
1

An Authentication Service for Domestic
Self-Hosting

F.T. Breggeman BSc

F

Abstract—Domestic self-hosting refers to the practice of operating and
maintaining a server for personal use. It has been found that there are no
authentication services that are suitable for use in domestic self-hosting.
This paper aims to rectify this by investigating what the challenges are
in creating such a service, with DAS, an authentication service that is
suitable for domestic self-hosting, being an artifact produced by this
research.

Index Terms—self-hosting, domestic self-hosting, authentication,
OAuth, LDAP, SAML, Forward Authentication, Reverse Proxy Authen-
tication, PAM

1 INTRODUCTION

In October of 2021, a survey was held on the most prominent
communities for domestic self-hosting[7]. This survey is, to
the best of my knowledge, the first academic source on
domestic self-hosting. In order to gain more knowledge
on domestic-self hosting, and specifically software devel-
opment for domestic self-hosting, the idea was conceived
of developing a program specifically for use in domestic
self-hosting, and documenting the process and the results.
The survey revealed that only relatively few domestically
self-hosted systems have any form of centralised authen-
tication service, and those that are rarely integrated with
all services on the system. As such, the project became
focussed on creating an authentication provider for specific
use by domestic self-hosting; this project would be named
the Domestic Authentication Service, or DAS.

The survey identified the most popular software that is
domestically self-hosted, and the authentication protocols
that they support (if any). The paper identified that there is
no one standard, but that most software that supports any
sort of centralised authentication uses either OAuth, LDAP,
or reverse-proxy authentication, with SAML and PAM being
less common. As such, any software aiming to support
domestic-self hosting should be compatible with at least
the three most common protocols, with SAML and PAM
being optional features. This paper describes the challenges
in designing and implementing such a service, both in the
supporting multiple protocols, but especially in designing
software for self-hosting. In order to do so, it defines the
following research questions:

1) What are the differences between OAuth, LDAP,
Reverse Proxy, SAML, and PAM?

2) What are the challenges involved in making a ser-
vice that can natively support multiple protocols,
most notably OAuth, LDAP, and reverse proxy?

3) What are the challenges involved in ensuring such
a service is suitable for domestic self-hosting?

4) What are the differences between a self-hosted au-
thentication service and its enterprise counterparts?

5) What authentication schemes (e.g. traditional user-
name/password, TOTP, asymmetric) can operate
within the commonly used protocols?

This paper is divided into 8 sections, including this one.
Section 2 gives some context on the two main areas of

this paper, domestic self-hosting and authentication. Sec-
tion 3 identifies and briefly describes some related work.
Section 4 describes each of the protocols in details, provides
relevant information for the implementation of the service,
and makes a comparison of the various protocols. In doing
so, it answers research question 1. Section 4.8 answers
research question 5. Section 5 is a software architecture of
the service. It contributes to answering questions 2, 3, and 4.
Section 6 describes any relevant implementation details that
do not follow from the architecture. It primaliry answers
research questions 2, but also contributes to answering
research questions 3 and 4. Section 7 contains summarised
answers to each of the research questions, and refers to the
place in this paper where more detailed answers can be
found. Section 8 concludes this paper.

1.1 Terminology
To avoid confusion, the following definitions will be used
throughout this document unless explicitly specified other-
wise.

• Authentication: The process of proving the identity
of a user to an application.

• End user: A natural person who wants to use a ser-
vice (and needs to authenticate themselves in order
to do so)

• Credentials: Some data that can be used to uniquely
identify and authenticate an end user.

• Authentication provider: A service which authenti-
cates end users for applications other than itself.

• Client application: An application which has users
that are authenticated by the corresponding authen-
tication provider



2

• Authentication scheme: A method by which an au-
thentication provider or other application can verify
the identify of a user

• Authentication protocol: A method by which an
authentication provider can securely inform a client
application of the identity of a user

2 BACKGROUND

2.1 Domestic self-hosting
This section offers a brief description of domestic self-
hosting. Statements in this section are roughly based on the
results from the aforementioned survey[7].

Self-hosting can be defined as the practice of operating
a server which provides software services for use by (or
otherwise directly beneficial to) the operator. For example,
a small company might host their own website, or a mu-
seum might host their own organisational software[62]. This
paper focuses on domestic self-hosting: hosting software
for personal use, traditionally from a server in one’s own
home. Examples of services that are commonly self-hosted
domestically include email, personal websites, cloud stor-
age, instant messaging, and media streaming.

Domestic self-hosting should be considered an alterna-
tive to cloud-based services, e.g. Microsoft Outlook, Teams,
and OneDrive. These cloud-based services offer similar
functionality to many self-hosted programs, e.g. Dove-
cot[16]/Postfix[46], Matrix[36], and NextCloud[39]. Self-
hosting these services means one has more control over
their data, leading to greater privacy and less dependence
of external parties. Self-hosting may allow one to use soft-
ware, or certain features of particular software, that is not
available or prohibitively expensive in cloud-based services.
Finally, self-hosting could be cheaper as the software is
mostly open-source or shareware; this holds especially true
if one wants large amounts of storage or other hardware
resources. Of course, domestic self-hosting also has disad-
vantages. Because self-hosting gives one responsibility over
the services, it also means that one will have to put effort
into maintaining the services, and if they break one will
have to perform repair. Unlike cloud-based services, there
is very little customer support available for self-hosted ser-
vices, although the communities are usually willing to help.
Finally, the lower adoption rate for and higher barriers to
entry to self-hosted services compared to their cloud-based
counterparts can form a disadvantage for communication
or collaboration services, e.g. Matrix[36] or Collabora[32],
where it is expected that a group of people working together
all have an account at the same service.

Self-hosting requires some degree of technical knowl-
edge. At the very basics, a rudimentary understanding
of server-client architectures is required. Basic networking
knowledge is also required, including some knowledge
on IP addresses, DNS, and firewalls. Working from be-
hind a residential connection requires port forwarding, and
sometimes also assigning a static IP address. Some server
management skills are often used, as many users configure
the software they host manually; however, there does exist
software which aims to automate this[63].

Unique to domestic self-hosting is that servers are often
physically located in a private residence, and have to deal

with the limitations of consumer internet, such as low
upload speeds and ISP-provided NATs, as opposed to the
dedicated server infrastructure used in enterprise hosting.
The hardware used for domestic self-hosting can range
from small, low-power devices such as the Raspberry Pi
to enterprise-grade server racks. Older hardware, ranging
from discarded desktops to deprecated enterprise hardware,
is quite commonly used. Especially the inclusion of older
hardware is quite distinct from enterprise hosting, where
hardware will almost always be purchased new and taken
out of service after a few years, to take advantage of the bet-
ter performance and efficiency of newer hardware. The soft-
ware can also be quite distinct; software that is self-hosted
by enterprises is often expected to be used by multiple
distinct groups of users, and will generally have complex
access control mechanisms to mirror the complex structure
of a company. In domestic self-hosting, however, there is
expectation for only few users, with at most a distinction
between users who are administrators and users who are
not. Interoperability is also different; most enterprise soft-
ware will either be part of a vendor ecosystem, or integrate
with one or multiple such ecosystems. In domestic self-
hosting, these ecosystems do not exist. Instead, software will
usually attempt to support a standard wherever integration
is desired. While this usually leads to compatibility, it can
lead to problems when there are multiple standards without
an accepted default.

2.2 Authentication
One of the areas in which there multiple common standards
is authentication; specifically, there are multiple protocols
that allow a service to check credentials at a centralised
location. In domestic self-hosting, LDAP, OAuth and reverse
proxy authentication are most common, with some services
also supporting SAML or PAM. However, none of these pro-
tocols is the standard, and any reasonably sized self-hosted
system will find that no protocol is supported by all of
the hosted services. As such, any centralised authentication
provider for domestic self-hosting must support multiple
protocols. There are currently two open source authentica-
tion providers that have support for multiple protocols.

Keycloak[27] is an open source authentication provider
written in Java. It natively supports OAuth and SAML, but
does not function as an LDAP provider. However, it can
integrate with an LDAP provider, using the LDAP server to
store and retrieve its own account data. When linked with
an LDAP server, the combined system will allow for the
same set of credentials to be used over both OAuth, SAML,
and LDAP. Keycloak is difficult to use for the average self-
hoster, both in installation and operation. Installation by
itself is difficult, as Keycloak does not ship with a database
driver; instead, it expects to operator to provide it with a
database driver library and edit configuration to use this
driver[28]. To the best of my ability, I have only been able
to successfully install this driver given the exact version
of the PostgreSQL driver used in the tutorial. Furthermore,
integrating Keycloak with LDAP is not a simple task either;
Keycloak expects the configuration data to be in a highly
precise format, which the most common Linux LDAP server,
OpenLDAP[22], does not support. This means that this inte-
gration requires editing significant amounts of OpenLDAP



3

configuration, which is rather complicated. Operation of
keycloak is not trivial, as it has many features that are not
required for domestic self-hosting, such as the addition of
multiple realms (i.e. complete separation of identity sets),
complex access control, complex management of connected
apps, etc. Furthermore, managing apps that connect through
LDAP does not go over Keycloak at all, further complicating
matters.

Authentik[6] as an open source identity provider written
in Python. It natively supports OAuth, SAML, and LDAP,
and is focused on flexibility and versatility. It supports
many additional features, such as user enrollment, con-
ditional access, and federation. While these are not bad
qualities by themselves, they do cause Authentik to become
overwhelmingly feature-rich and complex for domestic use.
Furthermore, Authentik can only be installed via Docker,
making it unsuitable for the approximately 29% of domestic
systems that do not use Docker. Installing Authentik on the
approximately 58% of systems that only have part of their
services dockerised might also be difficult, as it is not always
trivial to have a non-dockerised service communicate with
a dockerised service.

3 RELATED WORK

Wong[62] considers the use of self-hosting in contrast to
vendor/consortium based hosting by galleries, libraries,
archives, and museums. Data was collected via a survey
with 21 participants active in some position in one of these
institutions. The amount of institutions surveyed that used
self-hosted software was approximately equal to the amount
that did not. The study found that the choice whether to
self-host is most often motivated by some sort of constraint,
such as the available budget, the need for customisation, or
the available in-house technical expertise. Despite this, most
institutions do not regret their decision.

Molnar and Schecter[38] explores security issues that are
new or greatly exacerbated when moving from self-hosting
to cloud-based hosting, as well as their countermeasures.
The study finds that most novel issues can be mitigated
using various types of auditing, both technical and legal.
It also notes that cloud hosting makes it economical to
take certain security measures that scale well across a large
number of machines, but would be too costly for smaller
deployments. While the study is based around large in-
stitutions, the list of security issues does provide some
background as to the benefits of self-hosting domestically,
especially given that many of the proposed solutions to
security issues with cloud-based services require expertise
and/or effort by the party that uses the services that would
not be feasible for a domestic user.

Angeli et al.[3] criticises the growing use of cloud based
software in higher education, citing worries over the trans-
fer of political power to a small set of companies, as well
as privacy, worker’s rights, and environmental concerns.
The study also proposes policies that could reverse this
trend and provide additional benefits to the institution’s
community, and a concrete method for universities to re-
turn to self-hosting in a sustainable manner. Studying self-
hosting in higher education comes from a different point
of view than self-hosting for domestic use, as universities

have historically self-hosted, and as such self-hosting in
this context has already proven a practically viable concept.
Nevertheless, many of the issues with cloud based software
and some of the benefits of self-hosting cited in the study do
also apply to domestic use, although the proposed method
of self-hosting is focussed to too large of a scale to be
relevant to this paper.

