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BO Kyra de Bree CHAPTER 1. SAMENVATTING

Samenvatting

Veel vrouwen krijgen in hun leven te maken met een verzakking van de bekkenbodemorganen (POP), en uit
onderzoek is gebleken dat dit zich mede uit in de vorm van de levator plate (LP). Deze is gedefinieerd als de
middellijn waar het diafragma van de pelvis samenkomt, tussen het rectum en de coccyx. Het definieren van
deze vorm is echter nog lastig en tijdrovend, dus is het doel van dit onderzoek om de detectie van de anatomische
punten met betrekking tot de LP te automatiseren. Er hebben 60 vrouwen deelgenomen aan dit onderzoek,
wat in totaal tot 171 bruikbare scans leidde. Het model is gebaseerd op een U-net structuur en er zijn 12
ingetekende coördinaten die allen een anatomisch punt in de bekkenboden representeren. Deze zijn omgezet in
Gaussische kernels, hierbij wordt het probleem benaderd als een segmentatieprobleem. De gemiddelde afstand
tussen het originele coördinaat en het punt dat door het model is gevonden is 7.0 mm, dit was 6.1 mm voor
de punten waaruit de LP bestaat. Het model lijkt geen verschil in werking te hebben tussen de scans van de
POP-patienten tegenover niet-patienten, wat het model geschikt zou kunnen maken om een analyse te doen
tussen deze groepen. Concluderend kan er gezegd worden dat het gelukt is om de detectie van anatomische
punten met betrekking to de LP te automatiseren.
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Introduction

About 40 percent of women worldwide will experience pelvic organ prolapse (POP) [2]. Pelvic organ prolapse
is when one or more of the organs located in the pelvis slip down from their normal position and bulge into the
vagina [3]. Causes of POP include but are not limited to pregnancy and childbirth, going through menopause,
being overweight, having long-term constipation and having a hysterectomy [3].

One of the main problems of pelvic organ prolapse is the need for a reliable and consistent staging method. In
1996, a standard system of terminology was introduced to describe, quantify and stage POP [4], and in 2002
POP-Q was introduced into the medical world [5] and it has been the scale of measurement ever since. POP-Q
measurements are done during a physical exam and are recorded using a ruler or tape measure while the patient
is in supine position[5]. However, it has been shown using magnetic resonance imaging (MRI) that the extent
of a prolapse is significantly larger in upright position than in supine position [6]. MRI measurements have also
shown that there is a correlation between the LP shape and the severity of POP [7]. Furthermore, there is also
a correlation between the LP shape and long term recurrence of prolapse after prolapse repair [8]. To analyse
the LP shape, twelve points that represent anatomical landmarks have been hand-drawn in midsagittal MRI
slices. This is a time consuming task, and has led to the need for automation. In recent years, deep learning has
been introduced in medical imaging to assist with image classification, object detection, image segmentation
and more[9]. Since deep learning has shown great results in other landmark detection problems, this raises the
question how it can be of assistance in the automation of the analysis of the LP shape.
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Theory

3.1 Pelvic organ prolapse

Pelvic organ prolapse is defined by descent of the anterior vaginal wall, posterior vaginal wall, uterus, or vaginal
apex into the vagina. Prolapse of pelvic structures can cause a sensation of pelvic pressure or bulging through
the vaginal opening and may be associated with urinary incontinence, voiding dysfunction, fecal incontinence,
incomplete defecation, and sexual dysfunction [10].

3.2 Clinical picture

Pelvic organs are at risk of descending when the muscles and connective tissues holding them up are weakened,
which can happen through childbirth, heavy lifting, a chronic cough or frequent constipation [11]. POP can
occur in women of all ages, though it more commonly affects older women.The incidence of women who have
POP is expected to increase by 46% by the year 2050 [12]. POP is generally divided in four stages, where a first
degree prolapse means the organs have only slipped down a little, and a fourth stage means that more than one
centimeter of the vagina or womb is bulging out of the vaginal opening [11]. Diagnosis of POP is done through
a physical examination, and treatment is mainly based on the severity of the symptoms. Treatments include
strengthening of the pelvic muscles through exercises, inserting a pessary or performing surgery [11].

