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Abstract—Invasive Alien Plant Species (Japanese Knotweed)
are a threat to biodiversity. Its monitoring can help conserve the
native flora and fauna. Japanese Knotweed habitat is generally
along the roadways and, its identification, can prevent its spread.
The research discusses the detection of the invasive Japanese
Knotweed plant using a mobile phone camera mounted on a
bicycle. It mainly focuses on object detection models under two
categories: (1) Generic and (2) Few-shot. Generic object detection
has been used to detect invasive plants. However, a lack of
pre-labeled datasets makes this approach expensive and time-
consuming. Moreover, the object detection model considering the
plant phenological cycle further increases the requirement for
annotated images. Thus, the few-shot object detection algorithm
offers an alternative approach with limited annotated images.
However, there is no previous study on its performance for
invasive plant species (Japanese Knotweed). Thus, this study
aims to bridge these gaps. It considers the creation of a realistic
dataset for detecting invasive Japanese Knotweed plants using
a mobile phone camera mounted on a bicycle. A performance
comparison between the extensively used general object detection
i.e, Faster RCNN, state-of-art YOLOv7, and few-shot state-
of-art ‘DeFRCN’ is performed under PASCAL VOC settings
of 1, 2, 3, 5, 10 images and complete dataset. Resolution &
support set study concerning DeFRCN is also discussed. It was
found that under limited training images (1, 2, 3, 5, 10), the
generic object detection overfits and few-shot object detection
model with data augmentation offers 5.33, 4.83, 6.45, 7.31, 8.30
mAP50

test respectively. YOLOv7 offers the highest mAP50
test with

a complete dataset, which is 32.6. On the contrary, the Faster
RCNN has a large false positive and is not robust. Overall, the
research focuses on contributing to the conservation of native
flora and fauna.

Index Terms—Invasive Species, Japanese Knotweed, Deep
CNN, Roadside, Few-Shot Object Detection, Mobile Camera

I. INTRODUCTION

The invasive Alien Plant (IPAS) poses a severe threat to the
native environment and causes damage worth billions of euros
to the European economy every year [1]. IAPS are non-native
plants that are accidentally or intentionally introduced in a new
geographical area. One such plant is the Japanese Knotweed
(Polygonum Cuspidatum) which is listed 37th on the ‘100 of
the World’s Worst Invasive Alien Species’ by IUCN. It is a
herbaceous plant that is native to Japan that was brought to
Europe as a decorative plant, and to stabilize soil in the coastal
areas. However, when water is infested with its fragments, it
relocates to a new area i.e, riparian zone and communication
routes that were previously uninhabited by it [2]. Here, it
grows into dense stands, displacing native flora and fauna
[3]. Moreover, its powerful steam damages buildings, pipes,

and roads, incurring substantial economic loss. Thus, detecting
Japanese Knotweed can aid in containing its spread.

Researchers have used various techniques (Object-Based
Image Analysis [4] [5] & generic object detection algorithms)
to detect invasive species. And, in general, the detection
approach can be divided into a pipeline consisting of three
major steps: (1) Image Acquisition (2) Image Pre-processing
(3) Image Classification & Object Detection [6].

Fig. 1: Simplified overview of the research

For image acquisition of invasive species, satellites, UAVs,
and cameras mounted on vehicles have been used [4] [7] [8].
While each acquisition method has advantages, it also has lim-
itations. For instance, satellite imagery is often accompanied
by multi-spectral data to distinguish between vegetation and its
types. But, high-resolution data are costly and are restricted to
a specific area. The medium and low-resolution spectral data
is freely accessible, but some fine-scale image characteristics



Fig. 2: Phenological cycle of Japanese Knotweed. In a few locations, flower and early-growth phase extends till October.

are lost, and invasive species that occur in small patches
are difficult to identify [9]. Therefore, it offers promising
results for detecting long and dense stands ( > 10 m2), but
it misses the localized stands of Japanese Knotweed (< 2
m2) [10] [5]. Moreover, satellite imagery frequently suffers
from a lack of coverage due to clouds and sensor problems.
Thus, irregular temporal image data is another challenge.
Similarly, drones can cover a relatively larger geographical
area but have a limited flight time as it requires frequent
charging. Secondly, it violates the privacy right of the citizen
by capturing images without drawing their attention [11].
Thirdly, weather condition restricts the deployment of drones.
[12].

This research focuses on a mobile phone camera mounted
on the bicycle for acquiring images of Japanese Knotweed
beside the road. Not only it is cost-effective compared to the
other acquisition methods, but geotagged crowdsourced mobile
images and videos can also be utilized. Additionally, it will
increase the reachability over long distances and isolated areas,
discovering new patches of Japanese Knotweed. Thus, it offers
an unmatched spatial resolution at the country level and high
temporal resolution.

But, Japanese Knotweed detection besides the road is chal-
lenging because of its similarity in color with the other plants.
Also, it appears dissimilar (color and texture) under different
illumination and during its growth phase. Moreover, the plant’s
proximity to the road, varying camera resolutions, motion blur
& noise in the image increases the difficulty of its detection
[13]. Nevertheless, researchers have extensively used deep
learning for identifying invasive species because of its strong
feature learning capabilities. For addressing other challenges,
image augmentation is generally employed as part of image
pre-processing in the detection pipeline. This ensures that the
model generalizes to the realistic environment [14] [15] [16]
[17].

Although typical deep learning methods have achieved good
performance in detecting invasive species, it requires hundreds
and thousands of annotated images (11,240 images of Solanum
Rostratum Dunal plants [18], 3826 images of Hydrangea [16],
2500 images of different invasive plant species each [19]).
Annotating images is often expensive and time-consuming.
This is a more prominent problem in the case of object
detection, where dense labeling of bounding boxes in each
image is needed. Moreover, there is a lack of pre-labeled
datasets for fine-grained object detection applications such

as the detection of Japanese Knotweed. Additionally, plants
change their appearance throughout their phenological cycle as
shown in figure 2, and failure to account for these changes in
an object detection model would result in poor generalization
to plants at different stages of growth. This increases the cost
of data collection and the development of a robust model.

Thus, a few-shot object detection model can offer a practical
solution for detecting Japanese Knotweed under a limited
dataset. It reduces costs in dataset creation and model devel-
opment.

This research aims to bridge a gap in detecting inva-
sive species, particularly Japanese Knotweed under a limited
dataset using a state-of-art few-shot object detection algorithm.
Researchers have used generic object detection for identifying
invasive species, but to the best of my knowledge, there exists
no literature on few-shot object detection of invasive plant
species. Additionally, there has been no work on detecting
Japanese Knotweed from the videos/photos taken from the
roadside on a bike. Also, a comparison has been performed
between both methods under standard few-shot PASCAL VOC
setting of 1, 2, 3, 5, 10 shot and complete dataset. Thus, these
novelties will contribute in conserving native flora and fauna.

The thesis overview is briefly summarized in the figure 1.
And, the following question has been formulated to conduct
the research:

How can object detection be performed for Japanese
Knotweed with a limited annotated dataset under varying
conditions such as distance, lighting, illumination, angles,
resolution, and plant phenological cycle?

The above research question is further divided into the
following sub-research questions:

1) What strategies can be used to create and annotate a
diverse and representative dataset for object detection
of Japanese Knotweed?

2) What are the techniques for object detection of Japanese
Knotweed? It is further divided into three sub-research
questions:

a) How does a general object detection model with
a pre-trained weight and fine-tuning on a lim-
ited annotated dataset perform on the detection
of Japanese Knotweed? Can data augmentation
techniques improve its performance?
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b) How does the performance of a few-shot object de-
tection model, trained with pre-trained weights and
fine-tuned on a limited annotated dataset, compare
to (a) in detecting Japanese Knotweed?

c) How does the state-of-art generic object detection
model with a pre-trained weight and fine-tuned on
a limited annotated dataset compare to (a) and (b)
in the detection of Japanese Knotweed?

