
Master Thesis

Dynamic Detection and Classification
of Persistence Techniques in
Windows Malware

Jorik Jaromir van Nielen

Supervisors: Andrea Continella, Jerre Starink, and Marieke
Huisman

Faculty of Electrical Engineering, Mathematics, and
Computer Science
Services and Cyber Security

May 22, 2023

Abstract

One of the main methods for malware to accomplish
its goals is staying active on the infected machine
for as long as possible. Persistence techniques are
used by malware to survive reboots, user switches,
and other low level events that are out of the con-
trol of the malware itself. While persistence is well
known to be one of the main tactics deployed by
malware, a comprehensive taxonomy on persistence
techniques used by Windows malware is missing. In
this paper, we provide a taxonomy of 70 distinct
techniques, identify their properties, and categorize
them accordingly. Additionally, we introduce a set
of models to describe and detect each of the tech-
niques. Finally, we implement a dynamic persis-
tence detection system and analyze the adoption of
persistence techniques in 5,000 real-world malware
samples. We show that 16 % of the analyzed sam-
ples utilize one or multiple persistence techniques.
Furthermore, we show that malware generally uses
well documented techniques, but a smaller selection
of samples also chooses for more exotic approaches.

Keywords: Malware, persistence, dynamic analysis,
Behavior Nets, Windows

1 Introduction

Malware is an overarching term for software with ma-
licious intent. In an age where society has become
increasingly reliant on digital systems, malware has
shown to be one of the main disrupters of digital ma-
chines and exploiter of their users [1]. The first known
malicious sample dates back to as early as the 80s [2],
and malware has been a prevalent and growing risk
ever since. In 2022, 43 % of IT security decision-
makers believed that their digital attack surface is
spiraling out of control [3], making them susceptible
to malware campaigns. Furthermore, the number of
newly discovered malware samples is increasing ev-
ery year, surpassing 100 million in 2021 [4]. Nowa-
days, criminals, activists, and nation states do not
shy away from deploying malware as a means to either
earn money (for example by using ransomware, such
as the Wannacry malware that infected over 200, 000
machines [5]), disrupt infrastructure (such as the Mi-
rai botnet that was able to generate more than 1Tb/s
when performing DDoS attacks [6]), or steal classified
information from large corporations (such as the theft
of over 1TB of proprietary information of Nvidia in
2022 [7]). The impactful nature of malware, in combi-
nation with the vulnerability of organizations to mal-
ware and the large number of unique malware sam-

ples going around has made automated detection and
prevention indispensable.

Antivirus software and other Endpoint Detection
and Response solutions try to counteract malware
both by preventing infections and detecting suspi-
cious files and activities at runtime [8]. Detecting
malware is not a trivial task however, since malware
inherently tries to stay undetected for as long as possi-
ble. To effectively analyze suspicious files it is thus re-
quired to use an approach that is not easily fooled by
stealth techniques. Besides the distinction between
malware and goodware, the analysis and classifica-
tion of malware are also relevant for incident response
teams. Incident response teams are responsible for
investigating malware infections and cleansing the af-
fected machines [9]. Knowing what a malware sample
has done and is doing eases the job of the incident
response team and enables to act quicker on the in-
fection. If the analysis of the malware is insufficient,
the deletion attempt might be incomplete and leave
(traces of) the malware on the system. By automat-
ing parts of the process of detecting well-known ma-
licious patterns, they can spend more time analyzing
newly discovered techniques [10]. Therefore, malware
detection and classification is a very essential yet chal-
lenging task.

One of the main operations performed by malware
is getting a foothold. This foothold, often called per-
sistence, is needed to prevent that a simple reboot
or switch of user accounts stops any further execu-
tion of the malware. Persistence techniques used by
malware are vast in numbers, and as the operating
system and software change new techniques are occa-
sionally discovered [11]. While various academic and
non-academic works address persistence techniques,
there is limited research on a formal categorization
and measurement of techniques used in real-world
malware [11]–[15].

In this paper we aim to provide insight into the use
of persistence techniques by malware targeting the
Windows operating system. We focus on this plat-
form specifically because more than 80 % of discov-
ered malware samples target Windows [16], making it
the most relevant for automated detection methods at
scale.

1.1 Contributions

Our first contribution is a comprehensive taxonomy
of Windows persistence techniques. First, we research
all techniques we can find in academic works, secu-
rity research blogs, online listings of persistence tech-
niques, and persistence detection rules that have been
published in various standards. We implement and

1

verify all techniques to test if they are still functional
on modern operating systems. We then study the
properties of the different techniques and how they
differ between individual techniques. Finally, we use
the gained knowledge to categorize them based on
where they reside in memory, with the goal to aid
detection systems.

Our second contribution is the adaption of Behav-
ior Nets [17] for the use of precisely describing the be-
havior required for all persistence techniques that we
found and documented in our taxonomy. By describ-
ing the precise system calls required in a concurrent
manner, the model can be used to accurately match
the behavior.

Based on the taxonomy and our adaption of Be-
havior Nets, we present an automated detection sys-
tem that can match the behavior of malware samples
to the different persistence techniques. By analyzing
the semantics of the behaviors, our system is able to
highlight the specific persistence technique(s) that a
malware sample adopts.

As a fourth and final contribution, we gauge the
use of persistence techniques by malware in the wild.
Leveraging the implementation of our detection sys-
tem, we detect the use of persistence techniques by
malware available in public databases. First, we ad-
dress the difference in popularity between different
techniques and different technique classes. Second,
we examine in what phase of the execution of the ma-
licious process the persistence is achieved. Last, we
explore the frequency of the employment of multiple
persistence techniques in a single malicious sample.

In summary, our main contributions presented in
this paper are:

• A taxonomy of persistence techniques. We
surveyed existing work on persistence techniques
that function in modern versions of the Windows
operating system. We present a taxonomy and a
categorization based on their location in memory.

• A model to describe persistence tech-
niques. We adapt Behavior Nets for persistence
technique detection.

• The design of an automated detection sys-
tem for persistence techniques. We design a
system that can detect when a persistence tech-
nique is employed, based on system call data.

• An analysis of persistence techniques
adopted by malware. We show and discuss
the results of running our detection system over
real-world malware.

1.2 Paper Structure

The remainder of this document is structured as fol-
lows. Section 2 provides a background on malware
persistence techniques and malware detection meth-
ods. Related work and their limitations are discussed
in Section 3. Next, our research on persistence tech-
niques and the categorization can be found in Sec-
tion 4. In Section 5 we describe the semantic model
used to define the behavior leading to persistence.
Subsequently, Section 6 features the design of our de-
tection system that can be used to detect the different
persistence techniques. In Section 7 we evaluate the
performance of our system and present the results of
our measurement of the adoption of persistence tech-
niques by malware in the wild. Section 8 then dis-
cusses the impact of these results. The limitations
of our work are addressed in Section 9. Finally, Sec-
tion 10 draws the conclusions from our work.

2 Background

In this section we cover the nature of persistence tech-
niques and how malicious programs leverage them.
Next, we provide a background on the analysis of mal-
ware and detection techniques of malicious behavior.

2.1 Malware Persistence

The concept of persistence has been defined multiple
times within the context of malware, and in essence
it refers to staying active on a system for an extended
period of time, despite disruptive events such as re-
boots [11], [12], [18]. A widely adopted definition is
given by Kirillov et al., stating that persistence is “a
process by which malware ensures continual execution
on a system, independent of low-level system events
such as shutdowns and reboots” [18]. The ATT&CK
framework by MITRE defines persistence as “tech-
niques that adversaries use to keep access to systems
across restarts, changed credentials, and other inter-
ruptions” [19]. This is a broader definition that does
not require any program to be executed on the tar-
geted system to qualify as a persistence technique.

Many mechanisms can be used by malware to
accomplish this resilience. Some well-known tech-
niques to achieve persistence are adding Run registry
keys [20], adding a file to the Startup folder [21], [22],
and adding a Windows Service [23]–[25]. For Win-
dows, many of these techniques have been found and
documented [11]. In essence, all techniques make
changes to the disk of the machine [26]. These
changes persist over a reboot and results in the execu-
tion of instructions set up by the malware. A persis-

2

tence technique does not necessarily launch the mal-
ware directly at boot. Some user action might be re-
quired, as long as it does not involve the user directly
and willingly opening the malicious file.

Persistence techniques are largely derived from
features in the Windows Operating System [11]. In-
stead of using the feature for their intended goal, the
malware exploits the feature to become persistent.
Only a few of the features that are leveraged for per-
sistence are originally meant to ensure the execution
of some code after a reboot. Instead, many of these
features are meant for developers to enhance the op-
erating system for the user by adding some extension
to an existing mechanism in Windows. For example,
by adding a filter to the windows search bar for a cus-
tom file extension [27]. Some persistence techniques
take advantage of third party programs that are of-
ten running on the operating system. For example,
a successful DLL hijack could result in running mali-
cious operations every time the targeted third party
program is started by the user [28].

For many of the objectives of malware authors,
such as spying on users, mining cryptocurrencies on
user machines, and turning user machines into parts
of a botnet, being persistent on the system is a vi-
tal goal. To remain stealthy and undetected by virus
scanners, malware authors may have incentive to get
creative in their ways to persistence, instead of always
using the same technique. Since virus scanners also
look for suspicious files and registry entries that are
related to known persistence techniques [8], it is in the
advantage of malware authors to use less-known tech-
niques. Another trick used by malware authors to fly
under the radar is to make a well-known benign pro-
gram persistent, and configuring the execution of this
program in such a way that the malicious commands
of the malware will be executed. This technique is
called Living-off-the-Land [29].

2.2 Malware Analysis and Detection

To grasp how we can characterize the behavior of mal-
ware to then identify if any persistence technique is
used, a good understanding of the options for mal-
ware analysis techniques is required. The two main
techniques used on host machines are static analysis
and dynamic analysis.

2.2.1 Static Malware Analysis

In the field of malware analysis, static analysis is de-
fined as analyzing a potentially malicious file without
running it [30]. In most cases, this entails process-
ing the machine code and scanning it for signatures.
These signatures can be strings, URLs, or malicious

code sequences. Researchers who manually analyze
malware samples often release these signatures to help
future detection of the malware, which can then be
used by for example antivirus software [8]. As mal-
ware detection has grown more effective through these
means, malware authors have become smarter in the
way they create their malware payloads and use var-
ious techniques to complicate the static analysis pro-
cess. Already in 2006, this was a challenge dubbed
the obfuscation-deobfuscation game, where the mal-
ware author tries to make it as hard as possible for
the analyst [31]. Obfuscation can be categorized into
different techniques [32], [33]. Packing is a technique
that encrypts the malicious payload into an ‘enve-
lope’. When the malware is executed, the envelope is
decrypted and executed. Since the initial malware file
is encrypted, it is not possible to pattern-match the
behavior of the malware, raising a problem for static
analysis [34]. Another approach is metamorphism,
which rearranges the machine code in a way that it
looks different but is still semantically equivalent [35].
Also, registers that are used can be changed and
garbage instructions - instructions that do not add
to the functionality of the program - can be added. A
third technique targets the matching of URL signa-
tures by using a domain generation algorithm, which
generates a domain name on request. This removes
the need for storing the URL in the code as a string.
It is for static analysis approaches therefore very chal-
lenging to detect if a specific persistence technique is
used.

To battle obfuscation, new static analysis tech-
niques have been developed. Control flow graph anal-
ysis creates a graph based on the binary program and
uses pattern matching to look for malicious sequences.
This does use more computing resources but coun-
ters various obfuscation techniques [36]. Still, many
of the obfuscation techniques make static detection
of persistence techniques inaccurate. Additionally,
automated solutions that try to distinguish between
benign and malicious programs using static analy-
sis can unexpectedly end up differentiating between
software using obfuscation techniques or not [34].
Because some benign software also uses these tech-
niques, for example to protect intellectual property,
this result is undesirable.

2.2.2 Dynamic Malware Analysis

Dynamic analysis approaches malware analysis by
running the sample in a safe execution environment
and monitoring its behavior [30]. The extracted be-
havior is then analyzed to classify the executable. Dy-

3

namic analysis methods do not suffer from the evasion
techniques designed for static analysis, since the be-
havior of malware will stay mostly the same even after
obfuscation techniques have been applied. In general,
dynamic analysis methods consist of first capturing
the behavior of the program, then abstracting the be-
havioral patterns, and finally classifying the sample
based on the extracted patterns [37], [38].
The type of data that is collected on the process
of the malware differs and can be split into three
categories [39]. The process-centric approach keeps
track of the activities of the running malware sample.
In practice, Windows API calls are often recorded.
This creates a very complete picture of the actions
of the malware. A downside is that the amount of
data that is extracted is challenging to process due
to the large volume. Even more volumetric, but
also more complete, is monitoring the activities of
all processes active on the target machine. For ex-
ample, the DRAKVUF analysis system uses this ap-
proach [40]. The data-centric approach does not look
at the processes, but instead keeps track of the ac-
cess and changes to the file system. For example,
dropped files can be monitored, just as changes to
relevant configuration files, and access to classified
documents. While the data-centric approach only
looks at system operations relating to data, it can de-
tect many of the malicious actions of malware. How-
ever, some popular techniques including fileless mal-
ware [41] and Living-Of-The-Land malware [29] do
not usually drop files, making this analysis technique
less effective against them. The third and last cat-
egory is the resource-centric approach, which relies
on extracting the parameters of underlying resources.
For example, it analyzes the CPU usage, the num-
ber of reads and writes to the filesystem, and the
internet traffic. The resource-centric approach dis-
tinguishes itself from process-centric and data-centric
approaches by not going into detail about what is hap-
pening but solely looking at the low-level data of the
performance of the system. The resource-centric ap-
proach is relatively straightforward and is very effec-
tive at detecting anomalies. However, false positives
are more frequent due to the lack of detail.

A second categorization that can be made relates
to the way the collected data is analyzed [42]. There
are machine-learning-based techniques that train a
model on the behavior of manually labeled mal-
ware samples and use the model to classify unknown
samples. The counterpart of machine-learning-based
analysis techniques are semantics-based analysis tech-
niques. Semantics-based analysis techniques are built
on the foundation of known malicious behaviors that
are performed by malicious programs. While machine

learning-based detection initially results in very accu-
rate detection and classification [43]–[45], the perfor-
mance deteriorates significantly over time [46]–[48].
This drop in performance is mainly due to the rapid
evolution of malware. On top of that, the initial re-
sults are sometimes also inflated because of spatial
and temporal bias [49]. In other words, the training
and testing datasets do not accurately match the real-
world data and the time split between training and
testing data is often inaccurate. To increase the per-
formance again, the training set has to be improved,
and the model has to be retrained. Semantics-based
analysis techniques on the other hand require an ef-
fective model and manually written rules to iden-
tify different techniques used by malware [42]. Such
rules have to be extracted from the manual analy-
sis of malware and describe the semantics. Man-
ual analysis is a time-costly process, but compared
to machine-learning-based analysis semantics-based
analysis features transparent rules can be used to ac-
curately distinguish between different techniques used
by the malware. Outdated rules and changes to ex-
isting techniques can however lead to a decrease in
accuracy.

Where malware authors apply obfuscation tech-
niques to prevent static analysis techniques from flag-
ging their malware as malicious, analysis evasion tech-
niques are used to limit the effectiveness of dynamic
analysis. Analysis evasion targets the code-coverage
limitation of dynamic analysis. The behavior of code
that is not executed cannot be captured by the anal-
ysis system, limiting the completeness of the analysis
results. One frequently deployed evasion technique
is looking for signs in the execution environment to
notice if it is being run in an analysis system [50]–
[52]. If being run in an analysis system, the malicious
operations are not performed. Some environments
are easier to detect, such as analysis techniques that
use a debugger to monitor the behavior. Recent re-
search mostly uses VM-based analysis systems that
aim to leave as few marks within the guest OS as
possible [39], [43], [53], [54]. Another challenge for ac-
curate dynamic analysis results is selecting the right
execution time limit for a piece of code. Often the
code coverage plateaus before two minutes, however,
about 2 % of malware samples wait a set amount of
time before executing any relevant code [55]. This
introduces a trade-off for the analyzer between high-
throughput malware analysis and accurate results. A
final challenge is that the behavior of malware can
differ based on the environment. The physical loca-
tion, type of machine, and also time of execution all
have a significant impact, making that analysis in a
single sandbox will never be perfectly accurate [56].

4

3 Related Work

This section provides an overview of previous research
in the area of persistence techniques. We will high-
light the gaps that we identified and address with our
research.

3.1 Persistence technique taxonomy

Several previous works have contributed towards the
goal of categorizing persistence techniques. Rana et
al. approached the grouping of persistence techniques
by dividing them into four categories based on what
part of the operating system is leveraged: Registry,
Scheduled tasks, DLLs, and Services [13]. This is a
great initial categorization, but requires an extension
if considered for a full taxonomy, since not all per-
sistence techniques can fit in one of these categories.
For example, hijacked configuration files would fall
outside all four categories. A work by Webb covers
23 techniques and groups them into five categories
based on when they are executed [14]: user login,
system startup, DLL injection, execution hijacking
and adversary backdoors. Also, this categorization
requires extension if considered for a full taxonomy,
as some techniques cannot fit inside this categoriza-
tion, for example the technique of hijacking a con-
figuration file. A recent work by Villalón-Huerta,
Marco-Gisber and Ripoll-Ripoll created an operat-
ing system independent taxonomy of known persis-
tence techniques, based on the techniques featured
by the ATT&CK knowledge base [11]. They divide
persistence techniques into categories based on their
location: Pre-OS persistence points, OS persistence
points, Server-software persistence points, and User
persistence points. They do not dive into the specifics
of Windows persistence techniques, leaving challenges
towards the goal of understanding the nature of dif-
ferent techniques for the use of effective detection.

Various online resources present listings of Win-
dows persistence techniques. The ATT&CK knowl-
edge base is a collection of real-world techniques used
by adversaries and contains a wide collection of persis-
tence techniques [19]. For each technique, the website
describes the technique in detail and lists detection
options. However, ATT&CK does not provide a for-
mal classification, and the collection does lack some
known techniques. A second collection is the Hexa-
corn blog, which lists 141 techniques with in-depth ex-
planations [57]. The blog gives a valuable insight into
the many persistence techniques. The blog posts go
back to 2012, and some techniques may not be func-
tional anymore in modern versions of Windows. The
Persistence-info project features 40 persistence tech-

niques and classifies each technique based on various
criteria, such as permission required, security context,
code type and more [58]. Both the Hexacorn blog
and Persistence-info project leave the open challenge
of classification for the use in detection.

3.2 Persistence detection

Previous work on detecting persistence techniques
falls into two categories. The first is state differential
analysis. This approach entails making a snapshot of
any sorts of the system, followed by running the mal-
ware, and finishing by taking a snapshot using the
same technique again [59], [60]. What the snapshot
contains can differ, but often includes the file system
and registry, or for our purpose the output of a per-
sistence detection tool. A popular tool for this sort of
analysis is AutoRuns [61]. AutoRuns is a high quality
tool that attempts to list all active persistence on a
system. The tool is closed source, and it is unclear
how many techniques are detected. An alternative to
Autoruns is PersistenceSniper [62]. PersistenceSniper
is a PowerShell tool that can detect 43 techniques. It
is actively maintained and is optimized for differential
analysis of snapshot results.

The second category of persistence detection is
activity-based analysis. Detection approaches in this
category monitor the activities by the malicious sam-
ple and check if it contains any operations that lead
to persistence. For example, the widely used Cuckoo
Sandbox uses this approach by checking for registry
operations, file write operations, and certain com-
mand calls [63]. The number of techniques covered
by Cuckoo is limited however, and some techniques
are not described at the lowest possible level. Besides
Cuckoo, Sigma provides an open format for behavior
detection and provides rules that can help to detect
operations that lead to persistence [64]. Just as the
Cuckoo rules, these rules are limited by their numbers
and specificity.

3.2.1 Semantic models

There is a large body of knowledge on semantic mod-
els in the context of describing malicious behavior.
One of the oldest and most well-known techniques is
splitting the instructions executed by the programs
into n-grams, which are chunks of n instructions [37],
[38]. By comparing the n-grams to known malicious
behavior patterns, it is possible to automatically rec-
ognize malicious patterns. However, it is trivial to
circumvent this technique by using obfuscation tech-
niques, since instructions do not necessarily have to
be in the same order [32], [33].

5

Graph-based approaches are also well docu-
mented, and have been applied in many forms [17],
[45], [65], [66]. There are two classes of graph-based
semantic models. The first describes the malicious be-
havior in a graph form and compares this graph to the
graph notation of the behavior of the malware [65],
[66]. While often accurate, the downside of this type
of model is the practical performance. Graph com-
parisons are expensive operations, especially for big-
ger graphs. The second class also describes the ma-
licious behavior in a graph, but runs the operations
of the malware through it as it was a Finite State
Automata [17], [45], [67]. This branch of research is
built on top of the well established field of process
algebra [68], more specifically automata and regular
expressions. A downside is that creating these graphs
require manual labor to build and update.

Industry standards for describing malicious be-
havior are intertwined in detection rule standards.
The Malware Attribute Enumeration and Character-
ization model (MAEC) is a language developed by
MITRE and aims specifically at grouping behavior
and attributes of malware [69]. MAEC uses JSON
objects to represent actions on the system and has as
one of its main goals to be an unambiguous language
that can be used as a standard in malware descrip-
tion. A downside of this model is its simplicity, as one
can only describe single operations and not how they
relate to one another. A similar model that suffers
the same limitations are Sigma detection rules [64].

3.3 Persistence in the wild

Oosthoek and Doerr took an earlier look on the use
of malware techniques used by samples found in the
wild [70]. They analyzed malware samples from 951
different families that were first observed between
2007 and 2018. They used a public online malware
analysis tool to perform the analysis and monitored
the use of 6 of the most used persistence techniques.
These limitations leave some open challenges in this
area of research.

3.4 Open challenges

We conclude that the following challenges remain to
be addressed:

• The creation of a comprehensive and up-to-
date taxonomy of functional Windows persistence
techniques, including a categorization for the use
of detection.

• The selection of a semantic model that can effec-
tively describe persistence techniques for the use
in detection systems.

• An analysis of the adoption of persistence tech-
niques by recent malware samples found in the
wild.

We aim to address these challenges in the remainder
of this thesis.

4 Classification of Persistence
Techniques

In order to detect and identify different persistence
techniques used by malware, we conduct a large scale
field research on known persistence techniques. The
main objective is to compile a comprehensive list that
includes as many techniques as possible. To achieve
this goal we refer to academic works, online listings
of persistence techniques, and malware-related blog
posts published by security researchers. To make
a proper selection, techniques are selected matching
Definition 1. We chose to bring forward a new defi-
nition instead re-using one of the existing definitions
as presented in Section 2.1. By adding constraints on
the actions of both the attacker and the user to the
definition, we simplify the discussion on what tech-
niques should be included.

Definition 1. A persistence technique is an opera-
tion that results in the execution of the attacker’s code
even after the termination of all malicious processes,
without the user’s direct and willful execution of the
malicious code, and without any further actions by the
attacker.

Additionally, we narrow down on techniques in align-
ment with the following criteria:

• The technique should target the Windows oper-
ating system. Techniques for MacOS, Linux and
other operating systems are out of scope.

• The technique should be reported functional in a
version of Windows 10 or above.

We identified 70 distinct persistence techniques. The
full description of each of the techniques can be found
in Appendix B.

We created a functional, low-level reimplementa-
tion for each of the identified techniques. Our imple-
mentations rely solely on Windows API calls where
possible, resulting in portability across Windows ver-
sion that use different NT kernels. Only two tech-
niques make use of additional DLLs. This concerns
Windows Management Instrumentation (WMI) sub-
scriptions [71]–[77] and Background Intelligent Trans-
fer Service (BITS) jobs [78]–[82]. WMI subscriptions
leverage a Windows features that links the execution

6

of an executable to a Windows event, such as the user
logging in. BITS jobs enable the execution of an ex-
ecutable when a background file transfer succeeds or
fails. The use of additional DLLs is a necessity since
both techniques require writes to custom databases
with custom file formats. As the only way to change
the persistent state of the Windows Operating Sys-
tem is through system calls, the reimplementations
represent a ground-truth of when a persistence tech-
nique is used. To get a better understanding of the
similarities and differences between persistence tech-
niques, we defined a list of properties. The proper-
ties are inspired by the Persistence-info catalog [58]
and further refined by the results of our analysis of
the different techniques. The characteristics are split
into two classes. The requirements class describes
the conditions that the process attempting to achieve
persistence must satisfy. If one of the requirements is
not met, the process cannot obtain persistence. The
second class lists the properties of the resulting per-
sistence. They describe what the qualities are of the
resulting persistence, in other words the properties of
the persistent code and its process. Table 1 lists eight
persistence techniques and their properties. The full
table can be found in Appendix A. We will now dis-
cuss the various properties.
Requirements. To achieve persistence, each tech-
nique has or does not have the following requirements:

• File System Write. The technique writes to the
file system. For example, a line has to be added
to a configuration file. This property can either
be true or false.

• Registry Write. The technique writes to the
Windows Registry. For example, the malicious
command has to be added to a specific key. This
property can either be true or false.

• Elevated Privileges. The technique requires
some elevated privileges. For example, adminis-
trator privileges are required to write to a specific
registry key. For most techniques this property is
either true or false. Some techniques work with-
out elevated privileges, but have advantage of ele-
vated privileges. For example, with elevated priv-
ileges the Run registry keys can be changed for all
users on the system, while without elevated priv-
ileges only the Run registry keys of the current
user can be changed.

• Additional Software. The technique requires
some additional software. For example, the tech-
nique only works when Microsoft Office is in-
stalled. This property can either be true or false.

• Interprocess communication. The technique
requires another process to perform an operation

in order to work. For example, BITS jobs are
stored on disk, but only the BITS service has
write access to this file, thus it is required to
perform the operation through this service. This
property can true, false, or optional.

Resulting Persistence. The achieved persistence is
different with respect to the following aspects:

• Elevated Privileges. The technique results in
elevated privileges. For example, a technique will
execute a command at boot with System privi-
leges. This property can either be true or false.

• Moment of Execution. The moment that the
persistence will trigger. For example, a technique
will execute an executable when the user opens
the File Explorer. We identified four different
classes for this property. The first class is exe-
cution at boot. This comprises the entire boot
process, including processes started after the user
logs in. Besides logging in, techniques in the class
do not require any user action. The second class
is execution after a user action. This includes
techniques that are activated directly by a user
action. For example, a DLL hijack ensures mali-
cious code is executed when the user opens their
internet browser. The third class is execution at
a system event. These events are not the direct
results of user actions. For example, a program
crash and failure to connect to a remote host are
two events that would fall under this class. The
fourth class is periodic execution. Techniques in
this class ensure that the persistent code is exe-
cuted at a time interval, for example every hour.
Some persistence techniques can have the option
to combine multiple of the classes.

• Destructiveness. The technique breaks a nor-
mal function of the operating system, which can
be noticed by the user. For example, the screen-
saver does not show up or the operating system
hangs. Some techniques are destructive, but with
extra effort can be turned into non-destructive.
An example is a DLL hijack. The DLL provided
by the attacker is loaded instead of the intended
DLL, which can result in a crashing program or
limited functionality. However, through a tech-
nique called DLL proxying, the original function-
ality can be retained, while also achieving the per-
sistence for the attacker [93].

• Execution Type. The type of instructions that
the technique will execute. We found five dif-
ferent code types. First, some techniques results
in the execution of a command in the Windows
Command prompt or PowerShell. Second, tech-

7

Requirements Resulting persistence

Name F
il
e
S
y
st
e
m

W
ri
te

R
e
g
is
tr
y
w
ri
te

E
le
v
a
te
d

p
ri
v
il
e
g
e
s

In
te
rp

ro
c
e
ss

c
o
m
m
u
n
ic
a
ti
o
n

A
d
d
it
io
n
a
l
S
o
ft
w
a
re

E
le
v
a
te
d

p
ri
v
il
e
g
e
s

M
o
m
e
n
t
o
f
e
x
e
c
u
ti
o
n

D
e
st
ru

c
ti
v
e

E
x
e
c
u
ti
o
n

ty
p
e

Databases

Other

BITS jobs [78]–[82] ✓ ✗ ✗ ✓ ✗ ✗ P ✗ EwA

WMI subscriptions [71]–[77] ✓ ✗ ✓ O ✗ ✓ E/P ✗ C

Registry

Run registry keys [20] ✗ ✓ ✗ ✗ ✗ ✗ B ✗ C

cmd AutoRun [83] ✗ ✓ ✗ ✗ ✗ ✗ U ✗ C

Databases and Filesystem

Registry and Operating System Files

AppInit DLL [84]–[86] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ D

Screensaver [87] ✓ ✓ ✗ ✗ ✗ ✗ E ✗ E

File system

Operating System Files

DLL hijack [28] ✓ ✗ ✗ ✗ ✗ ✗ U ✗ D

lnk shortcuts [88], [89] ✓ ✗ ✗ ✗ ✗ ✗ U ✗ EwA

Additional software files

Browser extensions [90], [91] ✓ ✗ ✗ ✗ ✓ ✗ U ✗ S

Windows Terminal Profile [92] ✓ ✗ ✗ ✗ ✓ ✗ U ✓ C

Table 1: A subset of the persistence techniques that we identified and that meet our criteria. For the Elevated
Privileges as a requirement, S = System privileges and TI = TrustedInstaller privileges. For Interprocess
communication, O = optional. For the moment of executions, we have B=boot, U=user action, E=system
event, P=periodically. For Code type we have C=command, E=exe, EwA=Exe with arguments, D=DLL,
S=script for third party program. The full table can be found in Appendix A.

8

niques can result in launching an executable file.
Third, the executable file is launched and there
is the option to pass arguments to the program.
Note that this is a significant difference from the
second class, since this means that benign pro-
grams such as PowerShell can be used for mali-
cious actions, and the placement of an executable
file is not required. Fourth, code can be provided
in dynamically linked libraries. Fifth and final,
code can be provided as a scripting language that
is run within another program. An example is
JavaScript that is run inside the browser.

