3-way set associative 5-way set associative Fully associative

(b) Write back

Fig. 9: Byte hit ratio for different cache organizations using a
cache with 32 lines and LRU replacement policy.

ratio. Surprisingly, both set-associative caches perform only
slightly worse compared to the fully associative cache, with a
difference of less than one percentage point.

However, it is evident that direct mapping performs poorly.
Direct mapping has the lowest overhead, however a cache miss
is way more costly than the additional overhead. The overhead
for set associative and fully associative caches will increase
with the number of cache lines. In that case, set associative
caches would still be way more beneficial because you can
reduce the search space for the replacement algorithms with
N times for N -way associative caches, while still benefiting
from the high hit ratio of replacement policies.

E. The impact of different cache sizes

This experiment explores different cache sizes to see what
the impact is. Ideally, you should configure the cache size
to utilise most of the accelerator’s memory. If the cache can
perform well with a low number of cache lines, it will also
perform well on accelerators with little dedicated memory
and/or the data size per cache line can be increased, which
allows for scalability. It is expected that the hit ratio will
increase when the number of cache lines is increased.

In Figure 10 cache sizes between 4 and 64 are compared
on a data set with 1000 sequences. It is interesting to note
that halving the cache size only has a minor impact on the
performance for this application. For example, when using
FIFO with write through, a cache size of 64 lines has a byte
hit ratio of 50.70%, while a cache size of 32 lines has a byte
hit ratio of 49.03%. Halving the cache size only leads to a
decrease of 2 to 3 percentage points. This is also visible in the
Figure 10. When looking at the memory trace files it became
evident that most nodes were used again within 8 kernel calls.
A cache with 4 cache lines is too small to benefit from the
memory access pattern of the application. A significant decline
in performance of approximately 10 to 20 percentage points, is
observed when the number of cache lines is reduced from 8 to
4. RAxML traverses the phylogenetic tree is post-order, and

0,00%

50,00%

100,00%

FIFO LRU Random

B
yt

e
h

it
 r

at
io

4 8 16 32 64

(a) Write through

0,00%

50,00%

100,00%

FIFO LRU Random

B
yt

e
h

it
 r

at
io

4 8 16 32 64

(b) Write back

Fig. 10: Comparison on the data set with 1,000 sequences for
4, 8, 16, 32 and 64 cache lines.

therefore only four cache lines is too small to benefit from
cached child nodes. However, increasing the size past eight
is only beneficial when the tree is regrafted, since a higher
cache size increases the chance that nodes can be reused.
However, this observation is very specific to the application.
Since the phylogenetic application performs tree traversals,
we can exploit locality between parent and child nodes and
therefore achieve a significant performance improvement even
with a small cache.

F. Application speed-up evaluation

For the last experiment, we will evaluate SoftCache on a
phylogenetic application. The total speed-up of the application
depends the performance of the accelerator, and the time spend
on transferring data. It is expected that SoftCache has to
most impact on applications that spend relatively little time
on computations, and a large amount of time on transferring
data.

The speed-up reported in this section is relative to the CPU
implementation of the Newview-AVX function in RAxML.
This is mainly done because related work also reported their
speed-ups relative to the Newview-AVX implementation. This
enables a convenient and meaningful comparison between
different approaches.

A performance model was employed to assess the effect
of SoftCache on accelerator performance and the overall
application considering previous highly optimized GPU [27]
and FPGA [14], [16] accelerators. The performance model
takes into account the actual RAxML traversal order per tree
and estimates the performance of the accelerator when called
through SoftCache. Our performance model has the following
format:

P =
∑
i∈n

[
DTi(A,B) +KTi +DTi(C)

]
(6)

where i ∈ n and n is the set of kernel invocations needed by
the application, DTi(A,B) is the data transfer time of moving

data from the host to accelerator, DTi(C) is the data transfer
time for moving data from accelerator back to host, KTi is the
kernel execution time required to perform the computations on
the data. This assumes that the kernel that takes two nodes as
input, A (left child node) and B (right child node), and uses
it to compute C (common ancestor). DTi(A,B) is heavily
dependent on the cache hit ratio. If A and B are both cached,
Di(A,B) will essentially be zero. DTi(C) is influenced by
the write-back and write-through policy.

