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Abstract

The rise of payment details theft has led to increasing concerns regarding the security of
e-commerce platforms. For the MageCart threat family, the attacks employ e-skimmers,
which are pieces of software code that instruct clients to forward payment details to an
attacker-controlled server. They can be injected into hosting providers’ servers as HTML
tags such as script, iframe, and img. By leveraging image steganography - the technique
of hiding structured information inside images without visual perturbances - MageCart
groups can deliver e-skimmers without raising any suspicion. In this report, we system-
atically review applicable solutions in the literature and evaluate their drawbacks in the
setting of a compromised hosting provider. While promising, existing solutions in the lit-
erature present shortcomings such as lack of compatibility, adoptability or functionality
under the presence of an attacker. Based on this review, we compile a set of features for a
better solution, which we use as a foundation for designing our proposed solution - NAISS:
Network Authentication of Images to Stop e-Skimmers. Through our solution, digital signa-
tures of individual images are checked inside a server-side middlebox residing in the hosting
provider’s network to prevent the transmission of unauthorized images to clients. The sig-
natures are provided by the e-commerce platform developer prior to uploading a website to
the hosting provider. Our proof-of-concept implementation shows that NAISS is capable of
filtering 100% of present stegoimages, regardless of their novelty, while imposing a minimal
performance detriment and no client-side modifications. All of the source code material of
this project has been made publicly available on github.com/ruscatalin/NAISS.

Keywords: Image steganography, E-skimmers, MageCart, Middlebox, Digital signatures,
Network filter, E-commerce

github.com/ruscatalin/NAISS


Chapter 1

Introduction

In this report, we put forward a proposed solution for improving the authenticity of images
found on e-commerce platforms. We create this solution after a thorough investigation of
proposed solutions together with their strong and weak points, such that gaps are filled
and improvements are made upon the strong points. We evaluate our solution using au-
tomated testing on a dummy website, under varied circumstances. The following is an
introduction to the research challenge and a description of the research objectives, scope
and contribution brought by our work.

E-commerce is a continuously growing market specialised in selling goods and services
through the internet and is quickly becoming the preferred method of purchasing, especially
through periods where customers do not leave their homes such as the recent COVID-19
global pandemic [98]. An increasing number of businesses desire and enable e-commerce
capabilities to increase sales [14] and customers are opting to make online purchases more
often each year. As the driving factor of e-commerce platforms is the increase in sales and
reduced operational costs, technical security measures are often overlooked, especially for
those who outsource their platforms to web hosting providers [98]. The hosting providers’
main selling point is to ensure the availability of the stored data [11], and sadly security is
an area where they fail to invest [23], leaving hosted e-commerce platforms vulnerable to
exploits.

One type of dangerous exploit for e-commerce platforms is represented by the stealing
of payment card details from customers. MageCart is a threat family that specializes in the
theft of customer payment credentials via the use of electronic skimmers (e-skimmers) [29],
[84]. These e-skimmers are typically injected into the stored data of the hosting providers
through methods such as Cross-Site-Scripting (XSS) [19], yet more injection procedures
are being steadily developed [64]. The prevalence of MageCart attacks has been increasing
in recent years [31], [40], with numerous high-profile attacks on major companies, such as
British Airways [34]. As e-commerce continues to expand its reach, the number of victims
is likely to increase unless effective countermeasures are implemented [45].

As a response, the Federal Bureau of Investigation (FBI) of the United States of Amer-
ica has issued a warning for the rising threat posed by MageCart and the Payment Card
Industry Data Security Standard has been revised after a prolonged period of stagnation
[56]. With over 4,800 publicly reported attacks in 2020 alone [40], the proliferation of
MageCart represents a significant threat to the trust and profitability of payment plat-
forms. In order to understand how to protect against MageCart attacks, it is first crucial
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to understand the nuances of e-skimmers hiding within images.

E-skimmers deployed by MageCart are code snippets that instruct clients to forward
their entered payment details to a server controlled by the attackers [47]. E-skimmers can
be hidden inside various HTML tags, including script, iframe, form, table, and more oth-
ers1, but also inside Exchangeable Image File Format (EXIF) metadata [51], favicons [41]
or, loaded dynamically by other pieces of code [89] embedded into the web pages. However,
as these code snippets can be easily read through visual code inspection, some MageCart
groups have turned to image steganography [50] to obfuscate their code from security test-
ing tools and wary clients. Image steganography, as detailed in Section 1.1, is a technique
of hiding information within images without considerably altering their appearance. The
resulting images, henceforth referred to as stegoimages, present no obvious visual artifacts
that would indicate tampering, yet once decoded by the clients’ browsers, the embedded
code would be executed.
By embedding their e-skimmers inside stegoimages, these MageCart groups have gained
an average of three years before their state-of-the-art image steganography techniques can
be detected [67]. Unfortunately, researchers have yet to create a practical "Universal De-
tector" for stegoimages [67], [18], [26] and, as a result, it is not recommended that the
prevention of stegoimage e-skimmers rely solely on detection [96]. Hence, more effective
solutions are required to address the stegoimage e-skimmers challenge.

1.1 Terms background

For improved clarity on this topic for non-technical readers, we define the key terms nec-
essary to grasp the discussions and importance of our work.

• steganography is a procedure of hiding information in plain sight [50]. The informa-
tion can be hidden in various media such as text and sound. Historical examples of
steganography are long pieces of text where a meaningful sentence can be composed
from the first letters of each word and such will be hidden by readers not looking to
decipher any hidden meaning.

• image steganography is the steganography technique that involves hiding information
within images. For digital images, additional bits are added such that the visual
impact on the image is minimal - no significant pixel colour changes. Additionally,
information can also be hidden by overwriting inside the metadata of an image, which
is a set of data pertaining to the creation, characteristics and context of a file.

• stegoimages are the result of image steganography, where they are relatively indistin-
guishable visually from their original images. These images typically contain more
information and therefore occupy more storage space.

• steganalysis is the process of detecting and extracting the hidden information created
by a steganography technique. The extraction step does not always yield the hidden
information in full form, especially for images [67].

• code injection is the process of moving a piece of software or instruction within
another piece of software or computer system without the consent or permission of

1object, form, script, embed, ilayer, layer, style, applet, meta, img, frame, iframe, frameset, script,
table, base
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the receiving end. This is typically performed for malicious purposes, for example
forcefully instructing a database to list all its stored information.

• e-skimmers are pieces of software that effectively steal payment credentials from
online customers. The name originates from the card skimmers that can be attached
to Automated Teller Machines (ATMs) and read the magnetic strip from payment
cards. The "e" part of the name refers to "electronic", as in a skimmer that exists
solely in the digital domain.

• digital signatures are unique bit sequences that are mathematically produced from
an input (e.g., an image) and a key. The uniqueness of the resulting sequence is
strictly influenced by both the input and the key, such that even the most minimal
change to any of them will result in a uniquely different sequence.

1.2 Research Objective and Questions

The overarching research objective of this paper is to find a practical and efficient way to
prevent stegoimage e-skimmers. To this extent, we divide this objective into the following
research questions:

RQ1 What does the literature present as solutions against e-skimmers?

RQ2 How do we fill in the gaps identified in the literature?

RQ3 How does our solution compare with other solutions identified in the literature?

The first research question will be answered by performing a systematic literature
review in Chapter 2. The second research question is partially answered in Subsection 2.2.7
by referring to an ideal solution, while in Subsection 3.6.2 we showcase how our proposed
solution answers this question. A more in-detail view of the comparison of our solution
with other solutions in the literature is presented in Subsection 3.6.1, where performance,
behaviour, ease of adoption and robustness are used as evaluation criteria. By fulfilling
the research objectives in this way, we bring forward our contribution to the fight against
MageCart attacks.

1.3 Research scope

To better contextualise the contribution of our work, we need to draw the lines that define
the capabilities of this research. Namely, our proposed solution is tested against stegoimage
e-skimmers only, with a simplistic and possibly unrealistic setup that does not include mo-
bile browser usage. We do not systematically evaluate the security posture of the proposed
solution and solutions found in the literature, but we offer an opinion on that matter. We
categorise solutions in the literature based on a subjective understanding of where their
working mechanisms operate in the attack chain. For each category, general strong and
weak points are compiled, yet for each solution in particular, we mainly comment on the
weak points, so as to help create a well-documented recommendation list that addresses
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drawbacks in the literature. Finally, when performing the literature review, we attempted
to explore the boundaries, yet this goal might have been incomplete due to methodology
shortcomings. All in all, our research scope is exploratory and simplistic, while aiming to
contribute maximally to the field of e-commerce security.

1.4 Contribution

We can summarize the contribution of this work in three main points:

• We perform a comprehensive literature review on the topics related to the MageCart
threat, e-commerce implications and related solutions.

• We provide a list of seven important features for a solution against MageCart.

• We propose and implement a solution based on the list of seven features and outline
the methodology for developing a proof-of-concept for NAISS. Although restricted
to images, NAISS can be feasibly extended to include any MageCart attack vector.

• We provide a benchmark comparing NAISS with related solutions based on perfor-
mance, robustness and behaviour.

Moreover, for both the literature review and our proposed solution, we identify and
suggest future directions of improvement and research based on the identified limitations
and assumptions.

The remainder of this report is structured as follows: in Section 2.1 we showcase the
design and implementation of a semi-systematic literature review; and in Section 2.2, we
analyse the identified literature to finally compile a list of recommendations in Subsection
2.2.7; Chapter 3 details all aspects relating to our proposed solution such as the proof
of concept methodology in Section 3.4, the testing procedure along with accompanying
results and experiments in Section 3.5 and the significance of those results in Section 3.6.
We summarize the contribution and relevance of our study in Chapter 4 as well as future
research and development directions.
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Chapter 2

Literature Review

2.1 Designing the Systematic Literature Review

When conducting a literature review, one has many methodology options for doing so [39].
The chosen type is heavily influenced by aspects such as the scope and goals of the study,
the study discipline and even available time. Each type of review balances out with respect
to these aspects, exchanging a characteristic such as time for another (e.g. the extensive-
ness of explored literature).
For instance, an Umbrella Review (e.g. [78]) employs a methodology that restricts its scope
to analyzing only secondary sources, such as other literature reviews. While this approach
allows for a broad and rapid overview of the research problem and proposed interventions,
it is constrained in its ability to evaluate individual studies, and consequently, may yield
less nuanced and potentially outdated results that do not reflect the current state-of-the-
art knowledge in the field.

