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Estimation of Joint Stiffness via a
Musculoskeletal Model Driven by Motor Neuron

Twitch Properties
SAINIVEDHITHA ARUNAJATESAN

University of Twente, Enschede, The Netherlands

Abstract—Joint stiffness estimation involves joint per-
turbation or torque-based experiments in conjunction with
system identification techniques. The modeling techniques
recently used to estimate joint stiffness include bipo-
lar ElectroMyoGraphy (EMG) data to drive the muscu-
loskeletal model. These models do not provide detailed
information on individual Alpha Motor Neuron (α-MN)
properties which is essential to improve the personalization
of the Neuro Musculo Skeletal (NMS) model. The use of
bipolar electrodes limits the resolution to extract the α-MN
properties. In this study, the NMS models were driven by
the activation dynamics of EMG envelopes and motor unit
activation dynamics, respectively. The normalized EMG
envelopes were regarded as the activation profiles of EMG
envelopes. For the activation dynamics of motor units, the
Motor Units (MUs) were decomposed from uni-polar HD-
EMG data using a blind source separation technique, and
the motor unit distributions were sampled to formulate
the activation profiles. The experimental torque from the
Achilles and stiffness estimation from System Identification
(SI) technique were used as a reference to validate the
results of the models at the torque and stiffness level. The
torque estimations by both models were better than the
stiffness estimations. At the torque level, the model driven
by motor units produced improved results; at the stiffness
level, the model driven by EMG envelopes produced better
results. Overall, this method can be used to predict the
torque but enhancements should be made to increase the
stiffness estimation results. Further, the entire study was
performed under isometric conditions. The inclusion of
unique properties of isometric conditions such as Short
Range Stiffness (SRS) in the future could improve the
results.

I. INTRODUCTION

Humans move as a result of muscles operating on
skeletal joints to provide mechanical output from afferent
and efferent brain activity. Such outputs are then trans-
lated into the exchange of interaction forces with the
environment. Humans are adept at physically interacting
with the surrounding across a wide range of topogra-
phies and automatically adapting to their demands. This

effective adaptation process usually requires little to no
conscious thought. It is primarily controlled at the neu-
romuscular level by constant viscoelastic characteristic
modification in various Musculo Tendon Units (MTUs)
[1]. The concept of MTU viscoelasticity at the joint level
can be conveyed through the use of joint impedance.
Joint impedance is a measure of the resistance to motion
of a joint in the human body. Impedance has three com-
ponents: inertial contributions, damping, and stiffness.
Joint stiffness is responsible for storing and releasing
energy based on the position [2]. The method to measure
the joint stiffness, invivo, is difficult during movement.

The strategies that may be used to quantify the joint
stiffness invivo are: Ultrasound Elastography, System
Identification, and Musculoskeletal modeling.

Ultrasound Elastography uses ultrasound to measure
the mechanical properties and stiffness of the tissue.
This can be performed either by applying stress or shear
waves to the tissues and measuring the tissue deforma-
tion. This technique provides a less-quantitative tissue
stiffness measurement compared to other techniques,
making it harder to use for joint stiffness estimation [3].
So, a quantitative measurement is required to estimate
joint stiffness.

System identification is a quantitative and comprehen-
sive assessment of joint stiffness estimation. It calculates
the values of dynamic movement parameters such as
mass, inertia, damping, stiffness, and time constants in
a particular model structure using input and output sig-
nals measured from the system. The stiffness estimation
during movement is a time-varying property and there
are three kinds of time-varying system identification
techniques used: ensemble, Short Data Segment (SDS),
and Basis Impulse Response Function (BIRF) [4]. Even
though BIRF and SDS were used in studies and produced
fewer error rates, SDS has access to limited frequency
and cannot capture complex joint dynamics and BIRF
has limited applicability as it makes many assumptions
that usually are not valid in experimental setups [5]. On
the other hand ensemble-averaging techniques, which
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estimate time-varying variables using a large set of
input/output realizations with the same underlying time-
varying patterns, are actively used to estimate joint
stiffness [6], [5]. System identification typically relies
on measuring the motion of a joint and the forces
applied to it, without taking into account the underlying
musculoskeletal anatomy and physiology which is one of
the main disadvantages. As a result, it may not provide
a complete picture of how joint stiffness is influenced by
muscle activation and other factors. On the other hand,
musculoskeletal modeling can provide a more detailed
and comprehensive representation of the musculoskeletal
system, including the underlying anatomy and physiol-
ogy of the joints and muscles. This can lead to more
accurate and realistic estimates of joint stiffness.

Muscles with origin and insertion locations on a skele-
ton typically made up of anatomically accurate bone ge-
ometry are represented in musculoskeletal models. To ac-
tivate multiple MUs in a physiologically accurate model
of the human musculoskeletal system, EMG recordings
obtained from major muscle groups are utilized [7]. Joint
stiffness during dynamic activity may be estimated using
EMG-driven musculoskeletal modeling without the need
to disturb the joint [1].

Through EMG-driven musculoskeletal modeling, Cop
et al. created a unique ”perturbation-free” stiffness es-
timation approach that was first tested against system
identification methods [8], [9]. Model-based estimations
of joint stiffness were comparable to methods of sys-
tem identification. When a muscle is activated, motor
units generate force, which causes a change in muscle
length and stiffness. Therefore, a model that accurately
represents the stiffness of a joint needs to consider the
properties of the motor units responsible for generating
the forces that affect joint stiffness. EMG-driven mus-
culoskeletal models estimate overall muscle activation
based on surface EMG signals [9]. The aforementioned
model did not provide information on individual α-MN
properties that can simulate the muscle activation in
greater detail. By using only the EMG signals, the results
are prone to more errors as the EMG signals might
be affected by factors such as electrode placement and
skin impedance. The addition of motor unit properties
to a model eliminates this disadvantage. Further, the
decomposition of motor units can extract the motor unit
firing capacity at different frequencies [10], [11].