We classify the different persistence techniques based
on where they reside in the operating system. This
categorization helps with bringing more structure into
the body of knowledge on Windows persistence tech-
niques, as well as it can aid in effective detection of
the different techniques. We specified the following
classes:

• File system. Techniques in this class write files
directly to the disk. We split this class into two
subclasses:

– Operating system files. Techniques in this
class place files in folders that are used for
the operating system. For example, a match-
ing location would be the System32 folder.
A technique of this class is DLL hijacking.
When executed successfully, placing a DLL at
a tactical location results in a regularly run-
ning process loading that DLL instead of the
original DLL.

– Additional software files. Techniques in
this class place one or multiple files in folder
that are used by additional software packages.
For example, a technique can place files in
folder for Microsoft Excel templates. The ex-
act location can differ based on the installa-
tion of the software, making persistence tech-
niques in this class harder to detect. The
Windows Terminal Profile persistence tech-
nique is in this class. By changing a JSON
file in the installation folder of the Windows
Terminal, an executable can be set to be ex-
ecuted every time the terminal is started.

• Databases. Techniques in this class write to lo-
cal databases. Technically, these databases are
still local files. However, writing to these files is
generally not performed through file write opera-
tions. We split this class into two subclasses:

– Registry. Techniques in this class make

changes to the Windows Registry. The
Windows Registry is a database that is
part of the Windows operating system. It
stores information that is continually ac-
cessed by the operating system itself and
many applications [94]. Making changes in-
cludes creating new keys, changing values
and deleting entries. Windows has sepa-
rate system calls to make changes to the
Registry. An example of a technique that
is in this class is the Run Registry keys
technique [20]. By adding a key to for ex-
ample HKEY CURRENT USER\Software
\Microsoft\Windows\CurrentVersion\Run
and setting the value to the path of the de-
sired executable, one can ensure execution at
boot.

– Other databases. Techniques in this class
make changes to local databases other than
the Windows Registry. An example is the
WMI database, which is used by the Windows
operating system to store WMI subscrip-
tions, i.e. actions that should be performed
when certain system events occur [71]–[77].
The files that contain these databases are of-
ten opened by a continually running system
process, preventing other processes to make
changes directly to the file.

5 Modelling Malware Behavior

In this section, we describe how we model the behav-
ior that leads to persistence.

To become persistent on a system, malware has to
make changes to the state of the operating system. In-
dependently of if the malware runs as an executable,
through another application, or any other way, sys-
tem calls are made to the operating system kernel to
change its state [95]. This is the most low-level build-
ing block, so also the most stealthy malware samples
have to exhibit this behavior. Since we aim to de-
tect the persistence for any malware, we observe the
behavior at this level. The collected behavior consist
of a set of system calls, each containing a timestamp,
system call name, and input arguments.

5.1 Requirements

To accurately describe and match the behavior that
will result in persistence of the malware on a victim
machine, we have implemented a model to describe
the different behaviors. The requirements we set for
this model to suit our needs, are as follows:

9

1. The model should match system calls and their in-
put arguments. For example, if we want to match
a file opening operation, we want to make sure we
match the system call of opening a file, and the
location that is passed in the arguments.

2. The context of operation should be taken into ac-
count. For example, when a technique requires
writing the name of an executable to the registry
and the placement of this file, then the model
should be able to match the location placed in
the registry to the file that was written to. By
taking the context into account, the number of
false positive matches can be limited.

3. The model should be able to distinguish between
operations that can happen in any order and oper-
ations for which the order matters. For example,
if a file needs to be written and a registry value
has to point to this, these two operation can oc-
cur in any combination. However, for creating
and then writing to a registry key, the order does
matter.

4. The computational complexity of matching the
behavior of malware to the different models
should be linear preferably. To be able to ana-
lyze thousands of samples each consisting of thou-
sands of operations in a timely manner, the model
should support lightweight matching.

5.2 Behavior Nets

Behavior Nets [17] have been proposed and success-
fully used before in similar circumstances. Besides
that it was used for detecting process injection instead
of persistence techniques, the requirements are very
similar. The model was designed specifically with sys-
tem calls and their input arguments in mind, match-
ing our first requirement. Our second requirement is
also met, since the context of operations can be taken
into account through the use of tokens. The third re-
quirement of matching operation is met through the
state-based model. Finally, the computational com-
plexity with the regard to the number of system calls
is fairly efficient, matching our fourth requirement.
In short, a Behavior Net consists of places, partial
transitions functions, and tokens. The former two
are similar to states and transition functions in the
more renowned Finite State Automata, respectively.
Places can hold tokens, and a valid token is required
for a partial transition to a next place to happen.

p0

p1

RegWrite

location: HKLM/Software/Microsoft/

Windows NT/CurrentVersion/Windows

name: LoadAppInit DLLs

value: 1

FileWrite

{}{var0}.dll

RegWrite

location: HKLM/Software/Microsoft/

Windows NT/CurrentVersion/Windows

name: AppInit DLLs

value: {var0}

RegWrite

location: HKLM/Software/Wow6432Node/

Microsoft/Windows NT/CurrentVersion/Windows

name: LoadAppInit DLLs

value: 1

RegWrite

location: HKLM/Software/Wow6432Node/

Microsoft/Windows NT/CurrentVersion/Windows

name: AppInit DLLs

value: {var0}

Figure 1: The Behavior Net that describes the detec-
tion rule for the AppInit DLLs persistence technique.

Figure 1 shows the Behavior Net that is used to
detect the AppInit DLLs persistence technique. p0 is
that starting place that contains a token at the start.
System calls that match the partial transition func-
tions and their values pass tokens to the next place.
Note that the occurrences of {var0} should match to
get to the final place.

5.3 Detection rules DSL

We introduce a Domain Specific Language (DSL) that
we use to write detection rules. Rules written in the
DSL can be directly translated to valid Behavior Nets
that can be used for detection. The aims of the DSL
are threefold. The rules should be:

• Straightforward to write by hand;

• Readable, both by humans and machines;

• Capable of describing the behavior conforming
the requirements set in Section 5.1.

Our DSL utilizes YAML, a serialization language
which is known for being easy to write and read, for
both humans and machines [96]. Our DSL is con-
structed of blocks, that can either be individual sys-
tem calls or a composition of multiple system calls.
We use three different types of compositions. Firstly,
the ’AND’ composition requires all system calls to be
performed. Secondly, the ’OR’ stands for an inclusive
’or’ and requires only one of the system calls to be
performed. Lastly, the ’SEQUENTIAL’ composition re-
quires all system calls to be performed in the correct
order. The system call notation requires the name
of the system call, and optionally contains the loca-
tion (for example where a file write is performed to),
name (for example the name of the registry value),
and the value (for example what value is written to
the registry). The strings that are used to describe

10

the location, name, and value can contain wildcards
(denoted as ’{}’) and match values across different
operation (denoted as ’var0’, where the 0 can be re-
placed by any positive integer). An example where
this last feature is useful is when the value written to
the registry has to match the location of a file placed
on the disk. This could result in the file write sys-
tem call location value and the registry write system
call value sharing the same string, namely ’{var0}’.
The syntax of our DSL takes on the following formal
grammar form:

⟨detection rule⟩ ::= ⟨block⟩

⟨block⟩ ::= ⟨syscall⟩
| ⟨and-block⟩
| ⟨or-block⟩
| ⟨sequential-block⟩

⟨syscall⟩ ::= SYSCALL:

operation: ⟨operation⟩
(location: ⟨string⟩)?
(name: ⟨string⟩)?
(value: ⟨string⟩)?

⟨operation⟩ ::= ⟨string⟩

⟨and-block⟩ ::= AND:

(-⟨block⟩)+

⟨or-block⟩ ::= OR:

(-⟨block⟩)+

⟨seq-block⟩ ::= SEQUENTIAL:

(-⟨block⟩)+

5.3.1 Examples

Listing 1 shows the detection rule for the AppInit
DLLs persistence technique [84]–[86] as an example
of the use of our DSL. The base block is the AND-
block at line 1. This AND-block composes two sub-
blocks that must both be matched in order for the
rule to return positive. The order of the two sub-
blocks does not matter. The first sub-block is the OR-
block at line 2, which features two AND-blocks. One
of the blocks is for the 32-bit system variant, while
the other is for the 64-bit variant. In both AND-blocks
we see two SYSCALL-blocks. They specify the path
of the Registry key, the name of the value and the
actual value. In both 32-bit and 64-bit variant, the
value LoadAppInit_DLLs is set to 1, see line 4 and 15.
In the second system call, at line 9 and 20, AppInit
is set. The {var0} can be seen as a regex wildcard,
but must match over both system calls. The second

sub-block of the base block is defined on line 25. This
is again a SYSCALL block and specifies a file write
operation. Note that the location on line 27 con-
sists of three parts. The first part is {}, which is
a wildcard and can take any value. The second part
is {var0}. This value has to match the other occur-
rences of {var0}, defined at line 13 and 24. The third
and final part of the location string is .dll, matching
this exact string.

The detection rule in Listing 1 translates directly
to the behavior net shown in Figure 1. The circles
represent states, with p0 being the initial state. To-
kens can move to a new state in the case of a system
call matching the system call in the rectangles.

1 AND:
2 − OR:
3 − AND:
4 − SYSCALL:
5 operat i on : RegWrite
6 l o c a t i o n : ”HKLM\\ Software \\

Microso f t \\Windows NT\\
CurrentVers ion \\Windows”

7 name : ”LoadAppInit DLLs”
8 value : ”1”
9 − SYSCALL:

10 operat i on : RegWrite
11 l o c a t i o n : ”HKLM\\ Software \\

Microso f t \\Windows NT\\
CurrentVers ion \\Windows”

12 name : ”AppInit DLLs”
13 value : ”{ var0 }”
14 − AND:
15 − SYSCALL:
16 operat i on : RegWrite
17 l o c a t i o n : ”HKLM\\ Software \\

Wow6432Node\\Microso f t \\
Windows NT\\
CurrentVers ion \\Windows”

18 name : ”LoadAppInit DLLs”
19 value : ”1”
20 − SYSCALL:
21 operat i on : RegWrite
22 l o c a t i o n : ”HKLM\\ Software \\

Wow6432Node\\Microso f t \\
Windows NT\\
CurrentVers ion \\Windows”

23 name : ”AppInit DLLs”
24 value : ”{ var0 }”
25 − SYSCALL:
26 operat i on : F i l eWri te
27 l o c a t i o n : ”{}{ var0 } . d l l ”

Listing 1: Our DSL rule to describe the AppInit DLLs
persistence technique

The DSL rule in Listing 2 describes the BITS jobs

11

persistence technique [78]–[82]. There are three sys-
tem operations that would trigger a positive detec-
tion outcome. The first is directly writing to the
database that stores the BITS jobs, which can be
found in the path described on rule 4. The second
system call, starting on line 5, describes the opening
of the BitsProxy DLL. This part of the detection rule
matches when the COM DLL is used to create the
BITS job. Lastly, the system call on line 8 describes
the launch of the bitsadmin executable, which can
also be used to create BITS jobs. Figure 2 shows the
matching Behavior Net model.

1 OR:
2 − SYSCALL:
3 operat i on : F i l eWri te
4 l o c a t i o n : ”{}\\Microso f t \\

Network\\Downloader\\qmgr . db
”

5 − SYSCALL:
6 operat i on : FileOpen
7 l o c a t i o n : ”{}\\BitsProxy . d l l ”
8 − SYSCALL:
9 operat i on : ProcessCreate

10 l o c a t i o n : ”{}\\System32\\
bitsadmin . exe ”

Listing 2: Our DSL rule to describe the BITS jobs
persistence technique

p0

p1

FileOpen

{}/BitsProxy.dll
ProcessCreate

{}/System32/bitsadmin.exe

FileWrite

{}/Microsoft/Network/

Downloader/qmgr.db

Figure 2: The Behavior Net that describes the detec-
tion rule for the BITS jobs persistence technique.

Similarly, Listing 3 shows the rule to describe the
Active Setup persistence technique [97], [98]. This is
a technique from the class Registry, so only registry
changes have to be detected. The Behavior Net for
this rule is shown in Figure 3.

1 OR:
2 − SYSCALL:
3 operat i on : RegWrite
4 l o c a t i o n : ”HKLM\\SOFTWARE\\

Microso f t \\Active Setup\\
I n s t a l l e d Components\\{}”

5 name : ”StubPath”
6 value : ”{}”
7 − SYSCALL:
8 operat i on : RegWrite
9 l o c a t i o n : ”HKLM\\SOFTWARE\\

WOW6432Node\\Microso f t \\
Active Setup\\ I n s t a l l e d
Components\\{}”

10 name : ”StubPath”
11 value : ”{}”

Listing 3: Our DSL rule to describe the Active Setup
persistence technique

p0

p1

RegWrite

location: HKLM/SOFTWARE/Microsoft/Active Setup

/Installed Components/{}
name: StubPath

value : {}

RegWrite

location: HKLM/SOFTWARE/WOW6432Node/Microsoft/

Active Setup/Installed Components/{}
name: StubPath

value : {}

Figure 3: The Behavior Net that describes the detec-
tion rule for the Active Setup persistence technique.

6 Detection system design

The subsequent step in our research is to design a
system that can automatically detect the persistence
techniques a malware samples adopts, if any. A sim-
plified data flow diagram of our detection system is
illustrated in Figure 4. It includes some details of our
implementation.

12

Analysis system

System call data

Detection report

Detection rules,
described using
our DSL

Behavior matching system

Malicious samples

Intel Pin
Instrumentation

5 minute
execution

Conversion of rules to
Behavior Nets

System calls matching to
Behavior Nets

Anti-evasion techniques

Figure 4: Simplified data flow diagram of the full per-
sistence detection system.

Our detection system consists of two subsystems:
the analysis system and the behavior matching sys-
tem. The former takes a software sample as input and
executes it in an analysis environment. This environ-
ment should behave as a normal Windows machine,
with the addition that it logs system calls. Optimally,
the output should be a timestamped data flow of sys-
tem calls, including their argument. In practice, only
a small selection of the system calls and their argu-
ments are relevant for the use-case of persistence de-
tection. The system call data is passed on the second
sub-system: the behavior matching system. Along-
side the system call data, the detection system takes
detection rules as input. The detection rules are writ-
ten in the DSL described in Section 5.3. The behavior
matching system loads the detection rules into behav-
ior nets and runs the system calls through them in
the order of the time stamps. For each of the detec-
tion rules, the behavior matching system will return
a positive match if the behavior net ends in an ac-
cepting state. Additionally, the behavior matching
system can add context to the final detection report
by logging what system calls resulted in the match.

6.1 Implementation

For our research we successfully implemented the de-
tection system. For the analysis system we used a sys-
tem from our partner university EURECOM, France.
The system uses Intel PIN [99] to dynamically instru-
ment binaries. In essence, system calls made by the
program are rerouted through custom procedures and
can therefore be logged [100]. The detection system
was originally designed to detect and mitigate evasive
techniques deployed by malware. For example, code
injection techniques are redirected to instrumented

processes. This makes it perfect for our use-case as
well since we aim to detect persistence techniques per-
formed by any malware. Samples were run for 5 min-
utes each and the relevant system calls were moni-
tored. While the instrumentation results in a slower
execution time of approximately factor two [99], the
execution time should still allow for more than 98 %
of samples to perform all their operations within the
first two minutes [55].

We implemented the behavior matching system
in Python. We chose this language to enable quick
development of a functional proof of concept of the
system. The system itself is split into three parts:
the detection rule parser, the behavior data cleaner
and the behavior matcher. Here we briefly discuss
the function of each of these parts:

The detection rule parser loads the YAML files
that have been written in accordance with our
DSL, and builds a behavior net that matches the
rule. Before any matching is done, all behavior
nets are built.

The behavior data cleaner loads the system call
data and cleans the data. This includes changing
file system and registry paths to make sense to
the behavior matcher.

The behavior matcher goes by the system calls in
chronological order and applies changes in the be-
havior net if any. The system call responsible for
causing the change in the behavior net is passed
along with the token. Tokens ending in an ac-
cepting state will thus also carry the context that
caused the persistence, which is carried on into
the detection report.

Since we opted to use Intel PIN for the analysis
system, we introduce the limitation that only system
calls of instrumented binaries can be monitored. As a
result, the detection of two persistence techniques can
have false positives. These are the BITS jobs tech-
nique, and the WMI subscriptions technique. Both
can leverage interprocess communication using COM
DLLs to perform their operations. Our current detec-
tion system does not instrument the processes con-
tacted through COM DLLs, as these processes are
already running, and thus cannot log the system calls
performed by these processes. While we cannot get
precise matches, we can detect when these processes
are used by the malicious samples. While it is likely
that these processes are only called upon when they
are used for persistence, it is not a certainty.

13

7 Evaluation

In this section we evaluate the performance of the de-
tection system as presented in the previous section.
First, we validate the performance of our system on
a small test set. The goal of this small-scale valida-
tion is to verify that our detection is set up correctly
and that our detection rules are correct. Second, we
perform larger scale measurement, for which we run
our detection system over 5,000 real-world malware
samples. The main objectives of this measurement
is to get a better understanding of what persistence
techniques are adopted by malware, and how many
malware samples use persistence techniques.

7.1 Detection system validation

To assess the performance of the detection system,
we run our full persistence detection system over our
proof-of-concept implementations of all techniques.
We developed these implementations earlier to cre-
ate our persistence technique taxonomy in Section 4.
As explained earlier, these implementations use bare
Windows API calls in order to be as low level as pos-
sible. We use the detection system as described in
Section 6.1, with a Windows 10 32-bit operating sys-
tem as the sandbox for the analysis system.

Of the tested 70 tested techniques, 66 were de-
tected successfully. The four undetected techniques
do not run properly on the system because our imple-
mentations use privilege escalation based on process
injection. As the system redirects the process injec-
tion, the required privileges are not achieved and the
techniques fail. Therefore, the behavior that leads
to detection was not exhibited, and the persistence
technique could not be detected. Real-world samples
that use a privilege escalation technique that does not
leverage process injection will be detected by our sys-
tem. Besides this group of four, all techniques were
detected successfully.

7.2 Measurement of adoption

Wemeasure the adoption of malware persistence tech-
niques on a malware collection of 5,000 samples.
These samples have been randomly selected from the
pool of VirusTotal [101] samples that were submitted
in 2021. As a result, more than 90 % of the samples
were first submitted to VirusTotal in 2021. Samples
that are inactive and do not perform any system calls
are left out of the dataset. Our selection of 5,000 sam-
ples represents 481 different malware families, while
1075 samples were not classified as any malware fam-
ily. The maximum number of samples per malware
family is 42. Just as in the validation experiment, we

use the detection system as described in Section 6.1,
with a Windows 10 32-bit operating system as the
sandbox for the analysis system. Out of the 5,000
samples, 803 are flagged with using one or multiple
persistence techniques. This is lower than expected,
as being persistent is seen as one of the main objec-
tives of many types of malware. The number of oc-
currences per technique are shown in Figure 5. The
malware set adopts 15 of the 70 monitored techniques.
The two most used techniques, DLL hijacks and Run
registry keys, are together responsible for almost 75 %
of the persistence techniques used by malware in our
selection.

Figure 6 shows the number of occurrences of the
different classes as defined in Section 4. It shows that
techniques that use only one type of storage location,
either a database or the file system, are more popular
than techniques that use both. This is the result we
expected, as having only one place of storage makes
detection more difficult for antivirus products.

Databases Both File system
Persistence technique class

0

100

200

300

400

N
u
m
b
er

of
oc
cu
rr
en
ce
s

435

119

416

Figure 6: Detected persistence techniques occur-
rences per persistence class.

How many cases of persistence were detected per
class of malware is shown in Figure 7. The classes of
the malware samples were extracted from Virustotal
reports using the AVCLass tool [102]. The first obser-
vation we make is that grayware makes up for about
40 % of our dataset, showing how popular that class
is. Our second observation is that the percentage of
persistent grayware samples (a bit less than 13 %)
is lower than that of most other classes, that are all
above 20 %, except for the Backdoor and Other class.
This is expected, since grayware is in many cases ex-
pected to be executed willingly by the user. As a
third observation, the adoption of persistence tech-
niques by specifically backdoors, viruses, and worms

14

Ac
ce
ssi

bil
ity

To
ols

Ba
ck
do

or

Ac
tiv

e Se
tu
p

CO
M

hij
ac
k

Ch
an

ge
de
fau

lt
file

as
so
cia

tio
n

DL
L
hij

ac
k

Im
ag
e file

ex
ec
ut
ion

op
tio

ns

M
PN

ot
ify

wi
nlo

go
n

Ru
n
reg

ist
ry

ke
ys

Sc
ree

ns
av
er

St
ar
tu
p
fol

de
r

Ta
sk

sch
ed
ule

r

W
M
I E

ve
nt

Su
bs
cri

pt
ion

W
ind

ow
s L

oa
d

W
ind

ow
s s

erv
ice

s

lnk
sh
or
tcu

ts

Persistence technique

0

50

100

150

200

250

300

350

400

N
u
m
b
er

of
o
cc
u
rr
en
ce
s

2 4
19 15

378

10
25

342

15 21 18

56

20 30
15

Figure 5: The number of occurrences of different persistence techniques deployed by 5000 malware samples.
All techniques that were detected at least once have been included.

15

is lower than expected. We would expect more of the
malware samples in these classes to adopt persistence
because of the nature of these classes.

Ba
ckd

oor

Do
wn

loa
der

Gr
ayw

are

Ra
nso

mw
are Vir

us
Worm Ot

her

Malware Class

0

500

1000

1500

2000

S
am

p
le
C
ou
nt

472

81

777

161

1967

253 204
43

244
52

630

148
303

29

Total Samples

Persistent Samples

Figure 7: Detected persistence techniques occur-
rences per malware class. Total Samples are the to-
tal number of samples in our dataset that belong to
a specific malware class. Persistent Samples are the
samples of that class that we found to adopt at least
one persistence technique.

Figure 8 shows when in the time of execution the
persistence is achieved. For example, when a sam-
ple with an execution time of 30 seconds writes to
the Run Registry key after running for 10 seconds,
it would fall into the 20-30 % category. Our data
shows that most malware samples either achieve per-
sistence at the start of execution (about 13.5 % in
the thirst 10 % of their execution time) or at the end
of execution (approximately 14 % in the final 10 %
of their execution time). However, it is important to
note that the differences are not very large. For ex-
ample, still more than 8 % of the samples obtain their
persistence at the least popular time, which is only 6
percent point less than the most popular time.

0-1
0
10-

20
20-

30
30-

40
40-

50
50-

60
60-

70
70-

80
80-

90
90-

100

% of program execution time

0.000

0.025

0.050

0.075

0.100

0.125

0.150

%
of

p
er
si
st
en
t
m
al
w
ar
e
sa
m
p
le
s

Figure 8: Observed time at which the first persis-
tence is achieved by the malware samples, relative to
the total running time of the malware.

Figure 9 shows the time in minutes it takes for the
malware samples to become persistent. Note that the
data has not been adjusted for instrumentation over-
head time, which is approximately a doubling factor.
The results are as expected, as most malicious sam-
ples perform all there malicious operations in the first
two minutes of execution, or four minutes for instru-
mented execution [55].

0 1 2 3 4 5
Time (minutes)

0%

20%

40%

60%

80%

100%

C
u
m
u
la
ti
ve

of
sa
m
p
le
s
ac
h
ie
vi
n
g
p
er
si
st
en
ce

Figure 9: The cumulative percentage of malware sam-
ples that achieve their first persistence at a certain
time. For example, a little less than 80 % of per-
sistent malicious samples in our dataset require one
minute of execution to achieve persistence, or half a
minute in a non-analysis context.

Figure 10 shows the number of distinct persistence

16

techniques were used per malware sample. For exam-
ple, 18 samples were found to use 3 different persis-
tence techniques. Interestingly, most malware sam-
ples rely on a single persistence technique. At the
same time, a couple chose to adopt multiple, and one
sample even used six.

1 2 3 4 5 6
Number of persistence techniques detected in a single sample

0

200

400

600

N
u
m
b
er

of
sa
m
p
le
s

667

113

18 3 1 1

Figure 10: Observed number of persistence tech-
niques deployed per malware sample in our dataset.

8 Discussion

In this section we discuss our findings as presented in
the evaluation.

The results showed that 807 out of the 5000 an-
alyzed malware samples exhibited behavior that was
detected as persistence achieving behavior. This is a
bit more than 16 % of the analyzed samples. This
number seems low, and we expected more malware
samples to be persistent. One apparent reason could
be that this low number is related to code coverage,
despite our best efforts to limit the ways that the
malware can detect our detection system. To en-
sure the quality of our detection system, we manu-
ally performed dynamic analysis on 30 randomly se-
lected samples for which no persistence is detected.
The results showed that most did indeed not adopt
any persistence technique, but two did and went un-
detected. For the samples that went undetected, we
inspected the analysis results of our dynamic anal-
ysis system. We concluded that in some cases the
analysis system does not yield the relevant system
calls, but instead an unnaturally high number of sys-
tem calls related to memory mapping. After further
examination, we found that 1,591 of the 5,000 analy-
sis results had this same unusual high percentage of
memory mapping system calls, possibly making the

results of these analyses unreliable. Additionally, as
discussed in Section 2, another logical explanation for
the low number is that some malware samples do not
need to achieve persistence. For example, download-
ers only need to download the next stage. When the
dropper is unable to download the next stage, persis-
tence is never achieved. The largest class of malware
in our dataset is grayware with almost 2,000 samples
(see Figure 7). This class of malware may be seen
by the user as a valid program and is started by the
user voluntarily. This would therefore not require any
persistence. These arguments do however not explain
why for example the Virus class only has a persistence
technique adoption rate of about 20 %.

The distribution of what persistence technique is
used (Figure 5) shows that most malware leverages
two very well known techniques: Run registry keys
and DLL hijacks. One reason for this could be that
these techniques are functional on all versions of Win-
dows. This means that one sample of the malware
can be used on many target machines, without the
need to select different techniques for different target
machines.

Figure 8 shows that malware prefers to achieve
persistence at the start or end of execution. For the
former, the reasoning seems pretty straightforward: if
the process is terminated in execution, being already
persistent would ensure the survival of the malware.
For the trend of gaining persistence at the end of ex-
ecution, one could argue that the malware exits after
the persistence has been achieved. The code that is
executed by the persistence technique is then respon-
sible for the further operations of the malware.

In general, most persistent malware samples try to
leverage only one persistence technique, as was shown
in Figure 10. With the knowledge that most malware
samples use universally functional persistence tech-
niques, this is not unexpected. The samples that use
two or multiple techniques are often well known com-
binations, such as changing the default file association
of a file type and adding a run registry key for a file
of that type. We consider these two as separate tech-
niques, since changing the default file association can
lead to persistence when the user opens a file of that
file type. However, a few of these samples also use
techniques without combining them, simply increas-
ing their persistence. Antivirus solutions that suc-
cessfully remove one of the persistence mechanisms,
might miss the second and remain unsuccessful in re-
moving the malware.

For future research, it would be interesting to eval-
uate the results of our detection system by an au-
tomated, state differential analysis system as intro-
duced in Section 3.2. By using a high quality snapshot

17

tool such as Autoruns [61], the credibility of our find-
ings could be improved. Another promising direction
for future research is the automation of the discovery
of new persistence techniques used by malware. Some
malware samples might make use of persistence tech-
niques that are still undocumented. By adapting the
analysis system, it could be possible to detect these
techniques.

9 Limitations

This section provides a view on the limitations of our
research and how this may impact future work.

The first category of limitations regards the anal-
ysis limitations of our dynamic analysis approach.
While there are many advantages of using dynamic
analysis over static analysis as discussed in Sec-
tion 2.2.2, it still has its shortcoming with regard to
catching all the behavior that the malware might ex-
hibit. Despite the anti-evasive techniques deployed in
the analysis system, the malware might still conduct
additional less-conventional checks before deploying
its malicious operations. An example could be that it
checks for the version of the operating system, and if
the analysis system does not meet this requirement,
we will not be able to detect the persistence tech-
niques that it might use on operating systems that do
meet the requirement. A second limitation in the cat-
egory of dynamic analysis is the time limitation given
to samples. As discussed in Section 6.1, the samples
are run for 5 minutes, the equivalent of approximately
2.5 minutes of runtime without any instrumentation,
and while this has shown to be enough for most mali-
cious samples to exhibit all malicious behavior [55], it
will not detect outliers that wait longer to gain per-
sistence. As result, our detection results might not
flag samples that require longer to become persistent.

The second category of limitations regards mal-
ware that abuses other programs to do its malicious
bidding. There are various methods such as code in-
jection [17], living-off-the-land malware [29], and reg-
ular interprocess communication. The analysis sys-
tem deployed for our detection system does have mit-
igations to this kind of evasion as it re-routes the most
used code injection techniques to instrumented bina-
ries, but not all techniques are covered [100].

The third limitation is related to the way the sys-
tem calls are monitored. Our analysis system in-
struments the targeted binary, more specifically it
re-routes the Windows API DLL and NTDLL calls.
Both of these libraries still live in user space, and to
interact with the kernel they use the system call in-
struction. It is however possible to make a system
call directly from the malicious program, circumvent-

ing the instrumentation and still accomplishing the
wanted system call [103]. This is not expected to be
used a lot however since these bare-bones system calls
are not documented by Microsoft and can differ sig-
nificantly from version to version [95].

10 Conclusion

In this paper, we presented a comprehensive taxon-
omy of persistence techniques targeting the Windows
operating system. This is the first taxonomy of this
scope, and provides a better understanding of what
persistence techniques are and how they can be de-
tected. Besides the taxonomy, we introduced a DSL
to assist the writing of detection rules for persistence
techniques, which can be used in our detection sys-
tem. We have shown that malware actively makes
use of persistence techniques, however not as much as
we anticipated. While most generic malware samples
deploy standard persistence techniques, more exotic
samples do exist that abuse lesser known techniques.
Additionally, we have shown that while most malware
uses only one persistence technique, some samples do
leverage multiple in an attempt increase their odds of
survival.

