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PREFACE 
 

Dear reader,  

This bachelor thesis: “Variation reduction through PMC integration and evaluation” describes the 
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cooperate. I would especially like to thank Boris Novakovic and Bram Roffel, who served as my 
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Matteo Brunetti, I have learned a great deal on writing a scientifically well-structured report. I would like 

to thank them for their input and feedback. 

Daan Boekhoudt 
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MANAGEMENT SUMMARY 
This research is conducted at Abbott Zwolle on behalf of the Process Engineering department. Abbott 

Zwolle is part of the Abbott Nutrition branch and produces a wide range of science-based nutrition 

products to support the health and wellbeing of people of all ages worldwide. This study is focussed on 

the Aseptic Ready to Hang (ARTH) line of Abbott Zwolle, which produces ready-to-hang bottles used for 

tube feeding. Within Abbott, Process Monitoring and Control (PMC) is used variably but mainly by 

Process Engineers. Abbott wants to change this, and thus the objective of this research is the following: 

To design, implement and evaluate Process Monitoring and Control for Abbott Zwolle’s filler of the 

Aseptic Ready to Hang line. 

Within this research, we make a distinction between the evaluation of PMC within Abbott Zwolle and the 

evaluation and implementation of PMC for the filler of the ARTH line. Through the literature and 

experience gained during this research, we give some methodological recommendations regarding the 

use of PMC within Abbott Zwolle. Next to the methodological recommendations, we give practical 

recommendations as a result of this study. By integrating and evaluating PMC at the filler of the ARTH 

line, several obstacles and improvement points were encountered that should be tackled and prevented 

in upcoming PMC projects. The three most important recommendations are: 

1. Sensor validation within PI is crucial before starting a PMC project to ensure accurate data 

representation, prevent errors, and reduce computational time. 

2. Abbott should consider moving their PMC activities to a new IT system like SEEQ due to PI 

Processbook's outdated nature and limited capabilities. 

3. The proposed methodology for PMC integration should be tested. Hopefully, this fits Abbott's 

traditional project approach while focusing on the crucial methodological aspects relevant to PMC 

integration. 

In this research, the current use of PMC within Abbott Zwolle is critically evaluated and compared to the 

available literature on the topic. The goal of PMC is to spot, analyze and reduce special cause variation 

within the production process. The distinction is made between normal and special cause variation, 

where normal cause variation is induced by uncontrollable factors such as humidity or temperature 

fluctuations. Special cause variation is variation where a cause can be assigned to the shift within the 

process performance. An example of such a cause could be a clogged pipe or a heating element not 

working properly. Problems like these are a major problem for Abbott Zwolle when they occur. They 

impact the sterility of the end product, which could mean significant downtime and even batch rejects. 

An example is the FIQ098 parameter which has breached its specification limit over 3150 times during 

one year. A breach could mean that the machine waits a few seconds for the parameter to get back to 

the right level, but it could also last several minutes, or even a new cleaning cycle might be needed.  

PMC aims to spot the change in variation before it can cause major problems to the line. Currently, PMC 

is only used by Process Engineers to monitor parameters that are known to cause problems or to analyze 

the root cause of problems that have already occurred. This is almost always a case of reactive use. One 

approach that Abbott wants to explore is the use of PMC by operators on the shop floor.  

We start the research by selecting a long list of process parameters. This is done through discussions 

with the line's Front Line Leaders, Process Engineer, and Mechanical Excellence Engineer. This resulted in 
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a long list of 20 process parameters. Most focus on the sterility of the machine or product, and one 

focuses on the crashes that occur at the filler intake. From there, 2 years' worth of data is collected using 

a time-based 1-minute sampling interval (whenever possible). The data for the process parameters are 

tested for normality, descriptive statistics are generated, and the results are compared to the 

specification limits given by Abbott. This enables us to rank the ‘performance’ of the process parameters 

against their specification limits. For a company to be a world-class producer, one should aim to have a  

Defects Per Million Opportunities (DPMO) count even lower than Six Sigma, which corresponds with a 

DPMO of 3.4. The DPMO is very large for most process parameters in this study. This is mainly due to the 

step change delay that is seen within the PI data architecture. This results in a discrepancy between 

reality and registered data, which can be seen as noise in the data set. From there, the process 

parameters are ranked on their level of control. 6 parameters are marked as drastically out of control, 

showing significant sources of variation, or breaching the specification limits set by Abbott relatively 

often. 11 parameters are marked as out-of-control but not crucial. These parameters show special cause 

variation (E.g., long-term up or down trending) but move relatively well within their specification limits. 

The remainder of the parameters are marked as in control and show little to no variation. These 

parameters are ready for more complex control charts, and distributions can be fitted to the data set.  

Due to the nature of the data of these parameters, and the lack of normality for the data set, the 

Individuals control chart is the only valid option for control charting. Through an empirical reference 

distribution, control limits for the process parameters are determined to have an out-of-control 

probability similar to a normally distributed three-sigma control chart. The six most critical parameters 

are visualized in two dashboards. One dashboard is used during the morning meeting, and the other is 

made for monitoring on the shop floor. One big problem, however, with this approach is that the PI 

sensors used in this research have not been validated. This means the PI data tags cannot be used for all 

the “official” applications, like validating a batch or doing a batch work order check.   



  

iv 
 

CONTENTS 
Preface ............................................................................................................................................................ i 

Management summary ................................................................................................................................... ii 

Contents ........................................................................................................................................................ iv 

List of Figures ................................................................................................................................................ vi 

List of Tables ................................................................................................................................................. vi 

Glossary of terms ......................................................................................................................................... vii 

1. Introduction ............................................................................................................................................ 1 

1.1 Abbott Zwolle ................................................................................................................................. 1 

1.2 Relevance and motivation of the research .................................................................................... 1 

1.3 Problem statement......................................................................................................................... 2 

1.4 Research objective ........................................................................................................................ 2 

1.5 Research questions ....................................................................................................................... 2 

1.6 Outline of the report ....................................................................................................................... 3 

2. Current situation .................................................................................................................................... 4 

2.1 Context on the production process ................................................................................................ 4 

2.2 Monitoring at the filling machine .................................................................................................... 6 

2.2.1 Data gathering and monitoring .............................................................................................. 6 

2.2.2 Checks on machine performance .......................................................................................... 9 

2.3 Process Monitoring and Control within Abbott Zwolle ................................................................. 10 

2.4 Conclusions on the current situation ........................................................................................... 11 

3. Literature review .................................................................................................................................. 12 

3.1 Identifying changes in variation ................................................................................................... 12 

3.1.1 Special cause and chance cause of variation ..................................................................... 12 

3.1.2 Run rules to increase sensitivity .......................................................................................... 12 

3.1.3 Phase I and II of process control ......................................................................................... 13 

3.2 Data requirements for PMC ......................................................................................................... 14 

3.2.1 The need for distributions .................................................................................................... 14 

3.2.2 Subgrouping ........................................................................................................................ 15 

3.3 Control charts .............................................................................................................................. 16 

3.3.1 Phase I charts ...................................................................................................................... 16 

3.3.2 Phase II charts ..................................................................................................................... 19 

3.4 Requirements for successful implementation .............................................................................. 20 

3.4.1 Implementation of SPC ........................................................................................................ 20 

3.4.2 Other approaches to implementing SPC ............................................................................. 22 

3.5 Conclusions on literature review .................................................................................................. 23 

4. Evaluating process parameters ........................................................................................................... 24 



  

v 
 

4.1 Selecting Process Parameters .................................................................................................... 24 

4.2 Data collection ............................................................................................................................. 25 

4.2.1 Data filtering ......................................................................................................................... 25 

4.2.2 Sampling interval ................................................................................................................. 27 

4.3 Phase I study ............................................................................................................................... 27 

4.3.1 Grouping and filtering data .................................................................................................. 27 

4.3.2 Performance of process parameters. .................................................................................. 29 

4.4 Selecting control charts and calculating limits ............................................................................. 34 

4.5 Conclusion on control parameters ............................................................................................... 36 

5. Application of Process Monitoring and Control ................................................................................... 37 

5.1 Dashboard design........................................................................................................................ 37 

5.1.1 Dashboards for the filler and morning meeting. .................................................................. 37 

5.1.2 Limitations of Dashboard Design ......................................................................................... 38 

5.2 PMC at the ARTH line ................................................................................................................. 40 

5.3 Improving PMC ............................................................................................................................ 41 

5.3.1 Methodological improvements ............................................................................................. 41 

5.3.2 Practical improvements ....................................................................................................... 45 

6. Conclusions and Recommendations ................................................................................................... 47 

6.1 Conclusions ................................................................................................................................. 47 

6.2 Recommendations ....................................................................................................................... 48 

7. Bibliography ......................................................................................................................................... 49 

8. Appendices .......................................................................................................................................... 50 

8.1 Appendix I: Types of special cause variation .............................................................................. 50 

8.2 Appendix II: Control chart constants............................................................................................ 51 

8.3 Appendix III: Computational methods for control chart statistics ................................................ 51 

8.4 Appendix IV: Long list of parameters .......................................................................................... 52 

8.5 Appendix V: Filters for process parameters ................................................................................ 53 

 

 

  



  

vi 
 

LIST OF FIGURES 
Figure 1 - Product range Abbott Zwolle ........................................................................................................ 1 

Figure 2 - Ready To Hang bottles (500mL, 1000mL, 1500mL L to R) ............................................................. 4 

Figure 3 - Sterilization of liquid product ........................................................................................................ 4 

Figure 4 - Production steps of the ARTH filler ............................................................................................... 5 

Figure 5 - Example of HMI interface .............................................................................................................. 7 

Figure 6 - Western Electric or zone rules .................................................................................................... 13 

Figure 7 - I-MR chart .................................................................................................................................... 16 

Figure 8 - Control limits from ERD ............................................................................................................... 18 

Figure 9 - CUSUM chart ............................................................................................................................... 19 

Figure 10 - Organizational structure for SPC implementation .................................................................... 21 

Figure 11 - The ten-step method ................................................................................................................. 21 

Figure 12 - FIQ098 no filter ......................................................................................................................... 26 

Figure 13 - FIQ098 filtered........................................................................................................................... 26 

Figure 14 - Run chart TT606 Bottle 1 ........................................................................................................... 28 

Figure 15 - TT606 temperature drops ......................................................................................................... 28 

Figure 16 - TT611 Bottle 1 step-change ...................................................................................................... 29 

Figure 17 - TT105 long-term downtrend ..................................................................................................... 29 

Figure 18 - PIT082 normality fit unfiltered .................................................................................................. 29 

Figure 19 - PIT082 normality fit filtered ...................................................................................................... 29 

Figure 21 - TT105 long-term downtrend ..................................................................................................... 31 

Figure 20 - DT097 2-year data ..................................................................................................................... 31 

Figure 22 - TT105 vs TT106 transformed over 2 years ................................................................................ 32 

Figure 23 - TT607 special cause variation.................................................................................................... 32 

Figure 24 - 108020PIC081 special cause variation ...................................................................................... 32 

Figure 25 - 108030PIC081 special cause variation ...................................................................................... 32 

Figure 26 - CRASH_CNT001 Control chart ................................................................................................... 34 

Figure 27 - TT608 unfiltered ........................................................................................................................ 35 

Figure 28 - TT608 in control ........................................................................................................................ 35 

Figure 29 - Morning meeting dashboard .................................................................................................... 37 

Figure 30 - Dashboard next to the filler ...................................................................................................... 38 

Figure 31 - 10 step method in the DMAIC ................................................................................................... 42 

Figure 32 - Dynamic control chart ............................................................................................................... 46 

 

LIST OF TABLES 
Table 1 - Shewhart Variables Control Chart ................................................................................................ 16 

Table 2 - Control limits for I-MR charts ....................................................................................................... 17 

Table 3 - Formulas of the EWMA chart ....................................................................................................... 20 

Table 4 - Performance of process parameters ............................................................................................ 30 

Table 5 - TT608 Bottle 3 Control limits ........................................................................................................ 35 

Table 6 - Control limits for process parameters .......................................................................................... 36 

 

https://universiteittwente-my.sharepoint.com/personal/d_f_boekhoudt_student_utwente_nl/Documents/Bachelor%20Thesis%20Daan%20Boekhoudt%20Final%20version.docx#_Toc136335559


  

vii 
 

GLOSSARY OF TERMS 
Abbreviation Description 

ARTH Aseptic Ready to Hang 

CIP Clean-in-Place 

CUSUM Cumulative Sum Control chart 

DMAIC Define, Measure, Analyze, Improve, and Control 

ERD Empirical Reference Distribution 

EWMA Exponentially Weighted Moving Average 

HMI Human Machine Interface 

OCAP Out-of-Control Action Plan 

PAT Process Action Team 

PMC Process Monitoring and Control 

SCADA Supervisory Control and Data Acquisition system 

SPC Stochastic Process Control 

 



 

1 
 

1. INTRODUCTION 
This chapter introduces the research assignment. Section 1.1 provides a concise introduction to Abbott 

Zwolle, while Section 1.2 establishes the relevance and motivation behind this research. Then, Section 

1.3 provides the problem statement, and Section 1.4 provides the research objective. Finally, Section 1.5 

defines the research questions for this report, while Section 1.6 provides the outline of the report. 

1.1 ABBOTT ZWOLLE 

Abbott is one of the leading pharmaceutical companies in the world. Abbott is divided into six branches: 

Cardiovascular care, Diabetes care, Diagnostics, Neuromodulation Care, Nutrition, and Branded generic 

medicines. In these branches, they possess a market-leading position.  

Abbott Zwolle is part of the Nutrition branch.  The plant 

in Zwolle produces and markets a range of nutritional 

products for people of all ages, including infant formula, 

pediatric nutrition, adult nutrition, and medical nutrition 

(see Figure 1). Abbott Nutrition is known for its high-

quality products, backed by scientific research and 

formulated with a focus on taste, convenience, and ease 

of use. The company's most popular brands include 

Similac, Ensure, and PediaSure.  

Abbott Zwolle is the most complex production plant of 

the nutritional division, producing powder and liquid 

products for various countries. Next to the drinkable and powder consumer products, Abbott Zwolle also 

produces tube-feeding products. These bottles are ready to hang on a post to feed people who cannot 

drink/eat their food. Since the product is (mostly) consumed by people who are severely ill, a clean and 

safe product is of utmost importance. This means that Abbott Zwolle takes special care in ensuring a 

sterile product.  

1.2 RELEVANCE AND MOTIVATION OF THE RESEARCH 
This research focuses on the Aseptic Ready To Hang (ARTH) line of  Abbott Zwolle. The filler of the 

production line takes the empty bottles, fills them, and seals them in a sterile environment. The filler is 

the most complex and crucial part of the production line and is the focus of this research. The line 

produces three kinds of tube-feeding bottles and is the liquid priority line of Abbott Zwolle due to the 

high demand for the products. In its strive to become a world-class producer, Abbott Zwolle continuously 

seeks ways to improve its production processes. They aim to reduce downtime at the production lines 

due to damage, quality defects, and batch rejects and increase the production lines' total output. They 

are currently approaching this through Process Monitoring and Control (PMC). PMC aims to reduce 

variations within the production process, increasing the process's quality and capability. Process 

Engineers use PMC to monitor the production processes, and various projects have started using PMC. 

This research focusses on the evaluation and integration of PMC at the ARTH filler and how Abbott 

Zwolle can further improve its use of PMC within the production facility.   

Figure 1 - Product range Abbott Zwolle 
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1.3 PROBLEM STATEMENT 
Currently, PMC is used by Process Engineers to monitor the process parameters of the production line. 

This is almost always a case of ‘reactive’ use. The process shows an increase in variation, and PMC is used 

to search for the possible cause of the variation. The problem that Abbott Zwolle is facing is that 

Operators on the work floor do not have enough insight into the production process. The tools at their 

disposal only display real-time values of the line and are not clearly formatted. There are no preventive 

measures in place, and Operators take action when a problem arises by either resolving it themselves or 

escalating it to a Process Engineer or Mechanical Specialist. Abbott wants to change this and enable 

Operators to review the production process, which might help mitigate problems before they occur. 

Several projects have been started using Process Monitoring and Control and that is something that 

Abbott further wants to explore at the ARTH department. We formulate the core problem as follows: 

There is insufficient insight on the shop floor on the performance of the ARTH filler.  

Section 1.4 provides the research objective of this problem statement. In Section 1.5, we define the 

research questions.  

1.4 RESEARCH OBJECTIVE 
This research aims to design, implement and evaluate Process Monitoring and Control charts at the 

Aseptic Ready to Hang (ARTH) filler of Abbott Zwolle. The scope of this research is to develop these 

charts for the ARTH-filler and to review the use of PMC within Abbott Zwolle.  

With this in mind, we define the research objective as follows:  

To design, implement and evaluate Process Monitoring and Control for Abbott Zwolle’s filler of the 

Aseptic Ready to Hang line. 

In Section 1.5 we define several research questions to achieve the research objective. Every research 

question is answered in a separate chapter and broken down into sub-questions. These sub-questions 

are answered in a corresponding section within the chapter. 

1.5 RESEARCH QUESTIONS 
The first part of this research maps out the current situation of Abbott Zwolle concerning their use of 

PMC. Furthermore, the way products are produced and data is collected is examined.  