Each muscle is made up of several motor units that
interact with one another to govern both the coarse and
fine movements of the muscle. A lower motor neuron
and the fibers of skeletal muscle it innervates make up
a motor unit [12]. Muscle control may be significantly
impacted by changes in motor unit structure or function

brought on by aging or illness [13]. It has been shown
that the ratio of rapid to slow motor units within a muscle
affects the overall twitch properties of that muscle [14].
The fast and slow motor units are classified based on
the recruitment threshold, the force level achieved at the
instance at which the first firing of the motor unit occurs.
The slow motor units recruit earlier, meaning that they
have a lower threshold, and vice versa in fast motor units.

Our inadequate knowledge of the connection be-
tween the neural and mechanical levels of human
movement currently impedes the development of neuro-
prostheses. Because human motor function varies greatly
between individuals and motor activities, current neuro-
rehabilitation systems work in an open-loop system
and rely on evaluation. This prevents people who have
suffered neurological damage from fully regaining their
motor skills [15]. The non-invasive diagnosis and char-
acterization of abnormal neurological patterns are made
possible by access to motor neuron information [16].

This prompts further research into how spinal motor
circuits react to mechanical or electrical inputs. Through
signal-driven neuro-musculoskeletal models, Hernandez
et al. [15] sought to connect such invivo methods with
the mechanical output. They presented several methods
for collecting motor units invivo and connecting them
to the mechanisms that cause a force to be generated
during human movement. Their approach produced re-
liable activation patterns that were very comparable to
reference torques [15]. The ability to decompose several
MUs from high density-EMG [17] opens new avenues to
extend current generalized neuromusculoskeletal models
into MU-specific formulations.

This research is necessary because the knowledge gap
between the neural and muscular systems was bridged
by the ability to estimate joint stiffness at any time
without the need to perform joint perturbations [8].
However, the EMG-driven musculoskeletal models did
not provide detailed information on individual α-MN
properties [18]. The work on motor units for neuro-
prosthesis development led to further research of the
effect on results when the musculoskeletal models are
driven with MU-specific formulations.

The main aim of this research is to:
1) Develop a comprehensive neuromusculoskeletal

framework that combines stiffness estimation
and the identification of motoneuron properties.

2) Compare the aforementioned model to the
musculoskeletal framework driven by EMG
envelopes to witness if the model has improved
estimation of joint torque and stiffness.

3) Validate the predicted results with the exper-
imental results and the system identification
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methods in a controlled dynamic ankle stiffness
estimation experiment.

II. METHODS

A. Data Collection

The study involved six individuals who were in good
health. All experimental procedures were approved by
the Ethical Committee of the University of Twente,
and written informed consent was obtained from all
participants. The dynamic trials to apply perturbation
and measure the position and torque of the ankle joint
were conducted using the Achilles Rehabilitation Device
(MOOG, Nieuw-Vennep, The Netherlands), which is a
single-axis manipulator controlled by admittance. Figure
1 depicts the device used in the study.

Fig. 1: Electrode and marker placement on the subject
during the experiment in Achilles to determine ankle

stiffness. Figure adapted from [9]

The experimental setup was consistent with that of
a previous study [9]. Using the Achilles Rehabilitation
Device, the participants performed torque tracking tasks
and were instructed to complete a maximum voluntary
contraction trial without any equipment assistance. To
create a viscoelastic virtual environment that would resist
movement, the Achilles device was configured to repli-
cate virtual parameters of inertia, damping, and stiffness
of 0.1 kg·m2, 2.5 N·m·s·rad−1, and 4500 N·m·rad−1,
respectively. The Refa system (TMSi, Oldenzaal, The
Netherlands) was used to record EMG activity at a
frequency of 2048 Hz. The muscles under interest were
Tibialis Anterior (TA), Soleus (Sol), Gastrocnemius me-
dialis (GM), Gastrocnemius lateralis (GL), and Peroneus
longus (PL). The EMG data were collected using two
64-channel electrodes were used for TA and Sol, three
bipolar electrodes were used for GM, GL, and PL, and
a 132-channel amplifier. Channels 1-64 corresponded to
TA, 65-128 to Soleus, 129 to GM, 130 to GL, and
131 to PL. The knee angle was manually measured
and set to 30 degrees knee flexion via a hand-held
goniometer at the beginning of the experiment, and
subjects were instructed to not move the knee. The

initial ankle angle was also measured and set to 10
degrees plantar flexion with the aid of the goniometer.
The subjects were instructed to oscillate their ankle by
tracking a 0.5 Hz target sine torque around the initial
ankle angle. Each subject performed eight trials under
the same experimental conditions. The EMG data were
obtained under the condition (as shown in Figure 2):
Static where only perturbation was applied (40-80 sec).

Fig. 2: Plot of position and torque data indicating the
experimental condition

B. Data Processing

1) EMG data: Both the mono-polar and bi-polar HD-
EMG data and torque data from Achilles were processed
using MATLAB R2022a (The Mathworks Inc., Natick,
MA, USA) [19]. The EMG data were synchronized
by finding the delay between the raw EMG data and
the synchronization signal. The synchronized EMGs
were plotted against a time vector and showed drastic
fluctuations in a few channels as shown in Figure 3a
that might be due to electrode connection error. The
channels with drastic change were removed based on the
difference of amplitude between adjacent values (Figure
3b) and filtered using two different zero-phase second-
order IIR notch filters - one that filters only 50Hz signal
and another that filters harmonics up to 500Hz.