11 Acknowledgements

We would like to thank our supervisors Andrea Con-
tinella, Jerre Starink, and Marieke Huisman. Their
support and insights have been truly invaluable to our
work.

References

[1] “2019 Midyear Security Roundup: Evasive
Threats, Pervasive Effects,” Trend Micro.
[Online]. Available: https : / / documents .

trendmicro . com / assets / rpt / rpt -

evasive-threats-pervasive-effects.pdf.

[2] V. Saengphaibul. “A Brief History of The
Evolution of Malware — FortiGuard Labs,”
Fortinet Blog. (Mar. 15, 2022), [Online]. Avail-
able: https : / / www . fortinet . com / blog /
threat- research/evolution- of- malware

(visited on 04/11/2023).

18

https://documents.trendmicro.com/assets/rpt/rpt-evasive-threats-pervasive-effects.pdf
https://documents.trendmicro.com/assets/rpt/rpt-evasive-threats-pervasive-effects.pdf
https://documents.trendmicro.com/assets/rpt/rpt-evasive-threats-pervasive-effects.pdf
https://www.fortinet.com/blog/threat-research/evolution-of-malware
https://www.fortinet.com/blog/threat-research/evolution-of-malware

[3] “Defending the Expanding Attack Surface:
Trend Micro 2022 Midyear Cybersecurity
Report.” [Online]. Available: https : / /

documents.trendmicro.com/assets/rpt/

rpt - defending - the- expanding - attack -

surface - trend - micro - 2022 - midyear -

cybersecurity-report.pdf.

[4] “Malware Statistics & Trends Report — AV-
TEST.” (), [Online]. Available: https://www.
av-test.org/en/statistics/malware/ (vis-
ited on 06/27/2022).

[5] “What is WannaCry ransomware?”
www.kaspersky.com. (Feb. 9, 2022), [Online].
Available: https : / / www . kaspersky . com /

resource - center / threats / ransomware -

wannacry (visited on 08/15/2022).

[6] “What was the Mirai botnet,” Malwarebytes.
(), [Online]. Available: https : / / www .

malwarebytes.com/what-was-the-mirai-

botnet (visited on 08/15/2022).

[7] M. Clark. “Nvidia says its ‘proprietary in-
formation’ is being leaked by hackers,” The
Verge. (Mar. 1, 2022), [Online]. Available:
https : / / www . theverge . com / 2022 / 3 /

1 / 22957212 / nvidia - confirms - hack -

proprietary- information- lapsus (visited
on 08/15/2022).

[8] O. Sukwong, H. Kim, and J. Hoe, “Com-
mercial Antivirus Software Effectiveness: An
Empirical Study,” Computer, vol. 44, no. 3,
pp. 63–70, Mar. 2011, issn: 0018-9162. doi:
10.1109/MC.2010.187. [Online]. Available:
http://ieeexplore.ieee.org/document/

5506074/ (visited on 04/11/2023).

[9] M. Bada, S. Creese, M. Goldsmith, C.
Mitchell, and E. Phillips. “Computer Secu-
rity Incident Response Teams (CSIRTs): An
Overview.” (2014), [Online]. Available: https:
//papers.ssrn.com/abstract=3659974 (vis-
ited on 04/11/2023), preprint.

[10] M. Yong Wong, M. Landen, M. Antonakakis,
D. M. Blough, E. M. Redmiles, and M.
Ahamad, “An Inside Look into the Practice
of Malware Analysis,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’21,
New York, NY, USA: Association for Com-
puting Machinery, Nov. 12, 2021, pp. 3053–
3069, isbn: 978-1-4503-8454-4. doi: 10.1145/
3460120.3484759. [Online]. Available: https:
//doi.org/10.1145/3460120.3484759 (vis-
ited on 05/30/2022).

[11] A. Villalón-Huerta, H. Marco-Gisbert, and I.
Ripoll-Ripoll, “A Taxonomy for Threat Ac-
tors’ Persistence Techniques,” Computers &
Security, vol. 121, p. 102 855, Oct. 1, 2022,
issn: 0167-4048. doi: 10.1016/j.cose.2022.
102855. [Online]. Available: https :/ / www.
sciencedirect.com/science/article/pii/

S0167404822002498 (visited on 04/06/2023).

[12] Z. Gittins and M. Soltys, “Malware Persis-
tence Mechanisms,” Procedia Computer Sci-
ence, Knowledge-Based and Intelligent Infor-
mation & Engineering Systems: Proceedings
of the 24th International Conference KES2020,
vol. 176, pp. 88–97, Jan. 1, 2020, issn: 1877-
0509. doi: 10 . 1016 / j . procs . 2020 . 08 .

010. [Online]. Available: https : / / www .

sciencedirect.com/science/article/pii/

S1877050920318342 (visited on 05/29/2022).

[13] M. U. Rana, M. Ali Shah, and O. Ellahi, “Mal-
ware Persistence and Obfuscation: An Anal-
ysis on Concealed Strategies,” in 2021 26th
International Conference on Automation and
Computing (ICAC), Sep. 2021, pp. 1–6. doi:
10.23919/ICAC50006.2021.9594197.

[14] M. S. Webb, “Evaluating Tool Based Auto-
mated Malware Analysis Through Persistence
Mechanism Detection,” p. 69,

[15] A. Mohanta and A. Saldanha, Malware Analy-
sis and Detection Engineering: A Comprehen-
sive Approach to Detect and Analyze Modern
Malware. Berkeley, CA: Apress, 2020, isbn:
978-1-4842-6192-7 978-1-4842-6193-4. doi: 10.
1007/978-1-4842-6193-4. [Online]. Avail-
able: http://link.springer.com/10.1007/
978-1-4842-6193-4 (visited on 07/12/2022).

[16] “AV-TEST Security Report 2019-2020.” [On-
line]. Available: https://www.av-test.org/
fileadmin/pdf/security_report/AV-TEST_

Security_Report_2019- 2020.pdf (visited
on 07/14/2022).

[17] J. A. L. Starink, “Analysis and auto-
mated detection of host-based code in-
jection techniques in malware,” info:eu-
repo/semantics/masterThesis, University of
Twente, Sep. 20, 2021. [Online]. Available:
http://essay.utwente.nl/88617/ (visited
on 07/13/2022).

[18] I. Kirillov and P. Chase, “Malware Attribute
Enumeration and Characterization,”

[19] “MITRE ATT&CK®.” (), [Online]. Avail-
able: https://attack.mitre.org/ (visited
on 04/06/2023).

19

https://documents.trendmicro.com/assets/rpt/rpt-defending-the-expanding-attack-surface-trend-micro-2022-midyear-cybersecurity-report.pdf
https://documents.trendmicro.com/assets/rpt/rpt-defending-the-expanding-attack-surface-trend-micro-2022-midyear-cybersecurity-report.pdf
https://documents.trendmicro.com/assets/rpt/rpt-defending-the-expanding-attack-surface-trend-micro-2022-midyear-cybersecurity-report.pdf
https://documents.trendmicro.com/assets/rpt/rpt-defending-the-expanding-attack-surface-trend-micro-2022-midyear-cybersecurity-report.pdf
https://documents.trendmicro.com/assets/rpt/rpt-defending-the-expanding-attack-surface-trend-micro-2022-midyear-cybersecurity-report.pdf
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.kaspersky.com/resource-center/threats/ransomware-wannacry
https://www.malwarebytes.com/what-was-the-mirai-botnet
https://www.malwarebytes.com/what-was-the-mirai-botnet
https://www.malwarebytes.com/what-was-the-mirai-botnet
https://www.theverge.com/2022/3/1/22957212/nvidia-confirms-hack-proprietary-information-lapsus
https://www.theverge.com/2022/3/1/22957212/nvidia-confirms-hack-proprietary-information-lapsus
https://www.theverge.com/2022/3/1/22957212/nvidia-confirms-hack-proprietary-information-lapsus
https://doi.org/10.1109/MC.2010.187
http://ieeexplore.ieee.org/document/5506074/
http://ieeexplore.ieee.org/document/5506074/
https://papers.ssrn.com/abstract=3659974
https://papers.ssrn.com/abstract=3659974
https://doi.org/10.1145/3460120.3484759
https://doi.org/10.1145/3460120.3484759
https://doi.org/10.1145/3460120.3484759
https://doi.org/10.1145/3460120.3484759
https://doi.org/10.1016/j.cose.2022.102855
https://doi.org/10.1016/j.cose.2022.102855
https://www.sciencedirect.com/science/article/pii/S0167404822002498
https://www.sciencedirect.com/science/article/pii/S0167404822002498
https://www.sciencedirect.com/science/article/pii/S0167404822002498
https://doi.org/10.1016/j.procs.2020.08.010
https://doi.org/10.1016/j.procs.2020.08.010
https://www.sciencedirect.com/science/article/pii/S1877050920318342
https://www.sciencedirect.com/science/article/pii/S1877050920318342
https://www.sciencedirect.com/science/article/pii/S1877050920318342
https://doi.org/10.23919/ICAC50006.2021.9594197
https://doi.org/10.1007/978-1-4842-6193-4
https://doi.org/10.1007/978-1-4842-6193-4
http://link.springer.com/10.1007/978-1-4842-6193-4
http://link.springer.com/10.1007/978-1-4842-6193-4
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2019-2020.pdf
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2019-2020.pdf
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2019-2020.pdf
http://essay.utwente.nl/88617/
https://attack.mitre.org/

[20] “Boot or Logon Autostart Execution: Reg-
istry Run Keys / Startup Folder, Sub-
technique T1547.001 - Enterprise — MITRE
ATT&CK®.” (), [Online]. Available: https:
//attack.mitre.org/techniques/T1547/

001/ (visited on 05/21/2023).

[21] “Boot or Logon Autostart Execution: Reg-
istry Run Keys / Startup Folder, Sub-
technique T1547.001 - Enterprise — MITRE
ATT&CK®.” (), [Online]. Available: https:
//attack.mitre.org/techniques/T1547/

001/ (visited on 05/21/2023).

[22] “Startup Folder,” persistence-info.github.io.
(), [Online]. Available: https : / /

persistence - info . github . io /

Data / startupfolder . html (visited on
05/21/2023).

[23] “Persistence with Windows Services,” PSBits.
(), [Online]. Available: https : / / gtworek .

github.io/PSBits/services.html (visited
on 05/21/2023).

[24] cocomelonc. “Malware development: Persis-
tence - part 4. Windows services. Simple
C++ example.,” cocomelonc. (May 9, 2022),
[Online]. Available: https : / / cocomelonc .

github.io/tutorial/2022/05/09/malware-

pers-4.html (visited on 05/21/2023).

[25] “Create or Modify System Process: Win-
dows Service, Sub-technique T1543.003 - En-
terprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1543 / 003/ (visited on
05/21/2023).

[26] S. Vogl, J. Pfoh, T. Kittel, and C. Eck-
ert, “Persistent Data-only Malware: Func-
tion Hooks without Code,” in Proceedings
2014 Network and Distributed System Secu-
rity Symposium, San Diego, CA: Internet So-
ciety, 2014, isbn: 978-1-891562-35-8. doi: 10.
14722 / ndss . 2014 . 23019. [Online]. Avail-
able: https://www.ndss- symposium.org/
ndss2014 / programme / persistent - data -

only-malware-function-hooks-without-

code/ (visited on 04/11/2023).

[27] “Filter Handlers for Windows Search,”
persistence-info.github.io. (), [Online]. Avail-
able: https://persistence-info.github.
io / Data / ifilters . html (visited on
05/21/2023).

[28] W. Beukema. “Hijacking DLLs in Windows.”
(Jun. 22, 2020), [Online]. Available: https:
//www.wietzebeukema.nl/blog/hijacking-

dlls-in-windows (visited on 05/21/2023).

[29] F. Barr-Smith, X. Ugarte-Pedrero, M.
Graziano, R. Spolaor, and I. Martinovic, “Sur-
vivalism: Systematic Analysis of Windows
Malware Living-Off-The-Land,” in 2021 IEEE
Symposium on Security and Privacy (SP),
May 2021, pp. 1557–1574. doi: 10 . 1109 /

SP40001.2021.00047.

[30] E. Gandotra, D. Bansal, and S. Sofat, “Mal-
ware Analysis and Classification: A Survey,”
Journal of Information Security, vol. 2014,
Feb. 20, 2014, issn: 2153-1242. doi: 10 .

4236 / jis . 2014 . 52006. [Online]. Avail-
able: http : / / www . scirp . org / journal /

PaperInformation . aspx ? PaperID = 44440

(visited on 04/11/2023).

[31] M. Christodorescu and S. Jha, “Static Anal-
ysis of Executables to Detect Malicious Pat-
terns:” Defense Technical Information Center,
Fort Belvoir, VA, Jan. 1, 2006. doi: 10.21236/
ADA449067. [Online]. Available: http://www.
dtic.mil/docs/citations/ADA449067 (vis-
ited on 05/25/2022).

[32] O. Or-Meir, N. Nissim, Y. Elovici, and L.
Rokach, “Dynamic Malware Analysis in the
Modern Era—A State of the Art Survey,”
ACM Computing Surveys, vol. 52, no. 5, pp. 1–
48, Sep. 30, 2020, issn: 0360-0300, 1557-7341.
doi: 10.1145/3329786. [Online]. Available:
https://dl.acm.org/doi/10.1145/3329786

(visited on 05/17/2022).

[33] I. You and K. Yim, “Malware Obfuscation
Techniques: A Brief Survey,” in 2010 Inter-
national Conference on Broadband, Wireless
Computing, Communication and Applications,
Nov. 2010, pp. 297–300. doi: 10.1109/BWCCA.
2010.85.

[34] H. Aghakhani, F. Gritti, F. Mecca, et al.,
“When Malware is Packin’ Heat; Limits of
Machine Learning Classifiers Based on Static
Analysis Features,” in Proceedings 2020 Net-
work and Distributed System Security Sympo-
sium, San Diego, CA: Internet Society, 2020,
isbn: 978-1-891562-61-7. doi: 10 . 14722 /

ndss.2020.24310. [Online]. Available: https:
//www.ndss-symposium.org/wp-content/

uploads / 2020 / 02 / 24310 . pdf (visited on
06/09/2022).

20

https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://persistence-info.github.io/Data/startupfolder.html
https://persistence-info.github.io/Data/startupfolder.html
https://persistence-info.github.io/Data/startupfolder.html
https://gtworek.github.io/PSBits/services.html
https://gtworek.github.io/PSBits/services.html
https://cocomelonc.github.io/tutorial/2022/05/09/malware-pers-4.html
https://cocomelonc.github.io/tutorial/2022/05/09/malware-pers-4.html
https://cocomelonc.github.io/tutorial/2022/05/09/malware-pers-4.html
https://attack.mitre.org/techniques/T1543/003/
https://attack.mitre.org/techniques/T1543/003/
https://doi.org/10.14722/ndss.2014.23019
https://doi.org/10.14722/ndss.2014.23019
https://www.ndss-symposium.org/ndss2014/programme/persistent-data-only-malware-function-hooks-without-code/
https://www.ndss-symposium.org/ndss2014/programme/persistent-data-only-malware-function-hooks-without-code/
https://www.ndss-symposium.org/ndss2014/programme/persistent-data-only-malware-function-hooks-without-code/
https://www.ndss-symposium.org/ndss2014/programme/persistent-data-only-malware-function-hooks-without-code/
https://persistence-info.github.io/Data/ifilters.html
https://persistence-info.github.io/Data/ifilters.html
https://www.wietzebeukema.nl/blog/hijacking-dlls-in-windows
https://www.wietzebeukema.nl/blog/hijacking-dlls-in-windows
https://www.wietzebeukema.nl/blog/hijacking-dlls-in-windows
https://doi.org/10.1109/SP40001.2021.00047
https://doi.org/10.1109/SP40001.2021.00047
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.4236/jis.2014.52006
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=44440
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=44440
https://doi.org/10.21236/ADA449067
https://doi.org/10.21236/ADA449067
http://www.dtic.mil/docs/citations/ADA449067
http://www.dtic.mil/docs/citations/ADA449067
https://doi.org/10.1145/3329786
https://dl.acm.org/doi/10.1145/3329786
https://doi.org/10.1109/BWCCA.2010.85
https://doi.org/10.1109/BWCCA.2010.85
https://doi.org/10.14722/ndss.2020.24310
https://doi.org/10.14722/ndss.2020.24310
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24310.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24310.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24310.pdf

[35] J.-M. Borello and L. Mé, “Code obfuscation
techniques for metamorphic viruses,” p. 10,

[36] S. Alam, I. Traore, and I. Sogukpinar, “An-
notated Control Flow Graph for Metamorphic
Malware Detection,” The Computer Journal,
vol. 58, no. 10, pp. 2608–2621, Oct. 2015,
issn: 0010-4620, 1460-2067. doi: 10 . 1093 /

comjnl/bxu148. [Online]. Available: https:
/ / academic . oup . com / comjnl / article -

lookup/doi/10.1093/comjnl/bxu148 (vis-
ited on 09/04/2022).

[37] Y. Cao, Q. Miao, J. Liu, and L. Gao, “Ab-
stracting minimal security-relevant behaviors
for malware analysis,” Journal of Computer
Virology and Hacking Techniques, vol. 9, no. 4,
pp. 193–204, Nov. 1, 2013, issn: 2263-8733.
doi: 10 . 1007 / s11416 - 013 - 0186 - 3. [On-
line]. Available: https://doi.org/10.1007/
s11416-013-0186-3 (visited on 05/24/2022).

[38] K. Rieck, P. Trinius, C. Willems, and T. Holz,
“Automatic analysis of malware behavior us-
ing machine learning,” Journal of Computer
Security, vol. 19, no. 4, pp. 639–668, Jan. 1,
2011, issn: 0926-227X. doi: 10.3233/JCS-
2010 - 0410. [Online]. Available: http : / /

content.iospress.com/articles/journal-

of-computer-security/jcs410 (visited on
05/18/2022).

[39] G. Ramesh and A. Menen, “Automated dy-
namic approach for detecting ransomware us-
ing finite-state machine,” Decision Support
Systems, vol. 138, p. 113 400, Nov. 2020,
issn: 01679236. doi: 10 . 1016 / j . dss .

2020.113400. [Online]. Available: https://
linkinghub.elsevier.com/retrieve/pii/

S016792362030155X (visited on 05/30/2022).

[40] T. K. Lengyel, S. Maresca, B. D. Payne, G. D.
Webster, S. Vogl, and A. Kiayias, “Scalabil-
ity, fidelity and stealth in the DRAKVUF dy-
namic malware analysis system,” in Proceed-
ings of the 30th Annual Computer Security
Applications Conference, ser. ACSAC ’14, New
York, NY, USA: Association for Computing
Machinery, Dec. 8, 2014, pp. 386–395, isbn:
978-1-4503-3005-3. doi: 10.1145/2664243.
2664252. [Online]. Available: http :/ / doi.
org/10.1145/2664243.2664252 (visited on
05/17/2022).

[41] Sudhakar and S. Kumar, “An emerging threat
Fileless malware: A survey and research chal-
lenges,” Cybersecurity, vol. 3, no. 1, p. 1,
Jan. 14, 2020, issn: 2523-3246. doi: 10.1186/

s42400 - 019 - 0043 - x. [Online]. Available:
https://doi.org/10.1186/s42400-019-

0043-x (visited on 05/30/2022).

[42] B. Yu, Y. Fang, Q. Yang, Y. Tang, and L.
Liu, “A survey of malware behavior descrip-
tion and analysis,” Frontiers of Information
Technology & Electronic Engineering, vol. 19,
no. 5, pp. 583–603, May 1, 2018, issn: 2095-
9230. doi: 10 . 1631 / FITEE . 1601745. [On-
line]. Available: https://doi.org/10.1631/
FITEE.1601745 (visited on 06/15/2022).

[43] L. Wang, B. Wang, J. Liu, Q. Miao, and
a. J. Zhang, “Cuckoo-based Malware Dynamic
Analysis,” International Journal of Performa-
bility Engineering, vol. 15, no. 3, p. 772,
Mar. 20, 2019, issn: 0973-1318. doi: 10 .

23940 / ijpe . 19 . 03 . p6 . 772781. [Online].
Available: http://www.ijpe-online.com/
EN/10.23940/ijpe.19.03.p6.772781 (vis-
ited on 05/17/2022).

[44] C. Jindal, C. Salls, H. Aghakhani, K. Long,
C. Kruegel, and G. Vigna, “Neurlux: Dy-
namic malware analysis without feature engi-
neering,” in Proceedings of the 35th Annual
Computer Security Applications Conference,
ser. ACSAC ’19, New York, NY, USA: Associ-
ation for Computing Machinery, Dec. 9, 2019,
pp. 444–455, isbn: 978-1-4503-7628-0. doi: 10.
1145/3359789.3359835. [Online]. Available:
https : / / doi . org / 10 . 1145 / 3359789 .

3359835 (visited on 05/30/2022).

[45] Q. Wang, W. U. Hassan, D. Li, et al., “You
Are What You Do: Hunting Stealthy Malware
via Data Provenance Analysis,” in Proceedings
2020 Network and Distributed System Secu-
rity Symposium, San Diego, CA: Internet So-
ciety, 2020, isbn: 978-1-891562-61-7. doi: 10.
14722/ndss.2020.24167. [Online]. Available:
https : / / www . ndss - symposium . org / wp -

content/uploads/2020/02/24167.pdf (vis-
ited on 05/30/2022).

[46] R. Jordaney, K. Sharad, S. K. Dash, et
al., “Transcend: Detecting Concept Drift in
Malware Classification Models,” presented
at the 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 625–
642, isbn: 978-1-931971-40-9. [Online]. Avail-
able: https : / / www . usenix . org /

conference/usenixsecurity17/technical-

sessions/presentation/jordaney (visited
on 06/01/2022).

21

https://doi.org/10.1093/comjnl/bxu148
https://doi.org/10.1093/comjnl/bxu148
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/bxu148
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/bxu148
https://academic.oup.com/comjnl/article-lookup/doi/10.1093/comjnl/bxu148
https://doi.org/10.1007/s11416-013-0186-3
https://doi.org/10.1007/s11416-013-0186-3
https://doi.org/10.1007/s11416-013-0186-3
https://doi.org/10.3233/JCS-2010-0410
https://doi.org/10.3233/JCS-2010-0410
http://content.iospress.com/articles/journal-of-computer-security/jcs410
http://content.iospress.com/articles/journal-of-computer-security/jcs410
http://content.iospress.com/articles/journal-of-computer-security/jcs410
https://doi.org/10.1016/j.dss.2020.113400
https://doi.org/10.1016/j.dss.2020.113400
https://linkinghub.elsevier.com/retrieve/pii/S016792362030155X
https://linkinghub.elsevier.com/retrieve/pii/S016792362030155X
https://linkinghub.elsevier.com/retrieve/pii/S016792362030155X
https://doi.org/10.1145/2664243.2664252
https://doi.org/10.1145/2664243.2664252
http://doi.org/10.1145/2664243.2664252
http://doi.org/10.1145/2664243.2664252
https://doi.org/10.1186/s42400-019-0043-x
https://doi.org/10.1186/s42400-019-0043-x
https://doi.org/10.1186/s42400-019-0043-x
https://doi.org/10.1186/s42400-019-0043-x
https://doi.org/10.1631/FITEE.1601745
https://doi.org/10.1631/FITEE.1601745
https://doi.org/10.1631/FITEE.1601745
https://doi.org/10.23940/ijpe.19.03.p6.772781
https://doi.org/10.23940/ijpe.19.03.p6.772781
http://www.ijpe-online.com/EN/10.23940/ijpe.19.03.p6.772781
http://www.ijpe-online.com/EN/10.23940/ijpe.19.03.p6.772781
https://doi.org/10.1145/3359789.3359835
https://doi.org/10.1145/3359789.3359835
https://doi.org/10.1145/3359789.3359835
https://doi.org/10.1145/3359789.3359835
https://doi.org/10.14722/ndss.2020.24167
https://doi.org/10.14722/ndss.2020.24167
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24167.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24167.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/jordaney

[47] “Machine Learning in Cybersecurity —
Kaspersky.” (), [Online]. Available: https :

/ / www . kaspersky . com / enterprise -

security / wiki - section / products /

machine-learning-in-cybersecurity (vis-
ited on 05/30/2022).

[48] X. Zhang, Y. Zhang, M. Zhong, et al.,
“Enhancing State-of-the-art Classifiers with
API Semantics to Detect Evolved An-
droid Malware,” in Proceedings of the 2020
ACM SIGSAC Conference on Computer and
Communications Security, New York, NY,
USA: Association for Computing Machinery,
Oct. 30, 2020, pp. 757–770, isbn: 978-1-4503-
7089-9. [Online]. Available: https : / / doi .

org/10.1145/3372297.3417291 (visited on
05/30/2022).

[49] F. Pendlebury, F. Pierazzi, R. Jordaney, J.
Kinder, and L. Cavallaro, “{TESSERACT}:
Eliminating Experimental Bias in Mal-
ware Classification across Space and Time,”
presented at the 28th USENIX Security
Symposium (USENIX Security 19), 2019,
pp. 729–746, isbn: 978-1-939133-06-9. [On-
line]. Available: https : / / www . usenix .

org / conference / usenixsecurity19 /

presentation / pendlebury (visited on
06/01/2022).

[50] T. Shields, “Anti-Debugging – A Developers
View,” p. 15, 2010.

[51] H. Shi, A. Alwabel, and J. Mirkovic, “Car-
dinal Pill Testing of System Virtual Ma-
chines,” presented at the 23rd USENIX Secu-
rity Symposium (USENIX Security 14), 2014,
pp. 271–285, isbn: 978-1-931971-15-7. [On-
line]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-

sessions / presentation / shi (visited on
05/30/2022).

[52] O. Ferrand, “How to detect the Cuckoo
Sandbox and to Strengthen it?” Journal of
Computer Virology and Hacking Techniques,
vol. 11, no. 1, pp. 51–58, Feb. 1, 2015, issn:
2263-8733. doi: 10.1007/s11416-014-0224-
9. [Online]. Available: https : / / doi . org /

10.1007/s11416- 014- 0224- 9 (visited on
05/17/2022).

[53] D. Rabadi and S. G. Teo, “Advanced Windows
Methods on Malware Detection and Classifica-
tion,” in Annual Computer Security Applica-
tions Conference, ser. ACSAC ’20, New York,
NY, USA: Association for Computing Machin-

ery, Dec. 7, 2020, pp. 54–68, isbn: 978-1-4503-
8858-0. doi: 10.1145/3427228.3427242. [On-
line]. Available: https://doi.org/10.1145/
3427228.3427242 (visited on 05/30/2022).

[54] J. Stiborek, T. Pevný, and M. Rehák, “Prob-
abilistic analysis of dynamic malware traces,”
Computers & Security, vol. 74, pp. 221–239,
May 2018, issn: 01674048. doi: 10 . 1016 /

j . cose . 2018 . 01 . 012. [Online]. Avail-
able: https://linkinghub.elsevier.com/
retrieve/pii/S0167404818300336 (visited
on 07/06/2022).

[55] A. Küchler, A. Mantovani, Y. Han, L. Bilge,
and D. Balzarotti, “Does Every Second Count?
Time-based Evolution of Malware Behav-
ior in Sandboxes,” in Proceedings 2021 Net-
work and Distributed System Security Sym-
posium, Virtual: Internet Society, 2021, isbn:
978-1-891562-66-2. doi: 10 . 14722 / ndss .

2021 .24475. [Online]. Available: https :/ /
www . ndss - symposium . org / wp - content /

uploads/ndss2021_4C-5_24475_paper.pdf

(visited on 05/17/2022).

[56] E. Avllazagaj, Z. Zhu, L. Bilge, D. Balzarotti,
and T. Dumitras, , “When Malware Changed
Its Mind: An Empirical Study of Variable
Program Behaviors in the Real World,”
presented at the 30th USENIX Security
Symposium (USENIX Security 21), 2021,
pp. 3487–3504, isbn: 978-1-939133-24-3. [On-
line]. Available: https : / / www . usenix .

org / conference / usenixsecurity21 /

presentation / avllazagaj (visited on
05/30/2022).

[57] “Hexacorn — Blog Beyond good ol’ Run key
– All parts.” (), [Online]. Available: https:
//www.hexacorn.com/blog/2017/01/28/

beyond-good-ol-run-key-all-parts/ (vis-
ited on 04/06/2023).

[58] “Persistence-info.github.io,” persistence-
info.github.io. (), [Online]. Available: https:
//persistence- info.github.io/ (visited
on 04/06/2023).

[59] S. Garfinkel, A. J. Nelson, and J. Young,
“A general strategy for differential forensic
analysis,” Digital Investigation, The Proceed-
ings of the Twelfth Annual DFRWS Confer-
ence, vol. 9, S50–S59, Aug. 1, 2012, issn:
1742-2876. doi: 10 . 1016 / j . diin . 2012 .

05.003. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/

S174228761200028X (visited on 04/11/2023).