Mengyi et al.[30] proposes an augmentation of Shib-
boleth, a SAML authentication provider, adding support
for OpenID Connect and theoretical support for any other
authentication protocol. It does so not by changing the
authentication provider itself, but by creating a separate
component to interoperate between SAML and other pro-
tocols.

4 PROTOCOLS

This section will describe the different authentication pro-
tocols that shall be supported, by looking at both their
technical documentation as well as some implementations.
It shall then identify common features, and compare the
protocols based on these common features. This section is
intended to answer research questions 1.

4.1 Oauth

This section will describe a high-level overview of OAuth
2.0, and roughly describes the way it should be imple-
mented in an authentication service for domestic self-
hosting. For more information on OAuth 2.0, including
implementation details, I recommend [44], which is where
most information in this section comes from.

When mentioning OAuth, in both general usecases and
throughout this document, one usually refers to OAuth 2.0.
OAuth 1 did exist and was mostly used by large providers,
but was found to (amongst other flaws) be unsuitable for
web applications, and as such has been replaced by OAuth
2.0. For reasons of brevity and readibility, any mentions of
Oauth in this document refer to OAuth 2.0 unless otherwise
specified.

Due to reasons related to its development, there is no
concrete specification for OAuth 2.0. Rather, there is a col-
lection of separate RFCs[41], which don’t necessarily cover
all implementation details. Regardless, it seems almost all
implementations have converged to a compatible protocol.

It should be noted that while OAuth can be used as
an authentication protocol, it is not strictly intended as
such. Instead, it was originally intended as an authorization
protocol, i.e. a protocol that allows applications access rights
to other applications; for example, to allow a third-party
twitter client access to your Twitter account, or an automatic
mail program to gain access to your inbox. This is a flow
that is different from a dedicated authentication provider.
This section will also explain the way in which a dedicated
authentication provider and a client application that only
connects to an OAuth server for authentication interact, and
how this is different from other flows.

4.1.1 Client Application Registration
For a client application to connect to the OAuth service,
it must first be registered with the OAuth provider. This



4

will generate a Client ID, and optionally a Client Secret,
a confidential string which the application uses to prove
its identity to the server. OAuth authentiaction involves
redirecting the browser from the client application to the
authentication provider, and then back to the client applica-
tion; the URIs belonging to the client application to which
the user should be redirected in this second step should also
be registered with the authentication provider, to prevent
a malicious party from impersonating a client application.
Many providers also ask for additional information about
the connecting application, such as the name of the applica-
tion or an icon, which can be used to identify the connecting
application to the end user when the application needs to be
authenticated, or in the menu of the OAuth provider.

4.1.2 Basic Authentication Flow

Client
Application

Authentication
Provider

Credentials

Browser

request w/ token

request resource

request

redirect

Login portal

token redirect

request user info

resource
user info

Fig. 1. A schematic overview of the basic OAuth flow

Once the application has been registered with the
provider, end users can be authenticated to the application.
This process is illustrated in figure 1 First, the end user ac-
cesses the login page from the client application. If the client
application notices that the end user is not yet authenticated,
it will redirect the user to the authentication provider, using
a URI that contains several GET parameters, most notably
the applications Client ID. The authentication provider then
verifies the identity of the end user, completely independent
from the client application. The authentication provider can
use any process for this verification. Once the identify of the
end user has been verified, the authentication provider redi-
rects the user back to the redirect URI that was registered by
the application, and appends a so-called code to this URI as
a GET parameter.

At this point the client application still knows nothing;
not only does it not have any information regarding the
identity of the end user, but it also has not yet verified

that the code it was given by the user’s browser actually
originated from the authentication provider. In order to
verify this, it must exchange the code for an access token.
The request to do this will contain the code, the client id,
and the client secret. This will return an access token, which
must be included in any requests to the authentication
providers main API, in order to verify the identity of the
client application and the user for which it is trying to
access information to the authentication provider, as well
as authorize the client application for this particular user. It
should be noted that the code can only be used in a short
window, and only once; if a code is ever used twice, the
authentication provider should assume it has been compro-
mised, and invalidate not only the code itself but also any
access tokens that have been generated as a result of it.

At this point, the client application knows that the user
is logged in, but it does not know any information about
the user, and can therefore not distinguish this user from
any other user it might know. To get information on the
user, it can query the authentication provider, which should
provide an API endpoint that returns some data on the
user; of course, querying this endpoint requires an access
token. How exactly the user information is retrieved will be
described under section 4.1.5

4.1.3 Variations
Applications that execute all code on the end users device
do not have a way to hide their client secret from the
public. To accommodate this, they may omit the client secret
when exchanging their code for an access token. Using
this authentication flow, there is no for the authentication
provider to verify the identity of the client application;
the only way to make this flow secure is to ensure that
the code can only be received by the client application,
which is done by registering the redirect URL with the
authentication provider, using the state parameter, and only
allowing secure connections.

There is also the even simpler implicit flow, where the
redirect URL does not contain a code, but rather an access
token; this flow does not require the client application to
make any requests to the authentication provider to receive
an access token. While this was quite popular for webapps
in the past, some OAuth provider implementations no
longer support this flow due to security concerns.

Security can be enhanced by using the Proof Key of Code
Exchange, or PKCE addition. Here, the client application
generates a random string of characters, called the code
verifier, and the hash of this string, called the code challenge.
The challenge is added to the parameters when initially redi-
recting the user to the authentication provider. The verifier
is added to the parameters when exchanging the code for an
access token. This allows the server to verify that the request
for the access token comes from the same program that
redirected the user to the authentication flow that generated
the corresponding code. Not all authentication providers
support this addition for all authentication flows, and some
don’t support it at all. This addition is mainly recommended
to be used for flows without a client secret, but specifica-
tions allow this addition for all authentication flows (except
implicit). It is recommended for client applications to use
PKCE whenever it is supported.



5

4.1.4 Notable details

The above explanations repeatedly mention HTTP related
terms, such as “redirect” and “GET parameters”. This is
because OAuth is exclusively an HTTP-based protocol, and
requires the end user to be able to interact with a browser.
While this is not a problem for web applications, it does
mean that desktop or mobile applications will need to either
ship a browser with the application, or integrate with the
system browser.

The communication between the end users browser and
the authentication service, as well as the redirect that occurs
immediately afterwards contain sensitive credentials, that
could be used to hijack the session or even the whole
application. As such, these requests must be handled over
a secure connection, and may not be encapsulated in an
iFrame.

Any URI that redirects the user towards the authen-
tication provider can also include a state parameter. The
contents of this state parameter will then be included when
the user is redirected back to the client application. The
client application can use this feature in two ways. Firstly,
it can be used it to store information related to the users
original request, such as a location the user should be
redirected to after authentication has succeeded. Secondly,
the application can use it to verify that a request which
contains a code corresponds with a user requesting a login,
which can help prevent CSRF attacks.

The request which initially redirects the user to the
authentication provider can include a list of scopes. This
can allow for fine-grained control over what the resulting
access token can be used for.

4.1.5 OpenID Connect

As mentioned previously, OAuth is an authorization pro-
tocol, but not necessarily an authentication protocol. While
it does allow the end user to log into an application via
a centralised authentication flow, it does not provide the
client application with any information about the end user.
This information would have to be retrieved separately
using the provided access token. As OAuth does not specify
the method by which this information should be retrieved,
the format in which this information should be presented,
or even which information should be included in such a
request, it cannot be seen as a standardised authentication
protocol.

OpenID Connect is an authentication protocol built on
top of OAuth[53]. It defines a several ways to use OAuth
to provide authentication services, including all required
implementation details, and several extensions to the OAuth
protocol. Firstly, the OpenID Connect specification defines
a standardised set claims that an authentication provider
can make, as well as formats in which these claims can be
communicated. It also defines a set of scopes under which
various claims fall; for example, an end users name is under
the basic scope profile, whereas their email address is
under the email scope. Finally, it defines two ways to
retrieve this information.

The simplest way does not require any OAuth exten-
sions. In this flow, the client application first obtains an
access token through the normal flow. It can then use this

access token to access the userinfo endpoint, which will
return information about the end user which granted the
access token. The client application can trust this informa-
tion, as it has been retrieved directly from the authentication
provider. The main advantage of this method is the concep-
tual simplicity; once one has a basic understanding of the
OAuth process, it becomes trivial to understand not only
how this flow works, but also why it can function as a secure
authentication mechanism. This in turn makes it easy for
both the authentication provider and the client application
to properly implement. The disadvantage of this method is
in its inefficiency: after the user has been redirected to the
client application with an access code, the client application
first needs to exchange this access code for an access token,
and then retrieve user information with the access token; so
a client application has to make two successive requests to
the authentication provider for each login.

To improve efficiency, OpenID Connect defines an ex-
tension to the OAuth protocol, called an ID token. This
requires the authentication server to have generated an
asymmetric key pair, and publish the public key. In places
where normally an access token is send, an OpenID Connect
server (additionally) sends over an ID token, which contains
user information, and is signed with the generated private
key. This means the client application can verify that the
data is valid without having to contact the authentication
provider. This ID token can be obtained through two flows:
the “code” flow, and the “id token” flow.

The “code” flow is entirely equivalent to, and must
always be combined with, the standard OAuth “code” flow.
The only addition is that when the code in exchanged for
an access token, the server sends an ID token alongside the
access token. This maintains all the security aspects of the
flow using the userinfo endpoint, but has one fewer API
call.

The “id token” flow is equivalent to the OAuth implicit
flow. Here, the authentication provider sends an ID token to
the client application when the browser is redirected to the
authentication provider. In this flow, the client application
does not need to directly contact the authentication provider
at all.

The fully implicit flow does raise some security concerns;
if the redirect is tampered with, potentially sensitive user
information could leak. This can be mitigated by combining
the two access flows: OpenID Connect allows for a client
application to request both a code and an ID token in the
same request. In many of these cases, the ID token only
contains the unique user identifier; this means the client
application can distinguish the user and perform actions
that don’t rely on (up-to-date) user information without
making an extra call to the token endpoint, while still
locking the potentially sensitive user information behind a
proper OAuth procedure.

A client application appropriately using OpenID Con-
nect must know quite a lot of things about the authentica-
tion provider before starting the authentication process. For
example, it must know the exact URIs for several endpoints,
and it must be aware of the public keys the authentication
provider is using to sign its data. To ensure that this in-
formation does not all need to be provided to the client
application by hand, there is a standard that specifies which



6

information an authentication provider should publish, and
how[54].

An authentication server must publish a document on
a URL that is fixed relative to the URL it sets as an issuer
value. This document must include the issuer name, location
of the authorization and token endpoints, the location where
the public keys the authentication provider uses for signing
ID tokens can be found, and the supported flows and
cryptographic algorithms. It is recommended to also include
the location of the userinfo endpoint and the supported
scopes.

4.1.6 Considerations for DAS

The specification for OAuth, and to a lesser extent that
of OpenID Connect, leave quite some details open to the
implementer. Most notably, there are a variety of different
mechanisms and features that an implementer can decide
to support or not support. On the one hand, the proposed
service should support as much as possible, to maximise
compatibility. On the other hand, some mechanisms are
significantly less secure than other mechanisms, especially
when configured improperly.