It was concluded to use a notch filter of only 50
Hz as this took less running time and both worked
quite similarly in further decomposition. The 50Hz notch
filtered signal was again filtered using a zero-phase
fourth-order Butterworth band pass filter (20-500Hz),
rectified, and the envelopes were found by utilizing a
fourth-order Butterworth low-pass filter with zero-phase
of cut-off frequency 5Hz. These processes were verified
using a periodogram.
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(a) Synchronized EMG vs time of all the channels (b) Synchronized EMG vs time after outlier removal

Fig. 3: Plot of synchronized EMG data against time vector

2) MVC data: In humans, maximal voluntary contrac-
tion (MVC) refers to the highest capacity of a muscle
or a group of muscles to generate force. The MVC data
of each subject were processed in the same way as the
EMG data and the MVC envelopes were found.

3) Activation Dynamics of EMG Envelope: The mean
of all the channels of the respective muscles of the EMG
and MVC envelopes were calculated. The mean of EMG
envelopes was normalized using the maximum value of
the mean of the MVC envelope and stored as Activation
Dynamics (AD) of EMG envelopes in the form of time
series data for joint torque and stiffness estimation.

C. Decomposing Motor Units

The bandpass filtered EMG signals were then de-
composed into constituent MU spike trains and Inner-
vation Pulse Trains (IPTs) using a convolutive blind
source separation technique called Convolution Kernel
Compensation [20]. IPTs are the whole sequences of
electrical pulses during voluntary muscle contractions.
IPT refers to the pattern of electrical impulses that
are sent from motor neurons to muscles during muscle
contraction. The properties of motor units are determined
by the number and properties of the muscle fibers they
innervate.

For every MU spike train, a vector was generated,
in which a value of 1 represented the firing (discharge)
event of the respective motor unit. The value 0 was
used in all time frames where no discharge was detected
[15]. The quality of these motor units decomposed was
assessed using the Pulse Noise Ratio (PNR) which
directly relates to the quality of the decomposition (i.e.,
the ratio between pulse energy and noise level) [21].
The PNR was expressed in dB and defined as the

logarithmic ratio between the average innervation pulse
train at the estimated time moments when a MU dis-
charged (E(t̂2(n)|t̂2(n)=1) and when it did not discharge
(E(t̂2(n)|t̂2(n)=0) [21].

PNR(t̂(n)) = 10 ∗ log10
(E(t̂2(n)|t̂2(n)=1)

(E(t̂2(n)|t̂2(n)=0)
(1)

As per the works of Gogeascoechea et al., the PNR
threshold was 20dB [22] and Holobar et al., revealed
that the majority of MUs with PNR above 30dB [21].
The Pulse to Noise Ratios was plotted in the form of a
histogram to determine the threshold. From Figure 4, the
threshold of 20dB included most of the MU spike trains,
and on visual inspection, they looked physiologically
correct.

Motor units having PNR < 20dB were discarded from
the analysis. After quality selection, the mean discharge
rates (DR) were calculated for each motor unit spike
train. Discharge Rate is defined as the mean inverse dif-
ference of the time elapsed between consecutive spikes
[15].

DR =
1

N − 1

N∑
i=2

1

ti − ti−1
(2)

The TA represents dorsiflexion while Sol, GM, GL,
and PL represents plantar-flexion [23]. The data corre-
sponding to the dorsiflexion should lie in the increasing
torque data while the plantar flexion should lie in the
decreasing torque data. This can be visualized when the
respective data is plotted against torque data as shown in
Figure 5. The MU spike trains of the Tibialis Anterior
that lie in the dorsiflexion and of the Soleus lie in
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Fig. 4: Histogram of pool of PNR values of all trials
and subjects

the plantar flexion were included in the further analysis
while the other MU spike trains were removed. All motor
units were manually analyzed and the motor unit spike
trains with several spikes greater than 500 and less than
100 was found to be non-reliant. The 100 spikes in 40
seconds mean that the motor unit had many silent periods
which was considered not useful for further analysis.
The motor units with more than 500 spikes did not
correspond to the respective flexion i.e., they had spikes
in both the flexion making it difficult to analyze, and had
PNR<20dB. So, these were removed and only motor
units with a reliable discharge pattern were considered
for the analysis.

Then the recruitment thresholds (RT) were calculated
which is the value of the AD of EMG data where the first
spikes of the MU spike trains strike. Usually, RT is found
with the help of MVC force profiles. In this situation,
the MVC data was measured using an Achilles device
which has a disadvantage in that it cannot measure very
high torque data. So, instead of the MVC force profiles,
EMG Envelopes were used. The point of recruitment on
the AD of the EMG envelope is shown in Figure 6.

Simply relying on these characteristics does not pro-
vide a definitive way to differentiate between differ-
ent types of motor units. Without additional analysis,
accurately predicting twitch properties becomes more
difficult. To address this issue, a linear combination or
eigenvector was identified that could maximize the vari-
ance of the decomposed motor unit features. To achieve
this, the mean discharge rates were first normalized to a
maximum value of 40 Hz as done by Gogeascoechea et
al., [15]. As shown in Figure 7, the dimensionality was

TABLE I: CONTRACTION TIMES OF TIBIALIS
ANTERIOR AND SOLEUS

Muscles Contraction Times
(ms)

Tibialis Anterior [24], [25] [47,134]
Soleus [26] [127.1, 185.9]

reduced by extracting the first principal component and
projecting the data onto the first eigenvector.