3.2.1 Pelvic support

The organs of the pelvic floor are supported by the interaction between the levator ani muscles and the connective
tissues that attach the uterus and vagina to the pelvic sidewalls [13]. The musculus levator ani is composed
of three parts, namely the puborectalis, pubococcygeus and the iliococcygeus muscle, as can be seen in figure
3.1. Posteriorly, the levator ani attaches to the last two segments of the coccyx. The paired muscles of the
pelvic diaphragm join to form a raphe and contribute to the anococcygeal ligament. This median raphe between
the anus and the coccyx is called the levator plate (LP) and is the shelf on which the pelvic organs rest [14].
Weakness of the levator ani may loosen the sling behind the anorectum and cause the LP to sag down [14].

3.2.2 Levator plate shape

Multiple studies have shown a correlation between the orientation and shape of the LP and the severity of
POP [7] [16]. In recent studies, a principal component analysis has been done to compare the shape of the LP
between young and old women with prolapse [16]. This used the anatomical landmarks and structures as shown
in figure 3.2, and has shown that the LP angle compared to the horizontal reference line (PICS Line) increases
with POP. Another studies based on this analysis with nulliparous, parous, and parous post-menoausal women,
found that the LP descends with childbirth and menopause [17].

3.3 Deep learning

Deep learning is a method in artificial intelligence where computers are taught to process data like the human
brain; learn by manually labeled training examples [18] [19]. This is done by so called artificial neural networks,
which are computing systems inspired by the way that biological neurons signal to each other [20]. A neural
network typically consists of input nodes, hidden layers, and output nodes. These nodes are also called neurons.
The term ”deep” refers to the number of layers in the neural network - any network with more than three layers
is considered deep.

3.3.1 Weights and biases

All neurons from one layer are connected to the ones from the layer before and after them, and all these
connections have their own weight and bias [20]. This correlation between the input neuron and the output
neuron is given by the equation:

output =
∑

(weight ∗ input) + bias (3.1)
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Figure 3.1: The levator ani muscle supports the pelvic floor and consists of three parts: the puborectalis, the
pubococcygeus and the iliococcygeus muscle. Posteriorly, the levator ani attaches to the coccyx. The LP is
where the muscles of the pelvic diaphragm join between the anus and the coccyx. [15]

Figure 3.2: A midsaggital MRI slice with twelve anatomical landmarks used in research to analyse the LP shape
differences between women. The abbreviations are; PS: pubic symphysis, UGH:urogenital hiatus, PB: perineal
body, EAS: external anal sphincter, LP: levator plate, LH: levator hiatus, SCJ: sacrococcygeal joint, SCIPP
line: sacrococcygeal to inferior pubic point line, Ut: uterus, PICS line: horizontal reference line. [8]
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Figure 3.3: Two activation functions commonly used in neural networks, with on the x-axis the neural input
and the y-axis the neural output. On the left the sigmoid activation function, on the right the ReLU activation
function. [23]

This means that the weights and biases directly influence the output of the system, and are therefore the
parameters that get trained by the neural network to have an outcome that is as close as possible to the desired
output.

3.3.2 Activation functions

Before a value is passed as an input to a neuron, it is put through a so called activation function to normalize
it. That is done to decide whether or not a neuron should be activated or not, mimicking the stimulation of a
biological neuron [21]. Different activation functions influence the input values in their own way, below the two
most commonly used are discussed.

Sigmoid function

The sigmoid function is used to squish values between zero and one, where an input value of zero gets translated
into 0.5. This is presented mathematically in equation 3.2, and visually in figure 3.3. This function is most
commonly used when values close to zero are relevant for the model, such as a system with a probability output
between zero and one [21].

σ(z) =
1

1 + e−z
(3.2)

ReLU function

ReLU stands for Rectified Linear Unit. As the name already states, it is a function that rectifies values with
a linear component. The ReLU function makes all values equal to or lower than zero equal to zero, and keeps
the positive values the same, as can be seen in equation 3.3 and figure 3.3. An advantage of using the ReLU
function is that it is only activated for positive neurons, and automatically deactivates neurons with a negative
value. This makes the ReLU function a lot more computationally efficient compared to the sigmoid function
[22], which also accelerates the gradient descent process as will be discussed later. With the deactivation of
some neurons also comes a disadvantage, which has to do with backpropagation. This will also be discussed
later on.

