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Abstract

Last-mile logistics in the healthcare supply chain is becoming increasingly important, es-
pecially in pharmacies where medication delivery to patients’ homes is becoming preva-
lent. Therefore, this paper proposes a mathematical model for the last-mile logistics of the
pharmaceutical supply chain and optimizes a pharmacy’s logistical financial results while
considering medication synchronization, different delivery modes, and temperature require-
ments. In this research, we create a Mixed Integer Linear Programming (MILP) model
to find optimal solutions regarding the number of order batches, the composition of these
batches, and the number of staff related to the preparation of the order batches. We create
a case study by gathering, preparing, processing, and analyzing the data associated with
an outpatient pharmacy of a Dutch hospital. Our results show that our optimal solution
increases the pharmacy’s logistical results by 34 percent. Besides, we propose other model
variations and perform extensive scenario analysis to provide managerial insights useful for
various pharmacies and distributors in the last step of cold supply chains. In particular, our
scenario analysis of these results suggests that improving medication synchronization can
significantly enhance the pharmacy’s financial results. Furthermore, the model proves to be
a tool for assessing multiple sets of scenarios relevant to the pharmacy.

Keywords: Cold Supply Chain, Data Analytics, Mixed Integer Linear Programming,
Healthcare Delivery, Medication Synchronization

1. Introduction and background

The global supply chain management (SCM) market in healthcare was valued at $2.33
billion in 2021 and is expected to expand at a compound annual growth rate of 9.2% from
2022 to 2030 (Grand view research, 2020). Within the healthcare supply chain, the im-
portance of last-mile logistics in the pharmaceutical sector is growing rapidly (Sun et al.,
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2022; Dcruz et al., 2022) as pharmacies tend to provide medication delivery to the homes
of patients. While home delivery of medications can enhance patients’ accessibility to phar-
macy care by reducing their visits to the pharmacy, it also presents unique complexities
that require special consideration in the supply chain (Srivastava et al., 2022). Examples of
such considerations include implementing additional safety measures during transportation
and delivery. This involves adhering to specific temperature and storage requirements for
certain pharmaceuticals (Srivastava et al., 2022). Another crucial aspect of optimizing med-
ication supply chains is medication synchronization or consolidation. This has the potential
to reduce workload and costs (Melendez et al., 2020), as well as increase medication adher-
ence (Ross et al., 2013). As a result, a growing number of researchers, including ourselves,
are focusing on managing the distribution operations of these cold supply chains. We aim
to explore the effects and potential implementation of medication synchronization, various
delivery modes, and temperature requirements.

Supply chain management (SCM) is the strategic coordination of all activities involved
in the sourcing, procurement, manufacturing, and delivery of products and services (Chopra
and Meindl, 2013). In the healthcare setting, SCM plays a critical role in ensuring that
patients receive high-quality care through timely access to safe and effective medications
(Abdulsalam et al., 2015). Pharmaceutical SCM involves the management of the entire
process of drug development, production, distribution, and dispensing. In recent years, there
has been a growing interest in exploring different modes of pharmaceutical delivery from the
pharmacy to the patient. This includes options such as bike couriers, electric vehicles, and
even drones (Lamiscarre et al., 2022; Asadi et al., 2022), which have been shown to reduce
carbon emissions and transportation costs and increase demand satisfaction. Additionally,
telepharmacy has emerged as another delivery approach that leverages telecommunication
and technology to provide pharmacy services and medication management to patients in
remote or underserved areas (Baldoni et al., 2019).

In addition to delivery modes, medication synchronization is a crucial aspect of opti-
mizing the delivery of pharmaceuticals. This process involves aligning the refill dates of a
patient’s medications to decrease the frequency of pharmacy visits (Melendez et al., 2020)
and enhance medication adherence (Ross et al., 2013). Synchronization strategies like these
have the potential to decrease environmental impacts and costs while improving the patient
experience. However, their feasibility and effectiveness require further investigation.

An important challenge to the feasibility and effectiveness of delivery and synchronization
strategies is the need for cold supply chains to store and distribute biopharmaceuticals, such
as vaccines, antibiotics, and anti-rheumatoid injections, at low temperatures to ensure their
efficacy. The recent example of mRNA vaccines for COVID-19 highlights the challenge
of maintaining a cold supply chain at ultra-low temperatures (Bishara, 2006). Failure to
maintain the recommended temperature range at one or multiple stages of the supply chain
can lead to decreased effectiveness or even harm for various pharmaceuticals, which is not
limited to the COVID-19 vaccine case (Nyirimanzi et al., 2023). This can result in waste of
supplies, increased medical costs, and increased disease prevalence, as evidenced by previous
research (Malik et al., 2022). Therefore, this research aims to contribute to solving these
issues by improving cold SCM and avoiding the negative consequences of faulty management.
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Optimizing the cold supply chain to accommodate factors such as temperature require-
ments, different delivery modes, and medication synchronization can add an extra layer of
complexity and cost. However, pharmacies and other healthcare institutions can benefit
from implementing these strategies if a proper framework is in place to optimize logistical
results. In the pharmaceutical industry, where margins are typically thin (Garattini et al.,
2008), positive net results are essential for the survival of these organizations. Therefore,
the focus of this research is to optimize the logistical financial results of the supply chain as
a critical factor in the success and sustainability of pharmaceutical businesses.

In this research, we propose an optimization model using Mixed-Integer Linear Program-
ming (MILP) to maximize the logistical financial results of an outpatient pharmacy in the
final stage of the cold supply chain - delivering medications to patients. Recent examples of
MI(L)P models are the research of Chowdhury et al. (2022), which develops and optimizes a
vaccine supply chain, considering three objectives: minimizing cost, ensuring environmental
and social sustainability, and maximizing job opportunities. Furthermore, we recognize the
work of Ala et al. (2023), which uses queuing theory and MILP optimization to optimize
waiting time and patient arrivals at a minimum supply chain cost. A study by Aghazadeh
et al. (2018) proposes a multi-objective MIP model for an organ transplant, aiming to reduce
working center costs and optimize allocations of units and organs. We note there are other
optimization models, including non-linear programming (Starita and Paola Scaparra, 2022;
Juned et al., 2022), simulation models (Dui et al., 2023; Borges et al., 2020), and Markov
decision processes (Abbaspour et al., 2021; Shakya et al., 2022), that are widely used in
healthcare SCM. Due to the characteristics of our problem, including a deterministic setting
and the ability to model the objective function and constraints using a linear function, we
choose an MILP modeling approach.

We propose the Pharmaceutical Cold Supply Chain Management Considering Medica-
tion Synchronization and Different Delivery Modes (PCSCM-MSDM) problem by exploring
the impact of delivery methods, medication synchronization, and cooling requirements on
distribution costs and revenues. The model optimizes the number of order batches and the
composition of these batches, as well as the staffing related to the preparation of the order
batches. The model is validated and tested with a real-life case study prepared from data
acquired from the outpatient pharmacy of the Sint Maartenskliniek (SMK) in Nijmegen,
The Netherlands, called the Maartensapotheek (MA). We also provide scenario analysis on
the results, as well as two model variations to explore the influence of tactical-level decisions
on the pharmacy’s profitability.

To the best of our knowledge, we are the first to (i) provide a mathematical formulation
to manage the pharmaceutical cold supply chain while explicitly considering medication
synchronization and different delivery modes, (ii) prepare, process, and provide a real case
study of an outpatient pharmacy to be used for PCSCM-MSDM, (iii) provide the exact
optimal solutions for the understudied problem, (iv) perform extensive sensitivity analysis
and data analytics methods, including variations on the base model, to derive insights for
managers including but not limited to the outpatient pharmacy managers.

The remainder of this paper is structured as follows. Section 2 discusses relevant litera-
ture related to the model, application and analytic methods presented in this paper. Section

3



3 presents the MILP model for the PCSCM-MSDM problem. Section 4 contains information
about the MA case study, the data used, results and experiments, and alternative modeling
choices. Finally, Section 5 concludes the paper, examines opportunities for further research,
and discusses the limitations of this research.

2. Literature Review

This section explains the theoretical framework of this research. We elaborate on the cold
supply chain and its applications in the pharmacy industry. In addition, we discuss research
considering the applications of last-mile logistics with a focus on pharmaceutical supply
chains and different delivery modes. We explain the concept of medication synchronization
and provide some insights related to our work. Furthermore, we review related research
on MILP models and highlight the novel contributions of our study in addressing existing
scientific gaps. Additionally, we discuss other relevant papers that share our objectives but
employ different modeling techniques.

2.1. The cold supply chain in the pharmacy industry

The pharmaceutical supply chain is a complex network that involves the manufacturing
and distributing of medications to patients and organizations at the right time, quantity,
and cost (Abdulghani et al., 2019). However, this process comes with many logistics, inven-
tory management, and warehouse management challenges (Sinnei et al., 2023). In recent
years, cost optimization has become a cross-sectional theme in all areas of the supply chain,
especially with the rising pressure due to the COVID-19 outbreak and other geopolitical
conflicts like Ukraine War (Fitch Solutions, 2022). For example, the high demand all across
the globe and the temperature requirements of different vaccines, including the COVID-19
vaccine (depending on the brand and type, a temperature of approximately -70 ℃, -25 ℃ or
between 2 ℃ and 8 ℃ are recommended (Balfour, 2021)), make a well-organized cold supply
chain network a necessity. Cold supply chain management is increasingly vital in pharmacy
logistics (Bishara, 2006), as biopharmaceuticals must be stored and distributed at low tem-
peratures to maintain their efficacy (Turan and Ozturkoglu, 2022). Many researchers are
studying SCM from different perspectives, including cold SCM, to address these challenges
(Laganà and Colapinto, 2022; Dixit et al., 2019).

