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Abstract

The demand for recycled metals is growing exponentially, making it imperative for in-
dustries to adapt to sustainable practices. However, the use of recycled metals can pose
challenges due to their unpredictable behavior. To address this, significant efforts have
been made in the field of Eddy Current testing to monitor the material properties of
recycled metals. Nonetheless, interpreting Eddy Current sensor signals to estimate the
mechanical properties remains a challenge. Previous studies have focused on individual as-
pects of Eddy Current testing, such as magnetic homogenization or coil winding modeling,
without providing a comprehensive framework to relate the sensor signal to the mechani-
cal properties of the sheet. The primary objective of this thesis is to present a modeling
framework that relates the Eddy Current sensor signal to the mechanical properties of
the sheet. Achieving this objective entails a detailed study of inductance calculations and
Eddy Current sensor modeling. The models developed in this study are validated with ex-
periments and used to describe the relationship between the sensor signal and the magnetic
properties of the sheet. In addition, the study employs mechanical and magnetic homog-
enization techniques to investigate the relationship between the magnetic and mechanical
properties of AISI420. By providing a comprehensive framework for relating Eddy Current
sensor signals to mechanical properties, this study addresses a significant challenge faced
by industries seeking to use recycled metals. The proposed models and techniques have the
potential to revolutionize the field of Eddy Current testing and provide a more sustainable
approach to the use of metals in industrial applications.
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1. Introduction

1.1 Non-destructive testing

In recent years, there has been a significant push to use recycled metals in manufacturing.
The use of recycled metals can reduce production costs and the environmental footprint.
However, recycled materials often contain higher levels of impurities, leading to less pre-
dictable material behavior. This lack of predictability can pose significant problems for
many industries because processing parameters need to be calibrated for each incoming
batch of material. For instance, Philips Drachten produces shaving caps with very strict
specifications on geometrical tolerances. The deep drawing dies are designed to meet these
tolerances for specific incoming sheets with certain properties. Deviations in material prop-
erties affect each processing step during deep drawing, making it difficult to predict the
resulting geometry [1]. Therefore, monitoring incoming materials is crucial to maintain
consistent product quality.

Figure 1.1: The deep drawing process of the shaving caps in Philips Drachten.

Conventional methods to characterize materials, such as transmission electron microscopy,
scanning electron microscopy, optical microscopy, tensile testing, and hardness testing [2],
have significant limitations, including high manual labor, small sample sizes, and slow
feedback time. Given these limitations, extensive research has been conducted on inline
non-destructive testing [NDT] methods. A well worded description of inline NDT is given
in [3]: "Evaluation of material determined completely autonomously utilizing the test elec-
tronics requiring no operator intervention/interaction once the system has been set up."
Ultrasonic testing, x-ray radiographic testing, and eddy current testing are among the
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most commonly used inline NDT methods [4]. This thesis focuses on the eddy current
sensor, which is the only sensor capable of determining magnetic permeability and con-
ductivity [4]. By measuring these properties, the microstructure can be characterised,
revealing information about the mechanical properties. Figure 1.2 illustrates this concept.

Figure 1.2: An illustration of the playing field of the research, reproduced from [5].

1.2 Literature and motivation

Several introductory books on magnetization have been written, including those by R.
Bozorth [6], S. Chikazumi [7] and B. D. Cullity [8]. Besides these introductory books,
an overview of the other relevant works will be given including their limitations. Several
studies have discussed inductance computations, as demonstrated in [9] [10] [11] [12] [13]
[14]. However, none of these papers address the determination of the real and imaginary
parts of self and mutual inductance. Similarly, there are several works on eddy current
sensor modeling, including those presented in [12] [13] [15] [16] [17] [18] [19]. There are two
missing aspects in these works. The first aspect is an experimental validation of the complex
behavior of mutual inductance at high frequencies. The second aspect, is the inverse
fitting of the sensor response to obtain the magnetic permeability and conductivity of the
sheet. Furthermore, there are numerous papers discussing the magnetic homogenization
[5] [20] and mechanical homogenization [21] [22] [23]. However, the combined mechanical
and magnetic homogenization required to establish a relationship between mechanical and
magnetic properties has not been adequately addressed. Finally, the Vilari reversals during
cyclic loading have been frequently studied, as shown in [24] [25] [26] [27]. Nevertheless,
crystal plasticity simulations are missing to support the theories described in these studies.
This paper aims to address these gaps in the literature.

1.3 Goal and outline of the thesis

The purpose of this thesis is to provide a framework for relating the mechanical properties
to the measurements by the eddy current sensor. To do this, several mechanisms in the
magnetic and mechanical domain are studied on both micro and macro-scale. The start of
the thesis will focus on the macroscopic modeling of the sensor to relate the measured curve
to the permeability and conductivity of the sheet. This is followed by a study on the micro

4



scale to investigate how the permeability depends on the microstructure. In the subsequent
part of the thesis, a study is conducted on the relationship between the microstructure and
the mechanical properties. A small side step will be made where it is studied what happens
during cyclic loading. The final part of the thesis brings together the findings from the
previous sections, presenting a relationship between microscopic mechanical and magnetic
properties while also summarizing all other relationships discovered during the research.
The contributions made throughout this work are listed below.

• With regards to macroscopic eddy current modeling: (i) A derivation, implemen-
tation and validation of several inductance calculations in EM-FE [Electromagnetic
- Finite Element] simulations is performed. (ii) An EM-FE model is described to
simulate the measured inductance. The model is validated with experimental mea-
surements. (iii) The eddy current sensor response has been simulated for many
different sheet properties. The results can be used to relate the characteristics of the
inductance curve to the permeability and conductivity of the sheet.

• Mechanical and magnetic homogenization are used to show the relation between
magnetic and mechanical properties.

• The thesis presents full-field crystal plasticity finite element simulations to support
the theories on Vilari reversals during cyclic loading.

The research conducted in this thesis provides valuable insight into the relationship between
mechanical and magnetic properties, particularly in the context of eddy current measure-
ments. These findings can help improve the accuracy and efficiency of non-destructive
testing techniques in the field of mechanical engineering.
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Part I.

Electromagnetic analysis

7





2. Sensor analysis

2.1 Introduction

The upcoming chapter delves into the electromagnetic finite element model of the sensor,
starting with Sections 2.2 to 2.6. These sections thoroughly discuss the model’s boundary
conditions, coil homogenization, and inductance calculation, emphasizing their importance
in the accurate representation of the sensor’s behavior. In Section 2.7 an electrical circuit is
described that can be used to interpret the inductance curve. Moving forward, Section 2.8
provides a comparative analysis of the experimental results with those obtained from the
EM-FE model. The objective is to assess the model’s accuracy and limitations. Finally,
Sections 2.9 and 2.10 unveil the outcomes obtained using the sensor model. These sections
discuss the magnetic field lines, as well as the effects of width, thickness, conductivity, and
permeability on the inductance.

2.2 The working principle of the eddy current sensor

Figure 2.1 illustrates the working principle of eddy current sensors. A current is imposed on
a transmitting coil, creating a magnetic field (blue arrow). This leads to eddy currents in
the sheet beneath the sensor (dotted black lines). The eddy currents create a new magnetic
field (red arrow) that opposes the initial field. The resulting magnetic field is measured by
the receiver coil. The magnitude of the magnetic field depends on the conductivity and
magnetic permeability of the sheet.

Figure 2.1: An illustration of the principle behind eddy current sensors.
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The two transmitting coils can be used in two different modes. In the first mode, the
transmitting coils create a magnetic field in the same direction. This is called the eddy
current mode because it creates eddy currents in the material that oppose the applied
magnetic field. This mode is generally used to measure the influence of eddy currents and
high-frequency phenomena. In the second mode, the coils create opposing magnetic fields.
This causes the magnetic flux to be parallel to the sheet. The sensor response is thus
mainly related to the permeability of the material. This is called the permeance mode and
is mainly used at lower frequencies. An overview of the magnetic flux directions in both
modes is given in Figure 2.2. It should be noted that only coils 1A, 1B, 3A and 3B are
used during the experiments in this thesis.

Figure 2.2: The direction of the magnetic field in the EC mode (left). The direction
of the magnetic field in the permeance mode (right), reproduced from [28]. The
transmitting coils are 1A and 1B. The receiving coils are 3A, 3B, 4A1, 4A2, 4B1
and 4B2.

2.3 Electromagnetic field equations for low-frequency
time-harmonic eddy currents

Before any postprocessing calculations are carried out, a brief overview of the theory and
assumptions in EM-FE simulations is provided. Let the problem domain be represented
by material points x = xiei, where ei for i = 1, 2, 3 denote Cartesian basis vectors and
Einstein’s summation convention is used. In the context of time-dependent phenomena,
the electromagnetic field can be represented by four vector fields: the electric field inten-
sity E(x, t), the electric flux density D(x, t), the magnetic field density H(x, t), and the
magnetic flux density B(x, t). In addition, consider the electric current density J(x, t) and
the scalar electric charge density ϱ(x, t). Considering that ∇ gives the gradient operator
and “·” and “×” respectively denote scalar and cross products, two independent Maxwell’s
equations relating these time- and space-varying electromagnetic fields can be chosen as
follows [29, 30]

∇×E = −dB

dt
, (2.1)

∇×H =
dD

dt
+ J , (2.2)

Eqs. (2.1,2.2) correspond to Faraday’s law and Maxwell-Amp‘ere law, respectively. Both
equations will be expressed in terms of the magnetic vector potential, A. Equation (2.1)
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can be rewritten by defining the magnetic vector potential as B = ∇ ×A and applying
Ohm’s law, J = −σ ·E, which gives

J = −σ · dA
dt

. (2.3)

In this thesis time harmonic fields are considered in which case all fields can be rewritten
in terms of their phasors. A detailed derivation and explanation of phasors is given in
Section 2.6.1. In short a phasor is the complex amplitude of a time harmonic expression.
Expressing Equation 2.3 in terms of the phasor and utilizing Equation 2.12 gives

J
∼
= −σ ·A

∼
ωi. (2.4)

Where J
∼

and A
∼

are the phasors of J and A. In a low-frequency time-harmonic eddy
current problem, the electric current density field admits an additive decomposition in an
induced part, Je

∼
, and an impressed part, Jimp

∼
. This can be used together with (2.4) to

obtain
J
∼
= Je

∼
+ Jimp

∼
= −σ ·A

∼
ωi+ Jimp

∼
. (2.5)

The next step is to rewrite (2.2). The initial step in this process is to disregard the
displacement current term, dD/dt. This is a critical assumption since the displacement
current is responsible for the observed capacitance [31]. Disregarding this term leads
to a substantial discrepancy between the theoretical and experimental results at higher
frequencies, as will be discussed in detail later in this study. Nonetheless, this assumption
is prevalent in all commercial finite element eddy current analysis methods, such as Ansys,
Abaqus, and Comsol, and is thus deemed acceptable. After omitting the displacement
current term and applying B

∼
= µ ·H

∼
, as well as substituting (2.5), Equation (2.2) may

be restructured as follows

∇× [µ−1 ·∇×A
∼
] + iωσ ·A

∼
= Jimp

∼
. (2.6)

Multiplying both sides by a virtual magnetic vector potential term dA
∼

, and integrating
over the volume with the application of standard tensor calculus operations result in the
following variational form∫︂

V
∇× dA

∼
· [µ−1 ·∇×A

∼
] dV + iω

∫︂
V
dA
∼
· σ ·A

∼
dV

=

∫︂
V
dA
∼
· Jimp

∼
dV +

∫︂
∂V

dA
∼
·K
∼
dS ,

(2.7)

where K
∼

represents the tangential surface current density. Note that the variational form
given in Eq. (2.7) considers the complex magnetic vector potential A

∼
and its real (in-

phase) and imaginary (out-of-phase) components. This enables the derivation of other
field variables and sensor data output, such as the phase of inductance.

2.4 Finite element model details

The simulations of the sensor are performed using the time-harmonic eddy current analysis
in Abaqus Electromagnetic. It should be noted that doing simulations in this environment
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has some important limitations. First of all, the displacement currents are neglected.
This means that capacitance can not be taken into account. Secondly, magnetic hysteresis
cannot be defined for the material, which is only possible in transient eddy current analysis.
To reduce the number of elements, symmetry is used to model the sensor, employing one-
eighth of the model, as shown in Figure 2.3.

Figure 2.3: The mesh of the model used in the simulations. It can be recognized
only one-eighth of the sensor is modeled.

It is crucial to define appropriate boundary conditions to account for the use of symmetry.
On the one hand, for the permeance mode, the magnetic potential for each surface can
be set to zero. The reason is that in each plane there is either symmetry or the magnetic
field has decayed far enough. On the other hand, for the eddy current mode, there is
anti-symmetry between the coils. A good description of anti-symmetry and symmetry
conditions is given in [32]. An overview of the electric and magnetic fields near the surface
is given in Table 2.1. In this table ∥ relates to the tangential component and ⊥ to the

Table 2.1: The electrical and magnetic field near symmetric and anti-symmetric
boundary conditions.

E⊥ E∥ B⊥ B∥
Symmetry free zero zero free

Anti-symmetry zero free free zero

perpendicular component. Anti-symmetric boundary conditions can be defined in Abaqus
by defining no boundary condition for that surface. In Appendix E it is shown this results
in anti-symmetry.