The main benefit of using a performance model is that
we can use the results of previous acceleration efforts to
evaluate SoftCache; by considering the performance of previ-
ously published, highly optimized accelerators, we can more
accurately assess the benefits that come from optimizing the
data movement. The OpenCL profiler is used to measure the
time it takes to transfer data from and to the GPU. TFor the
FPGA platforms, the data transfer times from the respective
papers are used.

1) Speed-up on GPU platform: Figure 11 shows the mod-
elled performance using Equation 6, in terms of speed-up
based on the performance of the GPU kernel described by
Izquierdo-Carrasco et al. [27]. The kernel execution times from
Figure 4 of the paper were used in the performance model.
The time spent on data transfers were measured by running the
application with a basic kernel. The paper assumes no memory
transfers for the kernel execution times, and therefore serve as
an upper limit of the speed-up that can be achieved. The kernel
was invoked roughly 54.000 to 64.000 times, depending on the
number of distinct alignment patterns.

The speed-up is shown for three different policies: no cache,
write-through and write-back. The speed-up shown is relative
to the CPU implementation of the Newview-AVX. The speed-
up scales when the number of distinct alignment patterns
increases, however it is clear that the no cache implementation
is worse compared to the CPU version regardless of the
number of distinct alignment patterns. A speed-up of 1.25x
was achieved with write-through, compared to the no cache
implementation, and 1.6x with write-back. The maximum
possible speed-up with this kernel was 1.97x. This means that
63.4% and 81% of the maximum theoretical speed-up was
achieved with caching.

It is noticeable that with and without caching the perfor-
mance is worse than the RAxML-AVX implementation for a
low number of alignment patterns. The kernel execution times
are in that case a significant portion of the total execution
time, as seen in the first section of Figure 14b. No speed-up
was achieved without caching, which shows that optimizing
the data movement is critical to achieve a decent speed-up on
the GPU.

2) Speed-up on FPGA platforms: Figure 12 shows the
speed-up that can be achieved based on the performance of
the optimized hardware architecture described by Malakonakis
et al. [14]. The FPGA instance is based on the dual core
execution times of the Xilinx ZCU102 development board,
which contains reconfigurable logic combined with an ARM
processor. The ZCU102 has a shared-memory architecture

0

0,5

1

1,5

2

2,5

0 50000 100000 150000 200000 250000

Sp
ee

d
-u

p

Number of distinct alignment patterns

Newview-AVX No cache write through

write back Newview GPU kernel

Fig. 11: GPU [27] performance improvement using a fully
associative 8-block cache with LRU. Newview-AVX is the
reference CPU implementation. The Newview GPU kernel is
the theoretical peak performance (no data movement).

0

0,5

1

1,5

2

2,5

0 50000 100000 150000 200000 250000

Sp
ee

d
-u

p

Number of distinct alignment patterns

Newview-AVX No cache Write through Write back FPGA instance

Fig. 12: Performance improvement of the FPGA accelerator
by Malakonakis et al. [14] using a fully associative 8-block
cache with LRU.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

0 50000 100000 150000 200000 250000

Sp
ee

d
-u

p

Number of distinct alignment patterns

Newview-AVX No cache Write through Write back FPGA instance

Fig. 13: Performance improvement of the FPGA accelerator
by Alachiotis et al. [16] using a fully associative 8-block cache
with LRU.

which means that the time spent on data transfers is negligible
and serve as an upper limit of what is achievable with
caching. The paper reports the execution time per phylogenetic
likelihood function (PLF) call, while the performance of the
GPU was reported for the entire run of the program. To present
comparable results with the GPU, the execution time of a
single PLF call is multiplied with the number of calls of the
entire RAxML run.