D. Activation Dynamics of Motor Units

The contraction times (tpeak) were calculated by lin-
early mapping from fast to slow motor neurons based
on the range specified in Table I. The peak amplitudes
(Apeak) were specified between 0.1 and 1. Apeak was
normalized using the number of MU spike trains.

The motor-unit twitch in response to an action poten-
tial in the associated motoneuron was modeled as the
Fuglevand model [27]. The Fuglevand model uses a set
of differential equations to describe the activation and
force generation of motor units. It assumes that each
motor unit has a specific activation threshold, which
determines the level of input required to activate it,
and that the motor units are recruited in order of size
based on the size principle. The contraction times, peak
amplitudes, and spike trains were substituted in the
discrete-time equation 3 of the Fuglevand model as stated
by Cisi et.al., [28].

f(n) = 2e
−T

tpeak f(n− 1)− exp(
−2T

tpeak
)f(n− 2)

+
ApeakT

2

tpeak
exp(1− T

tpeak
)e(n− 1)

(3)

where T = 1
fs , fs is the sampling frequency, tpeak is

the contraction time, Apeak is the peak amplitude, e(n)
is the value of spike train.

The activation profiles (f(n)) were mapped to the
maximum AD of EMG data for better analysis and stored
as activation dynamics of motor units in the form of time
series for joint torque and stiffness estimation.

After decomposing motor units and finding the activa-
tion profiles of those motor units, the data such as angles
and torque from the Achilles, the activation profiles of
EMG envelopes, and the activation profiles of motor
units were stored as time series for further estimation.

The schematic diagram of Subsections II-B, II-C and
II-D were described in Figure 8.
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Fig. 5: Spike Trains and Discharge Rate of Tibialis Anterior with torque data

Fig. 6: Recruitment Threshold of Tibialis Anterior

E. Stiffness Estimation using System Identification

The first and last three seconds of all the data were
removed to avoid transition effects. To estimate joint
stiffness using a system identification technique, an ex-
tended multisegment (MS) algorithm has been designed
to combine ensemble- with time-averaging to analyze
time-varying properties [5]. The torque and position sig-
nals were segmented into a certain number of sinusoidal
realizations. The total number of realizations (nr) in each
2-minute trial depended on the initial sine frequency (f)
and the time stamps ([t1 t2]).

Fig. 7: Principal Component Analysis of Tibialis
Anterior. Each point of the scatter plot represents a

measurement (discharge rate and recruitment threshold)
of a single motor unit (MU).

nr = (t2− t1) ∗ f − 2

To segment position, torque, and perturbation sig-
nals into separate realizations, torque minimum peaks
were determined. Peak-to-peak data constituted a single
realization; however, due to the variability caused by
the subject’s voluntary behavior, the length of each
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Fig. 8: Schematic Diagram of determining Activation Dynamics of EMG Envelopes and individual motor units. A
detailed explanation of the steps involved is explained in steps 1,2 of Figure 27

.

realization was different. Therefore, realizations were re-
sampled via interpolation to have an equal number of
samples, corresponding to the samples in one period at
the Achilles sampling rate (2048 Hz). The realizations
were aligned and the outliers were removed to reduce
variability among them and the ensemble mean was
removed to amplify the perturbation-induced response.
The MS algorithm computes double-sided estimates of
the impulse response function (IRF) of the system by
means of auto and cross-correlation functions. The IRFs
were integrated to estimate the stiffness. These steps
are described in detail in previous studies [29]. The
statistical validity of the MS algorithm was evaluated
using a bootstrapping approach. This involved randomly
selecting 95% of the realizations from the ensemble to
calculate the stiffness estimate, and this was repeated
35 times to find the mean of the estimated stiffness.
After manual inspection of the estimated stiffness of each
subject, it was concluded to use a moving median filter
and moving mean filter with a window of five samples.
The mean of joint stiffness estimated using the system
identification technique for all the subjects is shown in
Figure 9. These stiffness data were stored as time series
for further processing.

F. Stiffness Estimation using EMG-driven musculoskele-
tal modeling

The next step of this study was the identification
of the joint stiffness using Calibrated EMG-Informed
Neuromusculoskeletal Modelling (CEINMS). The torque
and the angle data were segmented by finding the min-
imum peaks. The data such as torque, angle, stiffness,
activation dynamics of EMG envelopes, and activation

Fig. 9: Mean of reference joint stiffness of all the
subjects identified using System Identification

dynamics of motor units were normalized to the length
of 1000 for calibration. Later, the means of all these data
were determined and stored as time series for further
analysis. These mean data were used as calibration
data while the entire 40 seconds of data stored from
Subsections II-D and II-B3 were used for execution.

The OpenSim software [30], which is open-source,
was used to scale the model based on the shape factors
calculated manually for each subject’s femur, tibia, and
foot. This scaled model was optimized by changing the
muscle parameters of the entire lower limb based on a
generic model [31].

The Calibrated EMG-Informed Neuromusculoskeletal
Modelling (CEINMS) toolbox [18], also open-source,
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was used to estimate ankle torque, stiffness, and forces of
MTUs based on recorded EMGs, joint angles, torques,
and the optimized scaled OpenSim model. The model
developed by Cop et al. estimates the stiffness of muscle
fibers and tendons at the MTU level and then projects
it to the joint level [9] as shown in Figure 10. A brief
explanation of the model adapted from [9] is described
below.

The input EMG and motor unit activations (u) were
mapped to MTU activations (a) based on the equation:

a =
eAu − 1

eA − 1
(4)

where A is the shape factor.
The ankle angle data from the Achilles were mapped

to MTU moment arms (ri) and MTU forces are calculated
as a function of the maximum isometric force of the
muscle, active force-length, force-velocity, and passive
force-length relationships, normalized length, velocity
and pennation angle of the muscle fiber.