It should be noted that the symmetry assumptions are not fully accurate. In the actual
sensor set-up the sheet rests on a supporting surface which is at the same height for each
measurement. Consequently, for thicker sheets, they will be positioned closer to one ferrite
core than the other, as is evident from L1 being smaller than L2 in Figure 2.2. Another
simplification is done on the horizontal position, which is in reality not exactly in the
center of the sensor. Empirical observations indicate that the horizontal position affects
the measurement significantly. Hence, the horizontal alignment of the sheet is carefully
managed to ensure accuracy.

Apart from the boundary conditions, various parameters require careful consideration in
the simulations. For the coils it is chosen to use a a low conductivity. The reason is that
otherwise the resistance used in the calculations for the voltage in Section 2.7 need to be
corrected for the skin effect. This is not straightforward [33]. Rather than a conductivity
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of 0 a conductivity of 1 S/m is used which allows calculating the inductance using the
current method, see Section 2.6. The relative permeability of the core that is used is 3000
based on the data sheet of feroxxcube 3C95. The conductivity of the core is 0.2 [S/m] as
can be seen on the datasheet of feroxxcube 3C95. The permeability of the sheet varies per
simulation, the conductivity is set at 2 × 10−6 based on conductivity measurements. An
overview of the used parameters is shown in Table 2.2.

Table 2.2: The parameters used during the simulation.

Transmitter Receiver Core Air Sheet
Relative permeability 1 1 3000 1 varies

Conductivity 1 1 0.2 0 2 ×106

2.5 Winding homogenization

Due to the constraints on mesh size, it is often infeasible to model all individual windings
of a coil. Thus, the common practice is to consider the coil as a homogeneous sheet
with a specific current density [34]. The current density is chosen to match that in real
experiments and is calculated using

J = IexperimentNwindings/Across−section. (2.8)

It should be noted that three important effects are ignored when modeling the coil as a
homogeneous sheet. These effects are listed below.

• The proximity effect which is the redistribution of current towards the sides of the
wires due to nearby windings. This effect is illustrated on the left side of Figure 2.4
as the large blue circles.

• The skin effect is the redistribution of the current density towards the surface of the
wire. This is illustrated as the small blue circles on the left side in Figure 2.4.

• The capacitive effect is the interaction of electric fields of closely spaced conductors
that leads to displacement currents between the coils.

These effects are illustrated on the right side of Figure 2.4. In [34] an extensive description
is given of homogenization methods to include the proximity effects, skin effects, and
capacitative effects. Many of the methods rely on modeling the discrete windings, obtaining
an equivalent impedance and reluctivity, and then using this in the homogeneous coil.
Implementing this into Abaqus electromagnetic is, however, not straightforward because
assigning some equivalent impedance or complex conductivity is not readily available and
should be implemented using user subroutines.

2.6 Sensor output computation

2.6.1 Definitions

Consider a coil that is subjected to a current placed near a magnetic and conductive
medium, as depicted in the left side of Figure 2.5. When the current flows through the
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Figure 2.4: An illustration of the skin, proximity and capacitative effects, reproduced
from [34]. δtd is the electric charge displacement rate. h is the magnetic field.

coil, the conductive medium induces eddy currents, which in turn cause an opposing volt-
age to develop in the coil. This phenomenon can be characterized by employing a complex
inductance, denoted by Lc, as illustrated in the center of Figure 2.5. The complex induc-

.. .. ..

Figure 2.5: An illustration of some electric circuit, reproduced and modified from
[35].

tance describes the relationship between the excitation current and the resulting voltage
in the coil, expressed as follows

U1c = jωLcI1. (2.9)

In eddy current testing, a slightly different scenario arises due to the presence of two coils, as
shown on the right side of Figure 2.5. In this case, the complex mutual inductance, denoted
by Mc, is employed to describe the relationship between the current in the transmitting
coil, I1, and the voltage in the receiving coil, U2c

U2c = jωMcI1. (2.10)
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Since many of the variables used to calculate the inductance are time-harmonic, some
notes regarding notation are in order. The notation adheres to the conventions described
in [35] and [36]. Time-harmonic variables can be expressed in phasor notation as shown in
Appendix F. An arbitrary variable X can be expressed in phasor notation as follows

X(x, y, z, t) = Re
[︁
X0(r)e

jαejωt
]︁
= Re

[︂
X
∼
(r)ejωt

]︂
. (2.11)

Here, X
∼
(r) represents the complex phasor, which is equal to X0(r)e

jα. One of the advan-
tages of phasor notation is that taking derivatives is straightforward, as shown below

d

dt
X(x, y, z, t) =

d

dt
Re

[︂
X
∼
(r)ejωt

]︂
= Re

[︂
X
∼
(r)jωejωt

]︂
. (2.12)

2.6.2 Implementation

2.6.2.1 Energy method

The inductance of a circuit can be calculated by comparing the power supplied by the
circuit to the power consumed by the field. The power supplied by the circuit can be
written analogous to the equation at the top of page 32 in [36].

P = I
∼
· I∗
∼
(Lrej − Lim)ω (2.13)

Where I
∼

and I∗
∼

are the phasor of the current and the complex conjugate of the phasor
of the current, respectively. The power consumed by the field, Pf , can be described by
Equation 2.14. This is done analogous to Equation 1-68 in [36].

Pf = Pr + Pd + j2ω(Wm +We) (2.14)

Where Pr is the power leaving the region, Pd is the dissipated power, Wm is the power
stored in the magnetic field and We is the electric energy of the field. In practice, Pr can
be neglected since no power is leaving the domain. We can also be ignored as it is related
to the capacitance, which is not considered in the simulations. The remaining variables,
Wm and Pd can be calculated using Equation 2.15. It should be noted that these are the
instantaneous power and energies as described under Equation 1-68 of [36].

Pd =

∫︂
σ|E(r, t)|2dV and Wm =

1

2

∫︂
µ|H(r, t)|2dV (2.15)

The next goal will be to rewrite the time-dependent expressions in terms of their phasors.
This rewriting is done in Section F.2. The result from this derivation shows that the
expressions can be rewritten as

|E(r, t)|2 = 1

2
[E
∼
·E
∼

∗] and |H(r, t)|2 = 1

2
[H
∼

·H
∼

∗]. (2.16)

Where E
∼

and H
∼

are the complex phasors of the electric field and applied magnetic field.
When no magnetic hysteresis is considered, i.e., when conductivity and permeability are
real, Equation 2.16 can be rewritten as

σ|E(r, t)|2 = 1

2
[J
∼
·E
∼

∗] and µ|H(r, t)|2 = 1

2
[B
∼
·H
∼

∗]. (2.17)
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Combining Equations 2.13, 2.14, 2.15 and 2.17 gives the following equality

I
∼
· I∗
∼
(Lrej − Lim)ω =

∫︂
J
∼
·E
∼

∗dV + 2jω
1

2

∫︂
B
∼
·H
∼

∗dV. (2.18)

The two integral terms
∫︁
J
∼
· E
∼

∗dV and
∫︁
B
∼

· H
∼

∗dV , are real, as can be confirmed by
Equation 2.35. Using this property, the expressions for the real and imaginary inductance
are obtained as

Lim = −

∫︁
J
∼
·E
∼

∗dV

ωI
∼
· I∗
∼

and Lre =

∫︁
B
∼
·H
∼

∗dV

I
∼
· I∗
∼

. (2.19)

The next step is to derive an expression for the mutual inductance. For the sake of
simplicity, the expressions for the real part of the mutual inductance will be derived. It is
assumed that no magnetic hysteresis is present, in which case the derivations can be taken
from [37]. Consider a situation in which the transmitting coil is excited with a current I1

∼
and the receiving coil is excited with a current I2

∼
. The resulting energy of the circuits is

given by Equation 2.20, which is taken from Equation 10 in [38]:

W =
1

2
L11I1

∼
· I∗1
∼
+MI1

∼
· I∗2
∼
+

1

2
L22I2

∼
· I∗2
∼

(2.20)

The next step is to examine the energy of the field. The total magnetic field, H, is caused
by the current in the transmitting and receiving coil. This can be decomposed into the
magnetic field due to the current in the transmitting coil, H1, and the current in the
receiving coil, H2. Similar to Equation 7 in Section 8.03 in [37], the expression for the
energy of the field is given by

Wm =
1

2

∫︂
µ(H1 +H2) · (H1 +H2)dV (2.21)

Wm =
1

2
µ

(︃∫︂
H2

1dV + 2

∫︂
H2 ·H1dV +

∫︂
H2

2dV

)︃
(2.22)

Appendix F.2 can then be used to write the mutual energy of the magnetic field in terms
of the phasors H1

∼
and H2

∼
.

Wm =
1

2
µ

(︃∫︂
H1
∼

2dV + 2

∫︂
H2
∼

·H1
∼

dV +

∫︂
H2
∼

2dV

)︃
(2.23)

By comparing Equation 2.20 with Equation 2.22, the mutual energy terms can be identified
as MI1

∼
·I∗2
∼

and
∫︁
H2
∼

·H1
∼

dV [37]. Using the principle of conservation of energy, the energy

used by the field must be equal to the energy supplied by the circuit, resulting in Equation
2.24. Rewriting this equation and utilizing B

∼
= µH

∼
gives Equation 2.25.

MreI1
∼
· I∗2
∼

= µ

∫︂
H2
∼

·H1
∼

dV (2.24)

Mre =

∫︁
H2
∼

·B1
∼
dV

I1
∼
· I∗2
∼

(2.25)

16



The same derivations can be performed to obtain the imaginary part of the mutual in-
ductance. The resulting expression for the real and imaginary part of the self and mutual
inductance are given by the following expressions.

Lre =

∫︁
H1
∼

·B1
∼

∗ dV

I1
∼
· I∗1
∼

and Mre =

∫︁
H2
∼

·B1
∼

∗ dV

I1
∼
· I∗2
∼

, (2.26)

Lim =

∫︁
E1
∼

· J1
∼

∗ dV

I1
∼
· I∗1
∼

and Mim =

∫︁
E2
∼

· J1
∼

∗ dV

ωI1
∼
· I∗2
∼

, (2.27)

where H2
∼

is the contribution of I2
∼

to the applied field, B1
∼

is the contribution of I1
∼

to the

magnetic field, E2
∼

is the contribution of I2
∼

to the electric field and J1
∼

is the contribution

of I1
∼

to the current field. The resulting expressions will be referred to as the IEM in

accordance with literature [39].

2.6.2.2 Alternative methods

The inductance can be calculated in several other ways. In all cases, the inductance can
be related to the induced voltage using

L =
U
∼
I
∼
ωi

(2.28)

In the next part, three different methods will be shown to obtain the voltage in the coil.
In Figure 2.6 an overview is given of which domains the methods are integrated over.

B C

A

Figure 2.6: An overview of the domains of integration.

• The flux method which uses the magnetic field. Equation 2.29 follows directly from
Faraday’s law. The domain of integration is the volume inside of the coil and indi-
cated as A in Figure 2.6.

U
∼
= −jω

∫︂
A
B
∼
· dA. (2.29)
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• The electric method which uses the electric field. Equation 2.30 follows from the
definition of the voltage [40]. The domain of integration is a loop around the coil
and indicated as B in Figure 2.6.

U
∼
=

∫︂
B
E
∼
· dl (2.30)

• The current method which uses the current field. The voltage in the coil can also
be defined using the current density as shown in Equation 2.31. The domain of
integration is the cross-section of the coil and indicated as C in Figure 2.6.

U
∼
= R

∫︂
C
J
∼
· dA (2.31)

2.6.3 Discretization

In this part it will be shown how the incremental energy method, flux method, electric
method and current method can be implemented into EM-FE simulation software such as
Abaqus.

2.6.3.1 Energy method

Below an example is given on how the imaginary part of the mutual inductance is calcu-
lated. The initial expression is given by Equation 2.27 and repeated below for convenience

Mim =

∫︁
E2
∼

· J1
∼

∗ dV

ωI1
∼
· I∗2
∼

(2.32)

Now some work will be done to rewrite the expression E2
∼

·J1
∼

∗. To do this the dot product

rule a · b = b · a is used together with J = σE which gives

E2
∼

· J1
∼

∗ =
[︁
Ere

2 + jEim
2

]︁
·
[︁
Jre
1 − jJ im

1

]︁
(2.33)

E2
∼

· J1
∼

∗ = Ere
2 · Jre

1 + jEim
2 · Jre

1 − jJ im
1 ·Ere

2 +Eim
2 · J im

1 (2.34)

E2
∼

· J1
∼

∗ = Ere
2 · Jre

1 +Eim
2 · J im

1 (2.35)

Discretizing the expression and writing out all the components of the field variables gives
the expression for the mutual inductance that can be implemented into Abaqus.

