
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

A Tunable Accelerator for the
YOLOv4-tiny Object Detector using

Vitis Unified Software Platform

Sridhar Balamurali
MSc. Thesis

May 2023

Supervisors
dr. ir. S.H. Gerez

dr. ir. N. Alachiotis
dr. C.G. Zeinstra

Computer Architectures and
Embedded Systems Group

Faculty of Electrical Engineering,
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract

Deep learning-based object detection plays a crucial role in various computer vision applica-

tions. However, deploying these complex networks on embedded systems that have limited

resources presents significant challenges. This thesis addresses these challenges by developing

a unified and tunable FPGA accelerator, drawing inspiration from an existing architecture [1].

The accelerator is designed to optimize the performance of not only the computationally inten-

sive convolutional layers but also other non-convolutional layers in the YOLOv4-tiny model.

To achieve this, Vivado HLS is utilized to create IPs with design parameters that allow for

tuning through parallelism control. Key optimizations, such as fixed-point quantization and

channel interleaving, are employed. The Vitis unified software platform is utilized to dynami-

cally configure the layers of YOLOv4-tiny within the processing system of the ZedBoard. The

proposed accelerator achieves a significant speedup, with the convolutional layers running 20

times faster compared to previous works on the same platform with a MACC operation taking

2 clock cycles inside the convolution block with a throughput of 5.84 GOPS/secs, resulting

in an inference rate of 3.3 seconds per image. The overall architecture achieves a throughput

of 2.05 GOPS/sec with resource utilization of 166 (76%) DSP units, 149 (53%) BRAM18K

blocks, LUT, and FF utilization of about 56% and 43% respectively. Furthermore, when

compared with the ARM A9 processor on the ZedBoard and host CPU implementation, the

implemented architecture demonstrates a speed improvement of 58x, and 3x respectively.

ii

Contents

Abstract ii

List of acronyms vi

1 Introduction 1

1.1 Problem statement and System Setup . 2

1.2 Research Questions . 3

1.3 Contribution . 4

1.4 Thesis Outline . 4

2 CNN Background 6

2.1 Convolutional Neural Network . 6

2.1.1 Convolutional Layer . 6

2.1.2 Other Typical Layer Types . 7

2.1.3 Evaluation Metrics . 9

2.1.4 Dataset . 11

2.1.5 Frameworks . 12

2.2 YOLO: Real-Time object detection algorithm 13

2.3 Motivation For choosing YOLOv4-tiny . 15

2.3.1 Theorectical upper bound performance: 15

2.4 YOLOv4-tiny . 17

3 Literature Review 21

3.1 2-D Convolution on FPGA . 21

3.2 Fixed-point Quantization . 22

3.3 Dynamically Configurable Architecture . 22

3.4 Related Work on YOLO . 23

4 Relevant Tool: Vitis Unified Software Platform & Vivado HLS 26

4.1 WorkFlow Used For Creating Accelerated Application 26

4.2 Data types . 27

4.3 HLS Stream Library . 28

4.3.1 Using HLS stream . 29

4.3.2 Naming streams . 29

iii

iv Contents

4.3.3 I/O for streams . 29

4.3.4 Blocking reads and writes . 30

4.3.5 Non-Blocking reads and writes . 30

4.4 Source code Example . 31

4.4.1 Pragmas and performance improvement 34

4.4.2 Resource utilization comparision . 37

5 Software Implementation of YOLOv4-tiny on Zedboard’s PS and Host CPU 39

5.1 Software Implementation . 39

5.1.1 Yolov4-tiny Baremetal Floating-point model 40

5.2 Profiling results for yolov4-tiny on Host CPU 45

5.3 Vitis Vivado setup and profiling results of yolov4-tiny model on ZedBoard PS 46

5.4 Yolov4-tiny Fixed-point Model . 50

6 Hardware IP Block Design 53

6.1 Motivation for using unified hardware architecture 53

6.2 Convolutional Layer IP . 54

6.2.1 Convolutional IP block design . 55

6.2.2 Tunable Line Buffer . 56

6.2.3 3x3 Sliding Window . 57

6.2.4 Multiply Accumulate batch units . 57

6.2.5 Output stream merge . 58

6.2.6 Optimisation . 60

6.2.7 Architecture of the convolutional IP 62

6.2.8 Latency Estimation of Convolutional IP block 66

6.3 Accumulation & Activation IP block . 68

6.3.1 Latency estimation of Accumulation block 69

6.4 Max Pooling Layer IP block . 70

6.4.1 Latency estimate of Maxpool Layer 72

6.5 Upsample Layer IP block . 72

6.5.1 Latency estimation of upsample layer 74

6.6 Yolo Layer . 74

6.6.1 Latency estimation of Yolo IP block 76

7 System Design 77

7.1 System Overview . 77

7.2 Network Shaping . 78

7.2.1 Channel Folding . 78

7.2.2 Channel Padding and Kernel size padding 79

7.3 Hardware Accelerator Block setup . 80

7.4 Processing System (PS) Design . 82

7.4.1 Software Driver for ARM A9 Cortex Processor 82

7.4.2 Weights rearrangement for channel folding 83

Contents v

7.4.3 Memory Access . 83

7.4.4 Input Image transformation . 84

7.4.5 Route Layer Implementation . 84

7.5 Design Space exploration . 84

8 Results 87

8.1 Specifications of the target platform . 87

8.1.1 Intel Core i5-8250U CPU . 87

8.1.2 ZedBoard . 88

8.2 Unified accelerator Configurations . 88

8.3 Layer-wise performance comparision . 90

8.3.1 Performance breakdown per convolutional layer: PS only configuration 90

8.3.2 Performance Breakdown per convolutional Layer: PS+PL Only Con-

figuration . 91

8.3.3 Performance Improvement in Setup 2 92

8.3.4 Performance difference in this work vs Ref [1] 92

8.4 Resource Utilization Breakdown . 94

8.4.1 Resouce Utilization Breakdown: setup 1 94

8.4.2 Resource Utilization Breakdown: setup 2 97

8.5 Platform Comparison . 97

8.6 Speed and Resource Efficiency . 98

8.7 Power and Energy Efficiency . 99

8.8 Comparison with CPU and FPGA . 100

9 Conclusion and Recommendations 102

9.1 Research subquestions . 102

9.2 Main research question . 105

9.3 Recommendations . 106

9.3.1 Testing on different Xilinx-based platforms 106

9.3.2 Reduced bit-width implementation . 106

9.3.3 Non-uniform channel interleaving . 107

References 108

Appendices

A Yolov4-tiny Details 112

A.1 Weight Distribution of yolov4-tiny . 113

A.2 Data Distribution of yolov4-tiny . 115

A.3 System Results . 117

A.3.1 Setup 1 . 117

A.3.2 Setup 2 . 118

List of acronyms

DNN Deep Neural Network

YOLO You Only Look Once

GPUs Graphics Processing units

FPGAs Field Programmable Gate Arrays

IoU Intersection over Union

FPS Frame Per Seconds

PE Processing Element

PS Processing System

PL Programmable Logic

PL Programmable Logic

MACC Multiply and Accumulate

mAP Mean Average Precision

CNN Convolutional Neural Network

COCO Commom Objects in Context

HLS High Level Synthesis

RTL Register Transfer Level

ReLU Rectified Linear Unit

AXI Advanced eXtensible Interface

IP Intellctual Property

TFLM TensorFlow Lite Micro

SPP Spatial Pyramid Pooling

vi

Chapter 1

Introduction

In today’s information age, image processing is a crucial technology that enables electronic

systems to perceive, analyze, and manipulate the world. Traditional image processing tech-

niques primarily rely on mathematical algorithms or feature descriptors [2]. However, since

the early 2000s, there has been a growing interest in bio-inspired deep neural network (Deep

Neural Network (DNN)) applications. These DNNs have become increasingly popular due to

their ability to learn complex patterns and features from large datasets, leading to superior

performance in various image-processing tasks.

In the present day, computer vision is a dynamic area of research that is producing impres-

sive outcomes. An extensively employed task in computer vision is the detection of objects.

This task facilitates systems to identify and categorize objects within images. Conventional

object detection methods relied on manually crafted feature extractors, but they have been

surpassed by deep learning techniques [3] [4]. One of these approaches that have achieved

real-time performance in object detection is the You Only Look Once (YOLO) (You Only

Look Once) detector, which was introduced in 2016 [5]. YOLO provides a novel method

where image pixels are used to predict object locations and corresponding classes. Earlier

techniques utilized complex pipelines that were difficult to optimize and performed relatively

poorly. Numerous versions of YOLO have been released over the years, but this work employs

the most recent scientifically validated version, which is YOLOv4-tiny [6].

The primary difficulty with DNNs like You Only Look Once (YOLOv4-tiny) is their pro-

longed computational time, which necessitates high-processing-capability platforms. Gener-

ally, greater computational ability results in increased power consumption. Graphics Pro-

cessing units (GPUs) and large-scale cloud servers are typical examples of such platforms.

Researchers are exploring balancing performance and power consumption for deploying neu-

ral networks in embedded applications. Field Programmable Gate Arrays (FPGAs) have

shown promise as a platform for this purpose, as they can be hardware reconfigured to

enable flexible parallelism [7]. Additionally, many hardware acceleration techniques make

FPGAs suitable for energy-efficient scenarios. These include utilizing specialized hardware

1

2 Chapter 1. Introduction

blocks, such as DSPs and BRAMs, to accelerate computation, as well as optimizing memory

usage with techniques like data folding and line buffering. Overall, FPGAs offer a potential

solution to the challenge of deploying DNNs in embedded applications with limited resources.

In recent times, there has been a surge of network architectures that are highly efficient

in object detection, which have the potential to advance the development of intelligent sys-

tems. However, implementing these networks on FPGA poses a considerable challenge due

to their large scale. Moreover, it is highly desirable to have a tunable FPGA implementa-

tion available for these complex networks. By providing a tunable design, different design

decisions can be made to cater to the varying requirements of different applications without

having to start the system design process from scratch repeatedly.

1.1 Problem statement and System Setup

The goal of this thesis is to develop a tunable YOLOv4-tiny FPGA implementation target-

ting resource-constrained devices like Zedboard, which is an ARM/FPGA Soc development

board. There have been recent works that accelerate the YOLOv4-tiny object detection al-

gorithm. A Convolutional Neural Network (CNN) accelerator for YOLOv4-tiny integrated

with TensorFlow lite framework (TensorFlow Lite Micro (TFLM)) has been implemented

using a Catapult high-level synthesis tool in order to realize real-time performance [8]. An

accelerator was developed for FPGA to increase the throughput for the convolutional layers

of YOLOv4-tiny to improve upon the DSP utilization of the design [9]. Both designs used

Catapult C for High-level synthesis.

Catapult can be a useful tool for accelerating FPGA design but it has some limitations

too [10]. Catapult does not provide the level of control and optimization that is available in

traditional RTL design flow provided by Xilinx tools such as Vivado. This makes it less suit-

able for designs that require fine-grained optimization and control over the hardware imple-

mentation. This fine-grained optimization is required when making the design more tunable.

Moreover, Catapult offers limited support for the AXI interface, which makes it difficult to

interface with other Intellctual Property (IP) blocks or to implement complex data transfer

between the processing system and the programmable logic blocks inside FPGA. Therefore

for this project Xilinx tool such as Vivado HLS is used to implement IP blocks. These IP

blocks are integrated using the Vivado designer suite. Finally, Vitis unified software platform

is used for creating hardware software codesign implementation. Further details regarding

how Vivado HLS can be utilized to create Advanced eXtensible Interface (AXI) interfaces

and how other directives can be utilized to improve the performance of the accelerator is

discussed in chapter 4.

A bare-metal application without a camera is chosen for this implementation because it

eliminates the need for an extra operating system, which results in lower overhead and bet-

ter system performance. Additionally, it provides greater control over hardware resources,

1.2. Research Questions 3

leading to more efficient utilization of available resources. Finally, the use of bare-metal

implementation enables greater customization and flexibility in terms of hardware-software

integration, allowing the system to be adapted to specific needs. Images are firstly pre-

processed on the host PC. Pre-processing involves the following steps:

1. Image resizing

2. Letterboxing the image.

3. Channel Interleaving.

Figure 1.1: System Overview for YOLOv4-tiny Algorithm Processing [8]

These pre-processed images are fed to the accelerator architecture running on the FPGA

programmable logic. The Zedboard outputs bounding box coordinates and class predictions

along with their accuracy, which is then relayed back to the host PC through the UART

interface and displayed on a serial terminal called ”Tera Term”.

1.2 Research Questions

How can a tuneable FPGA design be created for the deep-learning object detector YOLOv4-

tiny with possible opportunity for carrying out design space exploration?

To answer this main research question, the following research subquestions need to be an-

swered:

• How can a YOLOv4-tiny be optimized at the software level before hardware accelerating

the model?

• What are the design decisions that are taken to accelerate the YOLOv4-tiny model?

• How can an FPGA design for YOLOv4-tiny be made parameterisable? Given the

parameters what values are optimal?

• How can a YOLOv4-tiny accelerator be created using the Vitis unified software plat-

form?

4 Chapter 1. Introduction

• Can a design space exploration be carried out for the YOLOv4-tiny model to find

optimal design points which reach low latency with as few resources as possible?

1.3 Contribution

The primary aim of this thesis, as stated in the central research question, is to develop a

flexible FPGA design for YOLOv4-tiny using the Vitis Unified Software Platform on limited-

resource devices. However, this is not the only contribution of this work. The main contri-

bution of this thesis has been listed below.

• Bare-metal software applications, capable of running on resource-limited platforms like

Zedboard, have been developed by integrating the Darknet framework with both float-

ing and fixed-point operations. These applications serve as a foundation for executing

neural networks on a single-core processor

• An FPGA implementation of the YOLOv4-tiny neural network, implemented through

Xilinx HLS tools is provided. The FPGA hardware IPs are utilized as a dedicated

CNN accelerator. Fixed-point quantization and channel interleaving techniques have

been employed to enhance acceleration performance, taking into account the network

topology and data analysis.

• The presented work proposes a dynamic and configurable architecture, capable of com-

puting all layers in the YOLOv4-tiny neural network without the need for bitstream

reconfiguration. The technique utilized is known as network transformation, which

involves reshaping the original network structure to be compatible with the accelera-

tor. This approach facilitates efficient computation of the neural network on FPGA

hardware.

The distinction between design parameters and typology parameters is important in the

context of hardware design for neural networks. Design parameters are concerned with the

hardware details such as the number of memory banks, the maximum number of channels the

IP can process, and other related aspects. In contrast, typological parameters are related to

the network typology and include information about the layers and their configurations. The

rest of the thesis will make use of these two concepts to design and implement FPGA-based

hardware for neural networks.

1.4 Thesis Outline

Chapter 2 focuses on providing background information about Convolutional Neural Net-

works and their typical components. The chapter also explains why YOLOv4-tiny was chosen

as the network of interest for this particular design.

Chapter 3, popular techniques for optimizing Convolutional Neural Networks on Field Pro-

grammable Gate Arrays (FPGAs). It also highlights recent research studies that have ex-

1.4. Thesis Outline 5

plored methods for accelerating YOLO on FPGAs.

Chapter 4 delves into the software tools and platforms used to implement the various

layers of the YOLOv4-tiny network. The chapter provides a detailed explanation of the Vitis

Unified software platform and its role in implementing CNN. The chapter gives the reasons

for choosing Vitis Unified, highlighting its advantages over other software platforms in terms

of ease of use, flexibility, and performance. The chapter also presents the design flow of the

Vitis platform and the optimization techniques used to improve the performance of the imple-

mented layers. Overall, the chapter provides a comprehensive understanding of the software

tools used in the implementation of the YOLOv4-tiny. network.

Chapter 5 provides a comprehensive description of the bare-metal floating-point model

of the YOLOv4-tiny network, including its architecture and layers. It discusses the results

obtained from profiling the simulation model to identify the bottleneck layers that may af-

fect the network’s overall performance. Additionally, the chapter introduces the bare-metal

fixed-point model of the YOLOv4-tiny network, which serves as a reference for hardware

implementation. The section also explains the methodology used to convert the floating-

point model into a fixed-point model and describes the differences between the two models.

Overall, Chapter 5 provides important background information necessary for the subsequent

hardware implementation of the network.

Chapter 6 focuses on the hardware IP design of each layer in the YOLOv4-tiny network. It

begins by providing an overview of the main methods and algorithms for each IP. The chapter

then goes on to provide a detailed explanation of the design and implementation process.

Chapter 7 concentrates on the system-level design and optimizations for the implemen-

tation of the YOLOv4-tiny network on FPGA.

Chapter 8 evaluates the results of the hardware-software codesign model and compares

them with previous work regarding YOLOv4-tiny. It also compares the FPGA implementa-

tion results of the model with those of the CPU.

Chapter 9 summarizes the key findings of the thesis and highlights the contributions of

the work. It also discusses the limitations of the proposed approach and suggests potential

areas for future research and improvement.

Chapter 2

CNN Background

Background information about neural networks is provided in this chapter to support the

selection of YOLO. Section 2.1.1 explains the fundamental concepts of Convolution Neural

Networks which include the metrics for evaluating CNN and datasets used. Section 2.2 intro-

duces Yolo Algorithm. Section 2.3 describes the motivation for the selection of the YOLOv4-

tiny object detection algorithm. Finally, section 2.4 gives the description of YOLOv4-tiny

architecture.

2.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are bio-inspired, as connections between artificial

neurons are similar to biological synapses. In contrast with fully-connected networks, in

which every neuron is linked to all neurons in the next layer, CNN has a relatively concise

organization. Because each neuron only responds to a certain receptive field. The reduction in

connectivity means lower computational complexity. Therefore, CNN has gained popularity

in image classification, object detection, and signal processing.

2.1.1 Convolutional Layer

Convolution filters are the main computational element in CNNs. In the case of an RGB image

input, there are three input channels, each of which can be represented as a 2-D matrix. If a

convolutional layer has Nin input channels, it will have Nout convolution filters that transform

inputs into Nout output channels. In this equation 2.1, fi represents the ith input channel,

and gi represents the jth output channel. The formula represents the computation for the

output of a single neuron in a fully connected layer of a neural network without activation

function applied to the output.

gj =

Nin∑
i=1

fi ∗ wi,j + bj , with j ∈ [1, Nout] (2.1)

The wi,j term is a filter window used in convolutional operations, and its size is pre-determined

by the designers. The values contained in wi,j and bj are called weights and biases, respec-

tively. kh and kw represent the filter width and height. To perform a forward calculation in

6

2.1. Convolutional Neural Network 7

a convolutional layer, a total of kh × kw ×Nin ×Nout weights and Nout biases are required.

When we consider the height and width of each output feature map to be gh and gw, re-

spectively, we can estimate the total workload of the layer using Floating point operations

(FLOPS).

Workload (FLOPS) = gh × gw × kh × kw ×Nin ×Nout × 2 (2.2)

In the equation 2.2, the workload is multiplied by two because there are nearly the same

amount of accumulation and multiplication operations. The values of gw and gh are typically

determined based on the input size, whether the input is padded at the edges, and the stride

of the sliding windows.

2.1.2 Other Typical Layer Types

In addition to convolutional layers, various types of layers have been introduced for differ-

ent purposes such as creating non-linear models, compressing data, and generating more

informative outputs.

• Non-linearity layers

Non-linearity is crucial in deep learning architectures to provide the necessary non-

linearity, which enables the model to learn complex relationships between inputs and

outputs. The non-linear activation functions that are commonly used include binary

step, sigmoid, tanh, ReLU, Leaky ReLU, ELU, and so on shown in figure2.1. The ReLU

family of activation functions has become increasingly popular in recent times [11]. This

type of function is piecewise linear, and it returns zero for negative inputs and the input

value for positive inputs. Rectified Linear Unit (ReLU) has been demonstrated to be

computationally efficient and outperforms other activation functions such as sigmoid

and tanh in a range of deep learning applications, including image recognition and nat-

ural language processing.

Leaky ReLU is used as the activation function in the convolutional layers of the YOLOv4-

tiny neural network to prevent the “dying ReLU” problem and improve the flow of

gradients during backpropagation [6]. Its use helps to maintain high accuracy while

reducing the computational cost of the network, making it suitable for real-time object

detection applications.

Figure 2.1: Non-linear activation function [12]

8 Chapter 2. CNN Background

• Batch normalization

It is a technique utilized to enhance the stability of a neural network [13]. Typically,

input data to a neural network is uniform and may not be differentiable in all areas.

This technique modifies the distribution of the data, resulting in quicker convergence

and decreased overfitting. It can also address the internal covariate shift issue, where

the input distribution to each layer changes as the parameters of the previous layers are

updated during training, leading to slow convergence and poor performance. Batch nor-

malization is applied after the convolutional layers and before the activation function.

ĝj =
gj − µB√
σ2
B + ϵ

(2.3)

g′j = γĝj + β (2.4)

It takes gj and g
′
j , which are the inputs and outputs of the layer, respectively. µB and

σ2
B represent the mini-batch mean and variance, respectively. A small value denoted

by ϵ is added to the denominator to avoid division by zero. The parameters ϵ are used

to scale and shift the normalized values of gj , and their values are learned during the

training process.

• Pooling layer

Max pooling is a valuable and effective method for decreasing the amount of data

in deep learning models. It works by selecting a representative value to represent a

small region, usually the maximum or average value within that region. This helps to

reduce the amount of information in the data while preserving the essential features,

making it simpler to work with and analyze the data. As a result, pooling is an efficient

way to reduce the computational burden of deep learning models by downsampling the

data.

• Fully-connected layer

The fully-connected layer is utilized as the last layer in deep learning models to pro-

duce classification outcomes by taking into account all the features from previous lay-

ers. However, this layer increases computational demands because each neuron in the

preceding layer is connected to every neuron in the fully-connected layer, leading to

numerous connections and computations. Despite this challenge, fully-connected layers

are still valuable for attaining precise classification outcomes in deep learning models.

• Softmax layers

Softmax layers are frequently employed in image classification tasks because they can

transform the raw scores assigned to each class into probabilities. Before softmax, class

2.1. Convolutional Neural Network 9

classification is based solely on the scores assigned to each class, which can be vague and

difficult to interpret, and the sum of these scores across all classes may not be a definite

value. The softmax layer addresses these issues by converting the scores into probabil-

ities using the below formulae which offers a more precise and easily understandable

indication of the probability of each class.

Pi =
e z|i∑K
j=1 e

zj
.

where zi is the input to the i-th neuron, K is the total number of neurons in the layer,

and Pi is the output probability of the i-th neuron. In other words, the softmax function

takes a set of scores (the z values) and squashes them into a set of probabilities that

sum to 1. Each Pi represents the probability that the input belongs to class i. The

denominator ensures that the sum of all the probabilities is 1, while the numerator

exponentiates each score to ensure that the probabilities are non-negative.

2.1.3 Evaluation Metrics

Evaluation metrics for object detection are used to evaluate the performance of a model on

an object detection task. These metrics provide a way to compare multiple detection systems

fairly and objectively, either against each other or against a benchmark. Metrics based on

average precision (AP) and its derivatives are used to assess the quality of object detections

and benchmark them accordingly.

• Intersection Over Union (Intersection over Union (IoU))

The fundamental principle underlying modern evaluation metrics for object detection is

the Intersection-over-Union (IoU) overlap measure. This metric is defined as the ratio

of the intersection of the detection bounding box and the ground truth bounding box to

their union. By calculating the IoU, we can determine how well the predicted bounding

box aligns with the ground truth bounding box. Typically, an IoU score greater than

0.5 is considered a good prediction. This threshold value may vary depending on the

specific application or context.

• True Positives tp

In object detection tasks, true positives tp refer to the number of detections with an IoU

score greater than 0.5, indicating that the predicted bounding box overlaps sufficiently

with the ground truth bounding box.

• False Positives fp

False positives fp in object detection tasks indicate the number of predicted bound-

ing boxes that either have a low degree of overlap with the ground truth bounding box

(measured by an IoU score less than or equal to 0.5) or are identified as duplicates.

10 Chapter 2. CNN Background

• False negatives fn

In object detection tasks, false negatives fn represent the number of objects that are

present in the ground truth but are not detected by the model, regardless of whether

the undetected object has an IoU score greater than or less than 0.5. In object detec-

tion tasks, false negatives [FN] represent the number of objects that are present in the

ground truth but are not detected by the model, regardless of whether the undetected

object has an IoU score greater than or less than 0.5.

• Precision

Precision is a measure that is utilized in object detection tasks to assess how accu-

rately the model is predicting the bounding boxes. It is calculated by dividing the

number of true positive detections by the sum of true positive and false positive detec-

tions. Essentially, precision evaluates the proportion of predicted bounding boxes that

are accurate.

Precision =
True Positive

True Positive + False Positives

• F1 Score

The F1 score is a popular metric used in object detection to assess the overall per-

formance of a model. It is calculated as the harmonic mean of precision and recall,

which provides a balanced measurement of the model’s capability to identify positive

objects while minimizing false positives.

F1 Score =
2× Precision× Recall

Precision + Recall

Figure 2.2: Precision vs Recall vs IoU [14]

• Average Precision (AP)

To evaluate the performance of a detection model in object detection tasks, the precision-

recall curve is often used, which displays the precision (y-axis) and recall (x-axis) values

2.1. Convolutional Neural Network 11

calculated at different confidence thresholds used for detecting objects. The area un-

der this curve, which is also known as the average precision (AP), provides a single

numerical score that summarizes the overall performance of the detection model across

all recall levels. The AP score measures how well the model can balance precision and

recall across different confidence thresholds, with higher AP scores indicating better

model performance. A perfect detection model would have an AP score of 1.0.

Average Precision (AP) =

∫ 1

0
P (r)dr

• Mean Average Precision (mAP)

The Mean Average Precision (Mean Average Precision (mAP)) is a metric used in

object detection tasks to evaluate the overall performance of a model across all object

classes. It is the average of the AP values calculated for each class, with AP being

the area under the precision-recall curve. The mAP@0.5 indicates that the calculation

is done using an IoU threshold of 0.5 to determine whether a predicted bounding box

overlaps with the ground truth box.

2.1.4 Dataset

The Commom Objects in Context (COCO) (Common Objects in Context) [11] dataset is a

comprehensive collection of images that are used extensively in computer vision research for

object detection, segmentation, and captioning. With over 330,000 images and 2.5 million

object instances, it is considered a large-scale image recognition dataset. The dataset fea-

tures images from various categories, including people, animals, vehicles, household items,

and outdoor scenes. This diversity makes it a valuable resource for researchers working on

computer vision problems related to real-world scenarios.

The COCO dataset is an ideal choice for training and assessing the YOLOv4-tiny model

for several reasons.

• Firstly, the dataset offers a wide range of images that cover various object categories

and situations. This enables the model to learn and identify various objects, making it

helpful for various applications.

• Secondly, the COCO dataset contains comprehensive annotations for each image, in-

cluding the category, location, and size of each object. This allows the YOLOv4-tiny

model to identify and locate objects within an image accurately and classify them cor-

rectly, even in complex scenes with multiple objects and occlusions.

12 Chapter 2. CNN Background

• Thirdly, the COCO dataset is widely recognized in the computer vision community,

making it a standard benchmark for object detection and segmentation models. This

enables the YOLOv4-tiny model’s performance on the COCO dataset to be compared

with other state-of-the-art models and assessed in a consistent and unbiased manner.

2.1.5 Frameworks

Deep neural network (DNN) frameworks are software tools that provide pre-built implemen-

tations of common deep-learning algorithms. Some frameworks even come with pre-trained

neural network models. These tools help speed up the development and research in the field

of deep learning. Frameworks work with a higher level of abstraction that enables users

to define the structure of the application. Configuration files contain the application skele-

ton that specifies the layer types, number of neurons per layer, input data shape, and other

details. Many frameworks can also use GPUs to accelerate the inference and learning process.

Although YOLO was initially implemented in the Darknet framework, it has also been imple-

mented in other popular frameworks. Choosing the right framework is essential to solving the

problem effectively. In addition to Darknet, this section will discuss two other widely-used

frameworks.

• Darknet: Darknet is a neural network framework that is free and available for any-

one to use [15] It is created using the programming languages C and CUDA and was

developed by Joseph Redmon. The framework has gained recognition because it imple-

mented YOLO , which is an object detection algorithm known for its high accuracy and

real-time object detection capabilities. The framework can be utilized with both CPU

and GPU acceleration and is supported by various platforms such as Linux, Windows,

and macOS.

The most significant benefit of the darkent is its speed and efficiency. Its lightweight

design and optimized algorithms allow it to execute fast inference times even on low-

powered devices. Moreover, the framework has an intuitive and straightforward API,

which makes it simple for researchers and developers to create, train, and evaluate their

models.

• Caffe: Caffe is a framework for deep learning that was developed by the Berkeley Vi-

sion and Learning Center [16]. It is created with a focus on being efficient, modular,

and extensible. Caffe supports both CPU and GPU acceleration, similar to Darknet,

and is written in C++ and CUDA, with bindings for other programming languages

such as Python and MATLAB.

Caffe is particularly strong because of its pre-trained model zoo. The model zoo con-

tains a wide range of pre-trained models for various computer vision tasks such as

object detection, segmentation, and classification. This feature enables developers and

researchers to quickly build and evaluate their models for their specific use cases with-

out needing to train their models from scratch.

2.2. YOLO: Real-Time object detection algorithm 13

The framework’s modular design is another advantage of Caffe, which allows customiza-

tion and extension of the framework. This modular structure makes Caffe an ideal

platform for the research and development of new deep-learning algorithms and archi-

tectures.

• Tensorflow TensorFlow is a deep learning framework created by the Google Brain

team that has become widely used and is considered one of the most popular open-

source deep learning frameworks available [17]. TensorFlow works on both CPU and

GPU and can be used on various platforms such as Linux, Windows, and macOS.

One of the significant advantages of TensorFlow is its ability to be versatile and scalable,

allowing users to train various types of deep learning models such as convolutional neural

networks, recurrent neural networks, and generative adversarial networks. TensorFlow

is also optimized for distributed computing, making it possible to train large-scale mod-

els or on distributed clusters.