Conversely, a Systematic Literature Review is not restricted by a fixed timeline and
strives to undertake a thorough search of the literature, followed by a meticulous appraisal
of each individual study. This approach provides a comprehensive overview of the current
state-of-the-art knowledge, identifies gaps in the existing research, clarifies uncertainties in
the findings, and suggests practical recommendations for future research and practice.

By conducting a systematic literature review, we aim to structurally collect relevant
knowledge, filter and align it such that we obtain an extensive view of the best available
information. Furthermore, the synthesis of this information shall yield actionable and
practical insights on how to tackle the challenge of MageCart e-skimmers hiding within
images. The structured workflow of this type of literature review shall ensure that the
scientific standards and procedures are taken to the core of the process.

2.1.1 Methodology

Our Semi-Systematic Literature Review entails several stages (refer to Figure 2.1). Firstly,
we identify relevant keywords aligned with RQ1 to facilitate comprehensive exploration of
the topic area. Next, we perform a search using two distinct techniques (i.e., programmatic
and manual) utilizing these keywords. Subsequently, we scrutinize and sift through the
outputs using filtering protocols to obtain a batch of pertinent and high-quality literature.
Lastly, we examine and classify the filtered literature, synthesizing its content to address
RQ2. The systematic workflow followed in our review assures that the entire process is
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conducted with precision and rigor.

Figure 2.1: Overview of the literature review process

Search terms

The selected search terms were chosen to enable us to conduct an exhaustive exploration
of the literature, seeking relevant solutions that address the intricate issue of e-skimmers,
which is further compounded by the limited research on this specific niche topic, partic-
ularly in the context of image steganography. Owing to the multidimensional nature of
the problem, potential solutions can be located in several areas of interest (e.g., prevention
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of code injection, secure transmission sanitization, robust web server protection, and en-
hanced content integrity). To cover the boundaries of the literature through these areas of
interest, we designed our terms to be short and generic in order to generate a large number
of hits, but to sometimes also include keywords (e.g., e-commerce, e-skimmer) that might
steer the results towards works related to our topic. Therefore, we have employed the
following search terms (parentheses indicate interchangeable terms):

• ”blocking image steganography e-commerce"

• ”(malicious/compromised/untrusted) hosting providers e-commerce"

• ”(e-skimmer/magecart) defense e-commerce"

• ”(image/html) authentication"

• ”end to end (integrity/authenticity) e-commerce"

• ”secure web application host"

• ”secure code (distribution/poisoning)"

• ”credential sniffing"

• ”web skimmer filter"

• ”code injection (defense/prevention)"

We believe better keywords can be compiled for this purpose, yet the search hits yielded,
combined with deeper searching based on cited and citing works resulted in a satisfactory
coverage of the literature boundaries.

Search Databases

In order to systematically retrieve relevant works on the topic, the appropriate research
databases need to be queried. To this extent, and to homogenise the queries, the search-
ing is performed solely through the largest database aggregator as of the date of writing,
Google Scholar.

The search process involves the use of both programmatic and manual approaches. The
distribution of the selected works across the publishing years and databases is depicted in
Figure 2.2 and Figure 2.3, respectively. Notably, Figure 2.2 reveals that no works were
selected for the time frames of 2013-2015 and 2017-2018, despite yielding results during
the initial search. However, the works from these time frames were discarded during the
filtering process.

In Figure 2.3 we observe that the databases with the most relevant selected works
are IEEE, Google Scholar and ACM. The Google Scholar category here is comprised of
works that cannot be found in web sources where querying is available - and so the sole
query database to reach those is Google Scholar or other aggregators. Apart from these
databases, we see a rather uniform and extended distribution, covering 11 other research
and patent databases.
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Figure 2.2: Year distribution of solutions identified in the literature

Figure 2.3: Distribution of research databases for selected works

Programmatic literature search

We used a Python script1 to programmatically retrieve the top 20 hits, sorted by relevance.
We attempted to further the automatisation process by filtering the results using OpenAI
DaVinci [72]: in order to determine the relevance to our research challenge, the title and
the abstract snippet of each paper was fed to DaVinci alongside a brief description of the
research challenge. We concluded that the abstract snippet (i.e. a small, randomly chosen
piece of the abstract) returned by Google Scholar was not enough to provide the right
context for obtaining a pertinent answer. We then proceeded to filter the given results
manually.

Manual literature search

The manual search was conducted using Google Scholar, which provided the added ad-
vantage of enabling a targeted exploration of interesting cited and citing works, thereby
facilitating a deeper exploration of the citation chain. Furthermore, this step leveraged the
insights obtained from prior searches conducted on the topic of "image steganography",
including surveys and analyses of related challenges, which helped to guide the search for
relevant literature. In some cases, keyword searching was complemented by the "Cited by"
functionality of Google Scholar, which facilitated the identification of relevant papers that
had cited a specific article of interest.

Filtering

We used the criteria in Table 2.1 to include or exclude found works. The same criteria
were applied to papers that were not found with keyword searching, but through exploring

1scholar.py in the literature branch of our repository
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references or citing works from specific papers. To manually evaluate the relevance of one
work, we mainly investigated the title and abstract, but in some cases, the introduction
and conclusion as well. Given that code injection and web-based malware are long-living
threats, we considered looking into ideas and solutions that were introduced a long time
ago, and which might be of good use in today’s e-skimmers landscape. However, as observed
in Figure 2.2, the identified solutions are predominantly dated around 2007-2011, but since
2016, there has been an increased interest in addressing the MageCart challenge.

Table 2.1: Inclusion and exclusion criteria for selecting solutions and ideas for
Literature Research

Inclusion criteria Exclusion criteria
Posted in journals, conferences, websites
or patent databases Electronically inaccessible

Presents an idea or solution addressing
contemporary e-skimmers

The work is not written in (comprehensible)
English

Presents an idea or solution that indi-
rectly or partially addresses e-skimmers

The work does not contain (relevant) refer-
ences

The authors discuss their work critically The work has a superficial take on the topic
OR is less than 4 pages long

The work was published after 2001 The work does not provide additional infor-
mation on already-read points of interest
Presented idea or solution is already dis-
cussed in a more recent paper

Before performing the analysis of the identified literature, we plot in Figure 2.4 the
keyword relationship of the selected works using VOSviewer [91]. The width of the links
was set to be proportional to the link strength and as such, we can tell that the keywords
"attack", "user", "signature", "content", "integrity" and "server" are the most prominent
ones, with "server" being the node with most connections. Moreover, we observe coloured
groups which aggregate larger ideas: the red cluster is generally oriented towards describing
a solution and its workings, while the blue and green groups generally refer to the issue
and methods of MageCart attacks.

2.2 Analysis and categorisation

In this section, we explore the topics related to image steganography used in the context
of e-skimmers to gain a grasp of the suitability of proposed solutions. We begin by re-
viewing the methods of detecting stegoimages and then discuss solutions based on a rough
categorisation. A shortened description of found solutions and their drawbacks is given
in Table 2.3. Through this incursion into the literature, we expect to gain the necessary
insights to compile a list of features for an ideal solution.

We analyse the selected papers by reading the abstract and skimming through the
conclusion and results sections to identify the following:

1. The unique solution proposed

2. The working mechanism

3. The performance

9



Figure 2.4: Keyword correlation of selected papers

If not enough satisfactory information is retrieved through skimming, a more in-depth
reading is performed. During this phase, we might discover that a given work does fit
the exclusion criteria, in which case said work is removed. The subsequent categorization
as seen in Figure 2.2 is based on where the solution is applied on a network topology
level (e.g. in the hosting provider’s network) and whether they present some outstanding
characteristics (e.g. using security policies instead of malware analysis). To this extent,
we use the working mechanism to roughly categorise the papers like so:

1. Solutions against stegoimages

2. Protocols and frameworks

3. Server-side solutions

4. Client-side solutions

5. Solutions relying on policy systems

6. Solutions relying on third-party assistance
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Selected solutions

Stegoimage detection
and prevention

Protocols and
Frameworks

Server-side

Client-side Policy-based

Third party-based

Figure 2.5: Proposed categorisation overview

For the readers’ convenience, the analysis overview of the unique strengths and weak-
nesses of each category was compiled in Table 2.2.

We assess the efficacy and usefulness of a solution by contextualising the working
mechanism and performance with the challenges of addressing MageCart attacks. Based
on this, we identify strong points and weak points, which will be used to compile the list
of recommendations.

2.2.1 Stegoimage detection

Through image steganalysis, a defender can take a suspect image and attempt to extract the
payload inside it [67]. Steganalysis techniques tend to be a response to a specific steganog-
raphy technique, but they take on average 3 years to develop and are hard to combine into
a one-fits-all solution [67]. Although Deep Learning and Generative Adversarial Networks
have shown promising developments in detecting stegoimages, the "Universal Detector" is
still far from becoming a reality [67], [18], [26]. Also in [26], the authors propose a frame-
work for analysing suspect files (incl. images) which is primarily comprised of metadata
and file content analysis (using stego-toolkit [7], StegSpy [8] and StegExpose [6]) followed
by file sandbox analysis (with a Cuckoo [2] environment). In this way, common attacks
are blocked and newer ones get statically and dynamically checked. We remind that ste-
ganalysis tools are tailored to work only with specific image formats2: e.g. StegExpose [6]
works with Portable Network Graphics (PNG) and bitmap (BMP) and JRevealPEG [17]
works only with Joint Photographic Experts Group (JPEG/JPG).
In their conclusion, the authors of [96] state that to stop steganography-enabled malware,

2github.com/DominicBreuker/stego-toolkit#tools-detecting-steganography
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mechanisms that do not rely on detection should be used (e.g. Content Threat Removal
(CTR) [95]).