Mim =

Nel∑︂
i=0

(︂[︂
Ĵ
re
12,iÊ

re
11,i + Ĵ

re
22,iÊ

re
21,i + Ĵ

re
32,iÊ

re
31,i

]︂
Vi

)︂
/

(︃
ωI1

∼
· I∗2
∼

)︃
(2.36)

+

Nel∑︂
i=0

(︂[︂
Ĵ
im
12,iÊ

im
11,i + Ĵ

im
22,iÊ

im
21,i + Ĵ

im
32,iÊ

im
31,i

]︂
Vi

)︂
/

(︃
ωI1

∼
· I∗2
∼

)︃
(2.37)

The subscripts are explained as follows, consider Eim
kj,l, in this case, k refers to the compo-

nent of the field (eg. if k = 1 it means that Ex is analyzed), j refers to the simulation in
which coil number j is excited, l refers to the number of the element. Furthermore, Nel

refers to the number of elements in the simulation.
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2.6.3.2 Alternative methods

To implement the Flux, Electric, and Current methods into Abaqus the expressions in
Equations 2.29, 2.30 and 2.31 are rewritten as summations of element volumes and field
values. This makes implementation into Abaqus much easier as these variables are readily
available. The full derivations are shown in Appendix B and the resulting expressions can
be seen in Table 2.3. Where NW is the number of windings, Lp is the coil perimeter, Nel,c

Table 2.3: The real part of the inductance, Lre, and the imaginary part of the
inductance, Lim, for the current, flux and electric method.

Method Expression Lre Lim

Flux A = Nw
hcoilI

[︂∑︁Nel,ic

j=1 (BjVj)−
∑︁Nel,c

k=1

(︂
tcoil−tk
tcoil

BkVk

)︂]︂
Re(A) Im(A)

Electric A =
LpNw

Nel,cωI
∑︁Nel,c

j=1 E∥,j Im(A) Re(-A)

Current A =
ksymNw

IACσω

∑︁Nel,c

j=1 J∥,jVj Im(A) Re(-A)

is the number of elements in the coil, I is the excitation current, hcoil is the axial depth
of the coil, σ is the conductivity of the coil, ω is the radial frequency of excitation, AC is
the cross-sectional area of the coil, ksym is the symmetry multiplier of the model and tcoil
refers to the thickness of the coil. Furthermore, the subscript ∥ refers to the components
of the field values parallel to the winding direction. Also, it should be noted that the
summation over BjVj is done over the elements inside the coil whereas the summation
over BkVk is done over the elements in the coil itself. The summations of the Electric
and Current method are done over the elements in the coil. For all these methods the self
inductance is calculated by performing the summation over the elements corresponding to
the transmitting coil. The mutual inductance is determined by performing the summation
over all elements relating to the receiving coil.

2.6.4 Validation

In order to evaluate the accuracy of the inductance calculation methods, a validation
benchmark is employed. This benchmark involves the determination of mutual inductance
for two free coils. The resulting curves are presented in Figure 2.7, which also includes
the curve for the theoretically calculated inductance based on the analysis in Appendix D
and C. As can be observed from the figure, all the methods yield accurate results. For a
more comprehensive explanation, please refer to section A.1. Additionally, an investiga-
tion is carried out to examine the resulting inductance curves for the actual eddy current
sensor simulation, as detailed in section A.2. It is found that all the inductance calculation
methods provide comparable results when a high coil conductivity is employed. However,
for a low coil conductivity in the model, significant differences are observed among the
methods. Thus, caution should be exercised in selecting an appropriate inductance calcu-
lation method. In the rest of this work it is chosen to use the IEM method because this
provides feasible results for a low coil conductivity and high stabilization factor. The coil
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Figure 2.7: Figure showing the resulting values for the real and imaginary part of
the mutual inductance calculated .

conductivity is set to 1 [S/m] to avoid skin effects in the coil as mentioned earlier. The
stabilization factor is set to 1e6 to improve stability and solving speed.

2.7 Sensor signal interpretation

In the experiments used in this thesis the voltage in the receiver, Urec, and the current
in the transmitter, Iref , are used to calculate the gain and phase of the inductance. The
expressions for the phase and gain of the inductance are given in Equation 2.38 based on
the derivations in Appendix I.⃓⃓⃓⃓

Urec

Iref

⃓⃓⃓⃓
= Mc ∠Urec − ∠Iref = ∠Mc − 90 (2.38)

It is emphasised that Mc can be calculated using the derivations done in Section 2.6.
In literature, many different models are available to describe the phase and gain in an
eddy current sensor. However, often some resistance is assumed for the receiver [41]. In
Table 6-1 in [15] two models for open circuits are mentioned, but these only consider non-
ferromagnetic materials. For this reason, a previously developed model by Shiyu Zeng is
used. This model is based on the simplified electrical circuit shown in Figure 2.8.

Figure 2.8: The electrical circuit as proposed by [28].

Based on derivations done in Section G.2 of the Appendix it can be shown that the gain
and phase can be described by⃓⃓⃓⃓

Urec

Iref

⃓⃓⃓⃓
= jωL11

1 + jωτn
1 + jωτp

and ∠Urec − ∠Iref = arctan

(︃
1 + ω2τnτp
ω(τn − τp)

)︃
, (2.39)

where τn = L2/R2 and τp = (L1 + L2)/R2.
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2.8 Validation cases

2.8.1 No strip

The first validation case is the sensor without a strip. The self inductance for the trans-
mitting coil, L11,trans, and receiving coil, L11,rec, as well as the mutual inductance, M, are
shown in Table 2.4. As can be seen, there is a difference of approximately 10% between
the model and experiments. This error can have different reasons such as mesh refinement
but is acceptable.

Table 2.4: The measured and modeled self and mutual inductances.

L11,trans [µH] L11,rec [µH] M [µH]
Model 335.0 43.7 43.7

Experiment 359.5 43.1 40.5

2.8.2 Copper strips

The second validation case concerns the simulation of copper strips. The advantage of
copper strips is that their relative permeability and conductivity are known quite precisely
to be 1 and 58.14×106 [S/m], respectively. The experimental measurements are compared
to the simulated results in Figure 2.9. It can be seen that the simulation matches the
measurements relatively well. It should be noted that the match with experiments was only
obtained after making some improvements to the experimental set-up which are discussed
in Appendix G.1.
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Figure 2.9: Comparison of the phase (left) and gain (right) from resulting from
simulations and experiments. The experimentally measured curves are indicated by
"−x" markers. The simulated curves are indicated by −o" markers. The dimensions
of the thickness and width and thickness in the legend are [mm].

2.8.3 AISI 420 strips

To test whether the model also provides reasonable results in case a ferromagnetic material
is modeled two scenarios are analyzed. In the first scenario, the measured low frequent gain
is compared to the simulated low frequent gain. This is shown in the left side of Figure
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2.10. In the second scenario, the measured phase is compared to the simulated phase.
The results can be seen on the right side of Figure 2.10. A relative permeability of 108.4,
based on experiments performed by Egge Rouwhorst in [42], is used in all simulations.
Examining the left side of Figure 2.10, an offset between the simulated and measured
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Figure 2.10: Comparison of the simulated low frequent gain (−x marker) with the
measured low frequent gain (−o marker) (left). Comparison of the simulated phase
(−x marker) with the measured phase (−o marker) (right). The dimensions of the
thickness and width and thickness in the legend are [mm].

curves is observed for some thicknesses. This offset can be attributed to the fact that
the relative permeability of 108.4 measured in [42] is specific to a strip from a certain
coil. When a strip is taken from a different coil, the relative permeability will likely differ,
resulting in slightly different measured gain. Furthermore, the right side of Figure 2.10
demonstrates that at higher frequencies, the match between simulation and experiment is
not perfect, which is likely caused by capacitance [28]. Fortunately, at the frequency where
the phase is minimum, the simulation matches experiments relatively well. This means
this point can be used for further analysis.

It is important to note that the magnetization of the strip greatly influences the match
between simulations and experiments. Three different magnetization treatments can be
applied before measuring with the sensor: (i) as received, (ii) demagnetization, i.e., slowly
moving the strip through an alternating field, and (iii) magnetization, i.e., keeping the
strip in a field of constant strength. In the experiments in this work, demagnetization
was performed using a decaying AC field. In Table 2.5 an overview is given on for which
magnetization treatment the simulated phase and gain match with experiments. The de-

As received Demagnetized Magnetized
Gain yes no yes
Phase yes yes yes

Table 2.5: Overview of for which magnetization treatment the simulations match
with experiments.

viation between the measured gain and the simulated gain for the demagnetized samples
can be explained by referring to the description in [43]. For low fields, the magnetic prop-
erties depend on the magnetic history because different demagnetization procedures result
in varying domain structures at zero net magnetization. For example, demagnetization
using decaying AC fields results in higher permeability compared to the permeability after
thermal demagnetization or compared to the DC-permeability.
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2.9 Field line distributions

In order to evaluate the validity of the sensor simulations, field line distributions for an eddy
current mode simulation are presented for four different frequencies. The frequencies and
corresponding phases are depicted in Figure 2.11. The field line plots are generated using

Figure 2.11: The field lines for the EC mode when the frequency is 10 Hz.

ParaView software, by converting the Abaqus-generated database into an unstructured
grid file with the aid of C. Soyarslan’s scripts 1. In all figures, the core, sheet, and coils
appear as gray regions with low opacity. Additionally, the applied current is denoted as
EMCDA, the magnetic field as EMB, and the induced currents as EMCD. As depicted
in Figure 2.12, at low frequencies, the magnetic field lines are perpendicular to the sheet,
as the eddy currents are small and do not create a significant opposing magnetic field.
However, as the frequency increases, the magnetic field lines become parallel to the sheet,
as illustrated in Figure 2.14. This can be attributed to an increase in eddy currents in the
sheet, which bend the magnetic field lines. At even higher frequencies, as shown in Figures
2.13 and 2.15, the magnetic field penetrates the air due to even higher eddy currents in
the sheet.

1The streamtracer filter is used to plot the streamlines of the fields. The tube filter is used to give the
streamlines some radius. Furthermore, the reflect feature is used together with symmetry to show half
of the sensor.
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Magnetic flux density: min max
Eddy current density: min max

Figure 2.12: The field lines for the EC mode when the frequency is 50 Hz. EMCD
max = 2.8× 103 min = 0, EMB max = 7.6× 10−2, min = 0.

Magnetic flux density: min max
Eddy current density: min max

Figure 2.13: The field lines for the EC mode when the frequency is 5 × 104 Hz.
EMCD max =2.8× 103 min = 9.5× 10−2, EMCD max = 2.6× 107, min = 0
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Magnetic flux density: min max
Eddy current density: min max

Figure 2.14: The field lines for the EC mode when the frequency is 5 × 105 Hz.
EMB max = 1.8× 10−1 min = 5.5× 10−7, EMCD max = 3.3× 107, min = 0

Magnetic flux density: min max
Eddy current density: min max

Figure 2.15: The field lines for the EC mode when the frequency is 1×107 Hz, EMB
max = 2.8× 10−2 min = 5.5× 10−6, EMCD max = 8.6× 107, min = 0
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2.10 Parameter studies

2.10.1 Eddy current mode results

This section presents an analysis of the influence of thickness, width, permeability and
conductivity on the inductance curve in the eddy current mode. The transmitter is excited
with a range of frequencies, and the phase and gain of the inductance at each frequency
are determined using the method described in Section 2.6. The phase and gain are then
fitted using the equivalent circuit explained in Section 2.7.

In the appendix in Figure H.1 the resulting curves are shown when the τp and τn are fitted
based on phase using least squares curve fitting. What can be seen is that the fitted curves
are poor. For this reason, it is chosen to fit the values of τp and τn such that the magnitude
and frequency of the minimum phase are equal to the minimal phase that results from cubic
spline interpolation. The resulting fits can be seen for the most extreme sheet properties
in Figure 2.16 as well as in the Appendix Figures H.2, and H.3.
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Figure 2.16: The differences between the fit of the electrical circuit and the fem
model.

From the fitted values of τp and τn the values of R2 and L2 are determined. To look if the
curve fitting makes sense simulations are done in which µ and σ are varied. The results
are shown in Figures 2.17 and 2.19. In these figures, it can be easily recognized that L2

exclusively depends on µ and R2 exclusively depends on σ. This is expected because L2

is the inductance and R2 the resistance as defined in Section 2.7.

The next step is to derive an expression that can predict L2. From Figure 2.17 it can be
seen it is easy to describe the relation between L2 and µt. The relation between L2 and
w, see Figure 2.18, is more complex as it depends on the thickness. For this reason, a new
parameter ζ is introduced. ζ is defined as

ζ =

(︃
w

w0

)︃α(︃ t

t0

)︃β

, (2.40)

where w0 = 1 [m] and t0 = 1 [m] are the reference width and thickness. Fitting α and β
in order to get a correlation coefficient as close to one as possible gives α = −4.851 and
β = 0.184. Plotting L2 against ζ in Figure 2.17 shows a slope independent of thickness.
This is confirmed by overlaying the curves by subtracting the mean value for each thickness
as L2 − L2 in Figure 2.17. Based on these plots it is assumed that L2 has the form of
Equation 2.41.

L2 = K1µt+K2ζ + C1 (2.41)

Where K1, K2 and C1 are coefficients with units [1/m], [] and [], respectively. The constant
C1 can be found using the values of L2, t, w and µ for some measurements. The resulting
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expression is shown in Equation 2.42.

L2 = 0.00101µt+ 4.40× 10−12ζ + 4.75× 10−5 (2.42)
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Figure 2.17: The value of L2 for varying permeability and conductivity (left). The
value of L2 plotted against the product of µ and t (right).
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The next step is to describe how R2 depends on the different sheet properties. In Figure
2.19 a relation can be recognized between the logarithm of R2 and the logarithm of wt as
well as the logarithm of σ.
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Figure 2.19: The relation between R2 and the product of w and t (left). The relation
between R2 and σ including the fit (right). The thickness and width have the units
of [mm].