Interestingly, the speed-up is linearly related to the number
of distinct number of alignment patterns. Due to the nature of
the application, both the GPU and FPGA kernel seem to per-
form comparably well. The PLF is a memory-bound operation,
and the GPU has a higher memory bandwidth, and benefits
more from memory coalescing. On the other hand, FPGAs
parse the data sequentially, and is mainly benefiting from a
deeper pipeline. Since the FPGA parses the data sequentially,
the speed-up is also linear to the number of alignment patterns.
This means that the FPGA instance is faster on a low number
of distinct number of alignment patterns, as the GPU cannot
benefit from memory coalescing that much. However, as the
number of alignment patterns increases, the gap between the
FPGA instance and GPU kernel decreases.

The performance of the no cache implementation is still
worse compared to the CPU implementation. For 226637
distinct alignment patterns the speed-up is 1.29x and 1.70x
for write-through and write-back, respectively. The maximum
theoretical speed-up is 1.96x for the FPGA instance without
any data movement.

Alachiotis et al. [16] achieve higher speed-ups for the kernel
execution. In their work they executed the PLF on a Amazon
AWS EC2 F1 server, which contains a datacenter grade FPGA
accelerator cards. Here it becomes even more apparent that
communication is the bottleneck. Figure 13 shows the speed-
ups for a complete run with various alignment patterns using
the FPGA instance and data transfer times of their paper. A
speed-up of 7.85x over the CPU version was achieved with
write-back method, which is comparable to the speed-up of
7.8x that they were getting with caching and double buffering.
They only cached the data from host to accelerator. With the
double buffering approach they managed to hide most of the
data transfer cost from accelerator to host.

This shows that our general solution achieves equally good
results as the application-specific solution that was proposed
by Alachiotis et al. [16]. Since double buffering overlaps com-
putation with data movement, it will also lose its effectiveness
when the computations are further optimized.

3) Time breakdown: Figure 14 illustrates a time breakdown
of the complete application for different SoftCache configura-
tions. The figure shows that the time spent on data transfers
was considerably reduced with caching. The first section
shows the breakdown for the GPU-accelerated execution of
RAxML [27]. For 226,637 distinct alignment patterns on the
GPU platform, the time spent on communication without
caching exceeds the time spent on kernel execution. The
time spent on communication is decreased by up to 47%
and 79% with write-through and write-back, respectively. The

accelerator performance was improved by 1.3x and 1.7x,
resulting in an application speed-up of 1.3x and 1.6x for write
through and write back, respectively.

The second section of the figure shows the breakdown
for the FPGA-accelerated execution of RAxML based on the
implementation of Malakonakis et al. [14]. Due to the faster
kernel times and slower data movement, it becomes more
apparent that data movement causes significant bottlenecks
for the application. However, with caching, the time spent
on communication was drastically reduced, by up to 48%
and 82% for write-through and write-back, respectively. The
accelerator performance was improved by 1.5x and 2.0x,
resulting in an application speed-up of 1.3x and 1.7x for write
through and write back, respectively.

The third section shows the results for the FPGA-accelerated
execution of RAxML based on the work of Alachiotis et al.
[16]. Without caching, the processing on the FPGA occupies
less than 20% of the total execution time, with the remainder
used for data transfers. The speed-up without caching is only
2.26x over the CPU execution. With caching, the time spent
on communication is reduced by up to 63% and 88% for
the write-through and the write-back policies, respectively.
The accelerator performance was improved by 2.1x and 3.5x,
resulting in up to 4.7x and 7.9x speedup over the CPU
implementation, using write back and write through.

The time breakdown also shows that the platform with
the highest communication-to-computation ratio (FPGA [16]),
benefits the most from caching.

VI. CONCLUSION AND FUTURE WORK

In this paper, we explored the use of a software cache to
optimize data movement and improve the overall performance
of accelerator-based applications. The main research question
states ”How can we exploit locality to optimise data movement
on systems that use PCI connected accelerator cards with
dedicated memory for I/O bound applications?”. The results
show that SoftCache is able optimise the data movement by
exploiting locality on both GPUs and FPGAs.