2.2.2 Protocols and Frameworks

A systemic approach requires modifications in the typical communication pattern with a
client, possibly including modifications on both server-side and client-side. We searched
for protocols and frameworks that propose suitable methods of protecting users from e-
skimmers or other related risks such as injection. Data integrity was an aspect we focused
on due to its critical importance of maintaining the web code outsourced by the e-commerce
platform untouched [76].
In [101], Secure E-commerce Transaction (SET) is described to employ signatures of cru-
cial data such as cardholder name, CVV and amount, yet the website initiating SET is
not checked for its delivered content. In 2002, security tokens are proposed by [15] and
discussed briefly as being useful for authenticating transmitted Simple Object Access Pro-
tocol (SOAP) [20] messages, although no protocol or further elaborations of this idea were
found among citing papers. Recently, in 2020, a secure payment system model is being
proposed by [44], however, it does not consider the risk of a compromised hosting provider
serving malicious web pages - again, like SET, the transaction itself is well protected, while
the preliminary interaction is not.

WebShield [58] proposes a middlebox (i.e. intercepting traffic) solution that runs fin-
gerprint checking and anomaly detection on behalf of the client. It requires no client-side
changes, which is crucial as the issue of client device rigidity and heterogeneity is impact-
ing adoptance of security solutions. WebShield’s main limitations are the performance
bottleneck for frequently-updating web pages, lack of support for plugins (e.g. the now-
unsupported Flash3) and incompatibility with HTTPS. One rarely found advantage of
WebShield is that it filters malicious parts of the website, as opposed to blocking the
whole content.
In 2016, a unified approach is proposed by [97] to collect web page information a pri-
ori, perform deep content inspection and generate signatures based on dynamic and static
analysis, all within a middlebox. It imposes a delay of 960ms when accessing a web page,
but is unable to cover attacks that use HTML tags instead of scripts (e.g. Client Denial
of Service (DoS), Auto complete Phishing). Moreover, one more disadvantage is shared
with all the other sandbox-typed solutions: steganography-based attacks can escape the
sandboxed environment [62].

Verena [52] is a framework built for providing end-to-end integrity for databases in
web applications. It consists of a Verena server and a client: the server works with the
database and provides correctness proofs for queries, while the Verena client runs inside
the client’s browsers verifying and filtering data to the client based on those proofs; all
this on top of web page integrity verification. The authors mention that using correctly
Verena’s integrity policies is a challenge for the security of the solution and that further
research shall explore easing that. One last notable limitation is that their framework does
not provide confidentiality, although they propose fixing it by combining it with one of
their works, Mylar [74].

3Adobe Flash is a software program that enables a user to view interactive content on a website. Flash
content is usually embedded in a web page using the Flash Player plugin.
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Cryptographic signatures allow for granular authentication of content along with its
delivery to the user. An initial and simplistic idea is to sign the whole HTML file trans-
ferred to the client [57]. The authors propose that the watermarking technique is used -
so the signature is hidden inside the file - leading to limitations in embedding capabilities
and insecure hash values 4 for large HTML files. Moreover, the client would be responsible
for evaluating the watermark and, in case of any small malicious change, the whole HTML
would be denied, leading to an implicit DoS. We note another similar attempt in a 2007
patent [71]. Although its design is meant for providing businesses with document authenti-
cation based on geographic data, this could be useful for securing externally-linked images
(e.g. loaded through a Content Delivery Networks (CDN)) and include geographical veri-
fiable information from the publisher side. The geographic aspect is however problematic
if taking into mind cloud hosting solutions which might cluster many legitimate businesses
and attackers in the same geographic location.

In [73], the author of web content can attach element-specific signatures to each struc-
tured element (e.g. HTML div tag). The client can then use the Public Key Infrastructure
(PKI) to authenticate the origins and integrity of these elements using the public key of
the author. The signature is attached at the end of the element, meaning that a malicious
payload can be interpreted before the signature is read. An older and simpler alternative
based on XML signatures concludes that a more generic version is needed, one which works
clearly with typical HTML tags [77]. In a similar vein to [73], in 2010, [48] introduces the
process of data colouring and digital watermarking which effectively ties a data resource
(i.e. an image in our context) to the data publisher and the right users to access it. The
interesting claim is that the computational complexity of this solution is lower than using
traditional cryptography and PKI. However, this solution is more addressing the issue of
authorisation and authentication for cloud data storage and it does not provide enforce-
ment or filtering for secure data transmission to the client.

To prevent CDNs or other in-transit nodes from manipulating the web content of an
application, [59] proposes that each resource be signed by the author. A browser extension
will then automatically check the found signatures against the author’s public key retrieved
from a Domain Name Server (DNS). While effective and efficient, this solution requires
client-side modifications (i.e. installing an extension) and does not filter out only malicious
elements, possibly inducing DoS. Moreover, JavaScript code is not checked as the authors
hold that the issue can be solved by Subresource Integrity [92] (SRI) - a recommendation
which is poorly used in practice [28] and can be used by a malicious server to craft ’au-
thentic’ hash values for malicious elements.

An interesting idea to prevent a client from sending away credentials is to omit them in
the first place. A complex system described in [13] has a trusted server provide a signature
for a payment page which is then turned into a QR code and scanned by the client using a
mobile application. A blockchain system would then assure that pre-registered client card
data can be securely delivered to the verified payment server automatically, without the
client having to enter them into any form. While we deem this solution elegant and assume
that server-side implementation would be accepted in the industry, the opposite can be
said for the client-side - convincing clients en mass to adopt and trust an experimental
technology with their payment and personal data is close to impossible.

4breaking the second preimage resistance

13



We think that a promising avenue is represented by the use of homomorphic encryption
[25] for e-commerce purposes. One could imagine that an encrypted website reaching a
client would disable the malicious content inside images. Furthermore, a client would
reply with encrypted data, yielding ’malformed’ credentials for the attacker. However, this
would require the introduction of yet undeveloped and slow protocols which might imply
the involvement of additional parties in order to provide the right level of security.

2.2.3 Server-side

This subsection touches upon solutions that (mostly) require changes to the hosting provider
and website authors. These solutions are elegant because they do not typically require
client-side modifications, which should improve adoptability. Not all solutions found ad-
dress the issue directly, but they nonetheless shed light on how to reduce web-based threats.

File integrity monitoring is proposed as a detection best practice against MageCart by
the Payment Card Industry (PCI) Security Standards Council and the Retail and Hospi-
tality ISAC [9]. To complement this picture, in 2010, [93] proposes a system for distributed
storage which is secured against malicious data modifications (e.g. XSS) and is moreover
able to detect misbehaving servers. It, however, enforces the switch of hosting providers
to a distributed cloud system, which is a change unlikely to be adopted widely. Other
best practices mentioned in [9] are the use of vulnerability security assessment to perform
scans and engaging in periodic penetration testing. On this note, it is found that auto-
mated pentesting has an accuracy of 70% (compared to 100% for manual pentesting) [68]
and that multiple automated tools (e.g. BurpSuite [1] and OWASP ZAP [5]) should be
used for consistent results [86], [99]. A comprehensive survey [27] shows that not all web
vulnerabilities can be identified by current mechanisms (e.g. static, dynamic analysis and
black-box testing). They also show that protection techniques (such as attack-agnostic
sandboxes and URL reputation lists) are attack-independent and require almost no human
interaction, while returning no false positives.

Content Threat Removal [95], as discussed in [18] and [96], counters steganography-
based malware by removing redundancy from the encoding of each file before sending them
into the network. Here we can imagine a malicious hosting provider easily disabling CTR,
as CTR’s design perspectives did not consider such a complication. Moreover, CTR will
not drop malicious elements that load e-skimmers dynamically on client-side. Suffering
from the same drawback, but designed for stegoimages in particular, [102] introduces the
use of a neural network that sterilises stegoimages created with Invoke-PSImages [37] -
which only embeds PowerShell scripts into PNG images. It is able to destruct malicious
payloads in 25ms without a dedicated Graphical Processing Unit (GPU). On top of the
previously mentioned drawbacks, it is mentioned that this solution does not detect ste-
goimages, so a delay will be inevitably added to the transmission, proportionate to the
number of transmitted images.

A server-side upload filter for malicious HTML elements is proposed by [35] to prevent
content-sniffing XSS attacks. Regular expressions based on these elements are derived to
detect malicious ones with no false negatives. However, the authors mention that this type
of solution will not be able to keep up with evolving sniffers and client device heterogeneity.
Another sanitising solution found is JS-SAN: sanitising web apps’ inputs against JavaScript
injection [42] in HTML5-based applications. The method works by clustering and identi-
fying attack vectors based on templates. The authors test the application on just two web
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applications and obtain promising results, although for some types of injection attacks,
their solution only achieves an 89% rate of true positives.

Intrusion Detection Systems (IDSs) typically use signatures of certain behaviour to de-
termine whether a node within a network is malicious and [21] proposes an extension with
genetic algorithms to adapt and evolve with new threats. Their initial results show that
it can detect application layer attacks (e.g. XSS, Simple Query Language (SQL) Injection).

A survey on code injection countermeasures [65] shows that static analysis tools (e.g.
model checking, data-flow analysis, etc.) are easily implementable and used during web
application development, while dynamic analysis tools (e.g. whitelisting, runtime tainting
and policy enforcement) require modifications that reduce adpotability and are hence em-
ployed during production. Approaches discussed are flexible, but the authors point out
that attackers "continuously find new ways to introduce malicious code..."[65]. Moreover, a
classification of XSS attacks and defences [43] regards that defences cannot protect against
Document Object Model (DOM) based attacks and typically require heavy modifications
on both client and server-side.

Considering supply chain compromise, the authors of [70] investigate the issue of in-
cluding JavaScript from third parties and find that many high-profile websites do not take
proper security measures for importing remote JavaScript, and sometimes have typos in
their links, leading to unknown files being finally delivered to the client. The authors
also experiment with the execution sandboxing technique for intercepting and evaluating
executable code. Their experimentation concludes that fine-grained analysis profiles are
better than coarse-grained, but they require constant adaptation as the malicious scripts
evolve as well and are therefore hard to maintain.