Both of the relations can be fitted and summed together. The resulting expression is shown
in Equation 2.43.

log(R2) = −1.01 log(wt)− 0.979 log (σ) + C2 (2.43)
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The slopes of -1.01 and -0.979 are rounded off to -1 for sake of simplicity. Fitting the
value of C2 using the entire expression for several combinations of width, thickness, and
conductivity gives

R2 = 369
1

wtσ
. (2.44)

To check whether the predicted values make sense they are plotted against the fitted
values of L2 and R2 in Figure 2.20. It can be seen the prediction is accurate based on the
correlation coefficients, r, which are shown in the title of the figure.
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Figure 2.20: The predicted value of L2 (x-axis) against the value resulting from
the simulation (y-axis) (left). The predicted value of R2 (x-axis) against the value
resulting from the simulation (y-axis) (right).

Now the relations for R2 and L2 have been given they can be inverted. The results are
shown below.

µ =
L2 − 4.40× 10−12ζ + 4.75× 10−5

0.00101t
(2.45)

σ = 369
1

R2 t w
(2.46)

2.10.2 Permeance results

The gain can be fitted using Equations 2.47 and 2.48. It has been chosen to make two
different equations for different ranges of width. The reason for this is that around 0.023
mm the width of the sheet is similar to that of the core, which means the dependence on
width changes. This can be recognized as the kink in Figure 2.21. To look at which form
the equations should be the statistical programming language R is used. The different
inputs for the equation are compared based on their significance value in Table 2.6. From

Table 2.6: The P-values for different inputs are used for the prediction of the gain
in the permeance mode. Note that lower p-values indicate stronger relations. Also,
note that µ is the relative permeability.

Significance (P) value
√
µtw µtw2 µt2w µ2t2w2

w > 23mm 2× 10−16 0.0048 2× 10−16 0.0081
w < 23mm 2× 10−16 2× 10−16 1.28× 10−9 Not used
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this table, the two most significant contributions are taken which gives Equations 2.47 and
2.48.

Lw<0.023 = 0.00185
√
µ tw + 0.742µ tw2 + 3.079× 10−5 (2.47)

Lw>0.023 = 0.00261
√
µ tw + 7.15µ t2w + 2.059× 10−5 (2.48)

The predicted value of the gain is compared to the value resulting from the simulation in
Figure 2.21. The average error between the resulting simulated values and the predicted
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Figure 2.21: The predicted value for the gain based on Equations 2.47 and 2.48.
The solid lines are the gains resulting from the simulations and the square markers
are the predicted gains.

values is 0.9%. The fit is most poor around a width of 0.023 mm. An improvement to the
model could be made by modeling more widths and expanding the prediction model.

2.11 Summary

This study aimed to investigate the use of an electromagnetic finite element (EM-FE)
model to predict the inductance curve of an eddy current sensor. The results indicate that
the model can accurately predict the shape of the inductance curve, but a correction must
be made at higher frequencies due to the capacitance of the experimental set-up, which is
difficult to model in the EM-FE model. The field line distribution images obtained from
the simulations clearly show the origin of the shape of the inductance curve, where at low
frequencies, the magnetic flux is perpendicular to the sheet, and as the frequency increases,
the flux becomes parallel to the sheet, and eventually goes through the air. Finally, the
study shows that the permeability and conductivity of the sheet can be obtained from the
inductance curves using appropriate fitting methods.
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3. Magnetic homogenization

3.1 Introduction

The preceding chapter has examined the correlation between the sensor readings and the
mean microscopic properties. In this chapter, the emphasis shifts to demonstrating how
the average magnetic properties can be determined from the microstructure characteristics.
The magnetic homogenization theory for AISI420 will be presented, and the generation
of the microstructures will be explained. Finally, the outcomes of the homogenization
process for AISI420 will be presented. This chapter aims to provide a comprehensive
understanding of how the magnetic properties of materials can be evaluated based on their
microstructures.

3.2 Micromagnetic properties

This thesis focuses on the analysis of AISI420, an alloy comprised of chromium, carbon, and
iron. The equilibrium phases for this alloy are depicted in Figure 3.1. Based on internal
documents annealing is done below 800 degrees Celsius to prevent hardening [44]. During
annealing at this temperature a mixture of ferrite (α, iron) and M23C6 carbides (C1) are
formed [45]. The carbides have a relative permeability of 1 since they are paramagnetic.
The relative permeability of the ferrite is more difficult to obtain since it strongly depends
on the impurities present in the iron [46] [47]. The relative permeability of iron ranges
from 1 to 60000, depending on its composition [46]. In this thesis a relatively arbitrary
value of 250 is assumed based on the measured permeability for low fields in [46] and [47].

Figure 3.1: The phase diagram of Carbon, Iron, Chromium [45]
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3.3 RVE creation

The process of homogenizing a microstructure involves the creation of a representative
volume element (RVE) that captures the magnetic behavior of the entire material. In
the case of AISI420, the microstructure comprises of ferrite grains and carbide particles,
which ideally require modeling the effect of both on the magnetic properties. However, the
homogenization method employed in this thesis does not account for the orientation of the
grains, rendering their incorporation into the RVE impractical. Several studies propose
techniques for including the effect of grains on the magnetic properties, such as solving the
energy potential function by finding the equilibrium of elastic, anisotropic, and exchange
energy through three consecutive algorithms, as demonstrated in [48]. Although these
approaches are promising, their implementation in Abaqus, the finite element analysis
software used in this thesis, is non-trivial and requires further research. Therefore, the
RVE is modeled as a homogeneous ferrite matrix with embedded carbide particles. To
homogenize AISI420, the images of the carbide particles are binarized, as shown in Figure
3.2. This is done using ImageJ software1. The results from this binarization can be seen
in Figure 3.3.

Figure 3.2: The pictures are taken from the microstructure.

Figure 3.3: The processed binary images of the microstructures shown in Figure
3.2. Black corresponds to the carbides and white to the ferrite.

3.4 Homogenization theory

In this thesis, the homogenization will be explained based on the work in [5]. A more
detailed description of the theory can be found in [49]. In literature, several different

1The filters that are used in chronological order are: (i) Subtract background (ii) Bandpass filter (iii)
Threshold( Yen dark ) (iv) Fill holes (v) WaterShed.

32



models can be found to relate permeability to the inclusion volume fraction. The simplest
estimates are that of Voight and Reuss, denoted by µ∗

V and µ∗
R. These estimates are

µ∗
V = ϕ1µ1 + ϕ2µ2, and (3.1)

µ∗
R = [ϕ1µ

−1
1 + ϕ2µ

−1
2 ]−1, (3.2)

where ϕ1 and ϕ2 are the volume fraction of the first and second phase, respectively. Fur-
thermore, µ1 and µ2 are the permeability of the first and second phase, respectively. The
actual effective permeability will lie somewhere between µ∗

V and µ∗
R. Several other esti-

mates of permeability estimations are mentioned in Equations 3, 4, and 5 in [5]. In Figure
3.4 some of the analytical methods are compared to the numerical work done as well as
the numerical methods used in this work. The model used to estimate the effective per-

Figure 3.4: Comparison of the different inductance calculation methods, reproduced
from [50]

meability assumes magnetostatic conditions. This means free currents can be ignored and
the vector fields do not depend on time [5]. These assumptions can be used to obtain
the equations described in Equation 3.3. When comparing Equation 3.3 and 3.4 it can
be seen that the equations for magnetostatics have the same form as the equations for
electrostatics.

∇ ·B = 0 B = µ ·H H = −∇φ (3.3)
∇ · J = 0 J = σ ·E E = −∇ϕ (3.4)

Where J is electric current density, E is the electric field, σ is the conductivity and ϕ is
the electrical scalar potential. This similarity is used to model all simulations in the elec-
trostatic packages in Abaqus because this offers more possibilities than the magnetostatic
package. The element type that is used is DC2D4E, these are four-node linear coupled
thermal-electric elements. The solution gives the resulting values of H and B in every
cell, H(0) and B(0) respectively. These values can then be used to determine the behavior
at the macroscale, M , using:

MH =
1

|V|

∫︂
V
H(0)dV MB =

1

|V|

∫︂
V
B(0)dV (3.5)
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MH and MB can be used to determine the effective permeability using MB = µ∗·MH.
To determine all components of the 3 by 3 permeability tensor, µ∗, three different load
cases must be analyzed. In each of the three different load cases an external gradient in
the applied magnetic field, H, is imposed in one direction. Component µxx is determined
using the gradient of µxx =M Bx/

MHx, where MBx and MHx are the effective magnetic
and applied field in x-direction

3.5 Results

In the left side of Figure 3.5 the carbide particles are shown in black and the ferrite matrix
in grey. In the right side of Figure 3.5 the resulting magnetic flux density can be seen. The
results are presented using the evenly spaced streamlines 2D filter from ParaView, which
is based on the algorithm described in [51].

min max

Figure 3.5: An illustration of the carbide particles (left) and the magnetic flux
density (right). Colorbar is the magnetic flux density with max = 200, min = 1.

In Figure 3.6 the resulting permeability is plotted against different properties of the carbide
particles. Interestingly enough it seems as if the volume fraction of the particles has the
most influence on the resulting permeability. This means that the Equation 3.1 will describe
the effective permeability relatively well.

0.1 0.12 0.14

Volume fraction carbides [%]

140

145

150

155

P
e
rm

e
a
b
ili

ty

r = -0.94337

400 500 600

Number of carbide particles

140

145

150

155

P
e
rm

e
a
b
ili

ty

r = -0.78179

65 70 75 80

Meian area of carbides [pixels]

140

145

150

155

P
e
rm

e
a
b
ili

ty

r = 0.3785

Figure 3.6: The results of the homogenization of permeability.
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4. Mechanical homogenization

4.1 Introduction

This chapter provides a comprehensive account of the steps used in the mechanical homog-
enization of AISI420. The chapter begins with a detailed description of the mechanical
properties of the phases and a description of microstructure generation, followed by the
postprocessing of stress and strain.The second part of the chapter presents the results of
mechanical homogenization. Specifically, the relationship between mechanical properties
and carbide volume fraction is analyzed. Additionally, the stresses and strains at the micro
level during cyclic loading are studied.

4.2 Micromechanical properties

To accurately model the mechanical behavior of a material, it is essential to have reliable
estimates of the mechanical properties of its constituent phases. In this regard, the analysis
presented in [21] is employed to determine the mechanical properties of both the carbides
and the ferritic matrix. The mechanical properties are repeated in Table 4.1. While
alternative models, such as the one presented in [22], exist for estimating the mechanical
properties of bcc-ferrite, the current study relies on the model from [21] due to the superior
documentation and comprehensiveness of the model.

Table 4.1: The mechanical properties of ferritic AISI420, taken from [21].

Parameter symbol Ferrite Carbide
Lattice - bcc fcc
number of slip systems N 12 12
Elastic modulus [GPa] C11, C12, C44 233,135,128 472,216,135
Reference shear [MPa] γ̇0 10−6 10−6

Stress exponent nslip 62.4 200
Plastic shear stress [MPa] τC,0 72.5 1200
Saturation shear stress [MPa] τsat 241.0 2000
Reference hardening [MPa] h0 2659.9 20
Hardening parameter a 2.832 1.1
Strengthening coef [MPa m1/2] ky 0.783 -

It should be noted that in Damask 3 the initial slip resistance and saturated slip resistance
are denoted using ξ0 and ξc. In general, these values can be assumed to be equivalent to the
initial and saturation shear stresses, τ0 and τc, respectively. This assumption is supported
by comparing the material configuration files available on [52] with the corresponding
literature, such as [23].
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4.3 RVE creation

The microstructure of the material being studied comprises two components, namely, the
ferritic grains and the carbide particles. The ferritic grains can be observed through elec-
tron backscatter diffraction [ESBD] imaging, while atomic force microscopy [AFM] mea-
surements are used to visualize the carbide particles. The ESBD and AFM measurements
for the AISI420 alloy analysed in this thesis can be seen in Figure 4.1.

Figure 4.1: The microstructure visualized using ESBD (left) and AFM (right) [42].

To model the mechanical behavior of materials, it is common practice to create a represen-
tative volume element [RVE] that captures the characteristics of the material in question.
Various techniques exist for generating RVEs, and one such method is described in [21],
where RVEs are produced using DREAM 3D software, which allows for the recreation of
grain size distributions with a high degree of similarity. In this study, an alternative method
for generating RVEs is adopted, namely the utilization of a power diagram, also referred to
as the Laguerre-Voronoi diagram. The power diagram technique has been demonstrated
to be highly effective in creating RVEs that closely resemble the microstructure of actual
materials [53]. Figure 4.2 serves to illustrate this concept, providing a visual comparison
between the Voronoi diagram and the Laguerre-Voronoi diagram.

Figure 4.2: Normal Voronoi diagram (left) vs a Laguere Voronoi diagram (right),
reproduced from [54].
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The implementation of the power diagram is done using [55]. A modified normal distribu-
tion is chosen for the weights of the power diagram, which is defined as

y = k
1

σ
√
2π

exp

[︃
−(x− µ)2

2σ2

]︃
. (4.1)

The values of µ, k, and σ are fitted using fmincon based on the measured grain size
distribution and are found to be 2.0, 1.287 · 10−4 and 4.87, respectively. An example of a
microstructure generated with a power diagram and normal Voronoi construction is shown
in 4.3. The grain size distribution resulting from Voronoi tessellation and power diagram
generation is shown in Figure 4.4.

