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Management summary

Introduction

The healthcare sector is facing increasing demand due to a growing and aging
population. This presents a challenge in maintaining high-quality care while
keeping healthcare affordable and accessible. To address this challenge, the
healthcare sector must work more efficiently, including the efficient utilization
of resources such as staff and equipment.

The ED is a crucial part of any hospital. Patients who arrive at the ED often
require immediate medical attention. To provide timely and effective treatment,
it is essential to have an adequate number of staff members on hand. However,
staffing can be expensive, so it is important to deploy personnel efficiently.
Forecasting can help ensure that staff is available when needed, by aligning ED
demand with staff availability.

Research goal

The goal of our research is answer the following question:

What are suitable forecasting models, for patient arrivals at the ED at Di-
akonessenhuis Utrecht, with error measures as low as possible?

We provided the hospital with a forecasting tool, which makes daily predictions
of ED patient arrivals.

Methods

The hospital provided a dataset of daily patient arrivals consisting of patient
arrivals on 1155 days, in the period from 1-1-2017 to 29-2-2020. We use this
data to train and compare several ED arrivals prediction models we found by
conducting a literature review.

We selected a group of (penalized) linear models, as they are intuitive, easy
to implement and are amongst the best performing models in the field of ED
forecasting. Additionally, we used a Random Forest to predict ED arrivals,
which is one of the popular machine learning methods used by more recent
research on ED forecasting.

Results

The RF model outperforms other models with a MAPE of 11.21, representing
an 8.79% improvement over the baseline prediction. This baseline prediction is
an estimate of the hospital’s current forecasting method. The penalized linear
models, including Lasso, Ridge, and Elastic Net, have similar performance to
the RF model with MAPEs of 11.24, 11.24, and 11.25 respectively. The MLR
model has a slightly higher MAPE of 11.67.

The most predictive variables for ED arrivals are weekdays and months. Mon-
days, Fridays, and Saturdays tend to be busier than other days of the week.
Amongst the months, August and July have the strongest predictive power,
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with a decrease in arrivals during these summer months. Public holidays also
affect ED arrivals. Similar to the postponement effect observed on Sundays,
people tend to delay their hospital visits on public holidays. This results in a
decrease in arrivals on public holidays and an increase on the following day.

Conclusion

Our developed prediction model outperforms the hospital’s current forecasting
method with a relative improvement of 8.79%. Although the RF model has
slightly better performance, we recommend using the Lasso model due to its
intuitiveness and ease of implementation.

We recommend integrating the prediction model into the hospital’s existing
KPI dashboard. This can be achieved through an API that takes input from
the hospital database and outputs daily predictions. Alternatively, a simpler
option is to use the forecasting tool we provided to generate predictions for a
longer period and manually insert them into the dashboard application.

We also recommend that the hospital periodically updates the forecasting model
with new data by refitting the coefficients of the Lasso model. If an API is built,
this model can be updated continuously without much effort. For the simpler
implementation option, we recommend updating the model once per year.
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1 Introduction

In this chapter, we briefly discuss the organization in Section 1.1 and give a
problem description in Section 1.2. In Section 1.3, we provide our research goal,
followed by research questions in Section 1.4. Finally, in Section 1.5 we define
the scope of the research.

1.1 Organization

This research is conducted at Diakonessenhuis, which is a hospital in Utrecht,
with subsidiary locations in Zeist and Doorn. In our research, we focus on
the location in Utrecht, which has around 500 beds and over 2800 employees.
The main involved departments are the emergency department (ED), and the
Integral Capacity Management Team (ICM).

1.2 Problem description

The healthcare sector is dealing with increases in demand due to an increas-
ing and aging population. Therefore, it becomes challenging to maintain the
high quality of care while keeping healthcare affordable and accessible. As a
result, the healthcare sector is forced to work more efficiently, including efficient
utilization of resources such as staff or equipment.

The ED is a vital department in a hospital. As the urgency of patients arriving
at the ED is high, fast treatment is often of great importance. To be able to pro-
vide fast treatment, sufficient staff should be present at the ED. However, staff
is costly and therefore important to be deployed well. Effective resource utiliza-
tion in the ED is crucial. Underutilization can result in increased costs, while
overutilization can compromise the quality of care, increase patient wait times,
and lead to staff dissatisfaction. The main challenge in managing resources at
the ED is the randomness of ED patient arrivals. Unexpected peaks in demand
can have major consequences on the performance of the system. Better un-
derstanding of the underlying arrival process can improve matching supply and
demand at the ED. For instance, if we can predict the number of arrivals at the
ED, we can deploy staff accordingly. Therefore, forecasting patient arrivals can
help decision-making regarding resource utilization easier.

The hospital currently does not have a formal forecasting method. Instead,
rough predictions are made based on patterns from historical data and based
on experience. Mostly the day of the week determines the prediction of ED
arrivals. In some cases this prediction changes, for example if major events are
held in Utrecht, or on special days such as new years evening.

To improve the current forecasting method, the hospital is seeking to use a
data-driven approach to forecast arrivals at the ED. Two types of forecasts
can be of value. The hospital indicated forecasts can assist in both tactical
planning as well as operational planning. To assist tactical planning, forecasts
should be available well in advance. To assist operational planning, forecasts
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need to be available only a couple of days in advance, giving the opportunity
to include variables that would not be available otherwise. However, the results
of our research shows variables that would be included in a short term model,
such as weather variables or information about public events, fail to improve
the model. Therefore, we develop one model, which included variables that
are known in advance. This model serves for both short term and long term
forecasts. Furthermore, the hospital seeks to gain insights into the contributing
factors of ED patient arrivals.

1.3 Research goal

The main goal of our research is to answer the following question: What are
suitable forecasting models, for patient arrivals at the ED at Diakonessenhuis
Utrecht, with error measures as low as possible?

Suitable here means the extent to which the models are of practical use as the
hospital intends to implement the forecasts into their existing planning tools.
Decision-makers have to rely on these forecasts, which means the interpretability
of the forecasting models is essential.

By achieving this goal we contribute both to theory and practice. The theoret-
ical contribution is adding another case study to the existing literature, further
strengthening the used methods. Also, while a lot of literature exists on the sub-
ject, ED patient arrival forecasting is not well researched specific to the Dutch
Healthcare system. While most variables that we research have been researched
before, the inclusion of a variable that indicates extreme weather conditions is
a new contribution to theory.

The impact of our thesis will be mostly to practice, as Diakonessenhuis Utrecht
will use our results. The tool we developed will be added to their existing KPI
dashboard at the ED. The information from the forecasts can be used to improve
resource allocation. Furthermore, the forecasts on ED arrivals can be used to
predict downstream care in the hospital. In addition, the insights into variable
importance are of value to the hospital.

1.4 Research questions

In this section, we specify a total of 6 research questions. For each question, we
explain the method of answering the question.

Question 1

What does the ED arrival process look like and what kind of patient arrival
forecasting is used to support it?

Hospital staff is interviewed to identify the current situation.
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Question 2

What ED patient arrival forecasting models exist in literature?

An extensive literature study will be performed to find suitable forecasting mod-
els. In addition, appropriate performance measures will be identified.

Question 3

What is the performance of the suitable models found in literature?

We will compare the performance of a selection of suitable models found in
literature. Answering this research question includes model building, variable
selection, and validation. Historical data from the hospital is used for model
development.

Question 4

What are the contributing variables for ED patient arrival, and what is their
importance?

We answer this question with the outcomes of variable selection from question
3. In addition, depending on the selected models from question 4 we use model
coefficients to identify importance of variables.

Moreover, we provide descriptive statistics on the contribution of variables. This
increases the insights in variable importance, and serves as additional validation
for the models.

Question 5

How can the developed forecasting models assist decision-making in the hospital?

In the last step of the research, we aim to relate the outcomes of forecasting
models to actions to be taken in decision-making. For instance, advice on the
number of staff needed or the expected bed occupation. Moreover, we provide
recommendations on the implementation of the forecasting models.

1.5 Scope

In this research, we focus on predicting the ED patient arrivals at the Di-
akonessenhuis hospital in Utrecht. We use their historical data on patient ar-
rivals to build and validate forecasting models. Data is available from 2017 up
to 2022. While the data is specific to one hospital, the research results are likely
to be generalizable to other hospitals in the Netherlands. In addition, while the
trends in other cultures and climates are probably different, the research results
are likely still relevant for hospitals outside the Netherlands.