Another benefit of TensorFlow is its vast community of users and contributors, which

provides numerous resources, including pre-trained models, tutorials, and extensions.

This enables researchers and developers to quickly build and evaluate models for their

specific applications.

Why Darknet over Tensorflow or Caffe Framework.?

Darknet is a preferred framework over Caffe and TensorFlow for the YOLOv4-tiny

model for several reasons. One of the significant advantages of Darknet is its speed and

efficiency, as it is optimized for object detection tasks and written in C and CUDA,

making it fast and memory efficient, particularly when running on GPU. Additionally,

Darknet’s open-source nature enables developers to customize and modify it to suit spe-

cific requirements, which is crucial for improving the performance of the YOLOv4-tiny

model. Darknet was built specifically for the YOLO family of object detection models,

including YOLOv4-tiny, and is optimized for their unique architecture and require-

ments. Darknet also provides a wide range of tools and functions for training, testing,

and evaluating object detection models, including data augmentation, model visualiza-

tion, and performance evaluation metrics, making it a comprehensive and integrated

solution for object detection tasks.

2.2 YOLO: Real-Time object detection algorithm

Joseph Redmon et al. introduced the first generation of You Only Look Once (YOLO) in

2016, which uses a single Convolutional Neural Network (CNN) to predict both class proba-

bilities and bounding boxes [5]. YOLO divides the input image into grids of size S x S, with

each grid capable of providing B bounding boxes, along with confidence values for the boxes

and probabilities for C classes. YOLO’s low latency and high throughput are the key factors

behind its state-of-the-art performance in real-time detection.

14 Chapter 2. CNN Background

In 2017, YOLOv2, an improved version of YOLO, was launched with a range of upgrades

such as batch normalization and anchor boxes [18]. Anchor boxes refer to preset bounding

boxes that have fixed scales between width and height. By using anchor boxes instead of a

fully-connected layer, the size of objects that can be detected is limited, but it enhances the

recall rate and separates object classifications from bounding boxes. To fulfill the require-

ment of a faster and more efficient object detection network that can run in real-time on

devices with limited computational resources like mobile phones or embedded systems, the

YOLOv2 tiny model was developed. Compared to the full YOLOv2 network, the tiny model

has fewer layers and parameters, which results in faster processing times while maintaining

a satisfactory level of accuracy of about 57% in object detection tasks. However, the anchor

boxes used in YOLOv2-tiny restrict the range of object sizes that can be detected. This can

result in missed detections or inaccurate bounding box sizes for objects outside of the preset

range. Moreover, The YOLOv2-tiny model was designed to detect a limited number of object

classes, typically around 20. This can be a limitation in scenarios where a larger number of

object classes need to be detected.

In 2018, a newer version of YOLO called YOLOv3 was introduced, which improved the

accuracy of the model [19]. Instead of using softmax activation at the output of the network,

sigmoid activation was used to address the poor performance of softmax when multiple la-

bels correspond to the same bounding box. YOLOv3 also uses a structure similar to feature

pyramid networks, combining upsampled features with those from previous layers to process

the combined features further through several convolutional layers. This structure makes

predictions across different scales easier, leading to improved accuracy.

The YOLOv3 model has a workload of 65.86 GFLOPs and achieves a 51.5% mAP@0.5 on

the COCO test-dev dataset while running at 35 FPS on a Pascal Titan X GPU. For resource-

constrained environments, a lighter model called YOLOv3-tiny is available. This model is

more suitable for embedded applications and can achieve a 33.1% mAP@0.5 on the same test

dataset but with a much higher frame rate of 220 FPS on the same GPU device.

In 2020, YOLOv4 was introduced as an upgraded version of previous YOLO models, offering

faster, more accurate, and more robust object detection capabilities. One of the key advance-

ments of YOLOv4 is its utilization of a “bag of freebies” and a “bag of specials” [20].” The

former involves standard techniques like data augmentation, label smoothing, and random

training shapes to enhance model performance, while the latter comprises more sophisticated

techniques such as the Mish activation function, self-adversarial training, and DropBlock

regularization. YOLOv4 also incorporates a CSPDarknet53 backbone, which is a modified

version of the Darknet architecture that includes cross-stage partial connections to improve

information flow within the network. Along with a spatial pyramid pooling layer and a path

aggregation network, the CSPDarknet53 backbone enhances the model’s ability to detect

objects at varying scales

2.3. Motivation For choosing YOLOv4-tiny 15

YOLOv4-tiny is a less resource-intensive version of the YOLOv4 model used for object detec-

tion [20]. Its design is suitable for deployment in limited-resource environments like mobile

devices and embedded systems. Compared to the full YOLOv4 model, YOLOv4-tiny has a

smaller model size and fewer layers, enabling it to operate at a faster speed while utilizing

less memory. Despite its reduced size, YOLOv4-tiny still attains high accuracy, with a mean

average precision (mAP) of 43.5% on the COCO dataset.

Similar to YOLOv3-tiny, YOLOv4-tiny utilizes anchor boxes for bounding box prediction

and a feature pyramid network for detecting objects at different scales. It incorporates some

of the enhancements from YOLOv4, including the use of CSPDarknet53 as the backbone

network and the integration of Spatial Pyramid Pooling (SPP) (Spatial Pyramid Pooling)

to capture context information. The implementation of a new architecture in the Back-

bone which is called CSPDarkent 53 and the modifications in the Neck have improved the

mAP(mean Average Precision) by 10%.

2.3 Motivation For choosing YOLOv4-tiny

Table 2.1 gives the comparison of the YOLO model for object detection based on the trade-off

between accuracy (mAP) and computational complexity (GOPS) [20] [19] [18]. The Original

YOLO models have more than 8x parameters as compared to their tiny counterparts. The

YOLO Tiny models are more desirable than the original YOLO models due to their smaller

size, faster speed, and lower computational requirements. They are particularly suitable for

cases that necessitate real-time object detection on devices with limited power, like embedded

systems, drones, and smartphones. Moreover, the YOLO Tiny models usually outperform

the original YOLO models when detecting small or distant objects since they are trained on

smaller input images, making them more adept at identifying such objects.

Model Parameters mAP GOPS

YOLOv2 50.80M 76.80% 29.46

YOLOv2-tiny 6.97M 57.10% 5.46

YOLOv3 62.90M 57.90% 65.34

YOLOv3-tiny 8.97M 33.10% 5.40

YOLOv4 63.80M 46.70% 62.00

YOLOv4-tiny 6.90M 44.00% 6.62

Table 2.1: Comparison of YOLO models.

2.3.1 Theorectical upper bound performance:

Before selecting the correct version of the YOLO algorithm to be implemented on a target

platform, it is important to estimate a theoretical upper-bound performance using the num-

ber of computational resources like Multiply-Accumulate (MACC) units present in the target

platform. The target platform chosen for this project is ZedBoard. In CNN, convolutional

16 Chapter 2. CNN Background

operations are the most computationally intensive operations that are done in a repetitive

manner for an entire layer in CNN which takes about 99% [8]. Convolution operation re-

quires Multiply-Accumulate (Multiply and Accumulate (MACC)) operation which is mapped

to DSP slices present on the target platform. Therefore for the analysis, 1 DSP slice will be

considered as a processing element (Processing Element (PE)) which is designed to perform

repetitive multiplication and addition operations, making them well-suited for convolution

operations in deep-learning models.

The Theoretical upper bound performance is given by Frames per second which relates

to the throughput of the design and the processing elements present in the target platform

as follows :

Frame per seconds (Frame Per Seconds (FPS)) =
(Throughput of 1 PE x Number of PEs)

Workload

where:

• Throughput of 1 PE is the number of MACC operations that can be performed by 1

PE per second.

• Number of PEs is the total number of PEs in the target platform.

• Workload is the number of MAC operations required for one inference given as Giga

Operations per second (GOPS).

In ZedBoard, there are about 220 DSP slices and each Slice is of size 18x25 fixed-point

multiplications. Assuming each DSP slice can perform 1 MAC operation per cycle, Therefore

the throughput of a slice per cycle is given as

Throughput of 1 PE per Cycle = 1 MAC

Assuming all PEs are active at the same time i.e. all 220 DSP slices are active at the same

time. Additionally, if the clock frequency of the design is 100 MHz. Then

Throughput of 1 PE×Number of PE = 1× 100× 106 × 220 = 22 GOPS/secs

The workload for each tiny model can be used from table 2.1.

Yolo version Computations (GOPS) Theoretical Upper bound FPS

Yolov2 29.46 0.74

Yolov2 tiny 5.56 3.95

Yolov3 65.34 0.33

Yolov3 tiny 5.4 4.07

Yolov4 52.00 0.42

Yolov4 tiny 6.62 3.33

Table 2.2: Comparision of FPS

2.4. YOLOv4-tiny 17

Table 2.2 gives the FPS results for the YOLO versions shown. The reason for not choosing

the yolov3-tiny model was its low accuracy of approximately 33% mAP. Selection between

YOLOv2-tiny and YOLOv4-tiny depends on various factors, including the balance between

accuracy and speed and the robustness to variation in input data. In terms of speed, which

is crucial, YOLOv4-tiny appears to be a better option as it has fewer layers to process as

compared to YOLOV2-tiny which means that it has fewer layers and parameters. While

this makes the network faster and more efficient, it also reduces its capacity to learn com-

plex features and patterns in the input data, which can affect its accuracy which explains

why YOLOv4-tiny has a lower 44% mAP as compared to YOLOv2-tiny (57%). This lower

accuracy is also due to the fact that the YOLOv4-tiny model is trained for detecting 80 dif-

ferent classes as compared to 20 classes in the case of YOLOv2-tiny but this also means that

YOLOv4-tiny is more robust for new input. Furthermore, YOLOv4-tiny is a newer model

that includes various improvements and optimizations compared to the earlier model, such as

a better backbone architecture and an enhanced feature pyramid network, which contributes

to its accuracy and efficiency. These are some of the reasons why YOLOv4-tiny is preferred

over other tiny versions for object detection algorithms.

2.4 YOLOv4-tiny

YOLOv4-tiny has a two-part structure that includes detection layers and a backbone network.

The backbone network is a modified version of CSPDarknet53, which is a variant of the

Darknet network that uses cross-stage partial connections to enhance feature propagation.

The CSPDarknet53-tiny architecture implemented in YOLOv4-tiny has a smaller depth and

width than the original CSPDarknet53, making it a smaller and faster network.

• CSPDarknet53-tiny The backbone network in YOLOv4-tiny, as shown in Figure 2.3

is constructed using CSPDarknet53-tiny, a simplified version of the CSPDarknet53 ar-

chitecture used in the larger YOLOv4 model. The abbreviation CSP stands for Cross

Stage Partial connections, which link the layers in the network. The CSP technique

splits the layers into two branches, with one branch performing the convolutional op-

eration and the other performing identity mapping. The outputs of these branches

are then combined through concatenation before passing to the next layer, improving

gradient flow and reducing overfitting.

The CSPDarknet53-tiny architecture includes three convolutional layers and three CSP-

Block modules. The first two convolutional layers consist of a convolutional layer and a

Leaky-ReLU layer, with each convolutional layer having a kernel size of 3 and a stride

of 2. The final convolutional layer has a kernel size of 3 and a stride of 1. In con-

trast to the Mish activation function used in the original CSPDarknet53 architecture,

CSPDarknet53-tiny uses the simpler Leaky-ReLU activation function to simplify the

calculation process.

18 Chapter 2. CNN Background

The YOLOv4-tiny model employs two feature maps with different sizes, namely 13

x 13 and 26 x 26, for detecting objects. For each feature map, three anchor boxes of

varying sizes are utilized to predict three bounding boxes. Prior to training, k-means

clustering is applied to determine the number of anchor boxes, resulting in a total of

six predefined boxes across the three scales.

To handle the issue of multiple overlapping detection bounding boxes, YOLOv4-tiny

uses a variation of Non-Maximum Suppression (NMS) called distance intersection over

union non-maximum suppression (DIoU-NMS). This approach takes into account the

distances between the center points of the bounding boxes, especially when they do not

overlap. The threshold for DIoU-NMS in this case is set to 0.4.

The YOLOv4-tiny architecture consists of 21 convolutional layers out of which 19 are

depthwise convolutions followed by LeakyRelu activations functions and 2 are fully con-

nected layers. There are about 3 Maxpool Layers, 11 route layers, 1 Upsample layer,

and 2 Yolo Layers for detecting images at different scales of 26x26 and 13x13 respec-

tively. The detailed block diagram and topological feature of each layer are presented

in figure 2.4. Table 2.4 gives the topological configurations on each layer with Billion

Floating point operation (BFLOPS) per layer.

Figure 2.3: YOLOv4-tiny Architecture

2.4. YOLOv4-tiny 19

Table 2.3: Network architecture of YOLOv4-tiny

Layer Filters Size Input Output BFLOPS

conv 32 3 x 3 / 2 416 x 416 x 3 208 x 208 x 32 0.075

conv 64 3 x 3 / 2 208 x 208 x 32 104 x 104 x 64 0.399

conv 64 3 x 3 / 1 104 x 104 x 64 104 x 104 x 64 0.397

route 2 (output from layer 1/2)

conv 32 3 x 3 / 1 104 x 104 x 32 104 x 104 x 32 0.199

conv 32 3 x 3 / 1 104 x 104 x 32 104 x 104 x 32 0.199

route 5 4 (outputs from layers 5 and 4)

conv 64 1 x 1 / 1 104 x 104 x 64 104 x 104 x 64 0.089

route 2 7 (outputs from layers 2 and 7)

max 2 x 2 / 2 104 x 104 x 128 52 x 52 x 128 26 x 26 x 128 -

conv 128 3 x 3 / 1 52 x 52 x 128 52 x 52 x 128 0.397

route 10 (output from layer 1/2)

conv 64 3 x 3 / 1 52 x 52 x 64 52 x 52 x 64 0.199

conv 64 3 x 3 / 1 52 x 52 x 64 52 x 52 x 64 0.199

route 13 12 (outputs from layers 13 and 12)

conv 128 1 x 1 / 1 52 x 52 x 128 52 x 52 x 128 0.089

route 10 15 (outputs from layers 10 and 15)

max 2 x 2 / 2 52 x 52 x 256 26 x 26 x 256 13 x 13 x 256 -

conv 256 3 x 3 / 1 13 x 13 x 256 13 x 13 x 256 0.397

route 18 (output from layer 1/2)

Conv 128 3 x 3 / 1 26 x 26 x 128 26 x 26 x 128 0.199

Conv 128 3 x 3 / 1 26 x 26 x 128 26 x 26 x 128 0.199

Route 21, 20 - - 26 x 26 x 256 -

Conv 256 1 x 1 / 1 26 x 26 x 256 26 x 26 x 256 0.089

Route 18, 23 - - 26 x 26 x 512 -

Max - 2 x 2 / 2 26 x 26 x 512 13 x 13 x 512 -

Conv 512 3 x 3 / 1 13 x 13 x 512 13 x 13 x 512 0.397

Conv 256 1 x 1 / 1 13 x 13 x 512 13 x 13 x 256 0.044

Conv 512 3 x 3 / 1 13 x 13 x 256 13 x 13 x 512 0.399

Conv 255 1 x 1 / 1 13 x 13 x 512 13 x 13 x 255 0.044

YOLO - - - 13 x 13 x 255 -

Route 27 - - 13 x 13 x 256 -

Conv 128 1 x 1 / 1 13 x 13 x 256 13 x 13 x 128 0.011

Upsample - 2x 13 x 13 x 128 26 x 26 x 128 -

Route 33, 23 - - 26 x 26 x 384 -

Conv 256 3 x 3 / 1 26 x 26 x 384 26 x 26 x 256 1.196

Conv 255 1 x 1 / 1 26 x 26 x 256 26 x 26 x 255 0.088

YOLO - - - 26 x 26 x 255 -

20 Chapter 2. CNN Background

Figure 2.4: YOLOv4-tiny Architecture

Chapter 3

Literature Review

This chapter focuses on prior research that involves implementing Convolutional Neural Net-

works (CNNs) on FPGAs, as well as the specialized techniques utilized in embedded appli-

cations. The major obstacle is the significant computation and memory storage demanded

by CNNs.

3.1 2-D Convolution on FPGA

Numerous research studies are currently focused on optimizing 2-D convolution for embed-

ded FPGA devices, with a primary focus on enhancing memory storage, data bandwidth,

and parallelism. By achieving optimal performance in these areas, FPGA devices can handle

the computational demands of convolutional neural networks (CNNs) more efficiently than

traditional processors, enabling high-performance computing with low power consumption.

The two primary buffer schemes used in FPGA-based convolutional neural networks (CNNs)

are full buffering (FB) and partial buffering (PB) [21]. Full buffering involves accessing the

entire feature map in a sequential line-by-line manner, ensuring that every input pixel is read

from external memories only once. This data is then stored locally and reused by the sliding

window. However, this approach typically requires a large on-chip memory on FPGA due to

the need to store all input data locally.

In contrast, partial buffering divides the feature map into multiple regions and loads only one

region at a time to the FPGA device. Although this approach requires less on-chip memory

compared to full buffering, it has the drawback of loading the same data multiple times, which

increases the frequency of accessing external memory and demands higher data bandwidth.

An alternative approach to partial buffering is the use of the Image to Column (Im2Col)

algorithm [22] [23], which involves splitting the input feature map into batches that have the

same size as weight windows. This transformation allows the convolution operation to be

represented as a matrix multiplication, which can be further expanded into 1-D vectors. In

this way, convolution can be computed as the dot product between the input vector and the

21

22 Chapter 3. Literature Review

weight vector.

3.2 Fixed-point Quantization

Most FPGAs do not have floating-point hard cores, which makes it challenging to handle

the high precision required for neural network training. A common approach is to train

the network using floating-point representations on a GPU and then convert it to a lower-

precision version with or without retraining. This technique has been documented in research

papers [24] [25].

Fixed-point implementation requires determining the number of bits allocated for the in-

teger and fraction parts. In linear quantization, the bit width of integers depends on extreme

values and the possibility of overflow. The length of the fraction part affects quantization

error, and the step size of quantization shapes the data distribution. Therefore, it is crucial

to investigate the trade-off between bit-width and network precision for different network

types. This analysis is necessary for accurate implementation of neural networks on FPGAs.

Qiu et al. [26] introduced a dynamic strategy in 2016 that selects different fraction lengths for

each layer in a neural network. Re-quantization is then performed between layers by shifting

bits in the activation. This dynamic quantization approach is more efficient in terms of re-

source usage, especially when there is significant variation in weight and data distributions

between layers.

In addition to linear quantization, there are alternative methods to reduce bit-width even

further. Logarithmic data representation is a technique that transforms weight and activa-

tion values into the log domain. This approach can achieve compression because the original

distributions of the data are typically non-uniform [27].

Rastegari et al. [28] introduced Binary-Weight-Networks and XNOR-Networks that binarize

either the weights or both the weights and data. However, most studies on binarized networks

concentrate on image classification rather than object detection due to the significant loss of

precision that binarization causes, particularly in bounding box predictions.

3.3 Dynamically Configurable Architecture

Different layers within a neural network can have different typology parameters, such as the

number of neurons, activation functions, and weights. These parameters can affect the com-

putational requirements and memory access patterns of each layer, making it challenging to

optimize performance for the entire network.

One possible solution to this challenge is to design specific hardware for each layer of the

network. By customizing the hardware for each layer, it is possible to reduce off-chip memory

3.4. Related Work on YOLO 23

transactions and improve performance. For example, hardware accelerators can be designed

to perform the specific computations required by each layer, which can lead to faster and

more efficient processing [2]. However, one disadvantage of this approach is that it can require

significant resources to put the entire network on hardware.

A potential solution to address the compatibility issue and huge storage requirements of

intermediate results is to develop a unified hardware architecture that can accommodate all

layers. This approach involves controlling multiplexers within the architecture to support

a range of convolution types and configurations. This strategy has gained popularity in

FPGA-based CNN implementations, with Chakradhar et al. [2] proposing it in 2010. How-

ever, a drawback of this approach is that it may sacrifice some performance for the sake of

compatibility.

3.4 Related Work on YOLO

The Eyeriss architecture, introduced in [29], can minimize off-chip memory access of any

CNN shape using a spatial architecture that includes 168 processing elements. This architec-

ture employs a computational scheme named “row stationary” which enhances parallelism to

achieve high throughput while optimizing the data movement to improve energy efficiency.

The authors evaluated the Eyeriss architecture’s performance on Xilinx V707 FPGA, which

has 2800 DSP slices, using two popular CNNs: Alexnet and VGG-16. With 16-bit fixed-point

arithmetic precision, Eyeriss achieves a frame rate of 37.1 frames/sec and throughput of 23.1

with a DRAM access of 0.0029 per MAC operation for Alexnet CNN, while for VGG-16, the

frame rate is 0.7 frames/s with a DRAM access of 0.0035 per MAC operation.

In a recent paper [30], researchers proposed a fully scalable and configurable IP core to

improve parallelism during both inference and training time. The core is responsible for

accelerating the execution of all the algorithm steps, including pre-processing and model

inference, and has been configured for real-time execution of YOLOv3-Tiny and YOLOv4-

Tiny models. This core has been integrated into a RISC-V-based system-on-chip architecture

and prototyped in an UltraScale XCKU040 FPGA, resulting in a complete system called

Soc-Yolo. The IP core consists of a matrix of vector functional units that perform MAC

computations, exploiting parallelism with both input and output Feature Map(FM) such as

Intra-convolution (concurrently computing multiplications within 2D convolutions), Inter-

convolutions (Multiple 2D convolutions computed concurrently), and Intra-FM (computing

multiple pixels of a single output feature map), inter-FM (concurrently processing multiple

output feature map) and enhancing pixel and weight sharing. In performance tests, the

YOLOv3-Tiny detector implemented in the SoC-YOLO platform achieved a frame rate of

32 FPS, with a peak throughput of 238 GOPS and an execution time of 30.9 ms. Similarly,

the YOLOv4-Tiny detector on the SoC-YOLO platform achieved a frame rate of 31 FPS,

with a peak throughput of 357 GOPS and an execution time of 32.1 ms. These results show

that the Soc-Yolo-based implementation of the YOLOv3-Tiny and YOLOv4-Tiny models is

24 Chapter 3. Literature Review

significantly faster than the CPU version, with speed-ups of nearly 27x and 33x, respectively.

A parameterized FPGA-tailored architecture is proposed in [1] for low-latency detection

with tiny YOLO3. The presented work is based on low-latency object detection on a low-end

FPGA device like Zedboard. The paper also carries out a design space exploration for identi-

fying design points that optimize latency while meeting the resource constraints of the FPGA

device. The developed accelerator is utilized for the execution of all layers of the network

through a run-time parameter setting, which is also parameterizable at compile time using

Vivado HLS. The architecture is 1.5x more power efficient compared to the floating-point

YOLOv3-tiny implementation on a Pascal Titan X and is 290x faster compared to the fully

Arm Cortex A9 implementation. The proposed architecture achieves a frame rate of 1.88

FPS and 10.45 GOPs throughput with the low-cost FPGA evaluation board. Moreover, the

proposed architecture sees a 290x improvement in latency compared to the hardcore proces-

sor of the device, achieving at the same time a reduction in mAP of 2.5 pp (30.9% vs 33.4%)

compared to the original model under 16-bit fixed-point implementation.

In [31], a method is proposed to accelerate the YOLOv4 algorithm using FPGA in order

to minimize inference time while maintaining high accuracy. The researchers evaluated re-

source utilization and inference time as important parameters for hardware acceleration of

object detection algorithms. The proposed accelerator was designed for the Zynq-7000 SoC

to maximize resource utilization and achieve large throughput. They used Vivado 2020.1 to

prototype the hardware acceleration of the YOLOv4 algorithm, and employed loop pipelin-

ing optimization and loop tiling approach to enhance system throughput and reduce memory

access, respectively. The proposed implementation achieved better resource utilization with

23.2k LUTs, 45.8 flip flops, 115 BRAMs, and 174 DSPs under the optimum frequency of

100 MHz. The design claimed to achieve a peak throughput of 189.14 GOP/s and 30 fps

performance with an effective resource utilization of about 80%.

In [32], the authors describe an FPGA implementation of the lightweight YOLOv2 algorithm

using a combination of binarized CNN and parallel State Vector regression for bounding box

prediction and class estimation. The proposed architecture was implemented on the Xil-

inx Inc. Zynq UltraScale+ MPSoC zcu102 evaluation board. The binarized CNN was used

for classification, while the parallel SVR was used for both classification and localization.

The proposed architecture achieved an inference time of 24.5 msec per image, which corre-

sponds to a frame rate of 40.81 FPS with dynamic board power consumption. Compared to

the ARM Cortex-A57, the proposed architecture was 177.4 times faster and 1.1 times more

power-hungry, with a performance per power efficiency that was 158.9 times better. The per-

formance per power efficiency was calculated to be 9.06 FPS/W with a power consumption

of 4.5 W.

In [33], an improved architecture is proposed for deep learning on the Tiny-Yolo network us-

ing Xilinx’s high-performance ZYNQ SoC FPGA chip. The proposed architecture optimizes

3.4. Related Work on YOLO 25

the YOLO network model, replaces the activation function, and uses a 16-bit fixed-point on

the weight parameters to efficiently utilize the resources present in the FPGA. The proposed

architecture achieves an inference time of 51.9 ms or an FPS of 19.26, which is 44.9 times

faster than the CPU. However, the accuracy is slightly lower, which is about 48.5% mAP

compared to 51.3% mAP in the CPU.

The article [34] proposes a low-cost, hardware-efficient architecture for real-time object de-

tection of YOLOv2-tiny on a Xilinx XC7Z035 FPGA. They used quantization-aware training

to decrease precision while preserving accuracy. They utilized an open-source tool named

ZigZag for design space exploration to optimize latency and reduce memory access. The

proposed architecture employed two metrics, DSPefficiency and Costefficiency, to determine the

optimal PE array size, spatial/temporal unrolling, and memory hierarchy with respect to

latency. The design achieves an FPS of 11.54 and 23.07 for operating frequencies of 100MHz

and 200 MHz, respectively. The resulting hardware is highly efficient with a DSPefficiency of

90% and a Costefficiency of 0.146 GOPS.

New Accelerator for DCNN is proposed in [35] which leverages all forms of parallelism i.e.

inter-Layer, inter-output, inter-kernel, and intra-kernel to minimize the execution time. An

improved tiling strategy is adopted inside the convolutional kernel to improve the perfor-

mance. Analytical modeling for the proposed architecture with respect to the Alexnet ar-

chitecture is carried out to find the best design parameters for implementing Xilinx Virtex7

FPFA. The proposed architecture achieves a throughput of 84.2 GOPs with 32-bit float pre-

cision.

Chapter 4

Relevant Tool: Vitis Unified Software

Platform & Vivado HLS

4.1 WorkFlow Used For Creating Accelerated Application

The Vitis Unified Software Platform is a powerful development environment that enables de-

velopers to build accelerated applications on heterogeneous computing systems. The platform

is developed by Xilinx, a leading provider of FPGA and other hardware solutions for accel-

erating compute-intensive workloads. The Vitis platform provides a suite of tools, libraries,

and APIs that abstract the complexities of hardware programming, making it easier for de-

velopers to build high-performance, energy-efficient applications. The platform supports a

range of programming languages, including C, C++, OpenCL, and Python, and provides a

high-level programming model that simplifies the development process.

Vivado is used under the hood in the Vitis Unified Software Platform. Vivado is used to

create the hardware design for the FPGA, which can then be programmed and accelerated

using the Vitis platform. The Vitis platform provides software tools and libraries that enable

developers to build, test, and optimize their applications on the FPGA design created in

Vivado. So, Vivado and Vitis Unified Software Platform work together to provide a complete

solution for building accelerated applications on Xilinx devices. The workflow presented in

Figure 4.1 is followed in this thesis for creating an accelerated application using the Vitis

Unified software platform.

The design process with High Level Synthesis (HLS) involves multiple stages and tools.

First, designers develop and test the design specification using C, and C++. Next, HLS

is used with technology and clock settings to generate Register Transfer Level (RTL) code.

The resulting RTL code and IP blocks are then integrated using the Vivado design suite’s

IP Integrator. Finally, an application is built on this FPGA design using the Vitis Unified

Software Platform, which facilitates hardware-software codesign.

26

4.2. Data types 27

In this chapter, this chapter will discuss the process of creating a compatible HLS C++

design for Vivado HLS. Firstly, section 4.2 discusses about both built-in datatypes and custom

datatypes used in creating a C++ design.

Figure 4.1: Work flow for creating accelerated application

4.2 Data types

In High-level synthesis, data types are used to define the type and size of the variables

used in the design. As a high-level programming language is used to describe hardware, more

accurate descriptions of (sub-byte) data types are required. Vivado allows the implementation

of different number formats, including integers, fixed-point data types, and floating-point data

types. All these concepts are described below.

• ap_(u)fixed<W,I,Q,O,N>

This data type represents a signed or unsigned fixed-point number. It is defined by

specifying the total number of bits and the number of integer bits. The data type can

be defined after including ap fixed.h or ap ufixed.h header file.

Here, W is the total width of the fixed-point number in bits, I is the number of integer

bits in the fixed-point number to the left of the binary point, Q refers to quantization

mode in the fixed-point number, O is the overflow mode, and N is the number of satura-

tion bits in various overflow modes. It is not necessary to give all the parameters to the

ap fixed for representing fixed-point values as shown in figure 4.1. There are various

28 Chapter 4. Relevant Tool: Vitis Unified Software Platform & Vivado HLS

quantization modes and overflow modes which impact the precision of the representable

values [36]. AP RND CONV has been used as a quantization mode for designing IP blocks

as it provides convergent rounding, which ensures more accurate results by rounding

to the nearest representable value with ties rounded to the nearest even value. AP SAT

has been used in designing IP blocks as it enables saturation behavior, which prevents

overflow or underflow issues. When a result exceeds the valid range, it is clamped to

the maximum or minimum representable value, ensuring data integrity and avoiding

data loss.