For instance, the work of Kartoglu and Milstien (2014) presents several tools and ap-
proaches to ensure the quality of vaccines throughout the cold chain wherein vaccines require
adequate temperature storage, as they are either sensitive to heat or cold. Similar to our
work, this research focuses on cold SCM with consideration of cost factors and different
delivery systems. The study provides insights into possible qualitative solutions for pharma-
cies’ cold chain challenges. Our work is quite different from Kartoglu and Milstien (2014)’s
as we propose a quantitative approach, instead of a qualitative approach. We also focus
more specifically on the impact of cold chain management on pharmaceuticals, the charac-
teristics of vaccines within the cold supply chain, and proposed solutions to optimize the
logistical operations of the pharmacy than the study of (Kartoglu and Milstien, 2014). Still,
the tools and approaches for vaccine distribution presented in (Kartoglu and Milstien, 2014)
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are relevant and useful for our study, as these are needed to realize an improved cold supply
chain for medications.

2.2. Last-mile delivery modes

Last-mile logistics refers to the final stage of the supply chain where a shipment is de-
livered to its ultimate destination (Giuffrida et al., 2022). In the case of pharmacy supply
chains, adequate last-mile logistics ensures delivering medications to patients in a safe and
timely manner. (Bhatnagar et al., 2018). Within the pharmacy supply chain, adequate
last-mile logistics are very important as the patient needs to receive the medication safely
(Abdulghani et al., 2019). To provide a foundation for our research, we review the litera-
ture on last-mile delivery strategies in pharmacy SCM, with a particular focus on different
delivery modes proposed as given in our research. One example is the work of Handoko
et al. (2014), which proposes a profit-maximizing model for determining which demands to
serve using an Urban Consolidation Centre (UCC). The UCC reduces the number of large
vehicles on city roads, thereby saving time and reducing congestion and emissions. Our
study is different in that we focus not only on the modes of transportation and delivery,
but on the whole picture of last-mile logistics for a pharmacy. We draw upon the research
of (Handoko et al., 2014) as a source of last-mile logistics and delivery mode ideas for our
study.

In addition to the urban consolidation center (UCC) model, there are other last-mile
delivery modes that can be applied to pharmacy supply chain management. Crowd ship-
ping is one such mode, which is discussed in Bajec and Tuljak-Suban (2022). The study
highlights the benefits of crowd shipping, including low prices, reduced delivery times, and
environmental impact. However, it also points out the risks associated with quality, relia-
bility, and inefficiency. To mitigate these risks, the study recommends proper management
of coalition members and optimal collaboration. Another relevant study is Azizi and Salhi
(2022), which proposes and optimizes a hub-and-spoke system for transportation between
multiple locations. This system involves using a hub as a link between several locations,
possibly other hubs, in a distribution network. The study focuses on determining the op-
timal location of the hubs and demand allocation to all hubs. Moreover, Lamiscarre et al.
(2022) evaluate the potential of drone-based last-mile logistics as a modern delivery mode
that could supplement or replace traditional delivery options. The study explores a hybrid
approach that combines both ground vehicles and Unmanned Aerial Vehicles (UAVs) and
assesses the benefits of this approach in terms of time, pollution, and cost. The authors an-
ticipate that the use of UAVs will become more prevalent in the near future. This research
is relevant to our investigation of multiple delivery modes, and it provides valuable insights
into the potential use of UAVs as one of these modes. Our study does not include UAVs
as this is not a feasible solution in the case study at the MA. However, we consider bicycle
delivery as a modern, low-cost and sustainable delivery mode.

2.3. Medication and order synchronization

Medication synchronization refers to the action of filling patients’ medication prescrip-
tions simultaneously (Nguyen and Sobieraj, 2017), which has been shown to improve med-
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ication adherence and reduce costs (Renfro et al., 2022). Ross et al. (2013) investigates
medication refill consolidation, which is the synchronization of refill dates for patients that
use multiple medications. Ross et al. (2013) conducts a survey of 50 patients using two or
more medications with a supply limit of at least 30 days. The survey results suggest that
poor refill consolidation is linked to reduced medication adherence, which could be harmful
to patients. These findings emphasize the significance of incorporating medication synchro-
nization in our research since there are several unfavorable outcomes when medication is
not appropriately synchronized. Hughes et al. (2022) explores the barriers and facilitators
associated with Med Sync (a medication synchronization service) in community pharmacies
and generates practical solutions. While our research mainly focuses on the (financial) out-
come of implementing medication synchronization in a pharmacy, Hughes et al. (2022) offers
valuable practical solutions for implementing synchronization practices, including engaging
staff, organizing programs effectively, and collaborating with providers. We recommend
that those who adopt the model from our research utilize the practical solutions outlined in
Hughes et al. (2022) to manage their synchronization process effectively.

2.4. MILP modelling techniques

The modeling choices made in the PCSCM-MDSM problem, particularly the use of MILP
for result optimization, are widely used in many studies conducted on cost and revenue opti-
mization across various industries, such as logistics, transportation, and manufacturing. For
instance, MILP models have been used in logistics to optimize inventory management and
distribution networks, while in transportation, they have been used for routing and schedul-
ing problems. One example of using MILP for cost optimization outside the healthcare SCM
field is the work of Risbeck et al. (2017), which develops an MILP model for real-time cost
optimization of building heating, ventilation, and air conditioning equipment. Although
this study is not directly related to the pharmaceutical industry, it shares similarities with
our research in terms of the objective function, demand satisfaction, and the consideration
of multiple factors. In related healthcare SCM work, Chowdhury et al. (2022) developed a
vaccine supply chain using a multi-objective MILP model that aimed to minimize distribu-
tion costs, among other objectives. One of the objectives in Chowdhury et al. (2022) is to
minimize the distribution cost, which is part of our objective function in the model. How-
ever, their work has additional objectives, including minimizing emissions and maximizing
job opportunities, which are not included in our research. Although we consider limiting
emissions through alternative distribution methods and staffing, our primary focus is on the
optimization of one pharmacy, while the supply network is the main focus of Chowdhury
et al. (2022). There are other related works in using MILP models for cost optimization in
healthcare settings with a different focus. For instance, Ala et al. (2023) resolves the patient
scheduling problem by designing an efficient healthcare chain, using both queuing theory and
MILP modeling. This study is quite different from our research in that it is more focused on
reducing waiting times and costs in a stochastic setting. In other research, Aghazadeh et al.
(2018) proposes a multi-objective MIP model for organ transplant to reduce working center
cost via optimized allocations for units and organs. Similar to our research, they build an
optimization model to reduce costs while the transportation of units is considered similar

6



to the last-mile deliveries of medications in our research. However, we note that Aghazadeh
et al. (2018) has a multi-objective model, which is different from our single-objective model.

2.5. Alternative modeling techniques

The proposed MILP model for the PCSCM-MSDM problem is effective in capturing the
most relevant complexities of the system in a deterministic manner. For example, studies
such as Starita and Paola Scaparra (2022) and Juned et al. (2022) have used non-linear
models to improve supply chain reliability and minimize delivery time, respectively. These
studies are more suitable for a non-linear model due to the high degree of stochasticity in
the input values. Additionally, studies such as Dui et al. (2023) and Borges et al. (2020)
have used simulation modeling to analyze the resilience of hospital infrastructure systems
and assess the impact of lean practices on the supply chain, respectively. Our research,
however, has negligible variability in input values, making a simulation approach redundant.
Finally, studies such as Abbaspour et al. (2021) and Shakya et al. (2022) have used Markov
decision processes to address inventory management under uncertainty. While these studies
have different modeling approaches and objectives than our study, they demonstrate the
usefulness of alternative techniques in addressing similar problems.

2.6. Conclusion

In conclusion, the optimization of cold pharmaceutical supply chain management is a
critical and challenging issue, with identified gaps in the existing literature. To address
these gaps, we conducted research focused on optimizing operations within pharmacy or-
ganizations, with a particular emphasis on outpatient pharmacies. We especially consider
different delivery modes, medication synchronization, and cold chain management. We pro-
ceed with the mathematical formulation of the problem in Section 3.

3. Problem Statement

This section explains our modeling approach for the Pharmaceutical Cold Supply Chain
Management Considering Medication Synchronization and Different Delivery Modes (PCSCM-
MSDM) problem. We propose a Mixed Integer Linear Programming (MILP) approach with
the purpose of maximizing the financial result of an outpatient pharmacy considering various
patient types, medication needs, the possibility of synchronizing medication, and different
delivery modes. We also consider the staffing requirements for handling and distribution of
orders in the optimization problem.

Section 3.1 explains the model and some background of the choices made. Section 3.2
states the assumptions made in the MILP model. Finally, Section 3.3 contains the mathe-
matical formulation of the model: the sets, input parameters, decision variables, the objec-
tive function, and constraints.
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3.1. Model description

The PCSCM-MDSM problem is inspired by the real application of an outpatient phar-
macy, which serves a number of patients over a specified time horizon. The time horizon
consists of multiple time intervals (we call them time periods) in which an order may be
placed. The objective of the model is to optimize the logistical financial results of an out-
patient pharmacy. The logistical financial results consist of the transportation cost, the
handling cost, and the logistical turnover. The optimal solution yields the optimal number
of order batches, the composition of these batches, and the number of employees needed
to assemble and prepare the batches. The model contains patients who have a set of med-
ications that they need to receive over the time horizon. Therefore, a patient orders all
medications out of their set at least once over the time horizon. An order batch consists
of all or a set of medications a patient needs repeatedly. From these sets of medications,
an order batch can be composed, and the pharmacy receives a prescription line fee for each
medication type in a batch.

The PCSCM-MDSM problem is formulated based on the regulations and requirements of
the Dutch healthcare system, specifically in relation to the logistical turnover of medications
in pharmacies. This legislation allows pharmacies to ask for a prescription line fee from
their patients to cover the logistical costs of providing medication (Rijksoverheid, 2023;
Zorginstituut Nederland, 2023). The prescription line fee is issued per medication type
for each ordered batch. The dosage of medication within an order is irrelevant to the
prescription line fee. Hence, in our model, the prescription line fee only depends on the
number of different medication types per order.