The forecasts will be less applicable under special circumstances, such as pan-
demics or natural disasters. Hence, we exclude events like the global pandemic
of Covid-19. The historical data on patient arrivals after March 2020 is heavily
influenced by the Covid-19 pandemic. During the pandemic ED arrivals rise due
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to Covid patients, but the number of regular patients decrease due to measure-
ments such as lockdowns. As the circumstances after March 2020 are clearly
different from the period before, we only include data until March 2020.
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2 Context description

In this chapter we answer the first research question:

What does the ED arrival process look like and what kind of patient arrival
forecasting is used to support it?

We answer this question by providing a process description in Section 2.1. In
addition, we give an overview of stakeholders in Section 2.2.

2.1 Process description

In this section we describe the ED process and the current forecasting method.

ED process

The ED treats patients with a need for urgent care. Patients most frequently
enter the ED directly via an ambulance or via referral from the general prac-
titioners post. Alternatively patients can come in at the ED via a different
hospital department, or in rare cases for check-ups.

Once admitted to the ED, the patient has to wait before a doctor sees the
patient. This waiting time depends on the severeness of the patient’s injury
and the crowdedness at the ED. After waiting the doctor sees the patient and
takes diagnostic steps. The patient is then treated at the ED, admitted to the
hospital or discharged. Figure 1 shows this process.

Figure 1: ED process

Current forecasting method

The most crucial resources at the ED are the doctors and nurses. Currently
the hospital allocates staff based on expected patient arrival. However, the
hospital does not use any scientific forecasting method. Instead the hospital
creates rough forecasts partly based on the observation of historical data, but
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mainly based on intuition. Weekdays and months are main factors in currently
determining a prediction. Additionally special circumstances like new years
evening or large events are taken into account. A detailed explanation of the
current forecasting method is provided in Section 5.2.

Similar forecasts are being used to predict bed occupation throughout the hos-
pital departments. Part of bed occupation is predictable because of planned
surgeries and other medical procedures requiring hospital admission. However,
the part of occupied beds followed by ED admissions is harder to predict. Each
admitted patient requires a specific kind of care and is therefore admitted to a
specific department. A large number of emergency patients admissions causes
problems, as every hospital department only has a limited number of available
beds. To a certain extent patients can be admitted to a different department,
but this is undesirable, as the personnel and equipment is often not ideal to
treat a patient. Timely knowledge of bed occupancy allows bed managers to
allocate their resources more efficiently.

2.2 Stakeholders

The main stakeholder is the ED, as it is directly influenced by ED forecasting.
Because the ED serves as an entry point for many patients who visit the hos-
pital, many departments are affected by the ED. We briefly discuss the other
stakeholders.

During diagnostics, other departments are frequently involved to perform tests
(e.g. X-rays, MRI scans etc). These departments have a mix of planned patients
and emergency patients. The inflow of patients from the emergency department
has an impact on the performance of these auxiliary processes, as these depart-
ments have a trade-off between the utilization of resources and the availability
of resources in case of emergency patient arrivals.

In some cases emergency patients need surgery, which involves the surgery de-
partment. Similar to departments performing diagnostic tests, a trade-off exists
between utilization and availability of operating rooms. However, high avail-
ability is more crucial at the surgery department.

Part of the patients is admitted to the hospital. These patients receive a bed
at one of the nursing departments, depending on the patient type. As is the
case with many hospital departments, the nursing departments also have a mix
between planned patients (for example before and after a planned surgery) and
emergency patients. Hospital beds are scarce, because of the equipment, space
and personnel that is involved.

The ICM team is concerned with capacity issues within the hospital and initiated
the forecasting project. Ideally the forecasting model proposed will be part of
an existing dashboard the ICM team provides for the ED.
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3 Literature review

We provide a systematic literature review (SLR) in this chapter. Appendix A
gives an overview of the article selection used in the SLR. The main goal is to
answer the second research question:

What ED patient arrival forecasting models exist in literature?

We start by introducing ED patient arrival forecasting in Section 3.1. In Section
3.2 we discuss available forecasting models from literature. In Section 3.3 we dis-
cuss which variables are included in literature. Finally, we provide a conclusion
on the literature review in Section 3.4.

3.1 ED patient arrival forecasting

ED overcrowding has a negative impact on quality of care and can lead to
medical errors (Ong et al., 2009; Sudarshan et al., 2021; Zhang et al., 2022).
An increase in the length of stay of patients is associated with increased risk
of mortality (Mataloni et al., 2019). In addition, ED overcrowding leads to
increased waiting times and decreased staff productivity (Savage et al., 2015).
Forecasting ED patient arrivals is a key factor in designing strategies aimed to
prevent ED overcrowding (Kadri et al., 2018)

Developing ED patient arrival forecasting models usually consists of 3 steps
(Wargon et al., 2009). In step 1 patient arrival data is collected over a period
of time. The obtained sample is then split into test data and training data. In
step 2 a prediction model is developed, involving finding the optimal values of
model parameters. Then patient arrival is predicted using the model. In step 3
the predictions from step 2 are compared to the data from the test set, as part
of validation.

With ED patient arrivals forecasts, managers can prepare high level care activ-
ities, optimize internal resources and predict downstream care services (Harrou
et al., 2016). In addition, accurate forecasting is essential for efficient manage-
ment of resources (Zhang et al., 2022), leading to reduced patient waiting time
and length of stay (Harrou et al., 2020; Jilani et al., 2019). K. Xu and Chan
(2016) considered that using forecasts, even when they are noisy, is still helpful
in managing the ED. Furthermore, insights into the importance of contributing
variables is of value, since understanding what drives demand is a major factor
in improving efficiency (Kudyba, 2018; Rema & Sikdar, 2021).

3.2 Overview of models

Extensive research is done on the topic of ED patient arrival forecasting. One
of the simpler methods is the naive method, which takes the observation with
the same week number and day number from a year ago as prediction(Rocha
& Rodrigues, 2021). However, this model is not suitable for forecasting and
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only serves as a baseline method to compare with other models. Another rel-
atively simple method is exponential smoothing, which can include seasonal
components, but also weights more recent observations more heavily than ear-
lier observations (Rocha & Rodrigues, 2021; Rema & Sikdar, 2021).

Some researchers use queueing theory, which uses mathematical equations to
describe arrival patterns, often using Poisson distributions (Wiler et al., 2011;
Savage et al., 2015). However, queuing models tend to oversimplify the under-
lying system, resulting in less realistic results compared to alternatives (Hu et
al., 2018).

Another group of prediction methods considers a relationship between predictor
variables and response variables. The strength of the variables are measured
by regression coefficients. The weighted sum of predictor variables and their
regression coefficients determine the value of the prediction (M. Xu et al., 2013).
Multiple linear regression (MLR) is a well known method, which assumes a
linear relationship between predictor variables and response variables. While
linear methods are considered to be relatively simple, they often are at least
as good or better as more sophisticated methods like complex machine learning
methods (Vollmer et al., 2021). This paper uses penalized linear models, which is
an extension to regular linear models. Penalizing the use of coefficients in MLR
serves as part of variable selection and to find a balance between overfitting and
underfitting. Among the most popular penalized linear models are lasso, ridge
and elastic net (Xing & Zhang, 2022). These methods are also widely applied
for prediction models outside the field of ED forecasting, for example in finance
(Liu & Guo, 2022), health economics (Wester et al., 2021) and chemistry (Binns
& Ayub, 2021).

Time series models are among the most popular models for predicting ED ar-
rivals (Harrou et al., 2020). The (Seasonal) Autoregressive Integrated Moving
Average ((S)ARIMA) is the most widely used in ED forecasting (Harrou et al.,
2016; Carvalho-Silva et al., 2018; Lin & Chia, 2017; de Brito et al., 2019). How-
ever, in comparison to the remaining available models, time series approaches
are challenging in model development and require above average computational
resources. (Wiler et al., 2011).

A more recent development in the field of ED forecasting is the use of deep
learning and machine learning models. Several state-of-the-art methods are
used in ED forecasting, such as decision trees, Artificial Neural Networks (ANN),
Support Vector Machines (SVM) and Näıve Bayes (Gul & Celik, 2020). Harrou
et al. (2020) find deep learning models to be promising. M. Xu et al. (2013) show
ANN outperformMLR, although their dataset is limited to only one year of data.
However, there are also limitations, as these models are complex and require
computational power (Sudarshan et al., 2021). In addition, the performance
of deep/machine learning methods is data dependent, since other papers show
traditional methods outperform deep/machine learning methods (Jones et al.,
2008; Vollmer et al., 2021; Choudhury & Urena, 2020).

15



Jones et al. (2008) argues no universally superior forecasting method exists.
Therefore, it is best to test multiple forecasting methods to find out which
method fits the data in the best way. Also, the underlying arrival process
can differ per hospital and country, which is why Batal et al. (2001) mentions
that the generalizability of ED patient arrival forecasting methods among other
clinical facilities is limited. Thus, each institution can use the overall principles,
but should aim to develop their own model.