1) What is the current situation at the ARTH line of Abbott Zwolle? 

1.1. What does the production process at the ARTH filler look like? 

1.2. How is data currently collected and used at the ARTH line of Abbott Zwolle? 

1.3. How does Abbott Zwolle currently use Process Monitoring and Control? 

Second, we review the literature on PMC. It is interesting to review the use of PMC within Abbott, 

compared to the common practice of PMC use in literature. This gives insight into what the critical 

aspects of PMC are and how it can benefit Abbott Zwolle. 

2) How is Process Monitoring and Control used in literature? 

2.1. How can a change in variation be identified? 

2.2. What are the data requirements for PMC? 

2.3. What type of control charts are available in the literature? 
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2.4. How can Process Monitoring and Control be implemented within Abbott Zwolle? 

Third, the process parameters that should be monitored to increase insight on the shop floor should be 

determined.  

3) How can the process parameters of the ARTH filler be visualized to increase the insight on the shop 

floor? 

Furthermore, we identify the critical parameters, and the performance of these parameters and how 

these parameters can best be visualized is determined. For this, several subquestions are defined. 

3.1. What are the critical process parameters during a production run at the filler of the ARTH line? 

3.2. How should the raw dataset of the parameters be filtered and subgrouped? 

3.3. What level of control do the process parameters show? 

Fourth, the application of process monitoring and control within Abbott Zwolle is discussed. Here several 

points are discussed; how this project is implemented, and what the limitations are of this approach, and 

possible improvements that can be made concerning the use of PMC within Abbott Zwolle.  

4) How should Abbott Zwolle apply process monitoring and control? 

1.6 OUTLINE OF THE REPORT 
The remainder of this report is organized in the following manner. In Chapter 2. the current situation of 

Abbott Zwolle is described, where the answer to research question 1 is provided. In Chapter 3, a 

literature review is performed where research question 2 is answered. In Chapter 4, the process 

parameters of the line are evaluated, and the filtering needed and the level of control of the parameters 

is discussed. In this chapter, research question 3 is answered. The application of PMC within Abbott 

Zwolle is discussed in Chapter 5, where research question 4 is answered. In Chapter 6 we draw 

conclusions and recommendations on this research for Abbott Zwolle.  
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2. CURRENT SITUATION 
This chapter provides insight into the current situation at Abbott Zwolle. Section 2.1, elaborates on the 

production process at the ARTH filler. How data is currently collected and used is described in Section 

2.2. Then the use of PMC within Abbott Zwolle is elaborated in Section 2.3. We end this chapter with 

conclusions on the current situation in Section 2.4. 

2.1 CONTEXT ON THE PRODUCTION PROCESS 
The filler of the Aseptic Ready To Hang (ARTH) production line is quite 

complex and can fill various recipes of liquid products into three bottle 

sizes, as seen in Figure 2. These products are sold to a wide range of 

countries, which also means that in some cases, recipes or specifications 

for the product might change a bit from the usual production due to 

regulations from that country. For example, China products are 

regulated stricter than EU or US products. The production process of 

these different types of bottles is almost the same during the 

production steps but differs on a few accounts.  

The nature of an aseptic production line is that the product and the containers are sterilized separately. 

For the ARTH line, this means that the liquid product is sterilized separately from the packaging material. 

The liquid product is sterilized in a Utlra High Temperature (UHT) processing machine. Here the product 

is heated over a period of time until the product is sterile. This depends on the flow rate of the product, 

the temperature in the UHT, and the time spent under the sterilization temperature. Figure 3 displays 

how the liquid product is sterilized.  

 

Figure 3 - Sterilization of liquid product 

The liquid is pumped through a holding tube from the UHT onwards and cooled to the desired 

temperature. From there, it is stored in the finished product holding tank. Here the product is kept in a 

sterile environment, ready to be used in the filler of the ARTH line.  

Figure 2 - Ready To Hang bottles (500mL, 
1000mL, 1500mL L to R) 
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The production processes of the different liquid production lines within Abbott Zwolle are almost 

entirely automated. The process starts in Abbott's warehouse, where the empty, ready-to-hang bottles 

are stored on pallets. These pallets are taken by Automated Guided Vehicles to the infeed of the 

production lines. The pallets are placed on a conveyor belt that partially functions as a buffer where 

multiple pallets can be stored and which feeds the pallets into the depalletizer.  One row at a time, the 

bottles are pushed off the pallet onto another conveyor belt that aligns the bottles in the right direction. 

When the entire pallet is emptied, it is automatically discarded, and a new pallet is fed into the machine. 

The buffer area on the conveyor belt ensures that there are always bottles available at the entrance of 

the filler. Figure 4 displays the production steps of the ARTH filler, where the red steps are in the aseptic 

module of the machine. 

From the depalletizer, the bottles are transported to the intake of the sterilization machine called the 

RQT. This is also seen as the entrance of the filler and is where the aseptic environment of the 

production line starts. The entire filling area of the production line is kept under overpressure to the 

outside environment, which forms a pressure wall that keeps out microorganisms and other forms of 

contamination. 

At the RQT machine, the bottles are placed in an upside-down position. The bottles enter the machine in 

groups of ten, and these ten bottles stay as a batch during the entire filling process. After being placed 

upside down, the bottles are heated with sterile hot air before the outside is sprayed with hydrogen 

peroxide (H2O2) vapor. The preheating of the bottles is needed to make sure the entire bottle is covered 

evenly with H2O2. If the bottles are not preheated, the warm H2O2 vapor (approx. 82 °C) will condense 

on the cold plastic bottle. This would mean that the bottles are not evenly coated, and a sterile product 

cannot be ensured.  

After spraying the outside of the bottles with hydrogen peroxide, they are sterile on the outside and are 

transported further into the machine. The inside of the bottles is slowly warmed with sterile hot air, after 

which the inside is sprayed with H2O2 vapor. The inside of the bottles is dried off by hot sterile air that 

follows a three-step cooldown pattern from 80 °C to 20 °C, which cools the bottle to the filling 

temperature. This is a crucial step because insufficient drying might lead to residue peroxide in the 

bottles, which might cause a food-safety issue. 

The bottles are now entirely sterile and are fed into the Bosch filling station. Here the bottles are pre-

injected with nitrogen gas which replaces the air present in the bottles. This step is needed because the 

oxygen in the air will react with the product, which will speed up the degradation of the ingredients (e.g., 

vitamins). After the preinjection of nitrogen, the bottles are filled with the liquid product that is 

transported from the finished product holding tank, which is located above the filling station. 

Figure 4 - Production steps of the ARTH filler 
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When the bottles are filled, they are rinsed with an after injection of nitrogen gas to replace possible air 

left at the top of the bottle. After the nitrogen injection, the bottles move to the sealing section of the 

machine. The seals are stamped out from a film roll and heated and sterilized before moving into the 

sterile filler environment. Here they are placed on top of the bottles and fused.After the sealing, the 

bottles leave the filler and the aseptic module and continue to the buffer area of the production line. The 

bottles pass through various quality-checking machines and are labeled and packaged. After packing the 

bottles into boxes, they are placed onto pallets and transported by automated guided vehicles to the 

warehouse where they are stored for transport.  

The buffer areas in front and after the filling machine are very important for the operation of the line. 

The buffer area after the filler can store a significant number of bottles before the filler stops due to a 

lack of capacity. This buffer area gives Operators time to fix problems or errors further down the line 

while still being able to produce bottles. The buffer area in front of the filler ensures that there are 

always bottles present at the infeed of the production line. If the filler itself cannot operate, and the 

buffer area after the filler is empty, then the remainder of the line also stops. The line produces 24/7 for 

approximately 40 weeks a year. It is only stopped during the summer plant shutdown when extensive 

maintenance and cleaning occurs or during a ‘Cleaning in Place’ (CIP), where the machine is cleaned 

before resuming production. 

The aseptic nature of the line means that the product is only sterile when the bottle is sealed, and all 

steps before that have taken place with sterile parts and under a sterile environment. This means that if 

anything in the filler goes wrong before the bottle is sealed, the product might get contaminated, posing 

a quality threat to Abbott. Various systems are in place in the filler to ensure that the sterile 

environment is maintained. Most of the time when an error occurs at the filling station of the ARTH line, 

a sterile environment can be maintained. The machine either needs to wait for a parameter to come 

back up to its threshold level, or a part of the machine needs to be cleaned while keeping the rest of the 

filler under a sterile environment. However, sometimes the filler becomes unsterile; this is the case 

when for example, the overpressure within the filler falls below a certain threshold. Then there is the 

possibility that microorganisms have gotten into the filler, and thus the machine needs to be thoroughly 

cleaned. Depending on where the sterility breach has taken place in the filler, the cleaning can take 

between 1 and 10 hours. Every hour of downtime is a significant expense for Abbott due to the labor 

hours and missed revenue from production. One of the main contributors to this is FIQ098, a sensor that 

measures the flow of hot air needed to sterilize the bottles. This flow parameter has had over 3150 

occasions in the past year that have been out of specification. Every time this parameter is out of 

specification, the machine waits until it is within spec again before continuing production.This can be a 

matter of seconds, but there are also instances where the machine has to be restarted, which takes up 

much longer.  

2.2 MONITORING AT THE FILLING MACHINE 
This section describes how the filling machine is currently monitored. Section 2.2.1. discusses how data is 

gathered at Abbott Zwolle and how the machine is currently monitored. Section 2.2.2 elaborates on the 

checks on the ARTHs fillers’ performance that take place.  

2.2.1 Data gathering and monitoring 

The Supervisory Control and Data Acquisition (SCADA) system controls and monitors the ARTH filler. 

SCADA is a combination of hardware and software that enables the automation of industrial processes 
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by capturing real-time data. The SCADA system connects sensors that monitor industrial equipment like 

pumps, valves, or motors to an onsite/ remote server. The main benefits of this SCADA system are that it 

enables Abbott, first of all, to control the operational performance of the machine. In the system, 

setpoints and ranges for production variables can be altered. This is important because a 500 ml bottle 

does not need as much H2O2 for sterilization as a 1500 ml bottle. In the system, various combinations of 

bottle sizes and recipes are stored, which are selected for the corresponding item that they are 

producing at that time. Next, it can control various valves and motors or production speeds that need to 

be altered due to circumstances.  

Furthermore, it has an alarm function built-in. This function is triggered when a process is in a particular 

step of production, and a sensor goes outside of its specification limits for that production step. The 

alarm either causes a stop or needs to be deleted or checked by an operator. The specification limits are 

based on experience, regulations, and required machine settings.  

Finally, it serves as a data acquisition tool. The real-time data acquired from the sensors is stored on a 

server where it can be accessed for further use. For this, Abbott uses Osisoft PI for this application. 

OSIsoft PI is a software system that is specialized in collecting, historicizing, finding, analyzing, delivering, 

and visualizing data.  

 

Figure 5 - Example of HMI interface 

The SCADA system of Abbott has a Human Machine Interface (HMI) next to the filler; this is essentially a 

monitor that displays the real-time values of the machine. This HMI also functions as an interface from 

which changes to the production process can be made. The HMI interface displays the real-time value of 

a lot of sensors, motors, and valves, as can be seen in the example displayed in Figure 5 (note that this is 

not an HMI interface of Abbott, due to confidentiality, this is left out of this study.) This is also one of its 

limiting factors. The HMI displays the technical drawings of certain parts of the ARTH filler.  These 

drawings are pretty complex, and the real-time values are hard to find and read.  This is because it is not 

designed for real-time monitoring but for controlling the machine when needed. An example of a 

parameter that could be monitored is outlined in the red box in Figure 5. Figure 5 is selected as a 

comparable figure to one of the SCADA HMI interfaces of Abbott Zwolle at the ARTH line.  
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The PI interface analyzes the data points of the various sensors, motors, valves, et cetera, collected 

through SCADA. The PI interface is set up for each sensor with compression and exception settings. 

Compression and exception settings use basic math to compare the current measurement to the 

previous measurements. These settings determine if a measured point is worthwhile to store or not. 

With proper compression and exception settings, disk space and network traffic can drastically be 

reduced and thus, the overall performance can be increased while maintaining high-level data. The 

compression and exception settings serve as a filter; they determine whether a data point is meaningful. 

The definition of meaningful data depends on the sensitivity of the settings, but in general, it is data that 

says something about a shift in the process. If, for example, a sensor shows a linear upward trend for 1 

hour, there is no use in storing all data points for that sensor. There is only the need to store the starting 

point of the linear uptrend and the end of the linear uptrend. Using interpolation, the value of a sensor 

during any moment between those points can then be determined. The exception setting is a horizontal 

band with length x and width y. PI takes the last measured point, draws a horizontal band with 

dimension x,y from it, and evaluates if all newly generated data points fall in the box. If this is the case, 

the data point is rejected and removed. If the data point falls outside of the x,y box, it is classified as 

meaningful data and set as the new data point from which a new x,y box is constructed. X is the Exdev 

setting, or the width of the box, and Y is the ExMax setting, or the box's length (time interval).  

The compression setting takes the degree of deviation into account. It takes the last archived data point 

and draws a cone shape to the newly generated data point. The cone's width is the data point + /- half of 

the Compdev setting (e.g., if the Compdev = .1 and the data point has a value of 1, the cone has a width 

of 0.95 to 1.05). The maximum length before a data point is stored is the CompMax setting. For example, 

a value is stored, and a new data point is generated called point 1. From point 1, a cone is drawn with 

width Compdev. A new data point is generated called point 2, which falls within the boundaries drawn 

from point 1. Point 2 is then accepted and point 1 is then deleted from the data set. From there, a new 

cone is drawn with the width of Compdev. Again a new point is generated called point 3. This point does 

fall outside the boundaries of the cone and thus is stored and set as the newly archived data point from 

where the new cone is drawn.  

The larger the compression and exception settings, the less sensitive the PI interface is; thus, fewer data 

points are stored. The smaller the settings, the more sensitive the PI interface is; thus, more data points 

are stored on the server. 

This, however, also poses a risk. If the compression and exception settings are not correctly set up, then 

there is a risk that meaningful data is lost. In general, all PI data points can be assumed to display a 

correct representation of reality. This, however, does not mean that all sensors are ideal for Stochastic 

Process Control purposes. Some produce a lot of data events due to the oscillation of a sensor between 

two variables. Suppose the exception and compression settings have not been set up correctly. In that 

case, this can mean that a sensor produces a lot of ‘grass,’ switching back and forth between two values 

while the shift might be minimal, for example, a temperature gage oscillating between 56 and 57 when 

the actual value is 56,49 and 56,51. However, this should not be a substantial problem for this research. 

Wheeler (2017) states the following concerning the quality of a measurement system: “Measurement 

errors will inflate the limits of any process behavior chart, however until you get to the point of no longer 

finding any signals of exceptional variation on your process behavior charts, you do not need to check on 

the quality of your measurement system.” 
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After passing through the PI interface, the filtered values are stored on the PI server. From there, the 

data can be extracted with various applications. The most commonly used application for this is PI 

Processbook (a tool that allows us to plot and display data) and PI Datalink. PI Datalink allows us to 

retrieve data from the PI server for specific sensors, timeframes, and conditions (like bottle type or 

different steps during production) and export it to Excel. 

From PI, data can be retrieved using a time-based or an event-based sampling method. Time-based 

sampling collects data at regular intervals, regardless of whether there is a change in the data’s value 

(recall the interpolation function of OSIsoft). If data is sampled every minute, it takes interpolated values 

from events (archived values) that correspond to the minute requested. Event-based sampling only 

retrieves the events (archived values) from PI when requesting data. If 24 hours of data is requested for 

a certain parameter, a sample of 1140 data points is retrieved from the PI server when using time-based 

sampling. Using event-based sampling, the number of points might be drastically lower, depending on 

the sensitivity of the exception and compression settings of the parameter. Time-based sampling is 

generally better suited for frequently changing data and continuous monitoring (e.g., temperatures, 

pressures, or flow rates). Whereas event-based sampling is better suited for collecting data that is 

triggered by specific events (e.g., machine failures or alarms). 

2.2.2 Checks on machine performance 

There are several moments during the day when the performance of the filler is discussed. First of all, 

the alarms built into SCADA that are checked by Operators when they occur. Next to that, there are 

regular moments throughout the day when a check on the performance of the line is done. Four central 

moments are essential: the shift handover, the morning meeting, the Root Cause Analysis (RCA) meeting, 

and the Batchworkorder checks.  

During the shift handover meeting, the past performance and all notable events of that shift and 

previous shifts are discussed between the leaving and starting teams. Abbott works with a five-shift 

roster, meaning once every two days, a team starts working after four days of leave. They need to be 

filled in with the necessary details on the operational performance of the filler during their leave. 

Currently, this is done through the discussion of the logbook where all notable events are registered. 

During this meeting, there is no way of seeing the past performance of the critical parameters of the 

filler over the last four days or of the last 16 - 24 hours when the operator had his leave. 

The morning meeting is a get-together of one or two operators, the Mechanical Excellence Engineer, the 

Mechanic, the Front Line Leader, the Quality officer, and optionally the Liquid OG manager and the 

Process Engineer. They discuss the Overall Equipment Effectiveness (OEE) of the past day, any 

maintenance that is due during that day, and any notable events that might have happened outside of 

office hours.  