In order to make SoftCache applicable to any application,
the framework supports different cache organisations and
replacement policies, that can be tuned towards the application.
Each cache line can store data of any size, and therefore it
is not needed to have separate caches for different types of
data, i.e. it can store nodes, vectors or matrices of different
sizes in the same cache. The write policies allow SoftCache
to optimize data movement in both directions. The size of the
cache is also configurable to accommodate different memory
sizes. However, the number of cache lines/sets are limited to
prime numbers of direct mapping and set associative caches,
which means that SoftCache does utilise the entire memory of
the accelerator effectively using these cache organisations.

The framework has been evaluated on a phylogenetic ap-
plication. The results show that SoftCache can drastically
decrease the amount of data transferred in the phylogenetic
application. Up to 81% of the maximum theoretical speed-up
was reached on the GPU implementation, and on the FPGA

0

100

200

300

No cache Write through Write back No cache Write through Write back No cache Write through Write back RAxML-AVX

Izquierdo-Carrasco et al. Malakonakis et al. Alachiotis et al. Ref.

Ex
ec

u
ti

o
n

 t
im

e
(s

)

GPU/FPGA kernel processing Device-to-host data movement Host-to-device data movement CPU

(a) 78,873 distinct alignment patterns

0

200

400

600

800

No cache Write through Write back No cache Write through Write back No cache Write through Write back RAxML-AVX

Izquierdo-Carrasco et al. Malakonakis et al. Alachiotis et al. Ref.

Ex
ec

u
ti

o
n

 t
im

e
(s

)

GPU/FPGA kernel processing Device-to-host data movement Host-to-device data movement CPU

(b) 226,637 distinct alignment patterns

Fig. 14: Time breakdown of full application execution times using GPU/FPGA accelerators without and with SoftCache,
including transfer and kernel execution times for 78,873 and 226,637 alignment patterns. The first section shows the time
breakdown of the GPU implementation by Izquierdo-Carrasco et al. [27], the second section shows the FPGA implementation
by Malakonakis et al. [14] and the last section shows the cloud FPGA implementation by Alachiotis et al. [16].

platform the cache performs just as well as the application-
specific optimisations of related work, getting speed-ups of up
to 7.9x on the overall application. The write-back method can
significantly improve the performance on this application. The
results show that regarding the different cache organisations,
that direct mapping scores the worst. Set associative and fully
associative caches show similar results, with fully associative
caching being slightly better. A fully associative cache with
the LRU replacement policy can get up to 89% byte hit ratio.

The results show that by using SoftCache we can optimize
data movement and reduce the time spend on moving data
by nearly 89%. The speed-ups achieved as a result of this,
means that we can significantly decrease the runtime of
an application. Overall, we managed to improve accelerator
performance by up to 1.7x and 3.5x, resulting in a speed-
up of 1.6x and 7.9x over the fastest CPU version, for GPU
and FPGA, respectively. Evaluating large phylogenetic trees
can easily take more than a week on a CPU, a speed-up of
7.9x means that it can now be completed within a day. It
is also clear that SoftCache is most effective on applications
and platforms where the communication-to-computation ratio
is high, as seen with server-grade FPGA.

For future work, SoftCache can be improved in several
ways. Firstly, we can extend its functionality to support mul-
tiple memory banks. Although SoftCache currently supports
a separate cache instance for each memory bank, introducing
features that facilitate data movement between different cache
instances would allow applications to transfer data between
banks without the need to transfer it back to the host memory.
This could be achieved, for example, by utilizing DMA (Direct
Memory Access). This would benefit FPGAs with multiple
super logic regions, where individual memory banks can be

dedicated to specific logic regions This would also allow for
caching data on the accelerator while maintaining the option
to update the cache table on the host, without having to move
the data to the host, in scenarios where data is shifted from
one memory bank to another. Separate cache instances can
also be used to utilise multiple accelerators that are connected
to the same host.