1 #include <ap_fixed.h>

2 ap_fixed <16, 8> weight_type;

3 ap_fixed <16, 8> data_type;

4 ap_fixed <32, 16> acc_type;

5 ap_fixed <16,8, AP_RND_CONV , AP_SAT > x;

Listing 4.1: Fixed-point data types

• ap_(u)int<N>

This data type used in Vivado HLS represents a fixed-width signed and unsigned inte-

ger. It allows users to define the number of bits they need for their specific design by

specifying the number of bits in the angle brackets. The ’ap’ in the data type refers to

arbitrary precision, which means that the bit-width can be customized. For instance,

listing 4.2 declares two datatypes of type ap uint of length 16 bits and 32 bits and

initializes them to a value within the limits representable by the number of bits.

1 #include <ap_int.h>

2 ap_int <8> a = 50;

3 ap_uint <16> x = 65535;

4 ap_uint <32> y = 4294967295;

Listing 4.2: Arbitary precision integer data types

4.3 HLS Stream Library

The HLS stream library is primarily designed in High-Level Synthesis (HLS) tools to model

and simulate streaming data interfaces within the design. The HLS stream library is syn-

thesizable. The class hls::stream creates buffers that behave like first-in, first-out (FIFO)

queues for data transmission between various hardware modules within an FPGA design.

There is no requirement to define the size of an hls::stream. They are read from and writ-

ten sequentially. That is, after data is read from an hls::stream, it cannot be reread. This

section will discuss such data transfers between IPs and data can be read or written from

this stream.

4.3. HLS Stream Library 29

4.3.1 Using HLS stream

To use hls::stream objects, include the header file hls stream.h. Streaming data objects

are defined by specifying the type and variable name. In this example, a 16-bit signed fixed-

point type is defined and used to create a stream variable called my wide stream as shown

in listing 4.3.

1 #include "ap_int.h"

2 #include "hls_stream.h"

3 typedef ap_fixed <16,8> fp_data_type // 16-bit user -defined fixed -point

datatype

4 hls::stream <fp_data_type > my_wide_stream; // A stream declaration

Listing 4.3: Streaming example

4.3.2 Naming streams

Optionally, streams can be given names that can be used in reporting. For instance, Vivado

HLS automatically verifies that all elements from an input stream are read during simulation.

This is often used in debugging scenarios where there is an issue with a stream not being read

and there is leftover data that needs to be addressed. By providing a name for the stream, it

can be easily identified and tracked to help identify the source of the issue as shown in listing

4.4 and 4.5.

1 #include "hls_stream.h"

2 // Unnamed stream

3 stream <fp_data_type > I1;

4 // Named stream

5 stream <fp_data_type > I2("input_stream2");

Listing 4.4: Example code for creating named and unnamed streams

1 Warning: Hls:: stream ’hls::stream <fp_data_typer >.1’ contains leftover data ,

which may result in RTL simulation hanging.

2 Warning: Hls:: stream ’input_stream2 ’ contains leftover data , which may result

in RTL simulation hanging.

Listing 4.5: HLS warning for data stream

4.3.3 I/O for streams

When the streams are transferred into and out of the functions, they must be passed as a

reference as shown in listing 4.6. In Vivado, it is possible to determine whether a variable

should be stored in on-chip registers or off-chip memory. When a variable is passed by

reference, Vivado generates a reference to the original variable and enables you to indicate

whether that reference should be saved in on-chip registers or off-chip memory. In case of

data being fetched from off-chip memory, Vivado will synthesize additional logic and bus

interfaces to facilitate data transactions between the FPGA and off-chip memory.

30 Chapter 4. Relevant Tool: Vitis Unified Software Platform & Vivado HLS

1 void stream_function (

2 hls::stream <fp_data_type > &yolo_stream_in ,

3 hls::stream <fp_data_type > &yolo_stream_out ,

4 uint16_t strm_len

5)

6 {

7 // Function body goes here

8 }

Listing 4.6: I/O stream example

4.3.4 Blocking reads and writes

The fundamental ways to interact with an hls::stream<> object involve performing blocking

reads and writes through specific class methods. In the blocking read and write method, if

an attempt is made to read from an empty stream FIFO or write to a full stream FIFO,

these methods will cause execution to stall. Listing 4.7 gives an example of blocking read,

and write. During C++ simulation warnings are generated when reading from an empty

stream FIFO or writing to a full stream FIFO is made. During C/RTL co-simulation, this

stall can be observed when the simulator continues to execute but no progress is made in the

transactions being simulated. As a result, the simulation can become stuck or unresponsive,

leading to delays or errors in the design.

1 // Usage of void read(T &rdata)

2 hls::stream <int > my_stream;

3 int dst_var;

4 my_stream.read(dst_var);

5

6 // Usage of void write(const T & wdata)

7 hls::stream <int > my_stream;

8 int src_var = 42;

9 my_stream.write(src_var);

Listing 4.7: Block read and write example

4.3.5 Non-Blocking reads and writes

Non-Blocking methods allow execution to continue even when attempting to read from an

empty stream or write to a full stream. This is achieved by returning a status indicating

whether the operation was successful or not, without blocking the execution of the pro-

gram as shown in listing 4.8. Additional methods are available for checking the status of

hls::stream<> objects before performing read and write operations. These methods check

whether the stream is full before writing into the stream, and they also check whether the

stream is empty before attempting to read from the stream. The methods are called the

Emptiness test and Fullness test respectively as shown in line 5 and line 10 in listing 4.9.

These methods can be used to determine if it is safe to perform a read or write operation

thereby helping to avoid stalling the execution of the simulation.

4.4. Source code Example 31

1 // Usage of void write(const T & wdata)

2 hls::stream <int > my_stream;

3 int src_var = 42;

4 if (my_stream.write(src_var)) {

5 // Perform standard operations

6 } else {

7 // Write did not occur

8 }

9 // Usage of void read(const T & wdata)

10 int dst_var;

11 if (my_stream.read(dst_var)) {

12 // Perform standard operations

13 ...

14 } else {

15 // Read did not occur

16 return;

17 }

Listing 4.8: Non-blocking read and write example

1 // Usage of bool full(void) (Non -Blocking writes)

2 hls::stream <int > my_stream;

3 int src_var = 42;

4 bool stream_full;

5 stream_full = my_stream.full();

6

7 // Usage of bool empty(void) (Non -Blocking reads)

8 int dst_var;

9 bool stream_empty;

10 stream_empty = my_stream.empty ()

11

12 }

Listing 4.9: Non-blocking read and writes methods

4.4 Source code Example

This section discusses writing C++ code in Vivado using an example IP which is called in

the design an ”Accumulation and activation block”. The IP is responsible for processing

32 input and output channels in one single execution but can execute 4 channels in parallel

due to DMA constraints (64 bits) and fixed-point quantization. The detailed description of

this block is given in chapter 8. This block is responsible for accumulating the result of the

current convolution with the previously stored result of convolution in case of input channel

folding. The concept of channel folding is explained in chapter 6. The code defines a top-level

function yolo acc top with 2 streams as input: stream a takes the current result of convolu-

tion and stream b is responsible for streaming bias inside a local bias memory followed by

32 Chapter 4. Relevant Tool: Vitis Unified Software Platform & Vivado HLS

streaming the previous execution of 32 channels of convolution. Both streams are of type

yolo quad stream which is a custom AXI interface for sending 64 bits streams. The creation

of a custom AXI interface and how it gets mapped into RTL ports will be discussed in the

next section. The function takes layer height input h and layer width input w as an input

with an unsigned integer datatype with width 9. This is because the maximum input layer

dimension comes from the first layer of yolov4-tiny which is 416 × 416. Input fold input ch

takes into account the folding when 4 channels are processed in parallel. This is a set of 8

for processing 32 channels in one execution. Input leaky of type unsigned integer of width

1 takes into account the leaky activation function to be applied on 32 output channels after

accumulation has been performed across all the input channels of the layer. Input bias adds

the bias offset across the 32 output channels.

The IP block consists of 2 loops: loop 1 (line 15) is responsible for storing bias in local mem-

ory kernel bias fp which is an array of MAX KERNEL NUM which is set to 32, and loop

2 (line 30) is responsible for accumulation across input channels. The function post process

(line 81) is responsible for activation and bias addition after accumulation.

1 #include "yolo_acc.h"

2

3

4 void yolo_acc_top(yolo_quad_stream & inStream_a , yolo_quad_stream &

inStream_b ,

5 yolo_quad_stream & outStream ,

6 ap_uint < 9 > input_h , ap_uint < 9 > input_w ,

7 ap_uint < MAX_FOLD_CH_BIT > fold_input_ch ,

8 ap_uint < 1 > leaky , ap_uint < 1 > bias_en) {

9

10 fp_weight_type kernel_bias_fp[MAX_KERNEL_NUM];

11

12 // loop 1 for storing bias

13 yolo_acc_top_label0: for (ap_uint < MAX_FOLD_CH_BIT > i = 0; i <

fold_input_ch; i++) {

14 if (bias_en == 1) {

15 quad_fp_side_channel curr_input;

16 curr_input = inStream_b.read();

17 kernel_bias_fp [4 * i] = curr_input.data.sub_data_0;

18 kernel_bias_fp [4 * i + 1] = curr_input.data.sub_data_1;

19 kernel_bias_fp [4 * i + 2] = curr_input.data.sub_data_2;

20 kernel_bias_fp [4 * i + 3] = curr_input.data.sub_data_3;

21 }

22 }

23

24 // loop 2 for Accumulation and activation.

25 yolo_acc_top_label2: for (int row_idx = 0; row_idx < input_h; row_idx ++) {

26 yolo_acc_top_label3: for (int col_idx = 0; col_idx < input_w; col_idx ++)

{

27 yolo_acc_top_label1: for (int input_ch_idx = 0; input_ch_idx <

fold_input_ch; input_ch_idx ++) {

28 quad_fp_side_channel curr_input_a , curr_input_b;

4.4. Source code Example 33

29 quad_fp_side_channel curr_output;

30

31 fp_data_type output_acc_0 , output_acc_1 , output_acc_2 , output_acc_3;

32

33 curr_input_a = inStream_a.read(); // Current conv result

34 curr_input_b = inStream_b.read(); // previous iteration result

35

36 // Accumulation across 4 channels in parallel

37 output_acc_0 = curr_input_a.data.sub_data_0 + curr_input_b.data.

sub_data_0;

38 output_acc_1 = curr_input_a.data.sub_data_1 + curr_input_b.data.

sub_data_1;

39 output_acc_2 = curr_input_a.data.sub_data_2 + curr_input_b.data.

sub_data_2;

40 output_acc_3 = curr_input_a.data.sub_data_3 + curr_input_b.data.

sub_data_3;

41

42 // Activation and bias addition if bias_en = 1

43 curr_output.data.sub_data_0 = post_process_unit(output_acc_0 ,

kernel_bias_fp [4 * input_ch_idx], bias_en , leaky);

44 curr_output.data.sub_data_1 = post_process_unit(output_acc_1 ,

kernel_bias_fp [4 * input_ch_idx + 1], bias_en , leaky);

45 curr_output.data.sub_data_2 = post_process_unit(output_acc_2 ,

kernel_bias_fp [4 * input_ch_idx + 2], bias_en , leaky);

46 curr_output.data.sub_data_3 = post_process_unit(output_acc_3 ,

kernel_bias_fp [4 * input_ch_idx + 3], bias_en , leaky);

47

48 curr_output.keep = curr_input_a.keep;

49 curr_output.strb = curr_input_a.strb;

50 curr_output.user = curr_input_a.user;

51

52 // Check if all 32 channels are processed

53 if ((input_ch_idx == MAX_KERNEL_NUM / 4 - 1) &&

54 (col_idx == input_w - 1) &&

55 (row_idx == input_h - 1))

56 curr_output.last = 1;

57 else

58 curr_output.last = 0;

59

60 curr_output.id = curr_input_a.id;

61 curr_output.dest = curr_input_a.dest;

62

63 outStream.write(curr_output);

64

65 }

66 }

67 }

68

69 }

70

34 Chapter 4. Relevant Tool: Vitis Unified Software Platform & Vivado HLS

71 fp_data_type post_process_unit(fp_data_type data_in , fp_weight_type bias ,

ap_uint < 1 > bias_en , ap_uint < 1 > leaky) {

72 fp_data_type biased_output = 0, activated_output = 0;

73 if (bias_en) {

74 biased_output = data_in + bias;

75 if (leaky && biased_output < 0) {

76 activated_output = biased_output * (fp_data_type) .1;

77 } else {

78 activated_output = biased_output;

79 }

80

81 return activated_output;

82 } else {

83 return data_in;

84 }

85 }

Listing 4.10: Accumulation and activation IP

4.4.1 Pragmas and performance improvement

With custom datatypes and functional descriptions of the design, C++ descriptions can be

made as shown in figure 4.10. To optimize the description to be converted into hardware,

pragmas can be used. These are the additional directives that indicate to the compiler how

the C++ description should be applied to the hardware. Vivado provides different pragmas

to indicate different functionality and only relevant pragmas that are used for the implemen-

tation of the IP blocks are discussed. For instance, #pragma HLS LOOP TRIPCOUNT

is used by the Vivado HLS tool to calculate and provide the total latency of each loop, which

represents the number of clock cycles that it takes to execute all iterations of that loop. The

loop latency is dependent on the number of loop iterations, or tripcount. However, in certain

cases, the HLS tool may not be able to compute the loop trip count when variables are either

input variables or their values are calculated by dynamic operations. In such cases, it is pos-

sible to provide minimum and maximum values for those variables as additional arguments

to the tool using directives tcl as shown in figure 4.2 (lines 16 to 19). The HLS tool can

use these values as bounds to estimate the possible range of loop trip counts. As discussed

earlier, yolo quad stream is a custom AXI interface used for streams a and b for sending 64

bits inputs. In order to create a custom AXI interface, the ”hls stream.h” line in the code

is used with the hls::stream class, which is part of the High-Level Synthesis (HLS) library

provided by Xilinx as shown in listing 4.11. The class hls::stream is utilized to create buffers

that behave like first-in, first-out (FIFO) queues for data transmission between various hard-

ware modules within an FPGA design. #pragma HLS LOOP INTERFACE has been

used to map the interface of the design to the RTL port. As can be seen from figure 4.2 (line

8-15), ports can be mapped as either AXI4-lite interface or AXI4-Stream interface depending

upon the mode. The bundle option combines all the AXI4-Lite interfaces into interface ports

in RTL code. In this example, my axi interface is a struct that represents a custom AXI

4.4. Source code Example 35

interface that is sending 64 bits of data. It has four template parameters: D for the data

width in bits, U for the user width in bits, TI for the ID width in bits, and TD for the

destination width in bits. The struct contains the following members:

• data: a custom data type that represents the data being transmitted over the interface.

• keep: an ap uint that indicates which bytes of the data are valid.

• strb: an ap uint that indicates which bytes of the data are being transmitted.

• user: an ap uint that carries user-defined information.

• last: a signal that indicates whether the current transaction is the last in a burst.

• id: an ap uint that identifies the transaction.

• dest: an ap uint that identifies the destination of the transaction.

Line 21 creatures custom AXI interface with name yolo quad stream of typemy axi interface

1 #include "ap_int.h"

2 #include "hls_stream.h"

3

4 typedef struct my_data_type {

5 ap_fixed <16,8> a;

6 ap_fixed <16,8> b;

7 ap_fixed <16,8> c;

8 ap_fixed <16,8> d;

9 } my_data_type;

10

11 template <int D, int U, int TI, int TD>

12 struct my_axi_interface {

13 my_data_type data;

14 ap_uint <(D+7)/8> keep;

15 ap_uint <(D+7)/8> strb;

16 ap_uint <U> user;

17 ap_uint <1> last;

18 ap_uint <TI > id;

19 ap_uint <TD > dest;

20 };

21 typedef hls::stream <my_axi_interface <64, 4, 5, 6>> yolo_quad_stream;

Listing 4.11: Custom AXI interface definition

Figure 4.2: Setting loop bounds using HLS TRIP COUNT

36 Chapter 4. Relevant Tool: Vitis Unified Software Platform & Vivado HLS

4.4.1.1 Performance with no pipelining

For a tunable design, it is important to check which design parameter can be tuned to achieve

lower latency with as low resource utilization as possible. Vivado provides different solutions

pertaining to incremental improvement in the design which makes design choices easier. These

incremental performance improvements come with pipelining and memory partitioning of

the design. The design example in 4.10 is synthesized at 100 MHz clock frequency with no

optimization first to see worst-case latency as shown in figure 4.3. This is named as solution

1. The worst-case latency of the design without pipelining is 28.32 ms and is equal to the

loop latency of the individual loops under the Loop report shown in figure 4.3. This solution

has not been pipelined as shown in the report

Figure 4.3: Latency and resource estimation

4.4.1.2 Performance and resource utilization with pipelining

Figure 4.4 and 4.5 show the analysis view of the design which shows the latency interval

of each loop. It is a useful tool to identify the bottleneck operations in the design as this

tool specifies the operations and how they are scheduled. Vertical axis with C1,C2 up to

C10 shows the clock cycles where certain operations are active. As the local memory is

implemented using 2 port BRAM, it takes 2 clock cycles for loop 1 to write to kernel bias fp

as shown in figure 4.4. Pipelining optimization is applied to both Loop 1 and the inner

loop of Loop 2 to enhance performance. This optimization can be achieved by creating a

new solution in Vivado and specifying the pipelining optimization directive with a target

initiation interval of one clock cycle. The impact of this optimization is depicted in Figure

4.4, where the Gantt chart illustrates that after pipelining both loops, the initiation interval

of each loop becomes 2 clock cycles. Due to the implementation of a 2-port BRAM for

local memory, which has not been partitioned, memory writes occur for only the first 2 bias

4.4. Source code Example 37

memory locations concurrently, rather than 4 different locations per iteration. Consequently,

it takes 2 clock cycles to complete the write operations for all 4 memory locations. Similarly,

in Loop 2 as shown in figure 4.5, limited memory ports prevent concurrent biased memory

read operations for the last 2 channels within a single control step, thereby violating the

target initiation interval of 1 clock cycle. The introduction of pipelining has significantly

reduced the latency of the design from 28.2 ms to 6.992 ms but does not achieve an initiation

interval of 1 clock cycle. However, further parallelization can be achieved by partitioning

the biased memory, enabling all reads to be performed in a single control step for Loop 2

(lines 52,53,54,55) and facilitating the concurrent memory write at 4 different biased memory

locations within a single control step for Loop 1 (lines 21,22,23,24).

Figure 4.4: Loop 1 improved initiation interval with pipelining: solution 2

Figure 4.5: Loop 2 improved initiation interval with pipelining: solution 2

4.4.1.3 Performance and resource utilization with pipelining and bias memory partiton

After identifying the bottleneck read and write operation that resulted in a 2-clock cycle

initiation interval for the loop, the next step is to address this issue by partitioning the

memory. Figure 4.6, and 4.6 the effect of the memory partitioning process, where the memory

is divided cyclically with a partitioning factor of 2. As a result, two separate arrays of size

16 are created, allowing two memory locations to be fetched simultaneously from each array.

This enables concurrent reading and writing of data during the same control step, effectively

reducing the initiation interval for both loops and achieving the target initiation interval of

1 clock cycle. This is depicted in figure 4.6 and 4.7

4.4.2 Resource utilization comparision

Vivado provides resource utilization and latency estimation based on the optimization applied

in the C++ description. The resource utilization report depicted in Figure [X] provides

insights into the utilization of resources for three different solutions. The number of Block

38 Chapter 4. Relevant Tool: Vitis Unified Software Platform & Vivado HLS

Figure 4.6: Loop 1 improved initiation interval with pipelining and memory partition: so-
lution 3

Figure 4.7: Loop 2 improved initiation interval with pipelining and memory partiton: so-
lution 3

RAMs (BRAMs) inferred depends on the memory partitioning. Since each BRAM can store

1k words of size 16 bits, it is sufficient to accommodate 32 biases for the 32 output channels.

In the case of “solution 1” and “solution 2” where no partitioning is applied, 1 BRAM block

is inferred. However, for “solution 3” which involves memory partitioning by a factor of 2, 2

BRAM is needed. Regarding the inferred DSP blocks, “solution 3” stands out as it processes

all four channels in parallel using four different post-processing functional unit blocks. This

results in the inference of four DSP blocks. Additionally, one extra DSP block is attributed

to the control logic within the code. There exists a tradeoff between resource utilization

and latency. While “solution 3” achieves the minimum latency, it exhibits slightly higher

utilization of Look-Up Tables (LUTs) and Flip-Flops (FFs) compared to the other solutions.

The memory partitioning factor is a tunable parameter that controls the latency as well as

the resource utilization. This is discussed in chapter 6.

Figure 4.8: Resource utilization comparision

Chapter 5

Software Implementation of

YOLOv4-tiny on Zedboard’s PS and

Host CPU

This chapter provides an overview of the software implementation of the Yolov4-tiny algo-

rithm using the darknet framework and discusses the main computations in each layer present

in the Yolov4-tiny model. Then a detailed analysis of the performance of the YOLOv4-tiny

algorithm on various hardware platforms, including desktop CPUs and ZedBoard’s arm pro-

cessor is discussed by profiling the code on these platforms. Section 5.1 overviews the main

computations in each layer. Then, the profiling results of running the model on the host CPU

are discussed in section 5.2. Then, section 5.3 discusses executing the same model inside the

processing system (Processing System (PS)) of the Zedboard to identify computationally in-

tensive functions. This identification helps to create a hardware-software codesign wherein a

computationally intensive function is executed inside the programmable logic (Programmable

Logic (PL)) section of the hardware and the rest of the less time taking tasks are handled by

the PS only. The host CPU and PS of the Zedboard are selected as a benchmark for per-

formance comparison. Finally, section 5.4 concludes with a discussion of the YOLOv4-tiny

bare-metal fixed-point model, which is an alternative implementation with reduced precision

that becomes the baseline model for the hardware-accelerated model.

5.1 Software Implementation

The project is aimed at the ZedBoard, which has a dual-core ARM CortexA9-based pro-

cessing system (PS) that operates at a maximum frequency of 667 MHz. To simplify the

development of the hardware accelerator, only one core is used to run a bare-metal software

implementation. The rest of this section discusses about the floating point model implemen-

tation details and its performance when running on a host CPU with core-i5 specification

running at 1.2 GHz. The code is ported to the ARM A9 cortex processor of Zedboard and

profiling results are obtained to analyze the most computationally intensive layers. Finally,

A fixed point model based is discussed whose bit-width is decided based on the loss function.

39

40Chapter 5. Software Implementation of YOLOv4-tiny on Zedboard’s PS and Host CPU

5.1.1 Yolov4-tiny Baremetal Floating-point model

The YOLOv4-tiny object detection model has been implemented as a bare-metal floating-

point model which runs directly on hardware without the need for an operating system or

software layer. This implementation utilizes floating-point operations to represent numerical

values, enabling higher accuracy calculations compared to using integer operations. The

Darknet framework has been used to implement the bare-metal version of the YOLOv4-tiny

model. Darknet is an open-source neural network framework written in C and CUDA that is

used for a variety of computer vision tasks, including object detection and classification. It

is lightweight and fast, making it a good choice for implementing neural network models on

resource-constrained devices. The darknet framework has been modified to not include the

camera interface and file operations to suit the bare-metal application.

5.1.1.1 Implementation

Convolutional Layer

The forward propagation for a convolutional layer, as shown in Fig 5.1 involves the following

steps:

• Convolution operation: To perform the convolution operation in a convolutional

layer, the input tensor is convolved with learnable filters. Darknet implements this

operation using the im2col function, which converts the input tensor into a matrix and

performs matrix multiplication with the filter weights. The resulting output is then

reshaped back into a tensor. The gemm_nn() (Line 13) function call is used to execute

this operation.

• Bias Addition: After the convolution operation, biases are added to each filter in a

process known as bias addition. This is carried out using the add_bias() (Line 31)func-

tion call.

• Activation Function: The activation function introduces non-linearity in the model,

the output of the convolutional layer is passed through an activation function. The

modified Darknet supports several activation functions, including linear, leaky-ReLU,

and logistic The activate_array() (Line 31) function call is used to execute this step.

This code in figure 5.1 represents the forward propagation of a convolutional layer in a neural

network. The function takes a convolutional layer and a network as input and fills the output

buffer with the result of the convolution. The code initializes variables to define the shape

and size of the convolutional layer and then performs matrix multiplication using the layer

weights and input data. It initializes the output to zero and calculates the number of kernels,

kernel size, and a number of outputs. It then loads the layer input to the workspace using

im2col_cpu(), which converts the input into a matrix so that matrix multiplication can be per-

formed. The matrix multiplication is performed using the gemm() function, which computes

the product of matrices. Finally, batch normalization is performed if specified, biases are

5.1. Software Implementation 41

Figure 5.1: Code Snippet of Forwarding of Convolutional Layer

added, and the activation function is applied to the output.

Image to column function (Im2col)! ((Im2col)!):

The im2col() function in Darknet is used to convert the input tensor (which has dimensions

(batch, channels, height, width) into a matrix form with dimensions (channels * kernel_height

* kernel_width, output_height * output_width). This matrix form can be efficiently multiplied

with the filter weights using the gemm() operation. The im2col() function in Darknet applies

a sliding window of size (kernel_height, kernel_width) over the input tensor and copies the

values within the window into a column of the output matrix. This process is repeated for

each channel in the input tensor, resulting in a matrix where each column represents a slid-

ing window of the input tensor. The im2col() function in Darknet also performs a padding

operation on the input tensor before sliding the window to optimize memory usage. This

ensures that the output matrix has the same dimensions for all input tensors, regardless of

their original spatial dimensions. The padded values are initialized to 0 and are not used in

the subsequent convolution operation. Overall, the im2col() operation in Darknet improves

the efficiency of the convolutional layer by transforming the input tensor into a matrix form

that can be multiplied efficiently with the filter weights using the Gemm operation, while

still maintaining the same number of parameters.

General Matrix to Matrix Multiplication gemm():

GEMM is an acronym for ”General Matrix to Matrix Multiplication.” It is a mathemati-

cal operation that involves multiplying two matrices to create a third matrix [37]. In deep

42Chapter 5. Software Implementation of YOLOv4-tiny on Zedboard’s PS and Host CPU

learning, GEMM is commonly utilized to execute the convolution operation in convolutional

neural networks (CNNs), which is a vital component of numerous state-of-the-art computer

vision models. To achieve high computational efficiency on CPUs, the GEMM operation

is typically executed with highly optimized numerical libraries such as BLAS (Basic Linear

Algebra Subprograms) or openBLAS. Additionally, gemm() function in Darknet is parallelized

to take advantage of multi-core CPUs, further improving its speed efficiency.

Maxpool Layer:

Figure 5.2: Code Snippet of Forward Propagation for Maxpool Layer

This code represents the implementation of the forward pass for a max pooling layer in

a convolutional neural network. The max pooling operation is applied to each feature map

separately. The function takes two arguments:

1. "l" is an object of type maxpool layer, which contains the configuration parameters of the

layer such as the size of the pooling window, the stride, the padding, etc.

2. "net" is an object of the type network, which contains the input data for the layer and will

be updated with the output of the layer.

The function loops over the input data in batches, feature maps, rows, and columns, and for

each window, it finds the maximum value. It also keeps track of the index of the maximum

value in the input array for each window. The output of the layer is stored in the output

field of l, while the indices of the maximum values are stored in the indexes field of l. Note

that the code uses the "FLT_MAX constant from the float.h library to initialize the max variable

with the smallest possible float value.

5.1. Software Implementation 43

Upsample Layer:

This code implements the forward pass for an upsample layer in a convolutional neural net-

work. The function takes two arguments:

1. “l” is an object of type layer, which contains the configuration parameters of the layer

such as the scale factor and the stride.

2. “net” is an object of type network, which contains the input data for the layer and will be

updated with the output of the layer.

The function first fills the output array with zeros using the fill_cpu function. Then it

Figure 5.3: Code Snippet of Forward Propagation for Upsample Layer

calls the upsample_cpu function to perform the actual upsampling operation. The upsample_cpu

function loops over the input data in batches, feature maps, rows, and columns, and for each

input pixel, it computes the corresponding output pixel using the specified stride and scale

factor. If the forward flag is set to true, it stores the result in the out array. Otherwise, it

accumulates the result in the array.

Route Layer:

This code represents the implementation of the forward pass for a route layer in a con-

volutional neural network. The layer concatenates the outputs of multiple previous layers.

The function takes two arguments:

1. “l” is an object of type route layer, which contains the configuration parameters of the

layer such as the input layers and their sizes, the number of input layers, the output size, etc.

2. “net’ is an object of type network, which contains the input data for the layer and will be

updated with the output of the layer.

44Chapter 5. Software Implementation of YOLOv4-tiny on Zedboard’s PS and Host CPU

Figure 5.4: Code Snippet of Forward Propagation for Route Layer

The function loops over the input layers specified in the input layers field of l and copies

their outputs to the output field of l. The output is concatenated along the channel dimen-

sion, which is split into multiple groups (specified in the group’s field of l). Each input layer’s

output is split into the same number of groups, and only one group is copied at a time, de-

termined by the current group id of l. The offset variable is used to keep track of the current

position in the output array.

Yolo Layer:

This code represents the implementation of the forward pass for a YOLO layer in a

convolutional neural network. The function takes two arguments:

1. l is an object of type yolo layer, which contains the configuration parameters of the

layer such as the number of anchors, the number of classes, etc.

2. net is an object of type network, which contains the input data for the layer and will be

updated with the output of the layer.

The function first copies the input data from the net to the output field of l. Then it

loops over each batch and each anchor and applies the logistic activation function to certain

elements of the output based on their index. Specifically, for each anchor, it applies logistic

activation to the confidence scores (located at index 0) and the class probabilities (located

at index 4) for each cell in the grid.