Furthermore, there is the RCA meeting where problems encountered on the line are analyzed and root 

causes and solutions are identified.  

One of the ways that Operators currently use SCADA is the hourly Batch Work Order check. The purpose 

of the Batch Work Order check is to let Operators have a periodic review of the process performance. 

The work order contains 19 parameters that are checked, for which the specification limits and the 

setpoints are given. For example, a nitrogen flow parameter has a specification limit of 5 to 10 cubic 

meters per hour and a setting of 8 cubic meters an hour. Operators are expected to write down the 
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parameter's current value and compare it to its specification limits. To do this, Operators have access to 

multiple dashboards. These dashboards are complex technical drawings that display the entire filler. See, 

for example, Figure 5. It is a schematic overview, and all parameters are placed according to their 

position on the filler. This, however, is not very clear. The parameters are tough to find and are not in a 

logical order when compared to the Batch Work Order. One example of a parameter that could be 

written down is marked by a red box in Figure 5. For operators, this means that they have to click 

through four different screens to write down the different values for the entire Batch Work Order.  

2.3 PROCESS MONITORING AND CONTROL WITHIN ABBOTT ZWOLLE 
This section looks into the current use of Process Monitoring and Control (PMC) within Abbott Zwolle. 

Before looking at the current use of PMC within Abbott, the concept of PMC is elaborated on. 

PMC, also called Stochastic Process Control (SPC), is a tool for monitoring and reducing process variation. 

Every production process shows variation. However, it is interesting for a production company to identify 

whether the variation is ‘normal’ or ‘special cause’ variation. In the case of Abbott, variation could occur 

through a slightly different composition of the raw materials or a different season of the year, which 

causes the humidity to be a bit higher. These are examples of little changes that can be the cause of 

variation within the production process. This is normal and should not influence the end product that 

much. However, sometimes a shift in variation occurs, or a process shows a linear up or down trend. The 

process is not behaving within the ‘normal’ bandwidth and thus is showing special cause variation. This is 

an indication that something somewhere in the production process has significantly changed the way the 

process is operating. PMC aims to identify and eliminate the causes of variability in the process 

(Montgomery, D.C., 2009). To achieve this, statistical analysis can be used to separate the potential 

signals from the probable noise (Wheeler, D.J. 2010). The variability of a process has a direct relation to 

the quality and performance metrics of a process. By reducing variability, there will be fewer 

breakdowns or rejected products that do not meet quality specifications.  

In its strive to become a world-class producer, Abbott is searching for ways it can continuously improve 

its processes. One way they are currently approaching this is through PMC. This initiative has been 

around for some time now. The first project using PMC was started in 2017. Since then, it has slowly got 

a small amount of traction within the organization. In 2019 a steering committee was started that was 

responsible for the implementation and integration of PMC for Abbott Zwolle. This steering committee 

has defined goals for Abbott Zwolle regarding the widespread use of PMC in the organization. 

Furthermore, several projects were started in 2019 trying to implement PMC on various lines.  

Currently, PMC is still mainly used by Process Engineers. They use PMC to monitor critical parameters 

and ensure they do not exceed specification limits. Furthermore, they use PMC during root cause 

analysis, where they systematically analyze data to find causes for problems and deviations on their 

production line.   

Within the Abbott Nutrition division, PMC is used variably. Some sites are pretty far in the 

implementation of PMC, whilst others have a long way to go. Abbott Zwolle is one of the leading sites 

with regard to PMC compared to the rest of the nutrition division. This, however, is a crude view; the 

targets set by the overarching PMC group of Abbott Nutrition are not realistic when compared with the 

actual performance of the sites. The target for the past year was that each site would create three 

control charts. Abbott Zwolle currently has over 250 control charts available for its site. The target of 
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creating charts is not something that should be monitored. Many charts within Abbott Zwolle are not up 

to date, and thus the control limits might not be valid anymore. The goals of the global PMC group 

should focus more on the proper use and integration of charts instead of creation. 

Within Abbott Zwolle, the ownership is also ill-defined. Currently, the Process Engineers are the ‘owners’ 

of PMC. However, they have no explicit time assigned to update PMC in their work week. Next to that, 

no clear policies are in place for when and how to update the existing charts. Furthermore, no one within 

the Site Leadership Team is steering for PMC integration. They know about PMC and have seen several 

projects using PMC, but there is no clear, distinct push from senior leadership to integrate PMC 

company-wide.  

2.4 CONCLUSIONS ON THE CURRENT SITUATION 
In this chapterwe discussed the current situation at the ARTH filler. The production process of the ARTH 

filler is discussed, and the importance of a sterile production environment within the filler is elaborated. 

The sterility of the machine is currently monitored by a SCADA system that generates alarms when a 

process parameter exceeds its specification and causes the machine to stop. Furthermore, the SCADA 

system functions as a control panel for the line, and it collects the sensors’ data on the ARTH filler. The 

collected data is used in the Human Machine Interface, where Operators can view the current values of 

the process parameters and alter machine settings such as speed, temperature, and pressure. The data is 

then sent to the OSIsoft PI application, which stores the data after filtering it with compression and 

exception settings. The performance of the line is discussed during various moments of the day. First of 

all, during the shift handover where a new production team replaces the previous one. Next to that, 

during the daily morning meeting where all relevant stakeholders are present. Furthermore, the 

performance is checked on an hourly basis by Operators on the HMI, and a Batch Work Order is filled in. 

Within Abbott Zwolle, Process Monitoring and Control is mainly used by Process Engineers who use it to 

evaluate the process parameters of their line critically. The use of PMC within Abbott Zwolle is mainly 

reactive, where a problem occurs, and then monitoring is set in place. The current way of monitoring the 

critical process parameters is not sufficient. There is currently no way of preventively spotting out-of-

control situations which can cause significant problems. 
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3. LITERATURE REVIEW 
This chapter reviews the literature on various topics related to Stochastic Process Control (SPC). In 

Section 3.1, we elaborate on how changes in variation can be identified. This encompasses special and 

chance causes of variation, run rules to increase sensitivity within control charts, and the different 

phases of SPC. In Section 3.2 we review the need for probability distributions within control charting 

applications and the importance of subgrouping within the data set. In Section 3.3 we discribe the most 

used control charts during Phase I and Phase II of SPC. In Section 3.4 we look into various ways SPC can 

be implemented within an organization and what lessons can be learned from there. 

3.1 IDENTIFYING CHANGES IN VARIATION 
This section is composed of three subsections that aim to determine when a process is in statistical 

control. First, Section 3.1.1 discusses special cause and chance cause variation. In Section 3.1.2, the run 

rules for control charts are explained. Section 3.1.3 discusses control charting during Phase I and Phase II.  

3.1.1 Special cause and chance cause of variation 

According to Woodall (2000), a process is said to be “in statistical control” if the probability distribution 

representing the quality characteristic is constant over time. If there is some change over time in this 

distribution, the process is said to be “out of control.” Montgomery (2009) states that a process is in 

statistical control when it is operating with only chance causes (or normal causes) of variation. Chance 

causes of variations are natural variability, the cumulative effect of many small, essentially unavoidable 

causes of variation. If a process shows assignable cause variation or special cause variation, it is said to 

be out-of-control. There are major non-random patterns present within the data that can be due to 

machine failure or human interference. According to Shewhart (1931), a process is considered under 

control when predictions can be made about how a phenomenon will vary in the future using 

experience. This prediction may not be exact, but it allows us to estimate the probability of the observed 

phenomenon falling within certain limits. 

To do this, Shewhart (1931) proposes the control chart to determine whether a process shows common 

or special cause variation. The Shewhart Control chart is the most basic control chart and displays the 

process’s average output with an upper control limit (UCL) and a lower control limit (LCL).  Special causes 

of variation will fall outside of the control limits and thus are easily identified as out-of-control situations. 

Common causes of variation lie inside the control limits; thus, the chart is said to be in a state of 

statistical control.  

3.1.2 Run rules to increase sensitivity 

Western Electric introduced the run rules for control charts to increase the sensitivity of a control chart 

and better identify out-of-control situations. These rules specify non-normal behavior within control 

charts and mark these as out-of-control situations. Shewharts control charts, as seen in Section 3.3.1, 

only link the probability that a data point lies beyond a particular value to an out-of-control or in-control 

state which are set by the historically measured values. The Western Electric handbook (1956) suggests 3 

additional basic decision rules that classify patterns as non-normal or non-random.  
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These additional rules speak of zones within a control 

chart. This is something also introduced in the Western 

Electric handbook.  The area between the upper and 

lower control limit is divided into three categories: 

zone A, zone B, and zone C. These zones are 

distributed one sigma (zone C), two sigmas (zone B), 

and three sigmas (zone A), respectively from the 

centerline as can be seen in Figure 6.  The centerline is 

the average of all measurements. One sigma is one 

standard deviation.  

The 3 additional rules are: 

1.  One point lies outside the three-sigma control limits. (General Shewhart control chart) 

2. Two out of three consecutive points lie beyond the two-sigma warning limits. (Western Electric 

rule) 

3. Four out of five consecutive points lie at a distance of one sigma or beyond from the center line. 

(Western Electric rule) 

4. Eight consecutive points lie on one side of the center line. (Western Electric rule) 

These rules were established to increase the sensitivity of a control chart. It helps detect nonrandom 

patterns earlier. Montgomery (2009) expands upon these rules with six additional rules to spot a 

nonrandom pattern: 

5. Six consecutive points are steadily increasing or decreasing. 

6. Fifteen points in a row are plotted in zone C (above or below the centerline) 

7. Fourteen points in a row are alternating up and down 

8. Eight points in a row lie on both sides of the center line, with none in zone C. 

9. An unusual or nonrandom pattern in the data,e.g., cyclic behavior. 

10. One or more points are near a warning or control limit (the warning limit might be closer to the 

centerline than the 3sigma limit).  

Every rule included in the control chart increases the sensitivity of the chart. According to Montgomery 

(2009), care should be exercised when using multiple decision rules simultaneously. This is due to the 

increased chance of a Type I error. A Type I error occurs when it is assumed that a process is out of 

control when in reality, the process is in control.  If k decision rules are used and that criterion i has Type 

I error probability αi, then the overall Type I error or the chance of a false alarm of the decision criteria is 

𝛼 = 1 −  ∏ (1 − 𝛼𝑖)𝑘
𝑖=1 . The more that rules are applied to a chart to identify nonrandom patterns, the 

greater the chance of a defined out-of-control situation that is actually in control.  

3.1.3 Phase I and II of process control 

The above-stated rules help us identify data points that are out of control. However, they do not tell us if 

the process itself is in or out of control. A two-step procedure is recommended in the standard literature 

to determine the state of a process and bring it into a state of control. According to Atalay et al. (2019), 

in the first phase, also known as Phase I, the goal is to analyze the process by examining past data and 

using iterative statistical calculations to estimate unknown parameters.  The end goal of Phase I is to 

Figure 6 - Western Electric or zone rules 
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have a reasonable estimation of the parameters that will be used in the Phase II application of control 

charts.  

A Phase I study sets preliminary control limits for a fixed-size sample. From there, a basic Shewhart 

control chart, as seen in Section 3.3.1, is plotted to analyze the data compared to the preliminary control 

limits. If all the data points of the sample fall within the control limit, the process is said to be in control. 

When values are outside the control limits, an iterative study of the process is started. Each data point 

outside of the control limits is analyzed. Suppose the cause for the out-of-control situation is found. In 

that case, the decision is made if the cause of the variation is process specific or if it is a form of normal 

variation detected as an out-of-control situation. The result of this research will be a decision to include 

or exclude the data point. Afterward, new control limits will be calculated, and the process will be 

repeated. When eventually all points fall within the control limits, the process is said to be in control 

during that period of time, and the estimated parameters resulting from the sample can be used for the 

application of Phase II charting. 

During Phase II of charting, it is assumed that the process is in control and that a relatively good 

estimation of the process parameters is made. The goal of Phase II is focused on process monitoring, 

making sure that the in-control process stays in control and picking up small sources of variability. 

Suppose the Phase I study of SPC has been done right. In that case, all significant sources of ugly noise 

should have already been filtered out, and only minor sources of variation should remain. During this 

phase, more complex charts will be applied to the processes that are more sensitive to slight deviations 

and which should detect the remaining causes of the special cause variation.  

3.2 DATA REQUIREMENTS FOR PMC 
This section discusses the requirements for a valid data set for PMC applications. In Subsection 3.2.1, the 

need for distributions for control charts is discussed. Next, the importance of subgrouping data is 

discussed in Subsection 3.2.2.  

3.2.1 The need for distributions 

When reviewing the literature, there are some contradictions in how one should approach control 

charting. Shewhart (1931) proposes two different approaches for analyzing data. Starting off, he 

describes the generic statistical approach that any statistician might be inclined to use. The statistical 

approach has four steps: It starts with fitting a probability model to the data, which then can be used for 

later analysis. Step 2 is choosing a probability or a risk that a false alarm will occur. Step 3 is finding the 

exact critical values for the selected probability of false alarms or transforming the model to match the 

known critical values.  Step 4 uses the obtained critical values in further analysis.  This approach is 

generically valid when looking at statistics, but Shewhart rejects this approach when looking at control 

charting. He points out that there will never be enough data to identify a specific probability model when 

collecting data. According to him, probability models are limiting functions for infinite sequences, and 

therefore they can never be said to apply to a finite portion of that sequence.  

Shewhart proposes a different approach. His approach, also consisting of four steps, is more generic. 

Starting with choosing some generic critical values for which the probability of a false alarm will be 

reasonably small regardless of what probability model is chosen and using these critical values for 

further analysis. His generic approach uses three-sigma limits.  
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Wheeler (2009) verifies the approach of using three-sigma limits. In his study, he analyzed six different 

probability distributions ranging from uniform to exponential distributions (and three others). He 

concludes that 98 to 100% of the area under each probability distribution can be covered using three-

sigma limits. In practice, this means that the probability of a point falling outside these three-sigma limits 

is relatively small, and thus, it is more likely that the point is a signal of process change.  

Shewhart (1939) emphasizes an essential point regarding his approach: when using run rule 1 (i.e., three-

sigma limits) to detect assignable causes, it is crucial to divide the original sequence into subgroups of 

relatively small size. Failure to do so may result in overlooking the presence of assignable causes. If 

subgroups are too large, out-of-control points will be suppressed by the majority of in-control data 

points. 

This view of Shewhart and Wheeler is questioned by Khakifirooz et al. (2021). Khakifirooz et al. agree 

with Shewhart and Wheelers' approach when analyzing baseline data in Phase I applications. However, 

they reject the approach for monitoring associated with Phase II, in which the use of a process model can 

be helpful. They recommend fitting an appropriate probability model for Phase II control charting 

applications.  

There is a clear distinction between Phase I and Phase II charting applications. The use of probability 

distributions in Phase I charting is generally rejected. Phase I charting aims to filter out the probable 

noise for which Wheeler (2009) and Shewhart (1931) have proven that three-sigma limits are sufficient. 

Phase II applications focus more on keeping a process in control and early identifying in-control 

situations. For this, Khakifirooz et al. (2021) recommend the use of probability models.  

3.2.2 Subgrouping 

One critical assumption concerning PMC is that the items produced are under relatively homogeneous 

conditions when the process is stable (Zwetsloot et al., 2021). This is an important note to consider when 

trying to analyze a parameter using PMC. If a parameter is known to perform differently under certain 

situations, that should be considered during the analysis. According to Wheeler (2022), most statistical 

techniques are built on the assumption that the data are homogeneous. However, in reality, data are 

rarely homogeneous. The process behavior chart is a crucial tool for examining data for homogeneity, 

and it is the premier technique for this purpose in data analysis. 

Abbott Zwolle can produce 500, 1000, and 1500 mL bottles with one machine. Some production settings 

differ for the different bottle sizes. This is very logical since a 1500 mL bottle is larger than a 500 mL 

bottle and thus logically needs more hydrogen peroxide to be sterilized. These differences will become 

obvious when plotting data in a process behavior chart, even without prior knowledge of the system. 

And this is the main benefit of a process behavior chart. It is effortless to spot process shifts during 

production in a behavior chart, whether it is an increase in variation, a cycle during production, a step-

change or linearity (See Appendix I). 

 When data does not appear to be homogenous when plotting it on a process behavior chart, rational 

subgrouping can be considered. Zwetsloot (2021) states that if items are produced under conditions that 

change at known times, then the principle of rational subgrouping can be applied to break up the data 

sequence into more meaningful subsequences. In the case of Abbott Zwolle, this would mean rationally 

subgrouping the data into the different bottle sizes and even the different production steps. How data 
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should be sampled can best be answered by a Process Engineer who thoroughly understands the 

system's behavior. 

3.3 CONTROL CHARTS  
This section discusses a selection of the different types of control charts. In Subsection 3.3.1, various 

Phase I control charts are discussed, and in Subsection 3.3.2, various Phase II control charts are 

discussed.  

3.3.1 Phase I charts 

As described earlier, there is a clear distinction between Phase I and Phase II charting applications. 

During Phase I, the most used charts are the Shewhart control charts. These charts can be subdivided 

into two subcategories. First, control charts for continuous data (variable data charts), and second, 

charts for discrete data (attribute data charts). For this study, almost all parameters are continuously 

monitored; thus, this research is mainly focused on the variables charts.  