Secondly, SoftCache does not utilise the entire memory of
the accelerator effectively. To address this, we can explore
ways to better utilise the available memory. An improved
hash function that does not require prime numbers as cache
size would increase the flexibility of direct mapped and set
associative caches. Allowing users to overprovision the cache
would also optimize the utilization of the accelerator memory.
Currently, the cache size should be selected to support the
worst-case scenario where each cache line contains the largest
data size in the application. Instead, we could overprovision
the cache and if there is not enough room in the cache to add
data on a cache miss, SoftCache could remove cache lines
based on the replacement policy until there is enough space
to add the data. Note that this does not work for direct mapped
caches, since it would cause memory addresses to be mapped
to cache memory that does not exist and a replacement policy
is required to decide which lines to remove.

Finally, the replacement policies could take into account the
size of the data when deciding which cache line to replace.
Large data takes longer to transfer, and should therefore have a
higher priority to stay in the cache. These improvements would
enhance SoftCache’s performance and increase its versatility
for various applications.

REFERENCES

[1] J. Duarte, P. Harris, S. Hauck, B. Holzman, S.-C. Hsu, S. Jindariani,
S. Khan, B. Kreis, B. Lee, M. Liu et al., “Fpga-accelerated machine
learning inference as a service for particle physics computing,” Com-
puting and Software for Big Science, vol. 3, no. 1, pp. 1–15, 2019.

[2] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadi-
uba, M. Pierini, R. Rivera, N. Tran et al., “Fast inference of deep neural
networks in fpgas for particle physics,” Journal of Instrumentation,
vol. 13, no. 07, p. P07027, 2018.

[3] S. Okada, K. Murakami, S. Incerti, K. Amako, and T. Sasaki, “Mpexs-
dna, a new gpu-based monte carlo simulator for track structures and
radiation chemistry at subcellular scale,” Medical Physics, vol. 46, no. 3,
pp. 1483–1500, 2019.

[4] J. Li, Y. Chi, and J. Cong, “Heterohalide: From image processing dsl
to efficient fpga acceleration,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2020,
pp. 51–57.

[5] D. Fujiki, A. Subramaniyan, T. Zhang, Y. Zeng, R. Das, D. Blaauw,
and S. Narayanasamy, “Genax: A genome sequencing accelerator,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018, pp. 69–82.

[6] K. Wetterstrand. (2021) Dna sequencing costs: Data. [On-
line]. Available: https://www.genome.gov/about-genomics/fact-sheets/
DNA-Sequencing-Costs-Data

[7] “Maximizing unified memory performance in cuda,” https://developer.
nvidia.com/blog/maximizing-unified-memory-performance-cuda/,
accessed: 16-10-2022.

[8] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, “Edge-cocaco:
Toward joint optimization of computation, caching, and communication
on edge cloud,” IEEE Wireless Communications, vol. 25, no. 3, pp. 21–
27, 2018.

[9] P. Fent, A. van Renen, A. Kipf, V. Leis, T. Neumann, and A. Kemper,
“Low-latency communication for fast dbms using rdma and shared mem-
ory,” in 2020 IEEE 36th International Conference on Data Engineering
(ICDE). IEEE, 2020, pp. 1477–1488.

[10] N. AlSaber and M. Kulkarni, “Semcache: Semantics-aware caching for
efficient gpu offloading,” in Proceedings of the 27th international ACM
conference on International conference on supercomputing, 2013, pp.
421–432.

[11] P. Knoben, “Software caching for tree-based algorithms on accelerator
cards,” Master’s thesis, University of Twente, 2021.

[12] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August, “Dynam-
ically managed data for cpu-gpu architectures,” in Proceedings of the
Tenth International Symposium on Code Generation and Optimization,
2012, pp. 165–174.

[13] S. Mittal and J. S. Vetter, “A survey of methods for analyzing and
improving gpu energy efficiency,” ACM Computing Surveys (CSUR),
vol. 47, no. 2, pp. 1–23, 2014.

[14] P. Malakonakis, A. Brokalakis, N. Alachiotis, E. Sotiriades, and A. Dol-
las, “Exploring modern fpga platforms for faster phylogeny recon-
struction with raxml,” in 2020 IEEE 20th International Conference on
Bioinformatics and Bioengineering (BIBE). IEEE, 2020, pp. 97–104.