2.2.4 Client-side

We will briefly discuss client-side solutions, for exploratory reasons mostly, as we do not
find this category as an elegant approach against e-skimmers. Precisely, clients should not
have to bear the risks of e-commerce platforms’ or hosting providers’ stale security posture,
and such, server-side solutions are deemed better [33] and more elegant.

Clients can use tools for determining whether a website is malicious or not [12], [46].
These tools can also be implemented by third parties or by server administrators to help
clients avoid attacks. For [12], Document Object Model (DOM) feature extraction is
pipelined to a classification algorithm (i.e. XGBoost [30]) yielding an accuracy of 98.48%.
However, the authors mention that their solution might fail to detect malware enabled by
JavaScript, Flash or images.
A detection rate of 99% is achieved [46] with a K-Nearest Neighbor (KNN) model trained
on features extracted using static and dynamic analysis from JavaScript code and respec-
tively the DOM changes. The author suggests that a hybrid type of analysis should be
developed to compensate for the shortcomings of existing static and dynamic analysis sys-
tems.

In the context of securing banking clients from phishing websites, Pixastic [90] is pro-
posed - a web extension that decodes a steganographic message hidden by the bank in a
website. The web extension can then decide at runtime whether the website is clean or not
based on the extracted payload. Although interesting, one can imagine that a compromised
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distribution server can be used to deploy malicious versions of the websites in question,
yielding positive checks. Moreover, it is heavily dependent on the client synchronising the
extension with any updates, which adds even more effort on the part of the user. Another
proposed web extension is made in [19], where a Chrome extension does dynamic analysis
to prevent loading JavaScript skimmers and blocks outgoing requests going to attacker do-
mains. It has a reported 97.5% detection rate and a 12% increase in load time, but it limits
itself to being able to stop only JavaScript skimmers and is prone to be left out-of-date or
one step behind new attacks by relying on a blacklist.

Execution-based web content analysis is explored with SpyProxy [66]. It involves a mid-
dlebox (running a Virtual Machine) residing inside the client or a network, intercepting
(unencrypted) traffic and applying on-the-fly execution analysis to block malware trans-
missions to the client. It shows good results, adds 600 milliseconds of latency for page
rendering, but theoretically struggles to work correctly with non-deterministic websites
(i.e. involving session-based randomness).
Another, newer version of this approach is found in Cujo [55], a learning-based approach
which uses static and dynamic analysis inside a proxy/middlebox to identify JavaScript
attacks before reaching the client. Their empirical evaluation showed that out of 200,000
web pages, Cujo detects 94% of the attacks.
Cujo’s signature-based counterpart is found in JSSignature [69] - instead of JavaScript code
processing, the authenticity of the third-party JavaScript is verified using digital signatures
and an in-browser agent. This approach can protect clients efficiently if pieces of code are
modified, while not imposing technical or compatibility drawbacks on clients or third par-
ties involved. The authors mention intending to extend and transform JSSignature into a
World Wide Web standard for all third-party resources, not just for JavaScript ones.

2.2.5 Policy-based

Content Security Policy (CSP) allows developers to specify permissions for loading and
running JavaScript resources [81], but does not stop a malicious server from modifying the
existing CSP to allow ’self’ in-line scripts to be executed. An earlier study concluded that
HTML security policies "today have too many problems to be used in real applications" -
primarily functionality restrictiveness and performance clogging [94].
Another policy-based solution named PHMJ [60] is proposed as an improvement over
CSP, where the developer outsources an additional policy for the web page which can be
enforced by the browser. It provides an efficient and comprehensive protection mechanism
against (dynamically loaded) malicious HTML and JavaScript code and allows developers
to better control high-risk JavaScript Application Programming Interfaces (APIs). Yet, as
with CSP, we foresee issues with an attacker that can modify the PHMJ website policy to
allow malware execution.

2.2.6 Third-party-based

This brief category of solutions relies on or is a service offered by a third party. These
benefit from not necessarily relying on either client or server-side modifications, but also
from an alleged better security posture than the client and server. However, the trust
investment into a third party’s secure operations and decision-making brings risks that
some parties cannot tolerate.
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A patent from Google proposes a Security as a Service (SECaaS) solution [24] that
passes web pages through their security modules and, if benign, tracks their changes over
time, distributing hash lists of non-malicious web pages and their URL. These hash lists
are stored locally by clients and used to gain faster access time only to verified and authen-
ticated web pages. One drawback we observe is the same as for [59]: web pages containing
malicious code are not delivered at all, leading to implicit DoS for trivial elements such as
images.
MageReport [4] is a website which provides reports of MageCart presence in Magento [3]
platforms based on behaviour-based identification patterns. While not state-of-art, tools
like this can help to easily identify older e-skimmers living in platforms [82].

Table 2.2: Strengths and weaknesses for each category of solutions

Cate-
gory Strengths Weaknesses

Ste-
goimage
detection

Capability of evaluating malicious
intent; Allows for granular action
against e-skimmers.

Unable to defend against new methods
(3 years of delay); Can be bypassed
by dynamically loading stegoimages at
client-side.

Proto-
cols and
Frame-
works

Capability for improving secu-
rity beyond defending against e-
skimmers.

High degrees of complexity; Slow imple-
mentation and adoption process.

Server-
side

Prevents the spread of malicious
content over the internet; Effec-
tive and relatively easy implemen-
tation.

Can be invalidated/deactivated by an
intruder; single point of compromise;
Some solutions only address a single as-
pect .

Client-
side

Clients have control over the secu-
rity posture they get.

Impractical adoption process, therefore
with low real-world impact.

Policy-
based

Logically efficient; Relatively easy
to implement.

Susceptible to deactivation on server-
side by an intruder; Restrict functional-
ity and can heavily reduce performance.

Third-
party
based

Provides a safety net for both the
involved parties; Parties can rely
on the security specialty of the
third party.

Sacrificing security autonomy; Few solu-
tions found.
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Table 2.3: List of solutions drawn from the literature and their drawbacks

Category Solution name / work title Drawbacks

Protocols
and
frameworks

Secure E-commerce Transaction
[101]

The website initiating the transaction
is not protected by the same integrity
measures as the transaction itself.

WS-Security tokens [15]

Cannot apply to modern context be-
cause it is SOAP-based. Furthermore,
it was not explored further in the liter-
ature.

An efficient secure electronic pay-
ment system for e-commerce [44]

It disconsiders the risk of a compro-
mised hosting provider server.

WebShield [58]

Incompatibility with HTTPS and per-
formance bottlenecking for frequently-
updating web pages The middlebox can
be skipped by steganography-based at-
tacks.

Unified Detection and Response
Technology for Malicious Script-
Based Attack [97]

Cannot prevent attacks that use HTML
tags instead of scripts. The middlebox
can be escaped by steganography-based
attacks.

Verena [52]

Enforces integrity for databases only,
not images/websites. Involves client-
side modifications and does not provide
confidentiality out-of-the-box.

HTML integrity authentication
based on fragile digital watermark-
ing [57]

Has embedding limitations. It can lead
to indirect DoS. Relies on client-side fil-
tering.

Method and apparatus for providing
geographically authenticated elec-
tronic documents [71]

Unreliable in the context of cloud host-
ing providers. Relies on end-user for fil-
tering.

Authenticity and revocation of web
content using signed Microformats
and PKI [73]

Involves client-side modifications. Ma-
licious scripts can be interpreted before
element checking occurs.

Trusted cloud computing with se-
cure resources and data colouring
[48]

Does not provide a method of enforc-
ing end-to-end integrity of transmitted
data.

Why HTTPS Is Not Enough–
A Signature-Based Architecture for
Trusted Content on the Social Web
[77]

Does not apply to modern context be-
cause it is Extensible Markup Language
(XML) based. It does not work with
HTML tags and is not generic enough.

Ensuring Web Integrity through
Content Delivery Networks [59]

Involves client-side modifications
(browser extension). It filters out an
entire transmission instead of only
malicious elements.

Subresource Integrity [92]
It is poorly used in practice and allows a
malicious hosting server to authenticate
malicious elements.
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Protecting Users from Compromised
Browsers and Form Grabbers [13]

Complex and reliant on experimental
technologies that are yet to be fully re-
searched. Hard for users to adopt.

Fostering the Uptake of Secure
Multiparty Computation in E-
Commerce [25]

Still in the research phase. Fundamen-
tally slow. Might involve additional
parties.

Server-side

Automated pentesting

Multiple automated tools should be
used for consistent results. Manual pen-
testing has been found to be more ac-
curate.

Toward secure and dependable stor-
age services in cloud computing [93]

Not all hosting providers can or want
to switch to a distributed cloud storage
system.

Content Threat Removal [95]

Can be disabled by a malicious host-
ing provider as it is an egress solu-
tion. Moreover, some e-skimmer loaders
can still be effective after being recon-
structed by CTR.

Sanitization of Images Containing
Stegomalware via Machine Learning
Approaches [102]

Works solely for PowerShell scripts and
PNG images. Adds scaled delay per
each image.

A robust defense against Content-
Sniffing XSS attacks [35]

Only addresses content sniffers injected
by XSS. Cannot keep up with evolving
sniffers and client device heterogeneity.

JS-SAN [42] Limited testing. 89% rate of true posi-
tives for some types of injection attacks.

A signature-based intrusion detec-
tion system for web applications
based on genetic algorithm [21]

Involves client-side modifications and
addresses injection attacks only.

Client-side

An effective detection approach for
phishing websites using URL and
HTML features [12]

Might fail to detect malware embedded
in images, despite yielding an accuracy
of 94.49%.

A novel approach for analyzing and
classifying malicious web pages [46]

Comes with shortcomings of relying
solely on static and dynamic analysis.

Pixastic [90]

Relies on synchronising updates. A
compromised server can update the plu-
gin to work for a malicious version of the
website.

Identifying JavaScript Skimmers on
High-Value Websites [19]

Relies on a blacklist, which will not
catch zero-day attacks. 12% increased
load time. Limited to JavaScript only.

SpyProxy [66]

Does not work correctly with web-
sites involving session-based random-
ness. Being a middlebox, it can be es-
caped by steganography-based attacks.