Figure 4.3: The grain structure resulting form Voronoi generation (left) and the
grain structure resulting from Power diagram generation (right).

Figure 4.4: The histogram of the grain size distribution produced using Voronoi
generation (left) and the histogram of the grain size distribution resulting from power
diagram generation (right).

In this study, the effect of carbide distribution on the mechanical properties of AISI420
is investigated. Several Representative Volume Elements (RVEs) are created with varying
carbide distributions while keeping the grain structure and grain orientation constant.
Figure 4.5 presents the ferrite grains on the left and overlaid with carbide particles on the
right.
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Figure 4.5: The grains generated using the power diagram generator (left). The
grains overlaid with the carbides (right).

4.4 Homogenization theory

Several different strain and stress measures can be extracted from Damask to calculate
the true stress and strain. The true stress is given by the Cauchy-stress tensor, T , which
can be directly obtained from Damask. The Cauchy-stress tensor is a function of the
First-Piola-Kirchoff stress tensor, Pa, Greens deformation tensor, F e, according to

σa =
1

J
Pa · F e. (4.2)

Where J = det (F ) > 0 corresponds to the volume ratio. All strain measures in Damask
are part of the Seth-Hill family. In this family, the strain is described as

E(m) =
1

2m
(U2m − I) m ̸= 0 (4.3)

E0 = lnU m = 0. (4.4)

From this formula, it can be chosen to use the Green-Langranian, Biot, logarithmic strain,
or Almansi strain by using a value of 1, 0.5, 0, and -1 for m, respectively. This can be
confirmed by reading the source code [56] which uses the definitions from [57]. In this case,
the logarithmic strain must be used, which means that m is set to 0. The logarithmic strain
is referred to as E. The stress and strain can be averaged using the following equation as
can be read in [58]

T11(t) =
1

|V|

∫︂
V
T11(t)dV E11(t) =

1

|V|

∫︂
V
E11(t)dV, (4.5)

where V and V represent the deformed volume. The undeformed volume, v, can be utilized
along with the Jacobian, J = dV/dv, to obtain Equation 4.6. Rewriting this expression
gives Equation 4.7.

T11(t) =

∑︁N
i=1 T11,iJivi∑︁N

i=1 Jivi
E11(t) =

∑︁N
i=1E11,iJivi∑︁N

i=1 Jivi
(4.6)

T11(t) =

∑︁N
i=1 T11,i(t)Ji∑︁N

i=1 Ji
E11(t) =

∑︁N
i=1E11,i(t)Ji∑︁N

i=1 Ji
(4.7)
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Besides the postprocessing of stress and strain, it is important to use the appropriate
boundary conditions. For uni-axial tension the boundary conditions in Damask are nor-
mally defined using the deformation gradient as defined in Equation 4.8, as can be read
in [59], [60], [61] and [62]. After integrating the resulting stress it can be seen that the re-
sulting macroscopic shear stresses are non-zero. This is not desirable. For this reason, the
deformation gradient shown in Equation 4.9 is imposed. It can be seen that the resulting
stress state is more purely uniaxial.

Fij =

⎡⎣1.01 0 0
0 ∗ 0
0 0 ∗

⎤⎦ Tij =

⎛⎝ 304.3674 6.3322 2.1923
6.3322 −0.0027 3.0041
2.1923 3.0041 −0.0107

⎞⎠ [MPa] (4.8)

Fij =

⎡⎣1.01 0 ∗
∗ ∗ 0
0 ∗ ∗

⎤⎦ Tij =

⎛⎝ 303.9733 −0.0019 0.0003
−0.0019 −0.0030 0.0002
0.0003 0.0002 −0.0099

⎞⎠ [MPa] (4.9)

Where Fij corresponds to the deformation gradient aim and Tij corresponds to the first
Piola-Kirchoff stress tensor. In these Equations, ∗ corresponds to an undefined deformation
and 1.01 means the material is strained 1%. To test whether the described model accurately
represents the real life phenomena an experimental validation is performed. In Figure 4.6
the experimentally measured stress-strain curve is compared to the simulated stress-strain
curve. It should be noted that the true strain on the x-axis is subtracted by the strain
at the yield point. This yield point has been determined with the 0.2% offset method in
which the intersection has been determined using [63]. It can be seen there is a good match
between the simulation and experiments.
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Figure 4.6: The true stress and strain curve plotted for multiple heat treatments
of AISI420 (black lines). The true stress strain curve plotted for multiple carbide
distributions (red dotted lines).

4.5 Effect of carbides on mechanical properties

Prior to discussing the simulations on the mechanical behavior of AISI420 some literature
is given on the experimentally observed mechanical behavior of AISI420. A detailed study
of the effect of carbides on the strain development in annealed AISI420 is done in [64]. The
strain development in this article was studied using kernel average misorientation (KAM)
measurements and image quality maps (IQ) which quantify the amount of localized plastic
strain. The results can be seen in Figure 4.7. In this article the following phenomena were
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Figure 4.7: The KAM measurements over the strain range, reproduced from [64].

observed (i) From the KAM measurements it can be seen that at low strains the strain
developments are governed by long-distance interactions, which means the influence of
carbides is large. At higher strains short range dislocation interactions become dominant
and the influence of carbides decreases [64]. (ii) Before any loading is applied there exists
local plastic strain around the carbides. This is expected to be due to the difference in
thermal expansion coefficients. (iii) The shear bands start to develop at ϵp = 0.066 as can
be seen from the IQ maps. Also, it can be observed that the shear bands do not necessarily
form where the KAM values are high.

This thesis aims to investigate the impact of carbides on the mechanical properties by
employing crystal plasticity simulations in the DAMASK software. Numerous tensile tests
are simulated for a variety of carbide distributions, as defined in Section 4.3, while ad-
hering to the boundary conditions specified in Section 4.4. To assess the effect of carbide
distribution on yield strength, Figure 4.8 presents a plot of yield strength against several
carbide distribution properties. The results demonstrate a strong relationship between the
yield strength and the volume fraction of carbides.
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Figure 4.8: The effect of carbides on the yield strength of the material. In the title,
the coefficient of correlation is given for each different relation.
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Other important parameters in the deep drawing process are the hardening properties. An
overview of the different hardening laws is given below, based on the work done in [65].

σ = Cεn (4.10)
σ = C (ε0 + ε)n (4.11)
σ = A+Bεn (4.12)
σ = A+B [1− exp (−Cε)] (4.13)

Equations 4.10, 4.11, 4.12 and 4.13, refer to the Hollomon, Swift, Ludwik, and Voce strain
hardening models. In this thesis, the Voce equation will be used. For this study, the Voce
equation is chosen based on the analysis conducted in [66], which showed that it properly
describes the hardening behavior of a wide range of metals, including ferritic stainless
steels. In the Voce equation, the yield strength is represented by A, the amount of strain
hardening at strain saturation is represented by B, and the strain hardening exponent is
represented by C. A higher value of C indicates a faster increase of stress with strain. In
the literature, it is well-known that a low hardening exponent can result in the formation
of cracks near the punch radius, while high hardening exponents tend to transfer the local
hardening to larger regions. Therefore, high hardening exponents are generally preferred
for the deep drawing process. Equation 4.13 can be fitted for all stress-strain curves, which
provides a hardening exponent for all carbide distributions. It should be noted that the
fitting has been done using a strain range between 3 and 10 %. This is not optimal, a more
ideal strain range would be between 10 and 20 % [67]. From Figure 4.9 it can be seen that
the volume fraction has a higher influence on the plastic behaviour compared to the elastic
behaviour. The hardening exponent varies ∼10% compared to a variation of ∼2% in the
Young’s modulus.
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Figure 4.9: The generated grain structure (left). The grain structure overlaid with
the carbide particles (right).

4.6 Effect of stress on magnetic properties

This subsection will analyze the interaction between stress and magnetic properties. To
understand this, the theory of magnetic domains and domain walls will be explained first,
based on the work in [24]. Afterward, this knowledge will be used, along with plasticity
simulations, to interpret inductance curves during cyclic loading.

4.6.1 Domain wall theory

A ferromagnetic material exists out of many magnetic domains in which the direction of the
magnetic moment of the atoms is constant. The space of approximately 100 atoms between
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the domains, where the magnetic moment direction changes, is known as the domain wall
[7]. For ferromagnetic materials, it holds that when there is no external magnetization
magnetic domains have random orientations. On the other hand, when there is some
external magnetization the domains with a favorable orientation will grow or rotate and
the sample will become magnetized.

There are two ways in which domains can grow or rotate, as explained in [27]. Anhysteretic
magnetization is the first, in which domain walls are free to move to their thermodynamic
equilibrium state and are not impeded by pinning sites. The movement of domain walls
is reversible, and they move back to their original position when the external field is
removed. The second is non-anhysteretic magnetization, in which the movement of the
domain walls is inhibited by pinning sites, such as dislocations and impurities, for which
domain walls need extra energy to overcome. This non-anhysteretic domain wall movement
is irreversible. Below a list will be given on the factors influencing the behavior of magnetic
domains.

• Grains: Larger grains lead to bigger magnetic domains and thus higher permeability
[2]. The relationship between grain size and permeability is described by a Hall-
Petch type of relationship. The effect of crystal anisotropy is described in detail in
[6]. The anisotropy is important because it costs energy to turn the magnetization
vector from the easy axis to the direction of the applied field.

• Magnitude of the stress: Stress affects magnetization, as explained based on a simple
tensile test. Residual stresses present in the sample before the test affect the stress
field and the energy of impurities and dislocations [27]. Impurities and dislocations
are referred to as pinning sites as they block domain wall movement. Compressive
stresses increase the energy of pinning sites and thereby reduce domain wall mobility
[27]. When a tensile load is applied, compressive stresses decrease. The decrease in
compressive stresses leads to decreased energy of the pinning sites. At some point
the energy of the pinning sites is low enough that they no longer obstruct domain
wall motion. This is called the anhysteretic state. Based on this analysis it would
seem permeability increases with stress up to some value. However, there is a second
effect. The anhysteretic curve itself can decrease with stress, which is indicated by
the magnetostrictive coefficient illustrated in Figure 4.10. This means that when
increasing stress is applied it is possible that the magnetization first increases due
to the increasingly anhysteretic state and then decreases due to the effects of stress
on the anhysteretic curve. This effect is generally referred to as Vilari reversal. This
idea is confirmed by experiments from which the results are shown in Figure 4.10. A
description of the effect is given by the following equation [26].

dM

dσ
=

σ

Eζ
(Man −M) + c

dMan

dσ
(4.14)

Where E is the modulus of elasticity, ζ a coefficient that has the dimension of energy
per volume, Man is the anhysteretic component of magnetization and c represents the
ratio of initial anhysteretic magnetic susceptibility and initial magnetic susceptibility.

Similar to the permeability the effective conductivity is also affected by stress, which
is described in [68]. The relationship between conductivity and stress can be ex-
pressed mathematically as:

∆σ

τc
=

1

2
(K∥ +K⊥), (4.15)
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where ∆σ and τc are the change in conductivity and stress and K∥ and K⊥ are the
parallel and normal electro-elastic coefficients. It should be noted that the net effect
for most materials is too small to detect, which is used to neglect it for the rest of
this work.

• Plastic strain: Isolated dislocations and small dislocation tangles are surmountable
by domain walls [26]. However, as plastic strain is increased the isolated dislocation
density, as well as the dislocation tangles, increase [69]. These form strong pinning
sites for domain wall motion [2] [26]. The permeability decreases sharply with the
onset of plastic deformation and decreases more slowly with higher degrees of plastic
deformation.

• Cyclic loading : For cyclic loading the effects can be seen in Figure 4.11 based on the
work done in [70]. The peaks in the magnetic field are caused by the Vilari reversal
effect. The reversals during unloading (tail reversals) vary less per cycle than those
during loading.

Figure 4.10: The effect of stress on permeability (left), reproduced from [71] and the
permeability for two cycles of loading (right), reproduced from [70].

Figure 4.11: The variation of the inductance for cyclic loads, reproduced from [26].

4.6.2 Interpreting inductance during cyclic loading

Cyclic tensile tests were performed in which the inductance was measured simultaneously.
The results can be seen in Figure 4.12. Simulations are done to explain the observed
phenomena from a microstructural points of view. The loading conditions that are used
for elastic loading, plastic loading, and releasing are as follows

Elastic loading
Fij
̇ =

⎡⎣1e− 3 0 ∗
∗ ∗ 0
0 ∗ ∗

⎤⎦ Pkl =

⎡⎣∗ ∗ 0
0 0 ∗
∗ 0 0

⎤⎦ (4.16)
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Figure 4.12: The figure illustrating the cyclic loading done in the experiments (left)
[42].

Plastic loading
Fij =

⎡⎣εdesired 0 ∗
∗ ∗ 0
0 ∗ ∗

⎤⎦ Pkl =

⎡⎣∗ ∗ 0
0 0 ∗
∗ 0 0

⎤⎦ (4.17)

Releasing
Fij
̇ =

⎡⎣∗ 0 ∗
∗ ∗ 0
0 ∗ ∗

⎤⎦ Pkl =

⎡⎣∗ ∗ 0
0 0 ∗
∗ 0 0

⎤⎦ (4.18)

Where εdesired is the amount of plastic strain for that cycle. The reason a strain rate is
chosen for elastic loading is that if an absolute strain is imposed of for example 0 high
forces are needed to remove the residual stresses, which is not desirable.