I see relatively little value in fully supporting discovery;
there are very little self-hosted services (or any services at
all for that matter) that use discovery of OpenID Connect
servers, and correctly implementing it would be quite a lot
of effort. Some parts of the discovery standard however,
most notably the provider configuration request, should be
supported, as some self-hosted applications, e.g. Gitea[23]
use this feature to automatically configure themselves as
client applications. Dynamic client registration should not
be supported, as the server administrator should be fully in
control of which clients can connect to the proposed service.

The default ID Token signing algorithm is RS256. This
algorithm should be supported by any client and is reason-
ably secure, and as such I can see of no reason to support
any other algorithm.

Token ID and userinfo encryption is rarely implemented
by self-hosting applications, and provides little security ben-
efit when the connection itself is encrypted using TLS, and
even less benefit if the connection is between two services
on the same machine, as is common in domestic self-hosting.
However, this feature does require a significant amount of
effort to implement. As such, this feature should have the
lowest amount of priority for the system.

Backchannel and frontchannel logout are not required
for the basic authentication flow to function. As such, they
should be considered a relatively low priority.

The implicit and ID Token flows can pose a security
risk if the application is not properly configured. As such,
precautions should be taken to ensure that these flows are
configured properly. Notably, it should be strictly enforced
that the redirect URLs strictly match those that are config-
ured, and that all traffic occurs over HTTPS. The possibility
of providing only a limited amount of information via the
ID Token, and locking more sensitive information behind
the userinfo endpoint should also be considered.

The implicit flow can be considered a security risk; it
should be investigated to what extent compatibility will be
compromised if PKCE is mandatory for this flow.

If not mandatory, claims and scopes supported should
be limited to those that have an equivalent in other authen-
tication protocols, to maintain a consistent experience for
the end-user.

Support for different locales can be a very valuable
feature for some user groups, but can also be difficult
to implement, and is not required for base functionality.
Furthermore, this feature is not present in other authen-
tication protocols, and may greatly complicate using the
service for the administrator. This feature is not necessary
for a minimum viable product; whether or not this feature
should be supported after this stage requires further market
research.

Support for the claims and request parameters is not
required for a minimum viable product, as any client ap-
plication should be able to use an authentication provider
that does not support these features. To account for the pos-
sibility that a client incorrectly assumes that this feature is
supported, however, adding support for this feature should
be considered at a relatively low priority. The low priority is
because I deem it relatively unlikely any client application
will break if this feature is not supported, whereas this
feature is relatively complex to implement.

Apart from what is listed above, all optional features
should be implemented. Most notable features that should
be implemented are PKCE support, support for both public
and pairwise subject types, and support for all grant types
described in [53] (with the aforementioned caveats for the id
token and implicit flows). However, it should be noted that
these features are optional, and may have to be dropped due
to time constraints.

4.2 LDAP

The Lightweight Directory Access Protocol (LDAP) is a
directory database which is commonly used to store user
information. It is designed merely as a database, but a
specific procedure allows client applications to verify user
credentials against the database. In this procedure, unlike in
OAuth, the client application is still responsible for gather-
ing the credentials. It can then exchange these user creden-
tials for authenticated information about the corresponding
user.

4.2.1 Database Structure
Unlike more traditional object-relational databases, a direc-
tory database contains a tree-like structure, where each entry
holds data of its own, but is also a parent entity to other
entries (which may in turn be a parent to more entries).
Entries hold data in several fields; each field has a name,
and holds one type of data. Entries can be constrained by
a class, which forms a template for which fields an entry
must have and which optional field it may also have. All
entities in LDAP have a unique Object IDentifier (OID).
Furthermore, entries can be uniquely identified by their
Distinguishing Name (DN), which is a list of attributes
which can distinguish entries within the children of their
parent, similar to a filepath[65].

In order to use LDAP for authentication, there must be
some sort of entry class that represents a user for authen-
tication[33]. This object class must have at least two fields:



7

firstly, some sort of unique identifier that is memorable to
humans, such as a username or an email address, so that
the client application can connect the entry to the user
credentials. Secondly, a password field, so that the LDAP
server can authenticate for this entity. This password field
does not have to be in plaintext; in fact, it is now generally
recommended that this password field is a hash[64].

4.2.2 Client Application Registration and Configuration
Whether or not the client application needs to be registered
with the authentication provider depends on how the au-
thentication provider is configured. It is possible to connect
to an LDAP server with or without client application cre-
dentials, and an LDAP server could be set up such that
unauthenticated client applications can authenticate users.
For security reasons, however, it is advisable that a new
set of client application credentials is generated for each
client application, and that only authenticated client appli-
cations can access any user data. As such, the authentication
provider should be configured to generate a new set of
credentials for use by the client application, and the client
application should be configured to use those credentials.

The client application must be configured in order to
be able to match the credentials provided by the end user
entries in the LDAP database, and in order to retrieve infor-
mation about the end user from the database. Specifically, it
needs to know how to identify and search for entries that
represent users, and which fields of these entries contains
what information about the end user.

4.2.3 Authentication Flow

Client
Application

login portal

credentials

Resource

Authentication
ProviderBrowser

request resource

credentials

approval

Fig. 2. A schematic overview of the events in LDAP authentication

The sequence of events required for authentication can
be seen in figure 2. Firstly, the client application collect the
user credentials, after which it connects to the authentication
provider. If applicable, the client application authenticates
itself with the authentication provider immediately after
connecting, in order to be allowed to query the database.
It then searches for user entries that correspond to the
identifying part of the credentials. If it finds any, it will
extract the DN of the user entry.

The combination of the DN of a user entry and its
password field serve as credentials to authenticate with
the authentication provider. Once the client application has
retrieved the DN of the user entry, it will attempt to authen-
ticate itself to the authentication provider with this DN and
the password provided by the user. If this authentication
succeeds, the client application knows the user information
corresponding to the credentials provided by the end user,
and it knows that the credentials are correct; the end user
has been identified and authenticated.

4.2.4 Considerations for DAS
The proposed service does not need to feature as a full
LDAP server; it only needs to provide read access to data
with a predefined structure. Furthermore, given the domes-
tic use, there is no need for any complex access control. This
means all entries can be of the same class, and reside under
the same parent entry.

As such, only a limited subset of LDAP protocol func-
tionality actually needs to be supported. Any operation that
modifies the data should not be supported, as modifying
the user data should only be possible for administrative end
users. Looking strictly at the authentication flow, only the
Bind, Search, and Unbind operations are strictly required;
however, the Compare and Abandon operations also do
not lead to any modification of the data, and should be
supported to maximise compatibility. The most notable dis-
tinction between the requirements for the proposed service
and an actual LDAP server, however, is that the information
that should be searchable through this LDAP database does
not actually need to have a nested directory structure, but
merely needs to be presented as if it does.

4.3 Forward Authentication
The forward authentication protocol relies on a reverse-
proxy to verify with the authentication provider that a re-
quest has been authenticated before forwarding the request
to the client application. When proxying requests to the
client application, the reverse-proxy sets headers that the
client application can use to identify the user.

Note that all the client application needs to do is to
read the user information from the correct HTTP headers it
receives; it does not need to make any requests or maintain
any state. Even if the client application does not support
this authentication protocol, this would only mean it is
unable to identify the user; the user would still have to be
authenticated before they are able to make any requests.
As such, this authentication protocol can be used to ensure
unauthenticated users can’t make requests to applications
that otherwise don’t offer authentication, although the ap-
plication would be unable to distinguish users.

There have been a variety of applications that provide
functionality for forward authentication, with Authelia[37]
being the most prominent modern example in domestic self-
hosting[7].

4.3.1 Client Application Registration
For this authentication protocol to be secure, all requests to
the client application must go through the reverse-proxy.
This means that the client application must be listening



8

on an HTTP connection that is not publicly accessible. The
reverse-proxy must be configured to listen on the desired
publicly accessible connection, and know where to forward
the requests to. The reverse-proxy must also know how to
contact the authentication provider (see section 4.3.3).

If the client application supports this protocol, i.e. it
can gain user information from incoming HTTP headers, it
must know which headers correspond to which information
about the user; this is usually a configuration option.

4.3.2 Basic Authentication Flow

Reverse
Proxy

resource

Authentication
Provider

approval

request resource

Client
ApplicationBrowser

login portal
login portal

request resource
request resource

credentials
credentials
redirect

redirect

request resource
request resource

resource

Fig. 3. The sequence of events in forward authentication

The flow for forward authentication is illustrated in fig-
ure 3. When the end-user’s browser wants to make a request
to the client application, the reverse-proxy first forwards the
request to the authentication provider. On the initial request,
the authentication provider will then notice that the user
has not yet been authenticated, and communicate this to the
reverse-proxy by returning an “unauthorized” status code.
Instead of proxying the request to the client application,
the reverse-proxy will instead return the login page to the
end-user’s browser, or a redirect to it. The end-user will
then authenticate themselves to the authentication provider.
Once this has been completed, the authentication provider
will direct the end-user’s browser to make the initial request
again. Now, however, the authentication provider will de-
tect that the end-user has been authenticated, and return an
“ok” status code, as well as some headers that contain user
information. The reverse-proxy will now proxy the original
request, plus the added headers from the authentication
provider, to the client application.

4.3.3 Integration with Reverse-Proxies
Forward authentication requires integration with a reverse-
proxy, and the reverse-proxy must be configured quite
specifically. It not only needs to be configured to first for-
ward each request to the authentication provider, but it must
also be configured to redirect to the correct login page in
case of bad authentication, and to pass the correct headers

from the authentication provider to the client application.
It’s especially important that the headers that the authen-
tication provider uses to communicate user information
will not be propagated from the incoming connection to
the client application, otherwise a malicious actor could
impersonate any user.

Not all reverse-proxies can be configured to use this
authentication method. Most notably, Apache[21] lacks sup-
port for a module that can forward incoming requests to
an authentication provider. In order to fully support such
reverse-proxies, a technology was developed that serves
the same purpose but in a different manner, called proxy
authentication. This is further elaborated in section 4.4.

4.3.4 Notable Details
In this protocol, the client application will assume the in-
formation contained within the headers that identify the
user, as it has no way to verify their authenticity. This
makes it extremely important that the reverse-proxy is the
only way to access this client application. If an attacker can
access the client application while bypassing the reverse-
proxy, they can set these headers to arbitrary values, which
would allow them to impersonate any user. Similarly, the
reverse-proxy must be sure to not proxy the headers that
contain the user-identifying information. These potential
security vulnerabilities make the system less secure than e.g.
OAuth, where the client application must perform work to
ensure that any information regarding the identity of the
user comes from the authentication provider.

4.3.5 Considerations for DAS
How to deploy this protocol integrated with an external
reverse-proxy is highly dependent on the reverse-proxy,
can be rather complicated for the system operator, and is
very hard to automate, as the authentication provider is
not aware the client applications. This could be resolved
by making the proposed service automatically write con-
figuration for the reverse-proxy. This feature, however, is
at the very edge of the scope of this project, and should
be considered a wishlist feature. If it were implemented, it
should at least include support for the Nginx auth request
module[29].

It is also possible to delegate this protocol to an external
provider. Authelia[37] functions as a reverse-proxy authen-
ticator and supports authenticating its users over LDAP.
Vouch Proxy[5] is a reverse-proxy authenticator for Nginx
that supports authenticating its users over OAuth. Both of
these external providers only support integrating with an
external reverse-proxy, and as such don’t work on systems
that rely on Apache. Furthermore, these programs would
have to be installed with the proposed service. While both
options have sufficiently permissive licences to be shipped
with the proposed service, integrating them might be more
effort than including an implementation of this protocol in
the service itself.