The Shewhart control charts are the most commonly used charts within organizations and the most 

simple to construct. One of the significant benefits of these charts is that it does not take a statistician by 

trade to understand and apply them. The combinations of Shewhart Variables Control Charts and when 

to use them are depicted in Table 1.  

Shewhart Variables Control Chart Subgroup size 

I − MR chart Subgroup = 1 

�̅� − 𝑅 𝑐ℎ𝑎𝑟𝑡 Subgroups between 2 and 10 

�̅� − 𝑆 𝑐ℎ𝑎𝑟𝑡 Subgroup ≥ 11 
Table 1 - Shewhart Variables Control Chart 

Another reviewed chart type is the Emperical Reference Distribution 

(ERD) chart. This chart can be applied when data is not normal, or 

another distribution cannot be fitted to the data set.  

I – MR Chart:  

The I, or Individuals, chart is used to monitor the process mean when measuring individual values at 

regular intervals of a process. It collects single observations of a process over time. The MR, or Moving 

Range, chart is used as a complementary chart to the Individuals chart (see Figure 7). Where the 

Individuals chart monitors the process mean over time, the Moving Range chart tracks the process 

variation by comparing each measurement to its previous measurement. The mean of the process is 

calculated by the formula �̅� =  
∑ 𝑥𝑖

𝑘
𝑖=1

𝑘
 where k represents the number of subgroups and 𝑥𝑖 the value of 

the process at point i. Since it is an Individuals chart, every data point is its own subgroup, and thus k 

represents the number of measurements in the sample. The moving range is calculated by the formula 

𝑀𝑅̅̅̅̅̅ =  
∑ |𝑥𝑖−𝑥𝑖−1|𝑘

𝑖=2

𝑘− 1
 , this formula divides the sum, of the absolute value, of the current point minus the 

previous point,  by the number of subgroups minus one. The corresponding control limits are then 

calculated by multiplying the moving range with a control chart constant (Appendix II) and adding them 

to the process mean. These constants are calculated for each n, where n is the number of observations 

taken into account in the calculation. For an individual's chart, n is always equal to 2 since it compares 

the current state with the previous state. The formulas for the control limits are given in Table 2.  

Figure 7 - I-MR chart 
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�̅� − 𝐑 𝐜𝐡𝐚𝐫𝐭: 

The Xbar control chart plots the average change in the process over time from the different subgroup 

values. The limits of the Xbar chart are derived from the R-chart. That is why Montgomery (2009), among 

others, states that the first step when interpreting patterns on the Xbar chart is determining whether the 

R-chart is in control. It is not advisable to interpret the Xbar chart if the R-chart indicates that the process 

is out of control. If the R-chart is not in control, the limits of the Xbar chart will not be valid either. To 

construct the Xbar chart, each sample's average is calculated, and the range of the data points within 

that sample is determined. From there, the overall average value of all samples and the overall range of 

all samples are calculated. These metrics are then used for the construction of the control limits. 

One of the benefits of using an Xbar chart is that it takes the sample average and plots it as one point. 

This makes the chart less sensitive to anomalies and thus reduces the chance of over-adjustment of the 

process.   

�̅� − 𝐒 Chart:  

The Xbar S chart is comparable to the Xbar R chart. The S-Chart is used when the sample size is greater 

than or equal to 10. Shewhart (1931) suggests collecting between 20 and 25 samples within a subgroup 

size of 10 and above. The S chart is an approximation of the Average standard deviation of the data set. 

Wheeler (2010) provides a study explaining why the use of a Global Std. Dev and other forms of 

computing control limits are wrong (see Appendix III), there he shows the calculated control limits for 

each form of approaching the standard deviation of various datasets. The method of Average Range 

(described above) and the method of Average St. Dev (Xbar – S chart) are the most robust when 

calculating control limits and are, by default, integrated into statistical software packages like Minitab or 

R. 

Shewhart attribute control charts: 

Shewhart also proposed four different attribute control charts, which focus on the nonconformities of 

the production process.  He introduced the np chart to monitor the number of nonconforming units 

when measuring subgroups at regular intervals. The p chart is used to monitor the proportion of 

nonconforming units when measuring subgroups at regular intervals. The c chart is comparable to the np 

chart, which monitors the total number of nonconforming units when measuring subgroups at regular 

intervals. Furthermore, the u chart is used to monitor the average number of nonconformities per unit 

when measuring subgroups at timely intervals. These charts are mainly used for batch approvals and 

quality assurance of the produced product, where the producer accepts a threshold of non-conformities.  

Empirical Reference Distribution control chart: 

The ERD is introduced by Willemain and Runger (1996). This paper provides an approach for control 

charting in the absence of an assumed normal distribution.  The empirical reference distribution can be 

used to set up control limits for non-normal data, given that sufficient historical data is present. In 

Chart Upper Control Limit Center Line Lower Control Limit 

I-Chart (Individuals) 𝑈𝐶𝐿 =  �̅� + 𝐸2𝑀𝑅̅̅̅̅̅ 𝐶𝐿 = �̅�  𝐿𝐶𝐿 =  �̅� − 𝐸2𝑀𝑅̅̅̅̅̅ 
MR-Chart (Moving Range) 𝑈𝐶𝐿 =  𝐷4𝑀𝑅̅̅̅̅̅ 𝐶𝐿 =  𝑀𝑅̅̅̅̅̅ 𝐿𝐶𝐿 =  𝐷3𝑀𝑅̅̅̅̅̅ 

Table 2 - Control limits for I-MR charts 
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stochastic process control, the ERD can be used to estimate the probability of extreme events by 

extrapolating the ERD beyond the range of the observed data. This approach assumes that the observed 

data is representative of the underlying probability distribution of the process parameter. 

To obtain the ERD, Willemain and Runger (1996) specify the following: let 𝑌 denote the sample statistic 

obtained from a subgroup for which the process parameter is deemed operating under normal 

conditions. These standard conditions are determined during the Phase I analysis and confirmed by the 

line's Process Engineer. The probability density function and cumulative distribution function of 𝑌 are 

denoted as 𝑓(𝑦)and 𝐹(𝑦), respectively. Let 𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑚, be the independently observed values of 𝑌 

computed over m subgroups. Here 𝑚 is set as the number of observations during the in-control period. 

These observations are then used to calculate the control limits. 

Let 𝑌(𝑘) be the kth-order statistic in the sample, with 𝑌(𝑚) being the largest. By convention, 𝑦(0) =

 −∞  and 𝑦(𝑚+1) =  ∞. The 𝑚 order statistics divide the possible values of 𝑌 into 𝑚 + 1 random-length 

sections known as “statistically equivalent blocks.” The first block extends from −∞ to 𝑦(1) , the second 

from 𝑦(1)  to 𝑦(2) , and so forth, with the (𝑚 + 1)st block extending from 𝑦(𝑚) to ∞. Let 𝑃 be the 

probability that 𝑌 falls within any set of 𝑏 blocks, say those between 𝑦(𝑘)and 𝑦(𝑘+𝑏); then 𝑃 =

Pr[𝑦(𝑘) ≤ 𝑌 ≤ 𝑦(𝑘+𝑏)] = 𝐹(𝑦(𝑘+𝑏)) − 𝐹(𝑦(𝑘)) for 0 ≤ 𝑘 ≤ 𝑚 and 1 ≤ 𝑏 ≤ 𝑚 + 1 − 𝑘.  

Now from here, control limits can be chosen empirically such that, 𝐿𝐶𝐿 =  𝑦(𝑘)and 𝑈𝐶𝐿 =  𝑦(𝑘+𝑏), 

where 𝑃 then is equal to the probability of a future point falling within the set control limits. 

 

Figure 8 - Control limits from ERD 

Consider the example in Figure 8. Here the order statistics is 𝑚 = 9, which is divided by 𝑚 + 1 =

10 statistically equivalent blocks. The chart is composed of limits centered around the mean of b = 4 

blocks.  Since 𝑦(𝑘) and 𝑦(𝑘+𝑏) are random variables, 𝑃 is also a random variable. Due to the theory 

explained by Mosteller and Rourke (1973), it follows that the probability 𝑃 of a point falling within any 

set of b blocks has the expected value of 𝐸[𝑃] =  
𝑏

(𝑚+1)
 . For the example in Figure 8 this would mean 

that the probability of a point falling in the block centered around the mean of the process is 𝐸[𝑃] =

 
4

(9+1)
= 0.4. This, in turn, means that the probability of a point falling outside of the blocks is equal to 

1 −  𝐸[𝑃] = 0.6. 
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3.3.2 Phase II charts 

The Phase II applications of control charting are statistically more complex. Here it is assumed that the 

process is in control. With this, it is meant that the processes Phase I control charts have been evaluated 

and that significant sources of special cause variation have been removed. The two primary charts used 

for this phase are the cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) 

control charts. The goal of Phase II charting is monitoring the in-control process en spotting slight 

changes in variation or process mean. One of the key differences is the application of probability models. 

For Phase II charting applications, normality is assumed for the data. The performance of, for example, 

an Individuals chart when the data is even moderately non-normal distributed decreases significantly. 

This means that the computed control limits might be entirely inappropriate for Phase II monitoring 

(Montgomery, 2009). To combat this, one can transform the variable to a new form that is 

approximately normally distributed or fit another type of distribution to the data.  

CUSUM CHART:  

Where the Shewhart control charts excel at detecting large 

deviations in average (1,5 Sigma and larger), it is not very good at 

detecting small process changes. If the mean of the process has a 

slight shift, it is still plotted as in control for a Shewhart averages 

chart. The solution proposed for this is the CUSUM chart. This 

chart plots the deviation of a range of samples compared to a set 

target value. This means that the CUSUM chart can detect small 

shifts in process performance. If the process is in control, it is 

expected that a random walk around 𝜇0,  that is the target value of the process, is observed. If the 

process starts to deviate from this target value, a run on either side of the CUSUM chart will be seen, 

indicating that a process shift has occurred. The control chart is formed by plotting the value 𝐶𝑖 =

 ∑ (𝑥�̅�
𝑖
𝑗=1 −  𝜇0), where 𝑥�̅� is the average of sample j against the sample number i. The most common 

form of the CUSUM, the Tabular CUSUM, has one-sided upper and lower CUSUMS. They are calculated 

by 𝐶𝑖
+ = max[0, 𝑥𝑖 − (𝜇0 + 𝐾) + 𝐶𝑖−1

+ ] & 𝐶𝑖
− = max[0, (𝜇0 − 𝐾) − 𝑥𝑖 + 𝐶𝑖−1

− ]. This results in two lines 

that collect deviations above 𝜇0 until the obtained value becomes negative and thus resets itself to 0. 

The value K is called the slack value and is chosen between the target 𝜇0 and the out-of-control value of 

𝜇1 that is of interest for quick detection (Montgomery, 2009). This value works as a scaling factor and 

prevents the chart from going out of control too quickly. Figure 9 displays a CUSUM chart where a run on 

the positive side is occurring. As can be seen, it has broken the control limit with multiple points, and 

thus it is safe to assume that a shift in process performance has occurred. 

EWMA Chart: 

Like the CUSUM chart, the EWMA chart also takes advantage of the sequential accumulating nature of 

the data arising in a typical SPC environment and is known to be efficient in detecting more minor shifts 

(Chakraborti & Graham, 2019). The benefit of the EWMA is that it is very insensitive to the normality 

assumption. This is because it is a weighted average of all past and current observations, making it an 

ideal chart for individual observations. The EWMA is computed following the formulas in Table 3. 

 

Figure 9 - CUSUM chart 
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 w𝐞𝐢𝐠𝐡𝐭𝐞𝐝 𝐚𝐯𝐞𝐫𝐚𝐠𝐞 (𝒛𝒊) UCL CL LCL 
𝑧𝑖 =  𝜆𝑥𝑖 + (1 − 𝜆)𝑧𝑖−1 

𝑈𝐶𝐿 =  𝜇0 + 𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑖] 

𝜇0 

𝐿𝐶𝐿 =  𝜇0 − 𝐿𝜎√
𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑖] 

Table 3 - Formulas of the EWMA chart 

The weighted average (𝑧𝑖) is plotted against sample i and calculated by multiplying the current 

observation 𝑥𝑖 with the scaling factor λ and adding the previous weighted average with the inverse of 

the scaling factor. Commonly the scaling factor is chosen between 0.05 ≤ λ ≤ 0.25, where a smaller 

lambda is chosen to detect more minor shifts in the process. Here it is seen why the EWMA is insensitive 

to the normality assumption. The current observation 𝑥𝑖 only accounts for a small part of the new 

weighted average, which means that previous observations are heavily represented in the formula. 

The control limits are calculated by taking the process mean (or set point) 𝜇0 and adding or subtracting 

the formula for the limits. Here the factor L is the width of the control limits, which is usually set as 3, 

and sigma is the standard deviation of the model. The factor [1 − (1 − 𝜆)2𝑖] approaches unity for large i, 

and thus eventually, the formula converges to 𝑈𝐶𝐿/𝐿𝐶𝐿 =  𝜇0 ± 𝐿𝜎√
𝜆

(2−𝜆)
. 

3.4 REQUIREMENTS FOR SUCCESSFUL IMPLEMENTATION 
In this section, the implementation of Stochastic Process Control is discussed. In Subsection 3.4.1, 

literature focussed on SPC implementation is discussed. In Subsection 3.4.2, other methodologies that 

use SPC are discussed.  

3.4.1 Implementation of SPC 

According to Noskievicova et al. (2012), SPC should be built as ‘the problem-solving’ process with the 

following sub-processes: “Out-of-control signal revelation – Root cause identification – corrective or 

improvement action acceptance – verification of action.”.  Noskievicova et al. (2012) recognize four 

phases that should be walked through for an appropriate application of SPC. They are starting with a 

preparatory phase. It is focused on understanding the process, defining the controlled quality 

characteristics, and performing a Measurement System Analysis (MSA). Furthermore, defining intervals 

and subgroups size. From there, the process should be evaluated on its statistical stability and capability 

and determined if it is indeed stable enough or if further research is required. Finally is the 

implementation and transfer of ownership to Operators, and Quality managers.  

Coleman et al. (2001) recognize SPC as a dynamic process that should follow Deming’s PDCA (plan, do 

check, act) cycle. This is also incorporated into its provided framework, which starts with defining the 

points of measurement, calculating statistical limits, selecting charts, making charts, and evaluating 

charts. Constantly reviewing the framework is deemed necessary for effective implementation. Next to 

that, it should have endorsement by senior management, and the ownership of the charts should be 

kept in the hands of the creator of the charts themselves. Keeping the ownership at the creator of the 

chart is something that Coleman et al. (2001) differentiate from other theories. Most theories hand over 

ownership of the charts to the Process Engineers or Operators that are responsible for the process, not 

the expert on SPC. Furthermore, his approach focuses mainly on the quality of the control chart. Not 

much is mentioned about integration within the organization itself. 

Does et al. (1997) have an approach focused on the implementation's methodological and organizational 

aspects. They recognized that the risks of implementing SPC are more often due to organizational and 
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social factors than the creation of control charts 

and mathematical modeling. They created an 

approach that tackled most risks found when 

implementing SPC. Starting off, they made a four-

Phase Implementation roadmap for the 

organizational side, focusing on top-down 

implementation with the ultimate goal of 

ownership at the operator level.  They proposed 

an organizational structure (Figure 10) that should 

be used to achieve the goal of top-down implementation. 

The first Phase Is creating awareness in the organization. The goal is that all staff have a general idea of 

what SPC is and what the benefits can be for the organization. During this phase, a Steering Committee is 

formed that will interview all departments to get an idea of projects that can be used for the pilot phase.  

The second phase starts with several pilot projects. These projects are performed by PATs (Process 

Action Teams). These PATS follow the ten-step method proposed by Does et al.(1997) and are guided by 

the steering committee. The process is called an operational SPC point when the ten steps have 

successfully been executed.  

The third phase focuses on integral implementation in production. In this phase, several PATs are 

installed under the steering committee. A company should identify its weakest-performing processes 

and assign PATs to these. After completing the ten-step approach, another operational SPC point is 

achieved. All critical process steps of the production line should be covered by these PATs and evaluated. 

Another critical factor here is an SPC coordinator. The SPC coordinator should become familiar with all 

the ins and outs of SPC and servers as a question beacon to the PATs and as a trainer of SPC methods if 

needed.  

The fourth and final Phase Is ‘setting the stage for Total Quality Management.’ Here the PATs are 

dismissed and transformed into Process Improvement Teams. They are tasked to keep the process in 

control, tackle upcoming problems and search for new opportunities for continuous improvement. In 

this phase, the production process ought to be in control, and the application of SPC should be 

broadened to other parts of the company. Think of the purchasing department, warehousing, or product 

development. Furthermore, the company should press its suppliers to adopt SPC within their production 

processes. Total quality can only be achieved if all suppliers and departments apply SPC to their 

processes.  

In this methodology, top management has given 

commitment and control to the steering committee. 

The steering committee has an essential role within 

the organization as the controlling and initiating entity. 