Now that the boundary conditions have been established the results are analyzed. The
results will be shown for the points in Figure 4.12. For all points the following results are
plotted: (i) The plastic strain (ii) The directions of the eigenvectors corresponding to the
maximum, medium, and minimum principal stresses 1. (iii) The hydrostatic stress, which
is calculated as follows

σav =
σ1 + σ2 + σ3

3
, (4.19)

where σ1, σ2 and σ3 are the principal stresses, respectively. All the resulting fields are
shown in Figures 4.13 to 4.17. Note that in Figure 4.13 compressive stresses are blue and
tensile stresses red.

Now that all of the different loading situations have been analyzed the curve of the per-
meability can be explained using the theory from Section 4.6.1. The explanation for each
point is as follows: Point 1 : Here plastic strain and thus dislocation density are low.
Furthermore, stress is oriented rather homogeneously. This is expected to lead to high
permeability. Point 2 : The decrease in permeability is likely to be related to an increase
in plastic strain and thus dislocations. Point 3 : There is a decrease in external stresses
which affects the anhysteretic magnetization curve through the magnetostrictive coeffi-
cient. This is expected to lead to the observed increase in permeability. Point 4 : The

1The streamline images are created using the following steps (i) Slice filter normal to plane (ii) Use calcula-
tor filter: ”phase/mechanical/v_max(sigma) / 1_X”*iHat+ ”phase/mechanical/_(sigma) / 1_Y”*jHat.
(iii) Apply cell data to the points filter. (iv) Use evenly spaced streamlines 2D filter (v) If this filter
crashes, change the value of ”closed loop maximum distance”. (vi) Apply tube filter.
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externally applied stress decreases, which changes the energy of the pinning sites. This is
expected to lead to a decrease in permeability. Point 5 : Permeability increases due to an
anhysteretic state (see point 3). Point 6 : Permeability reduces due to the magnetostrictive
effect (see point 2).

min max

Figure 4.13: The hydrostatic stress, red indicates tensile, blue indicates compressive.
The figures corresponds from left to right to points 1 to 6 in Figure 4.12.

min max

Figure 4.14: The plastic true strain, max is 1.6e-1 min is 0.The figures corresponds
from left to right to points 1 to 6 in Figure 4.12.

Figure 4.15: The eigenvector directions relating to the maximum principal stress.
The figures corresponds from left to right to points 1 to 6 in Figure 4.12.

Figure 4.16: The eigenvector directions relating to the median principal stress. The
figures corresponds from left to right to points 1 to 6 in Figure 4.12.
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Figure 4.17: The eigenvector directions relating to the minimum principal stress.
The figures corresponds from left to right to points 1 to 6 in Figure 4.12.

4.7 Summary

In this chapter, it has been shown how the mechanical behavior of AISI420 can be ac-
curately modeled in Damask. The simulated stress-strain curves are validated against
experimental data, demonstrating the accuracy of the model. The study reveals that the
volume fraction of carbides significantly affects many mechanical properties. This is a
hopeful finding as the permeability in the previous chapter was also strongly related to the
volume fraction of carbides. Furthermore, the chapter presents a thorough analysis of the
magnetic and mechanical phenomena that occur during cyclic loading. It is found that the
spikes in permeability are caused by Vilari reversals and the overall decrease is caused by
an accumulation of dislocations.
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Part III.

Correlations and discussions
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5. Correlations

5.1 Magnetic to mechanical

The correlations between mechanical and magnetic properties are investigated in many
papers. Studies on the experimental correlation are done in [72], [73], [74], [75] and [2]. The
most important experimental findings are as follows: (i) Magnetic homogeneity can be used
to predict mechanical homogeneity [73]. (ii) In [2] it was shown the magnetic properties
could be related to microstructure properties such as phase fraction, illustrated on the left
of Figure 5.1. More recently, neural networks have been employed to relate magnetic and
mechanical properties [76] [77]. Neural networks are not able to predict the mechanical
properties very accurately yet, see the right of Figure 5.1. It is found that when using four
magnetic properties the error in the mechanical property estimation becomes around 10%,
depending on the mechanical property [77]. It should be noted that measuring these four
magnetic properties inline may be impossible. Interestingly, the combined homogenization
of both mechanical and magnetic properties is not commonly discussed in the literature.
Typically, the homogenization steps are carried out separately, as demonstrated in [78] for
magnetic homogenization and [21] for mechanical homogenization. However, combining
these homogenization processes can provide valuable insights into the relationship between
magnetic and mechanical properties. In the following section, this combined approach is
explored along with the insights it can offer.

Figure 5.1: The measured inductance against the phase fraction (left), reproduced
from [2]. A neural network scheme including input parameters used to predict me-
chanical properties, reproduced from [77] (right).

Chapter 3 and 4 present two methodologies to calculate the magnetic and mechanical prop-
erties of representative volume elements. These methodologies can be used to determine

51



the correlation between magnetic and mechanical properties. By applying both mechani-
cal and magnetic homogenization to several RVEs, the resulting mechanical properties can
be plotted against the resulting magnetic properties, as shown in Figure 5.2. This figure
clearly shows a correlation between the magnetic and mechanical properties, confirming
the possibility of using magnetic property identification to characterize mechanical proper-
ties. This finding is significant as it provides a novel approach to characterizing materials,
potentially saving time and resources in the characterization process. The methodologies
presented in this study have the potential to be applied to a variety of materials and
provide insight into their mechanical properties using magnetic characterization.
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Figure 5.2: The yield strength (left), hardening exponent (center), and elastic mod-
ulus (right) against the permeability of the sheet. The coefficient of correlation is
stated in the title.

5.2 Conclusion

Below a list is given of the key findings in this work is given separated over the different
chapters.

• Chapter 2. Sensor model: (i) A derivation, implementation and validation of
several inductance calculations in EM-FE simulations is performed. (ii) An EM-FE
model is described to simulate the measured inductance. The model is validated
with experimental measurements. (iii) The eddy current sensor response has been
simulated for many different sheet properties. The results can be used to relate the
characteristics of the inductance curve to the permeability and conductivity of the
sheet.

• Chapter 3. Magnetic homogenization: A novel homogenization model is used
to show that for AISI420 the permeability is linearly related to the volume fraction
of carbides.

• Chapter 4. Mechanical homogenization: (i) The mechanical homogenization
of AISI420 is described including experimental validation. (ii) It is shown plastic
properties are strongly related to carbide volume fraction. Also it is shown elastic
properties are light dependent on carbide volume fraction. (iii) It is shown that
the experimentally observed spikes in inductance during cyclic loading are related
to Vilari reversals. Furthermore, it is shown the overall decrease in permeability is
related to dislocation accumulation.

• Chapter 5. Correlations and discussions: Mechanical and magnetic homoge-
nization are used to show that permeability is strongly related to mechanical prop-
erties.
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Besides these separate contributions to literature it is emphasised that this thesis describes
a framework to model the relation between eddy current sensor readings and mechanical
properties. This framework is a one of its kind as there are no other articles linking
macroscopic sensor modeling with microscopic mechanical and magnetic homogenization.
This framework is shown in Figure 5.3 and can be implemented inline is as follows: (i) The
sensor readings can be used to find the value of R2 and L2 or L. (ii) The results from the
sensor simulations can be used to inverse fit the values of µ and σ. (iii) The values of µ
and σ can be used to give an estimation for the mechanical properties.

Figure 5.3: The total overview of the problem.

5.3 Future research

As the field of eddy current testing continues to evolve, there are several promising avenues
for future research that could lead to new insights and breakthroughs. One area that holds
particular promise is the development of coupled simulations that can model both mag-
netic and mechanical behavior on a micro-scale. These simulations could shed light on the
influence of grain structure and residual stresses on the magnetic and mechanical proper-
ties of materials, providing a more comprehensive understanding of the underlying physical
phenomena.Another area that could benefit from further research is the development of
more accurate equivalent electrical circuit models. Such models could incorporate capac-
itance and provide a deeper understanding of eddy currents, potentially enabling more
precise measurements and more sensitive defect detection.Finally, exploring the effects of
local permeability gradients on eddy current curves could also yield valuable insights. By
studying the impact of these gradients, it may be possible to improve the accuracy and
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sensitivity of eddy current testing for detecting local defects. Overall, these areas represent
exciting and potentially fruitful directions for future research in the field of eddy current
testing. With continued exploration and investigation, it is likely that even more effective
and precise techniques for non-destructive testing and evaluation will emerge.
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A. Validation

A.1 Benchmark 1: Two coils in free space

Consider two coils in free space as shown in Figure A.1. For these coils, the mutual induc-
tance and self-inductance will be determined using the different post-processing methods
mentioned in Section 2.6. The dimensions of this benchmark problem are given in Table
A.1. First of all, the low-frequency mutual and self-inductance are determined from the

Figure A.1: Schematic overview of the two coils in free space.

Table A.1: The dimensions of the free coils. Note N is the number of windings.

r1 [m] r2 [m] h [m] d [m] N

0.084855 0.085145 0.025 0.07 200

simulations. The resulting inductances from the different post-processing methods will be
compared to the theoretical expression for the inductance which is given in D. Based on
the equations in D it is found that the theoretical values for self-inductance and mutual
inductance are 11.976 [mH] and 2.97133 [mH], respectively. In Figure A.2 the numerically
obtained self and mutual inductance, Mn, concerning the theoretical values, Mt, are shown
for different levels of mesh refinement.

Second, it is studied whether the frequency dependency for all methods is realistic. This is
done based on a theoretical expression for the inductance, which is derived in Appendix C.
The resulting mutual and self-inductance for all derived methods are compared in figures
A.3 and A.4, respectively.
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Figure A.2: The convergence of the error during mesh refinement.
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Figure A.3: Figure showing the resulting values for the real part of the mutual and
self-inductance for a range of frequencies.
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Figure A.4: Figure showing the resulting values for the imaginary part of the mutual
and self-inductance for a range of frequencies.

A.2 Benchmark 2: Sensor

In the last test, the results for the different post-processing methods are compared to the
actual sensor set-up. Different simulations are done in which the stabilization factor, coil
conductivity, and frequency are varied. The results can be seen in Figure A.5, A.6 and
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Figure A.5: Inductance calculated for different stabilization factors and methods
using a coil conductivity of 1.
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Figure A.6: Inductance calculated for different stabilization factors and methods
using a coil conductivity of 58.14e6.
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Figure A.7: Inductance calculated for different stabilization factors and methods
using a coil conductivity of 58.14e6.

It can be seen that when the coil conductivity of the coil is high all methods provide
generally similar results. However, when the coil conductivity is very low this is not the
case. In Figure A.5 it can be seen that there are large differences between the methods.
The right solution is assumed to be given by both the IEM method at a stabilization
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factor of 1e6 and the Flux and Current method at a stabilization factor of 10. The reason
is that these solutions lie exactly on top of each other even though they cover completely
different domains. Additionally, the shape of the curves is as expected. A summary of
which methods are appropriate in for which frequencies is given below.

σcoil [S/m] kstabilization IEM method Flux method Electric method Current method
1 10 HF all none all
1 1e6 all none none HF

500 100 all all all all
500 1e6 all all none all

58.14e6 10 all all all all
58.14e6 1e6 all all all all

Table A.2: A table giving an overview for which frequencies the different methods
provide accurate results depending on the conductivity of the coils, σcoil, and the
stabilization factor, kstabilization, used in the simulations.
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B. Discretization of inductance
computations

In this chapter, four different post-processing methods will be shown to obtain the mutual
and self-inductance from the simulation results. In the subsections of this chapter the time
dependent variables and phasors of the time dependent variables are represented in the
same way. Whether the variable is a phasor or not is clear from the context.

B.1 Flux method

Consider the image shown in B.1 in which two half of two coils are shown. A schematic
overview of this picture is given in Figure B.2. The set of elements in the volume inside
the coil will be referred to as Ω, illustrated in Figure B.1 as the grey volume and in Figure
B.2 indicated. The induced electromotive force, U , in the segment of the coil around Ω
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Figure B.1: An illustration of where the integration is done. The black lines show
the elements of set Ω. The grey volume shows in which region the integration is
done.

can be described using

UΩ =

∫︂
C
E · dl = − d

dt

∫︂
Aic

B · dA. (B.1)
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Figure B.2: Figure illustrating loop of interest.