3.3 Variables

All models used in literature use seasonal factors as predictors variables which
are weekday, month and sometimes week number. Some work includes addi-
tional variables. Sudarshan et al. (2021) has shown meteorological variables
can help in predicting ED arrivals. However, Batal et al. (2001) shows while
including meteorological variables does have an impact, the improvement in
predicting power is minimal. Other research suggests meteorological data fails
to improve model performance (Wargon et al., 2009). The lack of consensus on
the inclusion of meteorological variables emphasizes the difference in the under-
lying arrival processes, which can be explained by the difference in cultures and
climates. Another variable that can contribute is an influenza outbreak (M. Xu
et al., 2013). Furthermore, the ED arrivals can be affected by public holidays
or a day after a public holiday (Q. Xu et al., 2016). The variables we use in our
research are months, weekdays, week numbers, extreme weather warnings and
FC Utrecht matches (nearby big soccer matches). We discuss these variables
more deeply in Section 4.1.

3.4 Conclusion

As mentioned by many researchers, ED forecasting is of crucial importance in
improving ED efficiency. In the literature we find a variety of ED forecasting
models, which can be broadly categorized into ARIMA models, queueing mod-
els, MLR models, and deep learning models. We find MLR models to be most
suitable for the hospital. While linear models can be potentially outperformed
by more complex models, its ease of model development, implementation and
interpretability make it a preferred model.

As we have seen, the generalizability of existing ED forecasting models is limited,
since the data used in earlier research is very specific to a care institution. This
makes model development an important step, which is discussed in the next
chapter.
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4 Model development

We discuss the development of forecasting models in this chapter. In Section 4.1
we conduct exploratory data analysis on the hospital data. Section 4.2 discusses
several regression models used for forecasting patient arrivals. In Section 4.3
we show how the data is corrected for trends. We discuss indicators for model
performance in Section 4.4. We conclude on our findings in Section 4.5.

4.1 Exploratory data analysis

The dataset used in this thesis consists of patients arrivals on 1155 days, in
the period from 1-1-2017 to 2-29-2020. In the following section we provide
information on the characteristics of the data.

Patient arrivals

Figure 2 shows the daily patient arrivals in the data. The plot shows a minor
decreasing trend over the years. Fitting a trendline to the data yields an inter-
cept of 76.48 and a slope of -0.00425. Furthermore, there is a clear decrease in
arrivals during the summer months.

Figure 2: Daily patient arrivals (period 1-1-2017 to 2-29-2020, n = 1155, source:
Diakonessenhuis Utrecht).

Figure 3 shows the distribution of daily arrivals. We assume the daily arrivals
to follow a normal distribution. Appendix B shows statistical evidence for this
assumption.
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Figure 3: Histogram of daily patient arrivals (period 1-1-2017 to 2-29-2020, n
= 1155, source: Diakonessenhuis Utrecht).

Table 1 shows descriptive statistics on the number of daily arrivals.

Table 1: Descriptive statistics of daily patient arrivals (period 1-1-2017 to 2-29-
2020, n = 1155, source: Diakonessenhuis Utrecht).

Mean 74,02
Std 10,92
Min 30
Q1 66
Q2 74
Q3 81
Max 113

Variables

An overview of the variables that are included in our research is given in Table
2. All included variables are categorical variables. For example, the weekday
variable can take 7 values, one for each day of the week. Due to variable encod-
ing, the weekday variable is split into 7 variables. Each separate variable is a
boolean, indicating true/false if it is a Monday, for example. This gives a total
of 80 variables.
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Table 2: Overview of variables included to predict ED arrivals. Between brackets
are the number of variables that are associated with each group of variables.

Variables
Weekdays (7)

Week numbers (53)
Months (12)

Public holiday (True/False)
Day after Public holiday (True/False)

Weather warnings (True/False)
FC Utrecht matches (True/False)

Figures 4-9 utilize violin plots as a data visualization tool to analyze the behavior
of the variables under consideration. These plots display a separate distribution
for each possible value of the variable being studied, with the width of each
distribution representing the frequency of the data points falling within that
range. Additionally, an interquartile range in black is displayed within each
distribution, with a white dot representing the mean. For example, in Figure
4, the violin plot for Monday’s arrivals demonstrates that the majority of data
points cluster around the mean value of 78, with the highest and lowest arrivals
being around 110 and 40, respectively.

The most common variables to include are calendar related (Jones et al., 2008;
M. Xu et al., 2013). Figure 4 and Figure 5 shows the arrivals per weekday
and month, respectively. While the distributions for weekdays are relatively
similar, Monday, Friday and Saturday are the busiest days. Friday and Saturday
can be explained by the weekend effect, where people are more active than
usual by participating in outdoor activities. On Mondays catching up takes
place, because people tend to postpone their hospital visits on Sundays. The
distributions of months are similar, except for July and August, which are the
months most people take holiday breaks . In this period a lot of people are on
holidays abroad (Schoolvakanties, 2023), resulting in less ED arrivals as shown
in Figure 5.
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Figure 4: The distributions of arrivals per weekday (period 1-1-2017 to 2-29-
2020, n = 1155, source: Diakonessenhuis Utrecht).

Figure 5: The distributions of arrivals per month (period 1-1-2017 to 2-29-2020,
n = 1155, source: Diakonessenhuis Utrecht).

Public holidays are also known to have an effect on ED arrivals, as people typ-
ically postpone an ED on these days, resulting in fewer arrivals on a holiday,
but more arrivals the day after (Q. Xu et al., 2016). Figure 6 shows the dis-
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tributions of arrivals on public holidays versus “regular” days. Figure 7 shows
the arrivals the day after a public holiday versus “regular” days. Each separate
public holiday occurs once a year, making the data points that have a specific
public holiday scarce. To cope with this effect we cluster several public holidays
into one variable, which indicates if a public holiday occurs. We include pub-
lic holidays in which the majority of the Dutch people have a day off. In the
Netherlands some public holidays have a two day duration. For these holidays
(i.e. Easter, Christmas and Pentecost) we only take the second day as a public
holiday in our model, since that is when the postponement effect is the highest.
Furthermore, Kingsday and New years day are excluded. We assume they dif-
fer from regular holidays because the day before and on the day itself a lot of
celebratory activities take place, which result in ED arrivals.

Figure 6: The distribution of arrivals on public holidays and for comparison
the distribution of the remaining days (period 1-1-2017 to 2-29-2020, n = 1155,
source: Diakonessenhuis Utrecht).

21



Figure 7: The distribution of arrivals on the day after a public holiday and for
comparison the distribution of the remaining days. (period 1-1-2017 to 2-29-
2020, n = 1155, source: Diakonessenhuis Utrecht).

Meteorological variables can have an influence on ED arrivals Sudarshan et al.
(2021). However, this influence is often small and depends strongly on the cli-
mate in which the data is collected Batal et al. (2001); Wargon et al. (2009).
One possible contributor to ED arrivals are extreme weather conditions, as peo-
ple get into accidents more likely. We use color code warnings as an indicator
for extreme weather conditions. In the Netherlands these color code warnings
are issued at least 24 hours in advance (KNMI Waarschuwingen, 2022). Code
Green functions as a base case, yellow means to be alert, orange means a high
likelihood of extreme weather, and red means an extreme weather condition is
about to happen which will have high impact on society. Since the number
of days extreme weather conditions occur is low, we group the separate causes
together in one variable, which indicates if a weather warning was issued. In
our model only orange and red warnings are considered as an extreme weather
condition. Figure 8 shows the arrivals during extreme weather conditions, sep-
arating the cause of the warning. Figure 9 shows arrivals in case we group
weather warnings into one variable. No large differences are seen in the figures,
which is also in line with their 95% confidence intervals, (73.44, 74.71) for days
without a weather warning and (66.05, 76.15) for days with a weather warn-
ing, respectively. However, the arrivals appear to be slightly lower than usual
on days with weather warnings. We expect more people to get injured by the
weather conditions, but at the same time a lot of people are being cautious
and/or stay at home, which reduces the chance of ED arrivals.
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Figure 8: The distributions of arrivals on days with weather warnings (period
1-1-2017 to 2-29-2020, n = 1155, source: Diakonessenhuis Utrecht).

Figure 9: The distributions of arrivals on days with weather warnings (period
1-1-2017 to 2-29-2020, n = 1155, source: Diakonessenhuis Utrecht).
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4.2 Prediction models

In our research we compare multiple methods for predicting ED arrivals. In the
following section we discuss these prediction models. We start with multiple
linear regression, followed by penalized linear models and end with Random
Forest.