Cujo [55] Can be escaped by steganography-
based attacks.

JSSSignature [69] Only addresses JavaScript code pro-
vided by third-parties.
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Policy-
based

Content Security Policy [81]

A malicious hosting provider can allow
its own added scripts to be executed.
Moreover, it restricts functionality and
bottlenecks performance.

PHMJ [60]
Although an improvement (in other ar-
eas) over CSP, it suffers from the same
essential drawbacks.

Third-
party
based

Providing a fast, remote security
service using hash lists of approved
web objects [24]

It filters the whole transmission, instead
of only malicious elements, resulting in
an indirect DoS.

MageReport [4]
Addresses only Magento-based plat-
forms and relies on (not state-of-art) be-
havior patterns.

2.2.7 Recommendation

The literature shows (partial) solutions for the problem of e-skimmers, varying from server-
side to client-side, Machine Learning and middlebox/sandbox approaches. While we deem
these solutions good, we observe drawbacks and limitations that make them unsuitable
for the setting of a hosting provider delivering malicious payment pages. We also see that
hosting providers need and are the best suited to combat the issue of malicious web pages
[33].
Given that the solution and attack both reside in the same place, we propose the following
features list of an ideal solution for stopping e-skimmers :

1. Maintains content integrity under malicious hosting provider.

2. Works with all attack surfaces of e-skimmers (including dynamically-loaded content).

3. Requires no client-side modifications.

4. Integrates with TLS/HTTPS.

5. Involves both manual and automated pentesting prior to web page publication in
order to detect zero-day attacks.

6. Stops only the transmission of malicious elements to avoid indirect DoS.

7. Allows the client to verify the authenticity of received data.

Recommendation 1 helps assure that the client receives only data intended by the e-
commerce platform developer and furthermore Recommendation 7 allows the client to
verify that the data indeed belongs to the developer. An ideal solution (Recommendation
2) would work not only with images, but with code blocks, other media assets and even
scripts that load malicious content at runtime. In order to be implemented in a practical
and effective manner, the ideal solution should not ask for any adaptation on the client-
side (Recommendation 3). Transmitted data needs to be always secured, so any ideal
solution should not interfere with the best practice of relying on TLS/HTTPS for data
transmission (Recommendation 4). To properly ensure that the developer itself does not
push the malicious content to the hosting provider, systematic security testing should be
performed (Recommendation 5). Finally, Recommendation 6 assists in maintaining service
availability and protecting the client at the same time by only denying malicious data to
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reach the client.

Additionally, future researchers should read about the weak points of our methodology
in Subsection 2.2.8 to improve upon the literature review conducted here.

2.2.8 Methodology limitations

Let us now discuss the shortcomings of our literature review process. These should be
taken into account by future research to build upon the work presented here, but also by
readers wanting to assess the quality of the process itself.

First, a trivial limitation, but relevant nonetheless, is the implicit bias of the authors
due to an incomplete or skewed perspective on the subject. This is especially relevant in
building the search terms and in conducting the in-depth manual search. As an effect of
building incomplete or biased search terms, the search process might not be completely
covering the boundaries of the research topic, leaving interesting ideas undiscovered.

The second limitation is related to the words used in the search terms for querying a
single aggregator. It can be that better results would have been obtained if slightly differ-
ent or synonym terms would have been used instead or that a different aggregator might
have given different results. We deem that some variations (in terms and/or aggregators
used) would prove to be slightly beneficial for the obtained results.

The third limitation again addresses the search process, but is referring to the inability
to programmatically apply the inclusion/exclusion criteria based on the title and abstract
retrieve through the Google Scholar API. As discussed in the section regarding the pro-
grammatic search, one can only retrieve a snippet of the abstract, which has proven to us
insufficient as an input for OpenAI DaVinci (the ’smartest’ GPT3 [22] available through an
API at the time of writing) to determine the relevance of one work. A method of obtaining
the full abstract would greatly benefit the automated literature review process, reducing
the time needed to filter thousands of works in a matter of minutes.

Lastly, the performance evaluation of selected works might be imperfect and therefore
skew the opinions on the strong and weak points of each solution. Although we deem that
this would not greatly impact the final recommendations made, it is important for future
researchers to check for themselves whether an individual assessment of one solution is
fitting.

2.3 Conclusion

We reviewed many research works to gain a comprehensive overview of addressable so-
lutions and ideas against MageCart threats. Although the literature was not specifically
oriented to these types of threats, by checking on the boundaries of this topic, we were
pleased to find a diverse range of applicable measures, which were diverse enough that we
could compile recommendations out of their strong and weak points. These recommen-
dations are relevant for fellow researchers and for establishing targets for our proposed
solution’s design.
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Chapter 3

Proposed solution

Based on the recommendation list compiled by broadly analysing the literature in Sub-
section 2.2.7, we create our solution to fill in the existing gaps with a simplistic and
compatible approach that provides integrity under the premise of a compromised hosting
provider. We begin by discussing our threat model to understand the assumptions and
limitations in place for the parties involved. We follow with a brief summary of the useful-
ness and relevance of cryptographic digital signatures, then describe the inner workings of
our solution and conclude by evaluating the identified research gaps against the proposed
solution.

3.1 Threat model

Understanding the picture we composed before designing our solution is essential for evalu-
ating the relevance of this work. The attacker, hosting server and the e-commerce platform
developer are assumed to have certain limitations, modus operandi and responsibilities.

First, the e-commerce platform is ultimately the one that holds responsibility for the
security of the customer’s payment credentials, even if a hosting provider is compromised.
The developer is assumed to take responsibility for all security aspects regarding their
web page source code, including third-party source code, media or resources used for their
service. In more technical means, this implies that the developer has a form of security
testing for their web page, especially for modifications that relate to its source code and
images. This testing would include specific tests for images, including steganalysis tech-
niques, meant to make sure that stegoimages are not being published from their repository
to the hosting provider. However, we do not assume that these security testing procedures
will catch or manage to solve all the problematic vulnerabilities, leaving the source code
exploitable by (novel) injection attacks.

Second, we assume that the hosting provider has a precarious external security posture
due to the low return on investment compared to other areas such as performance, connec-
tivity, uptime and multi-tenant isolation [23]. On top of this, injection and remote code
execution vulnerabilities from their clients’ source code can open the door to an attacker
gaining access to the physical server, possibly compromising all services running on that
said unit. In this context, attackers have multiple options for gaining and elevating their
access to deliver e-skimmers and propagate further. We assume the extent of security mon-
itoring performed by hosting providers is to guarantee service availability and cross-tenant
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contamination, yet system or network-wide monitoring is not as thorough and therefore
might allow an intruder to maintain elevated privileges for an extended or indefinite period
of time. The result of either the injection or the intrusion into the server is that stegoimage
e-skimmers are placed into the payment page.

Third, the attacker is assumed to have gained elevated access in the hosting server
and therefore influence the running services on it. Although this would possibly allow
the attacker to perform lateral movement within the hosting provider’s network, we limit
those capabilities of our attacker model in favour of exploring it in future works. Hence,
the hosting server is assumed to be fully malicious under the intruder’s command, but the
network it resides in and its nodes are unaffected. The affected websites are assumed to
contain stegoimage e-skimmers created using novel or state-of-art techniques (e.g., Gener-
ative Adversarial Networks) and therefore be virtually impossible for most related works
to detect or stop. We also assume that the attacker would be mainly interested in modi-
fying the affected websites such that minimal suspicions are being raised from the clients,
hosting provider or developer.
Therefore, our solution is designed to counteract additions and alterations of web elements,
not necessarily other types of changes such as structural, logical or aesthetical ones. To
this end, digital signatures are leveraged to identify deviations from a developer-validated
form.

3.2 Digital signatures

A digital signature is a unique string of bits generated by a mathematical algorithm that
depends on two parameters: the private key of the signer and the input message or docu-
ment [53]. Any changes to the input will result in a different signature, ensuring its unique-
ness and providing integrity and non-repudiation. Digital signatures are widely used in
e-commerce and other applications where message authenticity is crucial [79]. Their use
has also been noted in related works in the literature and inspired our own research.

The uniqueness property of digital signatures lies at the heart of our proposed solution.
We leverage this uniqueness to tie every image of a website to its developer’s private key
and append the resulting signatures to the website. This results in a collection of signa-
tures that can be checked for authenticity by any party through the developer’s public key.
To prevent any misbehaviour of a hosting provider to affect a client, a reverse proxy is
attached to the hosting server and filters downstream traffic by checking the found images
and their signatures against the public key of the developer. Finally, the result is that even
if an intruder injects stegoimages or modifies the attached signatures on the server-side,
the client will not receive the malicious changes. We coin this solution NAISS: Network
Authentication of Images to Stop e-Skimmers, but we acknowledge the future possible ex-
tension of its capabilities to cover other attack vectors of MageCart [80], [35].

Figure 3.1 shows the flow and architecture envisioned for NAISS to function properly.
It first begins on the developer’s side where a new element (e.g. image) has been changed.
The element should pass through an evaluation process to determine whether it is mali-
cious or not. Typically this involves security testing [68], where additional to the current
best practices for security testing, we assume that stegoimage detection tools can be im-
plemented as well. Following the decision that an element is not malicious, its signature
will be computed by an employee that has access to a secure key. For example, this key

23



can be one which is higher up in the key hierarchy of the developer. By choosing the key
in that way, it would increase the difficulty of an attacker to obtain it, as it would be
protected better than the other keys lower in the developer’s key infrastructure. This step
is needed to minimise the accidental automated signing of a malicious image, which might,
for example, be committed by a compromised developer account or an injection attack.

Developer's environment

New web code

Old element

New element

Old element

Security Officer

No

Yes

looks
malicious?