To answer the above questions, mean average precision
mAP50 on the test set, validation loss curve (where applicable),
and visual inspection of the model’s prediction on the test im-
age will be used as evaluation metrics for all object detection
models. The validation loss curve is essential in understanding
the model’s performance because the dataset is limited and
models are susceptible to overfitting. Visual inspection pro-
vides an intuitive interpretation of false positives. Moreover,
predictions on other classes are also visualized to examine the
model’s robustness.

The structure of the research paper is as follows: Section 47
provides a concise overview of the selected object detection
algorithms, along with the rationale behind their selection.
Section III, material and methods highlight dataset creation,
cleaning, organization, and data augmentation. Section IV
experimental setup, mentions the network training procedure
and provides results from all the models. Section V compares
and discusses the result. Finally, the conclusion & future scope
has been mentioned in section VI.

II. BACKGROUND

This section provides a concise overview of two generic
and one few-shot object detection algorithm. Furthermore, the
scientific reasoning behind selecting each algorithm has also
been mentioned under respective sections.

A. Generic Object Detection

Fig. 3: Simplified Faster RCNN architecture

1) Faster RCNN: Faster RCNN is one of the most popular
and widely used object detection algorithms. Previous
studies (Milkweed detection beside road [20], Eupato-
rium Adenophorum detection [21]) have also used Faster
RCNN for detecting invasive species. Secondly, most of
the few-shot learning algorithms based on transfer learn-
ing and fine-tuning (including the selected DeFRCN
algorithm used in this research) make changes to its
structure and adapt it to work on a limited dataset [22]

[23] [24]. Thus, comparison with Faster RCNN would
give a better analysis of its drawbacks on limited dataset.

In Faster RCNN, the input image is first fed to the back-
bone (CNN) to obtained single scale features following
which two stages are applied:

• The obtained features are fed to region proposal
network (RPN) for extracting object proposals, i.e,
bounding box that may contain an object. The object
proposals are predicted at a predefined aspect ratio
(Anchor Box), which is refined by regression head.
Further, Non-Max Suppression (NMS) removes low
quality and redundant proposals.

• Fast RCNN extracts a fixed-size feature map using
a ROI Pool for the remaining proposed bounding
box. It is then fed to a ROI head for predicting
object class and refining bounding box coordinate.
Additionally, NMS is used again to remove redun-
dant and low-confidence predictions [25].

2) YOLOv7:

Fig. 4: Abstract YOLOV7 architecture

YOLOv7 is the current state-of-art in generic object
detection [26]. Therefore, it can establish a benchmark
for comparison with Faster RCNN. Moreover, to the
best of my knowledge, no study on its performance has
been performed on a limited dataset. The performance
comparison with few-shot learning model may provide
insight to the researcher.

YOLOv7 is a single-stage object detector which gives
a high inference rate compared to two-stage detectors
(Faster RCNN). This is because it performs object
classification and bounding-box regression in a single
forward pass through the network, eliminating explicit
region proposal generation and its subsequent refine-
ment. YOLOv7 has different variations, which prioritize
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either accuracy or inference. The maximum inference
speed it offers is 160 frames per second, and the
maximum mAP50 is 74.7.

YOLOv7 has made several architectural changes com-
pare to the previous versions to improve detection speed
and accuracy. The first change is using Extended Effi-
cient Layer Aggregation Network (E-ELAN) as back-
bone instead of the Darknet as its predecessors. E-
ELAN uses expand (allows adding more filter to lay-
ers to learn complex features), shuffle (shuffles feature
map), and merge cardinality (combines the output of
multiple layers at different resolutions) and enhances
the learning ability of the network by preserving the
original gradient path. Second, Researchers generally
use a Network/Neural Architecture Search (NAS) tool
to address the problem of model scaling for a particular
device deployment. It provides optimal scaling factor
for resolution, width, depth, and stage (the number
of feature pyramids). YOLOv7 enhances the scaling
by using a compound scaling mechanism, which is a
coherent scaling of width and depth parameters. Third,
YOLOv7 also uses re-parameterization planning (RP)
that averages various models to create a final model
offering a robust performance. Lastly, the architecture’s
head component, utilizes a multi-head concept. The
primary head is responsible for the final classification,
while the auxiliary heads contribute to the training
process in the middle layers.

B. Few-Shot Object Detection

Few-shot object detection aims at designing a model that
can successfully operate in a limited data regime. Thus,
following the Wang approach [27], three state-of-art few-
shot approaches were studied. These are classified under three
categories: (1) Data: Uses external semantic information (2)
Model: Learns support and query relation (3) Algorithm:
Refines parameter update strategy

1) Data Approach (FADI): FADI (Few-shot object detec-
tion via association and discrimination) [28] mentions
that the transfer learning approach for few-shot object
detection gives poor classification accuracy. This is due
to the scattered feature space of the novel class, which
violates inter-class separability between base and novel,
leading to confusion in classification. Thus, it proposes
2 steps fine-tuning framework to create a discriminative
feature space for the novel class: (1) Association (2)
Discrimination

In the association step, it associates the novel class
with the base class based on Lin similarity (measures
semantic similarity between two words). The novel class
align its feature space with the respective base class
and become naturally separable from other base class.
Thus, it becomes an intra-class classification problem
that is handled by the discrimination framework. In

the discrimination, it disentangles the base and novel
classes to remove confusion between them. It does so
by extending the Faster RCNN architecture with two
separate fully convolutional layers (base pre-trained &
novel associated) and a classifier dedicated to base
and novel class. FADI offers the highest mAP50 in data
approach with 63.2 considering 10 shot as a reference.

2) Model Approach (Meta-DETR): Meta-DETR men-
tions that most existing state-of-art literature is built
on Faster-RCNN for solving the few-shot detection
problem. But, the accuracy suffers because of two
drawbacks: (1) Low-quality region proposal for novel
class because of less availability of novel data (2) Most
methods take one support class at a time and misses the
relation among different support class. This limits the
ability to distinguish a similar class and to generalize
from the related class. Meta-DETR on contrary, works
on the image level (using deformable DETR object de-
tection). Moreover, Meta-DETR attends multiple support
classes at one go and captures inter-class correlation
for reducing the misclassification of a similar class. It
offers the highest mAP50 in model approach with 63.6
considering 10 shot as a reference.

3) Algorithm Approach (DeFRCN): Decoupled Faster
RCNN provides state-of-art performance under low data
constrain by improving conventional Faster RCNN ar-
chitecture. The first problem it identifies with Faster
RCNN is that RPN and RCNN shared the same back-
bone, with loss being jointly updated as mentioned
below:

Ltotal = (Lcls
rpn + Lreg

rpn) + η · (Lcls
rcnn + Lreg

rcnn ) (1)

But they have different goals. RPN is class indepen-
dent and RCNN is class relevant. This mismatch of
goals reduces the classification ability. Thus, it offers
a decoupling mechanism between three modules of
Faster-RCNN: backbone, RPN, and RCNN such that one
doesnt dominate over another using Gradient Decoupled
Layer (GDL) as shown in figure 5 (Top image). GDL
transforms the feature maps from the backbone into
two distinct feature map (using affine transformation)
during forward propagation for RPN and RCNN. Dur-
ing backward propagation, the gradient is multiplied
with the decoupling constant. This allows the model
to optimize the weights for each module independently
and achieve decoupling between the two. With the
decoupling constant from RPN being zero, the backbone
is only updated based on the gradients from the RCNN,
which are more relevant to the target domain (Japanese
Knotweed). Thus, it tries to improve low quality region
proposal as mentioned by Meta-DETR.