ReLU(z) = max(0, z) (3.3)

3.3.3 Error, loss function and cost function

In learning networks, the error is the difference between the actual output and the desired output [24]. This
error can be computed in different ways, examples are the mean absolute error and the mean squared error [25].
The way in which the error is calculated for a single training example is called the loss function. Different loss
functions will give different errors for the same prediction, and therefore strongly influence the performance of
the model. It depends on the type of task the model has, which loss function is best. Since the loss function
is the quantification for one training example, it is still needed to have a measure for the performance of the
model as a whole. This is the cost function. Essentially the cost function is a result of all the loss functions
over an entire training data set [25].
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Figure 3.4: Backpropagation uses the gradient: the partial derivative of the loss function with respect to weights
an biases. This is used in gradient descent to find the minimum of the cost function. [28]

3.3.4 Training a system: backpropagation and gradient descent

To minimize the cost function, backpropagation is used [26]. Backpropagation calculates the gradient, which
is partial derivative of the loss function with respect to the weights and biases. The gradient represents what
relative proportions to the change in weights and biases would cause the most rapid decrease to the cost. This
is visually represented in figure 3.4. Each training iteration, which is called an epoch [27], will calculate the
gradient and take a step towards its most negative value; this is called gradient descent. In a mathematical
equation, this is represented as:

xn+1 = xn − α∇C(xn) (3.4)

where n is the number of epoch, α is the step size and ∇C is the gradient. Gradient descent is the basis for
most optimization functions.

3.3.5 Optimisation functions

Optimisation functions, also called optimisation algorithms or optimizers, determine the way the weights and
biases have to be adjusted [29]. Optimization algorithms can be divided into two categories: the constant
learning rate algorithms and the adaptive learning algorithms. The constant learning rate algorithms have a
constant learning rate which has to be chosen and tuned, an example is the Stochastic Gradient Descent. The
adaptive learning algorithms use different learning rates for each iteration where the change in learning rate
depends on the different parameters during training. Examples of adaptive learning algorithms are Adagrad
and Adam, with Adam currently being the most used optimizer.

To come back to the activation functions, it was already mentioned that the sigmoid function squeezes all
values between zero and one, and a ReLU function keeps all positive numbers the same. For the gradient
descent this means that with a sigmoid function, from a certain number up, it does not matter how positive the
value is, it will be translated into a one, and will therefore influence the gradient with the same power. With a
ReLU function however, a positive value will stay the same, influencing the gradient descent more strongly if it
is more positive. On the other hand, a disadvantage when working with ReLU is that inactivated nodes cannot
be backpropagated. This is called the dying ReLU problem [30]. In essence, this means that when a neuron
has a value below zero, the neuron gets deactivated and will not be activated again, even when the ideal value
would be higher than zero.

3.3.6 Learning rate

Each activation function has a few parameters that are adapted for each model. The most important parameter
is the learning rate, which influences the steps with which the weights are adjusted. The learning rate determines
which minimum the model will converge to, and in which way [31]. If a learning rate is too small, approaching
a minimum is prolonged, and it is likely that the minimum that is found is not the global minimum, but a
local one. If a learning rate is too large, it will overshoot and ”miss” the minimum it was converging to, taking
longer than necessary. A learning rate is adequate when it oversteps local minima but converges at a decent
rate. This is illustrated by figure 3.5.
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Figure 3.5: The learning rate influences the way the minimum is found. A too low learning rate will take long
and converge locally, and a too high learning rate will not converge at all. [32]

Figure 3.6: A 3 × 3 kernel slides over the input data and convolutes the pixel values with itself to project the
result onto the next layer, resulting in a feature map. [36]

3.4 Convolutional neural networks

Neural networks have a large variation in types and applications, and the leading category for image classification
is the convolutional neural network (CNN) [33].

3.4.1 Components of a CNN

CNN’s mainly consist of three types of layers: convolutional layers, pooling layers and a fully connected layer
[34]. The convolutional layer is the main building block of a CNN. In this layer a kernel, also called a filter,
slides over the previous layer and convolutes itself with the pixels, creating a feature map. This is illustrated in
figure 3.6. The size of a kernel can vary, but is typically 3 × 3 pixels [34]. The function of convolutional layers
is to identify local correlations between pixels and extract fundamental features [35], and therefore the values in
the kernel are the weights that get trained in a neural network. Pooling layers are also known as downsampling,
and its function is to decrease the number of parameters and thereby reduce complexity and improve efficiency.
Similarly to a convolutional layer, a pooling filter slides over the pixels and compresses the values onto a smaller
map. However, its operation does not require weights, but simply uses the values that were present in the input.
The two main types of pooling layers are max pooling and average pooling, which map the maximum value and
the average value of the input in the filter, respectively [34]. In a CNN, the output values of a layer may get
flattened, which means every pixel value gets represented in a one dimensional array. This array is the input for
the fully connected (FC) layer, which connects the pixel values to the possible classifications through neurons.