Multiple linear regression (MLR)

We start by introducing notation:

yi = value of observation i

xij = value of variable j in observation i

ϵ = residuals, assumed to be distributed according to N(0, σ2)

β0 = intercept

βj = coefficient of variable j

ŷi = estimate for observation i

In case of n observations with and p variables, the multiple linear regression
formula is:

yi = β0 +

p∑
j=1

βjxij + ϵ (1)

Then estimates for the predictions are calculated by:

ŷi = β̂0 +

p∑
j=1

β̂jxij (2)

The coefficients are fitted by minimizing the squared error:

SE =

n∑
i=1

(yi − ŷi)
2 (3)

By substituting (2) into (3), we can obtain the estimates in the following way:

β̂ = argmin
β̂

{
n∑

i=1

(yi − β̂0 −
p∑

j=1

β̂jxij)
2} (4)

Lasso regression

A downside of MLR is a risk of overfitting, as every variable gets a coefficient.
This means insignificant variables also get coefficients, which leads to overfitting.
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Additionally, (partially) correlated variables cause problems, since the model
may not be able to distribute the coefficients over correlated variables. For
example, a large positive coefficient can be cancelled out by a large negative
coefficient in case they are correlated.

Lasso regression adds a penalty term to regular MLR formula as shown in
Equation 4, which penalizes the use of coefficients. The model now chooses
only the variables that are most important in predicting. The model is forced
to shrink as the penalty parameter increases, i.e., it sets coefficients to zero,
which serves as variable selection. The lasso is shown in (5) (Hastie et al.,
2009).

λ = penalty parameter

β̂lasso = argmin
β̂

{
n∑

i=1

(yi − β̂0 −
p∑

j=1

β̂jxij)
2 + λ

p∑
j=1

|β̂j |} (5)

The penalty term in the lasso takes the absolute value of the coefficients, mak-
ing sure both negative and positive coefficients are penalized. Note that only
coefficients of variables are penalized, meaning the intercept β̂0 is left out.

Ridge regression

Ridge regression is similar to lasso regression, except the coefficients in the
penalty term are now squared. The formulation is shown in (6) (Hastie et al.,
2009).

β̂ridge = argmin
β̂

{
n∑

i=1

(yi − β̂0 −
p∑

j=1

β̂jxij)
2 + λ

p∑
j=1

β̂j
2
} (6)

Although ridge and lasso are very similar, their penalty terms serve for differ-
ent objectives. Lasso regression aims to reduce model complexity by reducing
the number of non-zero coefficients. Ridge regression aims to reduce problems
related to correlation of variables, but does not set coefficients to 0. The differ-
ence between lasso and ridge is best explained by formulating them into their
equivalent optimization problem (Hastie et al., 2009):

β̂lasso = argmin
β̂

{
n∑

i=1

(yi − β̂0 −
p∑

j=1

β̂jxij)
2},

subject to

p∑
j=1

|β̂j | ≤ t

(7)
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β̂ridge = argmin
β̂

{
n∑

i=1

(yi − β̂0 −
p∑

j=1

β̂jxij)
2},

subject to

p∑
j=1

β̂j
2
≤ t

(8)

where t has a one-to-one correspondence to λ. Figure 10 shows the two dimen-
sional case of the ridge and lasso. In this case lasso has a constraint region
β1 + β2 ≤ t and ridge has a constraint region β2

1 + β2
2 ≤ t. Due to the diamond

shape (rhomboid in multidimensional case) in the lasso optimal solutions occur
at corner points, meaning certain coefficients are set to 0. In case of the left plot
in Figure 10 β1 is set to 0, meaning this variable is dropped. The disk shape of
the ridge does not share this behavior and instead only shrinks the coefficients.

Figure 10: Figure from (Hastie et al., 2009). Estimations of lasso (left) and
ridge (right) in two dimensional case. Blue shows the constraint regions and the
red ellipses show the contours of the least squares error.

Elastic net

The elastic net is a combination of ridge regression and lasso regression. We
introduce a new parameter and then formulate the elastic net in Equation (9).
The elastic net benefits both shrinking the model, as well as reducing problems
imposed by correlated variables.
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α = fraction of ridge used in penalty term

(1− α) = fraction of lasso used in penalty term

β̂elastic = argmin
β̂

{
n∑

i=1

(yi − β̂0 −
p∑

j=1

β̂jxij)
2 + λ

p∑
j=1

(αβ̂j
2
+ (1− α)|β̂j |)} (9)

Random forest

Although the penalized linear methods are intuitive, the linearity assumption
often does not hold. For this reason we introduce a classical machine learning
method called Random Forest (RF). This method averages over the outcome of
multiple unique decision trees (Hastie et al., 2009).

A RF consists of decision trees. A decision tree splits the data into many
partitions, based on input variables. At each split, called a node, a variable j
and a splitting point s are chosen to split the data. Figure 11 shows and example
of a decision tree. In the first node of the example tree the variable weekday
Friday is chosen. The split point in this case is 0.5, since weekday Friday is a
binary variable and only takes values 0 and 1. Each node of the tree, called
terminal node, corresponds to a region in the data. An observation is classified
into a region, which determines its prediction. In case of regression, the value
of the prediction is the average of observations that lie within that region.

27



Figure 11: Example of decision tree.

More formally, in case of regression we have a set of N observations, that
is (xi, yi), i = 1, 2, ..., N , with yi being the value of observation i and xi =
(xi1, xi2, ..., xip) being the vector of input variables for observation i which has
p variables. Given an observation with vector of input variables x and the data
is split into M regions, the prediction is shown in Equation (10).

ŷ(x) =

M∑
m=1

cmI(x ∈ Rm) (10)

Here cm corresponds to a constant for region m and I(x ∈ Rm) is an indicator
function which equals to 1, if the vector of input variables x falls in region Rm,
0 otherwise. The estimate for each cm is the average of observations that fall
within region Rm:

ĉm = average(yi|xi ∈ Rm) (11)

The goal is to determine the regions R1, R2, ..., RM in such a way the MSE is
minimized. As finding all optimal regions simultaneously is computationally
challenging, a greedy approach is used to find the regions. This approach splits
the data, one node at a time. Starting with all data, the data is split into two
regions by choosing a variable j and a splitting point s:
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R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj > s} (12)

We want to choose s and j in such a way that the total MSE of the remaining
regions R1(j, s) and R2(j, s) is minimized, as shown in Equation (13):

min
j,s

{min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2} (13)

Where estimates for c1 and c2 are again calculated by using the average of
observations that fall within region R1 and R2:

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)) (14)

After splitting the data into two regions, the process is repeated on the two
remaining regions, and repeated afterwards until all regions all determined,
resulting in a fully grown decision tree.

In the RF algorithm, a total of B decision trees are created. For each decision
tree Tb a bootstrap sample (random sample with replacement) of size n is used
to fit the tree. In case of the RF algorithm a random selection of m out of the
total p variables is considered in each node. The best variable out of these m
is chosen to split the data, which creates two new child nodes. This process
is repeated iteratively until the minimum node size nmin is reached, meaning
splitting the data even further would mean less than or equal to nmin data
points end up in a child node.

Finally the prediction is determined by averaging over the total of B created
trees. The prediction for a vector of input variables x is shown in Equation (15).

ŷ(x) =
1

B

B∑
b=1

Tb(x) (15)

Where Tb(x) is the predicted value of tree b using the input vector x.

4.3 Trend correction

As mentioned in Section 4.1, a negative trend in the number of ED arrivals
exists. With this negative trend, the model is likely to overestimate the number
of ED arrivals. To illustrate, consider splitting the data into a train and test
set. If the average of ED arrivals is higher in the training set, the predictions
on the test set will likely be too high. In addition, when the hospital uses the
prediction model new trends in future data can cause the models to perform
poorly.
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Multiple sophisticated methods exist for trend correction, such as the Baxter
King filter (Baxter & King, 1999) or the band pass filter (Christiano & Fitzger-
ald, 2003). We propose a simple method which serves as a practical solution for
dealing with trends. In this method we use a moving average of the observations
of the most recent year to correct the prediction of the model.

We let n be the number of observations used to train the model and N the total
number of observations. This means the observations y1, y2, ..., yn are used to
fit the model and yn+1, yn+2, ..., yN are future observations.

We let µ be the average of observations in the data used to fit the model.

µ =
1

n

n∑
i=1

yi (16)

MA is the moving average of the last k observations. Note that in our model
we set k to 365.

MA =
1

k

N∑
i=N−k+1

yi (17)

We then correct our predictions with the remainder of MA − µ. This way
if MA > µ, meaning the average of recent observations are greater than the
observations the prediction model is trained on, we increase our prediction.
Vice versa, if MA < µ we decrease our prediction.