22

https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://www.kaspersky.com/enterprise-security/wiki-section/products/machine-learning-in-cybersecurity
https://doi.org/10.1145/3372297.3417291
https://doi.org/10.1145/3372297.3417291
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/shi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/shi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/shi
https://doi.org/10.1007/s11416-014-0224-9
https://doi.org/10.1007/s11416-014-0224-9
https://doi.org/10.1007/s11416-014-0224-9
https://doi.org/10.1007/s11416-014-0224-9
https://doi.org/10.1145/3427228.3427242
https://doi.org/10.1145/3427228.3427242
https://doi.org/10.1145/3427228.3427242
https://doi.org/10.1016/j.cose.2018.01.012
https://doi.org/10.1016/j.cose.2018.01.012
https://linkinghub.elsevier.com/retrieve/pii/S0167404818300336
https://linkinghub.elsevier.com/retrieve/pii/S0167404818300336
https://doi.org/10.14722/ndss.2021.24475
https://doi.org/10.14722/ndss.2021.24475
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_4C-5_24475_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_4C-5_24475_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_4C-5_24475_paper.pdf
https://www.usenix.org/conference/usenixsecurity21/presentation/avllazagaj
https://www.usenix.org/conference/usenixsecurity21/presentation/avllazagaj
https://www.usenix.org/conference/usenixsecurity21/presentation/avllazagaj
https://www.hexacorn.com/blog/2017/01/28/beyond-good-ol-run-key-all-parts/
https://www.hexacorn.com/blog/2017/01/28/beyond-good-ol-run-key-all-parts/
https://www.hexacorn.com/blog/2017/01/28/beyond-good-ol-run-key-all-parts/
https://persistence-info.github.io/
https://persistence-info.github.io/
https://doi.org/10.1016/j.diin.2012.05.003
https://doi.org/10.1016/j.diin.2012.05.003
https://www.sciencedirect.com/science/article/pii/S174228761200028X
https://www.sciencedirect.com/science/article/pii/S174228761200028X
https://www.sciencedirect.com/science/article/pii/S174228761200028X

[60] T. Teller and A. Hayon, “Enhancing Auto-
mated Malware Analysis Machines with Mem-
ory Analysis,”

[61] markruss. “Autoruns for Windows - Win-
dows Sysinternals.” (), [Online]. Available:
https : / / docs . microsoft . com / en - us /

sysinternals/downloads/autoruns (visited
on 06/15/2022).

[62] last - @last0x00, PersistenceSniper, Apr. 3,
2023. [Online]. Available: https://github.
com/last-byte/PersistenceSniper (visited
on 04/06/2023).

[63] “Cuckoo Sandbox - Automated Malware
Analysis.” (), [Online]. Available: https :

/ / cuckoosandbox . org/ (visited on
04/06/2023).

[64] Sigma, Sigma, Feb. 9, 2023. [Online]. Avail-
able: https://github.com/SigmaHQ/sigma
(visited on 02/10/2023).

[65] F. Xiao, Z. Lin, Y. Sun, and Y. Ma, “Malware
Detection Based on Deep Learning of Behavior
Graphs,” Mathematical Problems in Engineer-
ing, vol. 2019, e8195395, Feb. 11, 2019, issn:
1024-123X. doi: 10 . 1155 / 2019 / 8195395.
[Online]. Available: https://www.hindawi.
com/journals/mpe/2019/8195395/ (visited
on 05/29/2022).

[66] S. Alam, R. N. Horspool, I. Traore, and I.
Sogukpinar, “A framework for metamorphic
malware analysis and real-time detection,”
Computers & Security, vol. 48, pp. 212–233,
Feb. 1, 2015, issn: 0167-4048. doi: 10.1016/
j . cose . 2014 . 10 . 011. [Online]. Available:
https://www.sciencedirect.com/science/

article/pii/S0167404814001576 (visited on
07/14/2022).

[67] H. Lu, B. Zhao, J. Su, and P. Xie, “Generating
Lightweight Behavioral Signature for Malware
Detection in People-Centric Sensing,” Wire-
less Personal Communications, vol. 75, no. 3,
pp. 1591–1609, Apr. 1, 2014, issn: 1572-834X.
doi: 10 . 1007 / s11277 - 013 - 1400 - 9. [On-
line]. Available: https://doi.org/10.1007/
s11277-013-1400-9 (visited on 01/30/2023).

[68] J. C. M. Baeten, “A brief history of process
algebra,” Theoretical Computer Science, Pro-
cess Algebra, vol. 335, no. 2, pp. 131–146,
May 23, 2005, issn: 0304-3975. doi: 10.1016/
j . tcs . 2004 . 07 . 036. [Online]. Available:
https://www.sciencedirect.com/science/

article/pii/S0304397505000307 (visited on
04/12/2023).

[69] I. Kirillov and P. Chase, “Malware Attribute
Enumeration and Characterization,” p. 23,
2011.

[70] K. Oosthoek and C. Doerr, “SoK: ATT&CK
Techniques and Trends in Windows Malware,”
in Security and Privacy in Communication
Networks, S. Chen, K.-K. R. Choo, X. Fu, W.
Lou, and A. Mohaisen, Eds., ser. Lecture Notes
of the Institute for Computer Sciences, So-
cial Informatics and Telecommunications En-
gineering, Cham: Springer International Pub-
lishing, 2019, pp. 406–425, isbn: 978-3-030-
37228-6. doi: 10.1007/978-3-030-37228-
6_20.

[71] Admin. “Persistence: “the continued or pro-
longed existence of something”: Part 3 – WMI
Event Subscription,” MDSec. (May 29, 2019),
[Online]. Available: https://www.mdsec.co.
uk/2019/05/persistence-the-continued-

or-prolonged-existence-of-something-

part-3-wmi-event-subscription/ (visited
on 05/21/2023).

[72] “FuzzySecurity — Windows Userland Persis-
tence Fundamentals.” (), [Online]. Available:
https://fuzzysecurity.com/tutorials/

19.html (visited on 05/21/2023).

[73] “Scheduling Callbacks with WMI in C++ -
wumb0in’.” (), [Online]. Available: https://
wumb0 . in / scheduling - callbacks - with -

wmi-in-cpp.html (visited on 05/21/2023).

[74] “Event Triggered Execution: Windows Man-
agement Instrumentation Event Subscription,
Sub-technique T1546.003 - Enterprise —
MITRE ATT&CK®.” (), [Online]. Available:
https://attack.mitre.org/techniques/

T1546/003/ (visited on 05/21/2023).

[75] “Persistence and Privilege Escalation on Win-
dows via Windows Management Instrumen-
tation Event Subscription.” (Apr. 18, 2023),
[Online]. Available: https://stmxcsr.com/
persistence/wmi- persistence.html (vis-
ited on 05/21/2023).

[76] M. Graeber, “Abusing Windows Management
Instrumentation (WMI) to Build a Persistent,
Asyncronous, and Fileless Backdoor,”

[77] D. Perez. “Tales of a Threat Hunter 2.” (),
[Online]. Available: https://eideon.com/
2018-03-02-THL03-WMIBackdoors/ (visited
on 05/21/2023).

23

https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns
https://github.com/last-byte/PersistenceSniper
https://github.com/last-byte/PersistenceSniper
https://cuckoosandbox.org/
https://cuckoosandbox.org/
https://github.com/SigmaHQ/sigma
https://doi.org/10.1155/2019/8195395
https://www.hindawi.com/journals/mpe/2019/8195395/
https://www.hindawi.com/journals/mpe/2019/8195395/
https://doi.org/10.1016/j.cose.2014.10.011
https://doi.org/10.1016/j.cose.2014.10.011
https://www.sciencedirect.com/science/article/pii/S0167404814001576
https://www.sciencedirect.com/science/article/pii/S0167404814001576
https://doi.org/10.1007/s11277-013-1400-9
https://doi.org/10.1007/s11277-013-1400-9
https://doi.org/10.1007/s11277-013-1400-9
https://doi.org/10.1016/j.tcs.2004.07.036
https://doi.org/10.1016/j.tcs.2004.07.036
https://www.sciencedirect.com/science/article/pii/S0304397505000307
https://www.sciencedirect.com/science/article/pii/S0304397505000307
https://doi.org/10.1007/978-3-030-37228-6_20
https://doi.org/10.1007/978-3-030-37228-6_20
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-3-wmi-event-subscription/
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-3-wmi-event-subscription/
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-3-wmi-event-subscription/
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-3-wmi-event-subscription/
https://fuzzysecurity.com/tutorials/19.html
https://fuzzysecurity.com/tutorials/19.html
https://wumb0.in/scheduling-callbacks-with-wmi-in-cpp.html
https://wumb0.in/scheduling-callbacks-with-wmi-in-cpp.html
https://wumb0.in/scheduling-callbacks-with-wmi-in-cpp.html
https://attack.mitre.org/techniques/T1546/003/
https://attack.mitre.org/techniques/T1546/003/
https://stmxcsr.com/persistence/wmi-persistence.html
https://stmxcsr.com/persistence/wmi-persistence.html
https://eideon.com/2018-03-02-THL03-WMIBackdoors/
https://eideon.com/2018-03-02-THL03-WMIBackdoors/

[78] “Back in a Bit: Attacker Use of the Windows
Background Intelligent Transfer Service,”
Mandiant. (), [Online]. Available: https://
www . mandiant . com / resources / blog /

attacker - use - of- windows - background -

intelligent-transfer-service (visited on
05/21/2023).

[79] N. Noll. “BITS Persistence for Script Kiddies,”
TrustedSec. (Jun. 29, 2021), [Online]. Avail-
able: https://www.trustedsec.com/blog/
bits- persistence- for- script- kiddies/

(visited on 05/21/2023).

[80] “BITS Jobs, Technique T1197 - Enterprise —
MITRE ATT&CK®.” (), [Online]. Available:
https://attack.mitre.org/techniques/

T1197/ (visited on 05/21/2023).

[81] K. Hayashi. “UBoatRAT Navigates East
Asia,” Unit 42. (Nov. 28, 2017), [On-
line]. Available: https : / / unit42 .

paloaltonetworks.com/unit42-uboatrat-

navigates - east - asia/ (visited on
05/21/2023).

[82] “In-depth Malware Analysis: Malware Lingers
with BITS.” (Jun. 6, 2016), [Online]. Avail-
able: https://www.secureworks.com/blog/
malware - lingers - with - bits (visited on
05/21/2023).

[83] “Cmd.exe AutoRun,” persistence-info.github.io.
(), [Online]. Available: https : / /

persistence - info . github . io / Data /

cmdautorun.html (visited on 05/21/2023).

[84] cocomelonc. “Malware development: Persis-
tence - part 5. AppInit DLLs. Simple C++
example.,” cocomelonc. (May 16, 2022), [On-
line]. Available: https : / / cocomelonc .

github.io/tutorial/2022/05/16/malware-

pers-5.html (visited on 05/21/2023).

[85] stevewhims. “AppInit DLLs and Secure Boot -
Win32 apps.” (Sep. 29, 2022), [Online]. Avail-
able: https://learn.microsoft.com/en-
us / windows / win32 / dlls / secure - boot -

and-appinit-dlls (visited on 05/21/2023).

[86] “Event Triggered Execution: AppInit DLLs,
Sub-technique T1546.010 - Enterprise —
MITRE ATT&CK®.” (), [Online]. Available:
https://attack.mitre.org/techniques/

T1546/010/ (visited on 05/21/2023).

[87] “Event Triggered Execution: Screensaver, Sub-
technique T1546.002 - Enterprise — MITRE
ATT&CK®.” (), [Online]. Available: https:
//attack.mitre.org/techniques/T1546/

002/ (visited on 05/21/2023).

[88] “Grandoreiro Malware Now Targeting Banks
in Spain.” (), [Online]. Available: https :

/ / securityintelligence . com / posts /

grandoreiro - malware - now - targeting -

banks-in-spain/ (visited on 05/21/2023).

[89] “Modifying .lnk Shortcuts.” (), [Online]. Avail-
able: https://www.ired.team/offensive-
security/persistence/modifying- .lnk-

shortcuts (visited on 05/21/2023).

[90] “Browser Extensions, Technique T1176 - En-
terprise — MITRE ATT&CK®.” (), [Online].
Available: https : / / attack . mitre . org /

techniques/T1176/ (visited on 05/21/2023).

[91] M. Frisbie. “Let’s build a Chrome exten-
sion that steals everything,” Building Browser
Extensions. (Feb. 21, 2023), [Online]. Avail-
able: https : / / mattfrisbie . substack .

com/p/spy- chrome- extension (visited on
05/21/2023).

[92] “Windows Terminal Profile,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io / Data /

windowsterminalprofile . html (visited on
05/21/2023).

[93] K. Almansa. “DLL Proxying,” InfoSec Blog.
(Jul. 13, 2017), [Online]. Available: https :

//kevinalmansa.github.io/application%

20security / DLL - Proxying/ (visited on
04/12/2023).

[94] Deland-Han. “Windows registry for advanced
users - Windows Server.” (Mar. 9, 2023), [On-
line]. Available: https://learn.microsoft.
com / en - us / troubleshoot / windows -

server/performance/windows- registry-

advanced-users (visited on 03/29/2023).

[95] A. Tanenbaum and H. Bos, Modern Op-
erating Systems, 4th edition. Boston: Pear-
son, Mar. 10, 2014, 1136 pp., isbn: 978-0-13-
359162-0.

[96] O. Ben-Kiki, “YAML Ain’t Markup Language
(YAML™) Version 1.1,”

[97] H. Klein. “Active Setup Explained • Helge
Klein,” Helge Klein. (Apr. 22, 2010), [On-
line]. Available: https://helgeklein.com/
blog/active-setup-explained/ (visited on
05/21/2023).

[98] “Boot or Logon Autostart Execution: Ac-
tive Setup, Sub-technique T1547.014 - En-
terprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1547 / 014/ (visited on
05/21/2023).

24

https://www.mandiant.com/resources/blog/attacker-use-of-windows-background-intelligent-transfer-service
https://www.mandiant.com/resources/blog/attacker-use-of-windows-background-intelligent-transfer-service
https://www.mandiant.com/resources/blog/attacker-use-of-windows-background-intelligent-transfer-service
https://www.mandiant.com/resources/blog/attacker-use-of-windows-background-intelligent-transfer-service
https://www.trustedsec.com/blog/bits-persistence-for-script-kiddies/
https://www.trustedsec.com/blog/bits-persistence-for-script-kiddies/
https://attack.mitre.org/techniques/T1197/
https://attack.mitre.org/techniques/T1197/
https://unit42.paloaltonetworks.com/unit42-uboatrat-navigates-east-asia/
https://unit42.paloaltonetworks.com/unit42-uboatrat-navigates-east-asia/
https://unit42.paloaltonetworks.com/unit42-uboatrat-navigates-east-asia/
https://www.secureworks.com/blog/malware-lingers-with-bits
https://www.secureworks.com/blog/malware-lingers-with-bits
https://persistence-info.github.io/Data/cmdautorun.html
https://persistence-info.github.io/Data/cmdautorun.html
https://persistence-info.github.io/Data/cmdautorun.html
https://cocomelonc.github.io/tutorial/2022/05/16/malware-pers-5.html
https://cocomelonc.github.io/tutorial/2022/05/16/malware-pers-5.html
https://cocomelonc.github.io/tutorial/2022/05/16/malware-pers-5.html
https://learn.microsoft.com/en-us/windows/win32/dlls/secure-boot-and-appinit-dlls
https://learn.microsoft.com/en-us/windows/win32/dlls/secure-boot-and-appinit-dlls
https://learn.microsoft.com/en-us/windows/win32/dlls/secure-boot-and-appinit-dlls
https://attack.mitre.org/techniques/T1546/010/
https://attack.mitre.org/techniques/T1546/010/
https://attack.mitre.org/techniques/T1546/002/
https://attack.mitre.org/techniques/T1546/002/
https://attack.mitre.org/techniques/T1546/002/
https://securityintelligence.com/posts/grandoreiro-malware-now-targeting-banks-in-spain/
https://securityintelligence.com/posts/grandoreiro-malware-now-targeting-banks-in-spain/
https://securityintelligence.com/posts/grandoreiro-malware-now-targeting-banks-in-spain/
https://securityintelligence.com/posts/grandoreiro-malware-now-targeting-banks-in-spain/
https://www.ired.team/offensive-security/persistence/modifying-.lnk-shortcuts
https://www.ired.team/offensive-security/persistence/modifying-.lnk-shortcuts
https://www.ired.team/offensive-security/persistence/modifying-.lnk-shortcuts
https://attack.mitre.org/techniques/T1176/
https://attack.mitre.org/techniques/T1176/
https://mattfrisbie.substack.com/p/spy-chrome-extension
https://mattfrisbie.substack.com/p/spy-chrome-extension
https://persistence-info.github.io/Data/windowsterminalprofile.html
https://persistence-info.github.io/Data/windowsterminalprofile.html
https://persistence-info.github.io/Data/windowsterminalprofile.html
https://kevinalmansa.github.io/application%20security/DLL-Proxying/
https://kevinalmansa.github.io/application%20security/DLL-Proxying/
https://kevinalmansa.github.io/application%20security/DLL-Proxying/
https://learn.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users
https://learn.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users
https://learn.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users
https://learn.microsoft.com/en-us/troubleshoot/windows-server/performance/windows-registry-advanced-users
https://helgeklein.com/blog/active-setup-explained/
https://helgeklein.com/blog/active-setup-explained/
https://attack.mitre.org/techniques/T1547/014/
https://attack.mitre.org/techniques/T1547/014/

[99] “Pin - A Dynamic Binary Instrumentation
Tool,” Intel. (), [Online]. Available: https :

/ / www . intel . com / content / www / us /

en / developer / articles / tool / pin - a -

dynamic- binary- instrumentation- tool.

html (visited on 03/31/2023).

[100] L. Maffia, D. Nisi, P. Kotzias, G. Lagorio,
S. Aonzo, and D. Balzarotti. “Longitudinal
Study of the Prevalence of Malware Eva-
sive Techniques.” arXiv: 2112 . 11289 [cs].
(Dec. 21, 2021), [Online]. Available: http :

//arxiv.org/abs/2112.11289 (visited on
03/31/2023), preprint.

[101] “VirusTotal - Home.” (), [Online]. Available:
https://www.virustotal.com/gui/home/

upload (visited on 05/16/2023).

[102] M. Lab, AVClass, May 12, 2023. [On-
line]. Available: https : / / github .

com / malicialab / avclass (visited on
05/19/2023).

[103] “Hiding Your Syscalls,” PassTheHashBrowns.
(Jun. 9, 2021), [Online]. Available: https :

//passthehashbrowns.github.io/hiding-

your-syscalls (visited on 04/04/2023).

[104] O. Moe. “Persistence using Universal Win-
dows Platform apps (APPX),” Oddvar Moe’s
Blog. (Sep. 6, 2018), [Online]. Available:
https : / / oddvar . moe / 2018 / 09 /

06 / persistence - using - universal -

windows-platform-apps-appx/ (visited on
05/21/2023).

[105] “AeDebug,” persistence-info.github.io. (),
[Online]. Available: https://persistence-
info.github.io/Data/aedebug.html (vis-
ited on 05/21/2023).

[106] Karl-Bridge-Microsoft. “Configuring Auto-
matic Debugging - Win32 apps.” (Jan. 6,
2021), [Online]. Available: https://learn.
microsoft . com / en - us / windows / win32 /

debug/configuring-automatic-debugging

(visited on 05/21/2023).

[107] “Event Triggered Execution: Change Default
File Association, Sub-technique T1546.001 -
Enterprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1546 / 001/ (visited on
05/21/2023).

[108] “Changing Default File Associations in Win-
dows 10 and 11,” Windows OS Hub.
(Sep. 29, 2022), [Online]. Available: https :
//woshub.com/managing- default- file-

associations-in-windows-10/ (visited on
05/21/2023).

[109] “SolarMarker campaign used novel registry
changes to establish persistence,” Sophos
News. (Feb. 1, 2022), [Online]. Available:
https : / / news . sophos . com / en - us /

2022/02/01/solarmarker-campaign-used-

novel-registry-changes-to-establish-

persistence/ (visited on 05/21/2023).

[110] “Explorer tools,” persistence-info.github.io. (),
[Online]. Available: https://persistence-
info.github.io/Data/explorertools.html

(visited on 05/21/2023).

[111] “Hexacorn — Blog Beyond good ol’ Run key,
Part 55.” (), [Online]. Available: https : / /

www . hexacorn . com / blog / 2017 / 01 / 18 /

beyond-good-ol-run-key-part-55/ (vis-
ited on 05/21/2023).

[112] Sigma, Sigma, May 21, 2023. [On-
line]. Available: https : / / github .

com / SigmaHQ / sigma / blob /

1a57509e858674a5acf297061d64b3ffe59e6b3d/

rules/windows/registry/registry_set/

registry _ set _ persistence _ mycomputer .

yml (visited on 05/21/2023).

[113] “Hexacorn — Blog Beyond good ol’ Run key,
Part 4.” (), [Online]. Available: https://www.
hexacorn.com/blog/2013/09/19/beyond-

good - ol - run - key - part - 4/ (visited on
05/21/2023).

[114] Mikejo5000. “Debug using the Just-In-Time
Debugger - Visual Studio (Windows).”
(Jan. 14, 2023), [Online]. Available: https :
/ / learn . microsoft . com / en - us /

visualstudio / debugger / debug - using -

the - just - in - time - debugger (visited on
05/21/2023).

[115] O. Moe. “Persistence using RunOnceEx – Hid-
den from Autoruns.exe,” Oddvar Moe’s Blog.
(Mar. 21, 2018), [Online]. Available: https:
//oddvar.moe/2018/03/21/persistence-

using-runonceex-hidden-from-autoruns-

exe/ (visited on 05/21/2023).

[116] O. Moe. “Persistence using GlobalFlags in Im-
age File Execution Options – Hidden from
Autoruns.exe,” Oddvar Moe’s Blog. (Apr. 10,
2018), [Online]. Available: https://oddvar.
moe / 2018 / 04 / 10 / persistence - using -

25

https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://arxiv.org/abs/2112.11289
http://arxiv.org/abs/2112.11289
http://arxiv.org/abs/2112.11289
https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload
https://github.com/malicialab/avclass
https://github.com/malicialab/avclass
https://passthehashbrowns.github.io/hiding-your-syscalls
https://passthehashbrowns.github.io/hiding-your-syscalls
https://passthehashbrowns.github.io/hiding-your-syscalls
https://oddvar.moe/2018/09/06/persistence-using-universal-windows-platform-apps-appx/
https://oddvar.moe/2018/09/06/persistence-using-universal-windows-platform-apps-appx/
https://oddvar.moe/2018/09/06/persistence-using-universal-windows-platform-apps-appx/
https://persistence-info.github.io/Data/aedebug.html
https://persistence-info.github.io/Data/aedebug.html
https://learn.microsoft.com/en-us/windows/win32/debug/configuring-automatic-debugging
https://learn.microsoft.com/en-us/windows/win32/debug/configuring-automatic-debugging
https://learn.microsoft.com/en-us/windows/win32/debug/configuring-automatic-debugging
https://attack.mitre.org/techniques/T1546/001/
https://attack.mitre.org/techniques/T1546/001/
https://woshub.com/managing-default-file-associations-in-windows-10/
https://woshub.com/managing-default-file-associations-in-windows-10/
https://woshub.com/managing-default-file-associations-in-windows-10/
https://news.sophos.com/en-us/2022/02/01/solarmarker-campaign-used-novel-registry-changes-to-establish-persistence/
https://news.sophos.com/en-us/2022/02/01/solarmarker-campaign-used-novel-registry-changes-to-establish-persistence/
https://news.sophos.com/en-us/2022/02/01/solarmarker-campaign-used-novel-registry-changes-to-establish-persistence/
https://news.sophos.com/en-us/2022/02/01/solarmarker-campaign-used-novel-registry-changes-to-establish-persistence/
https://persistence-info.github.io/Data/explorertools.html
https://persistence-info.github.io/Data/explorertools.html
https://www.hexacorn.com/blog/2017/01/18/beyond-good-ol-run-key-part-55/
https://www.hexacorn.com/blog/2017/01/18/beyond-good-ol-run-key-part-55/
https://www.hexacorn.com/blog/2017/01/18/beyond-good-ol-run-key-part-55/
https://github.com/SigmaHQ/sigma/blob/1a57509e858674a5acf297061d64b3ffe59e6b3d/rules/windows/registry/registry_set/registry_set_persistence_mycomputer.yml
https://github.com/SigmaHQ/sigma/blob/1a57509e858674a5acf297061d64b3ffe59e6b3d/rules/windows/registry/registry_set/registry_set_persistence_mycomputer.yml
https://github.com/SigmaHQ/sigma/blob/1a57509e858674a5acf297061d64b3ffe59e6b3d/rules/windows/registry/registry_set/registry_set_persistence_mycomputer.yml
https://github.com/SigmaHQ/sigma/blob/1a57509e858674a5acf297061d64b3ffe59e6b3d/rules/windows/registry/registry_set/registry_set_persistence_mycomputer.yml
https://github.com/SigmaHQ/sigma/blob/1a57509e858674a5acf297061d64b3ffe59e6b3d/rules/windows/registry/registry_set/registry_set_persistence_mycomputer.yml
https://github.com/SigmaHQ/sigma/blob/1a57509e858674a5acf297061d64b3ffe59e6b3d/rules/windows/registry/registry_set/registry_set_persistence_mycomputer.yml
https://www.hexacorn.com/blog/2013/09/19/beyond-good-ol-run-key-part-4/
https://www.hexacorn.com/blog/2013/09/19/beyond-good-ol-run-key-part-4/
https://www.hexacorn.com/blog/2013/09/19/beyond-good-ol-run-key-part-4/
https://learn.microsoft.com/en-us/visualstudio/debugger/debug-using-the-just-in-time-debugger
https://learn.microsoft.com/en-us/visualstudio/debugger/debug-using-the-just-in-time-debugger
https://learn.microsoft.com/en-us/visualstudio/debugger/debug-using-the-just-in-time-debugger
https://learn.microsoft.com/en-us/visualstudio/debugger/debug-using-the-just-in-time-debugger
https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/
https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/
https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/
https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/

globalflags-in-image-file-execution-

options-hidden-from-autoruns-exe/ (vis-
ited on 05/21/2023).

[117] “Monitoring Silent Process Exit,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io /

Data/silentexitmonitor.html (visited on
05/21/2023).

[118] stevewhims. “Task Scheduler for developers
- Win32 apps.” (Feb. 8, 2023), [Online].
Available: https : / / learn . microsoft .

com / en - us / windows / win32 / taskschd /

task - scheduler - start - page (visited on
05/21/2023).

[119] “Task Scheduler,” persistence-info.github.io.
(), [Online]. Available: https : / /

persistence - info . github . io /

Data / taskscheduler . html (visited on
05/21/2023).

[120] “FuzzySecurity — Windows Userland Persis-
tence Fundamentals.” (), [Online]. Available:
https://fuzzysecurity.com/tutorials/

19.html (visited on 05/21/2023).

[121] “Persistence 101: Looking at the Sched-
uled Tasks.” (Apr. 18, 2023), [Online].
Available: https : / / stmxcsr . com /

persistence/scheduled- tasks.html (vis-
ited on 05/21/2023).

[122] giuliocomi, Backoori, Apr. 11, 2023. [On-
line]. Available: https : / / github .

com / giuliocomi / backoori (visited on
05/21/2023).

[123] “Abusing Windows 10 Narrator’s ’Feedback-
Hub’ URI for Fileless Persistence,” Abusing
Windows 10 Narrator’s ’Feedback-Hub’ URI
for Fileless Persistence. (), [Online]. Avail-
able: https://giuliocomi.blogspot.com/
2019/10/abusing-windows-10-narrators-

feedback.html (visited on 05/21/2023).

[124] Sigma, Sigma, May 21, 2023. [On-
line]. Available: https : / / github .

com / SigmaHQ / sigma / blob /

b4cb047ae720b37b11f8506de7965dc29d5920be/

rules/windows/registry/registry_event/

registry _ event _ narrator _ feedback _

persistance.yml (visited on 05/21/2023).

[125] “Boot or Logon Initialization Scripts: Logon
Script (Windows), Sub-technique T1037.001 -
Enterprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1037 / 001/ (visited on
05/21/2023).

[126] N. Noll. “Abusing Windows Telemetry for Per-
sistence,” TrustedSec. (Jun. 9, 2020), [Online].
Available: https://www.trustedsec.com/
blog / abusing - windows - telemetry - for -

persistence/ (visited on 05/21/2023).

[127] “TelemetryController,” persistence-info.github.io.
(), [Online]. Available: https : / /

persistence - info . github . io / Data /

telemetrycontroller . html (visited on
05/21/2023).

[128] “AMSI Providers,” persistence-info.github.io.
(), [Online]. Available: https : / /

persistence-info.github.io/Data/amsi.

html (visited on 05/21/2023).

[129] alvinashcraft. “Developer audience, and sam-
ple code - Win32 apps.” (Jan. 29, 2020), [On-
line]. Available: https://learn.microsoft.
com / en - us / windows / win32 / amsi / dev -

audience (visited on 05/21/2023).

[130] “PSBits/FakeAMSI.c at master · gtworek/PS-
Bits,” GitHub. (), [Online]. Available: https:
//github.com/gtworek/PSBits (visited on
05/21/2023).

[131] “Hexacorn — Blog Beyond good ol’ Run key,
Part 3.” (), [Online]. Available: https://www.
hexacorn.com/blog/2013/01/19/beyond-

good - ol - run - key - part - 3/ (visited on
05/21/2023).

[132] “Persistence Techniques That Persist.” (),
[Online]. Available: https://www.cyberark.
com / resources / threat - research - blog /

persistence - techniques - that - persist

(visited on 05/21/2023).

[133] “Event Triggered Execution: AppCert DLLs,
Sub-technique T1546.009 - Enterprise —
MITRE ATT&CK®.” (), [Online]. Available:
https://attack.mitre.org/techniques/

T1546/009/ (visited on 05/21/2023).

[134] Atomic Red Team, Red Canary, May 21, 2023.
[Online]. Available: https://github.com/
redcanaryco / atomic - red - team / blob /

ebdec5d757a617c349021bc86132634f8d013a0e/

atomics/T1546.009/T1546.009.md (visited
on 05/21/2023).

[135] “Prevent Bypass of AppLocker and SAFER
alias Software Restriction Policies.” (), [On-
line]. Available: https : / / skanthak .

homepage.t-online.de/appcert.html (vis-
ited on 05/21/2023).