3.4.2 Fully convolutional network (FCN)

A CNN without FC layer is called a fully convolutional network (FCN). Where a CNN that ends with a fully
connected layer has an output of a classification probability, a FCN has an output of a heatmap that represents
the probability in pixel values of an image [37]. These heatmaps are also called masks. Because of this, FCN
is suitable for image segmentation and has been widely used for medical imaging tasks and organ localization
[38]. One of the best known and most employed FCN’s is U-net [39].

3.4.3 U-net

U-net [40] is designed for biomedical image segmentation, and has a symmetrical architecture with a contracting
path, bridge, expansive path and skip connections, as can be seen in figure 3.7. The contracting part encodes
the pixel values in an abstract representation so that with each layer, a different level of cohesion is extracted,
creating a feature hierarchy. The bridge connects the contracting path with the expansive path, whereas the
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Figure 3.7: U-net structure with on the left its input, on the right its output and in between an architecture of
convolutional layers and pooling layers. This image is based on the model of the original publishers of U-net;
[40].

expansive path decodes the abstract representation and generates a segmentation mask. The skip connections
act as a shortcut and provide additional information to the expansive path, which helps with more precise image
segmentation and more efficient backpropagation.

3.5 Evaluation and validation

3.5.1 Train, validation and test data

In order to evaluate and validate a model, its data set is divided into three groups; the training set, the validation
set and the test set. The training set is used to train the weights and biases of the network in order to learn
the patterns of this data. The validation set is separate from the training set and gets used during training to
validate the model performance for every epoch. The test set is a separate set from both of the other data sets
and gets used to test and evaluate the model after completing all training [41]. A problem using this distinction
between three data sets is that it may cause data with useful information to be excluded from the training, or
that the system may be biased [42]. This problem mainly comes into play when there is limited data or when
the test set is not large enough [43].

3.5.2 Cross-validation

Cross-validation (CV), also known as K-Fold Cross-validation, is used to overcome this problem. With K-Fold
CV the parameter K is introduced, which represents the number of folds that the concatenated training and
validation data is divided into [42] [43]. The model is then trained on K − 1 parts, and uses the last part as its
validation set. The training happens for K iteration, and each iteration a different set is the validation data,
as is illustrated in figure 3.8.
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Figure 3.8: K-fold cross validation uses K − 1 folds for training and the other for validation, while still keeping
apart a test set for the final evaluation. In this image, K is 5. [44]
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Materials and methods

4.1 Data collection

This study utilizes MRI scans from women who participated in the EPPA study. The participants provided
written informed consent and the study was approved by local ethics committees (NL74061.091.20). The study
included 15 patients from the gynecology department of Ziekenhuis Groep Twente (ZGT) hospital in Hengelo
and 45 control women who were asymptomatic for POP who were recruited via advertisements. The control
group consisted of 15 nulliparous women, 15 parous pre-menopausal women (with at least one vaginal delivery),
and 15 parous post-menopausal women. Participants had to be at least 18 years old, be able to stand for 20
minutes without assistance and pass the MRI safety checklist. Women who had a jeans size larger than 52 (EU)
or 22 (US) were excluded due to limited coil circumference [45].

4.2 Image acquisition

All upright scans were made with a tiltable 0.25T MR scanner (G-Scan; Esaote, Genoa, Italy), angled at 81°
to enable a natural standing position. A multi-slice midsagittal 2D T2-weighted fast spin echo (FSE) scan was
obtained with the following parameters: 2 ms echo time (TE), 3480 ms repetition time (TR), 1.3 × 1.3 mm2

reconstructed resolution, 340 × 340 mm2 field of view (FOV), 192 × 200 matrix size, 5 mm slice thickness, 11
slices, and a total scan time of approximately 2 minutes [46]. In addition, a 3D hybrid contrast enhancement
(HYCE) MRI scan was done in the midsagittal position. Each woman was scanned three times in one day,
with the first scan between 8 AM and 9 AM, the second scan between 12 PM and 1 PM, and the third scan
between 4 PM and 5 PM. This resulted in a data set of 180 scans, from which 9 scans were excluded because
some people fainted during the upright acquisition or because they were in the control group but showed a
prolapse on the MRI. The final data set has 171 scans from 43 patients; 15 from prolapse patients and 28 from
the control group.