If we have an vector of input variables x and a prediction model f(x), the final
prediction is as follows:

ŷ(x) = f(x) +MA− µ (18)

4.4 Performance indicators

To evaluate the performance of a prediction model, error measures are used.
The most common method to compare predictive models is the Root Mean
Squared Error (RMSE) (Kuhn et al., 2013). The RMSE is defined as :

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (19)

Another common error measure is the Mean Absolute Percentage Error (MAPE).
The MAPE is defined as (Chopra & Meindl, 2016):
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MAPE =
1

n

n∑
i=1

|yi − ŷi|
yi

(20)

A variant to the MAPE is the Mean Absolute Error (MAE). The MAE is similar
to MAPE, except it gives an absolute error instead of a percentage, which can
be more intuitive for decision makers. The MAE is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (21)

4.5 Conclusion

We include a total of 80 variables, including weekdays, week numbers, months,
public holidays, the day after public holidays, weather warnings and FC Utrecht
matches. From exploratory data analysis we observed the calendar related vari-
ables impact the ED arrivals. Also, from the exploratory analysis we see that
on public holidays people tend to postpone their hospital visit by one day.
Weather warnings and FC Utrecht matches have minimal impact, according to
exploratory analysis.

We use penalized linear models (lasso, ridge and elastic net) as an extension
to MLR to reduce model complexity and avoid correlation between variables.
In addition, we use RF, which is one of the state of the art machine learning
models for predictions.

We corrected a slight negative trend in the data, with a simple method that
corrects the data using the moving average of observations of the most recent
year. As performance indicators to assess model performance we choose MAPE,
MAE and MSE.

In the next chapter we apply the data to the models we described. We then
analyse the results of each method and reflect on the results.
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5 Results

In this chapter we answer two research questions. We start with answering:

What is the performance of the suitable models found in literature?

Followed by:

What are the contributing variables for ED patient arrival, and what is their
importance?

In Section 5.1 we discuss the methods we use for hyperparameter tuning. To
compare the performance of the prediction models to the current situation at
the hospital we provide a baseline prediction in Section 5.2. In Section 5.3
we discuss the performance of each model we tested. To gain insights in the
underlying process of ED arrivals, we discuss variable importance in Section 5.4.

5.1 Hyperparameter tuning

Most prediction models contain hyperparameters, which are model parameters
that need to be set before developing a model. For example, the penalty param-
eter λ in the penalized linear models from Section 4.2. The choice of hyperpa-
rameters influences the performance of prediction models, therefore they need
to be determined carefully. The process of finding values for hyperparameters
is called hyperparameter tuning.

To build the models we split the data into a training set and a validation set.
The validation set contains one year of data. To avoid overfitting, we tune
hyperparameters of each prediction method only using the training data. To
find the optimal hyperparameter values we use resampling methods, meaning
we split the training data again into training and test sets, which has shown to
find better hyperparameters (Kuhn et al., 2013).

A common resampling technique is k-fold cross validation. This method splits
the data into k folds (roughly equal sized groups) and then uses k - 1 folds for
model building and 1 fold to validate the models. In practice the number of
folds k = 5 or k = 10 is often used (Kuhn et al., 2013). We use k-fold cross
validation with k equals to 5, as our test data set becomes too small when we
set k = 10, due to the limited amount of data. This means we split the training
data into 5 folds, for a total of 5 splits. In each split, 4 out the 5 folds are used
as training data and the remaining fold is used as validation data for tuning.

For each combination of splitting the data into test and training folds, we try
a range of values for hyperparameters. Afterwards, we return the values of
hyperparameters that have the best mean score (lowest MSE) over all combi-
nations of test and training folds. We use randomized folds to ensure each fold
contains a mix of data points. This way, within each fold the data contains
different months, weeks, etc. Figure 12 shows a visual representation of the
cross validation process.
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Figure 12: Visual representation of the cross validation process.

Linear models

In the case of lasso, ridge and elastic net the penalty parameter λ needs tuning.
In case of elastic net, the parameter α also needs tuning, which balances the
amount of lasso and ridge used. Table 3 shows the range of values considered
for tuning the lasso, ridge and elastic net. In case of the elastic net, which has
two hyperparameters, combinations of λ and α are considered. The upper and
lower bounds for the hyperparameters are set by trial and error. The concave
shapes in Figures 13 and 15 show evidence that the optimal values lie within
our set range of hyperparameters.

Table 3: Range of values used in hyperparameter tuning for the linear models.

Parameter Range Increment Best value
λ ; lasso 0,1 0.01 0.04
λ ; ridge 0,20 0.2 9.2

α ; elastic net 0.01,1 0.01 0.39
λ ; elastic net 0,15 0.01 0.02

Figure 13 shows the behavior of the MSE when tuning parameters in the Lasso.
The plot shows the typical bias-variance trade-off which exists in machine learn-
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ing problems. As λ increases, the number of variables used in the lasso decreases,
which is shown in Figure 14. At λ equals 0 the lasso is equals to regular MLR,
meaning all variables are included. Slight overfitting occurs when including
all variables, since the MSE decreases when increasing λ, to an optimum of λ
equals to 0.04. When increasing λ further, underfitting takes place, since too
few variables are included to make meaningful predictions.

Figure 13: MSE for tested hyperparameters for lasso.
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Figure 14: Number of variables included for tested hyperparameters for lasso.
The yellow dotted line indicates the optimal λ found.

Figure 15 shows the behavior of the MSE when tuning the penalty parameter
in the ridge. Similar to tuning the lasso penalty parameter, a trade-off exists
between over and under penalization. While the lasso aims to reduce the num-
ber of variables used, the ridge aims at dealing with correlated variables by
introducing bias into the model. The optimum of the ridge penalty parameter
lies around λ = 5, which indicates some correlation exists between variables.
One obvious correlation is between months and weeks. For example, the first
4 weeks of the year are always in January. Also partial correlation between
variables exists. For example, around half of the soccer matches of FC Utrecht
are on a sunday, meaning they are partly correlated.
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Figure 15: MSE for tested hyperparameters for the ridge.

Figure 16 shows the MSE for each tested α (ratio between lasso and ridge
used) in elastic net regression. The MSE shown in Figure 16 is the lowest MSE
amongst the values of λ tested in the optimization process. The MSE of all
tested values of α are relatively close to eachother. The lowest MSE occurs at
α = 0.39
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Figure 16: The MSE for all tested α ratio, using the best λ found for a given
α, when tuning the hyperparameters for elastic net regression.

Figure 17 shows the MSE when tuning the penalty parameter λ, given α = 0.39,
which has the lowest MSE of all tested α.
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Figure 17: The MSE per tested λ for the best l1 ratio found, when tuning the
hyperparameters for elastic net regression.

Random forest

We optimize the hyperparameters in the RF in 2 steps, combining random
search and grid search (Probst et al., 2019). In step 1 we explore a wide range
of hyperparameters through a random search. In a total of 500 iterations we
explore random combinations of hyperparameters. In step 2 we optimize further
by using grid search, which tests for a given range of combinations of hyperpa-
rameters which are close to the best performing combination from step 1.

Table 4 shows the ranges of hyperparameters that are tested in step 2. The
ranges are based on the best performing hyperparameters from the random
search in step 1. The max features parameter determines the number of variables
considered at each split. The max depth, min samples leaf and min samples split
are the stopping criteria for growing each tree. The max depth is the maximum
depth of the tree, i.e. the number of layers in the tree. The min samples split
is the minimum number of samples that a child node should have when we split
the data. The min samples leaf is similar to min samples split, except a leaf
node is considered (a node with no child nodes).
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Table 4: Range of values used in hyperparameter tuning for the RF.

Parameter Range Increment Best value
Max depth {40,80} 10 70

Min samples split {8,12} 1 11
Min samples leaf {1,6} 1 5
Number of trees {100,400} 100 100

5.2 Baseline forecast

Currently the hospital does not make explicit forecasts on daily ED patient
arrivals. However, indirectly the hospital does make forecasts, for example when
deciding on how much nurses to allocate each day. The hospital schedules their
nurses based on historical data and experience. Logically the hospital allocates
more nurses to periods where they expect more patient arrivals. We use this
nurse allocation to estimate a baseline prediction, which we use to compare to
our developed models.

Table 5 shows the nurse allocation during the week, along with the estimated
baseline prediction. On Monday, Friday, and Saturday more nurses are allo-
cated, meaning the ED expects more patients on these days. To come up with
exact numbers we first calculate the ratio of patients to nurses by dividing the
average arrivals on a weekday by the number of allocated nurses, resulting in
the patients per nurse. We then take the average over all weekdays, resulting
in 4.52 patients per nurse. The final baseline prediction is then determined by
multiplying the average patients per nurse with the number of nurses allocated
on each weekday.