When it is assumed that the response is time-harmonic it means that dB/dt = iωB. This
can be used to rewrite Equation B.1 into

UΩ = −iω

∫︂
Aic

B · dA . (B.2)

In footnote 19 in [79] it is explained that for some continuous surface the integral can be
obtained using the centroidal element values. Discretization and assuming that the element
length in the axial direction of the elements is constant the equation can be rewritten to

UΩ = −iω

NΩ∑︂
j=1

Bj
Vj

hj
= −i

ω

hj

NΩ∑︂
j=1

BjVj . (B.3)

Where hj is the axial length of an element and Vj is the volume for each element. The
actual voltage in the coil will be higher because the magnetic field in the coil will also
produce an electromotive force. Consider some element inside of the coil, k, this element
will only induce a current in the ’outer’ part of the coil, which will be referred to as part
A. See figure B.2. The induced current in part A can be found using equation B.4, which
is given by

Iind,A =
EMF

RA
=

EMF

(tmax − tmin)/(tmax − tk)Rcoil
=

tmax − tk
tmax − tmin

EMFk

Rcoil
. (B.4)

Equation B.3 can be used to get EMFk = −iω/hk
∑︁NΩ

k=1BkVk. Combining this with Ohms
law gives the expression for the voltage induced by the elements in the coil, Uς ,

Uς = i
ω

hj

Nς∑︂
k=1

(︃
tmax − tk

tcoil
BkVk

)︃
, (B.5)
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where tcoil is tmax − tmin and Nς is the number of elements in the coil. The total voltage,
U , can be obtained by summing UΩ and Uς to obtain

U = −i
ω

hj

⎡⎣NΩ∑︂
j=1

(BjVj)−
Nς∑︂
k=1

(︃
tmax − tk

tcoil
BkVk

)︃⎤⎦ , (B.6)

The average voltage over all the cross sections of the coil can be averaged analogous to
[14]. In Figure B.2 two of these cross sections are illustrated (cross-section number 1 and
cross-section number x). The resulting expression for the average voltage is given by

Uav =
1

Nloops

Nloops∑︂
n=1

Un. (B.7)

Combining Equations B.6, B.7 and using that the height of the coil is given by hcoil =
Nloopshj gives

U = −i
ω

hj

⎡⎣Nel,ic∑︂
j=1

(BjVj)−
Nel,c∑︂
k=1

(︃
tmax − tk

tcoil
BkVk

)︃⎤⎦ , (B.8)

where Nel,ic is the number of elements in the volume inside the coil and Nel,c is the number
of elements of the coil. The relation between the amplitudes of the voltage and the magnetic
potential can be found using U = dΦ/dt. This means that the amplitudes of both signals
are related through

U = iωΦ. (B.9)

Combining Equations B.9 and B.8 gives

Φ =
1

hcoil

⎡⎣Nel,ic∑︂
j=1

(BjVj)−
Nel,c∑︂
k=1

(︃
tmax − tk

tcoil
BkVk

)︃⎤⎦ . (B.10)

Using L = Φ/I and incorporating the number of windings of the coil into the equation
gives

L =
Nw

hcoilI

⎡⎣Nel,ic∑︂
j=1

(BjVj)−
Nel,c∑︂
k=1

(︃
tmax − tk

tcoil
BkVk

)︃⎤⎦ . (B.11)

This is the expression for the real part of the inductance. Doing the same for the imaginary
part of the inductance gives the following expressions

LRe = Re

⎛⎝ Nw

hcoilI

⎡⎣Nel,ic∑︂
j=1

(BjVj)−
Nel,c∑︂
k=1

(︃
tmax − tk

tcoil
BkVk

)︃⎤⎦⎞⎠ and (B.12)

LIm = Im

⎛⎝ Nw

hcoilI

⎡⎣Nel,ic∑︂
j=1

(BjVj)−
Nel,c∑︂
k=1

(︃
tmax − tk

tcoil
BkVk

)︃⎤⎦⎞⎠ , (B.13)

where the self-inductance can be obtained by taking the values of
∑︁Nel,ic

i=1 BjVj in the
actuating coil. On the other hand, the mutual inductance can be obtained by taking the
values of

∑︁Nel,ic

i=1 BjVj in the coil that is not excited.
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B.2 Electric field method

Consider a loop of elements in a coil as shown in black in Figure B.3. The elements in this
set will be called Ψ. The voltage over some loop can be related to the electric field in this
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Figure B.3: Illustration of the set that is analyzed. The element drawn as black
lines corresponds to set Ψ.

loop using Equation B.14.

U =

∫︂
loop

E · dl (B.14)

The integral in Equation B.14 can be discretized using the centroidal element values [79]
which gives

U =

NΨ∑︂
j=1

(︁
∆l∥,jE∥,j +∆l⊥,jE⊥,j

)︁
. (B.15)

In this equation, l⊥ and l∥ are the element length in perpendicular and parallel direction
relative to the coil. Furthermore, E⊥ and E∥ are the perpendicular and parallel components
of the electric field relative to the coil, respectively. Assuming that the loop is a perfect
circle this can be further simplified to

U =

NΨ∑︂
j=1

∆l∥,jE∥,j . (B.16)

Assuming that the element length in angular direction is constant and rewriting gives

U =
∆l∥NΨ

NΨ

∑︂
Ψ

E∥ =
Lp

NΨ

NΨ∑︂
j=1

E∥,j , (B.17)

where NΨ is the number of elements in Ψ and Lp is the perimeter of the coil. The same
derivation can be done for all loops in the coil shown in Figure B.3. The voltage can
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averaged using Equation B.7, combining the average voltage with Equation B.17 gives

Uav =
1

NΨ

Lp

Nloops

Nloops·NΨ∑︂
j=1

E∥,j =
Lp

Nel,c

Nel,c∑︂
j=1

E∥,j , (B.18)

where Nel,c is the total number of elements in the coil and r is the mean radius of the coil.
Using Equation B.9 the equation can be modified to obtain

Φ = i
Lp

Nel,c

Nel,c∑︂
j=1

E∥,j . (B.19)

Using L = Φ/I and incorporating the number of windings of the coil, Nw, into the equation
gives

L = i
LpNw

Nel,cωI

Nel,c∑︂
j=1

E∥,j . (B.20)

This is the expression for the real part of the inductance. Doing the same for the imaginary
part of the inductance gives the following expressions

LRe = Re

⎛⎝i
LpNw

Nel,cωI

Nel,c∑︂
j=1

E∥,j

⎞⎠ and LIm = Im

⎛⎝i
LpNw

Nel,cωI

Nel,c∑︂
j=1

E∥,j

⎞⎠ . (B.21)

Now it is used that Im(A) = Re (A/i) and Im(Ai) = Re(−A). This can be used to remove
the complex number as seen below

LRe = Im

⎛⎝ LpNw

Nel,cωI

Nel,c∑︂
j=1

E∥,j

⎞⎠ and LIm = Re

⎛⎝− LpNw

Nel,cωI

Nel,c∑︂
j=1

E∥,j

⎞⎠ , (B.22)

where the self-inductance can be obtained by taking the values of
∑︁Nel,c

j=1 E∥,j in the actu-
ating coil. On the other hand, the mutual inductance can be obtained by taking the values
of

∑︁Nel,c

j=1 E∥,j in the coil that is not excited.

B.3 Current method

Consider a coil that has been sliced in a radial direction two times. The elements that
remain left represent a cross-section of the coil. This idea is illustrated in Figure B.4
where the elements of interest are represented by black squares. These elements will be
referred to as the set Ξ. The following definition is used to calculate the current over some
cross-section, IC

IC =

∫︂
Ac

J · dA , (B.23)

where Ac is the cross-sectional area of the coil. Discretization of Equation B.23 and
rewriting gives

IC =

NΞ∑︂
j=1

Jj ·Aj =

NΞ∑︂
j=1

Jj ·
Vj

lj
=

NΞ∑︂
j=1

J∥
Vj

l∥
+ J⊥

Vj

l⊥
. (B.24)
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Figure B.4: Illustration of the region that is analyzed. The set Ξ is illustrated with
black lines.

Where the subscripts ⊥ and ∥ refer to the the components perpendicular and parallel to
the coil. Next, it is assumed that the element length in parallel direction is constant as
well as that the current density in normal direction to the coil, J⊥, is zero. This gives

IC =
1

l∥,j

NΞ∑︂
j=1

J∥,jAj . (B.25)

The average current over all cross-sections parallel to the one shown in Figure B.4 can be
written as

Iav =
1

NC

NC∑︂
j=1

IC,i, (B.26)

where Nc,m is the number of modelled cross sections. The number of modeled cross sections
is equal to the total number of cross sections, Nc, divided by the symmetry multiplier, ksym.

Nc,m =
Nc

ksym
(B.27)

Combining Equations B.25 and B.26 and using that only a quarter of the circumference is
simulated gives

I =
1

1
ksym

2πr

Nel,c∑︂
j=1

J∥,jVj , (B.28)

where Nel,c is the number of elements in the coil in the simulation. Using the equation for
voltage, U = RI, and for resistance, R = Lp/ACσ, gives

U = ksym
Lp

LpACσ

Nel,c∑︂
j=1

J∥,jVj , (B.29)
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where AC is the area of the cross-section of the coil and σ is the conductivity. Using
Equation B.9 means the expression can be rewritten to

Φ = i
ksym
ACσω

Nel,c∑︂
j=1

J∥,jVj . (B.30)

Using L = Φ/I and incorporating the number of windings of the coil into the equation
gives

L = i
ksymNw

IACσω

Nel,c∑︂
j=1

J∥,jVj , (B.31)

where the complex inductances can be expressed as

LRe = Re

⎛⎝i
ksymNw

IACσω

Nel,c∑︂
j=1

J∥,jVj

⎞⎠ and LIm = Im

⎛⎝i
ksymNw

IACσω

Nel,c∑︂
j=1

J∥,jVj

⎞⎠ . (B.32)

Now it is used that Im(A) = Re (A/i) and Im(Ai) = Re(−A). This can be used to remove
the complex number as seen below

LRe = Im

⎛⎝ksymNw

IACσω

Nel,c∑︂
j=1

J∥,jVj

⎞⎠ and LIm = Re

⎛⎝−ksymNw

IACσω

Nel,c∑︂
j=1

J∥,jVj

⎞⎠ , (B.33)

where the self-inductance can be obtained by taking the values of
∑︁Nel,c

j=1 J∥,jVj in the
actuating coil. On the other hand, the mutual inductance can be obtained by taking the
values of

∑︁Nel,c

j=1 J∥,jVj in the coil that is not excited. Note that if for example a quarter of
the coil is modeled then the value of kmathrmsym has a value of 4.
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C. High frequent theoretical inductance
calculations

C.1 Theoretic expression self-inductance

In the following study, the exciting coil is excited with different frequencies. The resulting
real and imaginary inductances obtained from simulations can be seen in Figure A.3 and
A.4, respectively. Apart from the simulated inductances also an analytical expression is
used to calculate the inductance for different frequencies. This expression will be derived
below. The voltage when there is no induced voltage, U0, is given by

U0 = I0R. (C.1)

Where I0 is the current excitation and where R is given by

R =
l

σAw
. (C.2)

Where l is the length of the wire, which is a function of the number of windings, Nw, and
is given by l = Nw2πr. Aw is the area of the wire which is given by Aw = Ac/Nw, where
Ac is the cross-section of the coil. This can be used to write the R as

R = N2
w

2πr

σAc
. (C.3)

When an EMF is created the reduced current can be calculated using

Ired =
U0

Z
. (C.4)

Where Z is the impedance and is given by Z = R + jωL11,lf . Next, the low-frequency
self-inductance value can be used to express the magnetic potential in the reduced current
using, L11,lf = Φ/Ired. This expression can be used to express the actual self-inductance
which is defined as L11 = Φ/I0. Combining these expression for self inductance with
Equations C.4 and C.1 gives

L11 =
L11,lfI0R

R+ jωL11,lf
. (C.5)

This can be used to obtain a frequency-dependent expression for the real self-inductance,
L11,re, and imaginary self-inductance, L11,im,

L11,im(ω) = Im

(︃
U0R

Iω (R+ jωL11,lf)

)︃
and (C.6)

L11,re(ω) = Re

(︃
U0R

Iω (R+ jωL11,lf)

)︃
. (C.7)

Where R is given in Equation C.3 and L11,lf is given by Equation A.6 in D. The resulting
values of L11,re(ω) and L11,im(ω) can be seen in figures A.3 and A.4, respectively.
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C.2 Theoretic expression mutual inductance

In this part, an expression will be derived for the mutual inductance. In this section, the
subscript e refers to the exciting coil and the subscript n refers to the non-excited coil. For
some initial voltage, the reduced current in the exciting coil can be found using

Ired,e =
U0,e

Ze
. (C.8)

This can then be used to calculate the voltage in the exciting coil using

Ured,e = Ired,eRe. (C.9)

The voltage in the non-excited coil can then be calculated using [80]. In 12.56 in [80]
an expression is given for the current in a perfect coupled conductor as a function of the
voltage. The expression is repeated below.

In =
Ured,e

jωM2−LnLe
M − LeRn

M
(C.10)

Where Ln and Le are the low frequency self inductances of the non-excited and excited
coil, respectively. Furthermore, M, is the low frequency mutual inductance and will be
written as L12,lf . Using that the voltage in the non excited coil, Un, is given by Un = InRn

and rewriting gives

Un

Ured,e
=

L12,lfRn

jω
(︂
L2
12,lf − L11,lf,nL11,lf,e

)︂
− L11,lf,eRn

. (C.11)

Combining equations C.8, C.9 and C.11 gives

Un =
U0,eRe

Ze

L12,lfRn

jω
(︂
L2
12,lf − L11,lf,nL11,lf,e

)︂
− L11,lf,eRn

. (C.12)

Using that the current in the non-excited coil is given by Un = InRn and that the resistance
of both coils is equal gives

In =
U0,eRe

(Re + jωL11,lf,e)

L12,lf

jω
(︂
L2
12,lf − L11,lf,nL11,lf,e

)︂
− L11,lf,eRn

. (C.13)

Using that Φ = L11,lf,nIn and that L12 = Φ/I0,e gives

L12,re(ω) = Re

⎛⎝ U0,eL11,lf,nRe

I0,e (Re + jωL11,lf,e)

L12,lf

jω
(︂
L2
12,lf − L11,lf,nL11,lf,e

)︂
− L11,lf,eRn

⎞⎠ ,

(C.14)

L12,re(ω) = Re

⎛⎝ U0,eL11,lf,nRe

I0,e (Re + jωL11,lf,e)

L12,lf

jω
(︂
L2
12,lf − L11,lf,nL11,lf,e

)︂
− L11,lf,eRn

⎞⎠ .