FMTU = Fmax(afa(l
m)fv(v

m) + fp(l
m) + vmd)cosΦ

(5)
As the next step, MTU stiffness is calculated as:

KMTU = (Km−1

eq +Kt−1

)−1 (6)

where Km
eq is the equivalent stiffness of muscle fiber as

a function of muscle force and length along the direction
of the tendon’s line of action, and Kt is the stiffness of
the tendon as a function of tendon force and length. The
computational formula of these terms is detailed by Cop
et al. [9].

The projection of the MTU forces to obtain joint
torque was done using Equation 7

τ =

mtu∑
i=1

(FMTU
i ri) (7)

Simultaneously, the projection of MTU forces and
stiffness to obtain joint stiffness was done using Equation
8

KJ =

mtu∑
i=1

(KMTU
i r2i −

∂ri
∂θ

FMTU
i ) (8)

Two different models were calibrated using calibration
data of EMG envelopes and motor units, respectively.
The parameters such as Tendon Slack Length (TSL),
Optimal Fiber Length (OFL), strength coefficients, and
shape factors were used for calibration. For calibration
using EMG Envelopes, the mean of normalized torque,

angle, AD of EMG envelopes, and stiffness were used for
calibration while for motor units, the mean of normalized
torque, angle, AD of motor units, and stiffness was used.
These calibration data were the respective mean of all the
aforementioned data across all repetitions per subject.

During the model calibration processes, parameters
such as optimal fiber length, tendon slack length, max-
imum isometric force, and shape factor were adjusted
to best fit the input reference joint torque and stiffness.
Also, a certain range was specified for the optimal
fiber length and tendon slack length (usually the range
is limited to vary 5% of their initial value) [9]. The
calibration aimed to find the optimal model parameter
set that minimizes the error between the reference and
computed values [7]. An objective function (Equation:
9) is used to perform the model calibration at the torque
and stiffness levels simultaneously.

Fobj = avg(αEτ + βEkJ + p) (9)

where, Eτ ,EkJ are the normalized differences of es-
timated joint torque and stiffness while α,β are the
weights of the contribution of torque and stiffness that
can be altered to obtain a better fit [9].

The calibrations were followed by the actual exe-
cutions using the entire 40 seconds of experimental
data of each trial for each model respectively (8 trials
per subject; 16 executions for two models). The inputs
for both the model executions included commonly the
calibrated subject data together with the 40 seconds data
of torque, angle with AD of EMG, and AD of motor
units respectively. The two models’ respective torque and
stiffness results were stored for further validation.

G. Data Validation

The validation of the proposed frameworks (Model
with AD of EMG Envelopes and Model with AD of
motor units) was performed against the results of System
identification and experimental data. The model driven
by the AD of EMG envelopes and the model driven by
the AD of motor units were validated using the torques
and the stiffness values. The reference data for validation
at the torque level are the experimental torque measured
by Achilles and at the stiffness level the joint stiffness
obtained using the system identification technique. The
modeled data are the torque and stiffness output from
CEINMS. The reference data were also the data used
for calibrating the models.

At the torque level, the modeled torque data were
compared to reference torque data, and both their shapes
and magnitudes were evaluated using the coefficient of
determination (R2) and the Root Mean Squared Error
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Fig. 10: Schematic diagram of the EMG-driven musculoskeletal model that estimates the stiffness of muscle
fibers and tendons at the MTU level and then projects it to the joint level. Figure adapted from [8]. A more

detailed version can be found in [9].

(RMSE). Further, the RMSE values were normalized
(nRMSE) using the root mean square of the experimental
data.

Similarly, the modeled stiffness were compared to the
reference stiffness, and the results were assessed in shape
and magnitude by the R2, RMSE, and nRMSE.

The schematic diagram of Subsections II-E, II-F and
II-G were described in Figure 11.

III. RESULTS

The activation dynamics of the EMG Envelope to
drive the model was found using the steps provided in
Subsection II-B3. The result of the mean normalized
EMG Envelope of TA, GM, GL, and PL against the
torque is shown in Figure 12.

The activation dynamics of the motor units decom-
posed in Subsection II-C were found using the steps
provided in Subsection II-D. The mean discharge rates,
recruitment thresholds, peak amplitudes, and contraction
times of TA found in this study are displayed in table II.

TABLE II: MEANS (AND STD.) OF DISCHARGE
RATES, RECRUITMENT THRESHOLD, PEAK

AMPLITUDE, AND CONTRACTION TIMES OF
TIBIALIS ANTERIOR

Subject DR (Hz) RT tpeak (ms) Apeak

1 10.65 (1.76) 0.04 (0.01) 0.05 (0.001) 0.13 (0.02)
2 13.17 (1.79) 0.06 (0.02) 0.05 (0.002) 0.15 (0.02)
3 16.56 (1.69) 0.18 (0.03) 0.05 (0.002) 0.14 (0.02)
4 14.16 (2.59) 0.09 (0.04) 0.05 (0.003) 0.14 (0.03)
5 12 (1.58) 0.09 (0.03) 0.05 (0.001) 0.14 (0.02)
6 12.07 (1.78) 0.25 (0.19) 0.05 (0.002) 0.16 (0.02)

The result of the activation profile of the motor units
and EMG Envelope of TA against the torque is shown
in Figure 13.