Table 5: Number of nurses allocated per week day.

Weekday Nurses Avg arrivals Patients per nurse Baseline prediction
Monday 17 77.38 4.55 76.92
Tuesday 16 72.61 4.54 72.40

Wednesday 16 71.32 4.46 72.40
Thursday 16 72.33 4.52 72.40
Friday 18 81.58 4.53 81.45

Saturday 17 77.46 4.56 76.92
Sunday 16 72.28 4.52 72.40
Average 74.99 4.52 74.98
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5.3 Model performance

In this section we analyse the performance and their prediction errors of the
tested models.

Performance

Table 6 shows the performance of the models when predicting daily arrivals.

Table 6: Performance measures of tested prediction models on daily ED patient
arrivals.

Model MAPE MAE RMSE
Baseline prediction 12.29 8.17 10.18

MLR 11.67 7.88 9.76
Lasso 11.24 7.60 9.44
Ridge 11.24 7.59 9.42

Elastic net 11.25 7.59 9.43
RF 11.21 7.56 9.38

The lasso, ridge, and elastic net are very similar in performance. RF is perform-
ing slightly better, but still similar to the penalized linear models. The MLR
model performs the worst in all aspects, which is expected as this is the simplest
model. In addition, lasso, ridge, and elastic net are extensions to MLR, that can
reduce to MLR if we set λ = 0. Therefore, we expect the penalized linear mod-
els to perform at least as good as MLR. However, the difference in performance
between MLR and the rest of the models is small, meaning a simple model such
as MLR can still give satisfactory results.

An attempt to apply a more sophisticated machine learning method, through
the use of a RF, results in similar performance with the penalized linear models.
This is in line with the results of earlier work (Jones et al., 2008; Vollmer et al.,
2021; Choudhury & Urena, 2020), in which attempts to apply more complex
models to the ED arrival forecasting problem often results in similar or even
slightly worse results.

Given the similar performance of RF, lasso, ridge, and elastic net, we select
the lasso as it has the lowest model complexity and it only uses 42 out of the
80 total variables. Furthermore, the intuitiveness is higher, because only the
variables which have the best predictive power obtain a non-zero coefficient.

The lasso models shows an improvement of 1.05% in MAPE compared to the
baseline prediction. In relative terms, this is an improvement of 8.54% over the
baseline prediction. Bigger improvements are hard to achieve. Both due to the
underlying stochastic arrival process, but also because the baseline prediction is
not bad, because of the experience planners have at the hospital. Still a 8.54%
relative improvement is useful in practice.
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Prediction errors

For the analysis of prediction errors we focus on the lasso predictions. Figure
18 shows the predictions in comparison with the actual observations, during the
test data period, using the lasso. This figure shows the model can recognize
seasonal patterns quite well, such as weekdays and months. However, the figure
also emphasizes the difficulty of ED forecasting, as the model fails to captures
outliers. This is expected, as the underlying arrival process is stochastic.

Figure 18: Observed arrivals and predicted arrivals by the lasso, on the test
data period.

Figure 19 shows a histogram of the distributions the lasso predictions in com-
parison with the observations from the test data. Similar to the line graph in
Figure 18 the histogram shows the inability of the prediction model to capture
outliers. Appendix D shows the distributions of the remaining prediction models
we used.
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Figure 19: Observed arrivals and predicted arrivals by the lasso, on the test
data period.

Figure 20 shows the distribution of the residuals (defined as predicted arrivals
- observed arrivals) of the lasso predictions. We assume the lasso residuals to
be normally distributed with µ = 2.37 and σ = 9.15 (see Appendix C). The
positive mean of the distribution of the residuals indicates the lasso predictions
overestimate the number of daily arrivals, by 2.37 on average. This is caused
by the negative trend in the data, which is only partly solved by the trend
correction method proposed in Section 4.3.
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Figure 20: Distribution of residuals of predictions on the test data, using lasso
regression.

5.4 Variable importance

In this section we investigate the variable importance in the linear models and
in the RF model. While we prefer the use of the lasso, the variable importance
of the similarly performing models can provide us with additional insights.

Linear models

The coefficients obtained by applying lasso regression are most intuitive among
the applied linear models. Unimportant variables have coefficients reduced to
zero, while the remaining variables obtain coefficients according to their predic-
tive strength. The coefficients obtained by ridge regression are never zero, as
explained in Section 4.2, instead every variable has a non-zero coefficient, mak-
ing the total use of coefficients higher. While the performance of the models are
similar, the model from ridge regression is less intuitive because of the reasons
mentioned above. Similarly, the coefficients obtained by elastic net regression
are less intuitive. While coefficients can be zero, most of them still have non-zero
coefficients, making it harder to distinguish variable importance.

For these reasons we use the coefficients obtained by applying lasso regression
to analyse variable importance. Recall that predictions in the lasso are made
by summing up the intercept with variables multiplied by their coefficients, as
shown in Equation (2). In case of the lasso model we developed, the intercept
equals 72.24. The size of a coefficient indicates the importance of the corre-
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sponding variable. Positive coefficients indicate an increase in ED arrivals and
negative coefficients indicate a decrease.

Table 7 shows the coefficients of week days. Monday, Friday and Saturday
have the biggest impact on ED arrivals. This is in line with expectations, since
Friday and Saturday are known to be busy days due to the weekend, where
people get more active. Monday is also known to be a busier day, again due to
the postponement effect which takes place on Sunday, similarly to the day after
public holidays. Other weekdays have only minor impact on ED arrivals. On
Sunday and Wednesday we expect slightly less arrivals. Tuesday and Thursday
have zero as coefficient, indicating their impact is minor to none.

Table 7: Coefficients of weekdays obtained by applying lasso regression on the
ED patient arrivals at Diakonessenhuis Utrecht, during the period 1-1-2017 to
2-29-2020.

Weekday Coefficient
Monday 4.94
Tuesday 0

Wednesday -0.54
Thursday 0
Friday 8.37

Saturday 5.20
Sunday -0.32

Table 8 shows the importance of months. The majority of the months do not
have significant impact on ED arrivals. However, July and August do show a
relatively large decrease in ED arrivals, which can be explained due to Dutch
people going abroad for holidays. May and June show slight increases in ED ar-
rivals. An intuitive explanation is people are more active during these months,
for example participating in outdoor activities, as these months take place dur-
ing spring.
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Table 8: Coefficients of months obtained by applying lasso regression on the
ED patient arrivals at Diakonessenhuis Utrecht, during the period 1-1-2017 to
2-29-2020.

Month Coefficient
January -3.11
February 0
March 0
April 0
May 1.87
June 0.21
July -4.66

August -8.26
September 0
October 0
November 0
December 0

Table 9 shows the coefficients of week numbers. Most of the week number have
few to none predictive power, as their coefficients are zero or close to zero.
However, there are some interesting weeks that have higher coefficients. Week
1 has a relatively high positive coefficient, which can be explained by new years
celebrations, which is known as one of the busiest days at the ED. Week 52
has one of the lowest negative coefficients, most likely because Christmas is
usually during this week, which is known to be a quiet period at the ED, as
the postponement effect holds for the days around Christmas. Weeks 29, 30,
31 and 32 all have relative high negative coefficients. This period is known in
the Netherlands as the ”bouwvak”, in which employees from several job sectors
have their holidays. As a result this period is known as the period in which
most Dutch people go on vacation. As the population in Utrecht is temporarily
lower, so are the ED arrivals.

While including the week numbers has a positive impact on the predictive power
of the models, it comes with a risk, the importance of week numbers will shift
over time. For example, the week numbers in which the ”bouwvak” period takes
place can differ per year.
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Table 9: Coefficients of week numbers obtained by applying lasso regression on
the ED patient arrivals at Diakonessenhuis Utrecht, during the period 1-1-2017
to 2-29-2020.