The second problem it identifies is that the RCNN box
classifier requires a translation invariant (features that
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Fig. 5: Architecture of DeFRCN for few-shot object detection with GDL and PCB. ‘A’ denotes the affine transformation to
the feature map ‘X’ in the GDL. PCB is trained offline and utilized during the inference. Data Augmentation is added to the
existing architecture to increase its performance.

remain the same under translation) feature, while its
box regressor requires translation co-variant (feature that
changes under translation) features. Thus, the localiza-
tion branch may force in learning more translation co-
variant features, which can decrease the performance of
the box head (category score and box coordinate). To
overcome this mismatch of goals, it uses a Prototypical
Calibration Block (PCB) to increase the classification
accuracy. PCB eliminates high false positive and gives
weight to low-score missing sample. This is because,
PCB is the prototypical few-shot classifier which is pre-
trained on ImageNet as show in figure 5 (Bottom right).
PCB takes support and query images and finds the cosine
similarity to give a pairwise score, which boosts the
box classifier score. Moreover, PCB is used offline and
doesn’t require any training and therefore can be used
directly. The final classification score of the model is
a weighted average of the score from the box classifier
from the detector and PCB.

It is important to note that DeFRCN jointly trains the
entire detector (Faster RCNN) with novel GDL. It uses
a standard transfer learning technique to first fine-tuned
on a large base set and then again fine-tuned on a novel
support set. This setting leads to DeFRCN being simple
and outperforming other meta-based and fine-tune-based
approaches [29].

This research utilizes algorithm based approach, i.e, De-
FRCN because: (1) It achieves the best mAP50 of 66.5 among

the category (2) FADI needs to perform a redundant step of
association which may not useful as the base class and novel
class (in our context Japanese Knotweed) are not similar (3)
DeFRCN by using GDL allows cross-domain transfer, i.e, the
first fine-tuning on base class domain is entirely different from
second fine-tuning novel domain. During the novel fine-tuning,
RPN is forced to learn to give proposal based on novel class
by using a stopping gradient (assisted by GDL) from RPN
to backbone. This doesn’t allow backbone to get updated by
it. The update of the backbone will only be due to RCNN,
which is responsible for classification. (3) In Meta-DETR,
no performance gain is observed when training support set
is increase to more than 10 images (4) DeFRCN by using
a few-shot classification block i.e, PCB tries eliminating the
high false-positives and increases generalization ability of the
model.

III. METHODS AND MATERIALS

A. Dataset Creation

For creating a diverse dataset of Japanese Knotweed present
beside the road, videos were recorded along the Netherlands
state road. In particular, a total of 10 sites were visited as
shown in the figure 6 : (1) UTrack at the University of Twente
(2) Horstlindelaan (3) Wiedicksbeekweg (4) Auke Vleerstraat
(5) Strootsweg (6) Sleutelweg (7) Gronausestraat (8) Es-
chmarke (9) Glanerveldweg (10) Noord Esmarkerrondweg

The following strategies were used for capturing the
Japanese Knotweed images:
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Fig. 6: Red dots representing 10 locations of Japanese Knotweed patch in the stretch of approximately 30 km

1) A mobile camera and a GoPro Hero Plus were mounted
on the non-electric bicycle for capturing videos while
cycling at average speed of 8-12 km/hr, depending upon
the terrain.

Fig. 7: Camera mounted on bike, depicting motion blur and
roadside coverage

2) The mobile camera was mounted at an angle between 0
&45 degrees to the direction of motion. This gives less
motion blur compare to angle between 45 & 90 degrees.
At 45 degree, a maximum coverage of roadside and
moderate motion blur can be obtained, but as mounting
is prone to human error, it was ensured that camera is
between 0 and 45 during different visit. But, it exerts

more demand on subsequent image processing as it is
not only invariant to the plant growth stage but also
invariant to a different location in the image [8].

3) The GoPro was mounted at 90 degrees to the direction
of motion. This angle avoids variation in the size of
the plant depending on its location in the image. But,
it gives the least coverage and maximum motion blur
because change in pixel content during the exposure
will be greatest. To decrease motion blur, short exposure
setting can be used [8]. However, this research focuses
on realistic dataset creation. The figure 7 shows camera
mounting, motion blur and roadside coverage.

4) The sites were visited on a biweekly basis on October
and November, as shown in figure 2. The same sites were
visited multiple times in different environmental condi-
tions. Thus, the dataset has videos of Japanese Knotweed
in sunny, cloudy, and rainy weather conditions.

5) The varying distance of Japanese Knotweed to camera
is automatically ensured as the plant located beside the
road varies at different locations from 1.5 to 12 meters.

6) The dataset was created to include Japanese Knotweed
in various stages of the phenological cycle, but due to
the plant’s growing towards dormant phase, there are
more images of the Japanese Knotweed in late growth
phase in the dataset.

7) It is also ensured that the dataset contains Japanese
Knotweed in patches of different sizes with heteroge-
neous density.
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8) To make the dataset more generic, pictures at random an-
gles (0-45 degree) while a mobile camera still mounted
on a bicycle were taken.

Various publicly available database are examined to increase
the size of the dataset further. Unfortunately, a popular
database such as PlantVillage [30] has images of crop plant
leaves. GBIF [31], INatuarlist [32] has Japanese Knotweed
images but is biased with scaled up images which is more
suited for classification task. Moreover, it does not reflect the
complexity of detecting plants from a roadside setting. To
solve this problem, the studies suggested using Google Street
View images [33]. The primary examination of some locations
has shown a promising result. However, it is not used in this
research.

B. Cleaning, annotating & organizing dataset

The raw dataset size is approximately 29GB, which only has
Japanese Knotweed. The dataset also has videos and photos
without Japanese Knotweed which is around 2GB. The dataset
mostly have videos(60/30FPS) and thus, many image frames
are redundant. Therefore, only 5 image are extracted per sec-
ond. This decreases the manual labor of examining a massive
number of images. Further, frames without, blurred and treated
Japanese knotweed pictures were removed. Additionally, the
sparse Japanese knotweed image in which cluster are not
recognizable has also been removed. The first row in the figure
8 shows a few removed images.

The image were annotated using CVAT [34] and labelled
as Japanese Knotweed. As the plants have irregular shape,
polygon annotation is an optimal choice. But, the existing
DeFRCN architecture doesn’t support it. This is verified by
analyzing the dataset mapper of DeFRCN GitHub repository.
Thus, the following technique has been employed for bounding
box annotation:

1) When the camera is positioned at a 0-degree angle to
the direction of motion and the plant is in proximity
to the camera, multiple bounding box annotations are
created to encompass the long stretch of the plant. This
is because a single bounding box would not be tight
and would incorporate several regions of background
comprising other plants.

2) If the plants are far away and angle is between 0 and
45 degree, a single bounding box sufficiently cover the
single cluster of the plant.

3) At 90-degree, a single bounding box can cover the entire
stretch of the plant.

4) While annotating, in case where branch goes out of the
bounding box, it was ensured that majority of the shrub
are covered.

In total, 290 bounding box were annotated in 110 images,
the representation of which is shown in the second and third
row of figure 8. The description of the dataset with respect
to source, resolution, angle, and phenology is highlighted in
the table I. The distance and plant density is not consider

due to significant error in approximation. This answer research
question 1 concerning the strategy used to create, and annotate,
Japanese Knotweed dataset.

The dataset was divided into a training, validation, and test
set with 80% (88 Images), 10% (11 Images), 10% (11 Images).
For performing experiments, random shots of 1, 2, 3, 5, 10
are generated from the train set in accordance with PASCAL
VOC few shot setting. For example, 1 shot essentially means
randomly using a single image with only one instance from
the train set for training the models. A total of 30 seeds is
created for each shot. An example of how the seed 0 looks is
given in the appendix A. Moreover, the complete train set (88
shots with all (223) instances) is also used with all the object
detection models.

C. Data Augmentation

Data augmentation is the process of increasing data size
by creating more data (images) from the existing dataset. It
has been found that a small dataset often leads the model
to overfit. Thus, data augmentation makes simple alterations
in the existing visual data by applying various geometric and
intensity augmentation techniques. This reduces the chances of
over-fitting and also increases the model’s generalizing ability
to the new unseen data [35].