Reject
update

Compute
Signature

Secret
key

Update

New web page

New element signature

Old element

New element

Old element

Hosting server

New web page

Forward request

NAISS Filter

New push

Repository

Request the website

Client(s)

Hosting provider's network

Clean response
Reply to request Filter by missing /

mismatching
certificates

Security
Analysis tools

1

2 3

4

5
6

7
89*

3*

1 hop away

Figure 3.1: NAISS Flowchart

The fact that our solution requires manual interaction slows down automated pipelines
and enables powerful insider attacks. However, integrity being the most important value
of a payment platform [76], a time tradeoff can be a cheap price to pay for high levels of
integrity. In fact, automated pentesting tools suffer from false alarms that can only be
found or reduced by involving people in the process [68], [86], [27], [49], [16]. Also, as
automation increases year-by-year [49], the time spent on manual inspection will be lesser
as time passes.
Another factor of the time investment is the frequency and size of updates of the payment
page. Considering that these mainly contain a couple of text fields (i.e., where one enters
credit card number and cardholder details) and buttons (i.e., for submitting the details)
with limited functionality, changes made to the page would be atomic, rare and require lit-
tle background knowledge to be comprehended by reviewers. Hence, involving human-led
and automated testing will strengthen the confidence that signatures will only be produced
for trustful images.

The input we are using for creating the image signatures is of two types: either it is
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the byte string content of an image, in the case of locally-referenced images, or, in the case
of images referenced by external URLs, the URL string itself. Note that in the later case,
NAISS can only validate signatures based on the correct URL, not on the media content
referenced by that URL, and hence it falls under the responsibility of the developer to
ensure that external URLs do not point to malicious resources at any point in time. The
generated signatures are collected and added to the head tag of the web page in a new tag
named naiss_signatures. The website is then published to the hosting provider as natural.
After the new website and its content is stored at the hosting provider, we can assume
that it can be compromised by an intruder inside or outside the hosting server.

The NAISS filter is located one hop away from the server in the hosting provider’s net-
work. It acts as a reverse proxy, and hence its Internet Protocol (IP) address is where the
client finally connects instead of the server. In this way, we make sure that the supposed
malicious hosting server is obliged to pass its communication through the reverse proxy
filter so that its response eventually reaches the client back. The reverse proxy would rep-
resent an additional layer of difficulty for the intruder to achieve complete control over the
delivered websites. The filter itself is a server modified to perform the filtering process on
the GET requests for the stored websites and could be hardened to prevent lateral move-
ment intrusion (refer to Section 4.2). It is similar to solutions identified in the literature,
yet it fills in crucial gaps in a simple manner.

3.3 Research gaps comparison with NAISS

We can briefly showcase how our proposed solution NAISS generally compares to the
related work based on the shortcomings identified in the literature:

1. Digital signatures can be effectively used by NAISS to ensure integrity as long as the
input is unique enough. NAISS does not have any limitations for image formatting
nor for any other attack vector of MageCart, as long as it can be represented through
a unique byte string.

2. NAISS does not require any client-side modifications because it is a server-side so-
lution. Moreover, the client will not need to change any previous behaviour, greatly
increasing its adoptability.

3. Any change made (i.e. even a single bit change) to the hosted files or signatures
will eventually ripple out due to the uniqueness property of digital signatures and be
finally detected by the NAISS filter. Therefore, the only avenue for an intruder to
deliver stegoimage e-skimmers is to not modify anything.

4. Regardless of how recent an attack is, if it is reliant on the modification of the already
pushed data at the hosting provider, it will be caught by NAISS, as explained in the
point above. This aspect is nuanced in 3.4.2.

Fulfilling these design gaps requires modern and reproducible methods of implemen-
tation and testing in order to provide a valuable and provable contribution to the fight
against MageCart.
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3.4 Methods

This section shall describe the materials, algorithms and other technical details used in
our proof-of-concept implementation of NAISS.

We used Python [75] as our main programming language and Docker [32] as our method
of building our test environment. The hosting server is a simple Python HTTP server, while
the NAISS filter is using Flask [36] as its baseline. The decision of using HTTP instead
of HTTPS was done in favour of the ease of development and testing NAISS, with the
security implications of it being of second importance to our research objective overall.
Moreover, we do not think that using a HTTPS communication would produce results
that significantly differ from the HTTP counterpart.
In our testing, both the hosting server and filter containers ran on the same machine inside
a shared Docker network, while the automated tests were run from the same machine, but
not from within the Docker network, so as to emulate a real client as much as possible.
The source code of our work can be accessed on GitHub [83], where further usage instruc-
tions can be found. The code is mainly split into four directories:

• client : Contains a script for running automated tests and one for visualising the re-
sults of those tests. Additionally, the resulting plots are stored alongside the collected
measurements under the test_results subdirectory.

• filter : Contains the scripts and the Dockerfile to spin up the NAISS filter container.

• server : Contains multiple website variants and the Dockerfile to run the hosting
server container.

• utils: Contains various useful scripts that a developer/attacker would use to finally
attach signatures to a website. It also contains scripts used to generate websites,
which are used for testing.

3.4.1 Signatures

For generating and validating the signatures and their corresponding key we used python-
ecdsa [38] with the NIST256p curve [10]. This curve was chosen for the practical key size
(128 bits of security). Also, the computational performance of this curve is better than
other alternatives provided by the library for the equivalent security level.
The input for the signatures will be the byte string representation of the images stored on
the hosting server, which we coin as ’internal’ images; while for images stored on external
hosting services, we use the links in their respective HTML tags as input.

3.4.2 Stegoimage generation

To validate that our proposed solution can counter stegoimages generated with state-of-art
techniques (RQ5), we choose to generate our own stegoimages by using SteganoGAN [100].
SteganoGAN leverages Generative Adversarial Networks to embed payloads, a technique
which is considered the most difficult to detect [67]. In our testing, we include the image
format types .png, .jpg and .ico as these are the most commonly used in practice for e-
commerce platforms. Moreover, as touched upon in 3.4.1, our testing also includes the use
of both internally and externally loaded images. The payloads accepted by SteganoGAN
can be of any size, as it has an internal cutting point of 4 bits per pixel for embedding
data. We tested this limit in the steganogan_threshold branch of our GitHub repository,
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where we embedded payloads of 45 megabytes (MB) into stegoimages, yet the resulting
stegoimages would occupy an average of 25MB. In comparison, stegoimages using only 11
bytes as payload occupy 24.8MB. Stegoimages will finally be displayed in different sizes
and places (e.g., as a favicon) on our test websites.

3.4.3 Website generation

Multiple variants of websites were created stemming from a single template. This tem-
plate is representative of a typical website where e-commerce customers would introduce
their credentials. The websites contain multiple pictures (attack vectors of stegoimage
e-skimmers) of different sizes which are placed in different parts of the website. We used a
royalty-free icon package [88] to represent payment method icons and LogoAI [61] to create
a logo for our fictitious e-commerce platform. The images used have the following sizes:
128x80 pixels for payment method pictograms, 256x256 for favicons and 505x446 for the
website logo. These sizes were chosen to reassemble a payment page where large images
of different sizes are scaled down to ensure visual clarity, but also to evaluate how large
stegoimages would affect the filtering. Figure 3.2 exemplifies how the website with all its
images, except the favicon, would appear to a client. Each such website will represent one
specific test case, which will be automatically accessed and measured for performance.

Figure 3.2: Fictitious e-commerce platform

3.4.4 Automated testing

To improve the reproducibility and execution time of our tests, we opted to use Selenium
Webdrivers [85] to automate the accessing of websites and collect data from those interac-
tions. Additionally, we used selenium-wire [54] to be able to inspect the exchanged network
requests and responses. To maintain consistency of the results, all tests were run on the
same MacBook Pro M1 with 8GB of RAM, with no unnecessary applications running in
the background, connected over 5GHz Wi-Fi, and at a higher than 80% battery remaining.

3.5 Results

In this section, we present the testing variables, the collected data and the aggregated
results. Moreover, we showcase how the change of one type of parameter affects the
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performance or behaviour of NAISS.

3.5.1 Test parameters

We aim at creating a comprehensive test through the tuning of many relevant website
parameters, such that we can retrieve information about the behaviour of the NAISS filter
under different circumstances. A website variant would contain a complete representation
of the chosen parameter, with no mixed values, apart from where that was technically
unfeasible. These tuned parameters are:

• The format of the loaded images: PNG or JPG; the ICO format is reserved for the
favicon

• The method of loading images: through internal or externals links (i.e. a file path or
an URL)

• The embedded payload inside images: none (i.e. clean images) or any, up to 4 bits
per pixel [100] (stegoimages)

• The type of signatures attached: none (coined "nosig"), produced with the developer
key ("sig") or an attacker’s key ("evilsig")

Additionally, we investigate how the use of different web browsers would impact the
interaction with NAISS. To this end, we ran our tests using Google Chrome, Mozilla Firefox
and Microsoft Edge, as these are typically the most popular desktop browsers [87].
One last, but essential parameter we tuned was whether the webdriver would connect to
a website directly (i.e. unfiltered by NAISS ) or through the filter itself. Hence, in half of
the test cases, one would expect NAISS to filter everything necessary, while for the other
half, no filtering would occur.
Finally, all the combinations of these parameters yield a number of 54 test cases.

3.5.2 Measurements

For each test case, we are interested in collecting data to evaluate the behaviour and
performance of the NAISS filter. These measurements will also serve as a base for experi-
mentation with specific types of parameters (e.g. encryption curve). Through automated
scripts, we collect the following interaction data:

1. The time (in seconds) to access a website.

2. The transferred data (in kilobytes) when accessing a website.

3. The percentage of images that reach the client (e.g. 0% if no images are loaded
whatsoever).

The third measurement will be used to determine whether the NAISS filter functions as
intended and the former measurements are used for performance evaluation. Multiplying
by the number of test cases, we take a total of 162 performance and behaviour measure-
ments.

In order to compile results with a degree of confidence in our measurements, we ran
each test case 10 times. In this way, we see for each result category how much one can
expect the measured values to vary. To this extent, the 96% confidence interval and the
standard deviation of each result category is computed and displayed (refer to Subsection
3.6.1).
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3.5.3 Baseline results

The collected measurements were plotted to obtain the final results. In our baseline ex-
periment, we used images of certain pixel size (refer to 3.4.3), the NIST256p curve for
signatures and the text "RENAISSANCE" (11 bytes) as the payload for stegoimages. Due
to the simplicity and relatively small size of these parameters, we name the results as
baseline. Subsequent experiments in 3.5.4 explore what effects any of these previously
mentioned parameters have on the measured performance and behaviour.