4.4 Proxy Authentication
Proxy authentication offers similar functionality to forward
authentication, but does not require support from a pre-
existing reverse-proxy. It does so by turning the authen-



9

Reverse
Proxy

resource

Authentication
Provider

request resource

Client
Application

resource

Browser

login portal
login portal

request resource
request resource

credentials
credentials
redirect

redirect

request resource
request resource

resource

Fig. 4. The sequence for proxy authentication

tication provider into a reverse-proxy which only proxies
authenticated requests.

4.4.1 Client Registration
Registering a client application for this protocol requires two
pieces of information. Firstly, the authentication provider
needs to know where to proxy authenticated requests to; in
other words, the precise URL where the client application
can be reached. Secondly, the authentication provider could
be providing services for multiple client applications for this
protocol, and needs some way to identify to which client ap-
plication an incoming request should be proxied. This could
be done in a variety of ways; for example, one could open
a new listening socket for every client application (neces-
sitating extra configuration for the previous layer reverse-
proxy), or one could make the domain under which the
client application is accessible a registration value, and use
the Host header of each incoming request to dereference.

4.4.2 Authentication Flow
The authentication flow can be seen in figure 4. The ingress
reverse-proxy, e.g. Apache or Nginx, never forwards a re-
quest to the client application. Instead, it proxies the request
to a designated socket of the authentication provider. The
authentication provider then determines if the request was
made by an authenticated user, via e.g. the session cookie.
If the user is not authenticated, the authentication provider
returns some way for the user to authenticate, such as a
login portal. After the end-user has authenticated them-
selves with the authentication provider, the authentication
provider will redirect their browser back to the URL they
originally requested. Once again, their browser will con-
tact the reverse-proxy, which will once again first proxy
it to the authentication provider. This time, however, the
authentication provider will see that the end-user has been
authenticated, and proxy the request further to the client
application, with the addition of extra headers.

4.4.3 Considerations for DAS
This particular protocol requires DAS to actually proxy
every HTTP request to the client application. As such, it

is important that the technical aspects of this proxying func-
tion correctly and quickly. Most notably, it should correctly
handle chunked encodings, and start sending data back to
the end user as soon as its receives the data. In order to
accomplish this, it may be necessary to skip any HTTP
libraries and operate directly on TCP level, as only a very
limited interaction with HTTP features is required for the
proxy to correctly function.

4.5 SAML

The Security Assertion Markup Language (SAML) is a pro-
tocol that allows one system to communicate to another
system that it has verified some facts about an entity[8]. It
can be used as an authentication protocol, an authorization
protocol, or as a protocol to communicate that some arbi-
trary data has been verified. When used as an authentication
protocol, it allows the authentication provider to communi-
cate an assertion to the client application about the identity
of the end-user.

SAML has been on version 2.0 since 2005. As such, this
document assumes older versions have by now been phased
out. Any mention of SAML is this document will exclusively
refer to SAML 2.0 unless explicitly stated otherwise.

SAML is quite extensible. The core standard [8] only
specifies a very basic description of the parties that can be
involved, and the format of messages that can be exchanged
independently of how these messages are exchanged or
what information they convey. The extensibility of the stan-
dard means that two applications which support SAML
may not necessarily be interoperable, as support for SAML
does not imply a shared set of supported communication
protocols. The SAML committee has defined how certain
communication protocols should be used [9], but explicitly
allows the creation of new standards for different protocols,
as well as new standards that use a protocol differently from
existing standards using the same protocol.

In order to ensure interoperability between different
SAML implementations, several ways to use various mes-
sages and protocols defined in [8] and [9] have been defined,
which are called profiles [11]. The only purpose of DAS is
to be an authentication provider, and as such only the SSO
profiles are of interest for this document. Since most self-
hosted applications are web-based, the Web Browser SSO
Profile is of greatest importance for this document.

4.5.1 Client Application Registration
The SAML committee has defined a metadata standard
[10], which specifies a single XML document that contains
all information that is required for a client application to
interact with an authentication provider, or the other way
around. This document specifies which data the relevant
party wants to exchange using SAML, and which role it will
play in this exchange. It also specifies the public keys the
party will use, the location of certain endpoints, and the
support or preference for certain optional features.

In order to register a client application with the authen-
tication provider, the authentication provider needs to be
aware of (where it can find) the metadata for the client
application. In order to configure the client application to
use the authentication provider, the client application needs



10

to be aware of (where it can find) the metadata for the
authentication provider.

4.5.2 Methods of data exchange
The main SAML specification [8] intentionally does not
specify the means by which data is exchanged. The profile
specification [11], which specifies which messages are to be
exchanged to log in via SSO, specifies that three different
ways of communication have to be supported for authenti-
cation via the browser; these methods themselves are speci-
fied in the bindings specification [9]. As each of these three
methods can be used at multiple points in the authentication
flow, this section will briefly describe these communication
methods before the authentication flow itself is described.

HTTP Redirect Binding: In this method, the initiating
party redirects the user’s browser to a designated endpoint
at the receiving party. The SAML message is encoded in
base64 and appended to the redirect URL as a query param-
eter.

HTTP POST Binding: In this method, the initiating
party generates an HTML form, the target of which is
a designated endpoint at the receiving party. The SAML
message is encoded in base64, and placed inside the form
as a hidden element. The only other element of the form is
the submit button. The SAML specification suggests using
JavaScript to automatically submit the form.

HTTP Artifact Binding: In this method, the initiat-
ing party uses either of the above methods to transfer a
much shorter message to the receiving party. This message
contains only a small reference text, known as an artifact.
The receiving party must then contact the initiating party
directly via a different means, where it can exchange the
artifact for the full contents of the message. It may be
required to use cryptographic signing to authenticate itself
in this request.

It should be noted that all three communication meth-
ods allow for an additional parameter called RelayState,
which can be included in the request, and should be com-
municated unaltered to the response.

4.5.3 Authentication Flow
When the client application determines that a user is not au-
thenticated, it uses any of the above three methods to redi-
rect the end-user’s browser to the authentication provider.
In doing so, it also gives the authentication provider a
corresponding SAML message. This message identifies the
client application that made the request to the authentica-
tion provider, possibly with a cryptographic signature. The
authentication provider then authenticates the end user.

Once the end user has been authenticated, the authen-
tication provider uses either the HTTP POST Binding or
the HTTP Artifact Binding to redirect the user back to a
designated endpoint at the client application. Note that the
HTTP Redirect Binding can not be used in this step; this is
because the SAML message that is communicated in this
step is assumed to be too large to fit inside a URL pa-
rameter. The associated SAML Message contains sufficient
information for the client application to identify the user.
What information it contains exactly is dependent on the
authentication provider, as well as the preferences indicated
by the client application.

4.5.4 Comparison with OAuth
The authentication flows in SAML and OAuth are quite sim-
ilar. This section will first go over the “code” and “id token”
flows of OpenID Connect and analogous flows in SAML,
and then describe some notable differences.

Both OAuth flows first communicate the request for au-
thentication from the client application to the authentication
provider by including the request data as a URL parameter
in a redirect. This is analogous to initiating a SAML request
via the HTTP Redirect Binding. Afterwards, the “code” flow
returns a code via another HTTP redirect URL, which the
client application can exchange for an ID token with a
request directly to the authentication provider. In SAML, a
similar situation occurs if the authentication provider opts to
respond with an artifact. Alternatively, the “id token” flow
returns some signed information about the user in a redirect.
While actually returning this information in a redirect is not
possible under SAML, using the HTTP POST Binding for
this is equal in all aspects except for the HTTP method used
and the way it is triggered.

Of course, there are also some very notable differences
between SAML and OAuth. One of the most immediately
noticeable differences between the two protocols is that
SAML is based on XML, in contrast to OAuth’s JSON. This
also means that SAML is much more formalised, which
each element of a SAML message explicitly referring to a
standardised format, and as a result much more verbose.
For example, what might in Oauth simply be represented by
’FirstName’: ’Steven’, is represented by text that can
be seen in figure 5. This also helps to explain why a SAML
message that contains user information cannot fit inside a
URL.

The existence of the POST binding is also significant.‘ In
OAuth, all requests use GET requests, either via the user’s
browser and a redirect or between the client application
and the authentication provider directly; in SAML, either
party can also use a POST request via the user’s browser to
communicate data.

Another notable difference is that in SAML, the initial
request from the client application to the authentication
provider, which requests that the user be authenticated, can
be passed by reference. In OAuth, this messages can only be
passed via a URL parameter, whereas in SAML, it can also
be passed via a reference which the authentication provider
has to request directly from the client application. This is
especially noteworthy since it is now the authentication
provider that has to make a direct request to the client
application, a situation which never occurs is OAuth.

It should also be noted that OAuth is entirely dependent
on HTTP and web browsers to function as per its definition,
whereas SAML also has many other definitions that allow
it to function independently of these protocols. However,
as the profile specification [11] doesn’t specify any way to
provide authentication services that is not dependent on a
web browser, it is questionably to what extend any SAML-
based flows that don’t rely on web browsers are in use, and
to what extend they are interoperable.

In general, it is a significant fact that while OAuth has
a few strictly defined flows, SAML has many layers of
different specifications, all of which allow for some choice
on the part of the implementers of both parties. This also



11

<saml:Attribute
xmlns:x500="urn:oasis:names:tc:SAML:2.0:profiles:attribute:X500"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri"
Name="urn:oid:2.5.4.42" FriendlyName="givenName" x500:Encoding="LDAP">
<saml:AttributeValue xsi:type="xsd:string">Steven</saml:AttributeValue>
</saml:Attribute>

Fig. 5. How SAML communicates a given name[13]

has results for interoperability; in OAuth, any pair of client
application and authentication provider will function as
long as they implement the core standards, with the only
possible failure occurring if either party does not think
the other meets their security standards. In SAML, on the
other hand, both parties can implement only a subset of
the available options, and interoperability is dependent on
an overlap of these subsets; it is entirely possible that two
parties which both correctly implement the SAML protocol
are unable to communicate with each other.

4.5.5 Considerations for DAS
SAML is supported by a relatively small amount of ap-
plications used in domestic self-hosting, and all popular
applications that do support it also support OAuth. As
such, implementing support for SAML is not a high priority.
However, if implementation can be done sufficiently easily,
it could be a nice additional feature.

As noted in section 4.5.4, there are several flows in
SAML which are analogous to flows in OAuth. In fact,
for these particular flows I can see no differences in the
actual logic, only in the syntax of the messages and HTTP
responses. As such, it should be possible to develop a
SAML integration by using the same underlying logic as
for OAuth, but with a different presentation layer. This does
exclude some functionality, such as the ability to encrypt
messages, or the ability to resolve any requests that are
passed via artifact. However, implementing such features is
relatively complex given the complexity of SAML to begin
with, and as such should not be considered any priority
given their limited additional value. Any implementation of
SAML should be considered best effort, and care should be
taken not to spend too much time attempting to make the
SAML implementation compatible with all theoretical client
applications.

4.6 PAM
Pluggable Authentication Modules is a system used by
many Unix-like systems that allows applications to authen-
ticate users in a generic way. The authentication provider
must provide a set of C-shared objects that implement a
series of predefined functions, which are then called by the
application. The return value of the functions will tell the
application whether or not the user has been successfully
authenticated[20].

4.6.1 Client Application Registration
The authentication provider does not need to be aware of
the specific client application. However, the PAM system
should be configured such that applications use the func-
tions provided by the authentication provider.