26

https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://persistence-info.github.io/Data/silentexitmonitor.html
https://persistence-info.github.io/Data/silentexitmonitor.html
https://persistence-info.github.io/Data/silentexitmonitor.html
https://learn.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page
https://learn.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page
https://learn.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page
https://persistence-info.github.io/Data/taskscheduler.html
https://persistence-info.github.io/Data/taskscheduler.html
https://persistence-info.github.io/Data/taskscheduler.html
https://fuzzysecurity.com/tutorials/19.html
https://fuzzysecurity.com/tutorials/19.html
https://stmxcsr.com/persistence/scheduled-tasks.html
https://stmxcsr.com/persistence/scheduled-tasks.html
https://github.com/giuliocomi/backoori
https://github.com/giuliocomi/backoori
https://giuliocomi.blogspot.com/2019/10/abusing-windows-10-narrators-feedback.html
https://giuliocomi.blogspot.com/2019/10/abusing-windows-10-narrators-feedback.html
https://giuliocomi.blogspot.com/2019/10/abusing-windows-10-narrators-feedback.html
https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rules/windows/registry/registry_event/registry_event_narrator_feedback_persistance.yml
https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rules/windows/registry/registry_event/registry_event_narrator_feedback_persistance.yml
https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rules/windows/registry/registry_event/registry_event_narrator_feedback_persistance.yml
https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rules/windows/registry/registry_event/registry_event_narrator_feedback_persistance.yml
https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rules/windows/registry/registry_event/registry_event_narrator_feedback_persistance.yml
https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rules/windows/registry/registry_event/registry_event_narrator_feedback_persistance.yml
https://attack.mitre.org/techniques/T1037/001/
https://attack.mitre.org/techniques/T1037/001/
https://www.trustedsec.com/blog/abusing-windows-telemetry-for-persistence/
https://www.trustedsec.com/blog/abusing-windows-telemetry-for-persistence/
https://www.trustedsec.com/blog/abusing-windows-telemetry-for-persistence/
https://persistence-info.github.io/Data/telemetrycontroller.html
https://persistence-info.github.io/Data/telemetrycontroller.html
https://persistence-info.github.io/Data/telemetrycontroller.html
https://persistence-info.github.io/Data/amsi.html
https://persistence-info.github.io/Data/amsi.html
https://persistence-info.github.io/Data/amsi.html
https://learn.microsoft.com/en-us/windows/win32/amsi/dev-audience
https://learn.microsoft.com/en-us/windows/win32/amsi/dev-audience
https://learn.microsoft.com/en-us/windows/win32/amsi/dev-audience
https://github.com/gtworek/PSBits
https://github.com/gtworek/PSBits
https://www.hexacorn.com/blog/2013/01/19/beyond-good-ol-run-key-part-3/
https://www.hexacorn.com/blog/2013/01/19/beyond-good-ol-run-key-part-3/
https://www.hexacorn.com/blog/2013/01/19/beyond-good-ol-run-key-part-3/
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://attack.mitre.org/techniques/T1546/009/
https://attack.mitre.org/techniques/T1546/009/
https://github.com/redcanaryco/atomic-red-team/blob/ebdec5d757a617c349021bc86132634f8d013a0e/atomics/T1546.009/T1546.009.md
https://github.com/redcanaryco/atomic-red-team/blob/ebdec5d757a617c349021bc86132634f8d013a0e/atomics/T1546.009/T1546.009.md
https://github.com/redcanaryco/atomic-red-team/blob/ebdec5d757a617c349021bc86132634f8d013a0e/atomics/T1546.009/T1546.009.md
https://github.com/redcanaryco/atomic-red-team/blob/ebdec5d757a617c349021bc86132634f8d013a0e/atomics/T1546.009/T1546.009.md
https://skanthak.homepage.t-online.de/appcert.html
https://skanthak.homepage.t-online.de/appcert.html

[136] “Event Triggered Execution: Application
Shimming, Sub-technique T1546.011 - En-
terprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1546 / 011/ (visited on
05/21/2023).

[137] “Application Shimming.” (), [Online]. Avail-
able: https : / / www . ired . team /

offensive - security / persistence /

t1138 - application - shimming (visited on
05/21/2023).

[138] Sigma, Sigma, May 21, 2023. [On-
line]. Available: https : / / github .

com / SigmaHQ / sigma / blob /

33b370d49bd6aed85bd23827aa16a50bd06d691a/

rules / windows / registry / registry _

set / registry _ set _ shim _ databases _

persistence.yml (visited on 05/21/2023).

[139] “To SDB, Or Not To SDB: FIN7 Leverag-
ing Shim Databases for Persistence,” Mandi-
ant. (), [Online]. Available: https : / / www .

mandiant . com / resources / blog / fin7 -

shim - databases - persistence (visited on
05/21/2023).

[140] “Autodial DLL,” persistence-info.github.io. (),
[Online]. Available: https://persistence-
info.github.io/Data/autodialdll.html

(visited on 05/21/2023).

[141] “Hexacorn — Blog Beyond good ol’ Run key,
Part 24.” (), [Online]. Available: https : / /

www . hexacorn . com / blog / 2015 / 01 / 13 /

beyond-good-ol-run-key-part-24/ (vis-
ited on 05/21/2023).

[142] stevewhims. “AutoDial Connection Opera-
tions - Win32 apps.” (Aug. 19, 2020), [On-
line]. Available: https://learn.microsoft.
com / en - us / windows / win32 / rras /

autodial- connection- operations (visited
on 05/21/2023).

[143] “Hexacorn — Blog Beyond good ol’ Run key,
Part 114.” (), [Online]. Available: https://
www . hexacorn . com / blog / 2019 / 09 / 07 /

beyond-good-ol-run-key-part-114/ (vis-
ited on 05/21/2023).

[144] jwmsft. “How to Register a Handler for a De-
vice Event - Win32 apps.” (Jan. 7, 2021), [On-
line]. Available: https://learn.microsoft.
com/en-us/windows/win32/shell/how-to-

register-a-handler-for-a-device-event

(visited on 05/21/2023).

[145] “Persistence Techniques That Persist.” (),
[Online]. Available: https://www.cyberark.
com / resources / threat - research - blog /

persistence - techniques - that - persist

(visited on 05/21/2023).

[146] cocomelonc. “Malware development: Persis-
tence - part 3. COM DLL hijack. Simple
C++ example.,” cocomelonc. (May 2, 2022),
[Online]. Available: https : / / cocomelonc .

github.io/tutorial/2022/05/02/malware-

pers-3.html (visited on 05/21/2023).

[147] Admin. “Persistence: ”the continued or pro-
longed existence of something”: Part 2 -
COM Hijacking,” MDSec. (May 26, 2019),
[Online]. Available: https : / / www . mdsec .

co . uk / 2019 / 05 / persistence - the -

continued-or-prolonged-existence-of-

something-part-2-com-hijacking/ (visited
on 05/21/2023).

[148] “Event Triggered Execution: Component
Object Model Hijacking, Sub-technique
T1546.015 - Enterprise — MITRE
ATT&CK®.” (), [Online]. Available: https:
//attack.mitre.org/techniques/T1546/

015/ (visited on 05/21/2023).

[149] “Persistence: Component Object Model
(COM) hijacking.” (Apr. 18, 2023), [On-
line]. Available: https : / / stmxcsr . com /

persistence/com-hijacking.html (visited
on 05/21/2023).

[150] Sigma, Sigma, May 21, 2023. [On-
line]. Available: https : / / github .

com / SigmaHQ / sigma / blob /

16990093933fe8c82c3ad879d306d706b350162a/

rules/windows/registry/registry_set/

registry_set_persistence_search_order.

yml (visited on 05/21/2023).

[151] susannah.matt@redcanary.com. “Detecting
COR PROFILER manipulation for persis-
tence,” Red Canary. (), [Online]. Available:
https : / / redcanary . com / blog / cor _

profiler - for - persistence/ (visited on
05/21/2023).

[152] “Hijack Execution Flow: COR PROFILER,
Sub-technique T1574.012 - Enterprise —
MITRE ATT&CK®.” (), [Online]. Available:
https://attack.mitre.org/techniques/

T1574/012/ (visited on 05/21/2023).

[153] “Code Signing DLL,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io / Data /

codesigning.html (visited on 05/21/2023).

27

https://attack.mitre.org/techniques/T1546/011/
https://attack.mitre.org/techniques/T1546/011/
https://www.ired.team/offensive-security/persistence/t1138-application-shimming
https://www.ired.team/offensive-security/persistence/t1138-application-shimming
https://www.ired.team/offensive-security/persistence/t1138-application-shimming
https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/rules/windows/registry/registry_set/registry_set_shim_databases_persistence.yml
https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/rules/windows/registry/registry_set/registry_set_shim_databases_persistence.yml
https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/rules/windows/registry/registry_set/registry_set_shim_databases_persistence.yml
https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/rules/windows/registry/registry_set/registry_set_shim_databases_persistence.yml
https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/rules/windows/registry/registry_set/registry_set_shim_databases_persistence.yml
https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/rules/windows/registry/registry_set/registry_set_shim_databases_persistence.yml
https://www.mandiant.com/resources/blog/fin7-shim-databases-persistence
https://www.mandiant.com/resources/blog/fin7-shim-databases-persistence
https://www.mandiant.com/resources/blog/fin7-shim-databases-persistence
https://persistence-info.github.io/Data/autodialdll.html
https://persistence-info.github.io/Data/autodialdll.html
https://www.hexacorn.com/blog/2015/01/13/beyond-good-ol-run-key-part-24/
https://www.hexacorn.com/blog/2015/01/13/beyond-good-ol-run-key-part-24/
https://www.hexacorn.com/blog/2015/01/13/beyond-good-ol-run-key-part-24/
https://learn.microsoft.com/en-us/windows/win32/rras/autodial-connection-operations
https://learn.microsoft.com/en-us/windows/win32/rras/autodial-connection-operations
https://learn.microsoft.com/en-us/windows/win32/rras/autodial-connection-operations
https://www.hexacorn.com/blog/2019/09/07/beyond-good-ol-run-key-part-114/
https://www.hexacorn.com/blog/2019/09/07/beyond-good-ol-run-key-part-114/
https://www.hexacorn.com/blog/2019/09/07/beyond-good-ol-run-key-part-114/
https://learn.microsoft.com/en-us/windows/win32/shell/how-to-register-a-handler-for-a-device-event
https://learn.microsoft.com/en-us/windows/win32/shell/how-to-register-a-handler-for-a-device-event
https://learn.microsoft.com/en-us/windows/win32/shell/how-to-register-a-handler-for-a-device-event
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://cocomelonc.github.io/tutorial/2022/05/02/malware-pers-3.html
https://cocomelonc.github.io/tutorial/2022/05/02/malware-pers-3.html
https://cocomelonc.github.io/tutorial/2022/05/02/malware-pers-3.html
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-2-com-hijacking/
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-2-com-hijacking/
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-2-com-hijacking/
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-2-com-hijacking/
https://attack.mitre.org/techniques/T1546/015/
https://attack.mitre.org/techniques/T1546/015/
https://attack.mitre.org/techniques/T1546/015/
https://stmxcsr.com/persistence/com-hijacking.html
https://stmxcsr.com/persistence/com-hijacking.html
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_persistence_search_order.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_persistence_search_order.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_persistence_search_order.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_persistence_search_order.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_persistence_search_order.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_persistence_search_order.yml
https://redcanary.com/blog/cor_profiler-for-persistence/
https://redcanary.com/blog/cor_profiler-for-persistence/
https://attack.mitre.org/techniques/T1574/012/
https://attack.mitre.org/techniques/T1574/012/
https://persistence-info.github.io/Data/codesigning.html
https://persistence-info.github.io/Data/codesigning.html
https://persistence-info.github.io/Data/codesigning.html

[154] Sigma, Sigma, May 21, 2023. [On-
line]. Available: https : / / github .

com / SigmaHQ / sigma / blob /

16990093933fe8c82c3ad879d306d706b350162a/

rules/windows/registry/registry_set/

registry_set_sip_persistence.yml (vis-
ited on 05/21/2023).

[155] M. Graeber, “Subverting Trust in Windows,”

[156] “PSBits/SIP at master · gtworek/PSBits,”
GitHub. (), [Online]. Available: https : / /

github . com / gtworek / PSBits (visited on
05/21/2023).

[157] Administrator. “Persistence – Context Menu,”
Penetration Testing Lab. (Mar. 13, 2023), [On-
line]. Available: https://pentestlab.blog/
2023/03/13/persistence-context-menu/

(visited on 05/21/2023).

[158] “Hijack Explorer Context Menu for Persis-
tence & Fun,” ristbs’s blog. (Feb. 15, 2023),
[Online]. Available: https : / / ristbs .

github.io/2023/02/15/hijack-explorer-

context-menu-for-persistence-and-fun.

html (visited on 05/21/2023).

[159] RistBS, ContextMenuHijack, May 19, 2023.
[Online]. Available: https : / / github .

com/RistBS/ContextMenuHijack (visited on
05/21/2023).

[160] “Credential Manager DLL,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io / Data /

credmandll.html (visited on 05/21/2023).

[161] “PSBits/PasswordStealing/NPPSpy at mas-
ter · gtworek/PSBits,” GitHub. (), [Online].
Available: https://github.com/gtworek/
PSBits (visited on 05/21/2023).

[162] “Disk Cleanup Handler,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io / Data /

diskcleanuphandler . html (visited on
05/21/2023).

[163] “Hexacorn — Blog Beyond good ol’ Run key,
Part 86.” (), [Online]. Available: https : / /

www . hexacorn . com / blog / 2018 / 09 / 02 /

beyond-good-ol-run-key-part-86/ (vis-
ited on 05/21/2023).

[164] QuinnRadich. “Creating a Disk Cleanup Han-
dler - Win32 apps.” (Aug. 20, 2021), [Online].
Available: https://learn.microsoft.com/
en-us/windows/win32/lwef/disk-cleanup

(visited on 05/21/2023).

[165] “Image File Execution Options,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io / Data /

ifeo.html (visited on 05/21/2023).

[166] P. Arntz. “An Introduction to Image File Ex-
ecution Options — Malwarebytes Labs,” Mal-
warebytes. (Dec. 4, 2015), [Online]. Available:
https : / / www . malwarebytes . com / blog /

news / 2015 / 12 / an - introduction - to -

image-file-execution-options (visited on
05/21/2023).

[167] O. Moe. “Persistence using GlobalFlags in Im-
age File Execution Options – Hidden from
Autoruns.exe,” Oddvar Moe’s Blog. (Apr. 10,
2018), [Online]. Available: https://oddvar.
moe / 2018 / 04 / 10 / persistence - using -

globalflags-in-image-file-execution-

options-hidden-from-autoruns-exe/ (vis-
ited on 05/21/2023).

[168] “Event Triggered Execution: Image File Ex-
ecution Options Injection, Sub-technique
T1546.012 - Enterprise — MITRE
ATT&CK®.” (), [Online]. Available: https:
//attack.mitre.org/techniques/T1546/

012/ (visited on 05/21/2023).

[169] “Authentication Packages,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io / Data /

authenticationpackages . html (visited on
05/21/2023).

[170] “Boot or Logon Autostart Execution: Authen-
tication Package, Sub-technique T1547.002 -
Enterprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1547 / 002/ (visited on
05/21/2023).

[171] “LSA Extension,” persistence-info.github.io.
(), [Online]. Available: https : / /

persistence - info . github . io /

Data / lsaaextension . html (visited on
05/21/2023).

[172] “Password Filter,” persistence-info.github.io.
(), [Online]. Available: https : / /

persistence - info . github . io /

Data / passwordfilter . html (visited on
05/21/2023).

[173] “Boot or Logon Autostart Execution: Security
Support Provider, Sub-technique T1547.005 -
Enterprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1547 / 005/ (visited on
05/21/2023).

28

https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_sip_persistence.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_sip_persistence.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_sip_persistence.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_sip_persistence.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_sip_persistence.yml
https://github.com/gtworek/PSBits
https://github.com/gtworek/PSBits
https://pentestlab.blog/2023/03/13/persistence-context-menu/
https://pentestlab.blog/2023/03/13/persistence-context-menu/
https://ristbs.github.io/2023/02/15/hijack-explorer-context-menu-for-persistence-and-fun.html
https://ristbs.github.io/2023/02/15/hijack-explorer-context-menu-for-persistence-and-fun.html
https://ristbs.github.io/2023/02/15/hijack-explorer-context-menu-for-persistence-and-fun.html
https://ristbs.github.io/2023/02/15/hijack-explorer-context-menu-for-persistence-and-fun.html
https://github.com/RistBS/ContextMenuHijack
https://github.com/RistBS/ContextMenuHijack
https://persistence-info.github.io/Data/credmandll.html
https://persistence-info.github.io/Data/credmandll.html
https://persistence-info.github.io/Data/credmandll.html
https://github.com/gtworek/PSBits
https://github.com/gtworek/PSBits
https://persistence-info.github.io/Data/diskcleanuphandler.html
https://persistence-info.github.io/Data/diskcleanuphandler.html
https://persistence-info.github.io/Data/diskcleanuphandler.html
https://www.hexacorn.com/blog/2018/09/02/beyond-good-ol-run-key-part-86/
https://www.hexacorn.com/blog/2018/09/02/beyond-good-ol-run-key-part-86/
https://www.hexacorn.com/blog/2018/09/02/beyond-good-ol-run-key-part-86/
https://learn.microsoft.com/en-us/windows/win32/lwef/disk-cleanup
https://learn.microsoft.com/en-us/windows/win32/lwef/disk-cleanup
https://persistence-info.github.io/Data/ifeo.html
https://persistence-info.github.io/Data/ifeo.html
https://persistence-info.github.io/Data/ifeo.html
https://www.malwarebytes.com/blog/news/2015/12/an-introduction-to-image-file-execution-options
https://www.malwarebytes.com/blog/news/2015/12/an-introduction-to-image-file-execution-options
https://www.malwarebytes.com/blog/news/2015/12/an-introduction-to-image-file-execution-options
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://attack.mitre.org/techniques/T1546/012/
https://attack.mitre.org/techniques/T1546/012/
https://attack.mitre.org/techniques/T1546/012/
https://persistence-info.github.io/Data/authenticationpackages.html
https://persistence-info.github.io/Data/authenticationpackages.html
https://persistence-info.github.io/Data/authenticationpackages.html
https://attack.mitre.org/techniques/T1547/002/
https://attack.mitre.org/techniques/T1547/002/
https://persistence-info.github.io/Data/lsaaextension.html
https://persistence-info.github.io/Data/lsaaextension.html
https://persistence-info.github.io/Data/lsaaextension.html
https://persistence-info.github.io/Data/passwordfilter.html
https://persistence-info.github.io/Data/passwordfilter.html
https://persistence-info.github.io/Data/passwordfilter.html
https://attack.mitre.org/techniques/T1547/005/
https://attack.mitre.org/techniques/T1547/005/

[174] “MPNotify,” persistence-info.github.io. (),
[Online]. Available: https://persistence-
info.github.io/Data/mpnotify.html (vis-
ited on 05/21/2023).

[175] “Boot or Logon Autostart Execution: Winlo-
gon Helper DLL, Sub-technique T1547.004 -
Enterprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1547 / 004/ (visited on
05/21/2023).

[176] “Windows Registry Persistence, Part 2: The
Run Keys and Search-Order.” (Oct. 6, 2020),
[Online]. Available: https://web.archive.
org/web/20201006201906/https://blogs.

blackberry . com / en / 2013 / 09 / windows -

registry - persistence - part - 2 - the -

run - keys - and - search - order (visited on
05/21/2023).

[177] “.NET Startup Hooks,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io / Data /

dotnetstartuphooks . html (visited on
05/21/2023).

[178] .NET Runtime, .NET Platform, May 21,
2023. [Online]. Available: https : / /

github . com / dotnet / runtime / blob /

72fb58b3dfd4f9a40d5f3b0f87e26d9f24136570/

docs / design / features / host - startup -

hook.md (visited on 05/21/2023).

[179] “Natural Language 6 DLLs,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io /

Data / naturallanguage6 . html (visited on
05/21/2023).

[180] “Hexacorn — Blog Beyond good ol’ Run key,
Part 98.” (), [Online]. Available: https : / /

www . hexacorn . com / blog / 2018 / 12 / 30 /

beyond-good-ol-run-key-part-98/ (vis-
ited on 05/21/2023).

[181] Administrator. “Persistence – Netsh Helper
DLL,” Penetration Testing Lab. (Oct. 29,
2019), [Online]. Available: https : / /

pentestlab . blog / 2019 / 10 / 29 /

persistence- netsh- helper- dll/ (visited
on 05/21/2023).

[182] “Event Triggered Execution: Netsh Helper
DLL, Sub-technique T1546.007 - Enterprise —
MITRE ATT&CK®.” (), [Online]. Available:
https://attack.mitre.org/techniques/

T1546/007/ (visited on 05/21/2023).

[183] “Hijack Execution Flow: Path Intercep-
tion by PATH Environment Variable, Sub-
technique T1574.007 - Enterprise — MITRE
ATT&CK®.” (), [Online]. Available: https:
//attack.mitre.org/techniques/T1574/

007/ (visited on 05/21/2023).

[184] “Persistence and Privilege Escalation on Win-
dows via Print Monitors.” (Apr. 18, 2023),
[Online]. Available: https://stmxcsr.com/
persistence/print-monitor.html (visited
on 05/21/2023).

[185] cocomelonc. “Malware development: Persis-
tence - part 8. Port monitors. Simple C++ ex-
ample.,” cocomelonc. (Jun. 19, 2022), [Online].
Available: https://cocomelonc.github.io/
tutorial/2022/06/19/malware- pers- 8.

html (visited on 05/21/2023).

[186] hickeys. “AddMonitor function (Winspool.h) -
Win32 apps.” (Jan. 7, 2021), [Online]. Avail-
able: https://learn.microsoft.com/en-
us/windows/win32/printdocs/addmonitor

(visited on 05/21/2023).

[187] “Boot or Logon Autostart Execution: Port
Monitors, Sub-technique T1547.010 - En-
terprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1547 / 010/ (visited on
05/21/2023).

[188] “Persistence and Privilege Escalation on Win-
dows via Print Processors.” (Apr. 18, 2023),
[Online]. Available: https://stmxcsr.com/
persistence/print- processor.html (vis-
ited on 05/21/2023).

[189] “Boot or Logon Autostart Execution: Print
Processors, Sub-technique T1547.012 - En-
terprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1547 / 012/ (visited on
05/21/2023).

[190] “Persistence Techniques That Persist.” (),
[Online]. Available: https://www.cyberark.
com / resources / threat - research - blog /

persistence - techniques - that - persist

(visited on 05/21/2023).

[191] “Attacking RDP from Inside: How we abused
named pipes for smart-card hijacking, unau-
thorized file system access to client machines
and more.” (), [Online]. Available: https://
www . cyberark . com / resources / threat -

research - blog / attacking - rdp - from -

inside (visited on 05/21/2023).

29

https://persistence-info.github.io/Data/mpnotify.html
https://persistence-info.github.io/Data/mpnotify.html
https://attack.mitre.org/techniques/T1547/004/
https://attack.mitre.org/techniques/T1547/004/
https://web.archive.org/web/20201006201906/https://blogs.blackberry.com/en/2013/09/windows-registry-persistence-part-2-the-run-keys-and-search-order
https://web.archive.org/web/20201006201906/https://blogs.blackberry.com/en/2013/09/windows-registry-persistence-part-2-the-run-keys-and-search-order
https://web.archive.org/web/20201006201906/https://blogs.blackberry.com/en/2013/09/windows-registry-persistence-part-2-the-run-keys-and-search-order
https://web.archive.org/web/20201006201906/https://blogs.blackberry.com/en/2013/09/windows-registry-persistence-part-2-the-run-keys-and-search-order
https://web.archive.org/web/20201006201906/https://blogs.blackberry.com/en/2013/09/windows-registry-persistence-part-2-the-run-keys-and-search-order
https://persistence-info.github.io/Data/dotnetstartuphooks.html
https://persistence-info.github.io/Data/dotnetstartuphooks.html
https://persistence-info.github.io/Data/dotnetstartuphooks.html
https://github.com/dotnet/runtime/blob/72fb58b3dfd4f9a40d5f3b0f87e26d9f24136570/docs/design/features/host-startup-hook.md
https://github.com/dotnet/runtime/blob/72fb58b3dfd4f9a40d5f3b0f87e26d9f24136570/docs/design/features/host-startup-hook.md
https://github.com/dotnet/runtime/blob/72fb58b3dfd4f9a40d5f3b0f87e26d9f24136570/docs/design/features/host-startup-hook.md
https://github.com/dotnet/runtime/blob/72fb58b3dfd4f9a40d5f3b0f87e26d9f24136570/docs/design/features/host-startup-hook.md
https://github.com/dotnet/runtime/blob/72fb58b3dfd4f9a40d5f3b0f87e26d9f24136570/docs/design/features/host-startup-hook.md
https://persistence-info.github.io/Data/naturallanguage6.html
https://persistence-info.github.io/Data/naturallanguage6.html
https://persistence-info.github.io/Data/naturallanguage6.html
https://www.hexacorn.com/blog/2018/12/30/beyond-good-ol-run-key-part-98/
https://www.hexacorn.com/blog/2018/12/30/beyond-good-ol-run-key-part-98/
https://www.hexacorn.com/blog/2018/12/30/beyond-good-ol-run-key-part-98/
https://pentestlab.blog/2019/10/29/persistence-netsh-helper-dll/
https://pentestlab.blog/2019/10/29/persistence-netsh-helper-dll/
https://pentestlab.blog/2019/10/29/persistence-netsh-helper-dll/
https://attack.mitre.org/techniques/T1546/007/
https://attack.mitre.org/techniques/T1546/007/
https://attack.mitre.org/techniques/T1574/007/
https://attack.mitre.org/techniques/T1574/007/
https://attack.mitre.org/techniques/T1574/007/
https://stmxcsr.com/persistence/print-monitor.html
https://stmxcsr.com/persistence/print-monitor.html
https://cocomelonc.github.io/tutorial/2022/06/19/malware-pers-8.html
https://cocomelonc.github.io/tutorial/2022/06/19/malware-pers-8.html
https://cocomelonc.github.io/tutorial/2022/06/19/malware-pers-8.html
https://learn.microsoft.com/en-us/windows/win32/printdocs/addmonitor
https://learn.microsoft.com/en-us/windows/win32/printdocs/addmonitor
https://attack.mitre.org/techniques/T1547/010/
https://attack.mitre.org/techniques/T1547/010/
https://stmxcsr.com/persistence/print-processor.html
https://stmxcsr.com/persistence/print-processor.html
https://attack.mitre.org/techniques/T1547/012/
https://attack.mitre.org/techniques/T1547/012/
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://www.cyberark.com/resources/threat-research-blog/attacking-rdp-from-inside
https://www.cyberark.com/resources/threat-research-blog/attacking-rdp-from-inside
https://www.cyberark.com/resources/threat-research-blog/attacking-rdp-from-inside
https://www.cyberark.com/resources/threat-research-blog/attacking-rdp-from-inside

[192] O. Moe. “Persistence using RunOnceEx – Hid-
den from Autoruns.exe,” Oddvar Moe’s Blog.
(Mar. 21, 2018), [Online]. Available: https:
//oddvar.moe/2018/03/21/persistence-

using-runonceex-hidden-from-autoruns-

exe/ (visited on 05/21/2023).

[193] “ServerLevelPluginDll,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io / Data /

serverlevelplugindll . html (visited on
05/21/2023).

[194] “TS Initial Program,” persistence-
info.github.io. (), [Online]. Available: https:
/ / persistence - info . github . io /

Data / tsinitialprogram . html (visited on
05/21/2023).

[195] “Boot or Logon Autostart Execution: Time
Providers, Sub-technique T1547.003 - En-
terprise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1547 / 003/ (visited on
05/21/2023).

[196] stevewhims. “Time Provider - Win32 apps.”
(Jan. 7, 2021), [Online]. Available: https://
learn . microsoft . com / en - us / windows /

win32/sysinfo/time-provider (visited on
05/21/2023).

[197] “Persistence and Privilege Escalation on Win-
dows via Time Providers.” (Apr. 18, 2023),
[Online]. Available: https://stmxcsr.com/
persistence/time-provider.html (visited
on 05/21/2023).

[198] “Hexacorn — Blog Beyond good ol’ Run key,
Part 116.” (), [Online]. Available: https://
www . hexacorn . com / blog / 2019 / 09 / 20 /

beyond-good-ol-run-key-part-116/ (vis-
ited on 05/21/2023).

[199] “HKCU Load,” persistence-info.github.io. (),
[Online]. Available: https://persistence-
info.github.io/Data/windowsload.html

(visited on 05/21/2023).

[200] “Group Policy Client Side Extension,”
persistence-info.github.io. (), [Online]. Avail-
able: https://persistence-info.github.
io / Data / gpoextension . html (visited on
05/21/2023).

[201] R. markl. “Creating a Policy Callback Func-
tion.” (May 31, 2018), [Online]. Available:
https : / / learn . microsoft . com / en - us /

previous - versions / windows / desktop /

policy / creating - a - policy - callback -

function (visited on 05/21/2023).

[202] “Hexacorn — Blog Beyond good ol’ Run key,
Part 92.” (), [Online]. Available: https : / /

www . hexacorn . com / blog / 2018 / 10 / 11 /

beyond-good-ol-run-key-part-92/ (vis-
ited on 05/21/2023).

[203] “.chm helper DLL,” persistence-info.github.io.
(), [Online]. Available: https : / /

persistence - info . github . io /

Data / htmlhelpauthor . html (visited on
05/21/2023).

[204] “Hexacorn — Blog Beyond good ol’ Run key,
Part 76.” (), [Online]. Available: https : / /

www . hexacorn . com / blog / 2018 / 04 / 22 /

beyond-good-ol-run-key-part-76/ (vis-
ited on 05/21/2023).

[205] “Hexacorn — Blog Beyond good ol’ Run key,
Part 77.” (), [Online]. Available: https : / /

www . hexacorn . com / blog / 2018 / 04 / 23 /

beyond-good-ol-run-key-part-77/ (vis-
ited on 05/21/2023).

[206] Administrator. “Persistence – Accessibility
Features,” Penetration Testing Lab. (Nov. 13,
2019), [Online]. Available: https : / /

pentestlab . blog / 2019 / 11 / 13 /

persistence - accessibility - features/

(visited on 05/21/2023).

[207] “Event Triggered Execution: Accessibility
Features, Sub-technique T1546.008 - Enter-
prise — MITRE ATT&CK®.” (), [On-
line]. Available: https : / / attack . mitre .

org / techniques / T1546 / 008/ (visited on
05/21/2023).