Week Coefficient Week Coefficient Week Coefficient
1 5.32 19 0.80 37 0
2 0 20 0 38 0
3 0 21 0 39 1.35
4 0 22 0 40 0
5 0.29 23 0 41 0.77
6 -1.09 24 1.87 42 0
7 0 25 -2.00 43 -2.55
8 -0.10 26 0.90 44 -3.97
9 -2.85 27 5.24 45 0
10 0.78 28 0 46 0
11 -0.07 29 -3.84 47 0.78
12 0 30 -7.30 48 4.01
13 1.01 31 -2.31 49 0
14 0 32 -5.05 50 1.26
15 0 33 0 51 1.10
16 0 34 0 52 -6.08
17 -0.08 35 3.67 53 0
18 -3.22 36 -0.93

Table 10 shows the coefficients of the remaining variables. These are all binary
variables, indicating an event either did or did not happen. The importance of
these variables is the difference in coefficients between the two variables. For
example, when it is not a public holiday we expect 6.03 more ED arrivals over
when it is a public holiday. This means the number of ED arrivals is lower on
public holidays. Due to the postponement effect we see an increase in arrivals the
day after. The coefficients of both weather warnings and FC Utrecht matches
are close to zero, indicating low importance.
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Table 10: Coefficients of public holidays, the day after public holidays, weather
warnings and FC Utrecht matches obtained by applying lasso regression on the
ED patient arrivals at Diakonessenhuis Utrecht, during the period 1-1-2017 to
2-29-2020.

Variable Coefficient
Public holiday 0

No public holiday 6.03
Day after holiday 0

Not day after public holiday -5.46
Weather warning 0

No weather warning 0.03
FC Utrecht match 0

No FC Utrecht match 0.13

Random forest

Recall that when building a tree in the RF, at each node m random variables
out of the total p variables are chosen at random. From these m variables,
the variable which splits the remaining data points such that the MSE of the
remaining partitions is minimized is picked for the current split. Intuitively, the
variables that split the data in such a way that the MSE is reduced the most
have the best predictive power. Keeping track of the predictive power of each
variable, at each split, in each tree, allows us to rank the variable importance.
Figure 21 shows the relative importance of the most important variables which
are found during the cross validation hyperparameter tuning. This means that
the variables with the highest relative importance are picked most often, when
building the RF trees. Appendix E shows the relative importance of all variables
used in the RF.
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Figure 21: Variable importance plot obtained from fitting a RF on the train-
ing data, through cross validation. Only variables with relative importance of
greater or equal to 0.02 are shown. The green line shows the cumulative impor-
tance.

The variable importance of the RF shows similar behavior as the coefficients of
the lasso. Weekdays are the strongest predictors in emergency patient arrival at
Diakonessenhuis, according to the RF. In particular, Friday is a strong predictor
of ED arrivals, with a relative importance of 14%. This means that Fridays
have the greatest impact on the number of ED arrivals. Among the weekdays,
Tuesday is the least strong predictor. August and July are strong predictive
months, which correspond to the summer months, in which most people have
their holidays. This is in line with the strong drop in arrivals as seen in Figure 5,
from the exploratory data analysis. The remaining months are not very strong
predictors, however they do carry some predictive power.

The majority of the week numbers have low predictive power. However, week
number 29, 30, and 32 are among the stronger predictors. These weeks are
in the period between the end of July and the start of August. As explained
earlier, this period corresponds to the bouwvak, in which a lot of Dutch people
go on holidays.

According to the RF trees, the weather color codes do not have any predictive
power on the arrivals. The variables that indicate FC Utrecht matches both
have an importance of 1%, which indicates there is some predictive power, but
very limited. In addition, due the limited number of data used in this research,
this can also be a coincidence.
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5.5 Conclusion

In this chapter we tuned the hyperparameters for the prediction models. Also,
we developed a baseline prediction, derived from nurse scheduling at the hos-
pital. The baseline prediction serves as a comparison for the prediction models
we developed.

Among the tested prediction models the RF performs the best, with a MAPE
of 12.21. The penalized linear models are very close in performance, with a
MAPE of around 12.24. While the RF is slightly better, we prefer the use of
the lasso model, due to its simplicity and intuitiveness. The lasso model has a
8.54% relative improvement over the baseline prediction.

The variables that contribute the most to the prediction are weekdays and
months. Especially, Friday, Saturday, and Monday are busy days. In August,
July, and January arrivals are lower than throughout the rest of the year. Public
holidays also have predictive power. More specifically, on public holidays the
arrivals are lower than usual. The day after a public holidays the arrivals are
more than usual, due to the postponement effect.

In the next chapter, we provide a plan to implement the lasso model, intended
for decision makers at Diakonessenhuis Utrecht.
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6 Implementation

This chapter is intended for decision makers at Diakonessenhuis Utrecht to assist
implementation. We answer the following research question:

How can the developed forecasting models assist decision-making in the hospital?

In Section 6.1 we discuss how to use the information from the forecasting model
and to support decision making processes. In Section 6.2 we discuss which
methods can be used to implement the forecasting model into practice. In
Section 6.3 we provide a discussion on model maintenance.

6.1 Decision making support

The developed ED arrival prediction model predicts daily patient arrivals. These
forecasts can be used to improve staff scheduling at the ED. Furthermore, the
predictions can be used to predict downstream care demand. For example, at
the X-ray department, surgery department, or to predict bed occupation at
nursing departments.

Apart from the actual numbers coming out of the prediction model, the insights
gained from the variable importance analysis in Section 5.4 can be used to
improve planning activities throughout the hospital.

6.2 Implementation method

The hospital aims to add a daily forecast of ED arrivals to their existing KPI
dashboard for the ED. We have provided the hospital with a forecasting tool,
which takes input from an Excel file, creates predictions in Python, and write
the output back to the Excel file. The most elegant option is to connect the
dashboard software with the Python prediction object we provided, through
an Application Programming Interface (API). This API would take as input a
combination of input variables which hold for a given day, such as weekday and
month etc., and outputs a prediction of daily patient arrivals at the ED. This
option is the hardest to implement, but is the most robust to future changes,
as changes made to the prediction model will automatically be updated.

A simpler option is to build the prediction model inside the dashboard software
environment. Since the lasso prediction model is a linear combination of input
variables and coefficients, implementing this into the dashboard environment
is not difficult. The coefficients of the lasso model can be found in Section
3.3. Coefficients can also be extracted from the Python prediction object, in
case changes are made to the model. Alternatively, predictions can be made in
advance, using the prediction model in Python. Since short term variables, such
as weather warnings, do not show any predictive power we can make predictions
for a long period ahead. These predictions can be imported into the dashboard.
However, these methods are less robust to updates to the prediction model.
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6.3 Model maintenance

As seen in Section 4.1, the number of ED arrivals tend to change over time. In
case of the data used in our research, a negative trend exists in ED arrivals.
Trends have an impact on the performance of the models, as shown in Section
5.3. In addition, the weight of variables can change in the future. For example,
people tend to postpone their hospital visits on Sundays, but this might change
in the future. In addition, as discussed in Section 5.4, the importance of week
numbers is likely to slightly change from year to year.

Currently our model uses a relatively simple method to deal with trends, as
shown in Section 4.3. However, this method does not take into account poten-
tial changes in variable importance. More complex methods of model updating
exists, such as continuous updating, where each day a new data point is collected
and the model is refitted. However, continuous updating is hard to implement
as it would require an automated updating procedure. The improvements of
a continuously updated model may be minimal, making it potentially a waste
of effort. Continuous methods are more suitable for rapidly changing environ-
ments, while the number of daily arrivals at a hospital are not likely to quickly
change.

Another option is periodic updating, for example once a year. This method does
not necessarily need an automated approach, but could be performed manually.
Updating includes adding new data and refitting the model. Potentially new
variables can be added to the model. The model will decide whether to use
them, i.e. assign coefficients to the new variables.

We recommend periodic updating, because the model is sensitive to trends in
ED arrivals. Additionally, model performance is likely to improve with more
available data.

6.4 Conclusion

The ED forecasting model can assist decision makers at the hospital in staff
scheduling. Furthermore, the forecasts can be used to predict downstream care
demand. Also, the insights from variable importance can be used to better
understand the underlying arrival process at the ED.

Model maintenance is important to make the model robust in the future. The
model can be updated either continuously or periodical. While continuous up-
dating is likely to outperform periodic updating, the marginal benefits may not
justify the added complexity of implementation.

In the next chapter we summarize our research by providing conclusions, rec-
ommendations and a discussion.
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7 Conclusion

This chapter finalizes this thesis. In Section 7.1 we conclude on our research.
Section 7.2 contains recommendations, both for Diakonessenhuis as well as op-
tions for future research.

7.1 Conclusion

In this section we conclude on the most important findings in our research.

Model performance

The best performing model is the RF with a MAPE of 11.21, which is a 8.79%
relative improvement over the baseline prediction. The penalized linear models
lasso, ridge, and elastic net are close in performance to RF, with a MAPE of
11.24, 11.24 and 11.25, respectively. MLR scores a MAPE of 11.67.