Moreover, medications have cooling requirements independent of the prescription line
fee type. Therefore, we classify medications based on their cooling types (e.g., cooled or
not-cooled). In addition, there is another classification required for medicine deliveries (e.g.,
cooled, not-cooled, combined). Medications need to be transported with a transportation
cooling method fitting to their medication cooling type. The transportation cooling type
is combined when a batch contains medications with different cooling requirements. The
transportation costs depend on the delivery type (e.g., bike, car) and delivery cooling type
of an ordered batch. Lastly, our model considers the number of hours needed for handling
each ordered batch, which may differ depending on the transportation cooling type of the
batch. As mentioned, we define the time period as the shortest length of time that a patient
may put one order. The time period should be in line with the practical requirements (e.g.,
a week, a month, etc.). The time horizon is the total running time of the model and consists
of at least one time period.

We proceed by the assumptions considered to model PCSCM-MSDM, and the mathe-
matical model in Section 3.3, which includes notation, parameters, decision variables, and
the explanation of the model.

3.2. Assumptions

In this section, we provide the assumptions considered in the model. We note that the
assumptions are in line with the case study requirements that will be presented in Section
4.
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1. The demand can always be satisfied from the pharmacy’s stock.

2. Our model is focused on satisfying demand while optimizing logistical revenues and
costs, including handling, staffing, distribution, and delivery operations. Hence, the
direct costs and earnings for medications (e.g., purchasing costs and health insurance
reimbursements intended for the direct costs of medication) lie outside of the scope
of this model.

3. In practice, the size of a batch hardly affects the handling time of the batch, and the
size also does not affect the delivery costs or the prescription line fee. Hence, we do not
consider the size of a batch in the model (i.e., the number of doses, boxes, packages,
and so on). Only the unique types of medications are considered in our model. We
note that we consider the maximum number of batches that can be delivered through
various delivery options in our model.

4. Employees are assumed to be permanent staff. The number of employees of each type,
therefore, needs to be the same in each time period.

3.3. Mathematical Formulation

This section presents the mathematical formulation of the PCSCM-MDSM problem by
providing the sets, indices, decision variables, the objective function, and constraints.

First, we introduce the sets and indices used in the model that can be found in Table 1.

Table 1 Sets and indices of the MILP model

Set Description
A set of transportation cooling types, a ∈ A
C set of cooling types related to medications, c ∈ C
D set of delivery types, d ∈ D
E set of employee types, e ∈ E
W set of time periods, w ∈ W
K set of medication types, k ∈ K
P set of patient types, p ∈ P

3.3.1. Input parameters

We first explain the definition and notations of the input parameters.The time horizon
for which we solve the model consists of W time periods. Parameter qckp states the number
of unique medications of cooling type c and medication type k that a patient type p uses
consistently over the time horizon. Hence,

∑
c∈C

∑
k∈K qckp is the total number of unique

medications that a patient p needs over the time horizon.
Our model has three revenue/cost components with associated parameters. The pre-

scription line fee is revenue of the pharmacy that is collected from the insurer, patient, or
hospital. We denote this fee with fk, which depends on the number of unique medication
types per batch. Hence, when the number of unique medication types increases in a batch,
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this fee also increases. The quantity of each unique medication is irrelevant, as the prescrip-
tion line fee is meant to cover administrative costs regarding the processing of a certain type
of medication. The transportation cost, tad, is incurred in each transportation of a batch
from the pharmacy to the home of the patient. Therefore, tad depends on the combination
of transportation cooling type a and transportation method d. The transportation cooling
type a relates to the type of cooling assigned to the transportation of the batch, and the
transportation method d relates to the type of transportation, such as truck, bicycle, or
drone delivery. Finally, se is the staffing cost of employee type e time horizon.

Here, we define the required upper bounds and lower bounds for the parameters in the
model. First, our preliminary data analysis shows that some patients need similar types
of medications per time period; therefore, we classified similar patients into one group.
This approach helps to reduce the number of decision variables and, in turn, the problem
instance size. Hence, we define parameter ρp as the number of patients within patient type
p. Depending on the patient type, we consider a lower bound on the number of orders per
time period. The parameter values are extracted based on the behavior of different types of
patients. For instance, some types of patients may forget part of their medications in one
order, or some may receive specific test medications; therefore, σp ≥ 1 allows more than one
order over the time horizon. Second, there is a maximum level δdw for the number of batches
that can be delivered with transportation method d, in time period w. Third, the maximum
number of hours an employee e can work per period w is θew. We note that it takes uae

hours for employee type e to process one batch of type a considering the communication
with the patient, back office work, packaging, and auxiliary activities. We summarize the
description of input parameters in Table 2.

Table 2 Input parameters of the MILP model

Parameter Description
qckp Number of unique medicines with cooling type c, medication

type k and for patient type p
fk Prescription line fee for medication type k
ρp Number of patients of type p
σp Minimum number of orders per time horizon of patient type p
tad Transportation cost with transportation cooling a and delivery type d
δdw Maximum number of orders to be delivered with method d

in time period w
uae Time (in hours) needed of employee type e to process one order

of type a
θew Maximum number of hours an employee of type e can work

per time period w
se Salary of employee type e for the time horizon
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3.3.2. Decision variables

The proposed model has four sets of decision variables. The first set of decisions pertains
to whether an order is placed for patient p in period w, considering the transportation cooling
type a and transportation method d. This decision is represented by the variable xadpw. If
the order is placed, the value of xadpw is set to one; otherwise, it equals zero. The decision
regarding the composition of the orders is denoted by variables ockpw. We define ockpw as the
number of unique medications of type c and type k that are ordered by patient p in period
w. The third decision encompasses the number of employees needed for the handling and
distribution of the batches per time period. This decision is modeled by the variables mew,
which is the number of employees of type e needed in time period w. The final decision
variable set is the number of employees needed in a cycle. This decision is modeled by
variables Me, which is the number of employees e needed in a cycle. The decision variables
for this model can be found in Table 3.

Table 3 Decision variables of the MILP model

Binary Variable Description
xadpw 1 if an order is placed in period w for patient type p with

delivery type d and transportation cooling a, 0 otherwise
Integer Variables Description
ockpw Number of unique medicines in an order, with climatisation

c, type k, ordered at time w and for patient type p.
mew Number of employees of type e needed in period w.
Me Number of employees of type e needed in the time horizon.

3.3.3. Objective function

The objective of the model is to maximize the logistical financial result of an outpatient
pharmacy which includes one revenue and two cost parts. The revenue part is the prescrip-
tion line fee per unique medication per order (the first part of the objective function). The
cost part includes the transportation costs per order (second part of the objective function)
and the employee costs related to the distribution of medication (third part of the objective
function. Equation 1 shows the objective function.

max
∑
c∈C

∑
k∈K

∑
p∈P

∑
w∈W

ockpwfkρp −
∑
a∈A

∑
d∈D

∑
p∈P

∑
w∈W

xadpwtadρp −
∑
e∈E

Mese (1)

3.3.4. Constraints

We have defined nine constraint sets to ensure that the model behaves as desired. Con-
straint set 2 limits the number of batches to one per time period for each patient, and only
one combination of transportation cooling a and delivery type d can be selected for each
batch. Constraint sets 3 and 4 ensure that the number of unique medications in a batch,
ockpw, relates to xadpw. That means, if no order is placed in period w for patient p, xadpw

equals 0, then ockpw must be zero since there cannot be any medications in an order that
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does not exist. Also, Constraints 3 and 4 make sure that the right type of transportation
cooling a is related to the right type of medication cooling c in a batch. To clarify, a batch
with only cooled medicine should be transported with cooled packaging, an order with only
non-cooled medicine should be transported with non-cooled packaging, and an order with
both cooled and non-cooled medication should be transported with combined packaging.
Furthermore, constraint set 5 ensures that the medication requests for each patient type p
for every medication type k with cooling type c, qckp, are met over the entire time hori-
zon, ensuring that each patient receives the medications they need. We define the level of
medication synchronization, σp, as the number of times that patient type p needs to receive
batches of orders; therefore, Constraint 6 ensures that the total number of order batches for
each patient type p equals or is greater than σp. The constraint ensures that the patients
receive batches multiple times over the time horizon. Due to the limited capacity of the
pharmacy to deliver medicines using different delivery modes, we use Constraint 7 to ensure
that there are no more than δdw batches delivered with type d in each period w. Constraint
8 makes sure that for every period w, there are enough employees available to perform the
labor related to packaging and distributing the orders. Constraint 9 makes sure that the
number of employees of type e in the time horizon is greater than or equal to the number
of employees of type e needed in each period w. Constraints 10 contain the type and sign
restrictions of this model.

s.t.
∑
a∈A

∑
d∈D

xadpw ≤ 1 ∀p ∈ P,w ∈ W (2)∑
c∈(c1)

∑
k∈K

ockpw ≤ M1

∑
a∈(a1,a3)

∑
d∈D

xadpw ∀p ∈ P,w ∈ W (3)

∑
c∈(c2)

∑
k∈K

ockpw ≤ M2

∑
a∈(a2,a3)

∑
d∈D

xadpw ∀p ∈ P,w ∈ W (4)

∑
w∈W

ockpw = qckp, ∀c ∈ C, k ∈ K, p ∈ P (5)∑
a∈A

∑
d∈D

∑
w∈W

xadpw ≥ σp, ∀p ∈ P (6)∑
a∈A

∑
p∈P

xadpwρp ≤ δdw ∀d ∈ D,w ∈ W (7)∑
a∈A

∑
d∈D

∑
p∈P

xadpwuaeρp ≤ mewθew ∀w ∈ W (8)

Me ≥ mew ∀e ∈ E,w ∈ W (9)

xadpw ∈ {0, 1}, ockpw ∈ Z+,mew ∈ Z+,Me ∈ Z+ (10)
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4. Case study and results

In this section, we present the case study of the Maartensapotheek (MA) outpatient phar-
macy and optimize their logistical results using the MILP model explained in Section 3. The
MA pharmacy of the Sint Maartenskliniek (SMK) is located in Nijmegen, the Netherlands.
The SMK is a hospital specializing in mobility and posture and has three main departments:
orthopedics, rheumatology, and rehabilitation. The MA provides medication for patients of
the SMK. This mostly concerns rheumatology patients, as the rheumatology department
is the largest outpatient department of the SMK. Besides, medication for patients of the
orthopedic and revalidation departments is often provided via the inpatient pharmacy of
the SMK. This section explains the problem requirements of the MA, the data used for the
case study, and the model scenarios.