A standardised configuration can be made for each ap-
plication to call a specific set of functions by some specific
set of authentication providers. This configuration file spec-
ifies which modules to call, of what type they are, and how
the result of each function call should be treated. For exam-
ple, a successful call to one authentication provider could
be sufficient to consider the user authenticated, whereas a
successful call to another could require calls to additional
authentication providers.

There are four types of function calls that an authentica-
tion provider can provide:

1) auth: verify that the credentials for the user are
correct

2) account: verify that the user is allowed to access
the application; for example, expired accounts may
have valid credentials, but are still not allowed to
log in.

3) session: setup the environment for use by the user
4) password: change the user password

4.6.2 Basic Authentication flow
The precise authentication flow depends on the configura-
tion for the client application. Some client applications may
have different requirements, and some client applications
may be configured to call multiple authentication providers.
This section will quickly go over the most basic flow, where
the client application simply wants to verify credentials at
one authentication provider, similar to an application that
uses LDAP.

The application calls the function provided by the appli-
cation provider. This function will attempt to get the user-
name and password (or other authentication token) from the
parameters passed by the client application. If these are not
present, it will call functions at the client application that
will request these credentials. The function then checks if
the credentials are correct using some unspecified manner,
and returns the appropriate status code.

Afterwards, the application should also call the
account function, which will in some unspecified manner
verify that the account actually has permission to access the
application.

4.6.3 Considerations for DAS
The actual PAM Modules should be considered a completely
separate part from the main application. These simply C
functions only need to pass on the credentials to the actual
service, which can provide actual verification.

It is possible to use the existing LDAP port for this,
which would save time in writing the application; in fact,
there already exist a system for providing PAM modules
via LDAP[15]. However, configuration for such a system is



12

relatively complex, as the LDAP system could be remote,
and needs authentication credentials. [15] solves this by
using a background service, but this service needs to be
configured; for this usecase, the system would become too
complex to justify using a PAM-LDAP binding as saving
implementation time.

Instead, it seems to me the simplest option would be for
the proposed service to create a Unix socket which is called
by the PAM modules. This socket would be available to all
services on the local system, but not to any outside parties.
Since the only thing this socket needs to do is to verify given
credentials, there are very little security risks associated with
exposing this socket to the local system.

4.7 Comparison

This section will compare the protocols on a variety of fea-
tures. Firstly, the features will be described. A comparison
based on these features can be found in table 1.

Interface

Which party has control over the interface where the user
logs in. This could be the client application, the authen-
tication provider, or, in theory, some third party. In the
table, “authentication provider” has been shortened to
“provider”, and “client application” has been shortened to
“client”.

This feature is important when it comes to the design
of the proposed service, as it decides how much freedom
the authentication provider has in how it determines the
identity of the end user. If the authentication provider has
interface control, it can use any number of methods to
identify the user; if, however, it does not, it can only use the
information that is passed onto it by the client application,
which in the case of LDAP, is limited to two strings (a
username and a password).

Communication

How the client application and the authentication provider
communicate. This could be directly, via the users browser,
via some third party, or a combination.

This feature outlines the major architectural differences
between the protocols. In doing so, it also highlights the
limitations of some protocols; for example, any protocol
that communicates via the browser can only be used in
contexts where there is a browser to speak of. It is also
extremely important to consider when building an authen-
tication provider, as it specifies what sort of communication
methods the authentication provider must support

Data format

Which data format data is primarily exchanged in. This
could be JSON, XML, some custom format, etc.

This feature mainly highlights the time in which a pro-
tocol was designed, as well as its intended audience. In
particular, it highlights the difference between OAuth and
SAML. It is also relevant for implementing an authentication
provider, as the authentication provider must be able to
parse the data formats for all the supported protocols.

Registration
Whether or not the authentication provider needs to be
aware of a specific client application before it can be used.

This feature is reflective of the level of trust that needs
to be established between the authentication provider and
the client application in order for the protocol to function; if
a protocol requires registration of the client application, this
means that the authentication provider will only provide
services to clients that it already trusts.

This feature must also be considered for some additional
functionality. An authentication provider could offer to only
provide authentication for certain applications for some
users; however, this is only possible if the authentication
provider can distinguish which client application an authen-
tication request comes from. If the protocol does not require
registration, this may not be possible.

Awareness
Whether or not the client application needs to be aware of
the authentication provider it is using.

This feature highlights the unique benefit of the reverse
proxy setup, which is that the client application does not
need to be aware of the authentication provider. This allows
the protocol to provide authentication services for a client
application that would not otherwise support a centralised
source of authentication.

Range
The “furthest” type of connectivity that can be used to
communicate between the authentication provider and the
client application. The two applications could be on the
same machine, but they could also be separated by an
internet connection.

This feature shows the limitations of protocols that do
not require registration; table 1 shows that these protocols
have only a limited range. It is also relevant to consider for
implementing an authentication provider, as it shows the
level of trust that one can expect from a client application;
any requests coming in from the internet should be treated
with more scrutiny than those coming from the local ma-
chine.

4.8 Authentication Schemes
Now that all protocols have been analysed and compared,
one important question can be answered: what schemes are
available to the authentication provider for authenticating
the user?

For OAuth, SAML, and Reverse Proxy, the authentica-
tion provider needs to provide an HTTP server that authen-
ticates the users browser. This means that any authentication
scheme that works in a web browser can be used.

An LDAP client, however, will only make two requests
to the authentication provider; one where it verifies that
the user exists, and one where it asks the authentica-
tion provider whether the users password is correct. This
flow itself was only intended for authentication via user-
name/password, but this does not mean that this is the
only way in which it could be used. The fact that the
LDAP client asks the authentication provider to verify the
password, instead of verifying the password itself, allows



13

PROTOCOL Interface Communication Data Format Registration Awareness Range

OAuth Provider Browser,
optionally HTTP JSON Yes Yes Internet

LDAP Client TCP Custom Binary Recommended* Yes Internet
Forward Auth Provider HTTP Proxy HTTP Headers No No Local Network

Proxy Auth Provider HTTP Proxy HTTP Headers Yes No Local Network

SAML Provider Browser,
optionally HTTP XML Yes Yes Internet

PAM Client C shared objects Custom Binary No Yes Local Machine
*In theory the LDAP server does not need to be aware of the client application, but in practice it is recommended that each client application has

its own set of credentials, which is effectively a registration procedure.
TABLE 1

A comparison of the different communication protocols

the authentication provider to, in this stage, perform steps
that are not quite the same as verifying a password. It
should be noted that the string which is provided to the
client application as a password does not necessarily have to
be an actual password, but can instead be any string, as long
as the authentication provider can use this string to make
claims about whether the one who entered it corresponds to
the provided username. For example, if the authentication
provider knows a public key associated with the user, the
user could also provide a digital signature of its username
and the current time in the password field.

Of course, working with digital signatures is far too
inconvenient for the average user. While software could
be developed to automate such a task, ensuring that this
software works on every platform a user may want to use is
not feasible. Username/password combinations, of course,
have the advantage of being feasible under all platforms,
but they are associated with some security concerns. To mit-
igate these, two-factor authentication has been increasingly
adopted. Some two-factor authentication systems could still
be used over LDAP, either by appending some data to
the password, or by performing an out-of-band verification
while the authentication provider appears to be verifying
the password. However, only TOTP[34] and predefined
codes can be used without requiring the end-user to pur-
chase additional hardware or requiring the development
of additional client-side software. Since TOTP offers more
security and more usability[51], the method of choice for
a 2-factor authentication system over LDAP should be to
have the user append a 2-factor authentication code to the
password entered in the password field.

For PAM, a variety of authentication schemes can be
used in theory, although in practice it is questionable how
many are supported by the client application; for maximum
compatibility, the same constraints as LDAP should be
assumed.

5 ARCHITECTURE

This section will explain and motivate the most important
high-level implementation decisions, as well as provide a
solution direction to the most significant problems in im-
plementing DAS. It will start by listing the requirements,
and continue by providing a schematic overview of the
proposed software implementation.

This section is written along the guidelines of ISO 42010,
but provides no guarantees as to its precise compliance to
this standard.

5.1 Stakeholders

This section will go over the four stakeholders that have
been identified with brief descriptions of the stakeholders
and the requirements they have of DAS. For each stake-
holder, this section will also list some requirements. These
requirements are split into hard requirements, which can be
objectively measured, and soft requirements, which cannot.
Furthermore, requirements can me mandatory, as indicated
by the word must, meaning the service is only of use to
this stakeholder if this requirement is met, or optional,
indicated by the word should, indicating the service would
be improved if this requirement is met.

5.1.1 End Users

This is the group of people who want to use client applica-
tions which rely on the service to perform authentication.
They are mainly interested in the core functionality and
security of the service.

Hard Requirements:

• The service must be able to serve as an authentication
provider for OAuth

• The service must be able to serve as an authentication
provider for LDAP

• The service must be able to serve as an authentication
provider for reverse-proxy type flows (i.e. forward
auth, proxy auth).

• The service must only authenticate users with the
correct credentials

• The service must not allow any party other than the
specific end user to obtain a copy of the end user’s
credentials

• The service must be able to function on a Raspberry
Pi, with 90% of calls to the service taking less than
10ms, and without significantly affecting other ser-
vices on the same system

• User credentials must not fall in the hands of an
attacker, even in the case of a data breach

• The service should be able to serve as an authentica-
tion provider for SAML

• The service should be able to serve as an authentica-
tion provider for PAM

Soft Requirements:

• The service must be available to provide authentica-
tion services under all reasonable circumstances



14

5.1.2 System Administrators:
These are the people who administer the servers, and are
responsible for setting up, maintaining, and administering
the service. Note that, in domestic self-hosting, this is a
subset of the end users. This group is additionally interested
in the ease of setup, maintenance, and administration of the
service.

Hard Requirements:

• The service must run on Unix-based operating sys-
tems, most notably Debian

• The shipped service should be less than 500MB

Soft Requirements:

• It must be easy to deploy the service for a person
with limited knowledge on server administration

• It must be easy to administer the service for a person
with limited knowledge on server administration
and security

• The service must be compatible with the greatest
number of other protocols.

5.1.3 System Integrators
This group is creating systems to automate domestic self-
hosting, and would like to integrate the service as part of
these systems. While they do want their systems to satisfy
the needs of their own users, and as such share many
of the requirements above, they also have a few unique
requirements of their own, related to their unique way of
interacting with the service.

It should be noted that since integration with systems
that aim to automate domestic self-hosting is, in itself,
considered optional, any mandatory requirements in this
section are actually not mandatory for a minimum viable
product.

Hard Requirements

• It must be possible to add, remove, and edit client
applications through an interface suited for program-
matic control.

• It must be possible to retrieve information on client
applications through an interface suitable for pro-
grammatic control.

5.1.4 Developer
This stakeholder is responsible for the development of the
service, i.e. the author of this paper. Their concerns are re-
lated to the ease and feasibility of the development process.

Hard Requirements

• The service must be written in a language the devel-
oper is familiar with

• Implementing the service must be possible within a
timespan of 3 months

• Implementing the service should be possible within
a timespan of 6 weeks

5.2 Position View
This section describes the position that DAS takes in a
domestic self-hosting environment. It is intended for all
stakeholders: for users, it shows what they can expect from

the service, and where their data is stored; for administra-
tors and system integrators, it additionally shows where the
service fits in their system; for developers, it shows under
what conditions the service is operating; and to all parties,
it gives a rough idea of what the purpose of the service is.