Figure 5.5: Code Snippet of Forward Propagation for Route Layer

5.2. Profiling results for yolov4-tiny on Host CPU 45

5.2 Profiling results for yolov4-tiny on Host CPU

% time Cum s self s self calls self s/call total s/call Name

88.08 7.75 7.75 21 0.37 0.37 gemm nt
4.21 8.12 0.37 21 0.02 0.41 forward convolutional layer
1.82 8.28 0.16 14 0.01 0.02 im2col cpu
1.36 8.40 0.12 60 0.00 0.00 fill cpu
1.25 8.51 0.11 29592576 0.00 0.00 im2col get pixel
0.68 8.57 0.06 37 0.00 0.00 copy cpu
0.68 8.63 0.06 19 0.00 0.00 normalize cpu
0.45 8.67 0.04 19 0.00 0.00 scale bias
0.34 8.70 0.03 45 0.00 0.00 activate array
0.34 8.73 0.03 21 0.00 0.00 add bias
0.34 8.76 0.03 3 0.01 0.01 forward maxpool layer
0.23 8.78 0.02 6758141 0.00 0.00 activate
0.11 8.79 0.01 215475 0.00 0.00 linear activate
0.11 8.80 0.01 21 0.00 0.37 gemm cpu

Table 5.1: Flat Profile

Table 5.1 provides the profiling results of the yolov4-tiny model running on the host CPU

(Corei5) with 4 cores running at a frequency of 1.2 GHz. The figure shows only those function

that takes more than 10 ms of time to complete. The time column shows the percentage

of the total running time of the program used by this function. The total Execution time

of the model is given by the second column Cumulative secs, which is the running sum of

the number of seconds accounted for by this function and those listed above it. The third

column, self seconds shows the several seconds accounted for by this function alone. This is

the major sort for this listing. The fourth column depicts the number of times the function

was called in an inference cycle. Column Fifth and Sixth depict the self-time per call and

total time per call which denotes the average number of milliseconds spent in this function

per call but in the case of the former the time spent is w.r.t to the function which is called

and the latter is w.r.t to itself and it’s descendant functions.

After analyzing the profiling results as presented in table 5.1, the most computationally

intensive layer is the convolutional layer as the cumulative sum of all the functions in-

side the forward convolutional layer comes out to be 99.67%. The generic matrix mul-

tiplication, shown in grey, takes about 88.08% of the execution times. Except for the

forward maxpool layer shown in red, all other functions called are part of the top func-

tion called forward convolutional layer. So the total time taken by the yolov4-tiny model

on the host CPU is 8.8 secs.

46Chapter 5. Software Implementation of YOLOv4-tiny on Zedboard’s PS and Host CPU

5.3 Vitis Vivado setup and profiling results of yolov4-tiny model

on ZedBoard PS

Figure 5.6: Vivado setup for Yolov4-tiny Floating point model

The Zynq System on Chip (SoC) is a versatile and powerful platform that combines mul-

tiple components, including Arm Cortex-A9 cores, pre-designed intellectual property (IP)

modules, and programmable logic (PL). This integration enables the creation of flexible and

customizable designs, where the processing system (PS) delivers the computing power and

interface to external devices, while the PL can be programmed to provide extra hardware

acceleration or tailor-made functionality. The Zynq device can be utilized in two distinct

ways:

• The Zynq SoC PS can be used independently, without attaching any additional fabric

IP.

• IP cores can be instantiated in fabric and combined with the Zynq PS as a PS+PL

configuration.

Figure 5.6 shows the setup where the yolov4-tiny setup is in PS-only mode. The idea for this

setup is to find out the time required by the various layers in the yolov4-tiny and then do the

most computationally intensive task on the PL part of the FPGA and others inside the PS

only. This Hardware-Software Codesign setup is discussed in the next section. The current

setup with PS-only mode consists of the following blocks:

• Zynq Processing System (PS): The PS block is a crucial component of the Zynq

device and serves as both the processing power and interface to the outside world.

It is made up of multiple subsystems, including the CPU cores, memory controller,

and various peripherals like UART, Ethernet, USB, and SDIO. The PS block can be

customized and configured to meet the particular needs of the application it is being

5.3. Vitis Vivado setup and profiling results of yolov4-tiny model on ZedBoard PS47

used for. In this bare-metal application, the peripherical used for displaying the output

of the model is through UART. The output of the UART is connected to a serial

terminal called ”Tera Term” which serially prints the output of the UART output to

the console.

please note that Revision E Zedboard was used for implementing the testing of the

simulation model. It’s also important to note that the frequency of the PS is set to 667

Mhz and the Memory part number for this board was MT41K256M16RE-125. Both

these configurations are necessary for the setup to run.

• rst ps7 0 100M block: The rst ps7 0 100M block is used to reset the processing

system and ensure that it starts in a known state. This block generates a reset signal

that is used to initialize the PS block and its peripherals.

• ps7 0 axi peripheral block: The ps7 0 axi peripheral block offers an AXI interface

that allows for the connection of custom IP cores to the PS. This interface adheres

to the AXI standard, which is commonly used for communication between IP cores

and the PS. It enables high-bandwidth, low-latency communication and facilitates the

integration of custom IP cores into the Zynq device.

• axi gpio 0 block: The axi gpio 0 block is responsible for providing a set of config-

urable input/output (GPIO) pins that can be utilized to interface with external devices

or sensors. It enables the Zynq device to be connected to a wide range of external

components like switches, buttons, LEDs, or sensors, through its 32 programmable

input/output pins that can be configured as either input or output.

The Yolov4-tiny Simulation model profiling results are displayed in Figure 5.7. The most com-

putationally intensive functions in the model are the General Matrix Multiplication gemm_nt()

when running the model in the host CPU. By profiling the application which is running in the

PS section at a frequency of 667 Mhz, bottleneck layers can be found. The TCF profiler in Vi-

tis helps in profiling the software code written for PS and it provides two performance metrics:

“% inclusive” and “% exclusive” which measure the execution time spent within a function

(inclusive) and within a function, not including the time spent in its sub-functions (exclusive),

respectively. These metrics can help to identify performance bottlenecks and optimization op-

portunities in the application. The top function is Forward convolutional layer which calls

gemm nt(), taking about 93% of the time, while the rest is taken by other functions such

as im2col cpu. The 5.8 shows the sub-function breakdown of Forward convolutional layer.

The total time taken by all the sub-functions is approximately 98.3% of the total time. Table

5.2 shows the detailed execution time analysis of each layer.

48Chapter 5. Software Implementation of YOLOv4-tiny on Zedboard’s PS and Host CPU

Figure 5.7: Profiling results

Figure 5.8: Bottleneck layer functions

5.3. Vitis Vivado setup and profiling results of yolov4-tiny model on ZedBoard PS49

No Layer Simulation Time (Sec) % Execution time

1 Convolutional Layer 1 2.987 1.540

2 Convolutional Layer 2 11.660 6.030

3 Convolutional Layer 3 22.936 11.500

4 Route Layer 1 0.012 0.006

5 Convolutional Layer 4 6.225 3.210

6 Convolutional Layer 5 6.225 3.210

7 Route Layer 2 0.024 0.012

8 Convolutional Layer 6 2.773 1.430

9 Route Layer 3 0.048 0.020

10 Maxpool Layer 1 0.193 0.090

11 Convolutional Layer 7 21.932 11.350

12 Route Layer 4 0.006 0.003

13 Convolutional Layer 8 5.686 0.030

14 Convolutional Layer 9 5.686 0.030

15 Route Layer 5 0.012 0.006

16 Convolutional Layer 10 2.548 1.310

17 Route Layer 6 0.024 0.012

18 Maxpool Layer 2 0.097 0.040

19 Convolutional Layer 11 21.392 11.070

20 Route Layer 7 0.003 0.002

21 Convolutional Layer 12 5.446 2.815

22 Convolutional Layer 13 5.446 2.815

23 Route Layer 8 0.006 0.003

24 Convolutional Layer 14 2.427 1.250

25 Route Layer 9 0.012 0.006

26 Maxpool Layer 3 0.049 0.002

27 Convolutional Layer 15 21.171 10.950

28 Convolutional Layer 16 1.188 0.610

29 Convolutional Layer 17 10.600 5.480

30 Convolutional Layer 18 1.171 0.880

31 Yolo Layer 1 0.024 0.011

32 Route Layer 10 0.002 0.007

33 Convolutional Layer 19 0.304 0.157

34 Upsample Layer 1 0.019 0.009

35 Route Layer 11 0.009 0.004

36 Convolutional Layer 20 32.007 16.560

37 Convolutional Layer 21 2.372 1.220

39 Yolo Layer 2 0.094 0.004

Total Time 193.188 Secs

Table 5.2: Profiling results YOLOv4-tiny on ARM cortex A9

50Chapter 5. Software Implementation of YOLOv4-tiny on Zedboard’s PS and Host CPU

From the table, it can be concluded that out of 38 Layers, 21 convolutional layers are

computationally more intensive and takes 98.6% of the execution times as compared to other

layers. The total execution time of the model running in Arm A-9 cortex is 193.38 secs and

is image-independent.

5.4 Yolov4-tiny Fixed-point Model

The data and weights in a neural network, as discussed before, are typically stored as 32-

bit floating point numbers, which can require significant computational power and memory

storage. To address this challenge, a common approach is to use fixed-point representa-

tion instead, as long as the accuracy of the system is not significantly affected. Using the

fixed-point representation of data and weights in a network can improve performance and

efficiency in multiple ways. Firstly, fixed-point numbers require less memory storage and

computation capability compared to floating-point numbers. This leads to more efficient use

of available hardware resources, allowing for faster processing times and reduced power con-

sumption. Secondly, fixed-point arithmetic is generally faster and more efficient to compute

than floating-point arithmetic, as it involves simpler operations that can be executed more

quickly. This leads to improved performance and reduced latency in processing the network.

The Xilinx ap_fixed.h library is utilized to efficiently implement fixed-point arithmetic in

HLS. To make use of this library, four decisions must be made: the total number of bits, the

number of bits for integer parts, quantization mode, and overflow mode. When transferring

data via the 64-bit AXI4-stream protocol, using powers of 2 for total bit-width is preferred

to simplify the encoding and decoding process. So possible bit widths are 4,8,16 bits. To

determine the appropriate bit-width, experiments were conducted on the COCO2017-val5k

dataset which consists of 5,000 images. The data distribution of all convolutional layers is

summarized in Appendix A.42, which shows that the absolute values of all inputs and out-

puts are less than 128. Therefore, allocating 8 bits to the signed integer part is sufficient to

prevent any overflow. The possible scenarios for data bit-width are 8 bits with 4-bit integers

and 4 bits fractional, and 16 bits, with 8 bits integers and 8 bits fractional.

The metric that was used to determine whether weights should be represented as the 8-

bit or 16-bit fixed points was estimated by using the weight loss function as given in equation

5.1. By calculating weight loss, one can estimate the impact of quantization without having

to run the entire dataset. Weight loss is determined using a square law definition, where it

represents the ratio of quantization noise power to signal power. This indicates the quanti-

zation effect on the network’s weights. The weight loss function is calculated for 8-bit fixed

point and 16-bit fixed-point representation. As each layer has a different weight distribution,

some layers may be more sensitive to quantization than others. To investigate this, weight

loss is measured for each layer, which is calculated as the ratio of quantization noise power

5.4. Yolov4-tiny Fixed-point Model 51

to signal power [38].

weight loss =

∑
i,j(wi,j − ŵi, j)2∑

i, jw2
i,j

(5.1)

The quantization loss for 16-bit fixed-point representation is negligible as compared to 8-bit

fixed-point representation as shown in table 5.3. This can also be supported by the histogram

plot shown in appendix A.20. Therefore, the bit-width of weights is chosen to be 16 bits.

To ensure consistency, both data and the weights are chosen to have the same width as

the data, represented by 16-bit fixed-point numbers. Additionally, 32 bits are applied for

the results of convolution windows to reduce the possibility of overflow and provide higher

accuracy for accumulation. Please note that the distribution of the fixed point weight is

obtained after combining batch-normalization operation with the floating point weights and

then converted to fixed-point weights distribution. Batch normalization is mainly used for

training purposes, not for inference, This batch normalization operation is combined with

the weights optimization technique to speed up the execution of the convolutional layers.

layer 8-bit 16-bit

convolutional layer 0 7.24 0.28
convolutional layer 1 2.56 0.00
convolutional layer 2 3.57 0.00
convolutional layer 3 3.55 0.00
convolutional layer 4 4.55 0.00
convolutional layer 5 6.40 0.00
convolutional layer 6 7.30 0.00
convolutional layer 7 3.51 0.00
convolutional layer 8 6.75 0.00
convolutional layer 9 7.32 0.00
convolutional layer 10 7.42 0.00
convolutional layer 11 3.98 0.00
convolutional layer 12 24.36 0.00
convolutional layer 13 48.40 0.00
convolutional layer 14 17.85 0.00
convolutional layer 15 6.35 0.00
convolutional layer 16 1.36 0.00
convolutional layer 17 3.00 0.00
convolutional layer 18 60.30 0.00
convolutional layer 19 3.00 0.00
convolutional layer 20 40.50 0.00

Table 5.3: Weight loss: 8-bit vs 16-bit

The floating point model was modified to include the weights and data as fixed-point rep-

resentations. The simulation was carried out for 16-bit fixed point representations of weight,

data, and outputs. The computation time for the fixed point model is about 15 mins. It is

important to note that while the software fixed-point simulation using ap_fixed.h is a useful

tool, it cannot accurately replicate the behavior of the FPGA. This is because the ap_fixed.h

library used in HLS is optimized for the hardware and is very slow when used in the software.

Therefore, the simulation only performs integer shifting to approximate the behavior of the

52Chapter 5. Software Implementation of YOLOv4-tiny on Zedboard’s PS and Host CPU

ap_fixed.h library.

Additionally, to support the choice of choosing 16-bit over 8-bit fixed point representation

was estimating the loss in accuracy which was computed using mAP for the model using the

validation data set of 5000 images. The mean average precision of the 16-bit model is about

43.08% , as shown in listing 5.1 which is a loss of about 2% w.r.t floating point model mAP

when validated with COCO Dataset 2017 Validation tests.

1 ...

2 ...

3 class_id = 53, name = pizza , ap = 49.28 %

4 class_id = 54, name = donut , ap = 60.55 %

5 class_id = 55, name = cake , ap = 35.50 %

6 class_id = 56, name = chair , ap = 27.10 %

7 class_id = 57, name = sofa , ap = 41.09 %

8 class_id = 58, name = pottedplant , ap = 30.17 %

9 class_id = 59, name = bed , ap = 61.80 %

10 class_id = 60, name = diningtable , ap = 25.88 %

11 class_id = 61, name = toilet , ap = 74.76 %

12 class_id = 62, name = tvmonitor , ap = 70.31 %

13 class_id = 63, name = laptop , ap = 68.39 %

14 class_id = 64, name = mouse , ap = 61.39 %

15 class_id = 65, name = remote , ap = 11.64 %

16 class_id = 66, name = keyboard , ap = 66.56 %

17 class_id = 67, name = cell phone , ap = 33.54 %

18 class_id = 68, name = microwave , ap = 61.60 %

19 class_id = 69, name = oven , ap = 28.39 %

20 class_id = 70, name = toaster , ap = 54.55 %

21 class_id = 71, name = sink , ap = 57.45 %

22 class_id = 72, name = refrigerator , ap = 35.95 %

23 class_id = 73, name = book , ap = 10.89 %

24 class_id = 74, name = clock , ap = 63.54 %

25 class_id = 75, name = vase , ap = 24.59 %

26 class_id = 76, name = scissors , ap = 4.55 %

27 class_id = 77, name = teddy bear , ap = 49.75 %

28 class_id = 78, name = hair drier , ap = 0.00 %

29 class_id = 79, name = toothbrush , ap = 5.45 %

30

31 for thresh = 0.25, precision = 0.72, recall = 0.33, F1 -score = 0.45

32 for thresh = 0.25, TP = 2310, FP = 883, FN = 4770, average IoU = 54.32 %

33

34 mean average precision (mAP) = 0.430769 , or 43.08 %

35 Total Detection Time: 26519.000000 Seconds

Listing 5.1: mAP for 16 bit fixed-point model

Chapter 6

Hardware IP Block Design

6.1 Motivation for using unified hardware architecture

To accommodate the different typology parameters of layers within a neural network, one

option is to design specialized hardware for each layer. This approach can help reduce off-chip

memory transactions and improve performance since each layer can be optimized for its spe-

cific task. However, a disadvantage of this approach is that the overall resource requirement

for putting the entire network on hardware can be quite high.

An alternative approach to designing specialized hardware for each layer in a neural net-

work is to separate the design into multiple-bit files. This means that the FPGA hardware

needs to be reprogrammed when the network is forwarding, and once a layer is finished, the

FPGA must be entirely reconfigured for the next layer. However, this approach can suffer

from the problem of long reloading times for bit files, which could take hundreds of millisec-

onds, potentially exceeding the actual execution time. While the latency of each layer may

be optimized using this approach, the overall performance of the network may suffer due to

the overhead of reloading bit files.

This thesis uses a unified hardware architecture approach which is a compromise between the

two strategies discussed above [1] [2]. A unified hardware architecture refers to a hardware

design that efficiently handles different tasks or applications using the same set of hardware

resources. This approach allows flexibility and adaptability to different use cases, without re-

quiring significant changes to the hardware design. A unified hardware architecture that fits

all layers of YOLOv4-tiny is a compromise solution to implement CNNs on FPGAs, especially

when the intermediate results are too large to be stored on-chip Block RAM. This is useful in

the case of implementing YOLOv4-tiny on resource-constrained devices like Zedboard which

has limited on-chip memory of about 560Kb organized into 140 units with each unit capa-

ble of storing 2048x18 bit data. For instance, the sixth convolutional layer of YOLOv4-tiny

utilizes an intermediate accumulator size of the 104 × 104 × 32 words wherein 104x104 is

the dimension of the output feature map and 32 is the number of channels that an IP can

process. Each word is of size 16 bit due to reduced precision. The intermediate accumulator

53

54 Chapter 6. Hardware IP Block Design

size becomes equivalent to 0.66 MB. The design requires 2 such accumulators in case of input

channel folding when the number of channels that need to be processed is more than the

maximum number of channels that an IP can process. Therefore a total size of 1.22 MB will

be required of on-chip RAM is required. This is more than what is available in ZedBoard.

The concepts of input channel folding will be discussed in subsequent sections.

This approach allows for the dynamic configuration of CNN typological parameters at run-

time, which can adapt to various CNN models and sizes [2]. typological features like input

feature map dimensions, filter size, etc can be configured at the run time. The main advan-

tage of this approach is its flexibility and compatibility not only with different layers in a

CNN model like YOLOv4-tiny and also can be compatible with different CNN models itself

like yolov3-tiny etc. The architecture can work under many settings by controlling the multi-

plexes inside, which allows for efficient use of hardware resources. The architecture presented

in [2] uses a dynamically configurable architecture for Mobile robot vision applications using

virtex4 FPGA running at 120 Mhz and achieves a latency of 25 ms. The architecture uti-

lizes inter-output and intra-output convolutions for accelerating the layers of the CNN and

each layer was parallelized in different ways. Dynamically configurable architecture provides

speedups ranging from 1.2x to 3.5x over a similar fixed custom architecture for every layer.

This thesis takes ideas of dynamic configurability for configuring each layer inside the PS

section of the ZedBoard as it provides more flexibility for controlling the hardware but differs

in the layers that are parallelized. The hardware is fixed for each convolutional layer and

other layers after channel folding so the latency is more controlled by the topological features

of the CNN.

Additionally, the architecture provides design parameters that can be tuned depending

on the resource constraints of the target platform. By using a single hardware platform

to handle different tasks or applications, a unified architecture offers better scalability than

specialized hardware designs, which are typically limited to a specific function or application.

The scalability of a unified hardware architecture makes it an attractive choice for systems

that need to handle variable or unpredictable workloads. Additionally, The paper [1] uses

ZedBoard as an indicative target platform but the design can be ported to target Xilinx

FPGA devices with more resources due to its tunable design parameters. The design achieves

optimal latency of 532 ms.

6.2 Convolutional Layer IP

In this section, the focus is on the convolutional IP’s design, which is the most critical

computationally intensive element in the system design. Section 6.2.1 provides the overview

of the module which includes details of interfaces and other hardware components. Section

6.2.2 to 6.2.4 explain architectural details. Section 6.2.6 explains the optimization carried

out in the Convolutional IP block and the directives applied in the design. The Explanation

of architectural design details are taken from [1] and from the thesis [12]

6.2. Convolutional Layer IP 55

6.2.1 Convolutional IP block design

Shown in Figure 6.1, are interfaces of the convolutional IP block which consists of data

port interfaces and control ports. Data ports transfer layer weights, inputs, and outputs.

To ensure fast data transfer due to a large amount of information, AXI4-stream ports are

utilized [39]. Both weights and inputs are transmitted through the same 64-bit port, with

weights transmitted first, followed by inputs. As for typology parameters, they are set using

AXI4-Lite connections and each parameter has its own memory space in the PS.

In order to use the IP, certain parameters related to its typology must be sent to control

logic first. Once these initial preparations have been completed, the weights needed for pro-

cessing are transferred from the DDR (dynamic random-access memory) to the relevant local

memory via an input stream. After this setup is finished, the input data is sent through the

IP, which processes it and generates outputs that are then sent back to the DDR. This entire

process forms a loop between the FPGA (field-programmable gate array) and the off-chip

memory, with the processing system managing the flow of data.

To optimize the performance of convolution operations, multiple processing elements are

Figure 6.1: Structure of the convolutional IP [12]

available within the module that is capable of performing convolutions in parallel. This can

provide significant hardware acceleration and improve the speed of processing. In addition,

inputs and outputs should be buffered to allow for efficient data transfer between the pro-

cessing elements. It is important to note that convolution is not a one-to-one mapping, which

means that data will be reused multiple times during the operation. By buffering the inputs

and outputs, the module can reuse data more efficiently and reduce the overall processing

time. Proper optimization of the convolution module can lead to significant improvements

in performance and efficiency. The input buffer is implemented using a tunable line buffer.

Convolution across the channels is done using Multiply-Accumulate batch units. With each

56 Chapter 6. Hardware IP Block Design

batch unit, sliding windows are formed which take 3x3 size input from the line buffer and

3x3 size weight stored in local memory, and then outputs are buffers using output transfer

blocks. All these are discussed in subsequent sections.

6.2.2 Tunable Line Buffer

Chapter 5 discusses the concept of partial buffering and full buffering. Full buffering refers to

a technique where all inputs and outputs are stored in a buffer before any processing occurs.

This can be useful when the data transfer rate between the FPGA and external memory is

slower than the processing rate of the convolutional IP, allowing the IP to access data more

efficiently. However, full buffering can also require a larger memory footprint, which may not

be feasible in all cases. On the other hand, partial buffering is a technique where only a subset

of the input and output data is stored in a buffer at a time, with the buffer being updated

as the processing progresses. This can be more memory-efficient than full buffering but may

also require more careful management of the data flow to prevent data loss or processing

delays.

The original YOLO software program uses the Image to column algorithm for convolution,

which may make it possible to optimize its performance using partial buffering (PB) on hard-

ware. However, it is important to note that the Im2Col algorithm involves moving data in

memory and making copies on the processor, which can be computationally expensive. In

fact, when evaluated on the ARM processor of a Zedboard, the Im2Col functions of convo-

lution took more than 5 seconds (2.72% of the total execution time of convolution layers)

to complete as shown in Chapter 5 figure 5.8. This means that even with hardware ac-

celeration, the system latency will never be lower than 5 seconds due to the computational

cost of Im2Col. Therefore, to achieve lower latency, a Full buffering (FB) strategy is adopted.

In the FB method, the input image is processed by sliding a convolutional window over

it in row-major order. As the window moves, only recent rows are required to be stored in

memory, which means that the FPGA doesn’t need to keep every input in memory all the

time. This approach allows for efficient use of memory and maximizes data reuse, resulting

in faster processing times. To achieve this, the design uses a line buffer structure shown in

6.2, which is essentially an array of shift registers that store a single row of input data at a

time. The size of the line buffer depends on the height of the convolutional kernel, with each

channel having a buffer of kh lines, where kh is the height of the kernel, and each line contains

fw words, where fw is the width of the input image. By using a line buffer structure, the

design can store input data more efficiently and minimize the memory required to perform

convolutions.

The line buffer structure acts as a shift register array that only stores the most recent rows

of data. When a new input is captured, the data in the corresponding column is shifted up

and the new input is inserted. The size of the convolutional kernel and the dimensions of the

6.2. Convolutional Layer IP 57

input determines the line buffer size. In the YOLOv4-tiny typology, the maximum values

for the kernel size and input dimension are 3 and 416, respectively. However, the line buffer

has 3 lines and 418 words for each row to account for convolution padding. Storing padded

zeros avoids the need for extra multiplexers and simplifies the control logic, which reduces

the risk of timing violations. By trading a small amount of memory for simpler control logic,

the overall system can achieve better performance and efficiency.

Figure 6.2: Data movement inside line buffer

6.2.3 3x3 Sliding Window

The sliding window technique is used to retrieve data from the buffers and initiate convolu-

tions at the appropriate cycle. Figure 6.3 shows an example of a 3x3 sliding window function.

When the convolutional kernel is 3x3, the first convolution will occur once the top two lines

and the first three columns are filled with data 6.3 (A, B). Subsequently, for each new row,

the convolution will not start until at least three new elements are fetched. This ensures

that the convolution is performed on a complete set of data for accurate results 6.3 (C, D).

The sliding window approach is an efficient way to manage the data flow and timing in the

convolution process, resulting in optimized performance and reduced latency.

6.2.4 Multiply Accumulate batch units

The main objective of the unit is to perform convolutions, which involve two main steps. The

first step is the window convolution, which can be seen as an inner product of two vectors.

In the case of a 3 x 3 convolution kernel, it includes 9 multiplications and 8 additions shown

58 Chapter 6. Hardware IP Block Design

Figure 6.3: Sliding window for a 3x3 convolution

in figure 6.4 as pc3. This is called intra-FM convolutions. The second step involves adding

up the convolution results of all input channels, which requires a separate accumulation block.

For a layer with Nout output channels and Nin input channels, Nout convolution units are

required and each of them will accumulate Nin times. Parallelism is therefore achieved among

different output channels as by pc1. In this design, inputs belonging to four input channels

will be transferred in parallel. This is because the bit-width of data is a quarter of the 64-bit

DMA. The code specifies that every multiply-accumulate unit must include four convolution

kernels to calculate four input channels simultaneously given by pc2 in figure 6.4. This is also

called inter-FM convolution. In order to minimize resource consumption, these kernels can

share one accumulation unit as shown in Figure 6.4. This entire multiply-accumulate unit is

referred to as a “multiply-accumulate batch” for the sake of clarity. When there are NMAC

multiply-accumulate batches, all NMAC output channels and four input channels will run in

parallel. This will result in a total speed-up of 4 x NMAC , when compared to sequential

execution.

6.2.5 Output stream merge

Within the module, multiple output channels are operating concurrently. The convolution

process accumulates data for Nin input channels, and outputs become available after pro-

cessing the last input channel. In a pipeline setup, Nout output channels will be generated

simultaneously when Nin input channels are consumed. This means that data write opera-

tions will occur more frequently than reads, if Nout is greater than Nin. As a result, there

may be data congestion at the output port.

As per the AXI4-stream protocol, each port is allowed to have only one read and one write

transaction during a single clock cycle. In the current system where the DMA port is config-

6.2. Convolutional Layer IP 59

Figure 6.4: Multiply Accumulate Batch Units [1]

ured as 64 bits and each fixed-point data occupies 16 bits, only 4 channels can be read and

written at a time. If the number of output channels (Nout) is larger than the number of input

channels (Nin), it may result in pipeline stalling as writes need to finish before new data can

be processed. This is because the system has to wait until all writes are completed before

proceeding with further operations, leading to potential data congestion at the output port.

This is a deterministic behavior of the AXI4-stream protocol. This is because the protocol

is designed to allow only one write transaction per port per clock cycle, which means that

if there are multiple write transactions, they have to be serialized and completed before the

next set of transactions can proceed.

One possible solution to resolve the conflict is to add a FIFO (First-In, First-Out) buffer

between the convolution outputs and the AXI4-stream port. This buffer can help manage

the flow of data and prevent congestion at the output port. For example, let’s consider a

convolutional layer with 8 input channels and 16 output channels, where the AXI4-stream

port is set as 64 bits as shown in figure 6.5. If the initiation interval of the module is 1, it

takes 2 cycles to fetch all the needed inputs. Assuming there is no latency between inputs

and outputs, in the second cycle, 16 outputs are waiting for transmission. By adding a FIFO

buffer, the outputs can be stored temporarily in the buffer until they can be transmitted

through the AXI4-stream port without causing congestion. This can help maintain smooth

data flow and prevent stalls in the pipeline. The registers that store output values will be

cleared when the next 8 input channels arrive, causing the input stream to stall for three extra

cycles. As a result, the entire read-and-write process takes 5 cycles to complete. Essentially,

60 Chapter 6. Hardware IP Block Design

the purpose of these output FIFOs is to pipeline the stream read and stream write at the

task level.

Figure 6.5: Merging of output stream [12]

6.2.6 Optimisation

6.2.6.1 Merging Batch Normalisation

As explained in Chapter 2, YOLOv4-tiny incorporates batch normalization after most of its

convolutional layers, followed by activation. In batch normalization, we need to store and

transfer four parameters per output channel: scale, bias, mean, and variance. Since there are

Nout output channels, the total number of parameters needed is 4×Nout. These parameters

are used to normalize the activations of each output channel to have zero mean and unit

variance, which helps with the stability and speed of the training process. To perform batch

normalization according to equations 2.3 and 2.4, a total of 4 × Nout parameters need to

6.2. Convolutional Layer IP 61

be transferred and stored on the FPGA. This operation also requires 2 x gh x gw x Nout

multiplications and 2 x gh x gw x Nout additions.