The results from the baseline experiment are averages of measurements taken from all
the collected data, grouped by the parameters in 3.5.1 (e.g., we collect and average all the
measurements of all the website variants that have JPG images). The average values are
computed from all 10 repetitions of each test case and displayed alongside their associated
confidence interval and standard deviation. For each measurement in 3.5.2, a different plot
is produced: Figure 3.3 for the access time, Figure 3.4 for the transferred data and Figure
3.5 for the percentage of unfiltered images, which is only grouped based on whether the
correct signature for the images is present or not.

Figure 3.3: Baseline experiment - access time per parameter

The most significant result is the one related to the behaviour of the NAISS filter, the
percentage of unfiltered images. We see that for all of our test cases, 100% of images with
the correct signatures arrive at the client, compared to 50% for the incorrect signatures,
which is precisely expected as only half of the test cases involve connections through the
NAISS filter. These results confirm that the method of filtering images based on attached
signatures is working as intended.

The performance results show a connection between the transferred data and the access
time of a website, hence we can expect that an increase in transferred data will create a
slight increase in access time. The transferred data values for each category of parameters
are topologically identical to the access time values.
We observe that the websites with no signatures have the lowest values, while the ones
with a correct signature have the highest - logical given that verifying and transporting
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Figure 3.4: Baseline experiment - transferred data per parameter

Figure 3.5: Baseline experiment - percentage of images reaching the client
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signatures are additional steps to be taken. Although the size of websites with stegoimages
is close to double that of the websites with clean images, the time difference in accessing
them is orders of magnitude smaller. The difference between websites with externally and
internally loaded images follows the same pattern, with the external images yielding higher
values. The same is observed for the image format category: as expected, the JPG images
are more compressed and therefore require less bandwidth to be transferred. Regarding
browsers, we see that the Chromium-based browsers are both faster and transfer less data.
Finally, the websites accessed through the NAISS filter have transferred close to 50% less
data and 16% faster than those directly accessed by the client.
These results are called baseline results due to the simplicity and smaller sizes of the
parameters used. Experimentation is needed to assess how a value increase in any of these
parameters affects NAISS.

3.5.4 Experiments

Each experiment is designed to investigate the significant changes of one single parame-
ter compared to the baseline experiment. For this purpose, we chose the following three
parameters: image size, stegoimage payload and encryption curve. The image size is in-
teresting because a website is expected to have images of varied sizes, which are easily
changeable and resized during a webpage’s lifetime; the stegoimage payload is used to ob-
serve how would the NAISS filter work with stegoimages containing real e-skimmers; and
the encryption curve is investigated to probe how much of an impact increasing or decreas-
ing the key and signature size has on our solution. Additionally, we ran an experiment
with all these previously mentioned changes occurring simultaneously (Figure 3.6, 3.7 and
3.8). In GitHub, each experiment has its own separate branch, so navigating the results is
uniform across all experiments.

Figure 3.6: All parameter experiment - access time per parameter
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Figure 3.7: All parameter experiment - transferred data per parameter

Figure 3.8: All parameter experiment - percentage of images reaching the client
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Image size

In this experiment, the pixel size of all the used images is doubled. The results (Figure
3.9, 3.10 and 3.11) show the same topology as for the baseline experiment, except a 3%
increase for the access time in the stegoimage category. The main difference between the
baseline experiment is higher values, especially for the transferred data. This experiment
further contributes to the idea that transferred data insignificantly increases the time taken
to load a web page.

Figure 3.9: Image experiment - access time per parameter

Figure 3.10: Image experiment - transferred data per parameter
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Figure 3.11: Image experiment - percentage of images reaching the client

Payload size

By changing the payload to a realistic one, we emulate how NAISS would react to real
e-skimmers hidden in images. As a realistic payload, we used an e-skimmer script (4,5
kilobytes) caught in the wild [63]. By increasing the size of the payload, we also slightly
increase the storage size of the stegoimages. The results (Figure 3.12, 3.13 and 3.14)
are similar to the image size experiment, with all values increasing by up to 11% when
compared to the baseline.

Figure 3.12: Payload experiment - access time per parameter
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Figure 3.13: Payload experiment - transferred data per parameter

Figure 3.14: Payload experiment - percentage of images reaching the client
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Encryption curve

For this experiment, we changed the elliptic curve used to NIST512p, increasing both the
storage size of attached signatures and the time to verify a signature. The purpose of this
experiment is to evaluate how this technical aspect would impact our solution, such that an
implementer can find the desired balance between security and performance. The results
(Figure 3.15, 3.16 and 3.17) are topologically different in the signature and connection type
categories. The websites signed with an attacker key now have the longest access time,
although not the highest transferred data size. The other significant change is observed in
the websites that are accessed through a NAISS filter, where the access time has more than
doubled and transferred data increased by approximately 40% compared to the baseline
results. These large shifts in measurements are due to the fact that by doubling the bit size
of the signature and the key (i.e., from NIST256p to NIST512p), one effectively doubles
the computation time needed to validate a signature. One interesting finding is that the
"evilsig" category has the largest latency, hinting that verifying an invalid signature is a
slower process than verifying a valid one.

Figure 3.15: Encryption experiment - access time per parameter

For all the performed experiments, the percentage of images reaching the client (mea-
surement 3 from Subsection 3.5.2) remained the same as for the baseline experiment,
highlighting that the behaviour of the NAISS filter is consistent and correct under any
parameter tuning (refer to Subsection 3.5.1). The time taken to access websites through
the filter is maximally double when compared to a direct connection, with the externally-
loaded images and the elliptic curve size contributing the most to this increase. Further
similar connections are made in Section 3.6.

3.6 Discussion

In this section, we interpret the results and discuss their implications for the proposed
solution. We use the payload experiment as our representative scenario of the real-world
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Figure 3.16: Encryption experiment - transferred data per parameter

Figure 3.17: Encryption experiment - percentage of images reaching the client
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context. Our findings indicate that the behaviour of the NAISS filter is effective in dis-
carding all images that are missing or presenting a malicious signature, regardless of any
parameter combination used. If malicious signatures are present in a filtered connection, it
naturally results in a faster access time on the client-side by up to 11% compared to valid
signatures and 25% in the case of no signatures.

The difference in access time between "sig" and "nosig" is due to the fact that the
filter prevents the loading of external images for "nosig" websites, which have been found
to contribute the most to the detriment of the loading time. The presence of signatures
minimally impacts access time, as websites with signatures show access times very similar
to those with no signatures when using unfiltered connections. Therefore, the differences
in the signature type category occur solely from the filtering process.

Our study found that the filtering process will either significantly reduce the load time
due to loading less content or will add additional time because of the signature verification
process. The added time for "evilsig" variants is up to 50%, while for "sig" variants, it
is less than 10% compared to an unfiltered connection. Verifying an invalid signature is
slower than verifying a valid one, possibly allowing an intruder to degrade the access time
by attaching multiple incorrect signatures.

Transferred data is found to be correlated with access time, although it does not highly
influence it. The factors that most impact the loading time of a website through the
NAISS filter are, in order: the use of a slower signature scheme, the loading of external
images, the use of Mozilla Firefox, and the signature verification process itself. The two
most significant factors are modifiable on the developer side and do not highly impact the
level of security. Hence, the performance of using NAISS can be appropriately tuned such
that clients can be better protected from MageCart attacks without noticing the presence
of the filter.

3.6.1 Benchmark

To better compare and evaluate the performance and characteristics of NAISS with the
solutions identified in the literature, a comparison benchmark has been compiled in Table
3.1. The comparison criteria are meant to evaluate one solution’s performance, behaviour,
robustness and ease of adoption:

• Imposed latency: the delay incurred by a client retrieving the webpage, as reported
by the authors of the work (i.e. either in percentage or in absolute value)

• True Positive rate: the percentage of correctly identified malicious elements

• Flexibility: the capability of functioning correctly with varied inputs and contexts,
including novel attacks

• Adoptability: the ease of adoption and use from the servers’ and, but especially,
clients’ side

• Bypassable by intruder: whether an intruder inside the hosting provider can
disable, alter or ignore one solution such that e-skimmers can be delivered to clients

• Can cause indirect DoS: whether the correct functioning of one solution can stop
clients from accessing the e-commerce service
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In case a criterion is not applicable or assessable from one paper, its corresponding
cell is coloured grey and marked with a �. Flexibility and adoptability, were evaluated as
strong or weak points. For example, if flexibility is one of the strong points of a solution,
its corresponding cell will be coloured green and marked with a M. Conversely, a solution’s
weak point is noted with a red cell marked with a O and if a criterion is neither a strong
nor weak point, its cell is coloured yellow and marked with a ♦.

The imposed latency values reported by the authors, as shown in Table 3.1, are either
in percentages or absolute values. We chose to report them as presented by the authors,
without attempting to normalise or convert the value from one type to the other, so as
to provide an incongruent, yet error-free benchmark. We acknowledge the incongruence
could be problematic for assessing the suitability of the solutions, yet for some, normal-
ising or converting values without adding biases or estimations is not feasible. The most
notable biases would arise from the heterogeneity of the accessed websites, where some
authors used real-world applications for latency measurements, and others, dummy web-
sites. The difference between these categories can be explained by the less complex context
the dummy websites operate in, but also by their inconsistent sizes across found solutions.
One could, in some instances translate an absolute value to a percentage or vice-versa,
yet the large selection of solutions identified hinders the homogenisation of the latency
value types through its diverse approach to reporting the values. Although NAISS ’ value
was reported as a percentage for the ease of quantifying an easy-to-comprehend value, the
average delays are reported within figures as absolute values such as in Figure 3.12.