The ultimate goal of MA is to provide a high-quality service to its patients by giving
them the option of at-home delivery of medications for free. However, as this service is
deemed to be expensive; therefore, the pharmacy wishes to get insight into its logistical
costs and revenues to optimize the financial result. Hence, we propose the PCSCM-MDSM
problem formulation to solve the MA case.

Section 4.1 outlines the input parameters used for the MA case and explains the data
preparation procedure. In Section 4.3, we describe the scenarios used in the case study and
explain the need for scenario analysis. Section 4.2 presents the results of all scenarios and
relevant metrics. To explore the potential for future development of this case or its appli-
cation to similar cases, Section 4.4 introduces two variations that slightly modify the model
settings and relax certain assumptions. We compare the results of these model variations
to the original results and provide managerial insights. Finally, in Section 4.5, we report
on the applied solution methods and provide insights using reported statistics. We proceed
with explaining the data used in our model.

4.1. Data

This section explains how and what data is collected and processed for the MA case.
First, in the data collection phase, we explain our method and sources to gather relevant
data. The data is mostly used for determining the values of input parameters that come
from the medication orders of MA in 2021 and 2022. The data list of orders contains order
batches from patients, which include at least one medication product per batch. The data
contains three types of unique identifiers as follows.

• Order number: It is used to derive the order date, the delivery type, and the number
of orders.

• Patient number: It is used to derive the location of the patient (which can be rele-
vant for certain delivery types), the number of unique patients, the medications that
the patients need, and the order composition per patient (in combination with the
medication product numbers in the orders of each patient).

• Medication product: It is used to find the medication type and the medication cooling
restriction.
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The set elements used in the model are derived from patient and order data, as well as
observations of the order preparation and delivery process and discussions with employees
and management of the MA. Sets A and C are derived from the cooling restrictions and
transportation cooling types that are used in the MA. Set D consists of the delivery types
the management of the MA considers. Set E contains the two types of employees present
in the MA. Set K is based on the height of the prescription line fee of a medication. The
MA has two types: medication with and without a prescription line fee. Set W consists of
four months, as this is the current maximum order period in the MA. The sets and their
elements for the MA case are shown in Table 4. We explain set P further in the explanation
of the parameter qckp, ρp, and σp.

Table 4 Set elements for the MA case

Set Elements
A {Cooled transportation, Non-cooled transportation, Combination transportation}
C {Cooled medication, Non-cooled medication}
D {Truck transportation, delivery hubs, bicycle transportation, pick-up}
E {Pharmaceutical employee, pharmacy assistant}
K {Medication w/o prescription line fee, Medication with prescription line fee}
P {0, 1, . . . , 224}
W {January, February, March, April}

Every patient p has a value of qckp for each c and each k, which is shown in Table 5. We
derive these values by first categorizing patients into four groups based on the medications
they need. As there are two elements in sets C and K, the total number of combinations
is four. Second, we consider how frequently patients have placed orders in the past, which
relates to σp. In this regard, we use aggregation to create patient types such that irregular
or infrequent orders are grouped with the closest patient types to ensure that set P is not
too large. For example, a patient type could be a patient who needs two medications of c0
and k0 and three medications of c1 and k0 that typically orders twice every four months.
From the data, we see that there are five patients with the same specifications and one
patient who has the same medication types but orders three times every four months. We
place that last patient into the same category p ∈ P , as we see this patient as an outlier.
This means that ρp is 5 + 1 = 6. Using this approach, we identify 225 patient types p. We
determine σp by determining the number of times each patient p typically orders over four
months period, and ρp by the number of patients in the same index p. Table 5 presents a
summary of qckp, σp, and ρp. To enhance readability, we only show parts of the rows, so
the minimum number of orders (shown in the rightmost column) in each row of the table
happened to be one. Although not explicitly displayed in the table, it should be noted that
σp = 1 for 157 patient types, σp = 2 for 57 patient types, and σp = 3 for 11 patient types.
The comprehensive sets of values can be found in Tables A.18, A.19, and A.20 in Appendix
A.
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Table 5 Summary of qckp, ρp and σp: the number of unique medicines with cooling type c, medication type
k and for patient type p; the number of patients of type p and the minimum number of orders for patient p.

Nr. unique meds qckp Nr. patients ρp Min. nr. orders σp

Patient type p c0; k0 c0; k1 c1; k0 c1; k1
p0 1 0 0 0 935 1
p1 1 0 0 0 553 1
p2 0 0 0 1 539 1
p3 0 0 0 1 318 1
p4 0 0 0 2 261 1
. . . . . . . . . . . . . . . . . . . . .
p224 0 1 0 6 1 1

The prescription line fee is determined by grouping the medications into two sets: medi-
cations without a prescription line fee (k0) and medications with a prescription line fee (k1).
Obviously, fk0 equals zero. Within the medications with a prescription line fee k1, there are
differences that are often based on the type of order or other factors that are difficult to
trace. Based on the available data, we estimate the differences in prescription line fees are
quite low (coefficient of variation of 0.45). Therefore, we use a weighted average of historical
values of the prescription line fee and find fk1 = AC7.94.

We obtain the transportation costs, tad, by using the agreements made with the delivery
services employed by the MA. The pick-up costs are estimated by multiplying the hourly
salary of a pharmaceutical employee with the time it takes for a pick-up, which is on average
3 minutes. It is important to note that a pick-up at the pharmacy is not the same as an
at-home delivery or hub pick-up, which takes only a few seconds. This is because the
pharmacy chooses to provide the additional service of verifying the order and patient details
with individuals at the time of medication pick-up from the MA. The maximum number
of transportation (travel between pharmacy and drop-off points) with each transportation
method d, δdw, is determined based on agreements with the delivery services, which is
typically fixed across all periods, w. In determining the monthly maximum number of
transportation, we consider the locations of the patients and assess whether bicycle delivery
and pick-up from the hubs are feasible options for those patients. Pick-up is not feasible
for distances greater than 10 kilometers from the pick-up point (i.e., the MA location) or
pick-up hub. Furthermore, bike delivery is not possible for distances exceeding 15 kilometers
from the bicycle starting point (i.e., the MA location). The limit for truck transportation is
much higher, and it is practically infinite, but we set it to a sufficiently large value to ensure
that all transportation can always be conducted with this method. The values for tad and
δdw are provided in Tables 6 and 7.
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Table 6 Values of tad: the transportation cost with transportation cooling a and delivery type d

Transportation cooling type a
Delivery type d Cooled (a0) Non-cooled (a1) Combination (a2)
Truck transportation (d0) e 16.62 e 11.64 e 17.32
Delivery hubs (d1) e 3.00 e 3.00 e 3.01
Bicycle transportation (d2) e 13.62 e 8.64 e 14.32
Pick-up (d3) e 1.65 e 1.65 e 1.66

Table 7 Values of δdw: the maximum number of orders to be delivered with method d in time period w

Delivery type d Maximum number of orders δdw (∀w ∈ W )
Truck transportation (d0) 6950
Delivery hubs (d1) 271
Bicycle transportation (d2) 120
Pick-up (d3) 253

We determine the time required for employee type e to process a batch with cooling type
a, denoted as uae, by measuring the order preparation time of all activities. Moreover, we
determine θew from the actual working hours of each employee type per period, w. Finally,
we determine se based on each employee type’s total hourly salary costs. The values for uae,
θew, and se are presented in Tables 8, 9, and 10, respectively.

Table 8 Values of uae: the time (in hours) needed of employee e to process one order of type a

Transportation cooling type a
Employee type e Cooled (a0) Non-cooled (a1) Combination (a2)
Pharmaceutical employee (e0) 0.1293 0.1477 0.1779
Pharmacy assistant (e1) 0.0233 0.0233 0.0233

Table 9 Values of θew: the maximum number of hours an employee of type e can work per time period w

Employee type e Maximum number of hours θew (∀w ∈ W )
Pharmaceutical employee (e0) 126.667
Pharmacy assistant (e1) 126.667

Table 10 Values of se: the salary of employee type e

Employee type e Salary se
Pharmaceutical employee (e0) e 33.00
Pharmacy assistant (e1) e 40.00
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Finally, the values for M1 and M2 are both set to 15. This is because
∑

c∈C
∑

k∈K qckp
out of the data has a maximum value of 15 ∀p ∈ P . Therefore, the values for M1 and M2

cannot exceed 15.

4.2. Computational results

In this section, we present the results of the model using the input data described in
Section 4.1, referred to as the ‘base case’. Additional scenarios are discussed in Section
4.3. We begin by introducing the key performance indicators (KPIs) used to evaluate the
results. These KPIs are divided into two categories: output KPIs and decision KPIs. The
output KPIs provide insights into the outcomes of implementing specific decisions, while the
decision KPIs highlight the decisions required to achieve desired outcomes.

• Output KPIs

– KPI 1: Total annual result. The total annual result is the financial result
from the model multiplied by 3, as the model for the MA runs for four months.
The annual result consists of the annual transportation costs, the annual handling
costs, and the annual prescription line fee. This KPI shows the pharmacy the
total picture of its result.

– KPI 2: Result per order. The result per order is the result divided by the
number of orders. This KPI shows the result relative to the orders, which can
give a different perspective than the total result.

• Decision KPIs

– KPI 3: Annual number of order batches. This KPI represents the total
number of order batches that need to be processed by the pharmacy on an annual
basis. It provides valuable information to the MA for enhancing synchronization
strategies through effective communication with patients.