The FPGA design under consideration is not meant for training but only for inference. Thus,

it is acceptable to eliminate batch normalization using mathematical methods. By replacing

gi in equation 2.3 with equation 2.4, we can obtain a new equation without the need for batch

normalization.

In order to avoid the cost of transferring and storing 4 × Nout parameters for batch nor-

malization, a mathematical technique is used to merge the operations of batch normalization

into convolution. This is achieved by introducing new weights and biases, w
′
i;j and b

′
j , which

can be computed before run-time with negligible precision losses during floating point calcu-

lations.

g′j =
γ√

σ2
B + ϵ

gj + β − γµB√
σ2
B + ϵ

(6.1)

Wherein gi comes in from equation 2.1, where bj is 0. Therefore,

g′j =

Nin∑
i=1

fi ∗

wi,j
γ√

σ2
B + ϵ

+ β − γµB√
σ2
B + ϵ

, with j ∈ [1, Nout] (6.2)

If wi,j
γ√
σ2
B+ϵ

= w′
i,j , and β − γµB√

σ2
B+ϵ

= b′j ,

g′j =

Nin∑
i=1

fi ∗ w′
i,j + b′j , with j ∈ [1, Nout] (6.3)

6.2.6.2 Channel Interleaving

Three distinct methods exist for transferring data between FPGA and off-chip memory. As

per equation 2.1, the convolution operators necessitate accumulation over all input channels.

Consequently, a simple approach involves transmitting all the pixels in one input channel in

sequence before switching to the next channel. This is depicted in Figure 6.6. For instance,

let’s consider the first convolutional layer that has RGB inputs with an input width and

height of 416 pixels. In this case, the 416 x 416 pixels in the ”R” channel are transferred first,

followed by the 416 x 416 pixels in the ”G” channel, and then the 416 x 416 pixels in the ”B”

channel. However, this method can lead to a problem with the accumulation buffer. It can

be explained as follows. During the convolution operation, each output channel accumulates

results from all input channels. Therefore, a temporary output buffer is required to store

these values. The size of this buffer is determined by the layer outputs’ dimensions (gh×gw).

As the IP is a unified module, the buffer must be designed for the worst-case scenario, which

is 416 x 416 x the word length (in bits). However, this output buffer’s size is too large to fit

on the test device (Zynq-7020). Implementing the buffer using off-chip memory would result

in significant delays.

62 Chapter 6. Hardware IP Block Design

Figure 6.6: Sequential vs Channel Interleaving transmission

The second solution involves interleaving channels as shown in Figure 6.6 (b). In this ap-

proach, the pixels are sent in a certain order where the first pixel from the ”R” channel is

sent, followed by the first pixel from ”R” and the first pixel from ”B” channels, and so on

until the last pixel is reached. This process transposes the original 3D matrix mathematically.

With interleaving, the accumulation process occurs for a single pixel rather than the entire

channels, which reduces the size of the output buffers.

While channel interleaving provides a solution to the accumulation buffer problem, it comes

at a cost. Unlike sequential channel transmission, which only requires one line buffer to store

data of one input channel, channel interleaving requires separate line buffers for each input

channel. This is depicted in Figure 6.7 However, this also means that the total buffer size

is determined by the maximum number of input channels that the IP can handle. This is a

desirable feature because the buffer size can be adjusted as a design parameter.

In summary, the sequential channel transmission approach requires a large and fixed output

buffer, while channel interleaving requires multiple input buffers. However, the adjustable

buffer size feature makes channel interleaving a more attractive option.

The third option is to combine the previous two strategies by dividing each input chan-

nel into batches, and interleaving the batches instead of individual pixels. This approach

strikes a balance between the previous methods, but it still requires moving and copying data

on the processor, which is not efficient for the processing system (PS) of the test platform

used in this project.

6.2.7 Architecture of the convolutional IP

Listing 6.1 shows the algorithm for calling the convolutional IP. Here Nout and Nin are the

output channels and input channels of a convolutional layer whose values are always equal or

6.2. Convolutional Layer IP 63

less than the maximum channels that can be processed at a time Nmax. In this design, Nmax

is set to 32. The concept of network transformation as discussed in chapter 7 is applied where

in the IP is called multiple times depending upon the number of input and output channels

of a convolutional layer. For example, In YOLOv4-tiny, the third layer is a convolutional

layer input size of 104 × 104 × 64 with 64 filter weights and output size of 104 × 104 × 64.

While performing convolutions, all the input channel data is used to compute a single output

feature map. Due to the constraint of processing 32 channels at max in a single call of IP,

computing the first 32 output channels (Nout) will require all 64 channels inputs (Nin) but

input processing has channel constraints of processing a maximum of 32 channels. So input

needs to be folded twice for processing the first 32 output channels. Similarly, the next 32

output channels require the same concept. Therefore in total, this IP will be called 4 times

for this layer execution. For clarity, all layers except the first convolutional layer take (Nout)

and (Nin) values to be 32 and 32 after network transformation even though the original values

of (Nout) and (Nin) are 64 and 64.

1 // Loading weights inside local memory

2 Loop 1: for i = 0; i < Nout; i++ do

3 for j = 0; j < Nin; j++ do

4 for k = 0; k < 3; k++ do

5 #pragma HLS PIPELINE II=1

6 load weight;

7 end

8 end

9 end

10 // Convolutional Operation

11 Loop 2: for i = 0; i < fh + 1; i++ do

12 for j = 0; j < fw; j++ do

13 for k = 0; k < Nin; k++ do

14 #pragma HLS PIPELINE II=IIconv

15 line buffer;

16 sliding window function;

17 conv mac;

18 output stream merge;

19 end

20 end

21 end

Listing 6.1: Algorithm of Convolution IP

Figure 6.7 shows the detailed architecture of the convolution IP. As discussed earlier, the

line buffer size chosen for this design for storing input is 3 × 418. The height of the line

buffer size, as discussed earlier is chosen based on the 3x3 kernel dimensions and the width

of the line buffer is based on 1st convolutional layer whose dimensions are 416× 416. In the

module for convolution, there are two nested loops: one for loading weights and the other for

performing the convolution as shown in figure 6.1. Since there is a dependency between the

iterations of the second loop due to accumulation, the PIPELINE directive has been used.

64 Chapter 6. Hardware IP Block Design

Figure 6.7: Detailed architecture of convolutional IP

Secondly, Array Partition directive has been used to partition the weights stored inside the

local memory buffer. The weights of a convolutional layer have a specific size, which can be

represented as a 3-dimensional array with dimensions (Nout, Nin, kh ∗ kw). The challenge is

to determine how to partition this array and understand how that partitioning will affect the

design.

The way the 3-D array of weights is partitioned affects the performance of the convolu-

tional layer. The number of blocks in the first dimension of the array corresponds to the

number of output channels that can be processed in parallel which is shown by (Pc3) in figure

6.7. As local memories are implemented using 2-port BRAMs, then having Pmem1 blocks in

the third dimension will enable Pmem1× 2 convolutional kernels or a total of pmem1

2 multiply-

accumulate batches will be executed concurrently. If the number of desired output channels

Nout is greater than
Pmem1

2 , some multiply-accumulate batches will have to be reused, leading

to pipeline stalls. Thus the number of memory ports determines the number of multiply-

accumulate instances and ultimately affects the total latency of the convolutional layer.

6.2. Convolutional Layer IP 65

The second dimension of the 3D weight array corresponds to the different input channels,

which can be divided into Pmem2 blocks using cyclic partitioning which is shown by (Pc2) in

figure 6.7. However, for the 64-bit DMA transfer, only four input channels can be processed

in parallel at most. Therefore, if Pmem2 exceeds 4, no further speed-up can be achieved and

the extra resources are wasted.

The third dimension of the weight array in a convolutional layer is related to the multiply-

accumulate (MAC) batch that is completely unrolled within the pipeline which is shown by

(Pc1) in figure 6.7. For example, in a 3x3 convolution, 9 multiplications should be scheduled

in the same cycle if the memory access allows it. However, if the unrolled units are not used

efficiently, the throughput of the batch will decrease. Therefore, in the design process, the

third dimension is always fully partitioned to ensure efficient usage of the unrolled units.

In summary, the first and second dimensions control the number of instances, while the

third dimension determines the performance of each instance. If the third dimension is fully

partitioned, it can maximize the throughput of the instance. The overall latency of the

pipeline is affected by all three dimensions. The way the array partition needs to be carried

out is discussed in chapter 4

Figure 6.8 shows the variation of Initiation interval cycles with respect to memory parti-

tioning (pmem) wherein Pmem = Pmem1 × Pmem2 with Pmem2 = 1 for this design as 4 chan-

nels can be parallelized without partitioning the second dimension. It can be clearly seen

that the initiation interval of the pipeline reduces as more memory partition is increased.

Pmem >= 8 causes the initiation interval to be 10 clock cycles. So less latency is expected

when pmem >= 8. Furthermore from table 6.1, it can be seen that the more efficient utiliza-

tion of DSP happens when Pmem >= 8 and resource utilization increases with no change in

the initiation interval of the pipeline. Thus Pmem = 8 is selected as the more optimal value

for this design.

DPS usage of the IP block depends upon a number of kernel instances that can be paral-

lelized which again depends upon how on memory port or how memory has been partitioned.

During one iteration of the nested loop, it has been already discussed that 4 × Nmax oper-

ations can be parallelized. So the number of kernel instances inferred by the design will be⌈
Nmax×4
IIconv

⌉
. Each instance does 3× 3 window convolution, so 9 DSP cores will be inferred by

each instance. Additionally, 2 more DSP cores have been inferred by the design as control

logic of the code. Therefore in total DSP cores inferred by the design will be given by:

DSPconv =

⌈
Nmax × 4

IIconv

⌉
× 9 + 2 (6.4)

AsNmax for the whole design has been set to 32. Therefore design infers 119 DSP units out

of 220 available on Zedboard. The design inferred 13 instances of Multiply accumulate batches

in each of which 9 multiply-accumulate operations were done in parallel. Each operation takes

about 20 ns which is 2 clock cycle as the design frequency is 100MHz as shown in figure 6.9.

66 Chapter 6. Hardware IP Block Design

Figure 6.8: Initiation interval cycles variation with Memory partition for Nmax = 32

Therefore the IP gives a throughput of 13×9
2 × 100 = 5.85 GOPS/sec. BRAM utilization

Figure 6.9: Latency of Multiply accumulate batch [12]

again depends on how memory has been partitioned. This BRAM estimation in the design

can be made using BRAM utilization estimation in [12]

BRAMconv =

⌈
Nmax

8

⌉
× 12 +

⌈
N2

max

1024× Pmem

⌉
× Pmem × 9 (6.5)

6.2.8 Latency Estimation of Convolutional IP block

The latency of the convolutional IP block can be estimated once the topological parameters

of the design are known. This is because the bitstream generated by the tool gets fixed once

the maximum number of channels processed by IP gets fixed. In the IP block, the number

of input channels (Nin) and number of output channels (Nout) after folding is kept same as

6.2. Convolutional Layer IP 67

pmem = 1 pmem = 2 pmem = 4 pmem = 8 pmem = 16 pmem = 32

DSP48E 20 (9 %) 38 (30%) 74 (33 %) 119 (54 %) 119 (54%) 119 (54 %)

FF 11114(10 %) 17871 (16 %) 29247 (27 %) 37680 (35 %) 40095(37%) 50938 (47 %)

LUT 19253 (36 %) 22263 (41 %) 26438 (49 %) 28601(53 %) 30638(57%) 34556 (64 %)

BRAM 57(20 %) 66 (23 %) 84 (30 %) 120(42 %) 192 (68%) 48 (17 %)

Table 6.1: Resource utilization variation with memory partition (Pmem) for Nmax = 32

maximum number of channel that an IP can process (Nmax). As a result, IP block latency

is governed by the software driver. This transfers IP block topological information like the

number of desired input channels, the number of desired output channels, and feature map

height, and width through the AXI interface.

The reason for keeping the number of input channels and the number of output channels

the same as the maximum number of channels that IP can process is to avoid channel re-

interleaving in case of multiple executions of the same IP block. Additionally, the interleaving

channel requires data movement of data in the PS which has been proven to be bad as it

takes more than 5 secs to move data. Therefore, the latency of convolutional IP is given by:

Latency conv = Pconv (IIconv ,N)

where IIconv is the initiation interval of the convolutional block pipeline and N is the topo-

logical features given by

N = (Nin , Nout , fh, fw)

The IIconv for the IP block is found to be 10 clock cycles after synthesizing the design.

According to the algorithm given in 6.1, there are 2 loops, one for transferring weights and

one for doing convolutions. The 3x3 weights are requires 3 clock cycles and an initiation

interval of 1 is set which was easy to achieve for this loop. This 3x3 weight transfer has to

happen Nout ×Nin times. So estimated latency in clock cycles of the weight transfer loop is

Latency weights = Nin ×Nout × 3 (6.6)

The second loop latency is related to the trip count of the second loop which is also related to

topological parameters fh, fw, Nin. Inside the loop, the values of fh and fw are incremented

by 2 to account for padding in the YOLOv4-tiny model. All Convolutional layers in YOLOv4-

tiny require padding. One extra row is also sent as shown in fig 6.1 to take into account the

delay of one output pixel for allowing the read-write pipeline. Also due to the DMA constraint

of processing 4 channels in parallel a fixed factor of 4 is taken into account. Considering all

this, the latency of the second loop is given by

Latency op = (fh + 3)× (fw + 2)×
⌈
Nin

4

⌉
× IIconv (6.7)

68 Chapter 6. Hardware IP Block Design

So total latency in clock cycles is

Latencyconv = Latencyweight + Latencyop

Latencyconv = (fh + 3)× (fw + 2)×
⌈
Nin

4

⌉
× IIconv +Nin ×Nout × 3 (6.8)

6.3 Accumulation & Activation IP block

In some cases, the maximum number of input channels (Nmax) that can be processed simul-

taneously by the convolutional IP is smaller than the desired number of input channels (Nin).

This means that the convolutional IP cannot accumulate over all input channels through one

execution, and multiple launches are required to process all the input channels. To overcome

this issue, a separate module is designed that adds the results of all launches together. This

module is responsible for folding the input channels and accumulating their results, which

is why this technique is called input channel folding. The main idea behind input channel

folding is to split the input channels into multiple groups that can be processed by the con-

volutional IP simultaneously. After all groups are processed, their results are accumulated

to produce the final output.

The accumulation and activation module, shown in figure 6.10 is designed to add the results

of multiple launches of the convolutional IP in cases where Nmax is smaller than the desired

Nin. It has two input streams, one for the output of the convolutional IP and the other con-

nected directly to the PS to fetch outputs from previous launches. The module accumulates

the results from both streams and applies biases stored in local memory through stream B.

The output is then activated using either linear or leaky ReLU activation functions. For

implementing leaky ReLU, fixed-point multiplication is required. The module also has a

bundled AXI4-Lite port for setting parameters.

In order to optimize the resource utilization and latency, a tunable parameter Pacc is used

which cyclically partitions the bias memory as shown in figure 6.10. Due to DMA and 16-bit

quantization constraints, accumulation only can happen parallelly across 4 output channels.

But due to limited memory ports (2-Port BRAM), there was a need to partition the memory

cyclically for allowing access to biased memory in a single clock cycle. As shown in table

6.2, the initiation interval of the pipeline is reduced to 1 clock cycle when bias memory is

partitioned by a factor of 2. This allows simultaneous access to bias memory thereby reducing

the initiation interval of the pipeline. Value of Pacc > 2 causes the memory to be partitioned

unevenly as memory can hold only 32 bias values. This uneven partition causes the HLS

tool to infer more LUTs as compared to BRAM. In terms of DSPs, 4 DSPs come from the

parallel processing of 4 channels which involve leaky activation to be applied across 4 channels.

Additional DSP comes from the control logic inside the code. Therefore, considering resource

utilization and latency Pacc = 2 is a more optimal value and is chosen for this design.

6.3. Accumulation & Activation IP block 69

Figure 6.10: Accumulation IP block

pacc = 1 pacc = 2 pacc = 3 pacc = 4

DSP48E 3 (1 %) 5 (2%) 5 (33 %) 5(2%)

FF 1234 (1%) 1387 (1%) 2718 (2%) 1515 (1%)

LUT 1930 (3%) 2284 (4 %) 3240 (4) 2232(4%)

BRAM 1(0 %) 2 (0) 0 (%) 0(0%)

Initiation interval (II acc) 2 1 1 1

Table 6.2: Latency and resource utilization for various values of Ppool

6.3.1 Latency estimation of Accumulation block

As explained earlier, biases are transferred through the DMA stream B interface. Due to the

DMA constraint of processing 4 channels at a time, the number of clock cycles that will be

required for transferring biases will be:

Latencybias =

⌈
Nout

4

⌉
(6.9)

The rest of the process is accumulation which happens inside for loop whose latency is given

by which by the trip count of the loop and the initiation interval of the accumulation pipeline

block (IIacc). Loop trip-count is the product of the gh, gw, and Nout.

Latencyop = gh × gw ×
⌈
Nout

4

⌉
× IIacc (6.10)

So total latency in clock cycles is

Latencyacc = Latencyop + Latencybias

70 Chapter 6. Hardware IP Block Design

Latencyacc = gh × gw ×
⌈
Nout

4

⌉
× IIacc +

⌈
Nout

4

⌉
(6.11)

6.4 Max Pooling Layer IP block

Ppool is the tunable design parameter for the Maxpool layer which controls the hardware for

making comparisons across the channels using the HLS ALLOCATION pragma. Again due

to DMA constraints, only 4 channels can be parallelized. So the choice of the value of Ppool

is determined by a trade-off between latency and resource utilization. Table 6.3 provides the

hardware resource utilization with respect to various values of Ppool. The FF utilization is

approximately 1% and LUT utilization is between 4% and 5%. The initiation interval will

depend upon the Ppool values and the time it takes to access the line buffers. For instance,

Ppool > 1 means there a separate instance of the comparison hardware will be used across

4 channels which will lower the initiation interval of the pipeline to 1 but accessing the line

buffer in this design takes 2 clock cycles irrespective of the value of Ppool = 4. So line buffer

access time is the lower bound time in clock cycles which determines the initiation interval

in case of Ppool > 1. For the case of Ppool = 1, one such hardware instance is shared across

4 parallel channels and this will cause pipeline depth to increase by 4 clock cycles. In this

case, extra clock cycles spent resource sharing becomes a more dominant factor as compared

to the access time of line buffer which makes the initiation interval 4.

Latency in the table here is for a single call of IP which means latency of the IP here is

with respect to processing 32 channels which are in accordance with the maximum channel

that an IP can process in a single call. As there are 3 Maxpool layers with different numbers

of output channels, the concept of folding will be applied which will cause latency to be mul-

tiplied by the fold factor determined by the number of output channels. The latency will be

dependent on the typological features of the layer which decides the number of times the loop

needs to be executed and the folding factor. The resource utilization remains the same in

each call of IP. For example, Layer 10 in YOLOv4-tiny is a Max pool Layer with 128 output

channels and input dimension as 104. So a factor of 4 needs to be taken into account for call-

ing the IP 4 times which makes the choice of Ppool = 1 less efficient as Hardware latency will

be 3.462× 4 = 13.848 as compared to the cases when Ppool > 1 where latency becomes 6.92

ms. So taking into consideration almost the same resource utilization but varying latency, a

more optimal choice was to set Ppool = 2 for this IP block.

The line buffer data structure which will utilize BRAM is used again in this IP with a

size of 2× 104. The reason for setting the height as 2 is because max-pool requires a window

of size of 2× 2. Only 2 rows are required for selecting the largest element. The width is set

to the maximum width of the input image in YOLOv4-tiny. There are only 3 Maxpool layers

in YOLOv4-tiny and the maximum width dimension of the Maxpool layers comes from the

10th layer of YOLOv4-tiny which has an input dimension of 104 × 104. As the maximum

6.4. Max Pooling Layer IP block 71

number of channels that IP can process is set to 32, therefore the number of words stored

inside the line buffers are 2 × 104 × Nmax. Due to Bandwidth constraints, only 4 channels

can be processed parallelly, which means there are 8 groups of line buffers that can store

104×
⌈
Nmax

4

⌉
words. Suppose there are only BRAM18k available for use, with each BRAM

capable of storing 1k words of 16-bit data. However, it’s important to note that BRAM18k

in Xilinx devices can only support 1, 2, 4, 9, or 18-bit data access. Therefore, even though

only 16 bits are needed for each word, each word will still occupy 18 bits of hardware space.

Therefore it is reasonable to assume that each line buffer will occupy
⌈
Nmax
40

⌉
and since there

are 8 such groups so estimated BRAM will be given by,

BRAMMaxpool =

⌈
Nmax

40

⌉
× 8

In this design, Maxpool IP uses 8 instances of BRAM as Nmax is set to 32 each occupying

832 words as shown in figure 6.3. Also, the IP DSP utilization is independent of tunable

parameters because the hardware resource required for comparison does not require any

multiplication. Only one DSP core is inferred which is utilized in the control path of the

design for checking when the line buffers are filled with required data for making comparisons

inside the 2× 2 window for selecting the maximum value.

Ppool = 1 Ppool = 2 Ppool = 3 Ppool = 4

DSP48E 1 (∼0 %) 1 (∼0 %) 1 (∼0 %) 1 (∼0 %)

FF 1500 (1 %) 1629 (1 %) 1664 (1 %) 1635 (1 %)

LUT 2503 (4 %) 2708 (5 %) 2774 (5 %) 2776 (5 %)

BRAM 8 (2 %) 8 (2 %) 8 (2 %) 8 (2 %)

Initiation interval (II yolo) 4 2 2 2

Latency (milliseconds) 3.462 1.731 1.732 1.731

Table 6.3: Latency and resource utilization for various values of p maxpool

For max pooling, the padding value should be set to negative infinity which is -FP MAX

in fixed-point implementation instead of zero. Also, unlike convolutional layers where the

input is padded with a ring of zeros, padding for 2x2 max pooling occurs when the height or

width of the input is an odd number. The reason for padding in max pooling is due to the

use of a 2x2 filter with a stride of 2, which moves over the input in steps of 2 pixels. When

the input has an odd height or width, the filter may leave one pixel unprocessed after it has

covered the entire input. Padding is then necessary to ensure that this pixel is considered in

the pooling operation.

The window max-pool function used in the design is again a tunable parameter whose in-

stances are controlled by the pragma HLS ALLOCATION. The limit is set to 2 in this design

even though 4 channels can be processed in parallel. This is done to minimize resource uti-

lization in case of resource-constrained devices and decreasing the limit does not change the

initiation interval of the pipeline and the latency of the IP remains the same. A higher value

of limit increases the throughput but causes more resource utilization.

72 Chapter 6. Hardware IP Block Design

1 for i = 0; i < hh; i++ do // output row

2 for j = 0; j < stride_row; j++ do

3 for k = 0; k < hw; k++ do // output column

4 for l = 0;l < col_stride ;l++ do

5 for m =0; m< Nin; m++ do

6 #pragma HLS PIPELINE II=IImax

7 #pragma HLS ALLocation window Maxpool limit = 2 function

8 line buffer;

9 sliding window function;

10 window Maxpool;

11 write output;

12 end

13 end

14 end

Listing 6.2: Algorithm of Maxpool IP

6.4.1 Latency estimate of Maxpool Layer

Maxpool Layer latency in clock cycles is given by the product of trip count and Initiation

interval of the pipeline. Trip-count depends on hh, hw, spool, and Nin. Due to bandwidth

constraints, only 4 channels can be processed in parallel. Therefore the latency is given by,

Latencymax =

⌈
hh
2

⌉
× 2

⌈
hw
2

⌉
× 2× spool× spool×

⌈
Nin

4

⌉
× IImax (6.12)

6.5 Upsample Layer IP block

The upsample layer does the opposite of the pooling layer. It takes inputs that correspond

to the top-left corner of a 2x2 window and stores them in a line buffer before filling the rest

of the window. Unlike the pooling layer, the upsample layer does not pad the inputs with

zeros but instead repeats the input values.

Due to the DMA constraint of processing 4 channels parallelly, firstly all 4 channels are

processed parallelly using a tunable design parameter Pupsample. The Pupsample can take val-

ues between 1 to 4. The Pupsample is set to 4 initially. The resource utilization report for this

IP is given in table 6.11 which shows the resource utilization in terms of LUT and Flip-flops

is less than 1%. The design achieves the initiation interval of 1 at Pupsample = 4. The latency

is expected to be minimum at this value as 4 channels are processed. As resource utilization

is already less than 1% and latency is minimum, therefore Pupsample = 4 is set in this design.

The line buffer which will utilize BRAM’s has a size of 1 × 13. The height is fixed as 1

as the line buffer in the upsample layer holds only the most recent row and can be treated

as a line buffer with only one row. The width is fixed at 13 as there is only one upsample

layer and it has a width dimension of 13. BRAM utilization of the again depends on the

6.5. Upsample Layer IP block 73

Figure 6.11: Resource utilization for upsample layer

size of the words stored in the BRAM. As a maximum of 32 channels can be processed in a

single run, therefore line buffers will store 1 × 13 ×Nmax. Due to DMA constraints, only 4

channels can be processed in parallel. Therefore there are 4 groups of line buffers that can

store 13×
⌈
Nmax

4

⌉
words. As BRAM18k can store only 1k words of size 18 bits, therefore it

is reasonable to estimate that BRAM utilized by upsample layer will be given by

BRAMupsample =

⌈
Nmax

316

⌉
× 4

In this design, Nmax is set to 32 which leads to BRAM utilization to 4, and each BRAM

will occupy 13 ×
⌈
32
4

⌉
= 104 as shown in figure 6.12. The design utilizes 2 DSP cores for

implementing control logic.

The upsample layer in YOLOv4-tiny only occurs once, so there are specific values for its

parameters that are predetermined and cannot be adjusted through control ports. Specifi-

cally, the height gh and width gw of the layer inputs are both 13 and the stride of the sliding

window Supsample is 2.

Figure 6.12: DSP and line buffer utilization for upsample layer

74 Chapter 6. Hardware IP Block Design

6.5.1 Latency estimation of upsample layer

Upsample Layer latency in clock cycles is given by the product of trip count and Initiation

interval of the pipeline. Trip-count depends on gh, gw, spool, and Nout. Due to bandwidth

constraints, only 4 channels can be processed in parallel. Therefore the latency is given by,

Latencyupsample = gh × gw × Supsample × Supsample ×
⌈
Nout

4

⌉
× IIupsample (6.13)

6.6 Yolo Layer

The Yolo layer in this design is specifically tailored for YOLOv4-tiny. For a Yolo layer, it

takes in an input tensor of size gh × gw ×Nin and divides it into gh × gw grids. The number

of input channels Nin by equation 6.14 where B represents the maximum number of objects

that can be detected in one grid, and C is the number of object classes. For YOLOv4-tiny,

B is set to 3 and there are 80 object classes in the COCO dataset.

Nin = (4 + 1 + C)×B (6.14)

The number of input channels Nin for the YOLO layer in YOLOv4-tiny is fixed at 255 and

is divided into 3 groups. Each group has 85 channels, out of which 4 channels contain infor-

mation about the bounding boxes, 1 channel is for objectness score, and the remaining 80

channels represent the class scores for individual objects. The YOLO layer applies a sigmoid

activation function to all channels except for those corresponding to the width and height of

bounding boxes.

The task at hand is to determine which channels require the sigmoid function and which

do not. To address this, a table is used, where each bit indicates whether a particular chan-

nel should undergo the transformation or not as shown in figure 6.13. Each entry in the table

corresponds to the activation associated with 32 channels with 8 such entries, resulting in a

total of 256 channels of the YOLO layer. The host provides this table through a straightfor-

ward AXI4-Lite connection since only 255 bits need to be transferred. The accuracy of the

sigmoid function is crucial in this design, especially because the YOLO layers produce the

final results of the network. The sigmoid activation involves a division and an exponential

function which can be efficiently implemented on hardware using a fixed-point version of the

exponential function provided by Xilinx.

Figure 6.13: Yolo-layer channel activation using table

For this block, Pyolo is a tunable parameter that controls the hardware for implementing

the sigmoid activation function across the channels. This parameter is controlled by pragma

6.6. Yolo Layer 75

HLS ALLOCATION in this design. This parameter signifies that a separate instance of the

sigmoid activation function will be used for processing. Due to DMA constraints, only 4

channels can be processed in parallel. Therefore this design parameter can be set between

1 and 4. For instance, if Pyolo = 4, then all 4 channels will have separate instances of the

sigmoid activation function. This in turn means all 4 channels are processed in parallel in a

single clock cycle. This results in an initiation interval of 1 clock cycle.

Figure 6.4 shows the change in latency and resource utilization with a change in the tunable

design parameter Pyolo. As there are no line buffers utilized in this block, the block RAM uti-

lization for this IP is 0. The resource utilization such as the number of DSP blocks inferred,

Flip-Flops, and LUT utilized depends on the tunable parameter Pyolo. As explained earlier,

Pyolo = 4, all 4 channels will have separate instances of the sigmoid activation function and

for processing each channel a minimum of 2 DSP cores are needed for fixed-point exponential

computation inside the sigmoid activation function. This makes the DSP count 8 in Pyolo = 4.

As the initiation cycle becomes 1, the latency is expected to be the least. But this decrease

in latency comes at the price of increased hardware resources as shown in the table. Resource

utilization becomes maximum when Pyolo = 4 as compared to any other value. In the case of

Pyolo = 2, there will be 2 separate instances of the sigmoid activation function available for

processing 4 channels. Therefore, the Yolo design pipeline will add extra registers to increase

pipeline depth. As a result, 2 clock cycles will now be required to process 3 channels. This

also explains why the initiation interval is 2. DSP utilization in this case is 4, which can be

explained similarly to what was explained earlier. Please note that Pyolo = 3 is similar to

Pyolo = 2 as dividing 3 separate hardware resources among 4 channels will require 4
3 clock

cycles, a clock cycle for processing 3 channels parallelly and then a clock cycle for processing

4th channel. As clock cycles cannot be in fractions, HLS tools take the ⌈43⌉ = 2. The table

shows the latency for a single IP call. There are 2 Yolo layers in Yolo4-tiny and each layer

has 255 input and output channels. A maximum of 32 channels can be processed in one call.