4.3 Data labeling

The LP shape analysis of the upright scans was performed using ImageJ software (version 1.53q, LOCI, Uni-
versity of Wisconsin). For each scan twelve points were allocated as defined by Schmidt et al. [8] and as seen
in figure 3.2. These have been manually annotated by a single observer and checked by a second observer for
agreement. The anatomical landmarks that were assigned are the inferior pubic point of the pubic symphysis
(1), the perineal body (2), the most superior point of the external anal sphincter (3), the middle of the puborec-
talis bundle (5) which is approximately the shortest distance from the pubic symphysis to the LP, the inferior
coccyx (9), and the sacrococcygeal joint (10). The remaining points were equal sampling points (4, 6, 7, 8)
at approximately half the distance between the above-mentioned anatomic landmarks. The LP is defined as a
curved line between points (3) to (10). Point (11) was placed at the anterior and point (12) at the posterior
fornix of the vagina. The coordinates of these points were analysed and saved in a .csv file.

4.4 Data preperation

The MRI data was presented in a .tiff file and the slice number and coordinates of the anatomical landmarks
were presented in a .csv file. Since the CNN takes square images as input data, both the MRI slices and the
mask coordinates had to be translated into PNG’s. An example of a MR image together with its mask is
presented in figure 4.1. The data was split into a test and train data set, where five subjects were selected for
the test data set; one from each control group and two POP patients. This resulted in a train data set of 156
scans and a test data set of 15 scans. The train data set was divided into five for each iteration of the K-fold
cross validation, which resulted in either 31 or 32 scans in the validation set.

4.4.1 MR images

The preprocessing of the MR images was done with self-developed code (Python (3.10.10)). The images were
cropped to fit the region of interest, since the original images had more information stored than needed and
cropping decreases the training time. This resulted in a working area of 250 × 250 voxels, which corresponds to
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Figure 4.1: From left to right; a midsaggital MRI slice that was selected to do the LP shape analysis on, its
mask with the selected coordinates convoluted with a Gaussian kernel, and the overlay of the MRI slice and its
mask coordinates.

122.1 mm2. Each pixel had a value between 0 and 255, as it was stored as an 8-bit integer. To process this, all
values were divided by 255 since the model takes values between 0 and 1. It was chosen to resize all images to
an array of 128 × 128 × 1, as this seemed a good balance between keeping valuable information of the pictures,
but getting an adequate training time.

4.4.2 Mask images

The coordinates provided in the .csv file were given in mm, so had to be scaled to pixels to fit over the MR slice.
Each coordinate was convoluted with a Gaussian kernel (σ = 0.5) in order to formulate the landmark detection
as a probability distribution heatmap. All separate points were visualized and saved as masks by the script in
appendix B. The masks were cropped, reshaped and resized in the same way as the MR images. The masks
were stored into an array of 128 × 128 × 12, with each slice in the last dimension representing an individual
point.

4.5 Model development and training

The final model architecture was already presented in figure 3.7. The python script uses Tensorflow (2.7.0)
and Keras (2.7.0), and is based on the code of Sreenivas B. [47]. Multiple optimizers were looked into through
literature [48] [49] [50] and Adam was selected. The initial learning rate α was varied and examined (figure
4.2). It was selected to be 0.0001 because of the stable descent through the epochs, and the expectancy to
converge to the same minimum as the other learning rates. The other parameters of Adam, β1, β2 and ϵ, were
not changed and have a TensorFlow Keras default value of 0.9, 0.999, and 10−8 respectively. Mean squared
error (MSE) was chosen as the loss function after comparison with the loss functions accuracy and dice loss.
The MSE is calculated as:

D∑
i=1

(maski − resulti)
2 (4.1)

where maski and resulti are the desired and model-found pixel values, respectively.
The model was fit over the training data with a validation split of 20% of the training data and a batch size
of 16, and was run for 5000 epochs. It was saved at the epoch with best performance, so the smallest mean
squared error. The training was done on the GPU of the University of Twente using JupyterLab. In the end, a
threshold was implemented so that all values above 0.999 are converted to ones and all values equal to or below
0.999 are converted to zeros. For visualization, the different layers of the mask were combined and overlayed
with the input MR image for comparison.