All the object detection model uses online data augmenta-
tion. Online data augmentation applies random transformation
to the input image during training. In our context, it is
preferred over offline data augmentation because of multiple
experiment (1, 2, 3, 5, 10) with multiple seeds and different
images.

The important geometric transformation for Japanese
Knotweed detection includes scaling, rotation, and horizontal
flipping. For example, the distance between the plant and the
camera changes in a different location. This can be addressed
with the scaling technique, which adds examples of such
variations in the dataset for model training. Similarly, the
mounting of a camera is prone to human error, random rotation
between 0 & 45 degrees can model different pose of the
plants. The intensity transformation includes contrast, satu-
ration, brightness, and color enhancement technique. These
aim to model color variation that arises due to environmental
conditions and different time of a day. All the selected model
incorporates these augmentation techniques, which is further
elaborated with respect to the object detection models in the
section V.

IV. EVALUATION METRIC

The performance of the model can be measured with the
help of evaluation metrics. It can be used to evaluate a model’s
quality or to assess how well the various models work to
determine the best one. Mean Average Precision or mAP50

with IOU (Intersection Over Union) 0.5 has been consider
under this research as it is standard in case of few-shot learning
methods.
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TABLE I: Japanese Knotweed Dataset Description

Source Resolution Angle (degree) Phenologya Number of Images (110)

GoPro 1920x1080 90 Late-growth 9

Mobile 1920x1080 0-45 flower 3
Mobile 1920x1080 0-45 Early-growth 26
Mobile 1920x1080 0-45 Late-growth 20
Mobile 1920x1080 0-45 Dying 28

Mobile (Picture) 4032x3024 90 Early-growth 1
Mobile (Picture) 4032x3024 90 flower 1
Mobile (Picture) 4032x3024 90 Late-growth 12
Mobile (Picture) 4032x3024 90 Dying 1
Mobile (Picture) 4032x3024 0-45 Early-growth 7
Mobile (Picture) 4032x3024 0-45 Flower 1
Mobile (Picture) 4032x3024 0-45 Late-growth 1
aQuantification is approximate on visual assessment and may have some error, *The inclusion of Japanese Knotweed’s distance and density has been omitted
due to significant errors in approximation.

(a) No JK (b) Blurred JK (c) Treated JK (d) JK cluster not recognisable

(e) 90◦, EG, < 2 meter (f) 90◦, LG, > 5 meter (g) 90◦, LG < 1 meter (h) 0◦, Dying

(i) 0◦, LG, > 10 meter (j) Illuminated, flower (k) GoPro JK (l) JK at random angle

Fig. 8: Annotated images representing the Japanese Knotweed (JK) dataset variability. EG, LG denotes early and late growth
respectively. Distances are approximate.
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The precision, recall and IoU are consider while calculat-
ing the average precision. So, understanding its definition is
crucial.

A Precision is defined as:

P =
TP

TP + FP
=

TP

all detections
(2)

A Precision gives a percentage of correct prediction over all
the predictions. A recall is defined as:

R =
TP

TP + FN
=

TP

all ground truths
(3)

Recall gives a percentage of correct prediction over actual
cases.

An IoU (Intersection Over Union) is the ratio of the over-
lapping of ground truth and predicted area to the total area.
The IoU close to 1 implies that the model perfectly anticipated
the object. On the contrary, an IoU close to 0 implies that the
model didnt predict object coordinates. Thus, a threshold is
always defined. For example, IOU with a threshold set to 0.5
will detect an object as true positive if the overlap between the
predicted bounding box and the ground truth bounding box is
more than 0.5. If the overlap is less than 0.5, it means it is a
true negative.

The average precision is an area under precision and recall
curve. The high area under the curve indicates both precision
and recall are high. The area is generally a zigzag curve, and
hence we use 2 methods to approximate it. This research uses
11 point interpolation method. In the 11-point interpolation,
the shape curve is summarized by averaging the maximum
precision value at a set of 11 equally spaced recall values
[0.1, 0.2, ... , 1]. Mathematically, it is given by:

AP11 =
1

11

∑
R∈{0,0.1,...,0.9,1}

Pinterp(R) (4)

where
Pinterp (R) = max

R̃:R̃≥R
P (R̃)

Here, instead of using the precision P (R) observed at each
recall level R, the AP is obtained by considering the maximum
precision Pinterp (R) whose recall value is greater than R [36].

V. EXPERIMENTAL SETUP

A. Faster RCNN

The research uses a Faster RCNN model from detectron2
model zoo. Detectron2 is an open-source object detection and
segmentation framework built on top of PyTorch. It is devel-
oped by Facebook AI Research [37]. Detectron2 is selected
over TensorFlow and PyTorch because: 1) It has intuitive API
which makes building of object detection model simple. 2) It
is highly flexible as it provides a modular architecture to mix
and match different components for building a model. For
instance, it provides various pre-trained backbone networks,
such as ResNet or EfficientNet, to extract features from the

input image. 3) It provides the highest performance, mAP50

of 41 on the coco dataset.

The Faster RCNN model has been configured to have a
similar base architecture as utilized by DeFRCN. Thus, in
our implementation, it uses ResNet-101 as a backbone for
extracting the feature from input images. The ROI Head
uses Res5 and C4 features to incorporate both high-level
semantic features and low-level spatial features for predicting
bounding boxes with class labels and confidence scores. The
final classification layer was adapted to match the Japanese
Knotweed class.

Detectorn2 recommends resizing the image (height &
width) within the range of [800, 1333] to achieve the best
performance. Therefore, the images and annotations are re-
sized to their default image setting, which is 1333x800 pixels.
ImageNet pixel mean and standard deviation has been used
for normalizing the image, as it provided better performance.

Seven different online data augmentation has been employed
while training the model. These are: (1) Random change in
brightness, contrast, and saturation between 0.8 to 1.2 [38], (2)
Random horizontal flip, (3) Random lighting by 0.7 (changes
brightness and illumination), (4) Random rotation between 0
and 45 degrees (5) Random resizing of the image between
image’s max (1333) and min (800) dimension (for exposing
the network to different scales of objects during training). The
parameter values are carefully selected to avoid unwanted and
unrealistic effects. Few examples are shown in the figure 10.

The batch size of 2 is used with all experiments. After every
20 iterations, the network was evaluated on the validation set.
Additionally, the learning rate has been kept the same, i.e.,
0.001 for all the experiments. The iteration for 1, 2, and 3 shot
are 300, for 5 shot it is 500, and for 10 shot it is 590. These
parameters are the same for experiments concerning with and
without data augmentation, except in 88 shot where iterations
are 300 and 550 for without and with data augmentation.

A pre-trained weight, on ImageNet, is used to initialize the
model. Further, transfer learning and fine-tuning on custom
Japanese Knotweed class is performed. In general, fine-tuning
the entire network is only used when the target dataset is
large enough to train parameters of a network. Thus, the
number of stages to freeze depends on the amount of target
training dataset [39]. Moreover, a transfer learning is more
effective if the source and target domain are similar, however,
for comparison with few-shot algorithm which allows cross
domain transfer, ImageNet weight was given priority.

In our context, the target dataset is small with a maximum
of 88 images, and other experiments have only 1, 2, 3, 5,
10 images for training. Therefore, freezing the initial layers
of backbone (conv1, conv2 x, and conv3 x) may serve as
a feature extractor as these layers typically learn low-level
features such as edges and color, which do not change signif-
icantly across the visual recognition tasks [40]. Higher layers
(conv4 x and conv5 x) responsible for high-level features,
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(a) 1 shot val curve (b) 2 shot val curve (c) 3 shot val curve (d) 5 shot val curve

(e) 10 shot val curve (f) 88 shot val curve (g) Loss curve with aug. (h) Loss curve without aug.