– KPI 4: Annual number of order batches per cooling type. This KPI
shows the division of transportation cooling types, which provides insights into
the composition of order batches.

– KPI 5: Annual number of transportation per transportation types.
This KPI shows how much of each transportation mode the pharmacy should use
for the transportation of their orders.

– KPI 6: Number of employees per time period. This KPI demonstrates the
number of pharmaceutical employees and assistants the pharmacy should hire.

Table 11 presents the results for KPIs 1 and 2, which include the breakdown of result into
transportation cost, handling cost, and prescription line fee (revenue). The results indicate a
negative total result and negative result per order, indicating that the pharmacy is operating
at a loss in this aspect. However, it’s important to note that the pharmacy is part of a
larger hospital where the logistics expenses are compensated for by other areas, mitigating
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the impact of the logistical loss on the pharmacy or hospital as a whole. Additionally,
this paper solely focuses on logistical result and does not consider results generated from
procurement and sales. Furthermore, the total logistical result in 2022 was e -197,208.23,
indicating that the utilization of the model increases the MA’s result by 34%.

Table 11 Base case results for output KPIs: KPI 1 and 2

KPI 1: Total annual result KPI 2: Result per order
Total result e -130,874.47 e -5.76
Transportation cost e -231,387.72 e -10.18
Handling cost e -204,835.33 e -9.01
Prescription line fee e 305,348.58 e 13.43

Tables 12 and 13 show the results for the decision KPIs. To achieve the results in Table
11, the pharmacy needs to have 22,740 orders on a yearly basis. The number of orders in 2022
was 21,347, which is close to the model output. This shows that the order frequency resulting
from the model is attainable for the MA. Furthermore, we see that most of the batches are
delivered with non-cooled transportation (a1, which was also the case in 2022. The number
of batches delivered with this cooling method decreased from 49.5% to 46.4%, while the
number of batches transported with combination transportation (a2) increased slightly, from
19.7% to 23.8%. This shows that the model combines more orders thus synchronizing order
batches more efficiently. The number of cooled transportations (a0) was hardly affected. As
for the transportation methods, we see that the most used transportation method is truck
transportation (d0). This is the most expensive transportation mode, but it is the only
unrestricted mode of transport. We see that the other transportation modes are maximized
to their full capability, showing the potential of alternative, cheaper transportation modes.
Finally, we note that there are 3 pharmaceutical employees needed and 1 pharmacy assistant,
for the logistical operations of the MA. This is the current occupation at the MA so the
staffing does not need to change for this solution.

Table 12 Base case results for decision KPIs 3, 4 and 5

Number of order batches Percentage of orders
KPI 3: Annual number of order batches
Total nr. of orders 22,740 100.0%
KPI 4: Annual number of order batches per cooling type
Cooled transport (a0) 6,783 29.8%
Non-cooled transport (a1) 10,551 46.4%
Combination transport (a2) 5,406 23.8%
KPI 5: Annual number of transportations per transportation types
Truck transportation (d0) 15,012 66.0%
Delivery hubs (d1) 3,252 14.3%
Bicycle transportation (d2) 1,440 6.3%
Pick-up (d3) 3,036 13.4%
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Table 13 Base case results for decision KPI 6

Employee e KPI 6: Number of employees per time period
Pharmaceutical employee (e0) 3
Pharmacy assistant (e1) 1

The running time of this solution is 5.29 seconds, with an optimality gap of 1.83 ∗ 10−15,
showing that the solution is (virtually) optimal. We further analyze solution statistics, such
as optimality gap, running time, and instance size, in Section 4.5.

Based on our analysis, we conclude that the MA can achieve a results increase of 34%
by implementing small adjustments, particularly by exploring alternative transportation
methods. These changes primarily involve optimizing the number of order batches. In
Section 4.3, we evaluate more substantial modifications that the MA or other pharmacies
can consider to enhance profitability and efficiency further.

4.3. Scenario analysis

This section presents the scenario analysis, which involves 23 modifications to the data
discussed in Section 4.1. The purpose of the scenario analysis is to assess input changes
that require more significant investments compared to the minor adjustments made to the
pharmacy logistics in the model results presented in Section 4.2. Additionally, the scenario
analysis allows us to evaluate the robustness of the model. We categorize the adaptations
into four groups: the inclusion of annual unique patients, synchronization level, patient
types, and order period. We begin by explaining these four types of adaptations and their
impact on specific input parameters. Subsequently, we analyze and discuss the effects of the
scenarios on the model results.

The first modification involves changing the number of patients in the model. Currently,
the annual number of unique patients is 7,000. However, there are plans for the hospital to
take over a department from a nearby hospital, which is expected to increase the number
of patients. The projected annual number of patients is 10,000. This change in the annual
number of patients impacts the parameter ρp in the model. Specifically, the current value of
ρp is extrapolated to accommodate the new patient count. The sum of all ρp values, denoted
as

∑
p∈P ρp, is adjusted from 7,000 to 10,000 to reflect the increased patient population.

The second modification involves changing the synchronization level, which is divided into
three cases: 77%, 87%, and 100% synchronization. The synchronization level is determined
by the completeness of an order, which is calculated based on the number of medications
ordered compared to the total number of medications on the prescription. For example, if a
patient has four medications prescribed but only orders three, the completeness of that order
is 75%, which corresponds to the synchronization level. The overall synchronization percent-
age of 77% is a weighted average of these completeness percentages. The synchronization
parameter, denoted as σp, is derived from this percentage, and patients are grouped into
patient types, denoted as p, based on the synchronization level and the parameter qckp. To
evaluate the potential for synchronization improvement, we adjust the σp parameter for each
patient type p according to two scenarios: realistic improvement and ideal improvement. In
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the realistic improvement scenario, we collaborate with pharmacy management to assess
feasible synchronization enhancements. For instance, a patient who currently orders three
times in the time horizon may reduce their orders to two times. The average synchronization
level for this realistic scenario is 87%. In the ideal improvement scenario, all patients order
only once throughout the time horizon, resulting in 100% synchronization. To assess these
adaptations, we adjust the parameter σp based on the specified synchronization level.

Thirdly, we consider an adaptation in the patient types served by the pharmacy. Cur-
rently, the MA serves all patients from the SMK or related hospitals who wish to order
medication at the MA. However, the hospital is exploring a scenario where they only cater
to patients with medication type k0, which refers to medication without a prescription line
fee. These are medications that cannot be obtained from other pharmacies, meaning pa-
tients are required to order them exclusively from the MA. Patients with other medication
types (k1), which include medications with a prescription line fee, have the freedom to visit
their local pharmacy if they prefer. This scenario has an impact on parameter ρp as patients
who do not have any medications of type k0 in their prescription are excluded, resulting in
their ρp value being set to 0. Consequently, this adaptation decreases the total number of
patients, leading to a reduction in the sum of ρp values, denoted as

∑
p∈P ρp.

The final adaptation involves adjusting the length of the time horizon. Presently, the
MA allows patients to order their medication for a maximum period of 4 months. However,
there is an expectation that costs will decrease if the time horizon is extended to 6 months.
This adaptation does not have any impact on the input parameters but rather expands the
number of elements in set W from 4 to 6.

A total of 24 scenarios are formed by combining these four adaptations: two options
for the number of patients, three options for the synchronization level, two options for the
patient types, and two options for the order period. Table 14 provides a summary of the
scenarios, including the total annual result for each scenario. Scenario 0 represents the base
case analyzed in Section 4.2.
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Table 14 Scenarios for the MA case

Scenario # patients Sync. Patient types Period Profit
0 7000 77% All patients 4 months e -130,874.47
1 7000 77% All patients 6 months e -106,929.38
2 7000 77% Only patients with type k0 4 months e -190,511.50
3 7000 77% Only patients with type k0 6 months e -179,020.58
4 7000 87% All patients 4 months e -124,559.17
5 7000 87% All patients 6 months e -103,014.38
6 7000 87% Only patients with type k0 4 months e -185,448.10
7 7000 87% Only patients with type k0 6 months e -131,990.02
8 7000 100% All patients 4 months e -117,366.55
9 7000 100% All patients 6 months e - 97,687.64
10 7000 100% Only patients with type k0 4 months e -180,120.28
11 7000 100% Only patients with type k0 6 months e -127,906.42
12 10 000 77% All patients 4 months e -175,874.75
13 10 000 77% All patients 6 months e -135,188.37
14 10 000 77% Only patients with type k0 4 months e -206,118.67
15 10 000 77% Only patients with type k0 6 months e -189,240.38
16 10 000 87% All patients 4 months e -139,635.38
17 10 000 87% All patients 6 months e -129,336.71
18 10 000 87% Only patients with type k0 4 months e -198,920.32
19 10 000 87% Only patients with type k0 6 months e -184,463.56
20 10 000 100% All patients 4 months e -80,187.73
21 10 000 100% All patients 6 months e -73,574.30
22 10 000 100% Only patients with type k0 4 months e -191,244.67
23 10 000 100% Only patients with type k0 6 months e -179,309.32

Let’s analyze the results of the scenarios based on the KPIs defined in Section 4.2. Fig-
ures 1 and 2 illustrates that the pharmacy experiences a net logistical loss in all scenarios.
However, this outcome is not alarming, as the overall net total result of the pharmacy, con-
sidering all operations (beyond the scope of our model), is positive. The specific details of
these operations and numbers are not presented due to privacy considerations. Among the
scenarios, Scenario 21 stands out with the highest total result, while Scenario 20 exhibits
the highest result per order batch. An interesting pattern emerges when examining the
differences among patient types. Figure 2 demonstrates a consistently lower result per order
batch when only patients with medication type k0 are served at the MA. Additionally, Fig-
ure 1 shows that scenarios with only patients of type k0 yield a lower total result compared
to their counterparts with mixed patient types. The scenarios featuring only patients with
medication type k0 display a reduction in total costs, primarily due to a decrease in the
number of patients. As most of these orders have no prescription line fee, the associated
costs are significantly lower. However, it is clear that exclusively serving patients with med-
ication type k0 is financially inefficient. Therefore, the conclusion drawn from the analysis is
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that limiting the MA’s service to patients with medication type k0 proves to be financially
ineffective.