4.6 Evaluation of the model

4.6.1 Euclidean distance

To compare the model results with the input data, the euclidean distance was calculated. This is defined as the
absolute distance between two points, and is mathematically described as:
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Figure 4.2: Comparing different initial learning rates for optimizer Adam through 500 epochs. For the model
it was chosen to use an initial learning rate of 0.0001 (darker blue) because of the stable descent of the graph.

d =
√
(xmask − xmodel)2 + (ymask − ymodel)2 (4.2)

Since each layer of the mask represents its own anatomical landmark, the euclidean distance was calculated for
each point individually.

4.6.2 Cross validation

K-fold cross validation was applied as it was described earlier, with a K of 5. For each iteration of the script, the
mean squared error was computed, the total number of found points was counted and the euclidean distances
were calculated.
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Results

All analysis in the results is done on the five subjects in the test data set, which each had 3 scans. This leads
to a total of 15 scans, and with 12 points located in each scan, this results in a total of 180 points.

5.1 Visual analysis

To assess whether or not the model works, the different slices of the predicted mask were overlayed and compared
to the original mask. This comparison of the raw data can be found in appendix A. In order to provide a better
comparison between the coordinates that were found in the different layers of the mask, each layers average
coordinate was calculated and plotted together with the original mask coordinates, and plotted over the MR
image (figure 5.1). To confirm that the found model points are in the correct slice, each anatomical landmark
has been marked with its own colour in figure 5.2, with its assigned euclidean distance in the same colour. In
this image, point 11 and 12 were not found by the model.

5.2 Quantitative analysis

5.2.1 Comparison between model folds

The five folds of the model done with K-fold cross validation each resulted in a mean squared error (MSE),
average euclidean distance (AED) and number of found points (n). These results are summarized in table 5.1.
An analysis of the descent of the MSE through the epochs per model can be found in appendix B. As can
be seen in table 5.1, all models together had an average MSE of 6.2 and an AED of 7.0 mm. The maximum
possible number of found points is 180 (15 scans with 12 landmarks each), and on average the models found
114.4 points which is 63.6% of the total.

Table 5.1: Comparing the mean squared error (MSE), average euclidean
distance (AED) [mm] and the number of points found by each model fold
(n).

Fold MSE AED [mm] n (max 180)
Mod 1 6.27339 7.7 97
Mod 2 6.199474 6.3 117
Mod 3 6.137434 8.1 127
Mod 4 6.16159 6.7 105
Mod 5 6.206108 6.1 126
Average 6.195599 7.0 114.4

5.2.2 Comparison between landmarks

The AED and number of found points per anatomical landmark is presented in table 5.2. As can be seen,
landmark 1 has the lowest AED (2.0 mm) whereas landmark 11 showed the highest AED (20.7 mm). The
landmarks corresponding to the LP (3 to 10) had an AED of 6.1 mm. Additionally, table 5.2 shows a high
variance in the number of found points per landmark, so for better comparison this has also been presented in
figure 5.3. This figure also presents the variability per model fold for each landmark. The maximum number
of found points per landmark is 75 (15 different scans over 5 folds). Anatomical landmarks 2, 11 and 12 were
detected in less than 25% of the scans (n = 12 and 9 respectively). The most detected landmarks are 3, 4,
5, 6, 7, 8, and 10, as these were detected in more than 75% of the scans (n = 60, 64, 59, 70, 68, 60 and 63
respectively). Figure 5.3 also shows that model fold 1 did not find any anatomical landmarks 1 and 2. In order
to quantify these results further, the euclidean distances per landmark are presented in a boxplot in figure 5.4.
This shows a large interquartile range for the landmarks 10 and 11 (15.1 mm and 20.9 mm respectively) as well
as a high median for the landmarks 10, 11 and 12 (9.4 mm, 23.4 mm and 9.8 mm respectively).
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Figure 5.1: The points found by the model (red)
and the mask points (blue) overlayed on the MR
image.

Figure 5.2: Comparison per anatomical landmark
(1-12), with the euclidean distance [mm] related to
it. Point 11 and 12 were not found by the model
and therefore have the label ”-”.