Variable importance

The variables with the most predictive power are weekdays and months. More
specifically, Mondays, Fridays and Saturdays are busier than other days of the
week. Busy Mondays are explained by the postponement effect that takes places
on Sunday. Friday and Saturday are the busiest days, as on these days people
tend to be the most active. The summer months August and July are the
strongest predictors amongst the months, with a decrease in arrivals. These
periods correspond to periods in which most people go on holidays abroad.
Most week numbers have little to no predictive power. However, some week
numbers do show predictive power, especially the weeks that correspond to the
”bouwvak” period, the most popular period for holidays in the Netherlands.

Public holidays also have an effect on ED arrivals. Similar to the postponement
effect on Sundays, people tend to postpone their hospital visit on public holidays.
This results in a decrease on public holidays, but an increase in the day after
public holidays.

Weather warnings issued by the KNMI and FC Utrecht matches do not show
any predictive power for ED arrvials.

Contribution to theory and practice

The theoretical contribution of our research is three-fold. Firstly, it adds another
case study to the existing literature, further strengthening the methods used.
Secondly, it addresses a gap in the literature by focusing on ED patient arrival
forecasting specific to the Dutch Healthcare system. Furthermore, while most
variables in this research have been studied before, the inclusion of a variable
indicating extreme weather conditions is a novel contribution to the field.

The practical contribution is the developed prediction model, as well as the
insights gained into variable importance. Both can be used to improve resource
allocation, which counteracts crowding at the ED and therefore improves quality
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of care and staff satisfaction. Furthermore, improved resource allocation reduces
costs, as demand better matches supply, reducing wasted resources.

7.2 Recommendations

In this section we provide recommendations on model choice, model implemen-
tation, and model maintenance.

Model choice

Even though the RF has the best performance amongst the tested models, we
recommend the use of the lasso model. The lasso has a similar performance and
is easier to understand, implement and maintain.

Model implementation

To implement the forecasting model we developed we recommend building an
API, which takes input data from the hospital’s database and outputs daily
predictions. Building an API has the most flexibility and scalability, but it is
also the most technologically challenging to build.

An alternative is to use the tool we developed to predict a period ahead, for
example one year, which writes results to Excel. Then these results can be
manually imported to the ED KPI dashboard.

Model maintenance

To keep model performance in the future, model maintenance is necessary.
Model maintenance is even likely to increase the model performance. As con-
tinuous updating is technologically challenging and has limited benefits, we rec-
ommend periodic updating each year. Updating includes adding new data and
refitting the model. Potentially new variables can be added. The lasso model
automatically decides if the new variables should be included in the model.

7.3 Discussion

In this section we discuss limitations to our research and provide directions for
further research.

Model choice

As discussed in Chapter 3, many more prediction models exist. We only tested
a small subset of the available models for ED forecasting. Future research can
be conducted to test different models, potentially leading to an improvement
of model performance. Especially the use of state of the art machine learning
models can lead to improvement, which has been the focus of recent scientific
research in the field of ED forecasting. However, the downside of these models
is a decrease in intuitiveness and they are harder to implement in practice.
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Model performance

While a relative improvement of 8.79% over the baseline prediction is a signifi-
cant and valuable improvement, further research can improve this even more. In
our research the available data is limited to 3 years of ED arrivals. More avail-
able data is likely to improve the predictive power of the models. Furthermore,
future research could attempt to include more variables that can explain ED
arrivals. For instance, in this research we include professional soccer matches
in the hospital area as a variable. Future research can attempt to include more
events that could influence ED arrivals.

Related research directions

The ultimate goal of ED forecasting is to improve the utilization resources, such
as nurses, doctors or technical equipment. Besides an attempt to improve our
forecasting models, future research can focus on improving resource utilization
related to ED forecasting. As a result of our research we know how accurate we
can predict ED arrivals, including a distribution of errors. This is useful input
for the analysis of related processes. For example, staff scheduling at the ED or
the patient flows to auxiliary departments in the hospital, such as diagnostic or
nursing departments.
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A Systematic literature review process

In this appendix we show how we performed a SLR.

Figure 22: SLR process
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B Normality check patient arrivals

In this appendix we check the daily patient arrivals for normality. We use a
histogram, a Q-Q plot and a Shapiro-Wilk test to check for normality.

Figure 23 shows signs of a normal distribution, according to its bell shaped
curve.

Figure 23: Histogram of daily patient arrivals (period 1-1-2017 to 2-29-2020, n
= 1155, source: Diakonessenhuis Utrecht).

The Q-Q plot in Figure 24 shows evidence of a normal distribution. Most of the
data is around the expected values. The only exceptions are the outer quantiles.

59



Figure 24: Q-Q plot to check normality of daily patient arrivals (period 1-1-2017
to 2-29-2020, n = 1155, source: Diakonessenhuis Utrecht).

Performing a Shapiro-Wilk test on the data with α = 0.05 yields a test statistic
of 0.997 with a corresponding p value of 0.066. Since the p value is larger than
0.05, we do not reject the null hypothesis, which states the data comes from a
normal distribution. Therefore, based on the Shapiro-Wilk test, we have reason
to believe the data is normally distributed.

Based on the histogram, the Q-Q plot and the Shapiro-Wilk test we have sta-
tistical evidence to assume the daily patient arrivals are normally distributed
with µ = 74.02 and σ = 10.92.
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C Normality check lasso residuals distribution

In this appendix we check the residuals of the lasso predictions for normality.
We use a histogram, a Q-Q plot and a Shapiro-Wilk test to check for normality.

Figure 25 shows signs of a normal distribution, according to its bell shaped
curve.

Figure 25: Distribution of residuals of predictions on the test data, using lasso
regression.

The Q-Q plot in Figure 26 shows evidence of a normal distribution. Most of the
data is around the expected values. The only exceptions are the outer quantiles,
which is in line with the original arrival distribution, as seen in Appendix B.
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Figure 26: Q-Q plot to check normality of residuals of lasso predictions.

Performing a Shapiro-Wilk test on the data with α = 0.05 yields a test statistic
of 0.997 with a corresponding p value of 0.754. Since the p value is larger than
0.05, we do not reject the null hypothesis, which states the data comes from a
normal distribution. Therefore, based on the Shapiro-Wilk test, we have reason
to believe the data is normally distributed.

Based on the histogram, the Q-Q plot and the Shapiro-Wilk test we have statisti-
cal evidence to assume the residuals of lasso predictions are normally distributed
with µ = 2.37 and σ = 9.15.
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D Distributions of predictions

In this appendix we show the distributions of the predictions on the test data
for the ridge, elastic net, RF and the baseline prediction.

Note that the baseline prediction in Figure 30 only predicts three different val-
ues, and therefore has a unusual distribution.

Figure 27: Distribution of residuals of predictions on the test data, using RF.
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Figure 28: Distribution of residuals of predictions on the test data, using ridge
regression.

Figure 29: Distribution of residuals of predictions on the test data, using elastic
net regression.
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Figure 30: Distribution of residuals of predictions on the test data, using the
baseline method.
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E RF variable importance

In this appendix we provide the relative performance of variables when fitting
a RF model to the ED arrival data.

Table 11: Relative importance of variables obtained by applying a RF on the
ED patient arrivals at Diakonessenhuis Utrecht, during the period 1-1-2017 to
2-29-2020.

Var Imp. Var Imp. Var Imp. Var Imp.
Fri 0.14 Jun 0.01 Week 24 0.01 Week 20 0
Aug 0.07 Mar 0.01 Week 25 0.01 Week 22 0
Jul 0.06 Nov 0.01 Week 26 0.01 Week 23 0
Wed 0.05 Okt 0.01 Week 27 0.01 Week 28 0
Mon 0.04 Sep 0.01 Week 33 0.01 Week 34 0

Week 30 0.04 Holiday F 0.01 Week 42 0.01 Week 35 0
Sat 0.03 Holiday T 0.01 Week 43 0.01 Week 36 0
Sun 0.03 After holiday F 0.01 Week 51 0 Week 37 0
Tue 0.03 After holiday T 0.01 Warning F 0 Week 38 0

Week 29 0.03 FC Utrecht F 0.01 Warning T 0 Week 39 0
Week 32 0.03 FC Utrecht T 0.01 Week 2 0 Week 40 0
Thu 0.02 Week 1 0.01 Week 5 0 Week 41 0
Apr 0.02 Week 3 0.01 Week 6 0 Week 44 0
May 0.02 Week 4 0.01 Week 8 0 Week 45 0

Week 9 0.02 Week 7 0.01 Week 11 0 Week 46 0
Week 31 0.02 Week 10 0.01 Week 12 0 Week 47 0
Week 52 0.02 Week 13 0.01 Week 15 0 Week 48 0

Dec 0.01 Week 14 0.01 Week 16 0 Week 49 0
Feb 0.01 Week 19 0.01 Week 17 0 Week 50 0
Jan 0.01 Week 21 0.01 Week 18 0 Week 53 0
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