Fig. 9: The figure depicts the validation plot for 1, 2, 3, 5, 10 (seed 0 as an example) and 88 shots (complete dataset) with
(blue line) and without data augmentation (black line). It also gives loss curves for all experiments. The transparent lines and
the bold line denote the actual plot and the smooth plot. The vertical line in 88 shot denotes the iteration at which model
weights are collected, which are 300 and 550 for without and with data augmentation, respectively.

which are specific to the dataset, i.e, are fine-tuned.

Figure 9 represents the validation plot and loss plot for
experiments 1, 2, 3, 5, 10 (on seed 0 as an example) and
88 shots with and without data augmentation. We can see
that the validation curve rises sharply from the beginning in
experiments 1, 2, 3, 5, and 10 for both cases (with and without
data augmentation) and, the loss curve decreases smoothly.
This indicates that the model is overfitting on the validation
set. On the contrary, the validation curve for 88 shots with and
without data augmentation continues to decrease till 300 and
550 respectively. It is only after 300 iterations, the validation
curve starts to increase for without augmentation. With data
augmentation, the validation curve becomes constant after 550
iterations, indicating it is limiting overfitting. This shows that
the model can generalize to the unseen image if the complete
dataset is given. Thus, model weights are collected to verify
this. However, the model with data augmentation is also not
robust, which can be seen in figure 14. The first row of the
figure represents the model prediction on classes other than
plant class. Here, 25 images were given for prediction of
which, the model falsely labeled 23 images with Japanese
Knotweed. The second row represents the model prediction on
other plant classes with 13 images, of which 12 images were
labeled as Japanese Knotweed. Finally, the last row has images
of Japanese Knotweed. Here, 11 images with 37 instances are
used, for which mAP50 was 35.17 with data augmentation.
But, the prediction has a high false positive. This can also be
verified from the figure, where trees and other plants in the
image are labeled as Japanese Knotweed. The model gives

biased prediction because the model has only been trained
on one class and weights are optimized to minimize loss for
Japanese Knotweed, so it doesn’t know how to distinguish
positive and negative samples.

Therefore, we can conclude Faster RCNN model overfits
for experiment 1, 2, 3, 5, 10 and for experiment 88 it doesn’t
to give a robust prediction in detecting Japanese Knotweed
when trained on one class. It has high false positives, where all
other classes are labelled as Japanese Knotweed. This answers
research question ‘2a’ relating to Faster RCNN performance.

B. DeFRCN

This research utilizes and extends the implementation of
DeFRCN [41]. The DeFRCN repository inherits from FsDet
which is also based on the detectron2 framework. As men-
tioned above, DeFRCN extends Faster RCNN with GDL and
PCB. DeFRCN has the same ResNet-101 as the backbone,
with Res5 and C4 as ROI Head. However, unlike Faster RCNN
where fine-tuning is performed only once, a two-step fine-
tuning procedure with the network being initialized with pre-
trained ImageNet weights is performed. First, it is fine-tuned
on an abundant base class comprising 15 categories from
the PASCAL VOC dataset. Then, it is again fine-tuned with
the Japanese Knotweed novel class. Similar to Faster RCNN,
the fine-tuning has been performed for stages 4 and 5 of
ResNet101.

The data augmentation procedure also remains the same as
discussed under Faster RCNN. Figure 10 shows a few exam-
ples, particularly rotation, and random flip. Furthermore, the
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parameter value which contributes to the unnatural augmented
images is discarded. Additionally, for normalization, ImageNet
pixel means and the standard deviation are considered which is
again similar to Faster RNN because it provided better mAP50

on the validation set.

The following modifications & extensions have been made
to the existing model:

1) Random seed generator for creating 30 seeds, each with
1, 2, 3, 5, and 10 random non-repeated images (shots).
The script uses one object instance from each image.
For 88 shots, all instances have been used.

2) A data loader for seeds along with its metadata.
3) A custom trainer with a validation hook to perform

additional evaluation and logging for the validation set.
4) A custom datamapper for online data augmentation with

manual seed. This ensures the same augmentation is
applied across multiple experiments.

5) A visualization script for the dataset.
6) A configuration file for considering custom 88 shots.
7) Various modifications have been performed to adapt

the DeFRCN for Japanese Knotweed detection such as
multiple image instance usage for 88 shot, custom test
set registration etc.

The details and relevant script snippets for each of the steps
have been provided in the appendix A.

The network training procedure of DeFRCN differs from the
meta-learning method, where episodic training is used (PCB
is trained based on meta-learning, but DeFRCN is using it
only during inference). In this case, it generally uses the TFA
approach [42] for training and obtaining the results from the
model. It creates multiple support sets (30 seeds) for each
experiment, and an average mAP50 on the test set is obtained
from it. For instance, for 1 shot, the model is trained on 1
random different image 30 times. This gives 30 networks.
Then, the mAP50 on test set for 1 shot is based on the mean
average of 30 such networks. The learning rate is, 1xe−4 for all
the networks under same and across experiments. The iteration
for the 1, 2, 3, experiment is 5000, for 5, 10 and 88 shots
are 6000. The parameters are the same for with and without
data augmentation. The batch size is 2 for all experiments.
Additionally, the network is trained on varying image sizes
ranging from 480 to 800 resolution with 32 pixels.

Shots Without Augmentation With Augmentation

1 3.22 5.33
2 5.43 4.83
3 5.41 6.45
5 8.03 7.31
10 10.10 8.30
88 21.9 27.1

TABLE II: mAP50
test for 1, 2, 3, 5, 10 and 88 shots.

Table II summarize the mAP50 on test set obtained from
all the experiments over 30 seeds with and without data
augmentation. There is only one seed for 88 shots, as the

complete train set is used. It can be observed from the table
that as the number of shots increases, the few-shot model gives
better performance. Furthermore, data augmentation should
be used judiciously with an extreme shortage of training
examples, as indicated by experiments 2, 5 and 10, where
a decrease in performance was observed, and experiments 1
and 3, where an increase was observed. However, when the
dataset is increased to 88 shots, a significant performance
improvement of 5.21 mAP50 is achieved. Moreover. DeFRCN
avoids overfitting, which can be seen from the validation plots
for seed 0 given in the appendix in figure 53, 52, 51, 50, 49.

The common setting in the few-shot model during inference
is to give support and the query image. But, DeFRCN doesn’t
explicitly require support images, and instead, uses the train
image given to the detector (Faster RCNN) for PCB. For
instance, 1 shot only uses 1 support image. Thus, a study was
conducted to understand the model performance by increasing
the size of the support set. By exposing PCB with more images
during inference, a better prototype with more generic and
diverse features of the Japanese Knotweed can be created. This
may increase the performance from PCB as the classification
score in DeFRCN is a weighted sum of classification score
from detector (Faster RCNN) and PCB as mentioned in the
below equation:

C = 0.5 · Cdetector + 0.5 · Cpcb (5)

The table III summarizes the results obtained from seed 0
for different experiments. We can observe that there is a sharp
increase in the mAP50. However, the overall performance of
the model declined further when it examined over 30 seeds.
This can be verified from table IV.

Shots Limited Support Set Large Support Set

1 2.32 4.54
2 2.76 13.63
3 5.54 15.90
5 9.85 20.10
10 13.05 23.47

TABLE III: mAP50
test on seed 0 for 1, 2, 3, 5, 10 with limited

and large support set of 185 instances of Japanese Knotweed
during inference with data augmentation.

Shots Limited Support Set Large Support Set

1 5.33 3.31
2 4.83 3.94
3 6.45 5.44
5 7.31 7.89
10 8.30 6.25

TABLE IV: mAP50
test for 1, 2, 3, 5, 10 with limited and large

support set of 30 seeds.