Figure 5.3: Number of found points per anatomical landmark. The maximum possible number is 75 (5 model
folds for 15 scans). Model fold 1 did not find any points for landmarks 1 and 2, model 4 did not find any for
landmark 1 and model 5 did not find any for landmark 11.
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Table 5.2: Comparing the average euclidean distance (AED) and number of
found points (n) between the different anatomical landmarks.

Landmark AED [mm] n (max 75)
1 2.0 39
2 6.4 25
3 5.3 60
4 6.3 64
5 6.5 59
6 5.7 70
7 5.6 68
8 6.3 60
9 7.9 43
10 11.1 63
11 20.7 12
12 12.8 9

Table 5.3: Comparing the average euclidean distance (AED) and number of points (n) found between the
different subjects and their scans.

Subject AED [mm] n (max 180) Scan Avg ED [mm] n (max 60)
Control 1 (nonparous) 6.3 92 1 3.0 42

2 7.4 32
3 10.4 18

Control 2 (parous, pre) 3.4 136 1 2.5 46
2 3.7 41
3 3.7 49

Control 3 (parous, post) 8.0 101 1 7.5 34
2 5.6 36
3 10.1 31

Patient 1 (POP) 7.2 129 1 6.3 42
2 6.4 44
3 8.0 43

Patient 2 (POP) 11.4 114 1 13.7 39
2 9.9 37
3 9.0 38

5.2.3 Comparison between subjects

For a complete evaluation of the model, the AED per scan has been calculated. This can be found in table 5.1,
together with the number of found points per scan. This shows a difference in AED the different subjects, but
not mainly between the POP patients and the control group. For the number of found points there is also no
apparent difference between the control group and the POP patients. The maximum possible number of found
points is 60 (5 model folds with 12 anatomical landmarks), and the lowest number of found points is in scan 3
of control 1 (n = 18). Analysis of the boxplot of the euclidean distances (figure 5.5) showed a variance between
the different subjects and scans. Control 1 scan 3 has the largest interquartile range of 18.1. Patient 2 shows a
high interquartile range for scan 1 and 2 (9.1 and 10.5 respectively) and a high median for all three scans (15.3,
12.0 and 9.6 respectively).
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Figure 5.4: Boxplot comparing the euclidean distance between the assigned anatomical landmarks. This shows
a large interquartile range for landmarks 10 and 11 (15.1 mm and 20.9 mm respectively) and a high median for
the landmarks 10, 11 and 12 (9.4 mm, 23.4 mm and 9.8 mm respectively).

Figure 5.5: Boxplot comparing the different subjects and their scans. A large interquartile range is found in
scan 3 from control 1 (18.1) and in scan 1 and 2 from POP patient 2 (9.1 and 10.5 respectively). Patient 2 also
shows a high median for all scans (15.3, 12.0 and 9.6 respectively)
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Discussion

This study shows a CNN based model for the detection of anatomical landmarks associated with the LP shape.
K-fold CV was applied for 5 folds, and showed an average MSE of 6.2, an AED of 7.0 mm and an average found
points of 114.4 points per model, which corresponds to 63.6% of all points. The model folds did not perform the
same for each landmark, as fold 1 did not detect landmark 1 and 2, fold 4 did also not detect landmark 1 and
fold 5 did not detect landmark 11. Over all model folds, landmark 1 and landmarks 3 through 10 were detected
in high rates (more than 50% of the scans), with landmark 6 being detected the most (70 times out of 75 scans).
Landmark 1 corresponds to the inferior point of the pubic symphysis and landmark 3 through 10 represent the
LP. For the analysis of the LP shape with PCA [8] [17], the PICS line (the horizontal line through landmark 1)
and landmarks 3 to 10 were used. This means that with the developed model, the anatomical landmarks for the
analysis of the LP shape are highly detectable. The results showed different euclidean distances and number
of detected points between different scans and patients, but did not show a significant difference between the
control group and POP patients. This means that the developed model could be used for both of these groups
and could possibly be used to analyse the difference between them.