Both Figures 12 and 13 show that the muscles TA,
GM, GL, and PL lie in their respective flexion and
proved that the activation dynamics found can be used
to drive the model. On the contrary, from Figure 14, it
was evident that the EMG envelope of Soleus lies in
the dorsi flexion instead of plantar flexion. Moreover,
the motor units decomposed from Soleus were too few
compared to Tibialis Anterior. So, the data derived from
the channels corresponding to the Soleus muscle were
not useful for further estimation.

For all the trials of all the subjects (48 trials in total),
the estimated torques of the model obtained using AD
of EMG envelopes were compared to the experimental
torques obtained from Achilles as shown in Figure 15.
R2 values ranged from 0.13-0.60 (mean - 0.42; standard
deviation - 0.04). RMSE values ranged from 2.94 Nm-
13.66 Nm (mean - 5.98 Nm; standard deviation - 1.02).
nRMSE values ranged from 0.57-2.97 (mean - 1.38;
standard deviation - 0.23).

On the other hand, the estimated torques of the model
obtained using AD of motor units were compared to the
experimental torques obtained from Achilles as shown
in Figure 15. R2 values ranged from 0.60-0.82 (mean -
0.70; standard deviation - 0.02). RMSE values ranged
from 1.85 Nm-3.56 Nm (mean - 2.70 Nm; standard
deviation - 0.37). nRMSE values ranged from 0.47-0.77
(mean - 0.62; standard deviation - 0.08). The values of
both methods are given in Figures 17, 18, 19.

At the stiffness level, the joint stiffness estimated by
the model obtained using AD of EMG envelopes was
compared to the stiffness obtained using the system
identification technique as shown in Figure 16. R2 values
ranged from 0.04-0.35 (mean - 0.13; standard deviation
- 0.04). RMSE values ranged from 6.16 Nm/rad-24.72
Nm/rad (mean - 15.53 Nm/rad; standard deviation -
2.56). nRMSE values ranged from 0.49-1.14 (mean -
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Fig. 11: Schematic Diagram of determining the torque and stiffness using the musculoskeletal model. The
working of the musculoskeletal model is explained in Figure 10. A detailed explanation of the steps involved is

explained in step 3,4,5 of Figure 27
.

Fig. 12: Plot of the mean of AD of EMG envelopes
and torques of Tibialis Anterior, Gastrocnemius

medialis, Gastrocnemius lateralis, and Peroneus longus
of all trials of all subjects

0.78; standard deviation - 0.15).
On the other hand, the estimated stiffness of the model

obtained using AD of motor units was compared to
the stiffness obtained using the system identification
technique as shown in Figure 16. R2 values ranged
from 0.03-0.36 (mean - 0.17; standard deviation - 0.04).

Fig. 13: Plot of mean activation dynamics of motor
units and torque of Tibialis Anterior for all trials of all

subjects

RMSE values ranged from 8.58 Nm/rad-23.06 Nm/rad
(mean - 16.34 Nm/rad; standard deviation - 3.07).
nRMSE values ranged from 0.64-1.12 (mean - 0.83;
standard deviation - 0.18). The values of both methods
are given in Figures 17, 18, 19.
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Fig. 14: Plot of mean activation dynamics of EMG
envelope and torque of Soleus for all trials of all

subjects

Fig. 15: Comparison of the torque estimations using
AD of EMG envelopes and motor units against

Achilles data

IV. DISCUSSION

In this study, a neuromusculoskeletal framework
driven by the identification of motoneuron properties and
a musculoskeletal framework driven by EMG envelopes
were developed and validated using the experimental
results and results of system identification methods.

First, some observations and results obtained during
this project were analyzed followed by detailed answers
to the main research questions presented in Section I,
difficulties encountered during the study, limitations, and
future works.

Fig. 16: Comparison of the stiffness estimations using
AD of EMG envelopes and motor units against system

identification

Fig. 17: Box Plot of R-squared values of Joint Stiffness
and torque estimated using the model driven by MU

and EMG

Fig. 18: Box Plot of Root Mean Square Error values of
Joint Stiffness and torque estimated using the model

driven by MU and EMG
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Fig. 19: Box Plot of normalized Root Mean Square
Error values of Joint Stiffness and torque estimated

using the model driven by MU and EMG

A. Observations and Discussion of Results

The values and the graphs of Section III explain
the results obtained using the activation dynamics of
EMG envelopes, and activation dynamics of motor units.
Among several outputs of the model, the torque and
stiffness were used for validation.
The validation of the motor unit-driven musculoskeletal
model at the torque level showed that the model had
lower nRMSE and higher co-efficient of correlation (R-
squared) (Figure 19,17) than the EMG-driven muscu-
loskeletal model making the later better at prediction
of torque. This result was in line with the findings of
Gogeascoechea et al., that the activation dynamics of
motor units had higher similarity to the torque profiles
[22]. By modeling the activation of motor units, the
model could more accurately represent the muscle activa-
tion patterns, which could lead to more accurate torque
estimates as motor units are the fundamental building
blocks of muscle activation, and the activation of each
motor unit contributes to the overall force and torque
generated by the muscle. A limitation of decomposing
the motor units is that the smaller MUs with lower action
potentials may not be decomposed in the presence of
bigger MUs with higher action potentials [20]. As the
smaller MUs are recruited first, the estimated results
could have a negative effect. Moreover, the MTU dynam-
ics block of Figure 10 uses a Hill-type muscle model to
estimate MTU forces. The effect of activation on the
Hill-type muscle model is typically modeled using a
muscle activation function (Equation 4), which describes
how the muscle activation level varies over time. The
motor units have a higher level of activation profile than
EMG Envelopes (Refer Figure 13) which could also be
one of the reasons for better estimation of torque by the