Figure 1 KPI 1: Comparison of the annual results for each scenario, including the result elements (trans-
portation and handling costs and prescription line fee)

Figure 2 KPI 2: Comparison of the results per order batch, for each scenario, including the result elements
(transportation and handling costs and prescription line fee)

Figure 3 provides an overview of the financial result differences compared to the base
case, specifically focusing on the total annual logistical financial result and the logistical
result per order batch (KPIs 1 and 2). Consistent with the findings from Figures 1 and 2,
the patient type emerges as the most influential factor. Scenarios involving ”Only patients
with type k0” exhibit the largest decrease in both total result and result per order batch.
The number of patients has a variable impact on result. The alternative number of patients
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(10,000 patients) demonstrates the most significant influence when combined with a different
patient type scenario (scenario 14, yielding the lowest total annual result) or when combined
with all alternative options (scenario 23, resulting in the lowest result per order batch for
scenarios with 10,000 patients). Altering the number of patients leads to a general decline
in total result compared to the base case, although the result per order batch shows slight
improvement. This outcome can be attributed to the fact that costs increase at a higher
rate than total earnings, but the total result is divided among a larger number of orders.
Regarding the synchronization level, an increase in synchronization leads to higher total
annual result and result per order batch. This correlation is logical since the prescription
line fee remains constant across different synchronization levels (as indicated in Figure 1),
while costs rise with lower synchronization levels due to a greater number of orders. Lastly,
extending the order period from 4 to 6 months has a minor positive impact on the total
annual result but adversely affects the result per order. This outcome can be attributed
to the expectation of fewer orders when the order period is extended. Although total costs
decrease, they are also spread across fewer orders.

Figure 3 The influence on the base case result for each scenario: difference with KPIs 1 and 2 with respect
to the base case (in percentage)

Let’s analyze the decision KPIs associated with these result numbers. Figures 4 and
5 provide insights into the annual number of orders, which decreases under the following
circumstances: (1) higher synchronization percentages, (2) exclusively serving patients with
type k0 medications, and (3) increasing the order period from 4 to 6 months. Conversely, the
number of orders increases when the number of patients is increased. Figure 4 illustrates that
the ratio between cooling types differs primarily when patient types differ. This observation
can be easily explained by the dominance of cooled medication types when exclusively serving
patients with medication type k0, as these medications require cooling during transportation.
Figure 5 indicates that the ratio between different delivery types remains relatively stable
across scenarios. This suggests that the scenarios have limited influence on the investments
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in transportation modes (particularly cooling), mainly affecting the scale rather than the
specific distribution of these investments. Lastly, Figure 6 presents the number of employees
required for the pharmacy’s logistics. We observe a consistent pattern between the number
of pharmaceutical employees and the number of order batches. However, the number of
pharmacy assistants remains constant at one employee. This can be attributed to the fact
that pharmacy assistants have limited involvement in the logistical processes of the MA,
thereby not necessitating the addition of a second assistant in any scenario due to a low
workload threshold.

Figure 4 KPIs 3 and 4: Comparison of the number of order batches, divided into transportation cooling
types

Figure 5 KPIs 3 and 5: Comparison of the number of order batches, divided into transportation types
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Figure 6 KPI 6: Comparison of the number of employees necessary in each scenario

These figures provide valuable insights for the strategic decision-making process faced
by the MA. From a results perspective, scenarios 20 and 21 emerge as the most favorable
choices. However, it is important to consider practical limitations when aiming for 100% syn-
chronization, as it may be challenging or even impossible to achieve in reality. Additionally,
the MA’s priorities may extend beyond maximizing results, encompassing factors such as
total transportation cost or transportation costs per order. In light of these considerations,
it becomes crucial for management to carefully weigh these various factors and prioritize
them according to the organization’s specific goals and circumstances. The insights derived
from this study can serve as a valuable resource to inform and support the decision-making
process, helping management make well-informed strategic choices.

4.4. Model variations

This section introduces two model variations aimed at enhancing the adaptability of the
model to specific situations. These variations enable us to explore the influence of tactical-
level decisions on the pharmacy’s profitability. Furthermore, based on the MA case study,
it becomes evident that the standard model may not always accurately reflect the reality of
the logistics in the most realistic manner.

4.4.1. Model variation 1: relaxing the order numbers and order composition

In this model variation, we introduce changes to Equation 5, resulting in Equations 11a
and 11b. These modifications allow patients to either order their entire prescription every
period w or a portion of it. Equation 11a ensures that the total demand over the entire time
horizon is always met, ensuring that all medications are ordered at least once. On the other
hand, Equation 11b ensures that each order does not exceed the quantity prescribed. The
objective of this model variation is to maximize the capacity utilization of order batches
while adhering to the limitations imposed by the prescribed medications.
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∑
w∈W

ockpw ≥ qckp, ∀c ∈ C, k ∈ K, p ∈ P (11a)

ockpw ≤ qckp, ∀c ∈ C, k ∈ K, p ∈ P,w ∈ W (11b)

This model variation yields intriguing outcomes. One notable observation is the sub-
stantial increase in the number of orders. This phenomenon can be attributed to the fact
that, in the case of the MA, the prescription line fees tend to outweigh the associated order
costs. However, it remains a pertinent question whether such frequent ordering is practical
or viable for the pharmacy. Nevertheless, this insight provides valuable information for other
types of pharmacies seeking to evaluate the trade-off between prescription line fees (or other
revenue streams) and distribution costs.

Figure 7 Comparison between the base model and the variation of the annual number of orders
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Figure 8 Comparison between the base model and the variation of the annual result

Figure 7 illustrates that, in most cases, the annual number of orders approximately
doubles, accompanied by a more than threefold increase in results compared to the base
model. This substantial growth can be attributed to the benefits of ordering more frequently
in this model variation. The model intelligently evaluates whether the prescription line fee
of a patient can offset the associated order costs, resulting in a positive net result per order.
This effect is particularly evident in the SMK scenario within this model variation. To
capitalize on these results, the pharmacy can adopt a strategy that encourages patients
with multiple medications of type k = k1 (which incur a non-zero prescription line fee) to
order as frequently as possible, while simultaneously discouraging other patient types with
a net loss from placing frequent orders.

4.4.2. Variation 2: employee hours instead of number of employees

This variation focuses on the number of employees required for logistical operations.
According to KPI 6 and Figure 6, we observe instances where up to four logistical employees
are needed in the MA. The current model is designed to add an additional employee to the
solution when the maximum number of hours for a specific employee type per period, denoted
as θew, is exceeded. This approach is reasonable to prevent employees from consistently
working overtime and to account for fluctuations in workload.

However, it is important to investigate the extent to which the θew threshold is exceeded
in each scenario. Figure 9 displays the number of hours required for each employee type
compared to the thresholds set for one to four employees (assuming the same value of θew
applies to all e and w in the MA case). We argue that the current strategy might not be
the most optimal for the MA, as it results in a significant amount of idle time for employees
overall. Moreover, in the MA case, employees are involved in tasks beyond logistics. They
dedicate a portion of their hours to other aspects of pharmacy operations, such as attending
to patients or working in the inpatient pharmacy. To address these concerns, we propose
an alternative approach that eliminates the need for parameter θew and instead focuses on
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calculating the necessary hours directly. This approach allows the pharmacy to have more
flexibility in allocating these hours among their employees.

Figure 9 Number of hours needed of every employee type for each scenario

To implement this approach, we modify the definition of variable mew to represent a
non-integer variable, denoting “the number of hours of employee e needed in period w.”
Consequently, we remove variable Me and parameter θew from the model. Additionally, we
adjust the definition of parameter se to represent “the hourly salary of employee e.”

By adopting this alternative formulation, the model provides the necessary hours re-
quired for each employee in each period, enabling the pharmacy to make informed decisions
regarding the allocation of work hours among its employees. This approach offers greater
flexibility and acknowledges that employees have responsibilities beyond logistics, accom-
modating their involvement in other pharmacy tasks such as patient care and inpatient
pharmacy duties. The objective function is changed to Equation 12 to include the number
of hours multiplied by the hourly wage of each employee e.

max
∑
c∈C

∑
k∈K

∑
p∈P

∑
w∈W

ockpwfkρp −
∑
a∈A

∑
d∈D

∑
p∈P

∑
w∈W

xadpwtadρp −
∑
e∈E

∑
w∈W

mewse (12)

Constraint 8 is changed to Equation 13 and Constraint 9 is removed from the model.

∑
a∈A

∑
d∈D

∑
p∈P

xadpwuaeρp ≤ mew ∀w ∈ W (13)

This model variation provides valuable insights in scenarios where pharmacy employees
are involved in tasks beyond logistics. By excluding hours dedicated to non-logistical respon-
sibilities such as direct patient care or administrative work, the model accurately captures
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the workload specifically related to medication distribution. This approach enhances the
accuracy of handling cost estimations and ensures the model’s effectiveness in optimizing
the logistical aspect of pharmacy operations.

It is important to note that this variation does not directly address the question of how
many employees to hire, as it focuses on workload allocation rather than immediate staffing
solutions. However, for pharmacies willing to make informed decisions about workload
distribution among their employees, the output of this variation model can offer valuable
insights into the necessary hours required for efficient logistical operations. By understanding
the optimal allocation of labor hours, pharmacies can enhance operational efficiency and
make informed decisions regarding resource utilization.

4.5. Discussion on the solution methods and the problem Size

We model the MILP for the PCSCM-MSDM problem in Python 3.8 using the Python
MIP package, and the Gurobi 10.0 solver. To evaluate the performance of the model, we
conducted 200 runs of the base case (scenario 0) using the same data. This allowed us to
perform a statistical analysis on the running times and optimality gap.