Does et al. (1997) proposed that the manager of 

operations should be the committee chair, 

accompanied by the managers for purchasing, 

maintenance, quality, and development. Furthermore, 

the SPC coordinator or experts should also be part of the 

steering committee. 

Figure 10 - Organizational structure for SPC implementation 
(Does et al. 1997) 

Figure 11 - The ten-step method (Does et al. 1997) 
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The PATs should consist of two to five operators, their supervisor (in Abbott's case, the Front-Line 

Leader), a Process Engineer, the Maintenance Engineer (in Abbott's case, the Mechanical Excellence 

Engineer), and an SPC expert (also the Process Engineer in Abbott’s case).  

The ten-step approach proposed by Does is visualized in Figure 11.  

The methodology is a structured approach that can be followed in almost every situation, and that can 

be standardized across the organization. This way of working integrates top management with 

operators, which aligns interests and motivation for implementing SPC on an organizational level.  

Another critical point is the creation of Out of Control Action Plans (OCAP) to define a way Operators 

should handle whenever a process is out of statistical bounds. The OCAP should be a living document; it 

should be changed whenever new deviations in variation get recognized due to normal variation (e.g., a 

new supplier of base products that require different production settings).  

Anotony et al. (2003) provide a literature review on implementing SPC, highlighting a few crucial aspects. 

First of all, the importance of SPC and variability reduction should be translated organization-wide, not 

only to the management and stakeholders. This is the first step to a successful implementation. From 

then on, a training program focusing on all company levels should create sufficient understanding and 

knowledge of statistics and SPC. They approach it like a LEAN methodology, where the entire 

organization adopts a working method.  

In conclusion, the essential elements for a successful implementation that can be recognized can be split 

into two categories. Of course, the data, charts, and statistics should be valid. If they are not valid, the 

implementation is based on a faulty model, which will surely be a disaster. This is something widely 

recognized in literature, and a lot of research and models exist for the creation and choosing of the right 

charts. However, the more interesting side is the organization and methodological requirements 

mentioned in the papers of Antony et al. (2003) and Does et al. (1997). This is not widely recognized, and 

very limited literature is available on this topic. The available literature, however, agrees that it should be 

a top-down, organization-wide initiative. Everyone should be on board and have a basic understanding 

of how to integrate PMC. Another important aspect is securing the obtained knowledge in an OCAP and 

constantly reviewing the SPC models to reevaluate. 

3.4.2 Other approaches to implementing SPC 

As stated above, limited research is available in the literature focussing on the implementation of SPC 

specific. The approaches that are provided above provide a specific framework for SPC implementation. 

However, companies might resist these frameworks due to the lack of literature and use in practice. To 

combat this we also explore more general approaches used to implement SPC within an organization. 

One of these models is the Six Sigma approach.  

Motorola introduced the Six Sigma methodology in the late 1980s. Six Sigma aims to achieve a rate of 

defects of 3.4 defects/million opportunities. To achieve this, two methodologies are proposed, one for 

the implementation process and one for the development of new products or services. The methodology 

for implementation is the DMAIC (Define, Measure, Analyze, Improve, Control), and the methodology for 

developing new products is the DFSS (Design For Six Sigma). This Six Sigma approach is widely used by 

Abbott, and almost all projects are approached through the DMAIC approach.  For Six Sigma projects, 
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seven Quality Control tools are generally recognized. The seven tools are; Flowcharts, Fishbone 

diagrams, Checklists, Pareto charts, Scatter plots, Histograms, and the Control Chart. 

The tools are used to examine the production process, identify the key issues, and control the 

fluctuations in product quality. Control Charts (mainly Shewhart charts) are often part of the Control 

phase of the DMAIC (see, e.g., Mason 2000, Gambhire et al. 2015). However, this does not align with the 

literature found earlier looking at the application of control charts during Phase I and II. Control charts 

used within Six Sigma have Phase I and II charting elements. It resembles Phase I charting because the 

goal is to improve the production process on one specific aspect by looking at the variability of the 

process. The actual application of the charts resembles Phase II charting. Control charts are used to 

evaluate and monitor the changes made to a process and to watch whether a process is in control and if 

the changes made had the desired impact. This is also one of its significant flaws. Where an approach 

focussed on SPC implementation makes a clear distinction between the use and application of Phase I 

and Phase II charting, the distinction between them is absent in the DMAIC. DMAIC projects work 

through a project charter, a sheet specifying the project's goal, how the project will be tackled, and the 

estimation of the resources needed and who the process owners are. After every step of the DMAIC 

structure, a gate review follows. This is a moment where all team members get together and evaluate 

the results of the previous phase. At this moment, they also decide whether to continue with the project 

or not. The last gate, the control gate, is the final check of whether the project has had its desired effect 

on the organization. During this phase of the DMAIC, control charts and capability studies are mainly 

used because they provide statistical proof of the changes’ impact.  

3.5 CONCLUSIONS ON LITERATURE REVIEW 
The literature available on statistical process control (SPC) is quite extensive. A lot of information is 

available on the statistics behind control charts and the different types and variations on charts. Within 

the literature, there is some discussion on the use of probability distributions and the goal of SPC. One of 

the most important takeaways is the difference between Phase I and Phase II charting. The statistical 

part is something that (in general) is done right, while the implementation of the charting methods is 

often overlooked. Where literature on charting is quite extensive, the literature on implementing SPC 

within an organization is scarce. 

For this research, we first determine the critical process parameters . From there on, we evaluate the 

historical data and determine what Phase of charting the parameter is in. This also means that we decide 

whether to fit a distribution to the data or not. After that,  decisions on how to form subgroups and what 

is measured for each process parameter are  made. From here on, we determine the best type of control 

chart for the parameters, and decide wether to apply sensitizing rules. Finally, we review the 

organizational structure, and a method on how SPC should be implemented at the filler of the ARTH line 

is proposed.  
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4. EVALUATING PROCESS PARAMETERS 
This research aims to develop a Process Monitoring and Control tool to improve the stability of the filling 

machine of the ARTH line and quality of the product, to increase insight on the shop floor, and to prevent 

unsafe situations regarding the quality and safety of the products. To achieve this objective, we draft a 

long list of process parameters in Section 4.1  that should be evaluated. Section 4.2 elaborates on how 

data is collected and screened. From there, we perform a Phase I studyin Section 4.3, where the long list 

of parameters is analyzed, and the critical process parameters are selected. In Section 4.4, the type of 

control chart and our calculations of the control limits are elaborated for the process parameters. This 

chapter aims to identify the critical process parameters that directly relate to the product's quality and 

safety, and that require permanent monitoring to improve the performance of the ARTH filler and to 

increase insight on the shop floor. 

4.1 SELECTING PROCESS PARAMETERS 
In this section, the criteria of Abbott that should be taken into account when selecting the process 

parameters for monitoring are described. Furthermore, a long list of process parameters is created that 

aligns with the criteria and could be a fit for PMC. 

First of all, the demands and wishes of the product's end users are determined. As 

notedpinpourpproblempstatement:  

There is insufficient insight on the shop floor on the performance of the ARTH filler.  

This research's core objective is to increase the insight on the shop floor of the ARTH filler. After 

discussion with the Front Line Leaders, Operators, and Process Engineers, the following criteria for the 

PMC tool are formed: 

1) It should be easy to use and understand. 

2) Only parameters that show or have shown special cause variation should be monitored. 

3) The focus should lie on improving quality and safety.  

4) There should not be excessive warning signals on the PMC chart that do not significantly impact 

the production process. 

Criterion 1 is important for Abbott because of several reasons. First of all, the goal is that Operators will 

engage with the tool and use it to further broaden their knowledge of the performance of the ARTH 

filler. Almost all Operators lack statistical training and do not have the proper background to understand 

complex statistical tools, charts, or methods easily. Next to the statistical knowledge limitation, the 

dashboard is built into PI Processbook, a tool that Process Engineers use almost exclusively. Most other 

stakeholders have little to no knowledge of PI Processbook. This is, of course, something that they can 

learn, but for this study, where most stakeholders are not familiar with the program, an easy-to-

understand and use model is preferred. 

Criterion 2 builds on criterion 1. In an ideal situation, all important process parameters to the line should 

be monitored. However, there are, on the one hand, physical limitations, where the screens present at 

the filler are not big enough to monitor 20 different types of charts for an acceptable time interval. And 

on the other hand, front-line leaders and Operators have expressed that monitoring parameters daily 

that have not shown special cause variation over a significant amount of time will increase the risk that 

the tool itself will not be used. 
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The Process Engineers suggest criterion 3. The tool should help reduce and prevent unsafe situations 

regarding the quality and safety of the products. This will indirectly influence the operational 

performance of the line. However, the focus should lie on improving the stability and quality of the 

machine. 

Criterion 4 is that the chart should not display out-of-control signals too often. If a chart is too sensitive, 

it poses a risk that alarms will not get followed up and that the chart in itself will be dismissed. 

Through several meetings with Process Engineers, Mechanical Excellence Engineers, and Front-Line 

Leaders, a long list of parameters is devised that should be evaluated. From this long list, parameters 

that fit the above criteria are selected. The long list of parameters is provided in Appendix IV. 

19 out of the 20 parameters on the long list in Appendix IV come from the Batch Work Order of the ARTH 

filler. Almost all parameters selected are monitoring values that directly relate to the product's quality 

and safety. The only parameter that does not fall in this category is the 108030_CRASH_CNT001. This is a 

sensor that monitors the bottle infeed at the RQT machine. This sensor is placed because there have 

previously been various problems with bottles not falling correctly in place when entering the machine. 

This has caused various stops of the filler. The parameter is interesting to monitor because there are two 

different types of 500ml bottles. One is produced in Zwolle, and the other in Germunde, Germany. These 

bottles have slightly different specifications, and the Mechanical Excellence Engineer wants to monitor 

the number of bottles that do not fall into place in relation to 100k bottles produced.  

Of these 20 parameters, six are marked bold. These parameters are critical during production and fall 

under two categories. Four parameters fall under the first category; all these variables have something 

to do with hydrogen peroxide, which is an essential ingredient needed for the proper sterilization of 

bottles. If one of these four parameters is outside of specification, a sterile product cannot be ensured, 

and the product must be discarded.  

The other two critical parameters are related to the compressed air flow, which is essential to maintain 

the pressures needed to ensure sterility.  

The 108030_CRASH_CNT001 parameter and the 108040_FIQ098_PV parameter are marked as 

problematic through meetings with the Mechanical Excellence Engineer and the Process Engineer. They 

are known to cause problems for the line and thus are also deemed critical for evaluation. 

4.2 DATA COLLECTION 
Before the actual data is analyzed, it is important to elaborate on the decisions made regarding the 

gathering and filtering of the data. This is important to create a homogenous data set from which the 

control limits and control charts can be created. The filtering of data is discussed in Subsection 4.2.1. 

Furthermore, the sampling interval is discussed in Subsection 4.2.2. 

4.2.1 Data filtering 

To better understand the importance of data filtering and subgrouping for the parameters of the ARTH 

filler, the different production steps of the filler first need to be looked at. As noted earlier, the filler is 

operated via a SCADA system. This system is connected to various Programmable Logic Controllers 

(PLCs),  which are connected to the filler's motors, valves, sensors, et cetera. Let us assume that the line 

is not in production. Every machine is turned off, and Abbott wants to start the production of bottles. 

Before this can be done, the filler needs to finish several intermediate steps. The filler needs to be 
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cleaned, the pressure needs to build up, temperatures must be reached, and the machine needs to be 

sterile. A ‘roadmap’ of steps has been programmed into the SCADA system for this. Every step is either a 

check or a command for one or multiple sensors, motors, valves, et cetera, that either sets it in the 

correct stance for production or checks if the right values are reached for production. The ARTH fillers 

step chain sequences consist of 76 different steps. Of these 76, only two are important when the line is 

producing. These are steps 212 and step 213. Step 212 is when the machine is sterile but is in standby 

mode. This means that all variables needed to ensure a sterile work environment are maintained, but 

the variables needed during production are turned off. The sprayer of H2O2 for the outside of the 

bottles is, for example, turned off since there are no bottles present ready for spraying. Step 213 is the 

production step. This means there are no errors, everything is working correctly, and the line is 

producing bottles. The other 74 steps are related to the machine's start-up, cleaning, and shutdown.  

 

Figure 12 - FIQ098 no filter 

 

Figure 13 - FIQ098 filtered 

This brings us to Process Monitoring and Control. The machine has very different values during each step 

in the step chain sequence. Figure 12 displays the unfiltered data of the compressed air flow to the 

bottles. This means that all of the measurements during the different production steps are plotted. 

Figure 13 displays the same parameter but now only during steps 212 and 213. During steps 212 and 

213, the parameter moves between 176.5 +/- and 183.5 +/-, where the unfiltered data ranges between 0 

and +/- 200. If unfiltered data were to be used for the control charts, the control limits would be widely 

inflated and not represent the proper control zones for the parameter. Appendix V displays the selected 

steps for each process parameter on the long list. Monitoring during production is, for now, the most 

interesting. In the future, one might decide to monitor the entire step chain, with different control limits 
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for each production step. However, due to technical limitations, we decidednot to do this. More on this 

is elaborated in Section 5.3.2.  

The bottle size should also be considered for the filters. The long list has seven parameters with different 

set points during production for different bottle sizes. The distinction is made between the 500 mL bottle 

(bottle code = 3) and the 1000mL & 1500mL bottles (bottle codes 1 and 2, respectively). The other 

exception is the CRASH_CNT001 parameter that only monitors the 500 mL bottles. This is because the 

1000- and 1500-mL bottles do not have problems falling into the placement cup at the entrance for the 

RQT. The parameters that need to be filtered on bottle size are also visible in Appendix V.  

4.2.2 Sampling interval 

The data is sampled using a time-based approach, as introduced in Section 2.2.2. Two years of data have 

been collected for each process parameter with 1-minute intervals between each new value. Two years 

of data are chosen in consultation with the Process Engineers. Two years of data give us sufficient data 

to spot long-lasting trends that might not be visible when evaluating a shorter period. The one-minute-

based sampling is chosen because it is a sufficiently accurate representation of the process parameters' 

performance while maintaining a relatively high computing speed when performing calculations.  A 

shorter time interval between samples gives a more accurate representation of reality but significantly 

increases the computing time for analysis and data gathering. Longer intervals pose the risk of missing 

out-of-control signals within the sample period. One minute is deemed appropriate by Process Engineers 

to spot fluctuations in temperature and pressure sensors.  

4.3 PHASE I STUDY 
In this section, we perform a Phase I analysis for the process parameters selected in Section 4.1. The goal 

of a Phase I study is to analyze historical data and estimate the unknown characteristics of parameters by 

iterative statistical calculations. This is done by plotting run charts and data set evaluation. Through 

evaluation, special cause variation is identified and either rejected or accepted in the data set for further 

calculation. This is repeated until all sources of special cause variation are accepted or rejected. From 

there, a decision can be made for control charting and control limits. In subsection 4.3.1. the filtering and 

grouping of the data is discussed. Moreover, the performance of the process parameters is evaluated in 

subsection 4.3.2.  

4.3.1 Grouping and filtering data 

The data for the process parameters are filtered on bottle type and step chain values. This results in a 

raw data set ready for Phase I data analysis. The goal of a Phase I study is to analyze past data and 

estimate the unknown parameters by iterative statistical calculations. The data analysis is started by 

plotting a run chart of the 2 years of data for each process parameter. This is the first step in Phase I 

analysis, where large instances of special cause variation are spotted relatively easily. From there, the 

principle of rational subgrouping is applied to obtain a data set that can be used for further estimation of 

process capability and control limits. After establishing the control limits, they are evaluated, and any 

out-of-control data points indicated by the control limits are investigated. From there, the decision is 

made to either reject the sources of special cause variation from the data set and recalculate the control 

limit or to keep the data asqnormalqcauseqvariation.   
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Figure 14 - Run chart TT606 Bottle 1 

Figure 14 displays the run chart of TT606 for bottle 1 (1000 mL). TT606 measures the air temperature, 
which is used to preheat the bottle before spraying it with H2O2. Within the chart, various things stand 
out. First of all, a 20-day period is seen within the sample where the temperature variation is increased. 
The variation is only seen during that period and seems to be resolved. This might be due to actions of 
the Process Engineer or e.g. a replaced machine part. This period is marked as special cause variation 
and discarded from the data set for further analysis.  Furthermore, various drops in temperature can be 
seen during the sampling period. These drops are significantly larger than the ‘normal’ temperature 
variation present within the data set; thus, the root cause of these drops is investigated. 

  

Figure 15 - TT606 temperature drops 

Figure 15 displays the run chart of TT606 (green) in addition to the step_chain_pointer_a (blue), which 

displays the production step of the machine over time. The step_chain_pointer changes from 213, the 

production step,  to 0, which means that the machine is off.  Notice that the step chain pointer is still at 

213 when the temperature is already dropping off. During a discussion with the Process Engineer, the 

conclusion was made that there is a delay in the step chain pointer compared to the temperature sensor. 