The diagram illustrates how data flows between the
different components that interact when a user is being
authenticated; that is, the browser (or other client), the client
application, and the authentication provider. The compo-
nents themselves are indicated by rectangles with rounded
edges, and their interaction by a bidirectional arrow. Arrows
that indicated the transmission of credentials have been
coloured red. The components have been coloured accord-
ing to which protocol they are associated with; components
that are using OAuth are coloured blue, components us-
ing LDAP are coloured orange, components using forward
authentication are coloured green, and components using
proxy authentication are coloured purple; the service itself
is coloured white. Note that the position of any SAML
components would be the same as OAuth components, and
the position of any PAM components would be the same as
LDAP components.

The diagram can be found in figure 6. The LDAP flow is
the simplest, as the credentials are simply passed from the
browser through the client application to the authentication
provider. The OAuth flow is notably different, because the
credentials are only exchanged from the browser directly
to the authentication provider, with both the browser and
the authentication provider exchanging additional data with
the client application. The forward authentication flow is
unique in that there is a component, the reverse-proxy, that
performs more than one step in the authentication sequence;
it makes a request to DAS, and then makes a request to the
client application. The proxy authentication flow is unique
in that DAS is not an final destination for all data, but
a middleman that forwards data to and from the client
application.

5.3 Choice of Language
This section will briefly go over all programming languages
that the author is familiar with, and compare their advan-
tages and disadvantages with respect to implementing the
service, in order to finally arrive at a motivated conclusion
for which language the service will be implemented in.

5.3.1 PHP
PHP[45] is a scripting language for the purpose of generat-
ing web pages on the server side. The PHP code integrates
within an HTML document. In the standard configuration,
the interpreter will interpret the page when it is requested;
this means that once the reverse-proxy and PHP interpreter
are properly configured, PHP software can be deployed
by simply placing the relevant files in a directory where
web pages are served from. This also means that each time
the page is requested, the script is executed in a vacuum;
different script execution calls can only affect each other via
some external system such as a database.

Advantages:
• Software can be very easily deployed on systems

on which PHP is already installed, which is very
common in domestic self-hosting



15

DAS

OAuth client
appBrowser Login request

OAuth code

OAuth tokensCredentials

LDAP
client
app

Browser Credentials Credentials

Reverse-
proxy

Credentials

Browser Credentials
Forward

auth client
app

Application
data

Browser

Reverse-
proxy

Credentials

Credentials

Application
data

Proxy auth
client app

Fig. 6. How the service is positioned in a system

• Generating webpages is exceedingly simple
• Resource usage can be well constrained[57][55]

Disadvantages:

• Providing services for protocols other than HTTP
can be difficult, as the language is built to be called
whenever an HTTP request happens.

• Because all requests are isolated, it can be difficult
to synchronise the different processes, which could
make it more difficult to secure certain flows.

Verdict:
While the ease of deployment is a great advantage, the

difficulty with implementing protocols that are not HTTP-
based does not make it a good fit. Furthermore, the require-
ment for an external service to communicate between the
different requests negates the ease of deployment, as this
external service would have to be deployed and configured
for this specific use. As such, PHP does not seem a good fit
for this purpose.

5.3.2 Python
Python[50] is a general-purpose scripting language. It is
commonly praised for its intuitive syntax and versatility.

Advantages:

• The ease and widespread use of the language could
make the codebase more accessible, making it easier
for third parties to contribute or make extensions

• The collection of available libraries can shorten de-
velopment time

Disadvantages:

• Python is infamous for it’s slow runtime, and the
high CPU usage of its interpreter[35][48]

• Python services can be hard to deploy in web-based
contexts, as the intended protocol UWSGI is not
always well supported[4]

Verdict:
While the ease of code and commonality of Python are

compelling, the interpreter is simply to resource-intensive
and latency-inducing for this project.

5.3.3 Java
Java[14] is an object-oriented language, which compiles for
a virtual machine. This virtual machine, known as the Java
Runtime Environment, is available for a wide variety of
operating systems; this means that the compiled software
can be shipped to different operating systems.

Advantages:

• The fact that the compiled software can be shipped
simplifies distribution to operating systems that
would otherwise be rarely supported

• The language is well equipped with security features
like encryption and data security[43]

Disadvantages:

• Java is notorious for its high memory usage[49][48]
• The Java Runtime Environment is not open source,

which means it may not be available for all oper-
ating systems; most notably, some Linux distribu-
tions, such as Debian[60], don’t provide the default
runtime environment due to licensing reasons, but
instead provide the open-source alternative Open-
JDK[58]. This may lead to compatibility issues, es-
pecially when it comes to certain advanced features
or libraries.

Verdict:
While the ease of distribution and security infrastructure

would be convenient, the memory footprint as well as the
potential compatibility issues make Java unsuitable for this
project.

5.3.4 C++
C++ is a highly feature-rich programming language that is
compiled to a native binary. Despite its age, it is still com-
monly seen as the tool of choice for applications where high
performance is a must, such as drivers, reverse proxies, or
video games. Programming in C++ is often said to be diffi-
cult, mostly due to the languages lack of garbage collection;
instead, memory must be managed by the programmer, and
failure to do so will cause the program to crash, possibly
after exhausting the system memory.

Advantages:



16

• Resource usage and latency are extremely low [48]
• Compilers are available for almost every operating

system
• Results in a single binary, simplifying installation
• There is a wide variety of libraries

Disadvantages:

• The lack of memory safety can, when not properly
accounted for, result in unstable software, as well as
several security vulnerabilities

• Libraries are usually linked, which means that the
system on which the software is deployed needs to
have the same libraries installed as the host sys-
tem. Furthermore, this effectively requires a new
compiled artefact for each operating system, as the
libraries that need to be linked tend to be in different
locations across operating systems.

Verdict:
The speed and richness in features and libraries make

C++ a compelling option. However, the risk of security
vulnerabilities due to memory mismanagement cannot be
ignored.

5.3.5 JavaScript
JavaScript was originally designed as a language to run in
the web browser, but has since been adapted to run as a
back-end language by projects such as Node.js[40].

Advantages:

• Due to the fact that it is also used in web develop-
ment, it is highly well known and therefore accessible
to developers who may want to contribute to or
extend the service

• The language has built-in facilities for HTTP calls

Disadvantages:

• A JavaScript server program requires a back-end to
be installed

• The JavaScript package manager, npm[24], is notori-
ous for hosting packages with an enormous amount
of dependencies. This means simple projects can
have hundreds of dependencies, which leads to large
disk space usage. There have also been concerns that
this may make programs vulnerable to supply chain
attacks[42][31].

• JavaScript is notorious for liberally applying type
conversions, which could become an issue when
securely evaluating authentication data[47]

Verdict:
The installation difficulty, as well as the disk space usage,

and potential vulnerabilities, make JavaScript an unsuitable
language for this project.

5.3.6 Elixir
Elixir[59] is an evolution of Erlang[19], a programming
language developed by the telecommunications industry for
environments with extremely high concurrency. It supports
extremely high amounts of concurrent activity, and makes
it much easier to avoid concurrency issues. Elixir runs on
a virtual machine; programs are often shipped with the

virtual machine included, resulting in a single binary that
does not depend on any Elixir packages in the host system.

Advantages:

• Supports extreme amounts of concurrency, which is
especially useful when proxying requests

• Shipped as a single binary, making installation sim-
pler for the end user

• Reliance on processes as data storage makes it easier
to keep track of the state of various sessions of
authentication mechanism, and to avoid concurrency
issues in these flows

Disadvantages:

• Elixir is a relatively obscure language, making it
harder for other developers to contribute to or extend
the service

• The virtual machine has dependencies that are not
universal across different Linux distributions, which
in practice means that the program has to be com-
piled for each operating system. This also means that
both Erlang and Elixir need to be supported on these
operating systems, although they could be compiled
for said operating system if they are not available in
the package manager.

Verdict:
While this service does not require sufficient concurrency

to properly benefit from the features of Elixir, using Elixir
has no major disadvantages.

5.3.7 Decision
A decision can be made by process of elimination. Python,
Java, and JavaScript are not suitable for this project, as
they can all lead to difficulties in installing the software
for the end user, and because they exceed some resource
requirement. JavaScript is further unsuitable because of
potential security vulnerabilities. PHP is unsuitable because
the language was designed around pure web projects, which
means that providing LDAP and PAM Services violates the
basic premise of the language and will require workarounds
to implement, greatly increasing complexity. While C++ has
been seriously considered, the author admits to not having
enough confidence with the language to avoid crashes or se-
curity vulnerabilities associated with memory management.

This leaves Elixir as the language of choice. This has
the further advantages of being shipped as a single binary,
and the high concurrency allowing the system to scale well,
which is especially important when providing proxying
services. Furthermore, it makes it easier to ensure that the
system remains online, which is especially important con-
sidering that without a functioning authentication service,
all other services could become inaccessible. This disadvan-
tage are that the binary ships with the Erlang VM, which
uses a relatively large amount of disk space, and that the
system might introduce more latency than other languages.
Furthermore, this does mean that the service will have to
be compiled again for each supported operating system,
although this should be possible for almost all Unix-like
operating systems.

This document does not posit that Elixir is the best
possible language for this task; languages such as Rust or



17

Haskell are faster than Elixir, while avoiding the memory
management issues that C++ has. However, the author is
not sufficiently familiar with these languages to write such
a service in them. This document does posit that Elixir is the
most suitable language that the author is familiar with.

5.4 Functionality View

This view will elaborate on the requirements, by listing
the functionality that will actually be provided. This view
consists of an itemised list of features. This view is intended
for potential end users, system administrators, system inte-
grators, and anyone else interested in the project, so that
they may obtain a concrete list of features that they can
expect from the system; additionally, developers may use
this as a checklist of tasks. Some functionality may only
be provided given available time, corresponding to the
optional requirements; this will be indicated by prefacing
it with some form of the word “optional”. Functionality
will be divided into several categories, depending on which
stakeholder it is intended for.

5.4.1 End Users
• Username/password authentication portal
• Addition of TOTP to this authentication portal
• The storage of limited personal data, i.e. username,

name, email address
• Optionally, the storage of other profile data
• A form where the user can change their password
• A form where the user can enable and disable TOTP,

and configure their TOTP device
• No record is kept of old user data
• OAuth authentication services
• LDAP authentication services
• Forward authentication services
• Proxy authentication services
• Optionally, SAML authentication services
• Optionally, PAM authentication services

5.4.2 System Administrators
Features in this list are only accessible to administrative
users

• A place where client applications can be viewed,
added, and removed

• Per client application, a place where the credentials
of this client application can be viewed, and any
configuration can be done

• Optionally, per client application, a place where users
can individually be granted or denied access to the
client application

• A place where users can be viewed, added, removed
• Per user, a place where the user can be viewed and

their non-credential information can be edited. This
includes whether or not the user is an administrator,
with the exception that users cannot remove their
own administrator status to prevent leaving the sys-
tem in an inaccessible state

• Per user, a place where the administrator can reset
the users credentials to some randomly generated
value

• A method for the root user on the host system to reset
the password of a user to a randomly secured value

• A configuration file where at least the following can
be configured:

– Whether or not the system integration socket
should be enabled

– The file location of the system integration
socket

– The file permissions to set on the system inte-
gration socket

– The port on which the LDAP service should
listen

– The Distinguished Namespace in which LDAP
users should appear to reside

– The apparent name of the object class of a user
– The name of the uuid field that LDAP entities

appear to have
– Which type of reverse proxy to run
– The port on which the reverse proxy should

listen
– Whether or not to require that users who have

TOTP enabled should append their TOTP code
to their password for LDAP services

• Optionally, a settings page where the above can be
configured through the web interface

5.4.3 System Integrators
See section 5.6

5.5 Component View
This view is intended for developers in order to obtain a
technical overview of how the system works. It consists
mostly of long form textual descriptions, but it is also
visualised in a component diagram using UML lollipop
notation. In this notation, the U-shaped socket indicates that
a component provides a service that can be used by other
components, and a circle inside of this socket indicates that
a component relies on this provided service. Note that these
two elements can also exist independently, in order to refer
to a socket open to external programs and a dependency on
an external program respectively.