This means a single IP call means the first 32 input channels will be used to process the

partial output of the first 32 output channels. After applying the concept of input channel

folding, as discussed in chapter 7, the IP will be called 64 times. So the latency numbers will

be multiplied by 64 to get the final latency. The difference in latency between Pyolo = 1 and

Pyolo = 4 is (54.40 − 31.84) × 64 = 2.59 ms is very small compared to the resources utilized

for these values of Pyolo. Therefore in this design, Pyolo is set to 1.

Pyolo = 1 Pyolo = 2 Pyolo = 3 Pyolo = 4

DSP48E 1 (∼0 %) 4 (1 %) 4 (1 %) 8 (3 %)

FF 3614 (3 %) 5867 (5 %) 5867 (5 %) 10562 (9 %)

LUT 2900 (5 %) 4181 (7%) 4181 (7%) 6639 (12 %)

BRAM 0 0 0 0

Initiation interval (II yolo) 4 2 2 1

Latency (microseconds) 54.40 27.36 27.36 13.84

Table 6.4: Latency and resource utilization for various values of Pyolo

76 Chapter 6. Hardware IP Block Design

6.6.1 Latency estimation of Yolo IP block

Yolo layer IP block latency will be equal to the product of trip-count and initiation interval

(IIyolo) of the pipeline. The trip count depends on the input topological dimension of the

input such as width (gw), height (gh), and number of desired output channels (Nout). Again,

Due to DMA constraints, only 4 channels can be processed in parallel. Therefore the latency

of the Yolo layer is given as,

Latencyyolo = gh × gw ×
⌈
Nout

4

⌉
× IIyolo (6.15)

Chapter 7

System Design

This chapter is dedicated to integrating individual IP blocks into a complete system. It

begins with a system-level description in section 7.1 which is followed by a discussion on how

to modify the YOLOv4-tiny network to make it suitable for FPGA acceleration. Then, it

explains the block-level design and software drivers.

7.1 System Overview

The system architecture, as shown in figure 7.1, utilizes several IPs that function as a unified

accelerator for YOLOv4-tiny. The system architecture has been followed as given in the orig-

inal literature but differs in hardware accelerator implementation. The design choices made

for different IP blocks and it’s implementation is described in chapter 6. To facilitate the

transfer of large volumes of data, the off-chip DDR is connected to the CNN accelerator via

AXI4-streams. DMA0 has two data ports, one for reading and the other for writing, each

with a width of 64 bits. DMA1 only moves data from main memory to the slave and is used

for accumulation within the accelerator.

Figure 7.1: System Design [1]

The processor is in charge of managing the system using the bundled AXI4-Lite interface.

77

78 Chapter 7. System Design

The connection between the processor system (PS) and the accelerator is also utilized for

transmitting typology parameters. The figure doesn’t show all the modules, such as Processor

System Reset and AXI Interconnect.

7.2 Network Shaping

Even though this design allows for dynamic configuration, the network has to be reshaped

to take into account the maximum channels that can be processed by the hardware IP. The

number of bits supported by the AXI interface is dependent on the design parameter Nmax.

The maximum value of Nmax as per the yolov4-tiny architecture is 512. In order to process

512 output channels with the 16-bit quantization, the AXI interface has to support 8192 bits

which is beyond the maximum supported bandwidth of 1024 bits. Moreover, for the best

case of 1024 bits, the number of channels that can be processed in a single execution can

be 64 channels. But this will require 234 DSP blocks which is beyond what is available on

Zedboard. Therefore, the topology must be transformed to fit the available hardware. These

transformations will change the network structure but will not affect the final outputs.

Assuming that a convolutional layer contains Nin input channels, the layer will consist of

Nout convolution filters. These filters operate according to equation 7.1 to transform the

inputs into Nout output channels. In this context, fi represents the ith input channel, while

gj represents the jth output channel.

gj =

Nin∑
i=1

fi ∗ wi,j + bj , with j ∈ [1, Nout] (7.1)

7.2.1 Channel Folding

The maximum number of channels (Nmax) that can be used in a convolutional layer is limited

by the available resources. This means that Nmax may be smaller than the desired number

of input channels (Nin) or output channels (Nout). To overcome this limitation, the original

layer can be split into sub-layers with fewer channels that can fit into the available IPs. This

technique is called channel folding. When a convolution layer is folded, all other layers are

also adjusted to avoid re-interleaving the channels.

• input channel folding

For a convolutional layer with Nin input channels, if Nout is smaller than Nmax, there

will be ⌈ Nin
Nmax

⌉ sub-layers in which input channels will be divided. ⌈ Nin
Nmax

⌉ is also de-

fined as input channel folding factor Fin. If Nin is divisible by Nmax, each sub-layer

will contain Nmax input channels and Nout output channels [1]. The outputs of these

sub-layers are gj;1, gj;2, ...; gj;Fin. The accumulation and activation module is applied

to these results to obtain the final outputs gj . This process can be mathematically

7.2. Network Shaping 79

explained by splitting equation 7.1

gj =

Nmax∑
i=1

fi∗wi,j+

2Nmax∑
i=Nmax+1

fi∗wi,j+. . .+

Nin∑
i=(Fin −1)Nmax+1

fi∗wi,j+bj , with j ∈ [1, Nout]

(7.2)

To put it differently, input channel folding divides the accumulation chain into smaller

groups. If Nin is larger than the available resources, it needs to be divided into Fin

sub-layers with Nmax input channels each. Theoretically, the total latency of these

sub-layers should be equal to that of the original layer. However, in practice, there is

an additional cost associated with launching the IP multiple times, which affects the

overall latency.

• output channel folding

In contrast, output channel folding happens when Nout is larger than Nmax. Unlike

input folding which will not affect total latency much, the output channels folding fac-

tor will contribute to the latency linearly [1].

When output channels are folded, all inputs have to be sent again, which increases

the overall latency of one layer by a factor of Fout (or Fin if input channel folding is

applied). This is because the data is a stream and only part of the inputs are buffered

locally. Additionally, as mentioned before, starting IPs multiple times is an extra cost.

Figure 7.2 can be used as an example to understand the concept of channel folding

wherein the original layer group with 64 input channels and 64 output channels has

been partitioned such that a maximum of 32 input and output channels will be pro-

cessed. In the first step, the first 32 input channels (Conv Sub1.1) are used to generate

the partial output of the first 32 output channels. Then in the second execution, the

remaining 32 channels (Conv Sub1.2) are processed, and the partial sum of this execu-

tion is added to the previous one using (ACC Sub1) to generate outputs of the first 32

channels. A similar step is followed for the next 32 output channels which is shown in

the figure.

7.2.2 Channel Padding and Kernel size padding

The DMA port can transfer four channels at the same time, so it’s better if the number of

channels in a layer is divisible by 4. This is usually the case, except for RGB inputs which

have only three channels i.e. First Layer and YOLO layers with 255 channels. Only 3 out of

the 38 layers will be affected by this, so an extra channel is added in this design to these layers

to make them divisible by 4. In the YOLOv4-tiny neural network, the convolution kernel

size is limited to either 3x3 or 1x1. Since the convolution is already ”unrolled” as discussed

in chapter 6, it is difficult to share resources between the two different kernel sizes. In other

words, it is not possible to reconfigure a 3x3 kernel into nine 1x1 kernels using the same

80 Chapter 7. System Design

Figure 7.2: Concept of Channel folding with example

resources. To incorporate 1x1 convolution into the YOLOv4-tiny network, an alternative

method is used where 1x1 convolution is padded into a 3x3 convolution. To achieve this,

the kernel size is transformed and the input remains unchanged, but the 1x1 weights are

surrounded by zeros to create a 3x3 window. Although the idle zeros in the weights contribute

to the computation, they do not contribute to the generation of meaningful outputs or affect

the final results of the convolution operation. However, this comes at a price of extra latency

as these zeros will contribute to additional latency.

7.3 Hardware Accelerator Block setup

Once the neural network has been transformed, the IPs designed in previous chapter can be

classified into three types based on their functions. The first type of IP is responsible for

performing depth separable convolutions. It fetches weights and input data through DMA

and then feeds the data into an accumulation and activation module. The second type of IP

is involved in the accumulation process, which takes place when input channels are folded

prior to biasing and activation. The third type of IP handles the accumulated and activated

outputs. These outputs are processed further by modules such as max pooling, yolo, or up-

sample, depending on the topology of the network.

In this thesis, two setups are designed for accelerating yolov4-tiny shown in figure 7.3. The

first setup (a) accelerates only convolutional operations and accumulation layer operations.

The rest of the layer operations including bounding box detections and Non-max suppression

are done in PS inside the Arm-A9 cortex. The second setup (b) accelerates all the layers

but keeps the routing layer, Bounding box detection, and Non-max suppression inside the

PS only. The detailed diagram of the second setup is shown in figure 7.4

7.3. Hardware Accelerator Block setup 81

Figure 7.3: Setup for hardware acceleration

Figure 7.4: Hardware accelerator block diagram [12]

As a result, the Vivado block design of the system includes three processing stages on the

programmable logic (PL). These stages are connected via AXI4-stream and switch IPs, which

enable configurable routing between masters and slaves. In addition, the programmable logic

(PL) and processing system (PS) communicate with each other through two 64-bit DMA

ports and an AXI4-Lite interface. Switches 0 and 1 have the ability to control the direction

of input data flow for DMA0. The data can either go into the convolutional IP or bypass

it and go directly to the third stage. While it may seem efficient to combine convolutional

layers with other types of layers, it is not always the best approach. This is especially true

when the outputs of a convolutional layer are needed elsewhere in the network, requiring the

results to be captured by the off-chip memory. In such cases, even if a pooling layer follows

the convolutional layer, the two layers must be executed separately. Therefore, there may be

situations where the convolutional IP is bypassed. Switch 1 and Switch 2 are responsible for

determining the type of procedure that needs to be performed on the accumulation outputs,

such as max pooling, yolo, upsample, or no action at all. If there is no additional processing,

82 Chapter 7. System Design

it could indicate that the subsequent layer involves convolution or that the accumulation of

channel folding is still ongoing.

7.4 Processing System (PS) Design

7.4.1 Software Driver for ARM A9 Cortex Processor

The processing system’s drivers shown in listing 7.1 are responsible for performing three

tasks: initializing all peripherals, categorizing layer groups based on their typology, and

passing on all groups to obtain results. The first two tasks are considered part of the system

initialization and should only be carried out once. To achieve the detection of multiple

images or processing of a video stream, the forwarding stage of the processing system can be

divided into five distinct steps. These steps involve setting IP parameters, creating routes

through switches, initiating IPs, transmitting input stream data, and retrieving outputs.

However, in order to accomplish this task, the forwarding stage must be executed repeatedly.

Furthermore, the core of the forwarding stage consists of a nested loop. The outer loop

is responsible for iterating over the output channel folding, while the inner loop covers the

input channel folding. To handle input channel folding, buffers are required on DDR to store

both the accumulation inputs and outputs. For accumulation, it is not a good idea to copy

data from the output buffer to the input buffer for the next iteration. In fact, using the

ARM processor on Zedboard to copy accumulation data will take up to several hundreds of

milliseconds. The alternative is simply swapping pointers in software. It works when the

input buffer and output buffer have the same size. This further supports the idea that the

maximal number of input channels.

1

2 for i = 0; i <Fout; i++ do

3 for j = 0; j <Fin; j++ do

4 Set IPs by setting topological Parameters;

5 Start IPs;

6 if Layer group contains Conv then

7 send weights;

8 if j == Fin - 1 then

9 send biases;

10 end

11 end

12 DMA transfer;

13 wait until all IPs are done;

14 swap pointers of accumulation buffers;

15 end

16 end

Listing 7.1: Software Driver Code

7.4. Processing System (PS) Design 83

7.4.2 Weights rearrangement for channel folding

At present, there is no specific hardware available for a 1x1 convolution kernel. As a result,

the weights of those layers have to be padded to 3x3 convolutions. Additionally, the weights

are transferred in the form of a kernel window unit. However, the size of a 3x3 kernel is not

divisible by 4, which creates the need for encoding and decoding circuits to fully utilize the

64-bit bandwidth. This results in an average of 2.25 cycles per window. Alternatively, the

kernel size can be padded to 12, which takes 3 full cycles to transfer each 3x3 window.

To enable channel folding, it is necessary to rearrange the weights of the convolutional layer

beforehand. The weights are initially stored in a 3-dimensional array, with the three dimen-

sions representing kernel windows, input channels, and output channels. However, during

one DMA transfer, only a maximum of Nmax out of the Nin input channels are accessed, and

they are not stored in a contiguous space. This means that the input channels need to be

reorganized before runtime, as illustrated in Figure 7.5.

Figure 7.5: Weights rearrangement for channel folding

7.4.3 Memory Access

Calculating the total number of memory transactions for a layer group is an important task.

The variables fh, fw, and Nin represent the input height, input width, and a number of input

channels for the layer group, while hh, hw, and Nout represent the output height, output

width, and a number of output channels for the same group.

• Total input size (sizein): fh × fw × ⌈Nin
4 ⌉ × 4

• Total output Size(sizeout): hh × hw × ⌈Nin
4 ⌉ × 4

• Total Accumulator Size(sizeacc): hh × hw × ⌈Nin
4 ⌉ × 4

• Total Weight Size(sizeweight): ⌈Kh×Kw

4 ⌉ × 4×Nin ×Nout

84 Chapter 7. System Design

• Total Bias Size(sizebias): ⌈Nout
4 ⌉ × 4

This memory access equation is later used for the estimation of the total latency caused by

each layer group. This estimation gives the fraction of the total latency caused by executing

the software driver code in the PS. Additionally, these models will be used for carrying out

design space exploration which is discussed in section 7.5

7.4.4 Input Image transformation

One aspect that has not been discussed yet is the system’s image input. The dimensions of

the network input are fixed at 416 pixels for both height and width. If the input image has

a different size, it must be first resized and then letterboxed. Afterward, the pixel values are

normalized between 0 and 1, and channels interleaving and padding are applied. Padding is

a method utilized to include additional pixels surrounding the image’s edges, making sure

that the filters can be used for all pixels. Usually, this is carried out by appending zeros

around the edges of the image. This pre-processing step is carried out before run-time, as

the primary focus is on the YOLO network itself. The image is required to be available in

off-chip memory before network detection as a header file for a single image at a time.

7.4.5 Route Layer Implementation

The route layer is implemented in software rather than FPGA hardware, as it solely involves

copying and moving data. Its main purpose is to redirect the flow of data within the network,

which is essential for detecting objects at various scales. If the route layer only has one input

layer, it is implemented by merely passing a pointer. However, when multiple input layers are

present, the data is copied into a contiguous memory space, which effectively concatenates

the data of input layers on the channel dimension.

7.5 Design Space exploration

The latency and resource utilization estimation for various IP blocks as discussed in chapter 6

provides estimates on the usage of resources like latency, BRAM, and DSP utilization based

on the design parameter vector. This design parameter vector maps to specific resources

and latency, which together form the design space. By exploring the design space, we can

understand the configurability of the architecture. Design Space Exploration (DSE) provides

an efficient way to find optimal design points, which can achieve the lowest latency while

using minimal resources.

Figure 7.6 and 7.7 illustrates the variation in latency with DSP and BRAM unit for the

yolov4-tiny model. When designing for a specific platform with a limited set of resources, in

this case, Zedboard, it is important to determine the maximal resources available for that

platform. DSE analysis is carried out using a Python script that takes into account the

latency estimates of each IP block and applies channel folding in the case when the number

of input and output channels increases beyond. 32. The Python model takes into account

7.5. Design Space exploration 85

the range of tunable parameters for exhaustive DSE. The range of Nmax is in multiples of

4 between 4 to 64 channels due to DMA constraints. The convolutional IP block tunable

parameter Pmem which controls the factor by which local memory is partitioned is set in

the range from 1 to 32 in multiples of 2. The range of another tunable parameter such as

Pacc,Ppool,Pyolo is again set between 1 to 4 due to DMA and 16-bit fixed-point quantization

constraint. The envelope of the graphs shows the range of achievable design points for the

given set of resources and allows for the selection of the most optimal design point that meets

the requirements of the design.

The graphs also reveal that optimal points have an inverse relationship, meaning that

Figure 7.6: Latency vs DSP utilization

as the available resources increase, the slope of the fitting function decreases. This indicates

that simply doubling resources will not result in the same level of speed improvement. Addi-

tionally, the simulation shows that even with using a target platform with more DSP blocks

that can process more channels in parallel, for instance, 64 channels, the estimated maximum

performance the current design achieves is 2.467 sec. This means that other factors such as

memory bandwidth and software costs can also affect latency, and these are not impacted

by improvements in the computation capability of hardware IPs. The distribution of design

points for BRAM is more sparse as compared to DSP, indicating that it is more likely to make

poor decisions resulting in under-utilization of BRAM. To increase parallelism in HLS, arrays

are partitioned to create additional memory ports. However, when the size of the array is

small, each 18Kb BRAM cannot be fully utilized, leading to a waste of memory space.

In order to check how the estimated latency and resource utilization deviates from the actual

values, 2 design points are tested on the board. The coverage of the test is low because of

the long execution time of re-packaging the IP, Vidado synthesis, placement and routing of

86 Chapter 7. System Design

Figure 7.7: Latency vs BRAM utilization

the design, and bitstream generation. Additionally target clock period in the HLS has to be

modified again until the design meets the time constraints after placement and routing. The

two test points are represented in black dots in Figure 7.6 and 7.7. The estimated latency for

the design point (32,8,2,2,1) is 3.020 secs and the latency measured on hardware is 3.216 sec.

The estimated latency of the other design point (32,4,1,4,1) is 3.410 sec and the measured

latency is 3.623 sec. The deviation in latency within both cases is less than 7%. Additionally,

the estimated resource utilization in the first design point (32,8,2,2,1) has DSP cores 161 and

a BRAM utilization of 155 blocks. The differs by 5% as compared to the measured resource

utilization of 161 DSP cores and 148 BRAM18K blocks.

Chapter 8

Results

In this chapter, a performance comparison is made with respect to this implementation (PS vs

PL) as well as earlier implementation for yolov4-architecture on resource-constrained FPGA

platforms like Zedboard. As the discussed architecture is more scalable and can be imple-

mented on other Xilinx-based target platforms, the Zedboard here is chosen as an indicative

platform. Unfortunately, implementation on other platforms has not been tested due to lack

of time. The evaluation of this work primarily focuses on six key aspects, which are layer-wise

Performance improvement, target network platforms, resource utilization, speed, and power

consumption.

The chapter starts with introducing different target platforms on which the YOLOv4-tiny

model was tested in section 8.1. Section 8.2 discusses the unified architecture tunable pa-

rameters and their associated values for different IP blocks. Section 8.3 discusses layer-wise

performance improvement with respect to the PS implementation of this work and with other

literature work on YOLOv4-tiny with the same target platform. Section 8.4,8.5, 8.6, and 8.7

discusses the resource utilization breakdown, target platforms, latency, and power consump-

tion respectively of the current setup with respect to the previous works. Finally, section

8.8 discusses the comparison of the performance of the FPGA implementation with similar

implementations on other platforms like CPU and PS of the ZedBoard to demonstrate the

advantage of using FPGA.

8.1 Specifications of the target platform

DNNs are typically executed on commonly used hardware platforms, such as CPUs and

hardware platforms like the Arm cortex A9 processor of the ZedBoard. Therefore, it is

crucial to use these platforms as a benchmark to gain a comprehensive understanding of how

the accelerator impacts performance.

8.1.1 Intel Core i5-8250U CPU

Intel corei5-8250U is used as the CPU platform for running the YOLOv4-tiny simulation

model. The specification of the host CPU is given in table 8.1. The Darknet framework is

87

88 Chapter 8. Results

used for obtaining the latency results of each layer. Darknet is optimized for running deep

neural networks (DNNs) on CPUs and GPUs, as well as on specialized accelerators such as

FPGAs and ASICs. It is designed to be flexible and efficient, allowing for high performance

and accuracy in a variety of applications.

Specification Cores Base Frequency
Max Turbo
Frequency

Cache
Max Memory
Bandwidth

Value 4 1.6 GHz 3.4 GHz 6 MB Intel smart cache 41.8 GB/s

Table 8.1: CPU specifications

8.1.2 ZedBoard

The software application and hardware accelerator developed in this study will be executed

on the ZedBoard, which incorporates the Zynq7020 all-programmable system-on-chip (SoC).

Table 8.2 provides the specifications for the processing system (PS) of the Zynq7020, while

Table 8.3 outlines the specifications for the programmable logic (PL).

PS Specification Value

Cores Dual-core ARM Cortex-A9 MPCore

Max CPU Frequency 667 MHz

Memory 1 GB DDR3 SDRAM (2x 512MB)

Max Memory Frequency 533 MHz

Cache 32 KB L1 instruction cache, 32 KB L1 data cache, 512 KB L2 cache

Max Memory Bandwidth 8.5 GB/s

Table 8.2: Avnet ZedBoard Revision E PS Specifications

Specification Value

Programmable Logic Cells 85,000

LUTs 53,200

FlipFlops 106,400

Block RAM (36 Kb Blocks) 4.9 MB (140 Blocks)

DSP Slices (18x25 MACCs) 220

Max Memory Frequency 250 MHz

Table 8.3: ZedBoard Revision E Programmable Logic Specifications

8.2 Unified accelerator Configurations

The architecture performance and utilization of resources depend upon how the accelerator

is configured. Some of the tunable parameters of all IP blocks are shown in grey that can be

configured depending on the resources available on the target FPGA.

• The maximum number of out channels and input channels that an IP can process Nmax

is set to 32 due to resource constraints. This is the same for all the IP blocks shown in

table 8.4,8.5,8.6,8.7.

8.2. Unified accelerator Configurations 89

• In order to implement channel interleaving, the line buffer size for the convolutional IP,

is set to 3× 418, as indicated in table 8.4. An additional 2 is added to the buffer width

to accommodate padding. For the Maxpool IP, the line buffer size is set to 2 × 104

based on the typological parameters of the first Maxpool layer as shown in table 8.5.

Similarly, for the upsample layer, the line buffer size is set to 1 × 13 based on the

typological parameters of the first upsample layer as shown in table 8.6.

• The block partition factor Pmem determines the partitioning of the local memory used

for storing weights in the convolutional IP block, as specified in table 8.4. In this design,

Pmem is set to 8.

• The bias values stored in local memory are partitioned by a factor Pacc to optimize

the design. The size of the bias memory is set to 32, which aligns with the maximum

number of channels that the IP can process. In this case, the bias memory is cyclically

partitioned by a factor of 2 for efficient utilization of resources and improved latency

as shown in table 8.4.

• The maximum kernel size is set to 3x3 as indicated in table 8.4. 1x1 convolution is also

padded to 3x3 in order to simplify the design as explained earlier in chapter 7.

• The stream transmission size is set to 8 in this design as indicated in table 8.4. This

choice is made because the AXI interface used in the design can only support 4 input

channel data at a time. By setting the transmission size to 8, the design is able to

process 32 channels in a single call of the IP.

• The tunable design parameter Ppool and Pyolo are the factor that denotes the resource

sharing of the Maxpool function and logistic function for Maxpool IP and Yolo IP block

using HLS ALLOCATION pragma as indicated in table 8.5 and 8.7. These are set to

2 and 1 respectively.

Parameter Value

Maximum channel Processed Nmax 32

Memory partition factor Pmem 8

Bias partition factor Pacc 2

Maximum kernel size 3

Maximum line buffer width 416+2

Stream transmission size 8

Table 8.4: Convolutional and Accu-
mulation IP parameters

Parameter Value

Kernel dimension 2

line buffer size 2x104

Maximum channel processed Nmax 32

Maxpool resource allocation Ppool 2

Table 8.5: Maxpool IP parameters

Parameter Value

Maximum channel processed Nmax 32

line buffer size 1x13

Stride 2

Table 8.6: Upsample layer IP pa-
rameter

Parameter Value

Maximum channel processed 32

Logistic function resource allocation pyolo 1

Table 8.7: Yolo layer IP parameters

90 Chapter 8. Results

8.3 Layer-wise performance comparision

This section discusses the layer-wise performance improvement of the YOLOv4-tiny network

architecture. In particular, the performance improvement in terms of latency is discussed. To

compare performance, the study [8] was considered because it uses the same object detection

algorithm (YOLOv4-tiny) and hardware platform (Zedboard) as the implementation being

evaluated, although there are differences in the hardware architecture. However, the com-

parison only considers the time taken to process the convolutional layer while disregarding

the time spent pre-processing input images.

8.3.1 Performance breakdown per convolutional layer: PS only configuration

The performance of each convolutional layer of the YOLOv4-tiny model, when executed on

the Arm A9-Cortex processor (i.e. the PS part of the Zedboard), is compared in Table 8.8.

Layer Ref [8] (secs) This Work (secs) Speedup Factor

Convolution Layer 1 3.02 2.99 1.01

Convolution Layer 2 13.57 11.66 1.17

Convolution Layer 3 26.51 22.94 1.15

Convolution Layer 4 6.70 6.22 1.08

Convolution Layer 5 6.67 6.23 1.07

Convolution Layer 6 3.05 2.77 1.10

Convolution Layer 7 26.24 21.93 1.20

Convolution Layer 8 6.55 5.69 1.15

Convolution Layer 9 6.55 5.69 1.15

Convolution Layer 10 2.99 2.55 1.17

Convolution Layer 11 25.48 21.39 1.19

Convolution Layer 12 6.40 5.45 1.17

Convolution Layer 13 6.39 5.45 1.17

Convolution Layer 14 3.00 2.43 1.24

Convolution Layer 15 24.14 21.17 1.14

Convolution Layer 16 1.49 1.19 1.26

Convolution Layer 17 12.09 10.60 1.14

Convolution Layer 18 1.49 1.71 0.87

Convolution Layer 19 0.37 0.30 1.23

Convolution Layer 20 38.21 32.01 1.19

Convolution Layer 21 2.98 2.37 1.26

Total 223.9 s 193.19 s 1.15

Table 8.8: Comparison of layer latency between reference [8] and this Work.: PS only

Table 8.8 compares the two implementations and clearly, this works YOLOv4-tiny simula-

tion model has a better performance w.r.t to the Ref [8] implementation. The speed-up factor

is about 1.15s as compared to the Ref [8] implementation indicating that this implementation

is about 16% faster than the reference implementation. This speed-up can be explained due

to the reason that the Darknet framework is more optimized for performing Yolo algorithm

as compared to TensorFlow. The Darknet framework is lightweight and written in C, which

8.3. Layer-wise performance comparision 91

allows for faster computation and lower memory usage. The reason why Darknet has better

performance has been discussed in chapter 2.

8.3.2 Performance Breakdown per convolutional Layer: PS+PL Only Configu-

ration

The performance comparison of convolutional layers is shown in Table 8.10 for the PS+PL

configuration in comparison to setup 1 of this work. The execution time of only convolutional

layers is compared in this table. The PS+PL configuration is found to be 20 times faster

than the PS-Only configuration. Table 8.11 provides the execution time of the other layers

executed in the PS part. The PS part takes a total of 624.27 ms and the PL part takes

3.03 secs, making a total of 3.654 secs for the entire setup for single image inference. It can

also be observed that the execution time of convolutional layers is significantly reduced, such

that their execution time is even less than other layers implemented on PS. For instance, the

execution time of several convolution layers (1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, and 19) is shown

in grey in table 8.10 is less than that of the Maxpool layer number 10 and 12, which takes

192 ms and 96 ms respectively as shown in red color in Table 8.11

Layer Ref [8] (ms) PS+PL (ms) Speed up

Convolution Layer 1 258 114.127 2.26

Convolution Layer 2 2678 258.287 10.38

Convolution Layer 3 3921.85 152.516 25.71

Convolution Layer 4 969.13 44.039 22.02

Convolution Layer 5 969.13 44.120 22.00

Convolution Layer 6 1446.1 152.394 9.49

Convolution Layer 7 3939.8 154.848 25.42

Convolution Layer 8 984 41.441 23.70

Convolution Layer 9 984.9 41.484 23.67

Convolution Layer 10 1443.56 154.812 9.32

Convolution Layer 11 5302.43 201.782 26.27

Convolution Layer 12 1319.61 50.503 26.16

Convolution Layer 13 1319.9 50.426 26.15

Convolution Layer 14 1445.8 201.693 7.16

Convolution Layer 15 13123.2 410.833 31.95

Convolution Layer 16 859.89 205.418 4.19

Convolution Layer 17 6504.55 199.339 32.63

Convolution Layer 18 1486.33 202.402 7.34

Convolution Layer 19 224.37 49.795 4.50

Convolution Layer 20 6140.62 302.571 20.28

Convolution Layer 21 2982.15 289.276 103.19

Total 59599 ms 3020 ms 19.64

Table 8.9: PS+PL Ref ([8]) vs PS+PL (this work) : Setup 1

Even though the other layer contribution is about 17 % of the total time taken by the

92 Chapter 8. Results

Layer Heinsius 2021 (ms) PS+PL (ms) Speed up

Convolution Layer 1 258 114.127 2.26

Convolution Layer 2 2678 258.287 10.38

Convolution Layer 3 3921.85 152.516 25.71

Convolution Layer 4 969.13 44.039 22.02

Convolution Layer 5 969.13 44.120 22.00

Convolution Layer 6 1446.1 152.394 9.49

Convolution Layer 7 3939.8 154.848 25.42

Convolution Layer 8 984 41.441 23.70

Convolution Layer 9 984.9 41.484 23.67

Convolution Layer 10 1443.56 154.812 9.32

Convolution Layer 11 5302.43 201.782 26.27

Convolution Layer 12 1319.61 50.503 26.16

Convolution Layer 13 1319.9 50.426 26.15

Convolution Layer 14 1445.8 201.693 7.16

Convolution Layer 15 13123.2 410.833 31.95

Convolution Layer 16 859.89 205.418 4.19

Convolution Layer 17 6504.55 199.339 32.63

Convolution Layer 18 1486.33 202.402 7.34

Convolution Layer 19 224.37 49.795 4.50

Convolution Layer 20 6140.62 302.571 20.28

Convolution Layer 21 2982.15 289.276 103.19

Total 59599 ms 3020 ms 19.64

Table 8.10: PS+PL Ref ([8]) vs PS+PL (this work) : Setup 1

entire PS+PL (3.64ms), An attempt was made to make a unified architecture in which all the

other layers were executed on hardware in the given time frame of the project. Keeping that

in mind, a second set-up was made which has all the layers accelerated in hardware except

the route layer. Please note that bounding box detection and non-max suppression are still

being done in PS only as discussed in chapter 7.