Figure 18 visualizes the prediction by 1, 2, 3, 5, and 10
shot models from seed 0 as an example. The weights of
data augmentation with a large support set were selected as
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Fig. 10: The figure depicts a few of the data augmentation applied to the image. The first image represents rotation. The second
& third image shows horizontal flip. Finally, the fourth image shows a discarded, unrealistic image of Japanese Knotweed.

performance improvement was observed on seed 0. The first
row represents ground truth for all the images. It can be
seen from the last row which represents 10 shot prediction,
with increasing number of shots more instances of Japanese
Knotweed are detected. Also, the model tries to reduce false
positive (3rd row, 3rd image). However, there are missing
instances of Japanese Knotweed which can be seen from 6th
row, 1st image when compare to ground truth. Additionally,
with 5 shot in row 5, for the image 3, there is no prediction
when compared to 3 shot and 10 shot. It can also be seen when
less image are available for training (1 shot) model is not able
to detect instances of Japanese Knotweed (row2 image 1 and
3).

Figure 15 visualizes the prediction by the 88-shot model.
The weights from the data augmentation model have been
used. The first row of the figure represents the model pre-
diction on classes other than plant class. Here, 25 images
were used for testing, of which, the model falsely labeled 5
images with Japanese Knotweed. The second row represents
the model prediction on other plant classes with 13 images, of
which 7 images were labeled as Japanese Knotweed. Finally,
the last row has images of Japanese Knotweed. Here, 11
images with 37 instances are used, for which mAP50 was
27.1. In the last row, image 1, although the model correctly
identifies it as Japanese knotweed, there is a localization error
with 2 bounding box instead of one. In image 2, there is a
localization error and missed detection. Image 3 and image 4,
it correctly detects Japanese knotweed. This can be verified
with the ground truth image shown in the figure 17.

There is a vast improvement in detection compared to
Faster RCNN because of fewer false positives, which makes
DeFRCN more robust. This answers research question ‘2b’
concerning DeFRCN performance, as the finding above sug-
gested it is more robust compared to Faster RCNN and can
detect Japanese Knotweed in a limited dataset. Additionally, a
study with data augmentation suggested that a mAP50 increase
of 19.1% in the case of 88 shots, while it should be used
cautiously when the number of images is extremely limited.

Furthermore, to gain a deeper understanding of the DeFRCN
architecture, an ablation, and resolution study was conducted.
This study aimed to analyze the impact of GDL and PCB
on the performance of the architecture and to investigate how
changes in image resolution affect the accuracy of the model.

1) Ablation study: Following the DeFRCN research paper,
this research also uses 10 shots but on seed 0 for the ablation
study. Unlike the research paper, a large support set during
inference has been used, as an increase in performance was
observed for seed 0. The impact of GDL and PCB in the Faster
RCNN architecture for detecting the Japanese Knotweed novel
class can be seen from the table V. It can be seen that PCB
gives a major boost in increasing the performance of DeFRCN.
When combined with GDL, it further enhances it.

FRCN GDL-N PCB JK (WA) JK (NA)

✓ - -
✓ ✓ 8.03 5.96
✓ ✓ 18.18 13.5
✓ ✓ ✓ 23.04 18.18

TABLE V: mAP50
test of different components in DeFRCN

architecture with data augmentation (WA) and without data
augmentation(NA) for 10 shots seed 0 and large support set.

2) Resolution vs mAP50
test: For studying resolution im-

pact in mAP50, seed 0 to seed 29 for 10 shot with an
interval of 5 seeds are selected. At each image resolution(
480x480, 608x608, 736x736, 864x864, 992x992, 1120x1120,
1248x1248) corresponding mAP50 was recorded at each seed
and a box plot was constructed for 10 shots. Thus, for instance,
at 480x480, mAP50 from seeds 0, 4, 9, 14, 19, 24, and 29 are
used. The findings are presented in figure 11. We can see
that at higher resolutions (992, 1120, and 1248), the range is
short, indicating a consistent performance at different seeds
which indicate less variance. For instance, at resolution 480
at different seeds, we can observe drastic changes in mAP50

indicating high variance, which is not the case with higher
resolution. Additionally, the Inter Quartile Range (IQR) is
also short in higher resolution, indicating out of 7 seeds at
least 50% of the seeds will have a similar mAP50. The lower
resolution has a longer IQR, indicating a large difference
in mAP50 of 50% seeds. Moreover, a performance gain is
observed with higher resolution.

C. YOLOv7

The PyTorch implementation of the YOLOv7 has been used
in this research [43]. As mentioned earlier, YOLOv7 has six
different variants. This research uses the standard YOLOv7
model, which provides an AP50

test of 69.7% for benchmarking.
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Fig. 11: mAP50 vs resolution box plot using 10 shot with seed
interval of 5 with data augmentation and limited support set.
The resolution has a step of 128 pixels ranging from 480 to
1248.

The annotations were first updated from Pascal VOC XML
format (used by Faster RCNN and DeFRCN) to YOLO text
file format (Object Class, X Center, Y Center, Width, Height).
This is because CVAT doesn’t support exporting to YOLOv7
format. Further, the standard image size of 640x640 resolution
has been used followed by normalizing the image and bound-
ing box. The default hyperparameter file was modified with
a learning rate (lr0) of 0.001 and rotation between 0 & 45.
The learning rate was selected based on performance on the
validation set (box loss at further lower learning rate started
to increase). Data augmentation-specific parameters such as
HSV (Hue adds variations of color in the image, Saturation,
and Value for altering lighting conditions), scale, translate, and
left-right flip remained the same. YOLOv7 provides mosaic
augmentation (takes four images and forms a composite) for
learning different contextual information around an object,
which improves its generalizing ability of the model. Thus,
it is also used along with other data augmentation [44].

A standard transfer learning approach, with the pre-trained
YOLOv7 weights on the coco dataset, was used to initialize
the model. The half of the backbone (25 layers) is fine-tuned
with batch size 8 and epoch 500 for all the experiments.

To understand the model performance, we first need to
examine loss computation in YOLOv7 as unlike Faster RCNN
which gives a plot for total loss, YOLOv7 gives individual
plots:

TL = w1×Obj. Loss+w2×Class. Loss+w3×Box Loss (6)

Total loss (TL) is calculated as a weighted sum between
objectness loss, classification loss, and box loss. w1, w2, and
w3 are user-defined hyperparameters (default parameters in

our context with the highest weightage to objectness loss with
0.7). Intuitively, objectness loss measures the accuracy of the
model in detecting if an object is present in the predicted
bounding box. Classification loss gives the accuracy of model
classification of an object inside the predicted bounding box,
and box loss measures the inaccuracies in localizing the
predicted bounding box.

Technically, the objectness loss is calculated in 4 steps: (a)
The YOLO network predicts the probability for each anchor
box, depicting if it contains an object. This is called the
objectness score. (b) During network training, each anchor
box is matched with a ground truth bounding box to obtain
a matched anchor box with the highest Complete IoU (CIoU)
score. The CIoU score between the matched anchor box and
ground truth bounding box is then used as the ground truth.
CIoU aims at measuring the distance between the center point
of the predicted and ground truth bounding box, along with
their aspect ratios. (c) The predicted objectness probability is
compared to the ground truth CIoU value using the Binary
Cross Entropy Loss (BCEL). (d) To obtain the objectness loss
score, the BCEL value is multiplied by a hyperparameter w1.
This hyperparameter controls the weight of the objectness loss
in the overall loss function.

Box Loss is calculated as w2 x mean(1 - CIoU) between
all predefined anchor boxes and their matched target (adjusted
anchor box while network training).

Classification loss is computed as the BCE between the
predicted class probabilities and the corresponding one-hot en-
coded vector (transform categorical data to numerical vectors).
The BCE value is then multiplied by a hyperparameter w3 to
give the final classification score.

Thus, the most important loss is objectness loss, as it
prioritizes the presence of an object in the predicted bounding
box based on which localization will be performed.