DAS consists of several components. This section will
briefly identify these components, and then show an
overview of how they interact. Each component also has
their own section, in which the component can be seen in
detail. A schematic overview of this view can be found in
figure 7.

The central component is the user database, which is
responsible for storing the user data and providing it to
other components. Related is the session manager, which
is responsible for creating and maintaining HTTP session
tokens, with are used to authenticate a browser to a user,
which is then used by OAuth, SAML, and reverse proxy
authentication. Note that this means the HTTP login portal
is actually the responsibility of the session manager. Besides
authenticating users, the service must also be able to authen-
ticate client applications; storing the credentials of the client
applications is handled by the client database. Both the
client and user databases rely on the persistent storage com-
ponent to ensure that their information can persist across



18

Client Database

User Database Session Manager

LDAP

OAuth

Proxy auth

Admin

Plug

Persistent
Storage

Forward auth

Fig. 7. A schematic overview of the components in the service, visualised using UML lollipop notation. The open sockets represent external
connections.

restarts. Of course, we have not yet talked about the actual
authentication protocols. OAuth will be handled by the
OAuth component, which can be extended to also provide
SAML services. LDAP will be handled by the LDAP com-
ponent, which can be extended to provide a socket for PAM
services as well. Forward authentication will be handled by
the forward auth component. Proxy authentication will be
handled by the proxy auth component, which will open an
extra socket. Services for the administrative interface will be
handled by the admin component. Web requests for OAuth,
SAML, and the administrative interface will first come in
at the Plug component, which is a generic HTTP service
that will handle any HTTP specifics before forwarding the
request to the appropriate component; because the socket
for proxy authentication must run on a different port, web
requests to this protocol will be handled by the reverse
proxy authentication component itself.

Finally, the admin component is responsible for allow-
ing the user to manage the service, which facilitates func-
tionality such as adding and removing users and client
applications. To allow home server automation systems to
automatically configure client applications, this component
can also open an external socket on which it can receive
commands.

5.5.1 User Database

The User Database is not just responsible for storing user
data, it is also responsible for ensuring the persistence of
the data, as well as verifying any user credentials.

To minimise the amount of code that has access to user
credentials, it should not be possible to export user creden-
tials from this component. Instead, this component can only
be used to verify credentials. In order to maintain logical
consistency, this component should also be exclusively able
to verify TOTP codes.

5.5.2 Session Manager
The session manager is responsible for two things. Firstly,
it is responsible for maintaining session tokens, which are
temporary values that associate a browser to a particular
user. Secondly, it is responsible for creating these tokens, by
providing the web pages interaction with which the user
authenticates in the first place. With forward authentication,
the validity of the token needs to be checked on every re-
quest; as such, performance is important for this component.

Essentially, this component provides three categories of
external interface. Firstly, it provides services to validate
and dereference existing tokens. This functionality can be
accomplished with an Elixir Registry[52], and possibly a
few calls to the User Database component. Secondly, it
provides services to authenticate web browsers, making the
session manager responsible for the backend components
of the login portal. Finally, since the login portal is in this
component. this is also the most logical component to be
responsible for the rest of the user interface endpoints, i.e.
the endpoints where users can view and change their own
data.

5.5.3 Client Database
The client database is responsible for storing and providing
information on all the client applications in the software.
This includes the type of the application, any configuration
information for how the client should be served, as well as
the client application’s credentials.

5.5.4 Persistent Storage
The persistent storage component is responsible for ensur-
ing that information from the user and client databases is
not lost if the service is shut down, crashes, or otherwise
unable to maintain its own state. The data can be persisted
in various ways; the two most notable ones are to write it



19

to disk, or to a database. Both carry the risk that the data
may be read by unauthorised third parties, and in both
cases this risk can only be mitigated by correctly setting
up permissions outside of the control of the service itself.
Of course, secure password hashing must be used to reduce
the severity of such a breach.

Writing to the database is more performant, especially
in high-concurrency scenarios. However, it is more difficult
for the system administrator to set up, especially since it
requires an already running database. As such, this compo-
nent should support both methods of data storage, with the
ability to configure which method to use. As this component
is already required to interact with databases and as such
required to use SQL, it seems logical to use SQLite for
storing data to a file.

5.5.5 LDAP
This component is responsible for providing authentication
services for protocols that request credentials themselves
and forward them to the authentication service. It will ini-
tially focus on support for LDAP, with a possible expansion
into providing bindings for PAM.

In order to provide LDAP services, this component must
open a TCP socket on the appropriate port. When a client
application connects to this socket, the component must
perform the following services:

1) Confirm that the credentials of the client applica-
tion are correct by communicating with the client
database

2) Request information about the user from the user
database

3) Send a response to the client application
4) If the client application responds, confirm that the

provided user credentials are correct; if applicable,
by splitting of the TOTP code and verifying it sepa-
rately with the user database.

5) Send a response to the client application.

5.5.6 OAuth
This component is responsible for providing authentication
services for protocols that use the web browser as the pri-
mary method of communication, i.e. OAuth and SAML. In
order to take optimal advantage of the similarities between
the two protocols, this component itself is split into three
parts: one parts handles the syntax for OAuth, one part han-
dles the syntax for SAML, and one part handles the common
logic. Because the exact flow can vary for both protocols,
the common logic simply provides some functions for what
to do given the available information, and the individual
protocol components are responsible for calling the right
function at the right time. Note that actually authenticating
the user is the responsibility of the session manager.

5.5.7 Forward Authentication
This component is responsible for providing forward au-
thentication services. It needs to provide an endpoint that a
reverse-proxy can connect to to check if a user is authen-
ticated, and a method of authenticating unauthenticated
users. As this endpoint will be accessed on every request
to the client application, speed is important for this compo-
nent.

5.5.8 Proxy Authentication
This component is responsible for providing proxy authen-
tication services. It needs to open a new socket, through
which it can proxy requests. It also needs to be able to make
HTTP requests to the client application.

Since every request to the client application will be
proxied through this component, speed is important. It’s
also important the component can correctly proxy the HTTP
protocol, and does not have to wait for the client application
to complete its request before returning a response.

5.5.9 Admin
This component is responsible for allowing the system
administrator to administer the service. This effectively
means making changes to the client and user database.
This component can be accessed via two methods: a web
interface, which is intended to be accessed by the system
administrator, and a socket for use by system integrators.

The web interface of course also requires authentication,
as only a subset of users should be able to access it. In
order to facilitate this, this components accesses the session
manager.

5.5.10 Plug
Plug refers to the library used to allow for web requests. It
is responsible for ensuring that all web requests, whether
they be intended for the OAuth, admin, or session man-
ager components, reach their appropriate destination. It is
also responsible for translating between HTTP requests and
Elixir’s internal data structure. This ensures that the rest of
the system can communicate using native datastructures,
instead of passing around serialised data with HTTP trap-
pings.

5.6 System Integration View

This view provides API documentation of the provided
socket for system integration. It is intended for system
integrators, who may find this information helpful while
integrating the service into their system. As the same end-
points are also availabe to administrative users in the web
interface (although prefaced with /admin, this information
is useful for (front-end) developers as well.

All interactions go over the system administration
socket. As stated in section 5.4, the location and file per-
missions of this socket are configured via configuration file.
This socket in fact provides an HTTP Server service a REST
API, and it is recommended to interact with the socket using
an HTTP client. It is strongly advised against making this
socket accessible outside of the local machine for security
reasons.

This section will now list API endpoints of the admin-
istration socket, what methods they accept, which actions
these methods perform, which parameters they require, and
what response can be expected.

For all API requests, the following response codes may
be returned:

• 200: If the request was successful
• 201: If the request was successfully received, but has

yet to enact change



20

• 400: If the request body was malformed, or is missing
a parameter

• 404: If the requested endpoint is unknown, or does
not support the requested method

• 500: In case of an internal error with the service;
this may be a bug, but may also be due to the
unavailability of e.g. a database server.

Unless explicitly specified otherwise, these are the only
response codes that can be expected from any endpoint.

The following general basic datatypes are defined:

• <type string>: one of ’oauth’, ’ldap’, ’forward’,
’proxy’, ’saml’, ’pam’

• uuid: long, random string used to identify a client
application to the service. Serves as the client id
in OAuth and SAML, and the Bind ID in LDAP.
Format may vary according to the type of the client
application

/client

Information about client applications. A client application is
represent with a JSON object of the following format:

{
’id’: <uuid>,
’name’: <string>,
’type’: <type string>,
’url’: <string|null>,
’destination’: <string|null>

}

GET
Get a list of current client applications. The response

body is a list of client application objects
POST
Add a new client application.
Request body has the format of the client application

object. The name and type must be provided, and the type
must be valid. The destination is only used for proxy au-
thentication, and for proxy authenticated application must
refer to the location where the client application can be
reached. The name value is optional and only used for
display purposes. The id value will be ignored if provided.

/client/<id >

Modify or retrieve information on a specific client.
GET
Returns a client application object describing the request

client application
PUT
Make changes to a client application.
The request body must be a client application object. The

id will be ignored if providded.
DELETE
Deletes the requested client application.
Any sessions with the client application will continue

to function until they are terminated If any browser is in
the process of authenticating while this action is called, the
resulting behaviour is undefined.

/client/<id >/credentials

Used for interacting with the client credentials of one client.
Uses the following format:

{
’type’: <type string>
’id’: <uuid>
’secret’: <string>

}

GET
Returns the credentials of the client id, in the format

above

/client/<id >/callbacks

Used for interacting with callback uris. Callback uri’s are
a required security feature for OAuth applications, where
every callback URI used by the client application must be
registered under this endpoint. They are not used for any
other protocol.

GET
Get a list of callback URIs for the specified client appli-

cation. Returns a JSON list of strings.
POST
Add a callback uri. The body must be the callback URI.
DELETE
Delete a callback URI. The body must be the callback URI

to delete. Returns a 404 the provided callback URI was never
registered for the client in the first place, or 200 otherwise.

/user

This endpoint defines the following format for a user object:

{
’id’: <unique integer>,
’username’: <unique string>,
’email’: <unique string>,
’name’: <string>,
’administrator’: <boolean>,
’totp_enabled’: <boolean>,
’totp_ldap’: <boolean>

}

Additional keys may be included
GET
Retrieves a list of all users in the system.
Response body is a list of user objects
POST
Creates a new user.
Request body must be a user object. At least username

and email must be provided. If they are not provided,
name will default to ’’, and administrator will default
to false. If id, totp_enabled, or totp_ldap are pro-
vided, they will be ignored.

If a username or email are given that are already used,
this endpoint may return a 408 status code. Future function-
ality may disable the ability for administrator users to be
created via the socket; in this case, a 401 may be returned if
administrator is set to true.



21

/user/<id >

This endpoint interacts with a particular user. It uses the
same user object format as describe above.