Previous research has shown landmark detection of medical images based on a neural network for the anal-
ysis of CT and X-ray images of the prostate and craniofacial area [51] [52], as well as for MR images of brain
structures and cardiac images [53] [51] [54]. Research has also shown that it is possible to detect landmarks
by using a heatmap [55] [56] [54]. This study shows results that are in agreement with this, as well as that it
shows that landmark detection in the pelvic area related to the LP shape is possible. A few of these researches
included a distance error in their findings which could be compared to this research. The study of [53] showed
a 3D localisation error of 0.79 mm with a processing field of 256 × 26 × 150 mm3, and the study of [54] showed
an AED of 1.82-3.78 mm with a working field of 400 mm2. This studies shows a significantly larger AED of
7.0 mm, with a working field of 122.1 mm2. An explanation for this could be the limited amount of test and
training data, since [53] uses 1128 annotated volumes and [54] uses 34 089 training images and 7723 test images,
whereas this study only comprised 156 training images and 15 test images. Further data processing of the MSE
would be necessary to adequately compare this research to other research, as most of the comparable studies
use a root mean squared error or a normalized (root) mean squared error. The MSE is also highly dependent
on the working field it is computed from, and it was already mentioned that this differs per studies.

The strength of this research is the application of a CNN to detect landmarks in the pelvic area, which has
not been done before. Most importantly, anatomical landmarks 3 to 10 which correspond to the LP, have been
detected which could be used to compute its shape. The cross validation method adds to this by showing that
the network would work for different train and validation sets, which resulted in comparable results for the
MSE, AED and number of found points.

A few limitations may have contributed to inferior performance of the network. Firstly, to reduce the training
time and needed processing power, all images were resized to 128 × 128 voxels, while it originally was 250 × 250
voxels. This means the resolution was reduced by almost 75%. Another general problem is acquiring enough
labeled training data. It was already mentioned before that studies in the same research field have much larger
data sets to train and test their models with. It is expected that with more training data, the difference between
the model cross validation folds would be minimized as the higher number of data would average out irregular
cases. The current differences between the model folds could be related to the difference in training and vali-
dation data for each split, as K may have been too small for the data sets to be statistically representative for
the broader data set. Furthermore, a larger test data set would make it possible to show the difference between
the groups of subjects better, as there were four types of groups and there were only five subjects in the test
set. Another limitation is that the data labeling has been done only once, and has not been done by a medical
professional. A labeling by a second reader would be required to measure interreader variation, which could
average the mask coordinates to a value that is as close as possible to its true value. This could also present the
difference between readers for different anatomical landmarks, and place the model results in a broader context.
One of the main limitations of this research though, was time. The person developing this model had no prior
knowledge of deep learning, neural networks and landmark detection, and the project had to be done within ten
weeks. Consequently there was limited time to experiment with some of the parameters of the model, which
with more time could have been examined further.

Future research could look into the development of a model with only the landmarks used for PCA, in or-
der to eliminate any influence the other landmarks could have on the results and hopefully learn the correlation
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between the points accurately. Furthermore, future research could look into different types of cross validation,
to experiment with what type would be the best training and representation for the model. As was already
briefly mentioned before, more labeled training data would be desired to experiment with a different number
of cross validation splits. It was also mentioned before that more test data would be required to see the corre-
lation between the groups of subjects and the model performance for them. Subsequently, future work could
look into applying PCA to the results of the model and look at the difference between the control groups and
POP patients, to see if the model is able to correctly determine the shape difference between them. Something
else that could be looked into is the preprocessing of image data with image enhancement algorithms, as these
may improve the performance of CNN models [57]. Another region that could be explored is the comparison
between landmarks as a coordinate on its own compared to landmarks in a segmentation map, as landmarks in
a segmentation map may not give the best results. Lastly, a loss function that combines the euclidean distance
with the mean squared error could be explored to hopefully reduce the euclidean distance further.

To conclude, the model that is developed in this study shows a U-net based structure for the detection of
landmarks related to the LP, that could be used in research around pelvic organ prolapse. Some anatomical
landmarks were much better detectable than others, with the landmarks corresponding to the inferior point
of the pubic symphysis and the LP being highly detectable with a relatively small euclidean distance. The
model appeared to not perform different for POP-patients and non-patients. To improve the model, much more
training and test data would be required, but for now the developed model can detect the anatomical landmarks
associated with the LP shape and could be the basis for a model that could be implemented clinically.
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Appendices

7.1 Appendix A: Raw output image of the model

Figure 7.1: A comparison between the expected mask points (left) and the output of the model (right).

7.2 Appendix B: The MSE per model fold, through the epochs

Figure 7.2: Comparing the descent of the MSE for each K-fold cross validation model fold. The final MSE value
is displayed on the right of the graph.
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