This means that every time production is stopped, the temperature drop-off period is registered as if the 

machine is still producing while the line, in reality, has already stopped. This behavior is also seen for 

other process parameters and should be filtered out from the data sets. If this delay in the step chain is 

not filtered out, the control limits for the control charts will be largely inflated and not accurately 

represent reality.  
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Other forms of variability that can be seen 

in the data are step-changes in machine 

performance (Figure 16) and macro trends 

(Figure 17), where a slight downtrend over 

the last two years can be seen.  The 

downtrend in Figure 17 is something that 

has not been resolved just yet, so we 

cannot reject the trend from the data set 

(since it is continuous), and thus the 

special cause variation is accepted in the 

data set for further calculations. The step-

change seen in Figure 16 is identified as an 

anomaly caused by a change in setpoint or 

replacement of a defective part. After 

discussion with the Process Engineer, the 

data is marked as special cause variation 

and thus removed from the data set.  

This process is done for all process 

parameters. Started by plotting a run chart 

of the parameter over two years and 

marking special cause variations. After 

that, researching the special cause variation and, with the Process Engineer, the decision is made to 

either reject or accept the variation within the data set. Now the data set is ‘clean,’ and best represents 

the machine's performance, from which further calculations can be 

done.  

4.3.2 Performance of process parameters. 

After filtering and subgrouping, the data sets for the process 

parameters are now best representing the parameters' actual 

behavior. Within this subsection,  the performance of the process 

parameters is quantified. First, the decisions made regarding 

normality and capability and the use of other descriptive statistics 

are elaborated. Afterward, the process parameters are evaluated 

on how well they can produce within the specification limits 

provided by Abbott. Finally, the most critical parameters within 

this research are selected. 

A common way of assessing the performance of a production 

system is by analyzing its capability. The capability of a process is a 

measure that quantifies how well a process can produce within its 

specification limits. One of the requirements for a capability study 

is that the data used is normally distributed. If this is not the case, 

one can use transformations on the data set to reach a normal 

state or by fitting another distribution to the data set. For Abbott’s 

Figure 16 - TT611 Bottle 1 step-change 

Figure 17 - TT105 long-term downtrend 

Figure 18 - PIT082 normality fit unfiltered 

Figure 19 - PIT082 normality fit filtered 
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19 process parameters, two normality tests have been applied (Anderson-Darling test & Skewness-

Kurtosis test) in Minitab, which none of the process parameters have passed. This is because, even for 

the filtered data sets, there is still too much noise and special cause variation present within the dataset. 

Figure 18 displays the unfiltered dataset of PIT082. Two clear distributions can be seen within the data. 

One is caused by the step chain delay, present for almost all process parameters, and the other is the 

machine's actual performance. Figure 19 shows PIT082 filtered data set. Also, here, the normality test is 

not passed. As can be seen, various data points still lie far outside of the normality graph. These values 

have not been rejected in the initial data filtering and thus are not labeled and removed as special cause 

variation.   

Since the capability cannot be used to assess the performance of process parameters, a combination of 

other descriptive statistics is used. By combining these statistics with the run charts and histograms, a 

good indication of the process performance can be achieved. 

    Initial data set After Phase I filtering 
Process 
Parameter 

Bottle  
(1,2,3) 

Setpoint Specification 
limits 

Process 
mean 

Standard 
deviation 

PPM (DPMO) Process 
mean 

Standard 
deviation 

PPM 
(DPMO) 

FIQ523  1, 2, 3 8 m3/h 5-10 m3/h 7.14 1.41 9931 7.32 1.25 0 

FIQ524  1, 2, 3 8 m3/h 5-10 m3/h 6.94 0.56 5462 6.97 0.22 182 

FIQ933  1, 2, 3 850 
m3/h 

800-890 m3/h 843.67 83.13 14171 850.49 6.70 260 

FIQ096_PV  1, 2 175 
ml/min 

167-194 
ml/min 

174.99 3.09 1298 175.02 0.78 697 

3 125 
ml/min 

122-130 ml/ 
min 

125.14 2.15 5860 125.01 0.21 12 

FIQ097_PV  1, 2, 3 44 
ml/min 

43 – 69 
ml/min 

44.00 0.05 0  

FIQ098_PV  1, 2 180 
m3/h 

164-194 m3/h 180.03 6.14 13140  

3 180 
m3/h 

175-185 m3/h 179.72 2.12 8032  

FIQ099_PV  1, 2, 3 12 m3/h 5-12 m3/h 9.59 0.61 0  

TT606  1,2 60 °C 55-65 °C 58.23 2.41 9058 58.39 0.91 0 

3 70 °C 65-75 °C 69.39 2.92 9241 69.66 0.40 191 

TT607  1, 2, 3 83 °C 67-88 °C 82.975 0.50 13 82.99 0.38 0 

TT608  1,2 60 °C 57-67 59.79 2.96 20938 60.06 0.61 11417 

3 71 °C 68-78 70.71 3.18 9301 71.00 0.66 183 

TT609  1, 2, 3 129 °C 123-134 °C 128.36 5.22 9211 128.82 0.63 32 

TT610  1, 2, 3 134 °C 130 – 142 °C 133.96 0.11 19  

TT611  1, 2 134 °C 127-139 132.17 0.75 89  

3 134 °C 127-139 133.94 0.23 43  

TT105  1, 2, 3 121 °C 110-125 °C 121.75 0.28 0  

TT106  1, 2, 3 121 °C 110-125 °C 119.44 0.43 0  

PIT082  1, 2, 3 110 
Mbar 

50-260 mBar 85.03 39.74 222367 104.98 13.26 5270 

108020-
PIC081  

1, 2, 3 100 Pa 6-150 Pa 115.66 22.18 0  

108030-
PIC081  

1, 2, 3 100 Pa 6-150 Pa 107.91 22.09 0  

DT097  1, 2, 3 35% 34.5-36% 35.340 0.009 4  

CRASH-
CNT001 

3 n.a. n.a. n.a. n.a. n.a.  

Table 4 - Performance of process parameters 
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Table 4 displays the performance of the process parameters of the production line. The bottle code, 

setpoint, and specification limits are given on the left. These values are derived from the machine 

setpoints of Abbott. In the middle, the mean, standard deviation, and DPMO (Defects per Million 

Opportunities) are given for the baseline performance of the data before the Phase I screening. The 

same descriptive statistics are given, on the right, after Phase I screening. Note that not all parameters 

have values after the Phase I screening. This is either because the parameter is in control and no 

significant sources of special cause variation have been identified or because the sensor is drastically out 

of control, even after the Phase I filtering. This resulted in no notable differences in descriptive statistics 

and, thus, is not included in the table. For the evaluation, the process mean is looked at in relation to the 

setpoint of the parameter, the standard deviation of the parameter, and how that relates to the DPMO 

and the specification limits. For example, 108020-PIC081 has a mean of 115.66 and a standard deviation 

of 22.18; however, no defects per million opportunities are registered. This observation is interesting 

since the mean is approximately 1.5 standard deviations from its specification limit. This would suggest 

that quite a few of the observations should be out of control but are not observed. This further 

strengthens that there is a lot of special cause variation present within the dataset and that the process 

might follow a non-normal distribution. The observed standard deviation is primarily inflated by 

anomalies within the data set, which are either process-specific or special cause variations.  

A small standard deviation with a high DPMO count could indicate that the specification limits set by 

Abbott are too small or that there are various sources of special cause variation present.  

The green parameters within Table 5 
are the in-control parameters. These 
parameters show little to no special 
cause variation and have been very 
stable over the past two years.  See, for 
example, Figure 20, which plots two 
years of unfiltered data for DT097. As 
can be seen, this process has been very 
stable over time, varying around 35.2-
35.4. The same applies to the other 

green parameters. In the ideal 

scenario, these parameters are 
monitored by PMC charts. However, 
for now, these parameters do not 
meet the criteria identified in Section 
4.1, and thus the decision is made to 
exclude them for monitoring 
purposes. The green parameters 
would be ready for Phase II 
monitoring. 

The orange parameters show some special cause variation, but these are not deemed critical after 

filtering and subgrouping the data. Most variation present within the data is due to step chain delays or 

the parameters showing some form of long-term linearity. See, for example, Figure 21, which displays 

the long-term downtrend over time of TT105.  

Figure 21 - DT097 2-year data 

Figure 20 - TT105 long-term downtrend 
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This in itself is not deemed critical since it is far from reaching its specification limit of 110. However, in 
combination with the uptrend shown by TT106, it is an interesting finding that the Process Engineerg 
should research. 

 

Figure 22 - TT105 vs TT106 transformed over 2 years 

In Figure 22, the transformed values of TT105 are plotted against the transformed values of TT106. The 

transformation was done by dividing all data points of the parameters by their mean over the two years 

to get an average value of 1 for each parameter. This allows us to overlap both parameters and show 

their deviations from one, or its mean value, over time. As can be seen, the trendlines of both TT105 and 

TT106 reach the mean value of 1 at approximately the same time at the halfway point of the data set 

(1y). This could indicate some correlation between 

the two values and could be due to wear, for 

example, in a heat exchanger.  

In general, orange parameters would be interesting 

to monitor further; however, they are not deemed 

critical enough in relation to the red parameters. 

This means that, for now, they do not qualify for 

daily monitoring on the shop floor. The red 

parameters are the critical parameters after the 

Phase I analysis. They either show a lot of special 

cause variations like TT607 (Figure 23), 

108020_PIC081 (Figure 24), or 108030PIC081 (Figure 

25).  Figure 23 - TT607 special cause variation 

Figure 24 - 108020PIC081 special cause variation Figure 25 - 108030PIC081 special cause variation 
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The other reds are FIQ098 and FIQ933, which go out of their specification limits relatively often and 

where the specification limits are deemed critical for production. FIQ098 is especially known to go out of 

spec often and causes many stops at the line. Over the last year, there have been 3161 instances within 

the data set of 1-minute samples where FIQ098 has exceeded its specification limits during production. It 

is hard to quantify how much this has impacted the line's production since it represents the parameter's 

value at a specific moment in time. This can be a coincidence where the parameter was out of specs for a 

couple of seconds, or it can be for a couple of minutes, which does impact production significantly. 

Taking the production speed of the line, which is 6600/bottles per hour, or 1,83 bottles per second, the 

minimum amount of bottles lost due to FIQ098 being out of spec is 3161 * 1.83 = 5795 bottles. This is 

assuming that the parameter was only out of spec for 1 second when taking the snapshot value. If 30 

seconds is taken as an average time, which is more realistic when looking at the data (there are quite a 

few instances where the parameter is out of spec for a few minutes after each other), a value of 173823 

bottles of production capacity lost over a year is obtained due to this parameter being out of spec. This 

does not even account for the instances where the parameter has caused the machine to go unsterile, 

which would mean that several hours are needed to clean the machine to get it operational again. This 

is, of course, a rough estimate, but it does press the significance of the issue at hand. 

Lastly, there is TT609. This parameter is relatively in control but is showing the same long-term 

downtrend as TT105. However, TT609 is closely approaching its lower specification limit. This increases 

the importance of monitoring the variable drastically. 

In this analysis, the CRASH_CNT001 parameter is not taken into account. The Mechanical Excellence 

Engineer nominated the variable for process monitoring and control because it is a relatively new 

ongoing problem for the line. Since November 11th, 2022, a sensor (CRASH_CNT001) has been placed at 

the entrance of the RQT that monitors the number of crashes of the 500mL bottle. This sensor registers 

every time the bottle is not properly in place at a specific time. To understand how often this sensor is 

triggering, the time interval between sensor activations cannot be looked at. This is because the line is 

not always running. Sometimes the line is stopped due to other problems, or because cleaning is needed, 

other times the machine is running a 1000 or 1500mL bottle for which the bottle infeed is not a problem. 

This means that the time interval between sensor activations cannot be taken as an appropriate 

monitoring method. From a meeting with the Mechanical Excellence Engineer, the decision was made to 

track the number of activations of CRASH_CNT001 / 100.000 500 mL bottles produced. This gives a 

relatively accurate representation of the state of the system. This rules out times between production 

and only monitors when the system is showing more or fewer infeed problems.  

The approach does have its limitations. The program used within Abbott, PI Processbook, cannot 

perform complex transformations or calculations of the data. Since the goal is to monitor the 

Crash/100.000 bottles, a link needs to be made between the date of the crash and the number of type 3 

bottles produced in that period. In PI Processbook, this is not possible, and thus the parameter can not 

be monitored within the dashboard. In the Phase I study, the run chart of the CRAHS_CNT001 has been 

plotted since the 11th of November. This is done in Excel by manually linking the dates of crash counts 

with the number of bottles produced. The chart produced can be seen in Figure 26. 
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Figure 26 - CRASH_CNT001 Control chart 

In discussion with the Process Engineer and Mechanical Excellence Engineer, the decision was made to 

exclude the parameter for monitoring on the shop floor. The proposal of manual plotting at the line or 

through an Excel dashboard was rejected due to the relative complexity and the need for yet another 

system and work instruction. 

4.4 SELECTING CONTROL CHARTS AND CALCULATING LIMITS 
In Section 4.3, the performance of the process parameters is analyzed, and the filtering and subgrouping 

are applied to the data set. From here on, control limits can be calculated for the control charts.  

Recall that for a Phase I study, Shewhart control charts are the most effective way of monitoring the 

process. For Shewhart charts, a distinction is made between continuous and variable data. All the 

parameters in this study are continuous. This means that the charts that can be used are limited to the 

XbarR, Individuals, XbarS and EWMA, and  CUSUM charts. Due to the nature of the sampling used in this 

study, rational subgrouping is only possible. After that, each measurement is set as its own subgroup 

where n = 1.  

To determine the control limits, the results of the Phase I filtered observations is used as the baseline 

data. This data is used with an Empirical Reference Distribution (ERD) to set the control limits for the 

parameters. The decision to use the ERD for the control chart is due to several reasons. As stated in 

Section 4.3, the data is non-normal and still contains quite some special cause variation within the data 

set. This means that a proper fit of a probability model is complex and not in line with the wishes of 

Abbott. Furthermore, a simplified version of the ERD is already used by Process Engineers to calculate 

control limits for other charts, so it is a known procedure for them that can easily be validated. The 

Individuals chart is another valid phase I monitoring option, as verified in Section 3.2.1. However, using 

the Individuals chart results in many out-of-control signals for each parameter conflicting with criteria 4 

from Section 4.1.  Abbott prefers a chart that filters out major sources of special cause variation from 

which research cycles can be started to improve the process. Recall that the goal is to increase insight at 

the shopfloor and that Operators can easily understand the charts. Therefore the decision is made to 

construct control charts using the ERD approach. 

  



  

35 
 

This ERD approach as introduced in Section 3.3.1 is applied to the data, where an in-control state is 

selected from the initial data set. TT608 for bottle three is taken as an example of this approach. Figure 

28 displays the raw data of TT608 for bottle three, which corresponds to approximately 320 days (461k 

1m samples) of non-stop production (Steps 212 and 213). Figure 27 is a sample taken from this data set 

where the process is identified as in control, which is approximately a week of production (10k 1m 

samples). Now recall the study in Subsection 3.2.1., where Wheeler (2009) validates the use of 3 sigma 

limits. In this approach, 98% of all data points fall within the three-sigma limits for various distributions. 

Moreover, he deems three sigmas sufficient for filtering out the probable noise for Phase I applications. 

Three sigma limits correspond with a probability of 0.9973 that a data point will fall within the control 

limits.  

This study uses the three-sigma probability as a fixed probability within the ERD, to construct the control 

limits. The number of blocks 𝑏 that is needed for this probability is 𝑏 = 𝑃 ∗ (𝑚 + 1). Since this study 

uses two-sided control limits for the process parameters, a total of (𝑚 + 1) − 𝑏 blocks fall outside of the 

control limits, which correspond to 0.5 ∗ (𝑚 + 1) − 𝑏 blocks on each side. So the control limits are 

defined as 𝐿𝐶𝐿 =  𝑦(0.5∗((𝑚+1)−𝑏))and 𝑈𝐶𝐿 =  𝑦(𝑚−(0.5∗((𝑚+1)−𝑏))). 

Within this in-control sample, there are m =  10000 data points, and thus 

m + 1=  10001 statistically equivalent blocks. Recall that the formula for 

determining the number of blocks for the control limits is: 𝑏 = 𝑃 ∗ (𝑚 +

1). For P, the probability of a three-sigma in control probability of a 

normal distribution is used which is 0,9973. This means that 𝑏 = 0,9973 ∗

10001) = 9974. The control limits are then calculated by 𝐿𝐶𝐿 =

 𝑦(0.5∗((𝑚+1)−𝑏)) =  𝑦(0.5∗((10001)−9974)) =  𝑦(13,501) and 𝑈𝐶𝐿 =

 𝑦(𝑚−(0.5∗((𝑚+1)−𝑏))) = 𝑦(10.000−(0,5∗((10.000+1)−9974))) =  𝑦(9986,49).  

In Table 5, the observations of the in-control data set are ranked from 

small to large. Furthermore, the smallest observation is labeled as 

observation 𝑦(1). From the calculations of the control limits, 𝐿𝐶𝐿 =

 𝑦(13,501) ≈ 𝑦(14) and 𝑈𝐶𝐿 =  𝑦(9986,49) ≈ 𝑦(9986) is obtained, which 

corresponds to 𝐿𝐶𝐿 = 69,97 and 𝑈𝐶𝐿 = 72,08 respectively.  

The mean of the parameters from the in-control observation is set as the 

Center Line in the control chart.  