The figure13 depicts train & validation plot for all the
experiments. With 1 shot (purple), we can observe that obj
val loss vis-a-vis obj train loss continues to decrease. Thus,
the model weight is collected at iteration 499 and mAP50

was recorded to be less than 0. For experiments 2 (orange),
3 (black), and 5 (pink) the weights are collected at 474,
299, 374, and mAP50 was recorded to be less than 0 again.
For 10 shots (cyan), weight is collected at 74, as after this
iteration the objectness loss increases, indicating overfitting.
The mAP50 was recorded to be 2.3. Finally, for 88 shots, the
object loss increases from the beginning and then continues
to decrease till epoch 94 after which it increases again while
its corresponding train object loss keeps on decreasing. This
could be because during the initial phase of training, the model
is learning to recognize to generalize patterns from the data.
As a result, the validation loss can sometimes increase because
the model is overfitting the training data. Once the model has
learned the patterns, the validation loss begins to decrease
again. Thus, the weight is collected around 94 epoch and
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mAP50 of 32.60 was recorded.

Fig. 12: mAP50 for Faster RCNN, DeFRCN and YOLOv7 ob-
ject detection models under various experiments. NR indicates
not robust.

Figure 16 shows prediction from the YOLOv7 model. The
first row of the figure represents the model prediction on
classes other than plant class. Here, 25 images were used for
prediction of which, the model correctly predicts none of the
images as Japanese Knotweed. The second row represents the
model prediction on other plant classes with 13 images, of
which 7 images were labeled as Japanese Knotweed. Finally,
the last row has images of Japanese Knotweed. Here, 11
images with 37 instances are used, for which mAP50 was
32.60 with data augmentation. In the last row, the model is
correctly able to predict Japanese Knotweed as shown in the
image 1, 2 and 4. However, the model gives wrong prediction
in the 3rd image, where the tree and grass are also identified
as Japanese Knotweed compare to the ground truth shown in
17.

Furthermore, it was found that image augmentation plays a
major role in defining the performance of the YOLO model.
Without augmentation, the model mAP50 is 19.9.

Thus, we can conclude that YOLOv7 has no false positives
compared to Faster RCNN & DeFRCN in other classes.
Moreover, it has the same number of false positives as that
of DeFRCN on other plant classes, which is 7. Although it
mAP50 is nearly zero for the experiments 1, 2, 3, 5, it offers the
highest mAP50 with complete dataset. This answers research
question ‘2c’ concerning the performance of state-of-art object
detection methods.

VI. DISCUSSION

Figure 12 shows the mean average precision (mAP50)
obtained from three object detection models, namely Faster
RCNN, DeFRCN, and YOLOv7 for detecting Japanese
Knotweed under limited data scenarios. The results of the
experiments show that when trained on a few images (1, 2, 3,

5, and 10 shots), the Faster RCNN model completely overfits.
DeFRCN provides 5.33, 4.83, 6.45, 7.31, and 8.30 mAP50.
We also observed that as the number of shots increases, more
instances of Japanese Knotweed are detected, indicating a rise
in true positives. On the contrary, YOLOv7 fails to generate
predictions, resulting in nearly 0 mAP50 for 1, 2, 3, and 5
shots. For 10 shots 2.3 mAP50 was observed.

When the complete dataset is used, the Faster RCNN model
doesn’t overfit but has poor generalization ability, resulting in
extremely high false positives. In contrast, the state-of-the-art
YOLOv7 model achieves the highest mAP50 of 32.6, even
higher than DeFRCN’s which gives 27.1. This demonstrates
that YOLOv7 can achieve good results even with a low dataset.

Data augmentation plays a crucial role in object detection,
and its impact was observed in all three models. For the
Faster RCNN model trained on the complete dataset, data
augmentation helped reduce the problem of overfitting. In the
case of the DeFRCN model, the response to data augmentation
was mixed. For instance, there was an increase in performance
for shot 1, 3, and 10, but a decrease for shot 2 and 5 indicating
data augmentation should be used in caution with limited
datasets. However, when trained on the complete dataset, the
DeFRCN model showed a sharp rise of 19.18% in mAP50.

We also analyzed the impact of the support set and res-
olution concerning DeFRCN. With higher resolution, it was
found that model performance increased with a decrease in
variance. The support set experiment suggested that under a
low dataset of 1, 2, 3, 5, and 10, increasing the support set in
PCB doesn’t necessarily increase the performance.

VII. CONCLUSION & FUTURE SCOPE

A. Conclusion

The main research question addressed in this study focused
on achieving object detection for Japanese Knotweed using a
limited annotated dataset while considering various conditions,
such as distance, lighting, illumination, angles, resolution,
and plant phenological cycle. To answer this question, in
the DeFRCN implementation, images with diverse conditions
(seeds) and conducted experiments with varying numbers of
images (shots) are employed. The formation of seed is random,
aimed to simulate real-world scenarios. Specifically, the study
formulated experiments with 1, 2, 3, 5, 10 shots with 30 seeds,
as well as a complete dataset experiment.

The experiments with 1, 2, 3, 5, and 10 shots demonstrated
that the performance improvement of the DeFRCN model
was directly proportional to the number of images used. The
experiments involving multiple seeds provided insights into
the minimum performance achievable by the DeFRCN model.
Furthermore, the findings indicated that by carefully selecting
appropriate data augmentation techniques and leveraging a
large support set, the model’s performance could be further
increased. Data augmentation particularly showed a significant

14



(a) Obj train loss (1,2,3,5,10) (b) Box train loss (1,2,3,5,10) (c) Obj val loss (1,2,3,5,10) (d) Box val loss (1,2,3,5,10)

(e) Obj train loss (f) Box train loss (g) Obj val loss (h) Box val loss

Fig. 13: The figure depicts train & validation plot for 1(purple), 2(orange), 3(black), 5(pink), 10(cyan) on seed 0 and 88 shots
(green). The transparent lines and the bold line denote the actual plot and the smooth plot. The vertical line in 88 shot denotes
the epoch at which models weights are collected.

increase of 19.1% when applied to the complete dataset
experiment.

A comparative analysis was conducted between the De-
FRCN model and a generic object detection model trained
on a complete dataset. The results highlighted that the Faster
RCNN model, when trained on a single class and exposed to
other classes, struggled to distinguish between classes, leading
to a high number of false positives. In contrast, the YOLOv7
model avoided confusion and provided accurate predictions,
giving the highest performance of mAP50 among the models.
The DeFRCN model, by using PCB and aggregating the
classification score between PCB and the detector, successfully
reduced false positive detections, contributing to its improved
performance.

B. Future Scope

1) Study on the few-shot model deployment can be per-
formed. Currently, it is challenging as detectron2 no
longer provides ONNX conversion support directly. This
is explained in brief in the Appendix.

2) Currently, the research study relies on the GDL’s ability
to perform a cross-domain transfer of knowledge from
a base class. The study can be conducted to increase
the knowledge transfer from a similar large base class
(Plant class) which may have the potential to improve
the accuracy further.
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Fig. 14: The figure shows the robustness of 88 shot model to other classes, different plant species and its generalizing ability
on the test set comprising Japanese Knotweed using Faster RCNN with data augmentation.

Fig. 15: The figure shows how the 88 shot model with data augmentation generalizes to other classes, different plant species
and its predictions on the test set comprising Japanese Knotweed using DeFRCN model.
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Fig. 16: The figure shows how the model generalizes to other classes, different plant species and its predictions on the test set
comprising Japanese Knotweed using YOLOv7 model

Fig. 17: The figure shows the ground truth for the Japanese Knotweed class for reference comparison with Faster RCNN,
DeFRCN, and YOLOv7
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Fig. 18: The figure shows 1, 2, 3, 5, 10 shot model with data augmentation and large support set prediction on the test set
comprising the Japanese Knotweed using DeFRCN model on seed 0 as an example. The first row represents ground truth for
reference.
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APPENDIX

This section provides results, additional information for
increasing the understandability of the research paper, and
other experiments and few code fragments.

A. Few-shot object detection algorithm: Decoupled Faster
RCNN (DeFRCN)

1) Random Seed Generator: Single & Multiple Instance:
The DeFRCN repository lacks scripts for organizing the
dataset in multiple seeds with experiments 1, 2, 3, 5, 10 and
88 shots. Thus, the script was created. In total, there are 30
seeds. An example of seed 0 with all experiments has been
presented in the figure 19.