[208] “Hexacorn — Blog Beyond good ol’ Run key,
Part 135.” (), [Online]. Available: https://
www . hexacorn . com / blog / 2022 / 01 / 16 /

beyond-good-ol-run-key-part-135/ (vis-
ited on 05/21/2023).

[209] T. I. Team. “Colibri Loader combines Task
Scheduler and PowerShell in clever persis-
tence technique,” Malwarebytes. (Apr. 5,
2022), [Online]. Available: https : / / www .

malwarebytes . com / blog / threat -

intelligence / 2022 / 04 / colibri -

loader - combines - task - scheduler - and -

powershell - in - clever - persistence -

technique (visited on 05/21/2023).

[210] “PowerShell Profile,” persistence-info.github.io.
(), [Online]. Available: https : / /

persistence - info . github . io / Data /

powershellprofile . html (visited on
05/21/2023).

30

https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/
https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/
https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/
https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/
https://persistence-info.github.io/Data/serverlevelplugindll.html
https://persistence-info.github.io/Data/serverlevelplugindll.html
https://persistence-info.github.io/Data/serverlevelplugindll.html
https://persistence-info.github.io/Data/tsinitialprogram.html
https://persistence-info.github.io/Data/tsinitialprogram.html
https://persistence-info.github.io/Data/tsinitialprogram.html
https://attack.mitre.org/techniques/T1547/003/
https://attack.mitre.org/techniques/T1547/003/
https://learn.microsoft.com/en-us/windows/win32/sysinfo/time-provider
https://learn.microsoft.com/en-us/windows/win32/sysinfo/time-provider
https://learn.microsoft.com/en-us/windows/win32/sysinfo/time-provider
https://stmxcsr.com/persistence/time-provider.html
https://stmxcsr.com/persistence/time-provider.html
https://www.hexacorn.com/blog/2019/09/20/beyond-good-ol-run-key-part-116/
https://www.hexacorn.com/blog/2019/09/20/beyond-good-ol-run-key-part-116/
https://www.hexacorn.com/blog/2019/09/20/beyond-good-ol-run-key-part-116/
https://persistence-info.github.io/Data/windowsload.html
https://persistence-info.github.io/Data/windowsload.html
https://persistence-info.github.io/Data/gpoextension.html
https://persistence-info.github.io/Data/gpoextension.html
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/policy/creating-a-policy-callback-function
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/policy/creating-a-policy-callback-function
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/policy/creating-a-policy-callback-function
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/policy/creating-a-policy-callback-function
https://www.hexacorn.com/blog/2018/10/11/beyond-good-ol-run-key-part-92/
https://www.hexacorn.com/blog/2018/10/11/beyond-good-ol-run-key-part-92/
https://www.hexacorn.com/blog/2018/10/11/beyond-good-ol-run-key-part-92/
https://persistence-info.github.io/Data/htmlhelpauthor.html
https://persistence-info.github.io/Data/htmlhelpauthor.html
https://persistence-info.github.io/Data/htmlhelpauthor.html
https://www.hexacorn.com/blog/2018/04/22/beyond-good-ol-run-key-part-76/
https://www.hexacorn.com/blog/2018/04/22/beyond-good-ol-run-key-part-76/
https://www.hexacorn.com/blog/2018/04/22/beyond-good-ol-run-key-part-76/
https://www.hexacorn.com/blog/2018/04/23/beyond-good-ol-run-key-part-77/
https://www.hexacorn.com/blog/2018/04/23/beyond-good-ol-run-key-part-77/
https://www.hexacorn.com/blog/2018/04/23/beyond-good-ol-run-key-part-77/
https://pentestlab.blog/2019/11/13/persistence-accessibility-features/
https://pentestlab.blog/2019/11/13/persistence-accessibility-features/
https://pentestlab.blog/2019/11/13/persistence-accessibility-features/
https://attack.mitre.org/techniques/T1546/008/
https://attack.mitre.org/techniques/T1546/008/
https://www.hexacorn.com/blog/2022/01/16/beyond-good-ol-run-key-part-135/
https://www.hexacorn.com/blog/2022/01/16/beyond-good-ol-run-key-part-135/
https://www.hexacorn.com/blog/2022/01/16/beyond-good-ol-run-key-part-135/
https://www.malwarebytes.com/blog/threat-intelligence/2022/04/colibri-loader-combines-task-scheduler-and-powershell-in-clever-persistence-technique
https://www.malwarebytes.com/blog/threat-intelligence/2022/04/colibri-loader-combines-task-scheduler-and-powershell-in-clever-persistence-technique
https://www.malwarebytes.com/blog/threat-intelligence/2022/04/colibri-loader-combines-task-scheduler-and-powershell-in-clever-persistence-technique
https://www.malwarebytes.com/blog/threat-intelligence/2022/04/colibri-loader-combines-task-scheduler-and-powershell-in-clever-persistence-technique
https://www.malwarebytes.com/blog/threat-intelligence/2022/04/colibri-loader-combines-task-scheduler-and-powershell-in-clever-persistence-technique
https://www.malwarebytes.com/blog/threat-intelligence/2022/04/colibri-loader-combines-task-scheduler-and-powershell-in-clever-persistence-technique
https://persistence-info.github.io/Data/powershellprofile.html
https://persistence-info.github.io/Data/powershellprofile.html
https://persistence-info.github.io/Data/powershellprofile.html

[211] “Event Triggered Execution: PowerShell Pro-
file, Sub-technique T1546.013 - Enterprise —
MITRE ATT&CK®.” (), [Online]. Available:
https://attack.mitre.org/techniques/

T1546/013/ (visited on 05/21/2023).

[212] “Boot or Logon Autostart Execution: Reg-
istry Run Keys / Startup Folder, Sub-
technique T1547.001 - Enterprise — MITRE
ATT&CK®.” (), [Online]. Available: https:
//attack.mitre.org/techniques/T1547/

001/ (visited on 05/21/2023).

[213] “Startup Folder,” persistence-info.github.io.
(), [Online]. Available: https : / /

persistence - info . github . io /

Data / startupfolder . html (visited on
05/21/2023).

[214] James. “Persistence with KeePass - Part 1,”
Medium. (Jun. 30, 2019), [Online]. Available:
https://medium.com/@two06/persistence-

with-keepass-part-1-d2e705326aa6 (vis-
ited on 05/21/2023).

[215] “Persistence with KeePass -Part 2. In part
1 we saw how we can use KeePass. . . — by
James — Medium.” (), [Online]. Available:
https://medium.com/@two06/persistence-

with-keepass-part-2-3e328b24e117 (vis-
ited on 05/21/2023).

[216] cybleinc. “Targeted Attacks being carried
out via DLL SideLoading,” Cyble. (Jul. 27,
2022), [Online]. Available: https : / / blog .

cyble . com / 2022 / 07 / 27 / targeted -

attacks - being - carried - out - via - dll -

sideloading/ (visited on 05/21/2023).

[217] Sigma, Sigma, May 21, 2023. [On-
line]. Available: https : / / github .

com / SigmaHQ / sigma / blob /

bc2188c72bc89469bf425ee3b1a174d58f5586ed/

rules/windows/file_event/file_event_

win_iphlpapi_dll_sideloading.yml (vis-
ited on 05/21/2023).

31

https://attack.mitre.org/techniques/T1546/013/
https://attack.mitre.org/techniques/T1546/013/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://persistence-info.github.io/Data/startupfolder.html
https://persistence-info.github.io/Data/startupfolder.html
https://persistence-info.github.io/Data/startupfolder.html
https://medium.com/@two06/persistence-with-keepass-part-1-d2e705326aa6
https://medium.com/@two06/persistence-with-keepass-part-1-d2e705326aa6
https://medium.com/@two06/persistence-with-keepass-part-2-3e328b24e117
https://medium.com/@two06/persistence-with-keepass-part-2-3e328b24e117
https://blog.cyble.com/2022/07/27/targeted-attacks-being-carried-out-via-dll-sideloading/
https://blog.cyble.com/2022/07/27/targeted-attacks-being-carried-out-via-dll-sideloading/
https://blog.cyble.com/2022/07/27/targeted-attacks-being-carried-out-via-dll-sideloading/
https://blog.cyble.com/2022/07/27/targeted-attacks-being-carried-out-via-dll-sideloading/
https://github.com/SigmaHQ/sigma/blob/bc2188c72bc89469bf425ee3b1a174d58f5586ed/rules/windows/file_event/file_event_win_iphlpapi_dll_sideloading.yml
https://github.com/SigmaHQ/sigma/blob/bc2188c72bc89469bf425ee3b1a174d58f5586ed/rules/windows/file_event/file_event_win_iphlpapi_dll_sideloading.yml
https://github.com/SigmaHQ/sigma/blob/bc2188c72bc89469bf425ee3b1a174d58f5586ed/rules/windows/file_event/file_event_win_iphlpapi_dll_sideloading.yml
https://github.com/SigmaHQ/sigma/blob/bc2188c72bc89469bf425ee3b1a174d58f5586ed/rules/windows/file_event/file_event_win_iphlpapi_dll_sideloading.yml
https://github.com/SigmaHQ/sigma/blob/bc2188c72bc89469bf425ee3b1a174d58f5586ed/rules/windows/file_event/file_event_win_iphlpapi_dll_sideloading.yml

A Persistence techniques

Requirements Resulting persistence

Name F
il
e
S
y
st
e
m

W
ri
te

R
e
g
is
tr
y
w
ri
te

E
le
v
a
te
d

p
ri
v
il
e
g
e
s

In
te
rp

ro
c
e
ss

c
o
m
m
u
n
ic
a
ti
o
n

A
d
d
it
io
n
a
l
S
o
ft
w
a
re

E
le
v
a
te
d

p
ri
v
il
e
g
e
s

M
o
m
e
n
t
o
f
e
x
e
c
u
ti
o
n

D
e
st
ru

c
ti
v
e

E
x
e
c
u
ti
o
n

ty
p
e

Databases

Other

BITS jobs [78]–[82] ✓ ✗ ✗ ✓ ✗ ✗ P ✗ EwA

WMI subscriptions [71]–[77] ✓ ✗ ✓ O ✗ ✓ E/P ✗ C

Registry

APPX [104] ✗ ✓ ✗ ✗ ✗ ✗ U ✓ E

Active Setup [97], [98] ✗ ✓ ✓ ✗ ✗ ✗ B ✓ C

AeDebug registry key [105], [106] ✗ ✓ ✓ ✗ ✗ ✗ E ✗ C

Change default file extensions [107]–[109] ✗ ✓ ✓ ✗ ✗ ✗ U ✗ EwA

Explorer tools [110]–[112] ✗ ✓ ✓ ✗ ✗ ✗ U ✗ C

Group policy logon script ✗ ✓ ✓ ✗ ✗ ✓ B ✗ C

NET DbgManagedDebugger [113], [114] ✗ ✓ ✓ ✗ ✗ ✗ E ✗ EwA

Run registry keys [20] ✗ ✓ ✗ ✗ ✗ ✗ B ✗ C

RunonceEx exe [115] ✗ ✓ ✓ ✗ ✗ ✗ B ✗ C

SilentProcessExit [116], [117] ✗ ✓ ✓ ✗ ✗ ✗ U ✗ C

Task scheduler [118]–[121] ✗ ✓ S ✗ ✗ ✓ P ✗ C

Universal App URI [122]–[124] ✗ ✓ ✗ ✗ ✗ ✗ U ✗ EwA

User Init Mpr Logon Script [125] ✗ ✓ ✗ ✗ ✗ ✗ B ✗ C

Windows telemetry [126], [127] ✗ ✓ ✓ ✗ ✗ ✓ P ✗ C

cmd AutoRun [83] ✗ ✓ ✗ ✗ ✗ ✗ U ✗ C

Databases and Filesystem

Registry and Operating System Files

AMSI provider [128]–[130] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ D

App paths [131], [132] ✓ ✓ ✗ ✗ ✗ ✗ U ✗ E

AppInit DLL [84]–[86] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ D

Appcert DLL [133]–[135] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ D

Application shimming [136]–[139] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ D/E

32

Requirements Resulting persistence

Name F
il
e
S
y
st
e
m

W
ri
te

R
e
g
is
tr
y
w
ri
te

E
le
v
a
te
d

p
ri
v
il
e
g
e
s

In
te
rp

ro
c
e
ss

c
o
m
m
u
n
ic
a
ti
o
n

A
d
d
it
io
n
a
l
S
o
ft
w
a
re

E
le
v
a
te
d

p
ri
v
il
e
g
e
s

M
o
m
e
n
t
o
f
e
x
e
c
u
ti
o
n

D
e
st
ru

c
ti
v
e

E
x
e
c
u
ti
o
n

ty
p
e

Autodial DLL [140]–[142] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ D

Autoplay handlers [143], [144] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ E

Boot verification program [145] ✓ ✓ ✓ ✗ ✗ ✓ B ✗ E

COM hijack [146]–[150] ✓ ✓ ✗ ✗ ✗ ✗ U ✗ D/E

COR PROFILER [151], [152] ✓ ✓ ✗ ✗ ✗ ✗ U ✗ D

Code signing DLL [153]–[156] ✓ ✓ ✓ ✗ ✗ ✗ E ✗ D

Context Menu handler [157]–[159] ✓ ✓ ✗ ✗ ✗ ✗ U ✗ D

Credential Manager DLL [160], [161] ✓ ✓ ✓ ✗ ✗ ✓ B ✗ D

Disk Cleanup Handler [162]–[164] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ D

Filter handlers [27] ✓ ✓ ✓ ✗ ✗ ✓ U ✗ D

Image file execution options [165]–[168] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ E

LSA authentication packages [169], [170] ✓ ✓ ✓ ✗ ✗ ✗ B ✗ D

LSA extensions [171] ✓ ✓ TI ✗ ✗ ✗ B ✗ D

LSA notification packages [172] ✓ ✓ ✓ ✗ ✗ ✓ B ✗ D

LSA security packages [173] ✓ ✓ ✓ ✗ ✗ ✗ B ✗ D

MPnotify winlogon [174]–[176] ✓ ✓ ✓ ✗ ✗ ✓ B ✓ D/E

NET startup hooks [177], [178] ✓ ✓ ✗ ✗ ✓ ✗ U ✗ D

Natual Language DLLs [179], [180] ✓ ✓ ✓ ✗ ✗ ✓ B ✗ D

Netsh Helper DLL [181], [182] ✓ ✓ ✓ ✗ ✗ ✗ E ✗ D

Path interception [183] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ E

Print monitors [184]–[187] ✓ ✓ ✓ ✗ ✗ ✓ B ✗ D

Print processors [188], [189] ✓ ✓ ✓ ✗ ✗ ✓ B ✗ D

RDP startup program [190], [191] ✓ ✓ ✓ ✗ ✗ ✗ U ✗ E

RunonceEx DLL [192] ✓ ✓ ✓ ✗ ✗ ✗ B ✗ D

RunonceEx depend DLL [192] ✓ ✓ ✓ ✗ ✗ ✗ B ✗ D

Screensaver [87] ✓ ✓ ✗ ✗ ✗ ✗ E ✗ E

Server level plugin DLL [193] ✓ ✓ ✓ ✗ ✓ ✓ B ✗ D

Startup folder add [21], [22] ✓ ✓ ✗ ✗ ✗ ✗ B ✗ E

TS Initial Program [194] ✓ ✓ ✗ ✗ ✗ ✗ U ✗ E

33

Requirements Resulting persistence

Name F
il
e
S
y
st
e
m

W
ri
te

R
e
g
is
tr
y
w
ri
te

E
le
v
a
te
d

p
ri
v
il
e
g
e
s

In
te
rp

ro
c
e
ss

c
o
m
m
u
n
ic
a
ti
o
n

A
d
d
it
io
n
a
l
S
o
ft
w
a
re

E
le
v
a
te
d

p
ri
v
il
e
g
e
s

M
o
m
e
n
t
o
f
e
x
e
c
u
ti
o
n

D
e
st
ru

c
ti
v
e

E
x
e
c
u
ti
o
n

ty
p
e

Time providers [195]–[197] ✓ ✓ ✓ ✗ ✗ ✗ B ✗ D

Windows Error Reporting Debugger [198] ✓ ✓ ✓ ✗ ✗ ✗ E ✗ E

Windows Load [199] ✓ ✓ ✗ ✗ ✗ ✗ B ✗ E

Windows services [23]–[25] ✓ ✓ ✓ ✗ ✗ ✓ B/P ✗ D/E

Winlogon GP Client-side extension [200]–[202] ✓ ✓ ✓ ✗ ✗ ✓ E ✗ D

chm helper dll [203], [204] ✓ ✓ ✗ ✗ ✗ ✗ U ✗ D

hhctrl [205] ✓ ✓ TI ✗ ✗ ✗ U ✗ D

File system

Operating System Files

Accessibility Tools Backdoor [206], [207] ✓ ✗ TI ✗ ✗ ✓ U ✗ E

DLL hijack [28] ✓ ✗ ✗ ✗ ✗ ✗ U ✗ D

ErrorHandler cmd Hijack [208] ✓ ✗ ✓ ✗ ✗ ✗ E ✗ C

Get-Variable [209] ✓ ✗ ✗ ✗ ✗ ✗ U ✗ E

PowerShell profile [210], [211] ✓ ✗ ✗ ✗ ✗ ✗ U ✗ C

Startup folder [212], [213] ✓ ✗ ✗ ✗ ✗ ✗ B ✗ E

lnk shortcuts [88], [89] ✓ ✗ ✗ ✗ ✗ ✗ U ✗ EwA

Additional software files

Browser extensions [90], [91] ✓ ✗ ✗ ✗ ✓ ✗ U ✗ S

Keepass plugins [214] ✓ ✗ ✓ ✗ ✓ ✗ U ✗ D

Keepass trigger [215] ✓ ✗ ✗ ✗ ✓ ✗ E ✗ C

Windows Terminal Profile [92] ✓ ✗ ✗ ✗ ✓ ✗ U ✓ C

iphlpapi DLL [216], [217] ✓ ✗ ✗ ✗ ✓ ✗ U ✗ D

Table 2: The persistence techniques that we identified and that
meet our criteria. For the Elevated Privileges as a requirement,
S = System privileges and TI = TrustedInstaller privileges. For
Interprocess communication, O = optional. For the moment of
executions, we have B=boot, U=user action, E=system event,
P=periodically. For Code type we have C=command, E=exe,
EwA=Exe with arguments, D=DLL, S=script for third party pro-
gram

.

34

B Persistence techniques

B.1 Accessibility Tools Backdoor

B.1.1 Origin of the technique

Windows contains multiple accessibility features that enable the use of the operating system by impaired
users. These features can be accessed by some hotkeys. By hijacking the executables of the accessibility
tools, the malware can execute code when the key combination is pressed.

B.1.2 How to achieve persistence

Replace accessibility features with a malicious file.
The accessibility tools are the following:

• On-Screen Keyboard: C:\Windows\System32\osk.exe
• Magnifier: C:\Windows\System32\Magnify.exe

• Narrator: C:\Windows\System32\Narrator.exe

• Display Switcher: C:\Windows\System32\DisplaySwitch.exe

• App Switcher: C:\Windows\System32\AtBroker.exe
• Sticky keys: C:\Windows\System32\sethc.exe
• Utilman: C:\Windows\System32\utilman.exe

B.1.3 Requirements

In recent windows versions execution is protected, as the executables have to be signed. Required Trusted
installer privileges to replace the executables.

B.1.4 The achieved persistence

When the user tries to use one of the accessibility tools, the code is executed. If the tools is opened before
the user logs in, the launched process has system privileges.

B.1.5 More information

• https://attack.mitre.org/techniques/T1546/008/

• https://pentestlab.blog/2019/11/13/persistence-accessibility-features/

B.2 Active Setup

B.2.1 Origin of the technique

Active Setup is a mechanism used to set up configuration when a new user logs in for the first time after
new software has been installed. To know when to perform this action Active Setup checks if each machine
part component GUID is present in the user part of the registry. If one is missing, Active Setup runs the
commands associated with the missing GUID.

B.2.2 How to achieve persistence

By adding a new GUID to the Registry under HKLM\SOFTWARE\Microsoft\Active Setup\Installed Components
, it is possible to run a command at login. The command should be stored in StubPath.

B.2.3 Requirements

Writing to the HKLM registry requires administrator privileges. Also, not all systems seem to execute Active
Setup automatically on boot. To still execute, it can be combined with another persistence technique by
running %systemroot%\system32\runonce.exe /AlternateShellStartup.

35

https://attack.mitre.org/techniques/T1546/008/
https://pentestlab.blog/2019/11/13/persistence-accessibility-features/

B.2.4 The achieved persistence

This persistence technique executes the specified command when the user logs in, before the desktop appears.
The desktop does not show before the command is finished. To achieve persistence after another reboot,
removing the key in the user registry HKCU\SOFTWARE\Microsoft\Active Setup\Installed Components
suffices.

B.2.5 More information

• https://attack.mitre.org/techniques/T1547/014/

• https://helgeklein.com/blog/active-setup-explained/

B.3 AeDebug registry key

B.3.1 Origin of the technique

Windows has a feature to automatically start a debugger when the system or an application crashes. This
techniques runs the malicious code instead of the debugger.

B.3.2 How to achieve persistence

At the registry key values Auto=1 and Debugger = <full executable path> <additional parameters> to
the key HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug or HKLM\SOFTWARE\
Wow6432Node\Microsoft\Windows NT\CurrentVersion\AeDebug for 32-bit applications.

B.3.3 Requirements

Administrator privileges to write to the registry.

B.3.4 The achieved persistence

When an application or the system crashes, the executable is started.

B.3.5 More information

• https://persistence-info.github.io/Data/aedebug.html

• https://docs.microsoft.com/en-us/windows/win32/debug/configuring-automatic-debugging

B.4 AMSI provider

B.4.1 Origin of the technique

This technique is based on the Windows Antimalware Scan Interface (AMSI). AMSI is used to evaluate
whether a script is malicious. Any program running can request AMSI to scan a script, for example PowerShell
does this before running anything. Anti-malware solutions can register as a provider. For this technique the
malware registers itself as an AMSI provider.

B.4.2 How to achieve persistence

First, you need to register the COM server by adding a new CLSID in HKLM\SOFTWARE\Classes\CLSID
This can also be done using Regsvr32.exe FakeAMSI.dll. (unregister using Regsvr32.exe /u FakeAMSI.dll)

Next, register the COM server as an AMSI provider by adding the CLSID as a key to HKLM\SOFTWARE
\Microsoft\AMSI\Providers.

B.4.3 Requirements

Administrator privileges to create the COM server. It is also required to drop a file.

36

https://attack.mitre.org/techniques/T1547/014/
https://helgeklein.com/blog/active-setup-explained/
https://persistence-info.github.io/Data/aedebug.html
https://docs.microsoft.com/en-us/windows/win32/debug/configuring-automatic-debugging

B.4.4 The achieved persistence

Runs with user privileges. Runs when the AMSI operates. E.g. when opening PowerShell.

B.4.5 More information

• https://persistence-info.github.io/Data/amsi.html

• https://learn.microsoft.com/en-us/windows/win32/amsi/dev-audience

• https://github.com/gtworek/PSBits/blob/master/FakeAMSI/FakeAMSI.c

B.5 AppCert DLL

B.5.1 Origin of the technique

The AppCert DLL is loaded by processes that use one of the following API calls: CreateProcess, CreateProcessAsUser
, CreateProcessWithLoginW, CreateProcessWithTokenW, or WinExec. The original functionality of the
AppCert DLL is to evaluate the security level of processes started with any of these functions.

B.5.2 How to achieve persistence

Place a DLL someplace and add the path to HKEY LOCAL MACHINE\System\CurrentControlSet\
Control\Session Manager\

B.5.3 Requirements

Administrator privileges.

B.5.4 The achieved persistence

The resulting persistence has user privileges. Trigger is for example by running a command from PowerShell.

B.5.5 More information

• https://attack.mitre.org/techniques/T1546/009/

• https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1546.009/T1546.009.

md

• https://skanthak.homepage.t-online.de/appcert.html

B.6 AppInit DLLs

B.6.1 Origin of the technique

Windows has a feature to load default DLLs at the start of any program. This is disabled by default, but it
can be enabled to load malicious DLLs.

B.6.2 How to achieve persistence

Under the key HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows or HKLM\Software\Wow6432Node
\Microsoft\Windows NT\CurrentVersion\Windows, change the values:

• LoadAppInit DLLs to 1 (REG DWORD)

• AppInit DLLs to the DLL you want to load (REG SZ)

B.6.3 Requirements

System privileges to write to the registry.

37

https://persistence-info.github.io/Data/amsi.html
https://learn.microsoft.com/en-us/windows/win32/amsi/dev-audience
https://github.com/gtworek/PSBits/blob/master/FakeAMSI/FakeAMSI.c
https://attack.mitre.org/techniques/T1546/009/
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1546.009/T1546.009.md
https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1546.009/T1546.009.md
https://skanthak.homepage.t-online.de/appcert.html

B.6.4 The achieved persistence

It launches when any other application is started, with user privileges.

B.6.5 More information

• https://cocomelonc.github.io/tutorial/2022/05/16/malware-pers-5.html

• https://docs.microsoft.com/en-US/windows/win32/dlls/secure-boot-and-appinit-dlls

• https://attack.mitre.org/techniques/T1546/010/

B.7 Application shimming

B.7.1 Origin of the technique

Application shims are used to ensure backward compatibility of programs with the operating system.

B.7.2 How to achieve persistence

Under HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Custom\, create a
key for the targeted application, e.g. firefox .exe. Under that, create a value {<GUID>}.sdb of type
QWORD. Next, create the key {<GUID>} under HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion
\AppCompatFlags\InstalledSDB\. Set the value of DatabasePath to the location of the shimming database
file (.sdb). Also set the DatabaseRuntimePlatform value to a DWORD matching the type of shimming you
want to use. Lastly, set DatabaseType to the type of database you are using.

Another option is making changes to existing sdb files.

B.7.3 Requirements

Administrator privileges to write to the registry.

B.7.4 The achieved persistence

How exactly the persistence works differs per type of shimming, but in general the code is executed when
the targeted application is ran.

B.7.5 More information

• https://attack.mitre.org/techniques/T1546/011/

• https://www.ired.team/offensive-security/persistence/t1138-application-shimming

• https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/rules/windows/

registry/registry_set/registry_set_shim_databases_persistence.yml

• https://www.fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html

B.8 App paths

B.8.1 Origin of the technique

Windows stores some of the locations of command in the registry. More specifically, when a program uses the
ShellExecuteEx system call and only provides the name of the program, Windows will look in the registry for
the location of the program. An example is the run prompt. This persistence techniques changes the value
of this registry key to run malicious code instead.

B.8.2 How to achieve persistence

Add a command in HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths or HKEY CURRENT USER\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths and set
the (Default) value to the location of the executable.

38

https://cocomelonc.github.io/tutorial/2022/05/16/malware-pers-5.html
https://docs.microsoft.com/en-US/windows/win32/dlls/secure-boot-and-appinit-dlls
https://attack.mitre.org/techniques/T1546/010/
https://attack.mitre.org/techniques/T1546/011/
https://www.ired.team/offensive-security/persistence/t1138-application-shimming
https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/rules/windows/registry/registry_set/registry_set_shim_databases_persistence.yml
https://github.com/SigmaHQ/sigma/blob/33b370d49bd6aed85bd23827aa16a50bd06d691a/rules/windows/registry/registry_set/registry_set_shim_databases_persistence.yml
https://www.fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html

B.8.3 Requirements

Administrator privileges to write to the registry, if you write to HKLM. Otherwise user privileges suffice.

B.8.4 The achieved persistence

When a program uses ShellExecuteEx with only the name of a program, the program specified in the registry
will be executed.

B.8.5 More information

• https://www.hexacorn.com/blog/2013/01/19/beyond-good-ol-run-key-part-3/

• https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist

B.9 APPX

B.9.1 Origin of the technique

Universal Windows Platform apps are a kind of Windows application, distributed using the APPX file
format. These include for example the Cortana app and People app. Universal Windows Platform apps
allow to automatically run a debugger when the app is started.

B.9.2 How to achieve persistence

Add a registry key with a command you want to execute. Registry keys:

• HKCU\Software\Microsoft\Windows\CurrentVersion\PackagedAppXDebug\<some appx app>\
• HKCU\Software\Classes\ActivatableClasses\Package\<some appx app>\DebugInformation\<a specific

version based string>.mca -¿ DebugPath value

B.9.3 Requirements

User privileges to write to the registry.

B.9.4 The achieved persistence

User privileges, when the targeted app is started. Some of them might already start at boot.

B.9.5 More information

• https://oddvar.moe/2018/09/06/persistence-using-universal-windows-platform-apps-appx/

B.10 Autodial DLL

B.10.1 Origin of the technique

When using the Winsock library is used to connect to a remote host, the process loads the AutodialDLL.
The location of the DLL is set in the registry and can be hijacked.

B.10.2 How to achieve persistence

Replace the registry value AutodialDLL under HKLM\SYSTEM\CurrentControlSet\Services\WinSock2\
Parameters with your own DLL.

39

https://www.hexacorn.com/blog/2013/01/19/beyond-good-ol-run-key-part-3/
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://oddvar.moe/2018/09/06/persistence-using-universal-windows-platform-apps-appx/

B.10.3 Requirements

System privileges to write to the registry key. The DLL has to export 3 functions:

• WSAttemptAutodialAddr

• WSAttemptAutodialName

• WSNoteSuccessfulHostentLookup

B.10.4 The achieved persistence

User privileges, every time some internet connection made.

B.10.5 More information

• https://persistence-info.github.io/Data/autodialdll.html

• https://www.hexacorn.com/blog/2015/01/13/beyond-good-ol-run-key-part-24/

• https://learn.microsoft.com/en-us/windows/win32/rras/autodial-connection-operations

B.11 Autoplay handlers

B.11.1 Origin of the technique

When a new device is connected to the computer, a Device Event Handler is used to specify the software to
be used to open the medium.