  

Figure 28 - TT608 in control Figure 27 - TT608 unfiltered 

Table 5 - TT608 Bottle 3 Control limits 
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This process is repeated for almost all process parameters and filter configurations, the control limits for 

these parameters can be found in Table 6. Note that some exceptions are made regarding the setpoint 

and calculation for the control limits.  

An example of this is FIQ098. If the ERD approach had been used, the control limits would be wider than 

the specification limits for the parameter. The choice is made to rely more heavily on the voice of the 

customer and thus set the specification limits as control limits instead of listening to the voice of the 

process, which indicates wider control limits. This is done to prevent confusion for Operators and is in 

line with Abbott’s wishes regarding the selection and visualization of process parameters, as noted in 

Subsection 4.1 

Other parameters for which exceptions have been made are the following:   

- FIQ523: The control limits 

are set as integers since the 

parameter also behaves like 

one. For the in-control data 

set, the parameter moves 

between 5 and 9 (out of 

control, it has step-changes 

to 10 and 11) 

- FIQ524: The same applies 

here. The control limits are 

also rounded to an integer. 

- FIQ097: The same also 

applies here. Due to the 

nature of compression and 

exception settings or the 

machine behavior, the 

control limits are set as 

integers. 

 

 

4.5 CONCLUSION ON CONTROL PARAMETERS 
In this chapter, the process parameters are evaluated, and the control chart that best fits the wishes of 

Abbott for monitoring the critical parameters is determined. In this analysis, eight parameters are 

marked as ready for Phase II monitoring. These parameters show long-term in-control behavior and are 

best further monitored using more complex charts and fitting distributions to the data. Eleven 

parameters are marked as out of control, of which six are deemed critical. The six critical parameters are 

nominated for daily on-the-line monitoring through individuals control charts with control limits derived 

from the ERD. The remaining five parameters should be further investigated by the Process Engineers or 

could be monitored weekly.   

Process 
Parameter 

Bottle  
(1,2,3) 

Setpoint Specification 
limits 

LCL CL UCL 

FIQ523  1, 2, 3 8 m3/h 5-10 m3/h 5 7.2 9 

FIQ524  1, 2, 3 8 m3/h 5-10 m3/h 5 7 8 

FIQ933  1, 2, 3 850 m3/h 800-890 m3/h 838 850 862 

FIQ096_PV  1, 2 175 
ml/min 

167-194 
ml/min 

172 175 183 

3 125 
ml/min 

122-130 ml/ 
min 

125 125.01 130 

FIQ097_PV  1, 2, 3 44 
ml/min 

43 – 69 
ml/min 

43 44 45 

FIQ098_PV  1, 2 180 m3/h 164-194 m3/h 164 180 194 

3 180 m3/h 175-185 m3/h 175 180 185 

FIQ099_PV  1, 2, 3 12 m3/h 5-12 m3/h 8.9 9.5 10.1 

TT606  1,2 60 °C 55-65 °C 55.67 58.54 61.21 

3 70 °C 65-75 °C 68.5 69.67 70.85 

TT607  1, 2, 3 83 °C 67-88 °C 79.95 82.97 85.63 

TT608  1,2 60 °C 57-67 58 60 61.9 

3 71 °C 68-78 69.97 71 72.08 

TT609  1, 2, 3 129 °C 123-134 °C 126.57 129.04 129.56 

TT610  1, 2, 3 134 °C 130 – 142 °C 133.63 133.96 134.43 

TT611  1, 2 134 °C 127-139 130.7 131.84 132.53 

3 134 °C 127-139 132.94 133.94 134.61 

TT105  1, 2, 3 121 °C 110-125 °C 120.64 121.75 122.57 

TT106  1, 2, 3 121 °C 110-125 °C 118.15 119.94 120.4 

PIT082  1, 2, 3 110 Mbar 50-260 mBar 78.84 104.17 119.21 

108020-
PIC081  

1, 2, 3 100 Pa 6-150 Pa 91.2 115.65 118.57 

108030-
PIC081  

1, 2, 3 100 Pa 6-150 Pa 78.61 107.9 113.83 

DT097  1, 2, 3 35% 34.5-36% 35.38 35.34 35.35 

Table 6 - Control limits for process parameters 
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5. APPLICATION OF PROCESS MONITORING AND CONTROL 
In this chapter, the choices made regarding the design of the dashboards is elaborated in Section 5.1. 

Next, how the dashboards are implemented at the ARTH line is discussed in Section 5.2. In Section 5.3. 

the practical and methodological improvements that can be made at Abbott Zwolle regarding the further 

use of PMC within the organization is elaborated.  

5.1 DASHBOARD DESIGN 
In Subsection 5.1.1., the dashboard designed for Abbott's Morning meeting and for Abbott’s operators is 

discussed. In Subsection 5.1.2., the limitations of these dashboards are discussed. 

5.1.1 Dashboards for the filler and morning meeting. 

In the analysis, six sensors are identified that are deemed critical and for which daily monitoring would 

be a significant benefit. Recall that this research aims to increase insight on the shop floor. In this 

section, the choices made regarding the dashboards, time intervals, and integration methods is 

elaborated. 

To visualize the six critical process parameters, two Process Monitoring and Control dashboards have 

been created in PI Processbook. These dashboards are displayed during the morning meeting and on a 

monitor that is located next to the filler. The dashboard contains 6 Individuals charts that display the 

critical parameters from Section 4.3. The dashboard displays the measurements of the process 

parameters over a 5-day period, filtered on steps 212 and 213. 

 

Figure 29 - Morning meeting dashboard 

The 5-day period is chosen as the time frame because it is a relatively small time frame that is detailed 

enough to spot minor sources of variation whilst being long enough to spot step-changes. An additional 

benefit of the five days is that the team who just got back from their 4-day leave can see the 

performance of the parameters during their 4-day absence in relation to their last working day before 

their leave. During the morning meeting, the dashboard displayed in Figure 29 is looked at and 

discussed. Here out-of-control signals are analyzed, and other weird patterns that are present in the data 
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are discussed. Note that some out-of-control signals can be seen in de charts. These again can be 

explained by the step chain delay discussed in Section 4.3.1.  

To further increase the insight of operators, another dashboard is made for a screen next to the filling 

section of the machine (Figure 30). Here Operators can look at the real-time performance of the 

machine. Again, the six most critical parameters are visualized, but the real-time parameters of the Batch 

Work Order are also displayed. The benefit of this is that operators, on the one hand, have all 

parameters in a logical sequence on one screen. This makes it easier for them to note the values for the 

hourly Batch Work Order check and likely reduces mistakes. Moreover, it is an incentive to hourly check 

the Individuals' charts of the six critical parameters.  

 

Figure 30 - Dashboard next to the filler 

During the two-week period in which these dashboards were introduced, several comments were made 

layout-wise and content-wise. At the end of the two weeks, Operators, and morning meeting members 

were enthusiastic about discussing the parameters and saw the dashboard as an added value. 

5.1.2 Limitations of Dashboard Design 

Although Operators, and other stakeholders are generally positive, some limitations of the dashboards in 

this research are discussed. The dashboards increase the current insight at the shop floor; however, 

there is room for further improvement.  

During this research, two factors were identified that were limiting the useability of the dashboards. 

The first category is PI Processbook. The program is part of the OsiSoft system. However, it is a legacy 

program. The latest version was created in 2015 and has not received any updates since 2020. Since the 

beginning of this year, the program will no longer receive security updates and patches. OsiSoft has 

retired the system in favor of PI Vision, a modern version of PI Processbook that allows the user to plot 

and display data collected in the PI server. However, within Abbott, this migration has not taken place. 

During this research, the first initiative was started to use another program, SEEQ, instead of PI 

Processbook, which has additional functionalities. 
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Limitations that are encountered in this research regarding the implementation and use of PI 

Processbook are the following: 

• Slow processing time: Plotting data and making changes to charts would take several minutes 

before the new screen was loaded. 

• Slow start-up time: Starting up the screen at the filler could take up to 10 minutes 

• Data visualization: 

o Labeling axes or enlarging text in charts is not possible 

o Formatting and display options are minimal (e.g., color coding a parameter red when 

outside of specification) 

o Visualizing data breaks is not possible (In this case, plotting steps 212 and 213. This is 

displayed as a continuous graph during the time frame selected. However, it might be 

the case that during those five days, the machine was offline 2 of them. This is not 

possible to visualize within the chart and can lead to much confusion) 

o Control limits for the three bottle type are possible but quite complex; a new table must 

be created within the OSIsoft data structure, where the data tag, bottle code, and 

control limits must be specified. From there, a control chart can be constructed where 

the limits refer to the internal table from which it retrieves the current control limit for 

the type of bottle that is in production. 

• It only runs as a desktop application 

• Calculation: 

o Calculations of any sort are very limited within the program (It is possible to write a VBA 

macro that would run within the PI Processbook application. However, this was very 

slow and would give many errors.) 

o Dynamic or optimal run charts are not possible due to the lack of calculation possibilities 

o The Excel plug-in function would also take a very long time for data to load. (For some 

parameters, the maximum query length could be approx seven days, retrieving 2y of 

data would thus take a long time) 

The second category is the validation of PI Data tags. As stated earlier, Abbott Zwolle has approximately 

100,000 PI data entry points for its site. However, of these 100k points, only approximately 300 are 

validated. For the application, this is quite disadvantageous. It means the data points displayed in any PI 

application can not be used for official purposes like validating a batch. Especially during the 

implementation phase, this is something that was a significant limitation. This is because the parameters 

displayed in Figure 30, for example, can not officially be used to fill in a Batch Work Order. This is quite 

weird and was found out quite late in the study. Recall that Abbott’s Process Engineers use the tags to 

optimize and correct the process settings, but the same data can not be used for hourly batch checks and 

or approvals.  

The unvalidated tags might also be the root cause of the step-change delay encountered with the 

STEPCHAIN_POINTER. Another limitation of not validating the PI data points is that the ExDev and 

Compdev settings might not be correct. Currently, the values of the Exdev and Compdev for new 

parameters are copied from similar existing parameters. For example, a flow gauge will likely receive the 

same Exdev and Compdev settings as another already monitored flow gauge. This research identified 4 

parameters (out of 19) that had bad Exdev and Compdev settings. The Exdev and Compdev settings for 

these parameters were more sensitively calibrated than the sensor itself could measure. This resulted in 
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a lot of ‘grass’ within the data, where the PI system registered fluctuations where it should not have 

done so. There are a few adverse side effects that result from this. First of all, the control chart becomes 

less clear to interpret. There is much noise on the chart, which makes it harder to spot special cause 

variation. Second of all, an excess of data points is stored on the PI server. This data does not tell us 

anything but is registered as an event. This also means that if calculations need to be made for that 

parameter or if a chart needs to be plotted, it takes quite some time for the program to process all 

events. This is something that was encountered a lot during this study. Moreover, it is not good for 

statistical computations. Where the process, in reality, might have a mode of, for example, 2, with bad 

Exdev and Compdev settings, these could then be registered as 1.5 or 2.5. In the data, this would be 

represented by two different distributions where it actually might only be one.  

5.2 PMC AT THE ARTH LINE 
The implementation of PMC at the production line started with the introduction of PMC to the Front Line 

Leaders. Through various meetings, the benefits of PMC were explained if needed, and their criteria for 

the PMC dashboards were discussed. In these meetings, several Operators were selected from the 

production teams to ask for further input and to be involved with the program's creation and 

implementation. This approach was chosen over training the entire team for several reasons. Most 

importantly, not all the Operators were enthusiastic about the new tool. Most lacked the statistical 

knowledge and interest in IT systems to learn about yet another program. Second of all, there would be 

a clear distinction within the production team who would be the internal “PMC expert.” For all 

stakeholders involved, it would be easier if one or two Operators of the team were the point of contact 

regarding PMC-related questions or activities. This approach is an early step toward the process action 

teams (PATs) that is discussed in Section 3.4.1. These Operators were explained the basics of PMC, what 

they should look for, and how they could interact with the charts.  

Every morning the Operators are responsible for discussing the charts with the stakeholders of the 

morning meeting. During this moment, the chart is pulled up to the screen, and sources of special cause 

variation are identified and discussed. The most important trigger for a discussion is an out-of-control 

signal indicated by the red marker. For the charts, it was decided not to include additional run rules. This 

is because the parameters were selected for their variability. Applying additional run rules will only 

trigger extra alarms, which would clutter the chart whilst not adding sufficient benefits for the 

stakeholders. The charts are all still out of control, and by adding run rules, the number of out-of-control 

triggers would be too large. 

The daily evaluation of the selected process parameters functions as a training tool for Operators to 

familiarize themselves with PMC. It serves as a pilot project for the line and is something that can be 

indefinitely monitored. If a parameter is brought into control, a reevaluation of parameters should 

happen, and the most variable parameters should be selected. This creates a standard moment each day 

where PMC is discussed, and the most critical parameters for quality and safety are evaluated. 

The PMC screen next to the filler is present and can be used, however, the unvalidated sensors limit its 

usefulness and intended application. If Abbott were to validate these parameters, it would be a great 

added value for Operators and Process Engineers. An hourly evaluation of the critical parameters could 

help prevent problems on the line, such as the FIQ098 discussed earlier.  
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5.3 IMPROVING PMC 
This section discusses possible improvements regarding the use and implementation of PMC within 

Abbott Zwolle. Starting with methodological improvements in subsection 5.3.1., after which some 

practical improvements are discussed in subsection 5.3.2. 

5.3.1 Methodological improvements 

This section discusses the application of PMC and how Abbott can go from Phase I charting to Phase II 

applications. During this research, the lack of a common approach for widespread PMC integration was 

lacking. At the company, the DMAIC is a commonly used approach. However, the fit with PMC 

integration is less evident in comparison to standard DMAIC projects. This section introduces a step-wise 

approach that Abbott can follow to get a process from an out-of-control state to Phase II charting 

applications in a DMAIC format.  

The methodology of Does et al. (1997) is the cornerstone of this approach. It is analyzed on how it fits 

within Abbott as a company and how the methodology could help them reach a new phase of process 

monitoring and control. 

The methodology is broken down into a few parts. First of all, Does et al. (1997) divide the 

implementation of PMC into four levels (in their paper, Phases, but for clarity, this study uses Levels). 

These serve as a ranking and indication of the level of readiness of the PMC application within an 

organization. 

• Level 1: Awareness 

• Level 2: Pilot projects 

• Level 3: Integral implementation in production 

• Level 4: Total quality 

Note that these Levels relate to the state of implementation company-wide. A clear distinction should be 

made between the Phase I and Phase II applications since these relate to the state of the charting 

applications and the level of control reached for the parameters.  

Abbott Zwolle would currently rank between Levels 2 and 3. Abbott has a few pilot projects underway, 

and several people have extensive knowledge of stochastic process control. However, some key 

elements noted by Does (see also Section 3.4.1) are missing within Abbott.  For Level 1, all boxes are 

ticked, there is a general awareness of PMC and its goals within Abbott, and a steering committee exists.  

For the second level, the approach should be to introduce PATs within the company, and pilot projects 

should be started and executed using the 10-step method. Within Abbott Zwolle, several pilots have 

been started. However, these projects generally followed the DMAIC approach. This is a Lean Six Sigma 

approach where any project is broken up into a Define, Measure, Analyze, Implement, and Control 

Phase. Recall Section 3.4.2. where control charting in the DMAIC structure is reviewed. Here control 

charting was mainly used in the control phase.  

The third level is integral implementation in production. This is something that Abbott is currently 

working towards. A PMC project has been completed at the powder department, and PMC is still actively 

used to monitor a part of the line. Furthermore, at the CPA department, PMC is used to control the 

effectiveness of CIPs. Operators use PMC charts to determine whether or not another round of cleaning 

is needed. And finally, this project at the ARTH filler aims to increase the use of PMC in production. 
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Abbott's goals for the coming year are to review the current charts, eliminate and update where needed, 

and introduce control charting on all of the liquid production lines. For this, a comprehensive DMAIC 

process approach is introduced in which the 10-step method of Does et al. (1997) is integrated. Abbott 

widely uses the DMAIC and thus it has the benefit that the methodology is known to the stakeholders. 

Furthermore, the company employs Operational Excellence project managers. They are trained in the 

application of the DMAIC and how it should be applied in project work. By proposing a new methodology 

for Abbott incorporating the best of both, it is hoped that the detailed process cycle can be followed to 

bring any process under control. 

Figure 31 displays the DMAIC process in which the 10-step approach is integrated. Below, the different 

steps and goals for each phase are described.  

  

Figure 31 - 10 step method in the DMAIC 
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The Define phase corresponds with the start-up of a PMC project. During this phase, Steerco or 

management might ask for PMC integration on one of the liquid lines. During this phase, the aim is to 

identify or validate the improvement opportunity that is presented. Furthermore, the Process Action 

Team is formed, and a project charter is made. The define phase serves as the preparation phase for the 

PMC assignment. The goal should be pretty broad since it is still unknown what and if processes are out 

of control and require action. 

Key actions Define phase: 

• Identifying and validating the improvement opportunity 

• Forming a PAT 

• Creating a project charter 

• Outlining the scope 

The key objective of the Measure Phase Is to document the existing processes and establish a 

performance baseline. In the DMAIC, common activities during this phase are Y = f(x) analysis (input, 

process, output analysis), FMEA (failure mode and effects analysis), and plotting baseline data.  