8.3.3 Performance Improvement in Setup 2

Setup 2, as described in the Appendix, involves executing all layers in the programmable

logic (PL) except for the Route Layer. In this setup, the execution times of the convolutional

layers remain the same. However, the execution times of the other layers show significant

improvements. For example, according to table 8.12, the execution time of the Maxpool layer

decreases by a factor of 8, the Upsample layer by a factor of 4.5, and the Yolo Layers by a

factor between 8 to 11. Overall, the total execution time decreases by a factor of 3 for the

non-convolutional layers. Therefore the final inference time of the unified accelerator (setup

2) is 3.3 seconds

8.3.4 Performance difference in this work vs Ref [1]

The difference in the performance of Ref [1] and this work can be attributed to the following

reasons:

8.3. Layer-wise performance comparision 93

No Layer Simulation Time (ms)

4 Route Layer 1 12.121

7 Route Layer 2 24.172

9 Route Layer 3 48.288

10 Maxpool Layer 1 192.997

12 Route Layer 4 5.934

15 Route Layer 5 11.939

17 Route Layer 6 23.628

18 Maxpool Layer 2 96.559

20 Route Layer 7 2.969

23 Route Layer 8 5.982

24 Route Layer 9 11.938

26 Maxpool Layer 3 49.032

31 Yolo Layer 1 23.623

32 Route Layer 10 1.529

34 Upsample Layer 1 18.733

35 Route Layer 11 8.945

39 Yolo Layer 2 93.963

Total Time 624.7 ms

Table 8.11: Execution time of other Layers in PS: setup 1

• Number of convolutional layers in yolov3-tiny is 13 and there are about 21 convolutional

layers in YOLOv4-tiny. As convolutional layers are the most computationally intensive

elements, more latency in the case of YOLOv4-tiny is expected as the network is deeper

in the case of YOLOv4-tiny as compared to yolov3-tiny even though the typological

features of each layer in both the algorithms are different.

• The hardware architecture implemented for yolov3-tiny is designed in such a way as to

optimize the performance of each layer, not just the convolutional layer. In, yolov3-

tiny each convolutional layer is followed by either Maxpool Layer, up-sample layer, or

yolo-layer. There are 6 Convolutional-Maxpool layer combinations, 2 Convolutional-

Upsample layer combinations, and 2 Convolutional-Yolo layer combinations. Whereas

in YOLOv4-tiny, there are no such Convolutional-Maxpool combinations to take ad-

vantage of layer combinations. The architecture follows the layer combination transfor-

mation technique to compute layer combinations in an efficient manner by reducing the

access times to fetch intermediate outputs from the off-chip DRAM [12]. An example

is illustrated in Figure 8.1. In the given example, the input folding factor will be 1 and

the output folding factor will be equal to 2. This means in a single pass, 32 channel

inputs will be used to produce an output of the first 32 output channels which involves

both convolutions and accumulations. The output of the accumulation unit is then

transferred to Maxpool IP through multiplexing action as mentioned previously in the

architectural detail. Maxpool IP process the output for the first 32 output channels

using accumulated output from the Accumulator IP. Since the output fold factor is 2,

this process is repeated again to get the final output. This simultaneous execution of

94 Chapter 8. Results

Layer Type Execution Time (ms)

Route Layer 1 12.121

Route Layer 2 24.172

Route Layer 3 48.288

Maxpool Layer 1 23.361

Route Layer 4 5.934

Route Layer 5 11.939

Route Layer 6 23.628

Maxpool Layer 2 12.155

Route Layer 7 2.969

Route Layer 8 5.982

Route Layer 9 11.938

Maxpool Layer 3 6.412

Yolo Layer 1 2.832

Route Layer 10 1.592

Upsample Layer 1 4.039

Route Layer 11 8.945

Yolo Layer 2 11.271

Total 215 ms

Table 8.12: Improved latency for non-convolutional layers (in milliseconds)

2 layers reduces the latency. In YOLOv4-tiny, the execution of 2 layers is happening

in a more sequential manner because layer combinations principles cannot be applied

as the convolutional layer is not directly followed by the Maxpool layer as shown in

Appendix 2.4 So execution has to happen in a sequential manner for both blocks. So in

the case of yolov3-tiny, the output channel folding factor will contribute to the latency

linearly. When output channels are folded, all inputs have to be sent again. Because

data is a stream and only part of inputs is buffered locally. The overall latency of

both layers will increase by a Fout
Fin

= 2 for both layers’ execution. Whereas in the

case of YOLOv4-tiny, overall latency will be the sum of individual layer latency i.e.

Convolution-route-Maxpool. Firstly, convolutional layer latency increases by a factor

of 2 due to the output channel fold and for Maxpool latency increases by a factor of 2.

Therefore, in the case of YOLOv4-tiny, the network architecture shape and the Output

fold factor of the layer cause more access time to access off-chip DRAM for intermediate

results. Please note that cost of launching IP multiple times still does exist in both

cases.

8.4 Resource Utilization Breakdown

8.4.1 Resouce Utilization Breakdown: setup 1

The primary calculations carried out by the accelerator involve performing MAC operations,

which are assigned to DSP slices. This mapping of MAC operations to DSP slices is a

reasonable choice because DSP slices are specialized for such arithmetic operations. The

8.4. Resource Utilization Breakdown 95

Figure 8.1: Yolov3-tiny Channel folding

resource utilization breakdown for Setup 1 is displayed in Table 8.13, indicating that ap-

proximately 55% of DSP resources are utilized for MACC operations in the YOLOv4-tiny

model. The programmable logic portion of the Zynq-7000 SoC contains several DSP slices

that can be utilized for arithmetic operations. Vivado HLS, Xilinx’s high-level synthesis tool,

supports the mapping of arithmetic operations onto DSP slices for the ARTIX family, which

includes the Zynq-7000 series chips. Therefore, it is possible to utilize the DSP slices on the

Zedboard through Vivado HLS. The 117 out of 121 DSPs come from the convolutional IP

block where efficient pipelining and local memory partitioning caused all 9 MACC operations

within multiply-accumulate batch instances to run in parallel. The local memory partition

Pmem = 8 when set to Nmax = 32 caused the optimal value of the initiation interval to be

10 clock cycles. Due to DMA constraint and 16-bit fixed point quantization, the number of

such multiply-accumulate batches inferred in the design was equal to
⌈
4×Nmax
IIconv

⌉
= 13 as Nmax

is set to 32. Therefore the total number of DSP inferred by convolutional IP alone is 117.

Rest 4 DSPs comes from the Accumulation IP block which applies activation leaky activa-

tion across 4 channels in parallel when bia memory is partitioned cyclically as pacc = 2. The

post process function inside the code applies the leaky activation across 4 channels thereby

causing the design to instantiate the 4 different post process functional units.

96 Chapter 8. Results

Name BRAM 18K DSP48E FF LUT URAM

DSP - 4 - - -

Expression - 0 0 6556 -

FIFO 0 - 160 896 -

Instance 0 117 10581 4037 -

Memory 121 - 0 0 0

Multiplexer - - - 18463 -

Register 0 - 28709 384 -

Total 121 121 39,389 30336 0

Available 280 220 106400 53200 0

Utilization (%) 43 55 37 57 0

Table 8.13: Resource utilization block report: setup 1

Furthermore, most of the BRAM utilization (120 BRAM18k blocks) comes from the local

memory for storing weights and from the line buffers which are used for storing inputs feature

map values in convolutional IP blocks. As already discussed, Pmem = 8 is a more optimal

value in terms of latency and resource utilization when Nmax = 32. Rest 2 BRAM comes

from the partitioning of the bias memory by a factor of 2 inside accumulation and activation

IP block. Low utilization of BRAM 18K indicates that the accelerator is not heavily using

the on-chip memory. This is the case as weights and inputs are stored in off-chip memory.

The design has been optimized to use off-chip memory instead. It could also suggest that

there is room for improvement in the design, by potentially reducing the amount of off-chip

memory accesses and increasing the usage of on-chip memory by utilizing loop tiling tech-

niques [40]. Loop tiling, also known as loop blocking, involves dividing a loop iteration space

into smaller blocks or tiles. By processing a smaller block of data at a time, we can increase

the locality of memory accesses, which can improve the cache and memory hierarchy per-

formance. This can reduce the number of off-chip memory accesses and increase the usage

of on-chip memory. Table 8.14 and 8.15 give the breakdown of the resource utilization at

the functional level. Both IP, Convolutional and Accumulation IP, have top-level functions

such as Y olo Conv Top and Y olo Acc Top and the rest of the components are the leaf cells

which are called with the top-level module. The top-level module in Vivado can have a sig-

nificant impact on resource utilization, as it is the module that integrates all other modules

and components into the final design. Therefore their contribution is reflected in the resource

utilization table of the design 8.13.

The conclusion that can be made from these two tables is firstly, BRAM utilization is very

low. Optimizing the memory access time by loop tiling strategy can reduce the off-chip mem-

ory access. Secondly, the number of channels that can be processed in parallel is constrained

to 32 in this design due to resource constraints. This can be increased in the future to 64 to

process more channels at a time which can have a significant impact on DSP utilization.

8.5. Platform Comparison 97

COMPONENT BRAM 18K DSP48E FF LUT URAM

Yolo Conv Top 120 117 37583 28404 0

Window Macc 0 9 737 112 0

Sliding Window 0 0 135 222 0

Post Process 0 0 0 169 0

Output Merge 0 0 198 781 0

Table 8.14: Resource utilization for convolution IP functions.

Component BRAM 18K DSP48E FF LUT URAM

Yolo Acc 2 4 1237 1930 0

Post process 0 1 150 224 0

Table 8.15: Resource utilization for YOLOv4-tiny Accumulation and Activation block.

8.4.2 Resource Utilization Breakdown: setup 2

Table 8.16 shows overall resource utilization post-synthesis when all the layers except the

route layer are hardware accelerated. The resource utilization shows better DSP utilization

of about 75%. Moderate LUT RAM utilization is similar to setup 1 which is again due to a

dynamically configurable architecture that has been employed, which takes the layer group

as the fundamental unit. This layer group in the design has to reload the weights of each

layer multiple times instead of storing them on the FPGAs before runtime. This is because

the BRAMs on Zedboard are not large enough to hold all the weights.

Resource Utilization Available Utilization %

LUT 29709 53200 55.84

LUTRAM 350 17400 2.01

FF 45915 106400 43.15

BRAM18k 149 280 53.21

DSP 166 220 75.45

Table 8.16: Resource Utilization: setup 2

8.5 Platform Comparison

The testing platform employed for the study is the Zedboard development kit that features

the Xilinx XC7Z020-CLG484-1 SoC and has a 512 MB DDR3 [41]. The clock frequency for

the programmable logic and processing system of the FPGA chip is 100 MHz and 667 MHz,

respectively. There are 280 BRAM, 220 DSP, 106k FF, and 53k LUT resources accessible

within the programmable logic. The clock frequency of an FPGA affects its performance. If

the programmable logic (PL) has a higher clock frequency, then it can process data faster,

leading to a higher throughput. However, this also means that the pipeline may need to be

deeper to meet timing constraints. As for ARM processors, a higher frequency can result in a

smaller instruction cycle, allowing software drivers to run faster. Table 8.17 shows the com-

parison of implemented architecture with the available literature on Zedboads and another

98 Chapter 8. Results

Xilinx-based platform.

Ref [30] Ref [8] Ref [1] This Work

Platform Ultrascale+ZZCZU9EG ZedBoard ZedBoard ZedBoard

PL frequency (MHz) 143 100 100 100

PS frequency (MHz) - 667 667 667

BRAM 18K 384 65.5 185 149

DSP48E 839 19 160 166

LUT 139k 42k 25.9 29.7k

FF 124k 56.1 46.8 45.9k

Table 8.17: Platforms comparison of the proposed design with previous works

The ref [30] is similar to this work in terms of network architecture (YOLOv4-tiny) im-

plemented. The IP core in Ref [30] has a matrix of vector functional units that share con-

figurations among the same type, an integrated DMA for fast data transfers, heterogeneous

stages, automatic ping-pong memories, and address generation units handling 6-level nested

loops without software intervention. The custom MAC-based FUs are organized in a matrix

structure to exploit Inter-FM, Intra-FM, and Inter-convolution parallelism, which enhances

pixel and weight sharing. Here, the IP core speeds up the execution of YOLO, upsample,

and max pool layers by running them together with the preceding convolutional layer. Ad-

ditionally, the IP core accelerates the pre-CNN procedure and the drawing of the detections

in the post-CNN procedure, unlike this design which does not accelerate pre-processing and

post-processing but implements them inside PS only.

The difference in resource utilization is due to different design choices made. For exam-

ple, in this particular design, the weights of each layer are not stored on the FPGAs before

run-time but rather reloaded repeatedly. This is because the BRAMs on the Zedboard can-

not store all the weights at once. To overcome this limitation, a dynamic and configurable

architecture has been adopted, where layer groups are taken as the basic unit. In contrast,

designs like Ref [30] deploy the entire network on hardware, which requires a lot of resources

but reduces the transactions between hardware and off-chip memory. These designs use opti-

mization techniques like tiling to split weights into batches and improve data locality, taking

advantage of the availability of large-size BRAM.

8.6 Speed and Resource Efficiency

Latency is the primary focus in achieving real-time for embedded object detection. In this

specific configuration, latency and throughput are interchangeable because each frame is pro-

cessed in a strictly sequential manner. However, if frames are divided into a pipeline, high

throughput does not necessarily translate to low latency.

8.7. Power and Energy Efficiency 99

The latency of the design is 3.3 sec for getting one image detected. The workload of YOLOv4-

tiny is 6.845 GOPS. The throughput of this design is approximately equal to the:

Throughput = Workload× FPS = 6.825× 1

3.3
= 2.05GOPS/secs

The latency difference between Ref [1] and this work has been explained earlier. In de-

sign [30], the entire network has been incorporated inside the hardware thereby decreasing

the memory access times utilizing the on-chip memory. The issue with focusing solely on re-

source efficiency is that it overlooks the ability to scale those resources. The previous works

apart from Ref [1] cited in this research were not adjustable in terms of balancing resources

and performance. To achieve scalability, the design necessitates complex control logic and

more multiplexing, which can be challenging. Moreover, scalability impacts design choices.

For example, as discussed in chapter 6, interleaving channels allow for adjustable buffer size,

but such decisions may not result in the most efficient performance.

In terms of area efficiency given by metric GOPS
DSP , GOPS

KLUT , and
GOPS
KFF , this work shows bet-

ter area efficiency as compared to Ref [8] It is crucial to take into account the range of

scalability when evaluating different designs. For example, one design may exhibit excellent

resource efficiency across the entire design space, but its tunability may be limited to a narrow

range. These considerations explain some reasons that may not appear highly competitive

compared to other research works discussed earlier in the text.

Ref [30] Ref [8] Ref [1] This Work

Latency (ms) 26 59385 532 3325

Throughput (GOPS) 212 0.113 10.45 2.05

Efficiency (GOPS/DSP) 0.16 0.005 0.065 0.012

Efficiency (GOPS/BRAM) 0.55 0.001 0.056 0.027

Efficiency (GOPS/kLUT) 1.52 0.002 0.40 0.06

Efficiency (GOPS/kFF) 1.69 0.002 0.22 0.044

Table 8.18: Speed and Efficiency w.r.t previous works

8.7 Power and Energy Efficiency

Power includes both on-chip and off-chip components, and for embedded applications, mini-

mizing power consumption is generally desirable. To assess the effectiveness of a design, it is

essential to consider both speed and power consumption, which can be evaluated using met-

rics such as energy per frame and power efficiency. Although a design may have high power

consumption but run fast and use sleep mode when idle to save energy, it is still crucial to

evaluate its energy per frame or power efficiency to determine its overall effectiveness.

The power consumption of the design is measured using a post-synthesis report from Vi-

100 Chapter 8. Results

vado which reported the power consumption as 2.46 W for the design as shown in table 8.19.

Ref [30] is more efficient in terms of power efficiency. In terms of energy efficiency, Ref [8] is

more efficient as it utilizes a more efficient architecture that works on the principle of Row

stationary(RS) dataflow. RS dataflow is designed to minimize energy consumption associ-

ated with data movement on a spatial architecture. This is achieved by taking advantage

of the local data reuse of filter weights and feature map pixels, which are activations, in

high-dimensional convolutions, while also minimizing data movement of partial sum accumu-

lations. Overall, this design is intended to be highly efficient in terms of energy consumption

and can accommodate a wide range of CNN configurations.

Ref [30] Ref [8] Ref [1] This Work

Power (W) 4.5 2.32 3.36 2.46

Power efficiency (GOPS/W) 47.11 0.1092 3.11 0.833

Energy/Frame (J) 173 0.037 1.79 0.745

Table 8.19: Power comparison w.r.t previous works

8.8 Comparison with CPU and FPGA

Intel(R) Core(TM) i5-8250 CPU with a clock speed of 1.6 GHz and 8 GB DDR4 memory

running at 2133MHz. During the test, only one core, or more specifically, one hyper-thread

was utilized. The laptop runs on Windows OS. Throughout the rest of this chapter, this

laptop configuration will be referred to as “Intel CPU”.

The second test utilizes only the processing system of Zedboard, which is ARM-Cortex A9

operating on bare-metal at a speed of 667MHz, and the on-chip memory has a capacity of

512MB DDR3. This test platform is referred to as the “ARM CPU”.

The testing program (YOLOv4-tiny) is tested as a hardware-software codesign with PS fre-

quency of 667 MHz and PL with 100 MHz. According to Figure 8.2, the FPGA implementa-

Figure 8.2: Latency comparison of 3 platforms

8.8. Comparison with CPU and FPGA 101

tion offers 55 and 2.6 times faster hardware acceleration compared to ARM and Intel CPUs,

respectively. This significant difference in performance highlights the poor performance of

Zedboard’s processing system (PS) for this particular task.

Chapter 9

Conclusion and Recommendations

This chapter presents the conclusions by answering the research subquestions. The main

research questions are discussed in section 9.1. The section 9.3 suggests further improvements

that can be implemented in the design for further acceleration of the YOLOv4-tiny model.

9.1 Research subquestions

How can a YOLOv4-tiny be optimized at the software level before hardware accelerating the

model?

Initially, the yolov4-tiny bare-metal model was developed in the Darknet framework, which

used 32-bit floating-point values to store weights. This led to complex floating-point opera-

tions and an mAP of 44%. To reduce complexity, and memory requirements, and minimize

the impact on accuracy, the weights were converted from 32-bit to 16-bit fixed-point values

using a weight loss function. The weight quantization was performed keeping 8 bits for the

integer and 8 bits for the fraction to handle overflow and quantization errors, as concluded in

section 5.4. Using the ap fixed.h library, the model was then converted from a floating-point

model to a fixed-point model by changing the floating-point operations to fixed-point opera-

tions. Another optimization that was carried out was merging the batch-normalization layer

into the convolution by transforming weights before run-time which is discussed in section

6.2.6. Both these optimization resulted in a 2% decrease in the mAP of the model from 0.440

mAP to 0.432 mAP. The reduction in weight precision also reduced the area and bandwidth

requirements, as the weight size was decreased by a factor of 2.

What are the design decisions that are taken to accelerate the YOLOv4-tiny model?

The unified hardware accelerator has been designed which not only speeds up convolutional

layers but other layers in the yolov4-tiny. The accelerator is based on the existing architec-

ture [1] [12] that implements dynamically configurable architecture. The accelerator has been

modified to include strided 2 convolutions along with the selection of line buffer sizes which

has a direct impact on the BRAM inferred by the design. As the goal is to make a tunable

102

9.1. Research subquestions 103

design that is efficient in terms of resource utilization and latency with minimal impact on

accuracy, various design decisions were taken. Firstly, the design has been modified to inte-

grate a 16-bit fixed point quantization scheme based on the weights of the yolov4-tiny model

using ap fixed.h library discussed in section 5.4. This leads to a reduction in the complex-

ity of the operations, allowing for faster inference times. Secondly, the channel Interleaving

strategy has been adopted which limits the size of the line buffers which has a direct impact

on the number of BRAM blocks inferred by the design as discussed in section 6.2.7. Due to

the channel interleaving, accumulation happens on pixels of different channels. This reduces

the amount of data that needs to be read from or written to memory, as each memory access

retrieves or stores pixels from multiple channels at once thereby reducing external memory

bandwidth requirements. Additionally, the channel interleaving strategy helps in making the

design more tunable as total buffer sizes are controlled by a maximum number of channels

that an IP can process (Nmax). As the yolov4-tiny network includes both 3× 3 convolutions

as well as 1x1 convolutions, 1x1 were converted to 3 × 3 by padding zeros to the kernel.

This was done so that 1 × 1 can be made to share the same resource as 3 × 3 as intra-FM

convolutions are already unrolled in the design.

How can an FPGA design for yolov4-tiny be made parameterisable? Given the parameters

what values are optimal?

The design has been made more parameterisable by making the individual IP block de-

signs more tunable. The optimal tunable value was selected on the basis of minimal resource

utilization and latency. In a convolutional IP block, the tunable parameter Pmem controls

the way the memory has been block partitioned. This in turn makes the design more parallel

by enabling more convolution kernels to be convolved with input channels. Pmem = 8 was

the more optimal choice as further increasing the tunable parameter range did not improve

the initiation interval of the design from 10 clock cycles. Furthermore, the latency of the IP

did not improve as the design inferred more multiplexers as compared to the simple expres-

sion when the tunable parameter range was increased beyond 8. The convolution IP block

inferred 119 DSP cores with 54% utilization of the DSP148E block available on Zedboard.

FF and LUT utilization for Pmem = 8 was 35% and 53% respectively. The accumulation

and activation block in the design uses Pacc as the tunable parameter to cyclically partition

the bias stored in bias memory. Pacc = 2 was found to be a more optimal design choice in

terms of latency and resource utilization as it reduced the initiation interval of the design to

1. Furthermore, Pacc > 2 caused the array partition to be non-uniform which caused HLS to

infer distributed RAM (FF and LUTs) in comparison to on-chip BRAM. For the max-pool

IP block, Ppool parameter controlled the resource sharing of the window max function. It was

found that the optimal value of the tunable parameter was Ppool = 2. Finally, in the Yolo

Layer. Pyolo has been used as a tunable parameter to control the hardware associated with

doing fixed point exponential sigmoid functions across the input channels. The optimal point

for this tunable parameter is Pyolo = 1 as the resource utilization was minimal i.e. 3% and

5% of Flip-flop and LUT.

104 Chapter 9. Conclusion and Recommendations

How can a YOLOv4-tiny accelerator be created using the Vitis unified software platform?

The Vitis unified software platform was utilized to develop a hardware-software codesign

for the YOLOv4-tiny model, where all layers except for the route layer were accelerated us-

ing a pre-existing architecture from [1]. Hardware IP blocks for the convolutional, max-pool,

upsample, and YOLO layers were designed using Vivado HLS, and custom datatypes, tem-

plates, and pragmas were used to create an appropriate description on for the accelerator.

Pipelining and array partitioning was used for convolutional IP block to parallelize the design.

The number of parallel instances of multiply-accumulate batch units was determined based

on the partitioning of the 3D local memory storing the filter weights, which improved the

design’s throughput. The accumulation and activation IP module employed a cyclic array

partition of bias memory and controlled the HLS tool’s inference of on-chip BRAM instead

of distributed RAM. The HLS allocation directive was used to optimize the performance of

the Maxpool and YOLO layers. The max pool layer required additional hardware to select

the maximum element in a 2 × 2 window across four input channels, while the YOLO layer

performed a fixed-point exponential sigmoid function across four input channels. However,

the resource requirements for these operations were shared using the HLS allocation pragma,

and an optimal choice of latency with respect to resource utilization was made as discussed in

chapter 6. The Vivado design suite is utilized to integrate all IP blocks. Once the bitstream

is generated, the Vitis Application Project (VAP) and Platform Project (VPP) are created.

The VAP consists of software source code and build scripts that are necessary to build the

software application. In this case, the software driver discussed in chapter 7.1 is responsible

for communication with the hardware developed through AXI4 interfaces within the Vitis

environment. Vitis provides the Vitis application project for this purpose. The typological

configuration of each layer, along with the input and output channel folding factor, is spec-

ified within the PS. The topological feature directly affects the layer’s latency. The VPP

contains the hardware design files, such as the Vivado HLS-generated IP blocks, platform

specifications, and other required hardware components to implement the accelerator. The

yolov4-tiny accelerator in this thesis design inside the Vitis unified software platform is able

to make inferences at the rate of 3.3 sec/image.

Can a design space exploration be carried out for the YOLOv4-tiny model to find optimal

design points which reach low latency with as few resources as possible?

Yes, a design space exploration can be carried out to determine the Pareto optimal points.

variation in latency was calculated with respect to both DSP and BRAM units inferred by the

design using the analysis done for all the IP blocks. Firstly, a Python script-based simulation

analysis was done taking into account the effect of variation in tunable parameters as discussed

in research subquestion 3 on the estimated latency of each hardware IP block after channel

folding is applied as discussed in chapter 6. Furthermore, the model also takes into account

9.2. Main research question 105

the variation of the DSP and BRAM resources with respect to the variation in the tunable

parameter for each IP block as discussed in chapter 6. The model also takes into account

the estimated latency of the PS which is responsible for sending typological features to the

IP through the DMA interfaces, weights, biases, and transfer of accumulated data. All PS

estimations are discussed in chapter 7. All the tunable parameters range were taken into

account. Variation of the maximum number of channels that an IP can process Nmax was

kept as a factor of 4 between 4 to 64 channels. Convolution IP memory block partition factor

Pmem was kept between 1 to 32. Similarly, Ppool, Pyolo, and Ppool range was kept between 1 to

4 due to the DMA constraint of processing 4 channels in parallel. Pareto optimal simulation

points were obtained in section 7.5 which showed that DSP utilization and latency have an

inverse relationship but the slope of the latency curve flattens which shows that latency is

limited by extra factors such as bandwidth constraint and latency due to software driver

implemented in PS. A much sparser distribution curve for BRAM was obtained with respect

to latency which suggests that the HLS tool inferred more distributed RAM as compared to

on-chip BRAM when the memory partition isn’t big enough for the tool to infer BRAM18

blocks. Finally, 2 design points were tested on hardware to check the correctness of the

estimations and it was found the deviation in latency was within 7% and resource utilization

was within 5%.

9.2 Main research question

Given the answers to the research subquestion, the main research questions can be answered

as:

Can a tuneable FPGA design be created for the deep-learning object detector YOLOv4tiny

with possible opportunity for carrying out design space exploration?

Yes, a tuneable FPGA design can be created for the deep-learning object detector YOLOv4-

tiny. The performance of each IP block is controlled by the tunable parameter associated with

that IP block. For the convolutional IP block, pmem tunable parameter controlled the way

local 3D weight memory gets partitioned. In the design, it was found that 13 instances of the

multiply accumulate batch units were inferred and each unit was able to do 3×3 convolutions

in parallel which took 2 clock cycles. The throughput of the entire design is 2.05 GOPS/sec.

The entire design setup infers a total of 149 BRAM18K blocks with 166 DPS148E units. The

FF and LUT utilizations are about 43.15% and 55.84% with an inference time of about 3.3

secs/image.

The design is able to accelerate not only the convolutional layer but also other non-convolutional

layers. The hardware-software codesign is more efficient in terms of speed than the PS-only

design by a factor of 58. The max-pool layer execution time decreases by a factor of 8, Up-

sample layer by a factor of 4.5, and the Yolo layers by a factor between 8 to 11. The total

execution time of all the non-convolutional layers decreases by a factor of 3. Although the

accelerator does not comply with the real-time performance requirements of 30 FPS, the ar-

106 Chapter 9. Conclusion and Recommendations

chitecture provides a scalable framework whose performance can be tuned depending on the

resources available in the target platform as shown in design space exploration. Comparing

the design with the designs found in the literature shows an important difference in DSP

usage. These designs map MAC operations to DSPs in contrast to the design presented in

this work [8], Vivado HLS supports the mapping of arithmetic operations to the DSP units as

opposed to Catapult which does not support the mapping of arithmetic operations to DSPs

directly for the FPGA integrated into the ZedBoard [9]. The DSP utilization in this design is

8-fold as compared to the design compared to design [8] and 5-fold as compared to design [9].

This design takes about 2 clock cycles to do MAC operations which differs from the design in

comparison but the latency improvement in this design is about 18-fold. This is due to the

highly parallel architecture which can do 4×Nmax convolutions utilizing intra-FM, inter-FM,

and inter-output parallelism.

9.3 Recommendations

The conclusion presents a promising architecture that provides gains in both latencies as

well as optimal resource utilization in the case when DMA constraints are set to 64 bits and

Nmax = 32 channels and fixed-point quantization of 16 bits. Features and modifications that

are not implemented because of a lack of time are discussed separately in this section.