B.11.2 How to achieve persistence

What event (such as a movie dvd is inserted) is matched to event handler. This is written in the registry:
HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\AutoplayHandlers
\EventHandlers They match to names in thehandlers registry. You can change a Autoplay handler in the reg-
istry: HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\explorer\AutoplayHandlers
\Handlers\ Some interesting values are:

• Action - specify exe

• InitCmdLine - specify arguments

B.11.3 Requirements

Admin privileges

B.11.4 The achieved persistence

User privileges, when an attached medium is opened by autoplay. Can run an exe or a DLL.

B.11.5 More information

• https://www.hexacorn.com/blog/2019/09/07/beyond-good-ol-run-key-part-114/

• https://learn.microsoft.com/en-us/windows/win32/shell/how-to-register-a-handler-for-a-

device-event

B.12 BITS jobs

B.12.1 Origin of the technique

Microsoft Windows Background Intelligent Transfer Service (BITS) is used for file transfer between machines
and is accessible as a COM server. It is used for example by Windows Update to download updates. The
option /SetNotifyCmdLine is used to specify a command that is executed when a job is done transferring or
in error.

40

https://persistence-info.github.io/Data/autodialdll.html
https://www.hexacorn.com/blog/2015/01/13/beyond-good-ol-run-key-part-24/
https://learn.microsoft.com/en-us/windows/win32/rras/autodial-connection-operations
https://www.hexacorn.com/blog/2019/09/07/beyond-good-ol-run-key-part-114/
https://learn.microsoft.com/en-us/windows/win32/shell/how-to-register-a-handler-for-a-device-event
https://learn.microsoft.com/en-us/windows/win32/shell/how-to-register-a-handler-for-a-device-event

B.12.2 How to achieve persistence

Set up a BITS job using the following commands:

bitsadmin / c r e a t e my pers istence
bitsadmin / a dd f i l e my pers istence c :\windows\ system32\net . exe c :\ use r s \ i e u s e r \

desktop \ hi . l og
bitsadmin /SetNotifyCmdLine my persistence ”c :\ path\ to \ executab l e ” NULL
bitsadmin /Resume my persistence

BITS jobs are not stored in the registry but in a separate database.

B.12.3 Requirements

User privileges are enough. The database storing the jobs is in %ALLUSERSPROFILE%\Microsoft\Network
\Downloader\qmgr.db using the Extensible Storage Engine (ESE) format. ”QMGR database files are opened
without sharing by the BITS service thus preventing other programs from directly opening them.”. In other
words, you have to use the bitsadmin tool or the COM object.

Before windows 10 it was stored in qmgr0.dat and qmgr1.dat

B.12.4 The achieved persistence

The command is executed periodically. It stays active for 90 days, or after download is completed.

B.12.5 More information

• https://www.mandiant.com/resources/blog/attacker-use-of-windows-background-intelligent-

transfer-service

• https://www.trustedsec.com/blog/bits-persistence-for-script-kiddies/

• https://attack.mitre.org/techniques/T1197/

• https://unit42.paloaltonetworks.com/unit42-uboatrat-navigates-east-asia/

• https://www.secureworks.com/blog/malware-lingers-with-bits

B.13 Boot verification program

B.13.1 Origin of the technique

After a successful boot, Winlogon notifies the Service Control Manager (SCM) that the boot was successful.
To define a successful boot differently, you can add your own program.

B.13.2 How to achieve persistence

Create the registry key HKLM\System\CurrentControlSet\Control\BootVerificationProgram and set ImagePath
to your own executable.

B.13.3 Requirements

Administrator privileges to write to the registry.

B.13.4 The achieved persistence

System privileges and runs on every boot.

B.13.5 More information

• https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist

41

https://www.mandiant.com/resources/blog/attacker-use-of-windows-background-intelligent-transfer-service
https://www.mandiant.com/resources/blog/attacker-use-of-windows-background-intelligent-transfer-service
https://www.trustedsec.com/blog/bits-persistence-for-script-kiddies/
https://attack.mitre.org/techniques/T1197/
https://unit42.paloaltonetworks.com/unit42-uboatrat-navigates-east-asia/
https://www.secureworks.com/blog/malware-lingers-with-bits
https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist

B.14 Browser extensions

B.14.1 Origin of the technique

Browsers have extension that are active when the browser is running.

B.14.2 How to achieve persistence

Add a extension to the default location.

• Chrome:

C:\Users\%username%\AppData\Local\Google\Chrome\User Data\Default\Extensions

• Edge: C:\Users\%username%\AppData\Local\Microsoft\Edge\User Data\Default\Extensions\
• Firefox: C:\Users\%username%\AppData\Roaming\Mozilla\Firefox\Profiles\YOUR PROFILE.default
\extensions\

You can also change the link file on the Desktop to add a custom extension folder (see https://

securityintelligence.com/posts/grandoreiro-malware-now-targeting-banks-in-spain/)

B.14.3 Requirements

User privileges. Modern browser require confirmation by the user to add an extention.

B.14.4 The achieved persistence

You can run some actions, but only within the browser context.

B.14.5 More information

• https://mattfrisbie.substack.com/p/spy-chrome-extension

• https://attack.mitre.org/techniques/T1176/

B.15 Change default file association

B.15.1 Origin of the technique

This technique changes the executable that files are opened with. For example, you can specify to open files
ending with .txt with a custom application.

B.15.2 How to achieve persistence

Change the registry key HKEY CLASSES ROOT\<extension>file\shell\open\command Also related, but
for when printing file:

• HKEY CLASSES ROOT\txtfile\shell\print\command

• HKEY CLASSES ROOT\txtfile\shell\printto\command

B.15.3 Requirements

Admin privileges to write to the registry.

B.15.4 The achieved persistence

When you open a file with the file extension targeted, it will run your executable (with the specified argu-
ments) instead. The privileges depend on if the user opens the file as administrator or not.

42

https://securityintelligence.com/posts/grandoreiro-malware-now-targeting-banks-in-spain/)
https://securityintelligence.com/posts/grandoreiro-malware-now-targeting-banks-in-spain/)
https://mattfrisbie.substack.com/p/spy-chrome-extension
https://attack.mitre.org/techniques/T1176/

B.15.5 More information

• https://attack.mitre.org/techniques/T1546/001/

• http://woshub.com/managing-default-file-associations-in-windows-10/

• https://news.sophos.com/en-us/2022/02/01/solarmarker-campaign-used-novel-registry-changes-

to-establish-persistence/

B.16 chm helper dll

B.16.1 Origin of the technique

CHM files are compiled HTML help files. When opened, the chm helper DLL is loaded

B.16.2 How to achieve persistence

Place a malicious DLL and add it to the registry: HKCU\Software\Microsoft\HtmlHelp Author, value
location.

B.16.3 Requirements

User privileges.

B.16.4 The achieved persistence

The user has to open a chm file. User privileges.

B.16.5 More information

• https://persistence-info.github.io/Data/htmlhelpauthor.html

• https://www.hexacorn.com/blog/2018/04/22/beyond-good-ol-run-key-part-76/

B.17 cmd AutoRun

B.17.1 Origin of the technique

The Windows command prompt (cmd) enables the user to set an autorun command that is executed when
cmd is started.

B.17.2 How to achieve persistence

Set the value of Autorun of the registry key HKCU\Software\Microsoft\Command Processor\. You can also
set it for all users under HKLM\Software\Microsoft\Command Processor.

B.17.3 Requirements

User privileges suffice. Admin privileges required for the system-wide registry.

B.17.4 The achieved persistence

When cmd is run, the command is executed first. The privileges depend on with what privileges the user
executes the command prompt.

B.17.5 More information

• https://persistence-info.github.io/Data/cmdautorun.html

43

https://attack.mitre.org/techniques/T1546/001/
http://woshub.com/managing-default-file-associations-in-windows-10/
https://news.sophos.com/en-us/2022/02/01/solarmarker-campaign-used-novel-registry-changes-to-establish-persistence/
https://news.sophos.com/en-us/2022/02/01/solarmarker-campaign-used-novel-registry-changes-to-establish-persistence/
https://persistence-info.github.io/Data/htmlhelpauthor.html
https://www.hexacorn.com/blog/2018/04/22/beyond-good-ol-run-key-part-76/
https://persistence-info.github.io/Data/cmdautorun.html

B.18 Code signing DLL

B.18.1 Origin of the technique

Windows has some code signing DLLs that are used to verify the security of files.

B.18.2 How to achieve persistence

You can register a new code signing DLL. This can be done by adding a key under HKLM\SOFTWARE
\Microsoft\Cryptography\OID\EncodingType 0\<some function>\<CLSID>. There are multiple options
for functions you can target, see the links below. Set the value DLL to the location of your DLL and
FuncName to the name of the targeted function. The placed DLL should export the targeted function.

B.18.3 Requirements

Administrator privileges to write to the registry.

B.18.4 The achieved persistence

The code is run when the DLL is used, for example when displaying file properties.

B.18.5 More information

• https://persistence-info.github.io/Data/codesigning.html

• https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/

registry/registry_set/registry_set_sip_persistence.yml

• https://specterops.io/wp-content/uploads/sites/3/2022/06/SpecterOps_Subverting_Trust_in_

Windows.pdf

• https://github.com/gtworek/PSBits/tree/master/SIP

B.19 COM hijack

B.19.1 Origin of the technique

The Component Object Model (COM) enables inter-process communication object creation. When the
attackers COM is loaded instead of the intended COM, this is called a COM hijack.

B.19.2 How to achieve persistence

There are multiple approaches to COM hijack, including:

• By CLSID - create a new entry under HKEY CURRENT USER\Software\Classes\CLSID matching
the CLSID a program is looking for. Since the search order (for non-elevated processes) is to first look
in the HKCU registry, this can hijack the COM object.

• By ProgID - some processes to the ProgID to find a COM object instead of the CLSID. The CLSID is
then stored inHKEY CURRENT USER\Software\Classes\<ProgID>\CLSID

• By TreatAs - can redirect to another COM.

But the main pointer to the exe or DLL is stored in LocalServer32 or InprocServer32 respectively, under
HKEY CURRENT USER\Software\Classes\CLSID\{GUUID}

B.19.3 Requirements

User privileges for non-elevated COM objects, otherwise higher privleges.

44

https://persistence-info.github.io/Data/codesigning.html
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_sip_persistence.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_sip_persistence.yml
https://specterops.io/wp-content/uploads/sites/3/2022/06/SpecterOps_Subverting_Trust_in_Windows.pdf
https://specterops.io/wp-content/uploads/sites/3/2022/06/SpecterOps_Subverting_Trust_in_Windows.pdf
https://github.com/gtworek/PSBits/tree/master/SIP

B.19.4 The achieved persistence

Runs when the COM object is loaded by another program. Non-destructive because you can use a COM-
Proxy (e.g. https://github.com/leoloobeek/COMProxy). Can run both exe (in LocalServer32) or DLL
(in InprocServer32).

B.19.5 More information

• https://cocomelonc.github.io/tutorial/2022/05/02/malware-pers-3.html

• https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-

part-2-com-hijacking/

• https://attack.mitre.org/techniques/T1546/015/

• https://stmxcsr.com/persistence/com-hijacking.html

• https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/

registry/registry_set/registry_set_persistence_search_order.yml

B.20 Context Menu handler

B.20.1 Origin of the technique

When you right-click a file in Windows explorer or on the Desktop, a menu shows up. It is possible to extend
the features of this menu by registering a DLL.

B.20.2 How to achieve persistence

You can add Context menu handler DLLs in multiple locations in the registry, including:

• HKCU\Software\Classes\∗\ShellEx\ContextMenuHandlers

• HKCU\Software\Classes\Directory\ShellEx\ContextMenuHandlers

• HKCU\Software\Classes\Directory\Background\ShellEx\ContextMenuHandlers

• HKLM\Software\Classes\∗\ShellEx\ContextMenuHandlers

• HKLM\Software\Classes\Directory\ShellEx\ContextMenuHandlers

• HKLM\Software\Classes\Directory\Background\ShellEx\ContextMenuHandlers

Under this key, add a key with as (Default) value a valid CLSID of a COM DLL. The registered DLL should
be a valid Context menu handler DLL.

B.20.3 Requirements

User privileges are required.

B.20.4 The achieved persistence

When the user right-click a file, the process is launched, with user privileges.

B.20.5 More information

• https://pentestlab.blog/2023/03/13/persistence-context-menu/

• https://ristbs.github.io/2023/02/15/hijack-explorer-context-menu-for-persistence-and-fun.

html

• https://github.com/RistBS/ContextMenuHijack

B.21 COR PROFILER

B.21.1 Origin of the technique

The .NET framework allows developers to measure their code performance with a user-provided DLL.

45

https://github.com/leoloobeek/COMProxy).
https://cocomelonc.github.io/tutorial/2022/05/02/malware-pers-3.html
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-2-com-hijacking/
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-2-com-hijacking/
https://attack.mitre.org/techniques/T1546/015/
https://stmxcsr.com/persistence/com-hijacking.html
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_persistence_search_order.yml
https://github.com/SigmaHQ/sigma/blob/16990093933fe8c82c3ad879d306d706b350162a/rules/windows/registry/registry_set/registry_set_persistence_search_order.yml
https://pentestlab.blog/2023/03/13/persistence-context-menu/
https://ristbs.github.io/2023/02/15/hijack-explorer-context-menu-for-persistence-and-fun.html
https://ristbs.github.io/2023/02/15/hijack-explorer-context-menu-for-persistence-and-fun.html
https://github.com/RistBS/ContextMenuHijack

B.21.2 How to achieve persistence

You have to set a few environment variables:

• COR ENABLE PROFILING=1

• COR PROFILER={<CLSID of profiler>}
• COR PROFILER PATH=<full path of the profiler DLL>

You can store environment variables in the registry under HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet
\Control\Session Manager\Environment or HKEY CURRENT USER\Environment

B.21.3 Requirements

User privileges are enough to set it for the current user.

B.21.4 The achieved persistence

Each .NET process that loads the Common Language Runtime (CLR) will load the malicious DLL. For
example, when starting PowerShell. It requires reboot to work.

B.21.5 More information

• https://redcanary.com/blog/cor_profiler-for-persistence/

• https://attack.mitre.org/techniques/T1574/012/

B.22 Credential Manager DLL

B.22.1 Origin of the technique

When logging in, Winlogon launches mpnotify, which loads various credential manager DLLs. We can add a
malicious DLL to this list.

B.22.2 How to achieve persistence

Place the malicious DLL in the System32 folder. Add the name of the DLL to the end of ProviderOrder
in HKLM\SYSTEM\CurrentControlSet\Control\NetworkProvider\Order. Finally, create HKLM\SYSTEM
\CurrentControlSet\Services\<name>\NetworkProvider and set:

• ”Class” = 2 (REG DWORD)

• ”ProviderPath” = ”%SystemRoot%\System32\<name>.dll” (REG EXPAND SZ)

• ”Name” = ”<name>” (REG SZ)

B.22.3 Requirements

System privileges to write the file and write to the registry.

B.22.4 The achieved persistence

Runs with System privileges when the user logs in.

B.22.5 More information

• https://persistence-info.github.io/Data/credmandll.html

• https://github.com/gtworek/PSBits/tree/master/PasswordStealing/NPPSpy

46

https://redcanary.com/blog/cor_profiler-for-persistence/
https://attack.mitre.org/techniques/T1574/012/
https://persistence-info.github.io/Data/credmandll.html
https://github.com/gtworek/PSBits/tree/master/PasswordStealing/NPPSpy

B.23 Disk Cleanup Handler

B.23.1 Origin of the technique

The Disk Cleanup tool lets the user automatically delete unneeded files. This tool loads DLLs and you can
add a DLL to this list.

B.23.2 How to achieve persistence

Set (Default) under HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\VolumeCaches\MyPersistence
to {<malicious CLSID>} Then, hijack the COM DLL (see COM hijack) matching the CLSID. E.g. HKCR
\CLSID\<BADCLSID>\InProcServer32 = <dll path>

B.23.3 Requirements

Admin privileges.

B.23.4 The achieved persistence

When the Disk Cleanup tool is launched, the DLL is loaded.

B.23.5 More information

• https://persistence-info.github.io/Data/diskcleanuphandler.html

• https://www.hexacorn.com/blog/2018/09/02/beyond-good-ol-run-key-part-86/

• https://learn.microsoft.com/en-us/windows/win32/lwef/disk-cleanup

B.24 DLL hijack

B.24.1 Origin of the technique

Windows programs can use Dynamic-Link Libraries (DLLs) to leverage functions that are used by many
programs. If the DLL used by an executable that is ran by the system can be changed to the DLL provided
by the attacker, this is called a DLL hijack.

B.24.2 How to achieve persistence

There are many flavours of DLL hijacks, including:

• DLL replacement (simply replace the DLL file)

• DLL search order hijack (if the full path is not specified)

• Phantom DLL hijack (when a non-existing DLL is loaded)

But there are many more.

B.24.3 Requirements

All techniques involve writing to a DLL file.

B.24.4 The achieved persistence

Runs when the DLL is loaded by an application. Non-destructive, because one can still perform the intended
funcions by DLL proxying.

B.24.5 More information

• https://www.wietzebeukema.nl/blog/hijacking-dlls-in-windows

47

https://persistence-info.github.io/Data/diskcleanuphandler.html
https://www.hexacorn.com/blog/2018/09/02/beyond-good-ol-run-key-part-86/
https://learn.microsoft.com/en-us/windows/win32/lwef/disk-cleanup
https://www.wietzebeukema.nl/blog/hijacking-dlls-in-windows

B.25 ErrorHandler cmd Hijack

B.25.1 Origin of the technique

Some executables under C:\WINDOWS\system32\oobe\ use a custom error handler command when they
experience an error.

B.25.2 How to achieve persistence

Write a command to c:\WINDOWS\Setup\Scripts\ErrorHandler.cmd

B.25.3 Requirements

Admin privileges to write to the file.

B.25.4 The achieved persistence

When some programs in the oobe directory crash (e.g. run setup.exe w/o any arguments). The command
will run with user privileges.

B.25.5 More information

• https://www.hexacorn.com/blog/2022/01/16/beyond-good-ol-run-key-part-135/

B.26 Explorer tools

B.26.1 Origin of the technique

Windows has various ”explorer” tools that are launched automatically or by some user actions. Some example
are the Cleanup tool and the Backup tool.

B.26.2 How to achieve persistence

By replacing the (Default) value of one or multiple of the explorer tools in the registry (under HKLM
\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\MyComputer), you can start your own exe-
cutables instead. The tools we were able to replace are ”cleanup”, ”backup”, and ”defragmentation”. You
can also give parameters to the executable.

B.26.3 Requirements

Administrator rights are required.

B.26.4 The achieved persistence

Sometimes executes automatically, otherwise for example when clicking disk cleanup (Under C drive settings).

B.26.5 More information

• https://persistence-info.github.io/Data/explorertools.html

• https://www.hexacorn.com/blog/2017/01/18/beyond-good-ol-run-key-part-55/

• https://github.com/SigmaHQ/sigma/blob/1a57509e858674a5acf297061d64b3ffe59e6b3d/rules/windows/

registry/registry_set/registry_set_persistence_mycomputer.yml

B.27 Filter handlers

B.27.1 Origin of the technique

Windows allows for custom filters (ifilters) for files with custom file extensions. When searching in the
Windows menu, these filters are applied.

48

https://www.hexacorn.com/blog/2022/01/16/beyond-good-ol-run-key-part-135/
https://persistence-info.github.io/Data/explorertools.html
https://www.hexacorn.com/blog/2017/01/18/beyond-good-ol-run-key-part-55/
https://github.com/SigmaHQ/sigma/blob/1a57509e858674a5acf297061d64b3ffe59e6b3d/rules/windows/registry/registry_set/registry_set_persistence_mycomputer.yml
https://github.com/SigmaHQ/sigma/blob/1a57509e858674a5acf297061d64b3ffe59e6b3d/rules/windows/registry/registry_set/registry_set_persistence_mycomputer.yml

B.27.2 How to achieve persistence

Register a COM DLL for a file extension. Then, add the CLSID under (Default) in HKLM\Software\Classes
\.<some extension>\Handler

B.27.3 Requirements

Administrator privileges are required to write to the registry.

B.27.4 The achieved persistence

When a new file with the extension is created, or when the file shows up in a search, the DLL is executed
with System privileges.

B.27.5 More information

• https://persistence-info.github.io/Data/ifilters.html

• https://twitter.com/0gtweet/status/1468548924600459267

B.28 Get-Variable

B.28.1 Origin of the technique

PowerShell loads the Get-Variable cmdlet when it is started.

B.28.2 How to achieve persistence

Drop %APPDATA%\Local\Microsoft\WindowsApps\Get−Variable.exe so that PowerShell will load this
cmdlet instead.

B.28.3 Requirements

User privileges are enough to place the file.

B.28.4 The achieved persistence

When the user opens PowerShell the code is executed.

B.28.5 More information

• https://blog.malwarebytes.com/threat-intelligence/2022/04/colibri-loader-combines-task-

scheduler-and-powershell-in-clever-persistence-technique/

B.29 Group policy logon script

B.29.1 Origin of the technique

You can add logon startup/logon scripts to the group policy.

B.29.2 How to achieve persistence

The registry paths are

• HKCU\Software\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\Logon\<id>\<id>

• HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\Scripts\<id>\<id>

• HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy\State\Machine\Scripts\<id>\<
id>

49

https://persistence-info.github.io/Data/ifilters.html
https://twitter.com/0gtweet/status/1468548924600459267
https://blog.malwarebytes.com/threat-intelligence/2022/04/colibri-loader-combines-task-scheduler-and-powershell-in-clever-persistence-technique/
https://blog.malwarebytes.com/threat-intelligence/2022/04/colibri-loader-combines-task-scheduler-and-powershell-in-clever-persistence-technique/

At the registry key, write:

• Script: the executable

• Parameters: arguments for the executable

The added items are not visible in the UI.

B.29.3 Requirements

Admin privileges to write to the registry.

B.29.4 The achieved persistence

Runs on startup/logon as system.

B.29.5 More information

We did not find earlier descriptions of this technique.

B.30 hhctrl

B.30.1 Origin of the technique

DLL hijack for opening chm files.

B.30.2 How to achieve persistence

Replace CLSID entry HKLM\SOFTWARE\Classes\CLSID\{52A2AAAE−085D−4187−97EA−8C30DB990436
}\InprocServer32 with your own DLL.

B.30.3 Requirements

TrustedInstaller privileges.

B.30.4 The achieved persistence

When a .chm file is openend, you get a user privileges process.

B.30.5 More information

• https://www.hexacorn.com/blog/2018/04/23/beyond-good-ol-run-key-part-77/

B.31 Image file execution options

B.31.1 Origin of the technique

Windows allows for starting a debugger instead of the original exe file. The idea is that the debugger can
then launch the original exe file as child.

B.31.2 How to achieve persistence

Add HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options\{name of the executable} And add value: ”Debugger”=”{full path to the debugger}”

B.31.3 Requirements

Administrator privileges are required to write to the registry.

50

https://www.hexacorn.com/blog/2018/04/23/beyond-good-ol-run-key-part-77/

B.31.4 The achieved persistence

When the targeted executable is started, the defined ’debugger’ is started instead. The same privileges that
the original executable would get are given to the ’debugger’.

B.31.5 More information

• https://persistence-info.github.io/Data/ifeo.html

• https://blog.malwarebytes.com/101/2015/12/an-introduction-to-image-file-execution-options/

• https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-

hidden-from-autoruns-exe/

• https://attack.mitre.org/techniques/T1546/012/

B.32 iphlpapi DLL

B.32.1 Origin of the technique

OneDrive and Teams load the iphlpapi . dll DLL if you place it next to them (i.e. in AppData\Local\
Microsoft\<OneDrive/Teams>)

B.32.2 How to achieve persistence

Place iphlpapi . dll next to them (i.e. in AppData\Local\Microsoft\<OneDrive/Teams>)

B.32.3 Requirements

User privileges to write the file.

B.32.4 The achieved persistence

Runs when OneDrive or Teams is started.

B.32.5 More information

• https://blog.cyble.com/2022/07/27/targeted-attacks-being-carried-out-via-dll-sideloading/

• https://github.com/SigmaHQ/sigma/blob/bc2188c72bc89469bf425ee3b1a174d58f5586ed/rules/windows/

file_event/file_event_win_iphlpapi_dll_sideloading.yml

B.33 KeePass plugin

B.33.1 Origin of the technique

Keepass is a password manager and allows the installation of 3rd party plugins.

B.33.2 How to achieve persistence

Place a custom DLL in the plugin folder (C:\Program Files (x86)\KeePass Password Safe 2\Plugins)

B.33.3 Requirements

Keepass needs to be installed and system privileges are required.

B.33.4 The achieved persistence

User privileges, runs when Keepass starts.

51

https://persistence-info.github.io/Data/ifeo.html
https://blog.malwarebytes.com/101/2015/12/an-introduction-to-image-file-execution-options/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://attack.mitre.org/techniques/T1546/012/
https://blog.cyble.com/2022/07/27/targeted-attacks-being-carried-out-via-dll-sideloading/
https://github.com/SigmaHQ/sigma/blob/bc2188c72bc89469bf425ee3b1a174d58f5586ed/rules/windows/file_event/file_event_win_iphlpapi_dll_sideloading.yml
https://github.com/SigmaHQ/sigma/blob/bc2188c72bc89469bf425ee3b1a174d58f5586ed/rules/windows/file_event/file_event_win_iphlpapi_dll_sideloading.yml

B.33.5 More information

• https://medium.com/@two06/persistence-with-keepass-part-1-d2e705326aa6

B.34 KeePass triggers

B.34.1 Origin of the technique

Keepass allow automation for the user through ’triggers’.

B.34.2 How to achieve persistence

Add a trigger that executes a command by writing to the Keepass config file. (%appdata%\KeePass\KeePass
.config.xml)

B.34.3 Requirements

User privileges are enough. Keepass should be closed when you write to the file.

B.34.4 The achieved persistence

You can link execution to a KeePass event, such as starting up. User privileges.

B.34.5 More information

• https://medium.com/@two06/persistence-with-keepass-part-2-3e328b24e117

B.35 lnk shortcuts

B.35.1 Origin of the technique

In windows you can create shortcuts to executables. An example are most icons on the desktop.

B.35.2 How to achieve persistence

Change a link file to either open your own file, or add tags to the execution so it will execute your own code
besides the original application.

B.35.3 Requirements

Only user privileges are required.

B.35.4 The achieved persistence

The malicious code is executed when the user opens the link file.

B.35.5 More information

• https://securityintelligence.com/posts/grandoreiro-malware-now-targeting-banks-in-spain/

• https://www.ired.team/offensive-security/persistence/modifying-.lnk-shortcuts

B.36 LSA Authentication Packages

B.36.1 Origin of the technique

LSA authentication packages are used when the user authenticates itself. It loads DLLs that are specified in
the registry, which can be leveraged.

52

https://medium.com/@two06/persistence-with-keepass-part-1-d2e705326aa6
https://medium.com/@two06/persistence-with-keepass-part-2-3e328b24e117
https://securityintelligence.com/posts/grandoreiro-malware-now-targeting-banks-in-spain/
https://www.ired.team/offensive-security/persistence/modifying-.lnk-shortcuts

B.36.2 How to achieve persistence

HKLM\SYSTEM\CurrentControlSet\Control\Lsa\ with the key value of ”Authentication Packages”=<target
dll>. The DLL should be placed in System32.

B.36.3 Requirements

Admin privileges.

B.36.4 The achieved persistence

Runs with user privileges when the user authenticates him or herself.

B.36.5 More information

• https://persistence-info.github.io/Data/authenticationpackages.html

• https://attack.mitre.org/techniques/T1547/002/

B.37 LSA extension

B.37.1 Origin of the technique

LSA (Local Security Authority extension) authentication packages are used when the user authenticates
itself. It loads DLLs that are specified in the registry, which can be leveraged.

B.37.2 How to achieve persistence

Add your own DLL to the list in HKLM\SYSTEM\CurrentControlSet\Control\LsaExtensionConfig\LsaSrv,
key Extensions. Place your DLL ins C:\Windows\System32

B.37.3 Requirements

To write to the registry, you need TrustedInstaller privileges.

B.37.4 The achieved persistence

Runs when the user authenticates, e.g. when logging in.

B.37.5 More information

• https://persistence-info.github.io/Data/lsaaextension.html

B.38 LSA Notification packages

B.38.1 Origin of the technique

This technique has the same origin as other LSA techniques. This time it is executed when you change your
password and at boot.

B.38.2 How to achieve persistence

Write to the key Notification packages in HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Write your
DLL to System32.

B.38.3 Requirements

Admin privileges.

53

https://persistence-info.github.io/Data/authenticationpackages.html
https://attack.mitre.org/techniques/T1547/002/
https://persistence-info.github.io/Data/lsaaextension.html

B.38.4 The achieved persistence

Executes when you change your password, but also on boot. System privileges.

B.38.5 More information

• https://persistence-info.github.io/Data/passwordfilter.html

B.39 LSA Security packages

B.39.1 Origin of the technique

Same origin as the other LSA techniques.

B.39.2 How to achieve persistence

Write DLL name to HKLM\SYSTEM\CurrentControlSet\Control\Lsa\, key Security Packages or HKLM
\SYSTEM\CurrentControlSet\Control\Lsa\OSConfig\, key Security Packages and place the DLL in sys-
tem32

B.39.3 Requirements

Admin priviliges.

B.39.4 The achieved persistence

When the user authenticates himself.

B.39.5 More information

• https://attack.mitre.org/techniques/T1547/005/

B.40 MPNotify winlogon

B.40.1 Origin of the technique

Winlogon loads various executables and DLLs from the registry.

B.40.2 How to achieve persistence

Add an execuable to registry key: HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon
Options are:

• Notify - points to notification package DLLs that handle Winlogon events

• Userinit - points to userinit.exe, the user initialization program executed when a user logs on.

• Shell - points to explorer.exe, the system shell executed when a user logs on.

• mpnotify - can point to an exe.