Key actions Measure phase:  

• Step 1: Process description > Dividing the process into steps of one distinct transformation. The 

goal is to obtain a process description form with the different process steps and names, see, for 

example, Figure 4. 

• Step 2: Cause and Effects analysis > This is also a descriptive action. Key problems of the line and 

the possible causes should be listed here. In this study, FIQ098 might be an example of the 

cause, where the effect is the downtime of the filler.  

• Step 3: Risk analysis: During this step, the relative importance of each cause-and-effect 

relationship is calculated. For example, how often it occurs, what is the severity of the causes, et 

cetera. This ranks the out-of-control states of all processes and makes it easier to select the most 

pressing issues at hand. 

The analyze phase aims to verify that improvement is focused on causes rather than symptoms. In this 

phase, different improvements are proposed, and measurable experiments are designed. For a PMC 

project, this should be an iterative phase, where solutions are proposed, measurements are designed, 

and reliability is tested. After this phase, Phase I  control charts are created to spot sources of special 

cause variation. After monitoring these charts, an in-control state or out-of-control state can be 

identified. If the process is out of control, one should return to the analyze phase, where new 

improvements and measurements are designed that can again be tested in a control chart. When a state 

of control is reached, where all root causes for deviations within a key parameter have been eliminated, 

a distribution can be fitted to the data, leaving the iterative Phase I and Analyze loop and continuing to 

Phase II charting. It is essential to document how and why proposed solutions should affect the root 

cause issue. By documenting this, knowledge of the process and its behavior can be stored, which will be 

helpful in step 8, where an OCAP is generated.   
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Key actions of the Analyze phase: 

• Step 4: Improvements > Generating possible improvements for the identified cause and effect 

relationships. The goal is to obtain a list of improvements for the most pressing issues at hand.  

• Step 5: Define measurements > Select data for analysis and parameters for process control. 

Defining the measurements plan if applicable (how often and what should an operator measure? 

What data should be collected that is not presently available?)  

• Step 6: Repeatability and reproducibility study (R&R study) > Determine the systematic error and 

variation of the measurements. Repeatability is defined as the variability present in the 

measurement device itself (a sensor that shows variation when the process is stable), and 

reproducibility is the variation that is present between different measurement devices. This step 

is also not always applicable. In some cases, only one measurement device is used, or only one 

operator performs the action. In these cases, the measurements still need to be verified (e.g., 

calibrating the sensor or reviewing the operator's measurement actions.) 

The first Improve phase can be seen as an intermediate solution. In this phase, Shewhart charts are used 

to monitor the process parameters. At this time, the process parameter is not in control. It is expected 

that a PAT will bounce between the analyze and Phase I improve phase multiple times, where solutions 

are proposed, and the results are monitored and evaluated using control charts. After removing all 

sources of special cause variation, one can continue from the Phase I improve phase and take the next 

step in process control. 

Key Actions Improve Phase I: 

• Step 7: Control charts > The Process Action Teams apply control charting to gain insight into the 

characteristics of parameters that can be used to control the process. The control charting 

should help detect out-of-control situations. The application of control charting follows a multi-

step approach. Starting with preliminary control limits calculated from the raw dataset. This 

results in widely inflated limits. From there, these limits are used to identify out-of-control 

situations that should be investigated. After investigation, these points can either be accepted 

within the data set or rejected. After this step, the control limits should be recalculated, and new 

out-of-control points should be investigated. Based on the knowledge obtained through the 

analysis of out-of-control situations, the team can decide to return to Step 4 (analyze phase) and 

search for new possible improvements.  

The Improve Phase II activities can start when a state of control has been reached through the Improve 

Phase I and Analyze loop. Here it is important to fit a distribution to the data. The fitting of distributions 

is needed for the more complex control charts that should be applied in Phase II charting. This is a 

statistically more complex step where some data might need transformations to fit in a distribution. 

Within Abbott, statistical knowledge is present to do those transformations. However, the end user 

(operators) will need additional training or instruction on how to interpret the control charts signals. 

Again by operating in a process action team and going through the previous steps in this cycle, the 

Operators in the PAT should have a sufficient basic understanding of PMC.  
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Key Actions Improve Phase II: 

• Fitting distributions to sample data of in control parameters 

• Step 7: Control charts > Create more complex and sensitive control charts focussed on 

spotting out-of-control situations and small process shifts. Ideal charts for this are the 

CUSUM or EWMA charts. Other options are the optimal run chart and the dynamic control 

chart. 

• Step 8: Create an OCAP (Out of Control Action plan) for the process parameters. All the 

findings in the analyze, Phase I and Phase II Improve phase, come together here. Specific out-

of-control signals or combinations of out-of-control signals for the process parameters are 

documented, and an action plan is defined. The creation of the OCAP is only useful when the 

problem has already once been resolved. The OCAP has no true purpose for this study since 

the selected process parameters have not reached the appropiate level of control.  

Control is the final phase of the DMAIC project. The goal of this phase is to establish monitoring 
processes and procedures that will ensure the long-term success of the PMC project. This is done by 
quantifying the results of the improvements made and updating standard work documentation and 
procedures.   
 
Key activities Control phase: 

• Step 9: Capability study on the process parameters. Determine the capability of a process and 
decide whether additional improvements need to be made. With the process's capability and a 
good distribution fit to the data set, the number of out-of-spec points can be predicted and used 
as a benchmark for the parameter.  

• Step 10: Certification. In this final step, the activities of the PAT are evaluated by the steering 
committee. An internal audit will be held where the work of the PAT is evaluated, and the 
activities on the shop floor are checked. This is a final check to ensure Operators know how to 
work with the SPC charts and if all processes are correctly being documented.  

• Creation of the Process Improvement Team (PIT): It consists of the Process Action Team 
members and focuses on improving the process. The process is in control and behaves 
predictably, but improvements can be made to reach new targets and strive for continuous 
improvement.  

 
By following this step-by-step guide, any process can theoretically be brought into control. By combining 
the 10-step method of Does et al. (1997) and placing it in the DMAIC structure, a framework is proposed, 
focussing on SPC improvement using a well-known methodology within Abbott. There is quite some 
overlap between the frameworks, and that makes it quite a good fit.  

5.3.2 Practical improvements 

Other than methodological improvements, some practical improvements should be made to reach level 

3 of control charting.  

First of all, the application used for PMC should be changed to another program. As stated in Section 

5.1.2., there are quite some limitations to the program PI Processbook. A program like SEEQ (for which a 

pilot project has been started) tackles many of these problems. SEEQ is a web-based application that can 

be linked to the PI system. It connects to the system without moving or copying the data. This means 

that it uses real-time data as it is stored in PI. And thus, it does not differ from something like PI 

Processbook, which is currently used. The benefit of SEEQ is that it can be used for a broader range of 
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purposes than PI Processbook. One of the significant benefits is that people can collaborate in real time 

on the project since it is web-based. Furthermore, it has new features like pattern recognition, machine 

learning, and complex calculations while also providing basic features like trending, monitoring, and 

creating alerts. An example of this is the ‘profile search’ feature which marks similar patterns in the data 

compared to the selection of data that is made. This makes it easier to clean data. Where this study 

struggled significantly with problems due to the step chain delay, SEEQ could have filtered out the data 

by marking and cleaning similar events within the data set. Figure 32 displays a dynamic control chart 

where the control limits are calculated over the past performance of the parameter. As can be seen, the 

setpoint of the parameter changes and the control limits move with the changes. Another benefit is that 

one can monitor the entire step chain compared to this study, where only steps 212 and 213 are 

monitored. This also means that periods of no production are visible, which the dashboards in this study 

are lacking.  

 

Figure 32 - Dynamic control chart 

The program is also better suited for more complex charts like dynamic EWMA or autoregression charts. 

This is especially beneficial for the Phase II charting applications where a process is already in Control, 

and minor deviations should be monitored. Complex charts with more calculations are used in Phase II 

charting, which a program like PI Processbook only partially supports.  

Next to a new application for control charting, the validation of process parameters should be a standard 

procedure before any PMC project is started. By validating the sensors that are to be monitored, the 

data will be more accurate, and the use of a program like SEEQ can be used optimally. In this research, 

the final dashboard could not be used as input for process verification, limiting interaction with 

Operators on the shop floor.  Furthermore, the validation of sensors might also remove the step chain 

delay that can be seen within the data of this study, which will also benefit SPC applications.  
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6. CONCLUSIONS AND RECOMMENDATIONS 
In this chapter, the conclusions of this research and recommendations for Abbott are given. In section 

6.1 the conclusions are drawn. Section 6.2 provides the recommendations. 

6.1 CONCLUSIONS 
The current tools available to Operators at Abbott Zwolle provide limited insight into the production 

process, leading to a reactive approach to arising problems. As a result, there is insufficient 

understanding of the performance of the processes within the ARTH filler on the shop floor. The core 

problem of this research is thus defined as the following: 

There is insufficient insight on the shop floor on the performance of the ARTH filler 

To address this issue, Abbott aims to explore the potential of Process Monitoring and Control to enable 

Operators to review the production process, identify potential issues, and implement preventive 

measures to mitigate problems before they occur. The objective of this research is defined as the 

following: 

To design, implement and evaluate Process Monitoring and Control for Abbott Zwolle’s filler of the 

Aseptic Ready to Hang line. 

To solve the core problem, this research was started by analyzing the current situation at Abbott Zwolle. 

From there, literature on the application of PMC  was reviewed, looking into the statistical side of 

charting and the methodological side of implementation. After this, the critical process parameters for 

the ARTH filler were identified, and a phase I study was performed. From there, a selection of 

parameters was chosen for implementation on the shop floor.  

In the Phase I analysis of the process parameter of the ARTH filler, 8 parameters were identified as in-

control, which would be ready for Phase II monitoring. 11 other parameters were marked as out-of-

control. From these 11 parameters, 6 were ranked as critical. These are critical because they directly 

influence the sterility of the filler and show a lot of special cause variation. The 6 critical parameters 

were selected for daily stochastic monitoring through discussion with the Process Engineers. Due to the 

nature of the data of these parameters, and the lack of normality for the data set, the individuals chart is 

the only option. Through an empirical reference distribution, control limits for the process parameters 

were determined to have an out-of-control probability similar to a normally distributed three-sigma 

control chart.  

The critical parameters are visualized on two dashboards; one made explicitly for the morning meeting 

where the relevant stakeholders of the ARTH line get together and the other as a screen available for 

Operators next to the filler itself. Next to the dashboards, the systems used by Abbott are evaluated, and 

suggestions for further improvements on the methodology and practical application of PMC are made.  

In conclusion, through the implementation and evaluation of PMC for the filler at the ARTH line, this 

research enables real-time monitoring of critical process parameters and increases insight into the 

processes of the ARTH filler. Operators are able to identify and address problems before they result in 

significant defects or production downtime. Furthermore, the use of PMC within Abbott is critically 

evaluated, and recommendations are given to help them excel in their strive to become a world-class 

producer. 
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6.2 RECOMMENDATIONS 
Based on the findings of this research, the following recommendations are given to Abbott Zwolle: 

First, before a Process Monitoring and Control project starts, the sensors of interest should be validated. 

By validating the sensors, Abbott can ensure that the data is a correct representation of reality, reduce 

processing speeds and prevent errors like the step chain pointer delay. 

Second, Abbott should consider moving their PMC activities to a new IT system like SEEQ. The PI 

Processbook system is very outdated, and security might become a risk. Furthermore, the system is very 

rudimental for the current day and age, where data visualization is being replaced with machine 

learning, prediction, and complex analysis. If Abbott wants to position itself better for the future, where 

data plays a crucial role in decision-making processes, the move to a new IT system is essential. 

Third, introducing PMC on a new production line should start with easy-to-use and understandable 

charts. Most stakeholders are untrained in statistics and should get familiar with the basics before 

moving on to more complex forms of process control. A good way of doing this is by reviewing 

parameters of interest in a Shewhart-type format daily. 

Fourth, testing the proposed methodology of following the 10-step method of Does in the DMAIC 

structure. Hopefully, this fits Abbott's traditional project approach while focusing on the crucial aspects 

relevant to PMC integration. 

Fifth, the in-control parameters should be reviewed in a Phase II study. A probability distribution should 

be fitted to the data set, and an OCAP should be created for these parameters. 

Sixth, the out-of-control parameters that are not deemed critical in this study should be reviewed by a 

Process Action Team and be brought further into control. Due to capacity constraints, the focus should 

first lie on weekly monitoring of out-of-control signals, and when more time is available, the DMAIC-10-

step approach should be applied. 

Seventh, the 6 critical marked parameters should be further reviewed and brought into control. Start 

with creating a process action team and involving Operators with the project.  

Eighth, Abbott should consider hiring a specific PMC specialist. By having a single expert within the 

organization, someone has time available to train Process Action Team members, answer specific 

questions, serve as an internal auditor for PMC charts and projects, and as a project lead for complex 

PMC applications in Phase II charting.  
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8. APPENDICES 
8.1 APPENDIX I: TYPES OF SPECIAL CAUSE VARIATION 
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8.2 APPENDIX II: CONTROL CHART CONSTANTS 

 

8.3 APPENDIX III: COMPUTATIONAL METHODS FOR CONTROL CHART 

STATISTICS 

 

Study of Wheeler (2010) on the computation of the statistics used for control limits 
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8.4 APPENDIX IV: LONG LIST OF PARAMETERS 
Long list of parameters 

Data tag Description Units 
Nitrogen flow   

108020_FIQ523 ARTH Filler - N2 flow before fill section m³/h 

108020_FIQ524 ARTH Filler - N2 flow after fill section m³/h 

Hot airflow 
 

 

108020_FIQ933 ARTH Filler - flow hot air m³/h 

Peroxide flow 
 

 

108040_FIQ096_PV ARTH Filler - flow H2O2 machine mL/min 

108040_FIQ097_PV ARTH Filler - flow H202 sterile screw mL/min 

Compressed air flow 
 

 

108040_FIQ098_PV ARTH Filler - air flow bottles m³/h 

108040_FIQ099_PV ARTH Filler - air flow lid m³/h 

Bottle sterilization 
 

 

108030_TT606 temp. bottle heated air °C 

108030_TT607 temp. control heated air H2O2 bottle °C 

108030_TT608 temp. drying bottle °C 

Seal sterilization 
 

 

108080_TT609 temp. heated air lid °C 

108080_TT610 temp. H2O2 lid °C 

108080_TT611 temp. lid drying °C 

RQT-sterilisation 
 

 

108030_TT105 temp. control bottle final H2O2 outside °C 

108030_TT106 temp. control preheated H2O2 outside °C 

Overpressures 
 

 

108020_PIT082 ARTH Filler - Pressure bellow outside mBar 

108020_PIC081 ARTH Filler - Overpressure Filling Section Pa 

108030_PIC081 RQT - Overpressure 1 Pa 

Peroxide concentration 
 

 

108020_DT097 ARTH Filler - density H202 sterile screw % 

Bottle infeed RQT   

108030_CRASH__CNT001 ARTH filler – RQT first crash detected for 500mL 
bottles 

integer 
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8.5 APPENDIX V: FILTERS FOR PROCESS PARAMETERS 
Filters for process parameters 

 

 

 
 
 
 
 
 
 
 
 

  

Process Parameter Stepchain filter Bottle size filter 
FIQ523 – N2 flow before fill section Steps 212 and 213 - 
FIQ524 – N2 flow after fill section Step 213 - 
FIQ933 – hot air flow Steps 212 and 213 - 
FIQ096_PV – H2O2 flow machine Step 213 Bottle 3 and Bottle 1/2 
FIQ097_PV – H2O2 flow sterile screw Steps 212 and 213 - 
FIQ098_PV – air flow bottles Steps 212 and 213 Bottle 3 and Bottle 1/2 
FIQ099_PV – air flow lid Steps 212 and 213  
TT606 - temp. Bottle heated air  Steps 212 and 213 Bottle 3 and Bottle 1/2 
TT607 – temp. Control heated air H202 bottle Step 213 - 
TT608 – temp. Drying bottle Steps 212 and 213 Bottle 3 and Bottle 1/2 
TT609 – temp. Heated air lid Steps 212 and 213 - 
TT610 – temp. H2O2 lid Steps 212 and 213 - 
TT611 – temp. Lid drying Steps 212 and 213 Bottle 3 and Bottle 1/2 
TT105 – temp. Control bottle final H2O2 
outside 

Steps 212 and 213 - 
TT106 – temp. Control preheated H2O2 
outside 

Steps 212 and 213 - 
PIT082 – Pressure bellow outside Step 213 - 
PIC081 – Overpressure filling section Step 213 - 
PIC081 – RQT overpressure Steps 212 and 213 - 
DT097 – density H2O2 sterile screw Steps 212 and 213 - 
CRASH__CNT001 – RQT infeed first crash 
detection 

- Bottle 3 



  

54 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITY OF TWENTE 

Drienerlolaan 5 

7522 NB Enschede 

 

P.O.Box 217 

7500 AE Enschede 

 

P +31 (0)53 489 9111 

 

info@utwente.nl 

www.utwente.nl 