Solution name /
work title

Im-
posed
latency

True
Posi-
tive
rate

Flexi-
bility

Adopt-
abil-
ity

Bypass-
able by

in-
truder

Can
cause

indirect
DoS

Secure E-commerce
Transaction [101] � � M ♦ yes no

WS-Security tokens
[15] � � ♦ O � �

An efficient secure
electronic payment
system for e-commerce
[44]

� � ♦ ♦ yes �

WebShield [58] 15% � O M no no
Unified Detection and
Response Technology
for Malicious Script-
Based Attack [97]

960 ms � O M no no

Verena [52] � 100% ♦ O no no
HTML integrity au-
thentication based on
fragile digital water-
marking [57]

� 100% ♦ O no yes

Method and appara-
tus for providing ge-
ographically authenti-
cated electronic docu-
ments [71]

� � ♦ O no �
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Authenticity and revo-
cation of web content
using signed microfor-
mats and PKI [73]

� � M O no no

Trusted cloud com-
puting with secure
resources and data
colouring [48]

� � M ♦ no no

Why HTTPS Is Not
Enough - A Signature-
Based Architecture for
Trusted Content on
the Social Web [77]

� � O ♦ � no

Ensuring Web In-
tegrity through
Content Delivery
Networks [59]

10% 100% M O no yes

Subresource Integrity
[92] � � M M yes no

Protecting Users
from Compromised
Browsers and Form
Grabbers [13]

� � ♦ O no no

Fostering the Uptake
of Secure Multi-
party Computation in
E-Commerce [25]

� � ♦ ♦ no no

Towards Secure and
Dependable Storage
Services in Cloud
Computing [93]

� � M ♦ no no

Content Threat Re-
moval [95] � 100% ♦ M yes no

Sanitization of Images
Containing Stegoma-
lware via Machine
Learning Approaches
[102]

25
ms/image 80.64% O M yes no

A robust defense
against Content-
Sniffing XSS attacks
[35]

� 100% O O yes no

JS-SAN [42] � 89% ♦ M yes no
A signature-based in-
trusion detection sys-
tem for web applica-
tions based on genetic
algorithm [21]

� 100% O ♦ no no
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An effective detection
approach for phishing
websites using URL
and HTML features
[12]

2-3 s 94.49% O O no yes

A novel approach for
analyzing and classi-
fying malicious web
pages [46]

� 99% ♦ O no no

Pixastic [90] � � ♦ O yes no
Identifying JavaScript
Skimmers on High-
Value Websites [19]

12% 97.5% O O no no

SpyProxy [66] 600 ms 100% ♦ O yes no
Cujo [55] 500 ms 94% ♦ O yes no
JSSSignature [69] 30 ms 100% ♦ ♦ no no
Content Security Pol-
icy [81] � 100% ♦ M yes yes

PHMJ [60] 2.6% 100% M M yes no
Providing a fast, re-
mote security service
using hash lists of
approved web objects
[24]

� 100% M ♦ yes no

MageReport [4] 0 � O M yes no
NAISS [83] 10% 100% N N no no

Table 3.1: Comparison between solutions identified in the literature and NAISS

According to this benchmark, NAISS situates itself as a relatively low-latency solution,
that is efficient in preventing attacks and preserves the core e-commerce service under
MageCart attacks. However, we believe NAISS has additional improvements over the
identified solutions.

3.6.2 Strong points

Let us briefly summarize our findings relating to the improvements brought forward by
implementing NAISS :

1. Logically sound filtering based on the developer’s validation of content. As the re-
sults show, the percentage of images reaching the client remains correct under any
parameter we tested for.

2. 100% true positive rate, assuming the developer or filter is not compromised. Once
an image or web element is validated through a provided signature, any alteration or
substitution that effects a change in the byte representation of the image will produce
a different signature and hence be spotted by the filter as being different. Moreover,
an image is not allowed to be transmitted if its accompanying valid signature is
missing.
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3. Agnostic of the image steganography technique used. Can stop zero-day techniques.
Any e-skimmer using a (novel) image steganography technique used will be caught
as long as it relies on modifying any bits of the image (including image metadata).

4. Does not require any client-side modifications. The design of NAISS is strictly server-
side, but involves developer-side modifications as well. Our testing emulated a simple
client connecting to a hosting provider through the NAISS filter and showed that no
modifications were required on the client-side.

5. Server-side modifications are minimal. It involves the addition and maintenance of a
reverse-proxy to the hosting server. In case one is already present, it would require
modifications such as filtering is performed on the downstream traffic.

6. The authenticity of received images can be verified on the client-side through the PKI.
Moreover, using the public key of the developer, any party can validate whether a
signature is correct by learning the public key from a trusted third party.

7. Does not cause a DoS if the attached signatures are altered or removed. Compared
to other solutions in the literature, NAISS filters only the elements that fail to be
authenticated, as opposed to the whole web page. As such, the core e-commerce
service can still be available to the customer if an image is denied transmission.

3.6.3 Limitations

When reviewing our work, readers have to be aware of the limitations present within
our implementation and testing procedure. Addressing these limitations shall yield an
improvement in the proposed solution.

Implementation

Limitations specific to the implementation process can obscure the usefulness of our proof-
of-concept as it might not perfectly fit into a real-world e-commerce platform:

• When accessing a website through NAISS, the favicon is loaded, but not displayed.

• The communication is done through simple HTTP, although upgrading to HTTPS
should not be technically unfeasible.

• An intruder can add multiple incorrect signatures to slow down a website’s loading
time.

• Does not offer a clear method of protecting the filter against the intruder inside the
hosting provider.

• Does not provide a method of safely updating the filter container in the presence of
an intruder.

• Currently supports only images, but the extension to all types of MageCart attack
vectors is technically feasible.
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Testing

These limitations regarding testing might be able to hide or introduce biases into our
results:

• Scalable Vector Graphics (SVG) images could not be included due to SteganoGAN
incompatibility.

• The ICO images are not loaded from external sources due to incompatibility with
online hosting services (e.g. imgur.com).

• The Safari browser was not included due to data collection issues.

• No mobile browsers were tested.

3.7 Conclusion

To fill the gaps identified in the literature, we have designed NAISS based on the rec-
ommendation list in Section 2.2.7. We have devised comprehensive tests and experiments
to emulate the effectiveness of NAISS under many changing conditions. Despite all these
modifications, the filtering process remained sound, while the accompanying performance
detriment is comparable to or lower than related works. All in all, our proposed solution
is found to be a simple and yet powerful approach for stopping the delivery of stegoimage
e-skimmers.
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Chapter 4

Conclusions and Future Work

In this report, the significance of the MageCart threat was outlined, especially the challenge
of tackling stegoimage e-skimmers to protect e-commerce platform customers. In Chapter
2, we presented the methodology and results of a semi-systematic literature review, which
explored the boundaries of the literature to identify suitable solutions for the stegoimage
e-skimmers challenge. The analysis and categorisation of these solutions revealed various
shortcomings which deem them ineffective or impractical against the stegoimage e-skimmer
threat. The analysis additionally yielded a recommendation list (refer to 2.2.7) of features
for an effective and practical solution, which served as a foundation for designing our pro-
posed solution in Chapter 3 .

We have proposed a server-side middlebox solution, named NAISS, which leverages
digital signatures to prevent the transmission of unauthorised images to clients. The au-
thorisation process is fully in the control of the e-commerce platform developer and involves
creating a signature for each image on the website, which will then be validated by a mid-
dlebox residing between the hosting server and the client. Based on the collected results in
Section 3.5, our proof-of-concept implementation demonstrates the effectiveness of NAISS,
as it is capable of granular filtering 100% of injected stegoimages with minimal impact
on loading times. As highlighted in Subsection 3.6.2, NAISS is a relevant solution due
to its simplicity, efficacy, and ease of implementation, making it a promising approach for
mitigating MageCart attacks based on stegoimages.

We conclude our research by pinpointing the answers to our research questions and
casting a light towards the future avenues of our research.

4.1 Answered Research Questions

Let us briefly provide and point out the answers to the research questions in Section 1.2.
As mentioned in that specific section, RQ1 is answered by the systematic literature review,
while RQ2 is complementarily answered in the literature review and through the design
of NAISS. RQ3 is bluntly answered through a benchmark.

RQ1 is answered in Section 2.2 and summarized in Table 2.2 and Table 2.3.

RQ2 is answered in Subection 2.2.7 and Subsection 3.6.2.

RQ3 is answered through the benchmark in Table 3.1 from Subsection 3.6.1.
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Despite its many advantages, it is important to note that NAISS may still face chal-
lenges related to its security and deployment, such as the need for additional processes
to support its operation. Therefore, further research is needed to evaluate the scalability
and practicality of NAISS in real-world scenarios and explore possible enhancements to its
design.

4.2 Future directions

We identify future directions for researchers and developers, based on the assumptions and
limitations of the literature review and the proof-of-concept implementation.

4.2.1 Literature Review

To enhance the literature review process, we recommend the following improvements for
researchers looking to continue or take inspiration from our work:

• The use of a better method to programmatically search more aggregators and follow
the chain of citations.

• The better use of advanced Natural Language Processing AIs such as GPT4 for
automatic filtering of a large number of search hits.

• Reading reports from security and forensics labs on the MageCart topic to grasp the
state-of-art modus operandi and possible defence measures.

• Consider investigating the MageCart families, their modus operandi and impact in
the wild to assess which family/group presents the highest risk for the e-commerce
market. This could yield better research focused on one particular type of attack.

4.2.2 Proposed solution

Through critical analysis, we conclude that there is room for improvement to elevate the
capabilities of NAISS such that it becomes industry-ready. Specifically, we indicate the
following directions for future research and development:

• Extend NAISS and its testing to include more MageCart attack vectors.

• Propose an integrated Continuous Integration/Continuous Deployment (CI/CD) pro-
cess for the developers to validate and sign web elements.

• Upgrade the connection type to HTTPS.

• Address the slowdown attack by adjusting the filtering algorithm.

• Improve the access time by making use of faster programming languages, algorithms
and digital signature schemes.

• Study the security posture of the reverse proxy filter and approaches to better protect
it from intruders.

• Improve the testing by running test cases on mobile browsers as well.

• Conduct tests on real-world platforms to test the scalability and adoption process.

The authors believe that the above points of improvement will elevate the contribution
of this work and will bring forward an industry-ready solution able to defend e-commerce
customers in a NAISS manner.
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