[15] M. S. B. Altaf and D. A. Wood, “Logca: A high-level performance model
for hardware accelerators,” ACM SIGARCH Computer Architecture
News, vol. 45, no. 2, pp. 375–388, 2017.

[16] N. Alachiotis, A. Brokalakis, V. Amourgianos, S. Ioannidis, P. Malakon-
akis, and T. Bokalidis, “Accelerating phylogenetics using fpgas in the
cloud,” IEEE micro, vol. 41, no. 4, pp. 24–30, 2021.

[17] Y. Fountis. (2023) How does the browser cache work? [Online].
Available: https://pressidium.com/blog/browser-cache-work/

[18] R. Asai, M. Okita, F. Ino, and K. Hagihara, “Transparent avoidance of
redundant data transfer on gpu-enabled apache spark,” in Proceedings
of the 11th Workshop on General Purpose GPUs, 2018, pp. 22–30.

[19] P. Begunkov, “dlmcl: Optimization of cpu-gpu memory transfers for
opencl devices with hsa,” in Proceedings of the 5th International
Workshop on OpenCL, 2017, pp. 1–2.

[20] D. Negrut, R. Serban, A. Li, and A. Seidl, “Unified memory in cuda
6.0. a brief overview of related data access and transfer issues,” SBEL,
Madison, WI, USA, Tech. Rep. TR-2014-09, 2014.

[21] P. Barua, J. Zhao, and V. Sarkar, “Ompmemopt: Optimized memory
movement for heterogeneous computing,” in European Conference on
Parallel Processing. Springer, 2020, pp. 200–216.

[22] A. Rasch, J. Bigge, M. Wrodarczyk, R. Schulze, and S. Gorlatch, “docal:
high-level distributed programming with opencl and cuda,” The Journal
of Supercomputing, vol. 76, no. 7, pp. 5117–5138, 2020.

[23] X. Wei, Y. Liang, and J. Cong, “Overcoming data transfer bottlenecks in
fpga-based dnn accelerators via layer conscious memory management,”
in 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE,
2019, pp. 1–6.

[24] D. de la Chevallerie, J. Korinth, and A. Koch, “fflink: A lightweight
high-performance open-source pci express gen3 interface for recon-
figurable accelerators,” ACM SIGARCH Computer Architecture News,
vol. 43, no. 4, pp. 34–39, 2016.

[25] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner, “Riffa 2.1: A
reusable integration framework for fpga accelerators,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 8, no. 4, pp.
1–23, 2015.

[26] A. Stamatakis, “Raxml version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies,” Bioinformatics, vol. 30, no. 9, pp.
1312–1313, 2014.

[27] F. Izquierdo-Carrasco, N. Alachiotis, S. Berger, T. Flouri, S. P. Pissis,
and A. Stamatakis, “A generic vectorization scheme and a gpu kernel
for the phylogenetic likelihood library,” in 2013 IEEE International
Symposium on Parallel Distributed Processing, Workshops and Phd
Forum, 2013, pp. 530–538.

[28] K. Baskaran and C. Kalaiarasan, “Improving hit ratio and byte hit ratio
using combined pre-fetching and web caching,” International Review on
Computers and Software, vol. 9, no. 8, pp. 1426–1433, 2014.

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/
https://developer.nvidia.com/blog/maximizing-unified-memory-performance-cuda/
https://pressidium.com/blog/browser-cache-work/

	Introduction
	Research questions

	Background
	Hardware accelerators
	Cache organisations
	Direct mapping
	Set associative
	Fully associative

	Replacement policies
	Random
	FIFO
	LRU

	Write policies
	Write-through
	Write-back

	Related work
	Framework design and implementation
	Architecture
	Overview of components
	Cache indexing
	Direct mapping
	Set associativity
	Fully associativity

	Replacement policies
	Random replacement
	First-in first-out
	Least-recently used

	Write policies

	Evaluation
	Phylogenetic analysis
	Experimental setup
	Parameters

	Replacement policies
	Cache organisations
	The impact of different cache sizes
	Application speed-up evaluation
	Speed-up on GPU platform
	Speed-up on FPGA platforms
	Time breakdown

	Conclusion and future work
	References