9.3.1 Testing on different Xilinx-based platforms

The current work provides a strong foundation for testing the given architecture on more

resource-rich Xilinx platforms. The design space exploration discussed in chapter 7 shows

that best case estimated latency of 2.467 secs/image. This inference rate is achieved when

Nmax = 64, pmem = 32, pacc = 2, ppool = 2, pyolo = 2. The DSP and BRAM estimation at

these design points are 410 DSP418E units and 432 BRAM18K blocks respectively which is

far more than what is available on the Zedboard. The ZedBoard has about 220 DSP units

and 280 BRAM blocks. To support the above configuration, the DMA bandwidth supported

by AXI has to be increased to 1024 bits which is the maximum bit-width supported by

AXI. Given the 16-bit quantization, this will make the maximum channels to be processed

parallelly to 64. So there is scope to improve the latency of inference if the design is tested with

above mentioned tunable design parameters on resource-rich platforms like Zynq Ultrascale+

MPSoCs [42].

9.3.2 Reduced bit-width implementation

Based on the findings in this work, more opportunities for further acceleration can be ex-

plored. A further investigation should be conducted to explore data quantization techniques

in order to reduce data bit-width. Techniques such as logarithmic compression or binarized

transformation can be attractive options, particularly for layers that are responsible for ex-

tracting features. These techniques can help reduce computational complexity and memory

requirements while maintaining acceptable accuracy. However, it is important to note that

9.3. Recommendations 107

for layers involved in predicting bounding boxes, it is generally preferable to retain a higher

precision to ensure accurate localization and precise object detection.

9.3.3 Non-uniform channel interleaving

Current architecture takes into account uniform channel interleaving based on the maximum

number of channels that an IP can process. Due to channel folding in each layer type, both

input and output channels are folded with a factor of 32 thereby making channel interleaving

uniform across the layer inputs and outputs. In terms of future work, there is potential to

explore various implementation versions for each layer type, utilizing different strategies while

maintaining uniform interfaces. For instance, different versions could involve channels being

interleaved in a layer type or in another layer type channel interleaving is not implemented.

By considering a larger design space, there is an opportunity to optimize each design point

without significantly compromising the overall performance of the unified architecture. This

approach acknowledges that there is no one-size-fits-all solution and that better results can

be achieved by considering different design choices for each layer type.

Bibliography

[1] Z. Yu and C.-S. Bouganis, “A parameterisable FPGA-tailored architecture for YOLOv3-

tiny,” in International Symposium on Applied Reconfigurable Computing. Springer,

2020, pp. 330–344.

[2] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynamically config-

urable coprocessor for convolutional neural networks,” in Proceedings of the 37th annual

international symposium on Computer architecture, 2010, pp. 247–257.

[3] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A Survey,” ArXiv,

vol. abs/1905.05055, 2019.

[4] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object Detection With Deep Learning:

A Review,” IEEE Transactions on Neural Networks and Learning Systems, vol. PP, pp.

1–21, 01 2019.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-

time object detection,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 779–788.

[6] A. Bochkovskiy, C.-Y. Wang, and H.-y. Liao, “YOLOv4: Optimal Speed and Accuracy

of Object Detection,” 04 2020.

[7] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-efficient CNN imple-

mentation on a deeply pipelined FPGA cluster,” in Proceedings of the 2016 International

Symposium on Low Power Electronics and Design, 2016, pp. 326–331.

[8] L. Heinsius, “Real-Time YOLOv4 FPGA Design with Catapult High-Level Synthesis,”

Master’s thesis, University of Twente, 2021.

[9] M. Minnen, “CNN Accelerator Throughput Improvement using High-Level Synthesis for

FPGA,” Master’s thesis, University of Twente, 2022.

[10] M. W. Numan, B. J. Phillips, G. S. Puddy, and K. Falkner, “Towards automatic high-

level code deployment on reconfigurable platforms: A survey of high-level synthesis tools

and toolchains,” IEEE Access, vol. 8, pp. 174 692–174 722, 2020.

[11] “Deep sparse rectifier neural networks, author=Glorot, Xavier and Bordes, Antoine and

Bengio, Yoshua,” in Proceedings of the fourteenth international conference on artificial

108

BIBLIOGRAPHY 109

intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011, pp.

315–323.

[12] Y. Zhewen, “A Dynamic Configurable FPGA Implementation of YOLOv3-tiny. Msc

thesis, Analogue and Digital Integrated Circuit Design of Imperial College London,”

2019.

[13] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” in International conference on machine learning. Pro-

ceeding of Machine Learning Research, 2015, pp. 448–456.

[14] V. Wadawadagi, “Metrics to use to evaluate deep learning ob-

ject detectors.” [Online]. Available: https://www.kdnuggets.com/2020/08/

metrics-evaluate-deep-learning-object-detectors.html

[15] J. Redmon, “Darknet: Open source neural network in C,” 2013. [Online]. Available:

https://pjreddie.com/darknet/

[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and

T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings

of the 22nd ACM international conference on Multimedia, 2014, pp. 675–678.

[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on het-

erogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[18] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[19] ——, “YOLOv3: An Incremental Improvement,” arXiv preprint arXiv:1804.02767, 04

2018.

[20] C. Guo, X.-l. Lv, Y. Zhang, and M.-l. Zhang, “Improved YOLOv4-tiny network for

real-time electronic component detection,” Scientific Reports, vol. 11, no. 1, pp. 1–13,

2021.

[21] H. Zhang, M. Xia, and G. Hu, “A multiwindow partial buffering scheme for FPGA-based

2-D convolvers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54,

no. 2, pp. 200–204, 2007.

[22] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp.

1251–1258.

[23] K. Chellapilla, S. Puri, and P. Simard, “High performance convolutional neural networks

for document processing,” in Tenth international workshop on frontiers in handwriting

recognition. Suvisoft, 2006.

110 BIBLIOGRAPHY

[24] C. Zhu, S. Han, H. Mao, and W. Dally, “Trained ternary quantization 5th Int,” in Conf.

on Learning Representations, ICLR 2017 (Toulon, France, 24–26 April 2017), 2017.

[25] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep convolutional

networks,” in International conference on machine learning. Proceedings of Machine

Learning Research, 2016, pp. 2849–2858.

[26] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song

et al., “Going deeper with embedded fpga platform for convolutional neural network,”

in Proceedings of the 2016 ACM/SIGDA international symposium on field-programmable

gate arrays, 2016, pp. 26–35.

[27] D. Miyashita, E. H. Lee, and B. Murmann, “Convolutional neural networks using loga-

rithmic data representation,” arXiv preprint arXiv:1603.01025, 2016.

[28] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classifica-

tion using binary convolutional neural networks,” in Computer Vision–ECCV 2016: 14th

European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings,

Part IV. Springer, 2016, pp. 525–542.

[29] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient reconfig-

urable accelerator for deep convolutional neural networks,” IEEE Journal of Solid-State

Circuits, vol. 52, no. 1, pp. 127–138, 2016.

[30] D. Pestana, P. R. Miranda, J. D. Lopes, R. P. Duarte, M. P. Véstias, H. C. Neto,

and J. T. De Sousa, “A full featured configurable accelerator for object detection with

YOLO,” IEEE Access, vol. 9, pp. 75 864–75 877, 2021.

[31] P. Babu and E. Parthasarathy, “Hardware acceleration for object detection using

YOLOv4 algorithm on Xilinx Zynq platform,” Journal of Real-Time Image Processing,

vol. 19, no. 5, pp. 931–940, 2022.

[32] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato, “A lightweight YOLOv2: A binarized

CNN with a parallel support vector regression for an FPGA,” in Proceedings of the

2018 ACM/SIGDA International Symposium on field-programmable gate arrays, 2018,

pp. 31–40.

[33] Z. Li and J. Wang, “An improved algorithm for deep learning YOLO network based on

Xilinx ZYNQ FPGA,” in 2020 International Conference on Culture-oriented Science &

Technology (ICCST). IEEE, 2020, pp. 447–451.

[34] V. Jain, N. Jadhav, and M. Verhelst, “Enabling real-time object detection on low cost

FPGAs,” Journal of Real-Time Image Processing, vol. 19, no. 1, pp. 217–229, 2022.

[35] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design space exploration of FPGA-

based deep convolutional neural networks,” in 2016 21st Asia and South Pacific Design

Automation Conference (ASP-DAC). IEEE, 2016, pp. 575–580.

BIBLIOGRAPHY 111

[36] Xilinx, “Vitis High-Level Synthesis User Guide,” 2021.

[Online]. Available: https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/

Fixed-Point-Identifier-Summary?tocId=jgeN4rPFF M6nxbDn1H5HA

[37] A. Vasudevan, A. Anderson, and D. Gregg, “Parallel multi channel convolution us-

ing general matrix multiplication,” in 2017 IEEE 28th international conference on

application-specific systems, architectures and processors (ASAP). IEEE, 2017, pp.

19–24.

[38] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang, “Improving neural network quan-

tization without retraining using outlier channel splitting,” in International conference

on machine learning. PMLR, 2019, pp. 7543–7552.

[39] X. Inc., “Vivado Design Suite—AXI Reference Guide, UG1037 (v4. 0),” 2017.

[40] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and M. Shafique, “Hard-

ware and Software Optimizations for Accelerating Deep Neural Networks: Survey of

Current Trends, Challenges, and the Road Ahead,” IEEE Access, vol. PP, pp. 1–1, 11

2020.

[41] “Avnet ZedBoard.” [Online]. Available: https://www.avnet.com/wps/portal/us/

products/avnet-boards/avnet-board-families/zedboard/

[42] “SDSOC development environment, https://www.xilinx.com/products/design-

tools/legacy-tools/sdsoc.html.” [Online]. Available: https://www.xilinx.com/products/

design-tools/legacy-tools/sdsoc.html

112

A.1. Weight Distribution of yolov4-tiny 113

Appendix A

Yolov4-tiny Details

A.1 Weight Distribution of yolov4-tiny

Figure A.1: conv0 Figure A.2: conv1 Figure A.3: conv2

Figure A.4: conv3 Figure A.5: conv4 Figure A.6: conv5

Figure A.7: conv6 Figure A.8: conv7 Figure A.9: conv8

Figure A.10: conv9 Figure A.11: conv10 Figure A.12: conv11

114 Appendix A. Yolov4-tiny Details

Figure A.13: conv12 Figure A.14: conv13 Figure A.15: conv14

Figure A.16: conv15 Figure A.17: conv16 Figure A.18: conv17

Figure A.19: conv18

Figure A.20: Weights Distribution for yolov4-tiny

A.2. Data Distribution of yolov4-tiny 115

A.2 Data Distribution of yolov4-tiny

Figure A.21: conv1 Figure A.22: conv2 Figure A.23: conv3

Figure A.24: conv4 Figure A.25: conv5 Figure A.26: conv6

Figure A.27: conv7 Figure A.28: conv8 Figure A.29: conv9

Figure A.30: conv10 Figure A.31: conv11 Figure A.32: conv12

116 Appendix A. Yolov4-tiny Details

Figure A.33: conv13 Figure A.34: conv14 Figure A.35: conv15

Figure A.36: conv16 Figure A.37: conv17 Figure A.38: conv18

Figure A.39: conv19 Figure A.40: conv20 Figure A.41: conv21

Figure A.42: Data Distribution for yolov4-tiny

D
D

R

F
IX

E
D

_
IO

a
x
i_

d
m

a

A
X

I
D

ir
e

c
t

M
e

m
o

ry
 A

c
c
e

s
s

S
_
A

X
I_

L
IT

E
M

_
A

X
I_

M
M

2
S

M
_
A

X
I_

S
2
M

M

M
_
A

X
IS

_
M

M
2
S

S
_
A

X
IS

_
S

2
M

M

s
_
a
x
i_

lit
e
_
a
c
lk

m
_
a
x
i_

m
m

2
s
_
a
c
lk

m
_
a
x
i_

s
2
m

m
_
a
c
lk

a
x
i_

re
s
e
tn

m
m

2
s
_
p
rm

ry
_
re

s
e
t_

o
u
t_

n

s
2
m

m
_
p
rm

ry
_
re

s
e
t_

o
u
t_

n

m
m

2
s
_
in

tr
o
u
t

s
2
m

m
_
in

tr
o
u
t

a
x
i_

d
m

a
_

1

A
X

I
D

ir
e

c
t

M
e

m
o

ry
 A

c
c
e

s
s

S
_
A

X
I_

L
IT

E
M

_
A

X
I_

M
M

2
S

M
_
A

X
IS

_
M

M
2
S

s
_
a
x
i_

lit
e
_
a
c
lk

m
_
a
x
i_

m
m

2
s
_
a
c
lk

a
x
i_

re
s
e
tn

m
m

2
s
_
p
rm

ry
_
re

s
e
t_

o
u
t_

n

m
m

2
s
_
in

tr
o
u
t

a
x
i_

m
e

m
_

in
te

rc
o

n

A
X

I
In

te
rc

o
n

n
e

c
t

S
0
0
_
A

X
I

M
0
0
_
A

X
I

S
0
1
_
A

X
I

A
C

L
K

A
R

E
S

E
T

N

S
0
0
_
A

C
L
K

S
0
0
_
A

R
E

S
E

T
N

M
0
0
_
A

C
L
K

M
0
0
_
A

R
E

S
E

T
N

S
0
1
_
A

C
L
K

S
0
1
_
A

R
E

S
E

T
N a
x
i_

m
e

m
_

in
te

rc
o

n
_

1

A
X

I
In

te
rc

o
n

n
e

c
t

S
0
0
_
A

X
I

M
0
0
_
A

X
I

A
C

L
K

A
R

E
S

E
T

N

S
0
0
_
A

C
L
K

S
0
0
_
A

R
E

S
E

T
N

M
0
0
_
A

C
L
K

M
0
0
_
A

R
E

S
E

T
N

p
ro

c
e

s
s
in

g
_

s
y
s
te

m
7

_
0

Z
Y

N
Q

7
 P

ro
c
e

s
s
in

g
 S

y
s
te

m

D
D

R

F
IX

E
D

_
IO

U
S

B
IN

D
_
0

S
_
A

X
I_

H
P

0
_
F

IF
O

_
C

T
R

L

S
_
A

X
I_

H
P

1
_
F

IF
O

_
C

T
R

L

M
_
A

X
I_

G
P

0
S

_
A

X
I_

H
P

0

S
_
A

X
I_

H
P

1
T

T
C

0
_
W

A
V

E
0
_
O

U
T

T
T

C
0
_
W

A
V

E
1
_
O

U
T

T
T

C
0
_
W

A
V

E
2
_
O

U
T

M
_
A

X
I_

G
P

0
_
A

C
L
K

S
_
A

X
I_

H
P

0
_
A

C
L
K

S
_
A

X
I_

H
P

1
_
A

C
L
K

F
C

L
K

_
C

L
K

0

F
C

L
K

_
R

E
S

E
T

0
_
N

p
s
7

_
0

_
a

x
i_

p
e

ri
p

h

A
X

I
In

te
rc

o
n

n
e

c
t

S
0
0
_
A

X
I

M
0
0
_
A

X
I

M
0
1
_
A

X
I

M
0
2
_
A

X
I

M
0
3
_
A

X
I

A
C

L
K

A
R

E
S

E
T

N

S
0
0
_
A

C
L
K

S
0
0
_
A

R
E

S
E

T
N

M
0
0
_
A

C
L
K

M
0
0
_
A

R
E

S
E

T
N

M
0
1
_
A

C
L
K

M
0
1
_
A

R
E

S
E

T
N

M
0
2
_
A

C
L
K

M
0
2
_
A

R
E

S
E

T
N

M
0
3
_
A

C
L
K

M
0
3
_
A

R
E

S
E

T
N

rs
t_

p
s
7

_
0

_
1

0
0

M

P
ro

c
e

s
s
o

r
S

y
s
te

m
 R

e
s
e

t

s
lo

w
e
s
t_

s
y
n
c
_
c
lk

e
x
t_

re
s
e
t_

in

a
u
x
_
re

s
e
t_

in

m
b
_
d
e
b
u
g
_
s
y
s
_
rs

t

d
c
m

_
lo

c
k
e
d

m
b
_
re

s
e
t

b
u
s
_
s
tr

u
c
t_

re
s
e
t[
0
:0

]

p
e
ri
p
h
e
ra

l_
re

s
e
t[
0
:0

]

in
te

rc
o
n
n
e
c
t_

a
re

s
e
tn

[0
:0

]

p
e
ri
p
h
e
ra

l_
a
re

s
e
tn

[0
:0

]

y
o

lo
_

a
c
c
_

to
p

_
0

Y
o

lo
_

a
c
c
_

to
p

 (
P

re
-P

ro
d

u
c
ti
o

n
)

s
_
a
x
i_

C
T

R
L
_
B

U
S

in
S

tr
e
a
m

_
a

in
S

tr
e
a
m

_
b

o
u
tS

tr
e
a
m

a
p
_
c
lk

a
p
_
rs

t_
n

in
te

rr
u
p
t

y
o

lo
_

c
o

n
v
_

to
p

_
0

Y
o

lo
_

c
o

n
v
_

to
p

 (
P

re
-P

ro
d

u
c
ti
o

n
)

s
_
a
x
i_

C
T

R
L
_
B

U
S

in
S

tr
e
a
m

o
u
tS

tr
e
a
m

a
p
_
c
lk

a
p
_
rs

t_
n

in
te

rr
u
p
t

A.3 System Results

A.3.1 Setup 1

D
D

R

F
IX

E
D

_
IO

a
x
i_

d
m

a

A
X

I
D

ir
e
c
t
M

e
m

o
ry

 A
c
c
e
s
s

S
_

A
X

I_
L

IT
E

M
_

A
X

I_
M

M
2

S

M
_

A
X

I_
S

2
M

M

M
_

A
X

IS
_

M
M

2
S

S
_

A
X

IS
_

S
2

M
M

s
_

a
x
i_

lit
e

_
a

c
lk

m
_

a
x
i_

m
m

2
s
_

a
c
lk

m
_

a
x
i_

s
2

m
m

_
a

c
lk

a
x
i_

re
s
e

tn

m
m

2
s
_

p
rm

ry
_

re
s
e

t_
o

u
t_

n

s
2

m
m

_
p

rm
ry

_
re

s
e

t_
o

u
t_

n

m
m

2
s
_

in
tr

o
u

t

s
2

m
m

_
in

tr
o

u
t

a
x
i_

d
m

a
_
1

A
X

I
D

ir
e
c
t
M

e
m

o
ry

 A
c
c
e
s
s

S
_

A
X

I_
L

IT
E

M
_

A
X

I_
M

M
2

S

M
_

A
X

IS
_

M
M

2
S

s
_

a
x
i_

lit
e

_
a

c
lk

m
_

a
x
i_

m
m

2
s
_

a
c
lk

a
x
i_

re
s
e

tn

m
m

2
s
_

p
rm

ry
_

re
s
e

t_
o

u
t_

n

m
m

2
s
_

in
tr

o
u

t

a
x
i_

m
e
m

_
in

te
rc

o
n

A
X

I
In

te
rc

o
n
n
e
c
t

S
0

0
_

A
X

I

S
0

1
_

A
X

I

M
0

0
_

A
X

I

A
C

L
K

A
R

E
S

E
T

N

S
0

0
_

A
C

L
K

S
0

0
_

A
R

E
S

E
T

N

S
0

1
_

A
C

L
K

S
0

1
_

A
R

E
S

E
T

N

M
0

0
_

A
C

L
K

M
0

0
_

A
R

E
S

E
T

N a
x
i_

m
e
m

_
in

te
rc

o
n
_
1

A
X

I
In

te
rc

o
n
n
e
c
t

S
0

0
_

A
X

I

M
0

0
_

A
X

I

A
C

L
K

A
R

E
S

E
T

N

S
0

0
_

A
C

L
K

S
0

0
_

A
R

E
S

E
T

N

M
0

0
_

A
C

L
K

M
0

0
_

A
R

E
S

E
T

N

a
x
is

_
s
w

it
c
h
_
0

A
X

I4
-S

tr
e
a
m

 S
w

it
c
h

S
0

0
_

A
X

IS

M
0

0
_

A
X

IS

M
0

1
_

A
X

IS

S
_

A
X

I_
C

T
R

L

a
c
lk

a
re

s
e

tn

s
_

a
x
i_

c
tr

l_
a

c
lk

s
_

a
x
i_

c
tr

l_
a

re
s
e

tn

a
x
is

_
s
w

it
c
h
_
1

A
X

I4
-S

tr
e
a
m

 S
w

it
c
h

S
0

0
_

A
X

IS

M
0

0
_

A
X

IS
S

0
1

_
A

X
IS

M
0

1
_

A
X

IS

M
0

2
_

A
X

IS

M
0

3
_

A
X

IS

S
_

A
X

I_
C

T
R

L

a
c
lk

a
re

s
e

tn

s
_

a
x
i_

c
tr

l_
a

c
lk

s
_

a
x
i_

c
tr

l_
a

re
s
e

tn

a
x
is

_
s
w

it
c
h
_
2

A
X

I4
-S

tr
e
a
m

 S
w

it
c
h

S
0

0
_

A
X

IS

M
0

0
_

A
X

IS

S
0

1
_

A
X

IS

S
0

2
_

A
X

IS

S
0

3
_

A
X

IS

S
_

A
X

I_
C

T
R

L

a
c
lk

a
re

s
e

tn

s
_

a
x
i_

c
tr

l_
a

c
lk

s
_

a
x
i_

c
tr

l_
a

re
s
e

tn

p
ro

c
e
s
s
in

g
_
s
y
s
te

m
7
_
0

Z
Y

N
Q

7
 P

ro
c
e
s
s
in

g
 S

y
s
te

m

D
D

R

F
IX

E
D

_
IO

U
S

B
IN

D
_

0

S
_

A
X

I_
H

P
0

_
F

IF
O

_
C

T
R

L

S
_

A
X

I_
H

P
1

_
F

IF
O

_
C

T
R

L

M
_

A
X

I_
G

P
0

S
_

A
X

I_
H

P
0

S
_

A
X

I_
H

P
1

T
T

C
0

_
W

A
V

E
0

_
O

U
T

T
T

C
0

_
W

A
V

E
1

_
O

U
T

T
T

C
0

_
W

A
V

E
2

_
O

U
T

M
_

A
X

I_
G

P
0

_
A

C
L

K

S
_

A
X

I_
H

P
0

_
A

C
L

K

S
_

A
X

I_
H

P
1

_
A

C
L

K
F

C
L

K
_

C
L

K
0

F
C

L
K

_
R

E
S

E
T

0
_

N

p
s
7
_
0
_
a
x
i_

p
e
ri
p
h

A
X

I
In

te
rc

o
n
n
e
c
t

S
0

0
_

A
X

I

M
0

0
_

A
X

I

M
0

1
_

A
X

I

M
0

2
_

A
X

I

M
0

3
_

A
X

I

M
0

4
_

A
X

I

M
0

5
_

A
X

I

M
0

6
_

A
X

I

M
0

7
_

A
X

I

M
0

8
_

A
X

I

M
0

9
_

A
X

I

A
C

L
K

A
R

E
S

E
T

N

S
0

0
_

A
C

L
K

S
0

0
_

A
R

E
S

E
T

N

M
0

0
_

A
C

L
K

M
0

0
_

A
R

E
S

E
T

N

M
0

1
_

A
C

L
K

M
0

1
_

A
R

E
S

E
T

N

M
0

2
_

A
C

L
K

M
0

2
_

A
R

E
S

E
T

N

M
0

3
_

A
C

L
K

M
0

3
_

A
R

E
S

E
T

N

M
0

4
_

A
C

L
K

M
0

4
_

A
R

E
S

E
T

N

M
0

5
_

A
C

L
K

M
0

5
_

A
R

E
S

E
T

N

M
0

6
_

A
C

L
K

M
0

6
_

A
R

E
S

E
T

N

M
0

7
_

A
C

L
K

M
0

7
_

A
R

E
S

E
T

N

M
0

8
_

A
C

L
K

M
0

8
_

A
R

E
S

E
T

N

M
0

9
_

A
C

L
K

M
0

9
_

A
R

E
S

E
T

N

rs
t_

p
s
7
_
0
_
1
0
0
M

P
ro

c
e
s
s
o
r

S
y
s
te

m
 R

e
s
e
t

s
lo

w
e

s
t_

s
y
n

c
_

c
lk

e
x
t_

re
s
e

t_
in

a
u

x
_

re
s
e

t_
in

m
b

_
d

e
b

u
g

_
s
y
s
_

rs
t

d
c
m

_
lo

c
k
e

d

m
b

_
re

s
e

t

b
u

s
_

s
tr

u
c
t_

re
s
e

t[
0

:0
]

p
e

ri
p

h
e

ra
l_

re
s
e

t[
0

:0
]

in
te

rc
o

n
n

e
c
t_

a
re

s
e

tn
[0

:0
]

p
e

ri
p

h
e

ra
l_

a
re

s
e

tn
[0

:0
]

y
o
lo

_
a
c
c
_
to

p
_
0

Y
o
lo

_
a
c
c
_
to

p
 (

P
re

-P
ro

d
u
c
ti
o
n
)

s
_

a
x
i_

C
T

R
L

_
B

U
S

in
S

tr
e

a
m

_
a

in
S

tr
e

a
m

_
b

o
u

tS
tr

e
a

m

a
p

_
c
lk

a
p

_
rs

t_
n

in
te

rr
u

p
t

y
o
lo

_
c
o
n
v
_
to

p
_
0

Y
o
lo

_
c
o
n
v
_
to

p
 (

P
re

-P
ro

d
u
c
ti
o
n
)

s
_

a
x
i_

C
T

R
L

_
B

U
S

in
S

tr
e

a
m

o
u

tS
tr

e
a

m

a
p

_
c
lk

a
p

_
rs

t_
n

in
te

rr
u

p
t

y
o
lo

_
m

a
x
_
p
o
o
l_

to
p
_
0

Y
o
lo

_
m

a
x
_
p
o
o
l_

to
p
 (

P
re

-P
ro

d
u
c
ti
o
n
)

s
_

a
x
i_

C
T

R
L

_
B

U
S

in
S

tr
e

a
m

o
u

tS
tr

e
a

m

a
p

_
c
lk

a
p

_
rs

t_
n

in
te

rr
u

p
t

y
o
lo

_
u
p
s
a
m

p
_
to

p
_
0

Y
o
lo

_
u
p
s
a
m

p
_
to

p
 (

P
re

-P
ro

d
u
c
ti
o
n
)

s
_

a
x
i_

C
T

R
L

_
B

U
S

in
S

tr
e

a
m

o
u

tS
tr

e
a

m

a
p

_
c
lk

a
p

_
rs

t_
n

in
te

rr
u

p
t

y
o
lo

_
y
o
lo

_
to

p
_
0

Y
o
lo

_
y
o
lo

_
to

p
 (

P
re

-P
ro

d
u
c
ti
o
n
)

s
_

a
x
i_

C
T

R
L

_
B

U
S

in
S

tr
e

a
m

o
u

tS
tr

e
a

m

a
p

_
c
lk

a
p

_
rs

t_
n

in
te

rr
u

p
t

A.3.2 Setup 2

	Abstract
	List of acronyms
	Introduction
	Problem statement and System Setup
	Research Questions
	Contribution
	Thesis Outline

	CNN Background
	Convolutional Neural Network
	Convolutional Layer
	Other Typical Layer Types
	Evaluation Metrics
	Dataset
	Frameworks

	YOLO: Real-Time object detection algorithm
	Motivation For choosing YOLOv4-tiny
	Theorectical upper bound performance:

	YOLOv4-tiny

	Literature Review
	2-D Convolution on FPGA
	Fixed-point Quantization
	Dynamically Configurable Architecture
	Related Work on YOLO

	Relevant Tool: Vitis Unified Software Platform & Vivado HLS
	WorkFlow Used For Creating Accelerated Application
	Data types
	HLS Stream Library
	Using HLS stream
	Naming streams
	I/O for streams
	Blocking reads and writes
	Non-Blocking reads and writes

	Source code Example
	Pragmas and performance improvement
	Resource utilization comparision

	Software Implementation of YOLOv4-tiny on Zedboard's PS and Host CPU
	Software Implementation
	Yolov4-tiny Baremetal Floating-point model

	Profiling results for yolov4-tiny on Host CPU
	Vitis Vivado setup and profiling results of yolov4-tiny model on ZedBoard PS
	Yolov4-tiny Fixed-point Model

	Hardware IP Block Design
	Motivation for using unified hardware architecture
	Convolutional Layer IP
	Convolutional IP block design
	Tunable Line Buffer
	3x3 Sliding Window
	Multiply Accumulate batch units
	Output stream merge
	Optimisation
	Architecture of the convolutional IP
	Latency Estimation of Convolutional IP block

	Accumulation & Activation IP block
	Latency estimation of Accumulation block

	Max Pooling Layer IP block
	Latency estimate of Maxpool Layer

	Upsample Layer IP block
	Latency estimation of upsample layer

	Yolo Layer
	Latency estimation of Yolo IP block

	System Design
	System Overview
	Network Shaping
	Channel Folding
	Channel Padding and Kernel size padding

	Hardware Accelerator Block setup
	Processing System (PS) Design
	Software Driver for ARM A9 Cortex Processor
	Weights rearrangement for channel folding
	Memory Access
	Input Image transformation
	Route Layer Implementation

	Design Space exploration

	Results
	Specifications of the target platform
	Intel Core i5-8250U CPU
	ZedBoard

	Unified accelerator Configurations
	Layer-wise performance comparision
	Performance breakdown per convolutional layer: PS only configuration
	Performance Breakdown per convolutional Layer: PS+PL Only Configuration
	Performance Improvement in Setup 2
	Performance difference in this work vs Ref yu2020parameterisable

	Resource Utilization Breakdown
	Resouce Utilization Breakdown: setup 1
	Resource Utilization Breakdown: setup 2

	Platform Comparison
	Speed and Resource Efficiency
	Power and Energy Efficiency
	Comparison with CPU and FPGA

	Conclusion and Recommendations
	Research subquestions
	Main research question
	Recommendations
	Testing on different Xilinx-based platforms
	Reduced bit-width implementation
	Non-uniform channel interleaving

	References
	Yolov4-tiny Details
	Weight Distribution of yolov4-tiny
	Data Distribution of yolov4-tiny
	System Results
	Setup 1
	Setup 2