Fig. 19: An example of seed 0 with multiple experiments
containing 1, 2, 3, 5, 10 random images

For each experiment, a respective number of instance has
been used to train the model, as suggested by the DeFRCN
research paper. For instance, figure 23 gives illustrate seed
0 and 10 shot as an example case which uses 10 instances.
Furthermore, for 88 shots complete, all the instance of 88
image has been used.

Fig. 20: An example of 10 shot seed0 experiment with 10
instances

2) Dataset Loader: Detectron2 dataset loader is build on
top of PyTorch ’DataLoader’ class that returns a list of
images in the dataset and their corresponding annotation. For
creating a dataset loader, two approaches were explored and
implemented:

1) Creating a custom data loader for the Japanese
Knotweed

2) Using the existing implementation by extending it to
include Japanese Knotweed

One advantage of extending the implementation is the
ability to use the base class for generalized few-shot object
detection (GFSOD) on both the base and novel classes for
multi-class object detection. This makes organizing the dataset
hassle-free, as we need to follow the same directory hierarchy
as mentioned by the DeFRCN. This method was used in this

research. The custom data loader, was still implemented to
understand the adaptability of the existing repository.

Fig. 21: A custom dataset loader for Japanese Knotweed

Fig. 22: Registering Metadata and Dataset under Detectron2

3) Validation Hook: DeFRCN directory doesn’t have val-
idation logging. Thus, a validation hook script was created
to log validation loss. The figure 48 describe the logging for
the validation loss for 10 shot seed 0 as an example. The
figure 49 shows the validation loss curve of 10 shot with data
augmentation (pink) and without data augmentation (purple).

4) A custom datamapper: A custom datamapper for online
data augmentation with manual seed* (not to be confused with
experimental seed). This manual seed* ensures the same aug-
mentation is applied across multiple experiments and across
seeds. Figure 24 shows the code snippet for the same.

5) Visualization script: The DeFRCN repository doesn’t
have a script for visualization of the prediction. It enables
to examine the model performance, helps in identifying and
diagnosing specific issues with the model. It is possible, for
instance, to intuitively identify cases in which the model makes
false positives or false negative. This helps in refining and
improving the model performance. Thus, a visualization script
is made for training and prediction.

6) A configuration file for custom 88 shots: A configuration
file is created based on the implementation of the 10 shot. It
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Fig. 23: Creating multiple dataset seeds for 1, 2, 3, 5, 10
experiments

Fig. 24: Custom datamapper with manual seed and online data
augmentation

is essentially a YAML file with different hyperparameter such
as learning rate, iteration, decoupling coefficient for RPN and
RCNN, freezing layers etc.

7) Multi-Class: For performing a multi-class object detec-
tion, a GFSOD approach was used. GFSOD approach gives
performance on both novel class and base class. An example
of multi-class using 10 shot on seed 0 with data augmentation
is shown in the below 25.

Fig. 25: An example of multi-class 10 shot on seed 0 and data
augmentation on test set

8) Overfitting: The DeFRCN avoids overfitting on a small
dataset. This can be verified from the figure 53, 52, 51, 50,
49, 54. Under the same set of learning rate 1xe−4, the Faster
RCNN model still overfits.

B. Deployment

For deployment, detectron2 offers three methods which are
tracing, scripting and caffe tracing. Caffe tracing supports
ONNX format. It allows interoperability between different ma-
chine learning frameworks and deployment in hardware plat-
form. If the hardware platform doesn’t have ONNX support,

necessary conversion needs to be performed. For instance,
if the hardware choice is TinyML by Arduino, the ONNX
formatted model needs to be converted to TensorFlow lite.
Thus, to deploy the model from Detectron2 to TensorFlow
lite. This pipeline needs to be follow: Detectron2 → ONNX
→ TensorFlow→ TensorFlow lite

However, detectron2 has depreciated the support for
caffe2 tracing. Thus, the other two alternatives needs to be
followed. The pipeline for which is: Detectron2 → PyTorch
→ ONNX → TensorFlow→ TensorFlow lite

However, these options are only available for the standard
model of the detectron2 model zoo as shown in the figure 26.
DeFRCN which has made architectural changes to the standard
model with GDL and PCB are not recognizable as shown in
27. Thus, it requires development of the novel deployment
script dedicated to DeFRCN.

Fig. 26: Successful conversion of model deployment using
Faster RCNN model

Fig. 27: Failed conversion of model deployment using De-
FRCN model

1) Results: For results concerning multiple seed evaluation,
only mean (µ) results over 30 seeds are shown. An example
of how the 30 seed evaluation results generated for 1 shot is
shown in the figure 28.

C. Faster RCNN
For reducing the false positive, background images (11

images consisting of trees and grass which indicate the natural
environment of Japanese Knotweed beside the road) were
additionally added with 88 shot experiment. However, no
performance gain was observed. The code snippet is shown
in the figure 47.

D. YOLOv7
For deciding the layers to freeze, three experiments were

carried out: 1) Freezing all the layers (50) of the network, 2)
Freezing 50% of layers of the network, and 3) No freezing
of the network. The corresponding mAP50 on the validation
set was observed. Experiments 1 and 3 reduced the mAP50,
therefore, Exp2 was selected to conduct the research.
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Fig. 28: An example of 1 shot with 30 seeds and data
augmentation on test set

Fig. 29: An aggregated example of 1, 2, 3, 5 on 30 seeds with
data augmentation

Fig. 30: An aggregated example of 1, 2, 3, 5 on 30 seeds
without data augmentation

Fig. 31: Seed 0 with data augmentation

Fig. 32: 88 shot without data augmentation

Fig. 33: Seed 0 without data augmentation

Fig. 34: An example of 1 shot on seed 0 with large support
set
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Fig. 35: An example of 2 shot on seed 0 with large support
set

Fig. 36: An example of 3 shot on seed 0 with large support
set

Fig. 37: An example of 5 shot on seed 0 with large support
set

Fig. 38: An example of 10 shot on seed 0 with large support
set

Fig. 39: An example of 10 on seed 0 with data augmentation
and only GDL

Fig. 40: An example of 10 on seed 0 with data augmentation
and only PCB

Fig. 41: An example of 10 on seed 0 without data augmenta-
tion and only GD

Fig. 42: An example of 10 on seed 0 without data augmenta-
tion and only PCB

Fig. 43: Faster RCNN mAP50 on 88 shot with data augmen-
tation

Fig. 44: Faster RCNN mAP50 on 88 shot without data aug-
mentation

Fig. 45: mAP50 on 88 without data augmentation with
YOLOv7 model

Fig. 46: mAP50 on 88 shot with data augmentation with
YOLOv7 model

Fig. 47: Background code fragment in Faster RCNN model
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Fig. 48: Validation loss logging for 10 shot seed 0 by DeFRCN
model

Fig. 49: Validation loss curve of 10 shot on seed 0 with
learning rate of 1xe−4 by DeFRCN model. The pink line
is with data augmentation and the purple is without data
augmentation.

Fig. 50: Validation loss curve of 5 shot on seed 0 with learning
rate of 1xe−4 by DeFRCN model. The black line is with data
augmentation and the yellow is without data augmentation.
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Fig. 51: Validation loss curve of 3 shot on seed 0 with learning
rate of 1xe−4 by DeFRCN model. The pink line is with data
augmentation and the green is without data augmentation.

Fig. 52: Validation loss curve of 2 shot on seed 0 with learning
rate of 1xe−4 by DeFRCN model. The blue line is with data
augmentation and the yellow is without data augmentation.
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Fig. 53: Validation loss curve of 1 shot on seed 0 with learning
rate of 1xe−4 by DeFRCN model. The black line is with data
augmentation and the blue is without data augmentation.

Fig. 54: Validation loss curve of 88 shot on seed 0 with
learning rate of 1xe−4
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