In all 200 runs, the Gurobi solver reported an optimality gap of no more than 1.8∗10−13%.
The average running time for the base case was 3.99 seconds, with a 99% confidence interval
of [3.79, 4.19] seconds. These results demonstrate that the model runs efficiently and achieves
near-optimality.

The base model consists of 14,410 variables. To assess the feasibility of the exact solution
method using Gurobi for larger problem instances, we tested different set sizes. Tables 15
and 16 present the number of indices and variables for three tested scenarios. The scenario
numbers in the first column correspond to the first scenario (scenario 0) in Table 14, and
the letters a, b, and c represent alternative variations in the number of variables.

Table 16 provides information on the number of variables for the three scenarios. The
variations in set P are based on different classifications of the same patients, as described
in Section 4.1. In scenario 0(a), the base case, there are 225 patient types. Scenario 0(b)
includes 476 patient types without aggregating outlier patients, while scenario 0(c) involves
separate classifications for each patient, resulting in 6783 patient types.

The largest set, scenario 0(c), is 2912.64% larger than the base scenario, with 434,122
variables compared to 14,410 variables in the base case, as shown in Table 16. These
variations in set sizes allow us to examine the scalability and performance of the model for
larger problem instances.

Table 15 Sizes of sets in different P size scenarios

Sets
Scenario nr A C D E K P W
0(a) 3 2 4 2 2 225 4
0(b) 3 2 4 2 2 476 4
0(c) 3 2 4 2 2 6,783 4
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Table 16 Number of variables in different scenarios

Variables
Scenario nr xadpw ockpw mew Me Total % increase
0(a) 10,800 3,600 8 2 14,410 0%
0(b) 22,848 7,616 8 2 30,474 111%
0(c) 325,584 108,528 8 2 434,122 2,913%

Table 17 shows the maximum optimality gap and running time 99% confidence interval
per scenario for n=200 runs. We see that case 0(b) has the largest maximum optimality gap
of 0.0000753, which means that the solution is almost guaranteed to be near optimal at all
times using the Gurobi solver. The largest running time found is 95.28 seconds for scenario
0(c), the scenario with the largest number of variables.

Table 17 Maximum optimality gap and confidence interval of running time for different P size scenarios

Scenario Max. gap Max. running time 99% CI running time Result
0(a) 1.93 ∗ 10−16 10.1 sec [3.79, 4.19] AC- 130,874.47
0(b) 7.53 ∗ 10−5 8.4 sec [3.50, 3.86] AC- 126,170.53
0(c) 1.40 ∗ 10−5 95.3 sec [76.83, 78.47] AC- 125,165,35

We conclude that an alternative solution algorithm is not necessary at this time, since
we see that increasing the model size with 2,912.64% increases the maximum solution time
to a very reasonable time still while maintaining a very small optimality gap. Additionally,
the result stays approximately the same (within 5% of the original solution of scenario 0(a)).
Therefore, aggregating the classification of patients does not significantly sacrifice the quality
of the solutions. We expect that for other pharmacies, the sizes of sets K, E, P and W have
the most risk of being different than the set sizes in the MA case presented in this paper.
If a pharmacy wishes to apply the model presented in this paper and has many medication
types k, employee types e, patient types p and periods w, such that the number of variables
is significantly larger than the number of variables of scenario 0(c) (434,122), the model has
a risk of being too slow, especially when the pharmacy wishes to run multiple scenarios. In
this case, alternative solution methods may be considered, albeit this would be an extreme
case that we do not expect to occur.

5. Conclusion

In this study, we addressed the Pharmaceutical Cold Supply Chain Management Consid-
ering Medication Synchronization and Different Delivery Modes (PCSCM-MDSM) problem.
Our goal was to examine the effects of delivery methods, medication synchronization, and
cooling requirements on distribution costs and revenues. To tackle this problem, we devel-
oped a Mixed-Integer Linear Programming (MILP) model. This model aims to optimize
results by determining the optimal number and composition of orders, as well as the ap-
propriate number of employees while considering patient demand, cooling restrictions, and
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employee constraints. To evaluate the effectiveness of our model, we utilized real-world
data from the Maartensapotheek (MA), an outpatient pharmacy affiliated with a Dutch
hospital. We implemented and solved the MILP model using the Gurobi 10.0 solver within
the Python-MIP package. Our solver successfully provided near-optimal solutions for all
instances of the MA case (an optimality gap of 1.83 ∗ 10−15 for the base scenario), demon-
strating the efficacy of our approach. Furthermore, we conducted tests with two variations of
the model and explored two alternative model sizes. The maximum observed optimality gap
across these experiments was 7.53 ∗ 10−5. Computation times of alternative model sizes are
never more than 100 seconds, which ensures the model runs within very reasonable time.
These findings demonstrate the robustness and reliability of our model in addressing the
PCSCM-MDSM problem and its ability to generate high-quality solutions in a reasonable
time.

Despite the promising outcomes of this research, there exist certain limitations that
warrant acknowledgment and present avenues for future investigation. Firstly, the current
model overlooks dosage and package sizes. While package size seldom poses challenges for
couriers in practice, variations in delivery modes may introduce packaging size issues. For
instance, when patients order less frequently, such as every six months, the packages may
become larger if the number of orders per period remains constant. Further research should
explore the feasibility of potentially increasing order sizes for both the pharmacy and the
chosen delivery methods.

Additionally, the model assumes an absence of stock shortages in the pharmacy, re-
flecting the infrequency of such shortages in the MA. However, this may not hold true for
different pharmacies, where shortages could occur. In such cases, pharmacies often opt for
more frequent patient orders to facilitate smaller batches. This adjustment would signif-
icantly influence the model’s results, as it would generate a larger number of orders for
certain medications. Consequently, investigating the impact of shortages on the model and
incorporating appropriate adaptations becomes imperative for future research.

Moreover, the model’s current formulation encompasses two types of cooling restrictions
and three types of transportation cooling restrictions, one for each medication cooling re-
striction, as well as a combination type. Should the model be employed in a pharmacy with
additional cooling types, the constraints outlined in Section 3.3 would require modification.

Another potential area for future research, as mentioned in Section 4.5, lies in exploring
alternative solution methods that may prove advantageous for larger problem instances (it is
not useful for our case as we could solve the problem to optimality in the matter of seconds).

Lastly, although not necessary for our case, expanding the number of scenarios tested
in future research would provide a broader evaluation of the model’s performance across
diverse environments, enhancing its practical applicability.

We also note that the current model is of deterministic nature, as the variability of input
data is deemed to be negligible by the problem owner. However, the problem can be imposed
on stochastic elements corresponding to the input data. For instance, factors such as demand
arrival patterns, frequency, and the composition of order batches may exhibit variability
over time, influenced by different patient types. To address this dynamic environment
more comprehensively, future research should consider incorporating stochastic models and
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exploring appropriate solution methods, such as simulation modeling. By adopting such
approaches, decision-makers can obtain valuable insights and make informed decisions in
the face of uncertainty.
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Appendix A. Data tables

This section contains the expanded versions of Table 5.

Table A.18 Complete values of qckp: the number of unique medicines with cooling type c, medication type
k and for patient type p