(C.15)
When both resistances and self-inductance are equal. The equations can be simplified into

L12,re(ω) = Re

(︃
U0,eL11,lf,e

Ie (R+ jωL11,lf,e)

kR
R+ jωL11,lf(1− k2)

)︃
and (C.16)
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L12,im(ω) = Im

(︃
U0,eL11,lf

Ie (R+ jωL11,lf)

kR
R+ jωL11,lf(1− k2)

)︃
. (C.17)

Where R is given in Equation C.3 and L11,lf is given by Equation A.6 in D. The resulting
values of L12,re(ω) and L12,im(ω) can be seen in figures A.3 and A.4, respectively.

74



D. Low frequent theoretical inductance
calculations

D.1 Mutual inductance

In this subsection the mutual inductance for two equal coils will be given. This will be done
by calculating the mutual inductance for two coaxial loops according to [81] and correcting
for geometry according to [82]. The mutual inductance of two coaxial, M0, circles can be
calculated using Equation D.1.

M0 = f · a (D.1)

k′2 =
d2

a2 + d2
(D.2)

Where a is the radius of the loops in cm and d is the distance between the planes of the
loop in cm. The value of M12 has units µH. The value of f of is related to k′2 through
Table 2 in [81]. The interpolation between the values is done using linear interpolation,
because the relation between k′2 and f is almost linear near the origin. The correction due
to the shape of the coils is made using Rosa’s formula, which is Equation 49 in [82]. It is
repeated below for convenience.

∆M =4πa

[︃
b2

12d2

(︃
1 +

3

8

d2

a2

[︃
log

8a

d
− 11
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− 45

256

d4

a4

[︃
log

8a

d
− 97

60
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+

1050

1282
d6

a6
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log
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− 3793

2520

]︃)︃
+

1

60

b4

d4

(︃
1 +

1

16

d4

a4

[︃
log

8a

d
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]︃)︃
+

2100

1282

(︃
log

8a

d
− 893

420

)︃
+

1

168

b6

d6

(︃
1 +

3

160

d2

a2
− 3

1024

d4

a4

)︃
+

1

360

b8

d8

(︃
1 +

1

112

d2

a2

)︃]︃
(D.3)

Where b is the axial length of the coil in cm and ∆M is the correction in inductance in
µH. The effective mutual inductance, M12, can then be calculated using

M12 = N2 (M0 +∆M) (D.4)

Where Where N is the number of loops in the coil. The resulting value for M12 is 2.7133
[mH].

D.2 Self inductance

In [82] two different suitable formulas can be found to calculate the self inductance. The
first formula assumes the coil to be an infinitely thin sheet and can be found in Equation
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70 in [82]. It is repeated below for convenience.

L =4πaN2

[︃
log

8a

b
− 1

2
+

b2

32a2

[︃
log 8ab+

1

4

]︃
− 1

1024

b4
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log
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log

8a
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120

)︃
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4194304

b8

a8

(︃
log

8a

b
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420

)︃]︃
(D.5)

Again the dimensions of inductance and dimensions are in µH and cm, respectively. The
second formula takes into account the cross section of the coil. This formula can be found
as Equation 88 in [82]. It is repeated below for convenience.

L = 4πaN2(λ+ µ) (D.6)

Where

λ = log
8a

c
+

1

12
− πx

3
− 1

2
log

(︁
1 + x2

)︁
+

1

12x2
log
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1 + x2
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1

12
x2 log

(︃
1 +

1

x2

)︃
+

2

3

(︃
x− 1

x
arctanx

)︃
(D.7)

µ =
c2

96a2
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log

8a
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− 1

2
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(︁
1 + x2

)︁)︃ (︁
1 + 3x2
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+ 3.45x2 +

221
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− 1.6πx3 + 3.2x3 arctanx− 1

10

1

x2
log
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+

1

2
x4 log
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1 +

1

x2

)︃]︃
(D.8)

Where c is the thickness of the coil and x = b
c . Again the dimensions of inductance and

dimensions are in µH and cm, respectively. The resulting value of the self-inductance from
equations D.5 and D.6 are 12.018 and 11.967 [mH], respectively. For further comparisons
the value from Equation D.6, 11.976 mH, will be used, because this takes into account the
cross section of the coil.
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E. Anti-symmetry test

To make sure defining no boundary condition result in anti-symmetry a benchmark problem
is modelled. In the benchmark two equal wires with opposing currents are modeled, as
shown in Figure E.1. This situation has an anti-symmetry axis. To test whether Abaqus
can properly account for anti-symmetry two simulations are done. In the first simulation,
the full domain is considered, see the right subfigure in Figure E.2. In the first simulation,
half of the domain is considered and on the axis of anti-symmetry no boundary conditions
are defined, see the left subfigure in Figure E.2. It can be recognized that both the shape
and magnitude of the magnetic field are equal.

Figure E.1: A schematic overview of the benchmark to test whether Abaqus properly
incorporates the anti-symmetry condition.

min max

Figure E.2: The magnitude of the magnetic field. For both images, the maximum
and minimum magnitude are 3.429e-7 and 2.707e-12, respectively.
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F. Phasor notation

F.1 Phasor derivation

Before any derivations can be done it will be shown how a time harmonic expression can
be expressed in terms of its phasor. This is done using an arbitrary example variable, X.
This variable can be defined using

X(x, y, z, t) = X1(x, y, z) sinωt+X2(x, y, z) cosωt. (F.1)

This expression can be simplified as

X(x, y, z, t) = X1(x, y, z) cos (ωt+ α) (F.2)

This can be written in Euler form and be rewritten as shown below.

X(x, y, z, t) = X0(r)Re
(︂
ej(ωt+α)

)︂
(F.3)

X(x, y, z, t) = Re
(︁
X0(r)e

jαejωt
)︁

(F.4)

X(x, y, z, t) = Re
(︂
X
∼
(r)ejωt

)︂
(F.5)

In this case X
∼
(r) = X0(r)e

jα is the phasor of the X.

F.2 Power derivation

The goal of this section will be to express the power density in terms of the phasors. This
will be done using the example of the dissipated power, Pd, however, the same applies to
the magnetically stored energy , Wm. The expression for Pd is given by

Pd =

∫︂
σ|E(r, t)|2dV (F.6)

In this Equation the power density can be defined as, S(r, t). Furthermore, page 15 in [36]
can be used to obtain |E(r, t)|2 = E(r, t) · E(r, t)∗. This gives the following expression
for the power.

S(r, t) = E(r, t) ·E(r, t)∗ (F.7)

Writing the terms into phasor notation gives

S(r, t) = Re
[︂
E
∼
(r)ejωt

]︂
· Re

[︂
E
∼
(r)ejωt

]︂∗
(F.8)
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Using Re [X] = 1
2 [X +X∗] gives

S(r, t) =
1

2

[︂
E
∼
(r)ejωt +

[︂
E
∼
(r)ejωt

]︂∗]︂
· 1
2

[︂
E
∼
(r)ejωt +

[︂
E
∼
(r)ejωt

]︂∗]︂
(F.9)

Writing all the terms out gives

S(r, t) =
1

4
E
∼
(r)·E

∼
(r)∗+

1

4
E
∼
(r)∗·E

∼
(r)+

1

4
E
∼
(r)·E

∼
(r)e2jωt+

1

4

[︂
E
∼
(r) ·E

∼
(r)e2jωt

]︂∗
(F.10)

Again using Re [X] = 1
2 [X +X∗] and using the property of the dot product a · b = b · a

gives

S(r, t) =
1

2
E
∼
(r) ·E

∼
(r)∗ +

1

2
Re

(︂
E
∼
(r) ·E

∼
(r)e2jωt

)︂
(F.11)

Now it will be shown that the average power of the second term, Sav,2(r, t), is equal to
zero

Sav,2(r, t) = lim
T→∞

1

T

∫︂ T

0

1

2
Re

(︂
E
∼
(r) ·E

∼
(r)e2jωt

)︂
dt (F.12)

Sav,2(r, t) = E
∼
(r) ·E

∼
(r) lim

T→∞

1

T

∫︂ T

0

1

2
cos (2ωt)dt (F.13)

Sav,2(r, t) = 0 (F.14)

This knowledge can be used to obtain the new expression for the power.

S(r, t) =
1

2
E
∼
(r) ·E

∼
(r)∗ (F.15)
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G. The electrical circuit

G.1 The hardware

In Figure G.1 an overview is shown of the electrical hardware used in the experiments.
The idea is that the current from the coils goes back to the voltage generator (indicated
as Osc on the board). Another port measures the voltage over a 1 ohm resistor which will
give the current in the transmitting coil. It has been observed that the location of this

.. ..

Figure G.1: The electrical circuit used in the experiments (left). The sensor used
in the experiments (right).

Figure G.2: A schematic diagram illustrating the location of the connection which
should be carefully considered.

resistor is very important. The reason is that if the wired connection from the resistor
to the signal output port Osc (Connection A in Figure G.2) is too long this will cause a
significant inductance (in the order of hundreds of nH). This will lead to part of the current
going through the REF port. This will cause a shift in phase of the measured signal over
the resistor. To prevent this effect the resistance in Connection A should be made as low
ass possible. This can be done by for example reducing the length of the connection.
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G.2 Deriving the transfer function

The approach to find the equivalent electrical circuit is based on the work done by Peter
Bax and Shiyu Feng in [44]. The initial circuit of the sensor set-up is shown in the left side
of Figure G.3. The circuit is shorted, which means perfect coupling is assumed. This is a
rather big assumption and unlikely to be fully accurate.

Figure G.3: The initial equivalent circuit (left) the final equivalent electrical circuit
(right).

The transfer function can then be derived using Kirchoffs laws. These are given below

U1 = jωL1(I1 − I2) (G.1)
R2I2 + I2jωL2 + (I2 − I1)jωL1 = 0 (G.2)

First, equation G.2 is used to isolate I1, which gives

I1 =
1

jωL1
(jωL1I2 + jωL2I2 +R2I2) (G.3)

Using I2 = Utest/(R2 + jωL2) to remove I2 and rewriting gives

I1 = Utest
1

jωL1(R2 + jωL2)
(jω[L1 + L2] +R2) (G.4)

Using that Uref is equal to the I1 means the equation can be written as

Utest

Uref
=

jωL1(R2 + jωL2)

jω(L1 + L2) +R2
(G.5)
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H. Fitting simulated curves

In this section some problems about the fitting techniques are highlighted. In Figure H.1 it
can be seen least square curve fitting gives poor results. This is caused by the fact that the
equivalent circuit model does not describe all the occurring phenomena well enough. The
same can be observed in Figure H.3 in which there are two minima in the phase. These
can not be described by the simple equivalent electrical circuit model.
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Figure H.1: Figure showing the the fit when done with least squares curve fitting.
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Figure H.2: The differences between the fit of the electrical circuit and the fem
model.

10
2

10
4

10
6

10
8

Frequency [Hz]

5

10

15

G
a
in

 o
f 
th

e
 i
n
d
u
c
ta

n
c
e

10
-5

w = 0.133  = 1

w = 0.133  = 600

w = 0.2375  = 1

w = 0.2375  = 600

10
2

10
4

10
6

10
8

Frequency [Hz]

40

50

60

70

80

90

P
h
a
s
e
 i
n
 d

e
g
re

e
s

w = 0.133  = 1

w = 0.133  = 600

w = 0.2375  = 1

w = 0.2375  = 600

Figure H.3: The differences between the fit of the electrical circuit and the fem
model.
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I. Sensor signal interpretation

In the experiments the sensor signal exists out of two signals. These will be defined as the
gain of the inductance, G, and the phase of inductance, θ. In the experimental set-up the
two signals are determined by measuring the voltage in the receiving coil, Urec, and the
current in the transmitting coil, Itrans. The equations that are used to calculate the signal
values are

G = | Urec

Itrans
1

ω
| θ = ∠Urec − ∠Itrans (I.1)

This means the results from Section 2.6 must be converted to receiver voltage and trans-
mitter current. The voltage in the receiver can be calculated in accordance with Equation
2.10 which gives

Urec = −Mcωj. (I.2)

Obtaining the current for the transmitter from the simulations is less straightforward. The
reduced current of the transmitter in the model can be calculated using the electromotive
force as

Itransmitter = I0,transmitter + EMF/R. (I.3)

The resistance of the coil, R = l/Aσ, is very high because the conductivity of the coils was
set to 1 [S/m]. This means the induced currents in the transmitter in the simulations are
negligible. For this reason the second term can be dropped. This can be used together
with the fact that a current of 1A is applied to obtain.

G = |−Mcωj

1

1

ω
| = Mc θ = ∠−Mcωj − 0 = ∠Mc − 90◦ (I.4)
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