model driven by AD of motor units.
For the validation at the stiffness level, as there is no
golden standard, the stiffness values obtained using the
model were compared to previous studies. Lee et al.,
stated ankle stiffness between 30 Nm/rad and 60 Nm/rad
for various gait conditions [32] and Cop et al., reported
values from 5 Nm/rad to 30 Nm/rad [8]. The works of
Moya-Esteban et al. estimated the stiffness to be between
5 Nm/rad and 45 Nm/rad under dynamic conditions
and between 0 Nm/rad and 50 Nm/rad under static
condition [5]. The values of this study were roughly
between 7 Nm/rad and 40 Nm/rad. Even if the predicted
results of the model were not satisfied with the system
identification results, the estimation was comparable to
the previous studies. During the model calibration, the
model uses the torque and stiffness values based on the
weights assigned to them as stated in Equation 9 [9].
The stiffness estimation had no significant difference ir-
respective of the weights assigned to torque and stiffness
during calibration.
Overall, it was evident that the torque estimation of the
model was better when it was driven by the activation
dynamics of the motor units than the activation dynamics
of EMG envelopes while it was vice-versa for stiffness
estimation. The hypothesis of the entire research that
the comprehensive neuromusculoskeletal framework that
combines stiffness estimation and the identification of
motoneuron properties will improve the estimation of
joint torque was proved. But the prediction of joint
stiffness was worse.
Though the variations between both models are very few,
the overall prediction of stiffness is worse than torque
estimations. This might be due to the large fluctuations in
the stiffness estimated through the system identification
technique even after filtering. The stiffness estimated
by both models showed worse estimations in plantar
flexion. This could be because only muscles with bi-polar
EMG data were used to drive plantar flexion. Though the
prediction of dorsi flexion was better in the model driven
by motor units, due to a very bad prediction of plantar
flexion, the RMSE was large than EMG driven model.

B. Practical difficulties

Firstly, the Signal-to-Noise Ratios (SNRs) were cal-
culated and the channels above SNR threshold > 1.8dB
[33] were chosen for further processing. But this led to
the elimination of many trials and the decomposition was
better even with the channels of SNR>1.8dB. So, it is
still unclear if the quality of the EMG data used is good.
Secondly, the Soleus muscle EMG signals recorded from
channels 65 to 128 were too noisy and their removal led
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to the exclusion of certain trials or subjects. Additionally,
compared to Tibialis Anterior, fewer motor units were
identified from Soleus, and its EMG envelope showed
dorsi flexion instead of plantar flexion. Consequently,
the data from Soleus was considered unsuitable for
estimation. As Gastrocnemius Medialis had very small
values compared to Gastrocnemius Lateralis, Soleus was
replaced with data from GL in the model. The cause of
this problem was found to be a normalization setting in
REFA that averaged all values from 128 channels over
the entire data. So, the data of TA were also affected by
Soleus.
Thirdly, while calibrating the model with the aver-
age of the experimental data, the margins of the
parameters such as TSL and OFL need to be
specified. It was found that the higher the mar-
gin, the better the calibration was performed. With
the limits of [parameters+(parameters·0.3), parameters-
(parameters·0.3)] showed improved calibration re-
sults than [parameters+(parameters·0.15), parameters-
(parameters·0.15)] and [parameters+(parameters·0.05),
parameters-(parameters·0.05)]

C. Limitations and future work

This study has certain limitations that can be improved
during further research. Only five muscles were included
and Soleus was dropped in between due to the aforemen-
tioned reasons. As a result, the Soleus was driven by
gastrocnemius lateralis which might have affected the
results of the model. The twitch methodology used to
decompose the motor units lacks validation against ac-
tual twitches. The subject might only be recruiting slow
MU types as there are not enough data to pool all types
of motor units. Further, the force profile is usually used
to identify the recruitment threshold. But in this study,
EMG Envelopes were used as the MVC data is relatively
low compared to the MVC data obtained using other
dynamometers such as Biodex. The MVC data in the
previous works were up to 40 Hz [34] while here it was
only a maximum of 5 Hz. The actual data from Achilles
had low activation levels causing a limitation in the use
of PCA as larger motor units usually have better PCA.
In this study, very few data points were used leading to
the recruitment of only a subset of the entire population.
The actual mapping of the principal component includes
both slow and fast MUs while in this study the slow MUs
were mapped to both conditions. The stiffness data of
system identification contained noise/fluctuations which
even after filtering was not satisfactory. The EMG data
from the channels had noises that probably correlated
with the adjacent channels. As this study clearly explains

that a model driven by activation dynamics of motor
units is better in torque estimation, further research can
be directed towards improving the results of stiffness
estimation by including better quality EMG signals to
identify the motor units and activation dynamics. By
doing so, the plantar flexion can be driven by the soleus
data obtained using a mono-polar electrode rather than
the data from the bipolar electrode. This might have had
a huge impact on the results as the mono-polar electrode
channels are considered to provide large amplitude and
stronger signals than the bi-polar channels [35]. Mono-
polar EMG electrodes have a larger surface area and
can capture electrical activity from a larger area of the
muscle, which results in a stronger signal. In this study,
only one MVC was performed per subject. In the future,
multiple trials of MVC should be performed to obtain
higher MVC data with perturbation using Achilles. Since
only the isometric condition is taken into account in
this study, further analysis can be done under dynamic
conditions. This study does not include SRS that appears
only during isometric conditions when the movement of
filaments in the sarcomere stops [36].
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APPENDIX A

RESULTS OF ACTIVATION DYNAMICS OF EMG
ENVELOPES

Tibialis Anterior, Gastrocnemius Lateralis, Gastrocne-
mius Medialis, Peroneus Longus