Nr unique meds qckp

Patient type p c0; k0 c0; k1 c1; k0 c1; k1
p0 1 0 0 0
p1 1 0 0 0
p2 0 0 0 1
p3 0 0 0 1
p4 0 0 0 2
p5 1 0 0 1
p6 0 0 0 2
p7 0 0 0 3
p8 0 0 0 2
p9 1 0 0 1
p10 1 0 0 2
p11 0 0 0 3
p12 0 0 0 3
p13 1 0 0 2
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Patient type p c0; k0 c0; k1 c1; k0 c1; k1
p14 0 0 0 4
p15 0 0 0 4
p16 2 0 0 0
p17 1 0 0 3
p18 0 0 0 4
p19 1 0 0 1
p20 1 0 0 1
p21 2 0 0 0
p22 1 0 0 3
p23 1 0 0 2
p24 2 0 0 0
p25 0 0 0 2
p26 1 0 0 3
p27 1 0 0 2
p28 0 0 0 5
p29 1 0 0 3
p30 0 0 0 5
p31 1 0 0 4
p32 1 0 0 4
p33 0 0 0 5
p34 1 0 0 1
p35 0 0 0 3
p36 1 0 0 2
p37 1 0 0 4
p38 1 0 0 2
p39 0 0 0 3
p40 0 0 0 6
p41 0 0 0 4
p42 1 0 0 2
p43 0 0 1 0
p44 0 0 0 5
p45 2 0 0 1
p46 1 0 0 5
p47 2 0 0 1
p48 1 0 0 3
p49 0 1 0 0
p50 1 0 0 5
p51 0 0 0 6
p52 1 0 0 3
p53 0 0 0 4
p54 1 0 0 5
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Patient type p c0; k0 c0; k1 c1; k0 c1; k1
p55 1 0 0 1
p56 0 0 0 6
p57 2 0 0 1
p58 1 0 0 3
p59 1 0 0 5
p60 0 0 0 7
p61 0 0 0 3
p62 1 1 0 0
p63 0 0 0 6
p64 0 0 0 7
p65 2 0 0 2
p66 2 0 0 3
p67 1 0 1 0
p68 1 0 0 5
p69 1 0 0 4
p70 1 0 1 1
p71 2 0 0 2
p72 1 0 0 4
p73 1 0 0 3
p74 1 0 0 2
p75 0 0 0 4
p76 1 0 0 6
p77 2 0 0 1
p78 2 0 0 3
p79 1 1 0 0
p80 2 0 0 4
p81 1 0 0 6
p82 2 0 0 0
p83 0 0 1 0
p84 2 0 0 2
p85 2 0 0 1
p86 1 0 0 1
p87 2 0 0 0
p88 0 0 1 1
p89 1 0 0 6
p90 0 0 0 5
p91 0 0 0 2
p92 1 0 0 4
p93 0 0 0 4
p94 1 0 1 0
p95 0 0 0 7
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Patient type p c0; k0 c0; k1 c1; k0 c1; k1
p96 2 0 0 3
p97 2 0 0 1
p98 1 0 0 2
p99 0 0 0 5
p100 2 0 0 1
p101 1 0 0 6
p102 1 0 0 7
p103 2 0 0 2
p104 1 0 1 1
p105 1 0 0 3
p106 0 0 0 3
p107 2 0 0 1
p108 1 0 0 7
p109 0 0 0 7
p110 0 0 1 2
p111 2 0 0 4
p112 0 0 0 9
p113 2 0 0 5
p114 2 0 0 5
p115 2 0 0 3
p116 2 0 0 2
p117 2 0 0 4
p118 0 0 0 8
p119 1 0 0 4
p120 1 0 1 0
p121 1 0 0 2
p122 0 0 1 2
p123 1 0 0 1
p124 1 0 0 5
p125 0 0 0 8
p126 2 0 0 3
p127 0 0 0 5
p128 2 0 0 4
p129 2 0 0 0
p130 0 0 1 1
p131 0 0 1 3
p132 2 0 0 0
p133 1 0 0 2
p134 1 0 0 5
p135 1 0 1 2
p136 2 0 0 6
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Patient type p c0; k0 c0; k1 c1; k0 c1; k1
p137 0 0 0 9
p138 1 0 0 2
p139 1 0 0 4
p140 1 0 0 4
p141 1 0 0 6
p142 0 1 0 1
p143 1 0 1 0
p144 1 0 0 4
p145 1 0 1 0
p146 1 0 0 3
p147 2 0 0 4
p148 0 0 0 2
p149 0 1 0 5
p150 0 0 0 2
p151 1 0 0 1
p152 1 0 1 3
p153 1 1 0 3
p154 1 0 0 1
p155 1 0 0 7
p156 1 0 1 1
p157 0 0 1 3
p158 2 0 0 2
p159 1 0 1 4
p160 0 0 1 2
p161 2 0 0 2
p162 0 0 0 8
p163 0 0 1 3
p164 1 0 1 2
p165 1 0 0 3
p166 2 0 0 2
p167 0 1 0 1
p168 1 0 0 4
p169 0 1 0 1
p170 1 0 0 5
p171 1 0 0 2
p172 0 0 0 2
p173 2 0 0 5
p174 1 0 0 2
p175 1 0 1 2
p176 0 0 1 5
p177 1 0 0 5
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Patient type p c0; k0 c0; k1 c1; k0 c1; k1
p178 1 0 0 8
p179 1 1 0 0
p180 1 1 0 0
p181 1 0 1 3
p182 2 0 0 3
p183 1 0 0 7
p184 1 0 0 5
p185 2 0 0 5
p186 0 0 1 4
p187 1 0 0 6
p188 1 0 0 9
p189 1 0 0 7
p190 0 0 1 1
p191 0 0 0 8
p192 1 0 1 2
p193 1 0 0 14
p194 2 0 0 3
p195 1 0 0 8
p196 1 0 0 9
p197 0 0 1 1
p198 2 0 0 2
p199 1 1 0 1
p200 2 0 0 3
p201 1 0 0 7
p202 0 0 1 3
p203 0 0 0 10
p204 1 0 1 2
p205 2 0 0 1
p206 1 1 0 0
p207 2 0 0 6
p208 1 0 1 0
p209 1 0 0 8
p210 0 0 0 9
p211 1 1 0 2
p212 2 0 0 4
p213 0 0 1 4
p214 1 1 1 5
p215 0 1 0 2
p216 0 2 0 0
p217 0 0 1 5
p218 1 0 1 1
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Patient type p c0; k0 c0; k1 c1; k0 c1; k1
p219 0 1 0 4
p220 0 1 0 3
p221 1 0 1 3
p222 1 1 0 1
p223 1 0 1 5
p224 0 1 0 6

End of table

Table A.19 Complete values of ρp: the number of patients of type p

Patient type p Number of patients ρp

p0 935
p1 553
p2 539
p3 318
p4 261
p5 259
p6 208
p7 180
p8 183
p9 157
p10 154
p11 147
p12 124
p13 110
p14 93
p15 97
p16 93
p17 92
p18 77
p19 73
p20 71
p21 65
p22 62
p23 61
p24 60
p25 54
p26 53
p27 45
p28 45
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Patient type p Number of patients ρp

p29 41
p30 41
p31 40
p32 40
p33 40
p34 39
p35 37
p36 36
p37 34
p38 29
p39 29
p40 29
p41 29
p42 28
p43 31
p44 25
p45 25
p46 24
p47 22
p48 22
p49 22
p50 21
p51 20
p52 18
p53 18
p54 18
p55 18
p56 18
p57 17
p58 17
p59 16
p60 16
p61 15
p62 15
p63 15
p64 15
p65 14
p66 14
p67 14
p68 14
p69 13
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Patient type p Number of patients ρp

p70 13
p71 13
p72 13
p73 11
p74 11
p75 11
p76 11
p77 11
p78 11
p79 11
p80 11
p81 11
p82 10
p83 11
p84 10
p85 10
p86 10
p87 10
p88 9
p89 9
p90 9
p91 9
p92 9
p93 9
p94 9
p95 9
p96 8
p97 8
p98 8
p99 8
p100 8
p101 8
p102 8
p103 8
p104 7
p105 7
p106 7
p107 7
p108 7
p109 7
p110 7
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Patient type p Number of patients ρp

p111 6
p112 6
p113 6
p114 6
p115 6
p116 6
p117 6
p118 6
p119 6
p120 6
p121 6
p122 6
p123 6
p124 6
p125 6
p126 6
p127 6
p128 6
p129 6
p130 6
p131 5
p132 5
p133 5
p134 5
p135 5
p136 5
p137 5
p138 5
p139 5
p140 5
p141 5
p142 5
p143 4
p144 4
p145 4
p146 4
p147 4
p148 4
p149 4
p150 4
p151 4
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Patient type p Number of patients ρp

p152 4
p153 4
p154 4
p155 4
p156 4
p157 4
p158 4
p159 4
p160 4
p161 4
p162 4
p163 3
p164 3
p165 3
p166 3
p167 3
p168 3
p169 3
p170 3
p171 3
p172 3
p173 3
p174 3
p175 3
p176 3
p177 3
p178 3
p179 3
p180 3
p181 3
p182 3
p183 3
p184 3
p185 3
p186 3
p187 3
p188 3
p189 3
p190 3
p191 3
p192 3
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Patient type p Number of patients ρp

p193 3
p194 3
p195 3
p196 3
p197 3
p198 3
p199 3
p200 3
p201 3
p202 3
p203 2
p204 2
p205 2
p206 2
p207 2
p208 2
p209 1
p210 1
p211 1
p212 1
p213 1
p214 1
p215 1
p216 1
p217 1
p218 1
p219 1
p220 1
p221 1
p222 1
p223 1
p224 1

End of table

Table A.20 Complete values of σp: the minimum number of orders per time horizon of patient type p

Patient type p Minimum number of orders σp

p0 1
p1 1
p2 1
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Patient type p Minimum number of orders σp

p3 1
p4 1
p5 1
p6 1
p7 1
p8 1
p9 1
p10 1
p11 1
p12 1
p13 1
p14 1
p15 1
p16 1
p17 1
p18 1
p19 1
p20 1
p21 1
p22 1
p23 1
p24 1
p25 1
p26 1
p27 1
p28 1
p29 1
p30 1
p31 1
p32 1
p33 1
p34 1
p35 2
p36 2
p37 1
p38 2
p39 1
p40 1
p41 1
p42 2
p43 1
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Patient type p Minimum number of orders σp

p44 1
p45 1
p46 1
p47 1
p48 2
p49 1
p50 1
p51 1
p52 2
p53 2
p54 1
p55 1
p56 1
p57 2
p58 2
p59 2
p60 1
p61 2
p62 1
p63 1
p64 1
p65 1
p66 2
p67 1
p68 1
p69 2
p70 1
p71 1
p72 1
p73 2
p74 2
p75 2
p76 1
p77 2
p78 1
p79 1
p80 1
p81 1
p82 1
p83 1
p84 1
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Patient type p Minimum number of orders σp

p85 1
p86 1
p87 1
p88 1
p89 1
p90 2
p91 1
p92 2
p93 2
p94 1
p95 1
p96 1
p97 2
p98 3
p99 2
p100 3
p101 2
p102 1
p103 2
p104 2
p105 2
p106 2
p107 2
p108 1
p109 1
p110 1
p111 1
p112 1
p113 1
p114 1
p115 2
p116 2
p117 2
p118 1
p119 2
p120 1
p121 3
p122 1
p123 1
p124 2
p125 1
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Patient type p Minimum number of orders σp

p126 1
p127 2
p128 1
p129 1
p130 1
p131 1
p132 1
p133 2
p134 2
p135 2
p136 2
p137 1
p138 2
p139 2
p140 2
p141 1
p142 1
p143 1
p144 3
p145 1
p146 3
p147 2
p148 1
p149 1
p150 1
p151 1
p152 2
p153 1
p154 1
p155 1
p156 2
p157 1
p158 2
p159 1
p160 1
p161 1
p162 1
p163 2
p164 2
p165 3
p166 3
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Patient type p Minimum number of orders σp

p167 1
p168 3
p169 1
p170 3
p171 3
p172 1
p173 2
p174 3
p175 1
p176 1
p177 2
p178 1
p179 1
p180 1
p181 1
p182 2
p183 2
p184 2
p185 1
p186 1
p187 2
p188 1
p189 2
p190 1
p191 1
p192 1
p193 2
p194 2
p195 1
p196 1
p197 1
p198 2
p199 1
p200 1
p201 1
p202 1
p203 1
p204 1
p205 1
p206 1
p207 1
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Patient type p Minimum number of orders σp

p208 1
p209 1
p210 1
p211 1
p212 1
p213 1
p214 1
p215 1
p216 1
p217 1
p218 1
p219 1
p220 1
p221 1
p222 1
p223 1
p224 1

End of table
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