B.40.3 Requirements

Administrator privileges to write to the registry.

B.40.4 The achieved persistence

For Userinint, the executable is loaded on logon, and should be executed for 30 seconds.

54

https://persistence-info.github.io/Data/passwordfilter.html
https://attack.mitre.org/techniques/T1547/005/

B.40.5 More information

• https://persistence-info.github.io/Data/mpnotify.html

• https://attack.mitre.org/techniques/T1547/004/

• https://web.archive.org/web/20201006201906/https://blogs.blackberry.com/en/2013/09/windows-

registry-persistence-part-2-the-run-keys-and-search-order

B.41 Natural Language DLLs

B.41.1 Origin of the technique

SearchIndexer.exe loads some DLLs specified in the registry.

B.41.2 How to achieve persistence

Under any of the languages in HKLM\System\CurrentControlSet\Control\ContentIndex\Language\<some
language> set the value of either StemmerDLLPathOverride or WBDLLPathOverride to the location of your
DLL.

B.41.3 Requirements

Admin privileges to write to the registry.

B.41.4 The achieved persistence

SYSTEM privileges at log in.

B.41.5 More information

• https://persistence-info.github.io/Data/naturallanguage6.html

• https://www.hexacorn.com/blog/2018/12/30/beyond-good-ol-run-key-part-98/

B.42 NET DbgManagedDebugger

B.42.1 Origin of the technique

You can set the Just-In-Time debugger for .NET applications.

B.42.2 How to achieve persistence

Set the DbgManagedDebugger value to your executable plus parameters. The value can be found under:

• HKEY LOCAL MACHINE\SOFTWARE\Wow6432Node\Microsoft\.NETFramework

• HKEY LOCAL MACHINE\SOFTWARE\Microsoft\.NETFramework\

B.42.3 Requirements

Administrator privileges to change the registry.

B.42.4 The achieved persistence

When a .NET application errors or crashes, the executable will be ran.
It did not work on my system

55

https://persistence-info.github.io/Data/mpnotify.html
https://attack.mitre.org/techniques/T1547/004/
https://web.archive.org/web/20201006201906/https://blogs.blackberry.com/en/2013/09/windows-registry-persistence-part-2-the-run-keys-and-search-order
https://web.archive.org/web/20201006201906/https://blogs.blackberry.com/en/2013/09/windows-registry-persistence-part-2-the-run-keys-and-search-order
https://persistence-info.github.io/Data/naturallanguage6.html
https://www.hexacorn.com/blog/2018/12/30/beyond-good-ol-run-key-part-98/

B.42.5 More information

• https://www.hexacorn.com/blog/2013/09/19/beyond-good-ol-run-key-part-4/

• https://learn.microsoft.com/en-us/visualstudio/debugger/debug-using-the-just-in-time-debugger?

view=vs-2022

B.43 Netsh Helper DLL

B.43.1 Origin of the technique

Netsh is a Windows tool that is used to perform operations on the network configuration. Netsh loads some
DLLs from the registry.

B.43.2 How to achieve persistence

Create a new registry key under HKLM\SOFTWARE\Microsoft\Netsh and make it point to a proper Netsh
Helper DLL.

B.43.3 Requirements

Admin privileges to write to the registry.

B.43.4 The achieved persistence

Executed when Netsh is ran. On some systems this happens at boot. User privileges.

B.43.5 More information

• https://pentestlab.blog/2019/10/29/persistence-netsh-helper-dll/

• https://attack.mitre.org/techniques/T1546/007/

B.44 NET startup hooks

B.44.1 Origin of the technique

.NET core applications load a DLL at the start if the DOTNET STARTUP HOOKS environment variable
is set.

B.44.2 How to achieve persistence

Write the location of the malicious DLL to the Environment DOTNET STARTUP HOOKS registry key.
You can store environment variables in the registry under HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet
\Control\Session Manager\Environment or HKEY CURRENT USER\Environment.

B.44.3 Requirements

User privileges if you want to set only for the current user. The format of the DLL is special, and has to be
written in C#.

B.44.4 The achieved persistence

Some .NET core application has to launch.

B.44.5 More information

• https://persistence-info.github.io/Data/dotnetstartuphooks.html

• https://github.com/dotnet/runtime/blob/main/docs/design/features/host-startup-hook.md

56

https://www.hexacorn.com/blog/2013/09/19/beyond-good-ol-run-key-part-4/
https://learn.microsoft.com/en-us/visualstudio/debugger/debug-using-the-just-in-time-debugger?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/debugger/debug-using-the-just-in-time-debugger?view=vs-2022
https://pentestlab.blog/2019/10/29/persistence-netsh-helper-dll/
https://attack.mitre.org/techniques/T1546/007/
https://persistence-info.github.io/Data/dotnetstartuphooks.html
https://github.com/dotnet/runtime/blob/main/docs/design/features/host-startup-hook.md

B.45 Path interception

B.45.1 Origin of the technique

When running a command from the command line, it looks up the executable through the order of the PATH
environment variable.

B.45.2 How to achieve persistence

Change the Path env variable to include a directory that the you also put an executable in. You can
store environment variables in the registry under HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet
\Control\Session Manager\Environment or HKEY CURRENT USER\Environment

B.45.3 Requirements

User privileges to set the registry for the current user.

B.45.4 The achieved persistence

When cmd or powershell starts the targeted executable, it will start your executable instead.

B.45.5 More information

• https://attack.mitre.org/techniques/T1574/007/

B.46 PowerShell profile

B.46.1 Origin of the technique

PowerShell has the option to execute a ’profile’ script every time it starts.

B.46.2 How to achieve persistence

Place a powershell script in any of the following locations:

• $PSHOME\Profile.ps1
• $PSHOME\Microsoft.PowerShell profile.ps1

• $Home\[My]Documents\[Windows]PowerShell\Profile.ps1
• $Home\[My]Documents\[Windows]PowerShell\Microsoft.PowerShell profile.ps1

PSHOME is in C:\Windows\System32\WindowsPowerShell\v1.0\ by default.

B.46.3 Requirements

For the user directory, no elevated privileges are required.

B.46.4 The achieved persistence

The script is executed when PowerShell starts.

B.46.5 More information

• https://persistence-info.github.io/Data/powershellprofile.html

• https://attack.mitre.org/techniques/T1546/013/

57

https://attack.mitre.org/techniques/T1574/007/
https://persistence-info.github.io/Data/powershellprofile.html
https://attack.mitre.org/techniques/T1546/013/

B.47 Print monitors

B.47.1 Origin of the technique

Print monitors are part of the Winodws operating system and convert print jobs to proper formats. The
Windows Print Spooler Service or spoolv.exe allows to add DLLs as monitors.

B.47.2 How to achieve persistence

To do it manually, write to registry. Under HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors,
create a new key, with a subkey Driver containing the DLL location.

B.47.3 Requirements

Administrator privileges required. Works with a regular DLL file.

B.47.4 The achieved persistence

The DLL is load on boot with System privileges.

B.47.5 More information

• https://stmxcsr.com/persistence/print-monitor.html

• https://cocomelonc.github.io/tutorial/2022/06/19/malware-pers-8.html

• https://docs.microsoft.com/en-us/windows/win32/printdocs/addmonitor

• https://attack.mitre.org/techniques/T1547/010/

B.48 Print processors

B.48.1 Origin of the technique

Some drivers the are used for printing.

B.48.2 How to achieve persistence

Create a subkey under HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Control\Print\Environments
\%ARCHITECTURE%\Print Processors\, at a subkey called Driver, with the name of the DLL. The archi-
tecture is for example Windows x64. Place the DLL in C:\Windows\system32\spool\PRTPROCS\x64

B.48.3 Requirements

Administrator privileges are required to write to the registry and to the file. Generic DLL seems to suffice.

B.48.4 The achieved persistence

Runs at boot, as SYSTEM.

B.48.5 More information

• https://stmxcsr.com/persistence/print-processor.html

• https://attack.mitre.org/techniques/T1547/012/

B.49 RDP startup program

B.49.1 Origin of the technique

When connecting to a Windows machine using RDP, Windows will launch rdpclip, which is used for copying
between the remote and local machine. We can hijack this program.

58

https://stmxcsr.com/persistence/print-monitor.html
https://cocomelonc.github.io/tutorial/2022/06/19/malware-pers-8.html
https://docs.microsoft.com/en-us/windows/win32/printdocs/addmonitor
https://attack.mitre.org/techniques/T1547/010/
https://stmxcsr.com/persistence/print-processor.html
https://attack.mitre.org/techniques/T1547/012/

B.49.2 How to achieve persistence

For the registry key HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server\Wds\rdpwd set StartupPrograms
to your executable.

B.49.3 Requirements

Administrator privileges to write to the registry.

B.49.4 The achieved persistence

Runs everytime a RDP connection is made.

B.49.5 More information

• https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist

• https://www.cyberark.com/resources/threat-research-blog/attacking-rdp-from-inside

B.50 RunOnceEx depend dll

B.50.1 Origin of the technique

Another registry key that windows provides for running processes at log in.

B.50.2 How to achieve persistence

Add a DLL path to key some val under HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnceEx
\<some val>\Depend.

B.50.3 Requirements

Administrator privileges are required to write to the registry.

B.50.4 The achieved persistence

Runs at the next boot.

B.50.5 More information

• https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/

B.51 RunOnceEx dll

B.51.1 Origin of the technique

Another registry key that windows provides for running processes at log in.

B.51.2 How to achieve persistence

First register the DLL (i.e. add to HHLM\SOFTWARE\Classes\CLSID\<UUID>\) Add a DLL path to
HKLM\Software\Microsoft\Windows\CurrentVersion\RunOnceEx\<some val>.

B.51.3 Requirements

Administrator privileges are required.

B.51.4 The achieved persistence

Runs at the next boot.

59

https://www.cyberark.com/resources/threat-research-blog/persistence-techniques-that-persist
https://www.cyberark.com/resources/threat-research-blog/attacking-rdp-from-inside
https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/

B.51.5 More information

• https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/

B.52 RunOnceEx exe

B.52.1 Origin of the technique

Another registry key that windows provides for running processes at log in.

B.52.2 How to achieve persistence

Add a command string to Software\Microsoft\Windows\CurrentVersion\RunOnceEx\<some val>

B.52.3 Requirements

Administrator privileges are required.

B.52.4 The achieved persistence

Runs at the next boot.

B.52.5 More information

• https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/

B.53 Run registry keys

B.53.1 Origin of the technique

Windows has some registry that are meant for running software at log in.

B.53.2 How to achieve persistence

Place an executable (+ parameters) in one of the following registry keys:

• HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
• HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunOnce

• HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
• HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run
• HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

• HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

B.53.3 Requirements

Writing to the HKCU keys require user privileges, and the HKLM require administrator privileges.

B.53.4 The achieved persistence

Runs on login (HKLM for all user, HKCU only the current user). Runonce is only executed only the first
boot and then removed.

B.53.5 More information

• https://attack.mitre.org/techniques/T1547/001/

60

https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/
https://oddvar.moe/2018/03/21/persistence-using-runonceex-hidden-from-autoruns-exe/
https://attack.mitre.org/techniques/T1547/001/

B.54 Screensaver

B.54.1 Origin of the technique

You can set up a custom screensaver in windows.

B.54.2 How to achieve persistence

Write the following values to HKEY CURRENT USER\Control Panel\Desktop\:

• ScreenSaveActive = 1 (enables the screensaver)

• SCRNSAVE.EXE = path to exe

• ScreenSaveTimeOut = 5 (time in seconds that the user is inactive before the screensaver is executed).

B.54.3 Requirements

Only user privileges required.

B.54.4 The achieved persistence

Runs the executable when the user has been inactive for some time. When the user becomes active again, the
process is stopped. ”If screensavers are disabled by group policy, this method cannot be used for persistence.”

B.54.5 More information

• https://attack.mitre.org/techniques/T1546/002/

B.55 Server Level Plugin DLL

B.55.1 Origin of the technique

Windows server, when set up as DNS server, has a DLL to handle unresolved URLs.

B.55.2 How to achieve persistence

Set the value of ServerLevelPluginDll under HKLM\SYSTEM\CurrentControlSet\Services\DNS\Parameters
to the path of your DLL.

B.55.3 Requirements

This works on Windows server machines. Administrator and DNSAdmin privileges required.

B.55.4 The achieved persistence

Runs at boot when the DLL is loaded.

B.55.5 More information

• https://persistence-info.github.io/Data/serverlevelplugindll.html

B.56 SilentProcessExit

B.56.1 Origin of the technique

Windows has an option to monitor a running process.

61

https://attack.mitre.org/techniques/T1546/002/
https://persistence-info.github.io/Data/serverlevelplugindll.html

B.56.2 How to achieve persistence

You can set what process monitor you want to run for a certain program. You have to perform 3 actions: Set
GlobalFlag in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options
\<exe name>.exe to 512 (dword) Set ReportingMode under HKLM\SOFTWARE\Microsoft\Windows NT\
CurrentVersion\SilentProcessExit\<exe name>.exe to 1 (dword) Set MonitorProcess under HKLM\SOFTWARE
\Microsoft\Windows NT\CurrentVersion\SilentProcessExit\<exe name>.exe to the path of the executable.
You can add parameters.

B.56.3 Requirements

Administrator privileges are required to write to the registry.

B.56.4 The achieved persistence

Runs when the targeted executable is launched.

B.56.5 More information

• https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-

hidden-from-autoruns-exe/

• https://persistence-info.github.io/Data/silentexitmonitor.html

B.57 Startup folder add

B.57.1 Origin of the technique

Windows has some folders for which it will execute the contents on log in. You can set the folders in the
registry.

B.57.2 How to achieve persistence

Change one of the following registry keys (name Startup) to your own path:

• HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders

• HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders
• HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders

• HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders

Place an executable in one of these folders.

B.57.3 Requirements

If you only want to execute it for the current user, user privileges are enough to place the file and write to
the registry.

B.57.4 The achieved persistence

Runs at log in. Downside is that the original startup folder is not run anymore.

B.57.5 More information

• https://attack.mitre.org/techniques/T1547/001/

• https://persistence-info.github.io/Data/startupfolder.html

62

https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://oddvar.moe/2018/04/10/persistence-using-globalflags-in-image-file-execution-options-hidden-from-autoruns-exe/
https://persistence-info.github.io/Data/silentexitmonitor.html
https://attack.mitre.org/techniques/T1547/001/
https://persistence-info.github.io/Data/startupfolder.html

B.58 Startup folder

B.58.1 Origin of the technique

Windows has some folder for which it will execute the contents on log in.

B.58.2 How to achieve persistence

Place an executable in on of these folders:

Windows NT 6 .0 − 10 .0 / Al l Users
%SystemDrive%\ProgramData\Microso f t \Windows\ Star t Menu\Programs\Startup

Windows NT 6 .0 − 10 .0 / Current User
%SystemDrive%\Users\%UserName%\AppData\Roaming\Microso f t \Windows\ Star t Menu\

Programs\Startup

Windows NT 5 .0 − 5 .2
%SystemDrive%\Documents and Se t t i n g s \Al l Users \ Star t Menu\Programs\Startup

Windows NT 3 .5 − 4 .0
%SystemDrive%\WINNT\ P r o f i l e s \Al l Users \ Star t Menu\Programs\Startup

B.58.3 Requirements

If you only want to execute it for the current user, user privileges are enough to place the file.

B.58.4 The achieved persistence

Runs at log in.

B.58.5 More information

• https://attack.mitre.org/techniques/T1547/001/

• https://persistence-info.github.io/Data/startupfolder.html

B.59 Task scheduler

B.59.1 Origin of the technique

The Windows operating system has a feature that let;s you schedule tasks. We can use this to schedule the
execution of arbitrary commands.

B.59.2 How to achieve persistence

Scheduled taks tasks are stored in the registry (see https://labs.withsecure.com/publications/scheduled-
task-tampering).

• HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Schedule\TaskCache\Tasks\<name>

• HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Schedule\TaskCache\Plain\{GUID}

Note that some task information is also stored in C:\Windows\System32\Tasks, but making changes to
these file does not have any effect.

Scheduling a task can also be achieved through a COM object

63

https://attack.mitre.org/techniques/T1547/001/
https://persistence-info.github.io/Data/startupfolder.html
https://labs.withsecure.com/publications/scheduled-task-tampering).
https://labs.withsecure.com/publications/scheduled-task-tampering).

B.59.3 Requirements

To write to the tasks registry, you need to be System. I.e., administrator is not enough. However, when not
writing directly to the registry but instead using the task scheduler, user privileges are enough.

B.59.4 The achieved persistence

A task can be scheduled to be executed at boot, at log in, every time frame and more. The privileges can be
set to system.

B.59.5 More information

• https://docs.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page

• https://persistence-info.github.io/Data/taskscheduler.html

• https://www.fuzzysecurity.com/tutorials/19.html

• https://stmxcsr.com/persistence/scheduled-tasks.html

B.60 Time Providers

B.60.1 Origin of the technique

Windows uses DLLs for time synchronization. You can add a custom time provider.

B.60.2 How to achieve persistence

Add a new key under HKEY LOCAL MACHINE\System\CurrentControlSet\Services\W32Time\TimeProviders
\. Then set:

• DllName - name or location of the DLL

• Enabled - 1 (DWORD)

• InputProvider - 1 (DWORD)

B.60.3 Requirements

Administrator privileges are required to write to the registry.

B.60.4 The achieved persistence

It runs the DLL when the Windows Time service is started, e.g. at boot.

B.60.5 More information

• https://attack.mitre.org/techniques/T1547/003/

• https://learn.microsoft.com/en-us/windows/win32/sysinfo/time-provider?redirectedfrom=MSDN

• https://stmxcsr.com/persistence/time-provider.html

B.61 TS Initial Program

B.61.1 Origin of the technique

Windows allows for setting a program that will always run when a RDP connection is made.

64

https://docs.microsoft.com/en-us/windows/win32/taskschd/task-scheduler-start-page
https://persistence-info.github.io/Data/taskscheduler.html
https://www.fuzzysecurity.com/tutorials/19.html
https://stmxcsr.com/persistence/scheduled-tasks.html
https://attack.mitre.org/techniques/T1547/003/
https://learn.microsoft.com/en-us/windows/win32/sysinfo/time-provider?redirectedfrom=MSDN
https://stmxcsr.com/persistence/time-provider.html

B.61.2 How to achieve persistence

Set InitialProgram to your executable, and fInheritInitialProgram to 1 (DWORD) in one of the following
registry keys:

• HKLM\SOFTWARE\Policies\Microsoft\Windows NT\Terminal Services

• HKCU\SOFTWARE\Policies\Microsoft\Windows NT\Terminal Services

• HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server\WinStations\RDP−Tcp

B.61.3 Requirements

Only user privileges for the HKCU key.

B.61.4 The achieved persistence

Run when a RDP connection is made.

B.61.5 More information

• https://persistence-info.github.io/Data/tsinitialprogram.html

B.62 Universal App URI

B.62.1 Origin of the technique

Windows uses URIs to locate among other Universal apps, such as the Narrator Feedback-Hub.

B.62.2 How to achieve persistence

When using a Universal App URI, Windows will look for the matching name under HKCU\Software\Classes
\<name (e.g. AppXysdfafajwklf34234lskfnsklf>)\Shell\open\command. From this entry, remove the Dele-
gateExecute, and set (Default) to an executable with parameters. Other options are adding a new entry
under classes, or changing the DelegateExecute to a valid CLSID.

B.62.3 Requirements

User privileges.

B.62.4 The achieved persistence

Executes when the URI is resolved and followed. For the example above, it is when the user uses the narrator
feedback hub.

B.62.5 More information

• https://github.com/giuliocomi/backoori/

• https://giuliocomi.blogspot.com/2019/10/abusing-windows-10-narrators-feedback.html

• https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rules/windows/

registry/registry_event/registry_event_narrator_feedback_persistance.yml

B.63 User Init Mpr Logon Script

B.63.1 Origin of the technique

You can set up a script that will be executed on log in by Windows.

65

https://persistence-info.github.io/Data/tsinitialprogram.html
https://github.com/giuliocomi/backoori/
https://giuliocomi.blogspot.com/2019/10/abusing-windows-10-narrators-feedback.html
https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rules/windows/registry/registry_event/registry_event_narrator_feedback_persistance.yml
https://github.com/SigmaHQ/sigma/blob/b4cb047ae720b37b11f8506de7965dc29d5920be/rules/windows/registry/registry_event/registry_event_narrator_feedback_persistance.yml

B.63.2 How to achieve persistence

Set the value of UserInitMprLogonScript in you environment variables. You can do it either in HKCU\
Environment or in HKEY LOCAL MACHINE\SYSTEM\ControlSet001\Control\Session Manager\Environment
for all users.

B.63.3 Requirements

User privileges.

B.63.4 The achieved persistence

Executed the command on login.

B.63.5 More information

• https://attack.mitre.org/techniques/T1037/001/

B.64 Windows Error Reporting Debugger

B.64.1 Origin of the technique

Windows Error Report (WER) allows to automatically attach a debugger when a program hangs.

B.64.2 How to achieve persistence

Write the location of the executable to the key Debugger in HKLM\Software\Microsoft\Windows\Windows
Error Reporting\Hangs\

B.64.3 Requirements

Administrator privileges are required to write to the registry.

B.64.4 The achieved persistence

Executes when a program hangs, but does not work for me.

B.64.5 More information

• https://www.hexacorn.com/blog/2019/09/20/beyond-good-ol-run-key-part-116/

B.65 Windows Load

B.65.1 Origin of the technique

When Explorer starts at boot, it executes a binary that is defined in the registry HKCU\Software\Microsoft
\Windows NT\CurrentVersion\Windows under the Load key.

B.65.2 How to achieve persistence

Set the Load key to the location of your executable.

B.65.3 Requirements

User privileges.

B.65.4 The achieved persistence

Executes when you open Explorer.

66

https://attack.mitre.org/techniques/T1037/001/
https://www.hexacorn.com/blog/2019/09/20/beyond-good-ol-run-key-part-116/

B.65.5 More information

• https://persistence-info.github.io/Data/windowsload.html

B.66 Windows services

B.66.1 Origin of the technique

Windows has Services as a feature, but they can also be used to gain persistence.

B.66.2 How to achieve persistence

Windows service settings are stored in the registry under HKLM\System\CurrentControlSet\Services You
can set the value of Start to 2 to start on boot. Another option is to add the service to one of the following
keys:

• HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

• HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunServicesOnce

• HKEY LOCAL MACHINE\Software\Microsoft\Windows\CurrentVersion\RunServices
• HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\RunServices

B.66.3 Requirements

System privileges are required.

B.66.4 The achieved persistence

When the service is set to automatic, it is started at boot and executed every interval. The spawned process
has system rights.

B.66.5 More information

• https://gtworek.github.io/PSBits/services.html

• https://cocomelonc.github.io/tutorial/2022/05/09/malware-pers-4.html

• https://attack.mitre.org/techniques/T1543/003/

B.67 Windows Telemetry

B.67.1 Origin of the technique

Windows has some telemetry functions. These are extendable through the registry.

B.67.2 How to achieve persistence

Add a key to HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags
\TelemetryController and set:

• Command to your execuable with arguments

• One or more of Maintenance, Nightly, Oobe to 1 (DWORD)

B.67.3 Requirements

Administrator privileges are required to write to the registry key.

B.67.4 The achieved persistence

Runs at least every 24 hours when nightly is set.

67

https://persistence-info.github.io/Data/windowsload.html
https://gtworek.github.io/PSBits/services.html
https://cocomelonc.github.io/tutorial/2022/05/09/malware-pers-4.html
https://attack.mitre.org/techniques/T1543/003/

B.67.5 More information

• https://www.trustedsec.com/blog/abusing-windows-telemetry-for-persistence/

• https://persistence-info.github.io/Data/telemetrycontroller.html

B.68 Windows Terminal Profile

B.68.1 Origin of the technique

Windows terminal allows to set up profiles and to start it self on user login, all through the settings file.

B.68.2 How to achieve persistence

Create a new profile in%LOCALAPPDATA%\Packages\Microsoft.WindowsTerminal 8wekyb3d8bbwe\LocalState
\settings.json:

{
” closeOnExit ” : ” g r a c e f u l ” ,
”commandline ” : ”C:\my\command . exe −w arguments ” ,
” guid ” : ”{some−guid }” ,
”hidden ” : true ,
”name” : ”mypers i s tence ”

}

Change the defaultProfile to your guid add ”startOnUserLogin”: true

B.68.3 Requirements

Windows Terminal needs to be installed. User privileges are enough.

B.68.4 The achieved persistence

Runs your command when the user logs in, or when the terminal is opened. It is destructive, as it does not
launch the normal terminal. If you opt to add opening the normal terminal to the commandline, then it will
open everytime you log in.

B.68.5 More information

• https://persistence-info.github.io/Data/windowsterminalprofile.html

B.69 Winlogon GP client-side extension

B.69.1 Origin of the technique

Group Policy Client Side Extension is a DLL that runs on the client computer.

B.69.2 How to achieve persistence

Set DllName under HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\GPExtensions
\{GUID}\ to the path of your DLL.

B.69.3 Requirements

Admin privileges are required to write to registry.

B.69.4 The achieved persistence

The DLL is loaded when a policy is applied. Should give sytem.

68

https://www.trustedsec.com/blog/abusing-windows-telemetry-for-persistence/
https://persistence-info.github.io/Data/telemetrycontroller.html
https://persistence-info.github.io/Data/windowsterminalprofile.html

B.69.5 More information

• https://persistence-info.github.io/Data/gpoextension.html

• https://docs.microsoft.com/en-us/previous-versions/windows/desktop/policy/creating-a-policy-

callback-function

• https://www.hexacorn.com/blog/2018/10/11/beyond-good-ol-run-key-part-92/

B.70 WMI Event Subscription

B.70.1 Origin of the technique

WMI stands for Windows Management Instrumentation. You can create a EventFilter which queries for a
specific event. When this even occurs, a specific action can be executed. The consumer can be CommandLi-
neEventConsumer, which allows for command execution.

B.70.2 How to achieve persistence

WMI events subsriptions are stored in the WMI repository, which can be found in %windir%\System32\
Wbem\Repository. You can write to it, but the format is not very straight forward.

B.70.3 Requirements

You need to have admin privileges. You need to write to the directory mentioned above. However, it is a
not-so-easy to understand database, so it is virtually impossible to write to it apart from using the provided
WMI API.

B.70.4 The achieved persistence

You can connect execution of any command to many events. The command will run as system.

B.70.5 More information

• https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-

part-3-wmi-event-subscription/

• http://www.fuzzysecurity.com/tutorials/19.html

• https://wumb0.in/scheduling-callbacks-with-wmi-in-cpp.html

• https://attack.mitre.org/techniques/T1546/003/

• https://stmxcsr.com/persistence/wmi-persistence.html

• https://www.eideon.com/2018-03-02-THL03-WMIBackdoors/

• https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-

Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf

69

https://persistence-info.github.io/Data/gpoextension.html
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/policy/creating-a-policy-callback-function
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/policy/creating-a-policy-callback-function
https://www.hexacorn.com/blog/2018/10/11/beyond-good-ol-run-key-part-92/
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-3-wmi-event-subscription/
https://www.mdsec.co.uk/2019/05/persistence-the-continued-or-prolonged-existence-of-something-part-3-wmi-event-subscription/
http://www.fuzzysecurity.com/tutorials/19.html
https://wumb0.in/scheduling-callbacks-with-wmi-in-cpp.html
https://attack.mitre.org/techniques/T1546/003/
https://stmxcsr.com/persistence/wmi-persistence.html
https://www.eideon.com/2018-03-02-THL03-WMIBackdoors/
https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf

	Introduction
	Contributions
	Paper Structure

	Background
	Malware Persistence
	Malware Analysis and Detection
	Static Malware Analysis
	Dynamic Malware Analysis

	Related Work
	Persistence technique taxonomy
	Persistence detection
	Semantic models

	Persistence in the wild
	Open challenges

	Classification of Persistence Techniques
	Modelling Malware Behavior
	Requirements
	Behavior Nets
	Detection rules DSL
	Examples

	Detection system design
	Implementation

	Evaluation
	Detection system validation
	Measurement of adoption

	Discussion
	Limitations
	Conclusion
	Acknowledgements
	Persistence techniques
	Persistence techniques
	Accessibility Tools Backdoor
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Active Setup
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	AeDebug registry key
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	AMSI provider
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	AppCert DLL
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	AppInit DLLs
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Application shimming
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	App paths
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	APPX
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Autodial DLL
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Autoplay handlers
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	BITS jobs
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Boot verification program
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Browser extensions
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Change default file association
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	chm helper dll
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	cmd AutoRun
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Code signing DLL
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	COM hijack
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Context Menu handler
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	COR_PROFILER
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Credential Manager DLL
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Disk Cleanup Handler
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	DLL hijack
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	ErrorHandler cmd Hijack
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Explorer tools
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Filter handlers
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Get-Variable
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Group policy logon script
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	hhctrl
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Image file execution options
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	iphlpapi DLL
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	KeePass plugin
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	KeePass triggers
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	lnk shortcuts
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	LSA Authentication Packages
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	LSA extension
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	LSA Notification packages
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	LSA Security packages
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	MPNotify winlogon
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Natural Language DLLs
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	NET DbgManagedDebugger
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Netsh Helper DLL
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	NET startup hooks
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Path interception
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	PowerShell profile
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Print monitors
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Print processors
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	RDP startup program
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	RunOnceEx depend dll
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	RunOnceEx dll
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	RunOnceEx exe
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Run registry keys
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Screensaver
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Server Level Plugin DLL
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	SilentProcessExit
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Startup folder add
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Startup folder
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Task scheduler
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Time Providers
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	TS Initial Program
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Universal App URI
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	User Init Mpr Logon Script
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Windows Error Reporting Debugger
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Windows Load
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Windows services
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Windows Telemetry
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Windows Terminal Profile
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	Winlogon GP client-side extension
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

	WMI Event Subscription
	Origin of the technique
	How to achieve persistence
	Requirements
	The achieved persistence
	More information