SUBJECT 1

SUBJECT 2

SUBJECT 3

SUBJECT 4

SUBJECT 5
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SUBJECT 6

Soleus

SUBJECT 1

SUBJECT 2

SUBJECT 3

SUBJECT 4

SUBJECT 5
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SUBJECT 6

APPENDIX B

RESULTS OF ACTIVATION DYNAMICS OF
MOTOR UNITS

SUBJECT 1

SUBJECT 2

SUBJECT 3

SUBJECT 4
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SUBJECT 5

SUBJECT 6

APPENDIX C

INDIVIDUAL STIFFNESS THROUGH SYSTEM
IDENTIFICATION

SUBJECT 1

SUBJECT 2

SUBJECT 3
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SUBJECT 4

SUBJECT 5

SUBJECT 6

APPENDIX D

COMPARISON RESULTS: PREDICTED TORQUES
AND REFERENCE TORQUE

SUBJECT 1

SUBJECT 2
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SUBJECT 3

SUBJECT 4

SUBJECT 5

SUBJECT 6

APPENDIX E

COMPARISON RESULTS: PREDICTED STIFFNESS
AND REFERENCE STIFFNESS

SUBJECT 1
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SUBJECT 2

SUBJECT 3

SUBJECT 4

SUBJECT 5

SUBJECT 6

APPENDIX F

NUMERICAL RESULTS: COMPARISON OF
EXPERIMENTAL TORQUE AND STIFFNESS

ESTIMATIONS VIA SYSTEM IDENTIFICATION
AGAINST ESTIMATED TORQUE AND ESTIMATED
STIFFNESS VIA MODEL DRIVEN USING AD OF
EMG ENVELOPES AND AD OF MOTOR UNITS
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MEAN OF ALL SUBJECTS

RMSE nRMSE R2 Min. Stiff Max. Stiff
(Nm)/(Nm rad−1) (Nm rad−1) (Nm rad−1)

To
rq

ue AD of EMG Envelope 5.98 1.38 0.42 - -
AD of motor units 2.70 0.62 0.70 - -

St
iff

ne
ss AD of EMG Envelope 15.53 0.78 0.13 8.51 37.16

AD of motor units 16.34 0.83 0.17 7.57 39.57
System Identification - - - -3.46 35.09

SUBJECT 1

RMSE nRMSE R2 Min. Stiff Max. Stiff
(Nm)/(Nm rad−1) (Nm rad−1) (Nm rad−1)

To
rq

ue AD of EMG Envelope 5.05 1.33 0.54 - -
AD of motor units 2.42 0.63 0.74 - -

St
iff

ne
ss AD of EMG Envelope 6.16 0.60 0.09 4.99 29.85

AD of motor units 8.58 0.84 0.19 1.92 28.37
System Identification - - - -0.393 16.92

SUBJECT 2

RMSE nRMSE R2 Min. Stiff Max. Stiff
(Nm)/(Nm rad−1) (Nm rad−1) (Nm rad−1)

To
rq

ue AD of EMG Envelope 4.69 1.03 0.4 - -
AD of motor units 3.56 0.77 0.6 - -

St
iff

ne
ss AD of EMG Envelope 19.36 1.14 0.04 5.62 28.69

AD of motor units 19.14 1.12 0.03 6.56 27.23
System Identification - - - 3.39 29.2

SUBJECT 3

RMSE nRMSE R2 Min. Stiff Max. Stiff
(Nm)/(Nm rad−1) (Nm rad−1) (Nm rad−1)

To
rq

ue AD of EMG Envelope 6.135 1.50 0.397 - -
AD of motor units 2.46 0.60 0.675 - -

St
iff

ne
ss AD of EMG Envelope 13.66 0.49 0.10 16 40

AD of motor units 18.41 0.66 0.11 5 63
System Identification - - - -0.5 48
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SUBJECT 4

RMSE nRMSE R2 Min. Stiff Max. Stiff
(Nm)/(Nm rad−1) (Nm rad−1) (Nm rad−1)

To
rq

ue AD of EMG Envelope 3.39 0.86 0.43 - -
AD of motor units 1.85 0.47 0.82 - -

St
iff

ne
ss AD of EMG Envelope 12.04 0.58 0.08 10.27 26.4

AD of motor units 13.31 0.64 0.08 9.68 26.98
System Identification - - - 0.71 39.41

SUBJECT 5

RMSE nRMSE R2 Min. Stiff Max. Stiff
(Nm)/(Nm rad−1) (Nm rad−1) (Nm rad−1)

To
rq

ue AD of EMG Envelope 2.94 0.58 0.60 - -
AD of motor units 3.11 0.60 0.683 - -

St
iff

ne
ss AD of EMG Envelope 17.21 0.71 0.10 2.01 29.44

AD of motor units 15.52 0.64 0.23 4.49 38.45
System Identification - - - -19.9 43.21

SUBJECT 6

RMSE nRMSE R2 Min. Stiff Max. Stiff
(Nm)/(Nm rad−1) (Nm rad−1) (Nm rad−1)

To
rq

ue AD of EMG Envelope 13.66 2.97 0.13 - -
AD of motor units 2.82 0.61 0.70 - -

St
iff

ne
ss AD of EMG Envelope 24.72 1.13 0.35 12.19 68.56

AD of motor units 23.06 1.05 0.36 17.75 53.41
System Identification - - - -4.08 33.82

APPENDIX G

SUMMARY OF THE ENTIRE STUDY
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Fig. 27: Schematic diagram of the musculoskeletal model that combines stiffness estimation and the identification
of motoneuron properties. 1 to 5 are the major processes while the rest are the steps involved in the processes.
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