GET
Returns the user object for a particular user.
PUT
Updates the user entity.
The request body must be a user object. email, name,

and administrator can be altered; any other keys will be
ignored.

If a username or email are given that are already used,
this endpoint may return a 408 status code. DAS will ensure
there is always one active administrator. This action will
return a 408 status code if trying to remove administrator
status from the only administrator user. Future functionality
may disable the ability for administrator users to be enabled
or disabled via this socket; in this case, a 401 may be
returned if trying to alter administrator.

DELETE
Deletes the user.
No request body is required.
DAS will ensure there is always one active administrator.

This action will return a 408 status code if trying to delete
the only active administrator.

/user/<id >/change password

PUT
This endpoint can be used to change the credentials of

the user. Calling this endpoint will also disable TOTP for the
user.

There is no request body; the caller can’t choose the pass-
word. Instead, the service will generate a new password,
and this will be returned in the following format:

{
’password’: <string>

}

The user can then change their password through the
regular interface.

5.6.1 /client ldap area

Returns the DN of the LDAP folder in which the clients
and users appear to be. Used by the front end to correctly
display an LDAP DN for the client ID.

GET
Returns the LDAP Area as a string; this endpoint does

not return a JSON object.

5.7 Testing View

This view describes how DAS will be tested, verified, and
evaluated. It is intended to be used by anyone who would
like assurance as to the quality of the service, as well as
developers. It is split into three sections: a section which
describes the environment that will be used to developed
the service in, a section which will describe how the quality
of the code is verified, and a section which describes how
the quality of the completed system will be evaluated.

5.7.1 Unit Testing
This section describes how the direct quality of the code
will be verified, i.e. how it will be tested that the actual
behaviour of program components is the same as their
intended behaviour. In accordance with Elixir best prac-
tices[12], this will be done by writing Unit tests for all
functions that are exported by any included components.

To prevent the unit tests from having side effects, such
as interaction with a database or a TCP port, certain compo-
nents will be mocked. In accordance with best practices, this
will be done by ensuring that all calls to these components
will read the name of the component from the program
configuration, which allows them to call a mock component
instead of the actual component during testing. This mock
component will return data that the actual component could
also return, but without performing the side effects.

5.7.2 Development Environment

Application Protocols Reason
Nextcloud[39] OAuth, LDAP Most popular application

Samba[1] LDAP Non-web based program
Sonarr[56] Reverse-proxy Most popular reverse-proxy

Paperless-ng[61] Reverse-proxy Small reverse-proxy project
Ampache[2] LDAP Small LDAP project

Kanboard[26] OAuth Small OAuth project
TABLE 2

Applications selected for the development environment

This section describes the environment against which the
service will be developed. During development, it is useful
to have an environment similar to one that would be used
in practice, including a similar set of client applications.
This makes it much simpler to test code while it is being
developed, and helps account for client applications that do
not properly adhere to the standard. This reasoning does
assume that the development environment provides an ac-
curate and complete reflection of the practical environments.

It is known that a majority of domestic self-hosted sys-
tems use Debian Linux[7], and as such this is the preferred
operating system for the development environment as well.
Similarly, Nginx is the most popular reverse-proxy, and
MySQL is the most popular database.

To provide a sufficiently broad selection of services, there
should be at least two types of client application for each
of the protocols: one that has large amounts of funding
and can be expected to adhere to standards properly, and
one smaller project that may have taken some shortcuts in
their implementation. To ensure that these applications ac-
curately represent the applications that one may be expected
to find in real life, the most popular application that fits the
criteria should be taken.

The applications that have been selected, as well as the
authentication protocols for which they can be used and a
small explanation for why they were selected, can be seen
in table 2.

5.7.3 Evaluation
In order to evaluate the system, an early version will be de-
ployed on a system that the author administers, which has a
wide variety of applications and about 7 users. Furthermore,



22

the Yunohost development team will be consulted for any
decisions that specifically impact system integration.

6 IMPLEMENTATION DETAILS

This section will mention any significant implementation
details that do not trivially follow from section 5. It will do
so by going over each component, as describe in section 5.5.

Due to time constraints, SAML and PAM were not im-
plemented.

6.1 Persistent Storage
Database access is provided by the Ecto library[17], which
allows for the composition of data schemas and queries
in Elixir code. It supports many different ways of actual
storage via a plugin system.

The implementation for persistent storage simply holds
three types of data repository; one for MySQL, one for
PostgreSQL, and one for SQLite. When queried, it returns
the one that has been selected by the configuration file.

6.2 User Database
The user database defines a database schema for a user
object, and a module with basic CRUD operations. This
module also includes the notable function verify, which
takes in a username/password combination and returns a
user struct if and only if the password matches the user-
name. The user object has an id property, which is a unique
unchanging integer; an email property, which is a unique,
but not unchanging string, that is not verified to be an email
in any way; a name property, which is a generic string; a
password property, which is a hash of the users password;
optionally, a totp secret; a boolean to indicate whether or
not the user is an administrator, and a boolean to indicate
whether or not TOTP over LDAP should be enabled for this
user.

6.3 Client Database
The client database defines a database schema for a client
object, and a module with basic CRUD operations. A notable
feature of the schema is that the primary key is not an
incrementing integer, but a 16-byte random binary value;
this value can also be used as a client id for OAuth.

Which protocol the client application supports is indi-
cated by one field in the schema. This field is only used for
display purposes; any registered client application could,
given the correct information, use any protocol. The client
database provides a verify function similar to the that of
the user database, although client secrets are not actually
stored as hashes.

There are four generic fields that are always filled in: the
client id, the client secret, the client name, and the client
url. The client id and secret are used by OAuth and LDAP;
the client id is also extremely important internally as the
primary identifier for a client application. The name is used
solely for display purposes. The URL is used for display
purposes by all types of client application, but also used
as a means of identification for client applications that use
forward or proxy authentication. Additionally, there is the

destination field, which is used solely for proxy authentica-
tion, as the location to proxy requests to.

There is additionally the callback URIs table, which is
used solely for OAuth client applications. This table stores
the registered callback URIs; if an OAuth client application
attempts to redirect a user to any other callback URI, this
operation will not succeed for security reasons.

6.4 LDAP

LDAP uses a binary data exchange format, which is defined
in the ASN.1 language. Parsing this format was done by
using the asn1ct module from OTP, which can compile
ASN.1 definitions into an erlang module that encodes and
decodes the binary data. The ASN.1 definitions for the
LDAP wire protocol, as well as the header file for the
parses, were taken from the source code of the eldap erlang
module. Because the resulting code was erlang, it was put
into a separate erlang code project in a directory, which was
imported as a source-code dependency to the main project.

The implementation of the LDAP component is quite dif-
ferent from that of a standard LDAP server, mostly because
the service is not actually an LDAP server. While user data
can be accessed via the LDAP wire protocol, it can not be
modified via this protocol in any way, and the data does not
actually reside in a directory structure.

This means there are impactful decisions about how to
translate the single database table that stores user data to the
directory structure expected by the client application. The
most trivial way is to pretend that there is only one directory
that holds all the data, and that all other directories are
empty. DAS, however, uses a different method: it pretends
that the data is in all directories, by ignoring all but the
least significant parts of location (or, in LDAP terms, it
ignores all but the first part of the DN). This applies to
everything in the client request, as well as the name the
client uses to authenticate itself (in LDAP terms, the Bind
DN). The advantage of this approach is greater support for
misconfigured clients and clients which do not correctly
implement the LDAP specification; any client will always
be looking for users, and this approach ensures they will
always find the client for which they provided a username.
The Bind operation applies to both clients and users; which
entity type is being checked against does not depend on
the location of the entity, but on whether an id is provided
(for clients) or a username (for users). The directory that
users appear to be in for any results do not depend on the
directory used by the input, but on a value defined in the
configuration file.

Not all request types in the LDAP protocol[65] are
supported. The supported request types are Bind, Unbind,
Search, and Compare; Search and Compare are only avail-
able if the session is authenticated as a client. The Add,
Delete, Modify, ModifyDN, and Extended request will fail
with a result code indicating insufficient access rights, but
with an error message stating the request is not supported.
The Abandon operation is simply ignored; this request is
normally used to cancel an ongoing search if it takes too
long to process the results, but it is not expected this will be
a problem for this service, as it only queries one database
table.



23

The code that handles the Search request must transform
the search query into a SQL query. This is not possible
using the normal Ecto syntax, which needs to be processed
at compile time; this processing does not work if the full
query needs to be built based on external input at runtime.
Fortunately, the internal datastructure that Ecto uses to store
a database query is remarkably similar to the structure of
the Filter datastructure used by LDAP, allowing the code
to transform the LDAP request into a database query by
creating an Ecto internal datastructure and injecting it into
a query struct.

Any filter in a search query that refers to an attribute
of the entity that does not exist is ignored; this does not
mean it is implied to be always true or always false, but
simply that these filters are not included in the SQL query
that is generated from the request. This is done because
many implementations filter not just on the username of
the user, but also on the objectClass attribute, which
would normally distinguish user entities from other types
of entities in the system. Since this service will only return
user entities under any circumstance, this attribute can be
simply ignored. Instead of ignoring only the objectClass
attribute, a more general approach has been taken, and all
filters for unknown attributes are being ignored. This does
not apply to the present filter type, which returns true if
and only if the attribute is part of the users schema.

6.5 OAuth
The OAuth implementation is entirely standards-compliant,
although some features are still unimplemented due to time
constraints. For example, PKCE has not been implemented.
Furthermore, only the “code” and “id token” flows are
currently supported.

The implementation of authorization codes bears men-
tion. The authentication codes are generated by the au-
thentication provider, and sent to the client application via
the user’s browser. The client application then exchanges
them for an access and/or ID token. The codes should
refer to some data on the transaction, and only be usable
once and for a short amount of time after they have been
generated, and Elixir lends itself uniquely to this problem.
The implementation uses the Elixir Registry to accomplish
this behaviour. The Registry is a cross-process lookup table
that associates a value with a process. The association only
holds so long as the associated process is alive. The service
defines a process that holds all the information associated
with an authorization code (e.g. the authenticated user, or
the requesting client). This process will listen for 5 minutes
to see if it gets any messages that ask for the data the
process holds. If it receives such a message, it will return
the data and exit. This ensures that even under the strangest
race condition, an authorization code can only be redeemed
once. Access tokens are stored in a similar fashion.

The RSA keypair used for signing the ID token is stored
in a special table in the database. When the application
starts, it checks if these values are already present; if either
the public of private key is missing, both are freshly gener-
ated and stored. The keys are stored in the database in PEM
format. To avoid having to parse this for the required values
on every request, they are parsed into the required format
at application startup and stored in memory.

All callback URIs have to be registered. This may cause
issues for users, as many client applications don’t explicitly
declare their callback URI. To make it slightly easier for
system administrators to register the callback URI, the error
message that is displayed to the user when the callback
URI is invalid contains instructions on how to register the
callback URI. Only mandating callback URI registration for
apps using the implicit flow should be taken into consider-
ation.

6.6 Forward Authentication

The DAS endpoint that handles the authentication check is
extremely simple: it simply checks if the user has a session,
and if so, returns an OK response with some headers that
contain values from this session. Specifically, the username,
email, and name are put into headers. As this endpoint
is called on every request to the client application, it is
important this process is as fast as possible; as such, the
whole user object from the database is put into the session.
This does have the disadvantage that upon updating user
data, old data will persist in old sessions.

The larger problem is how to establish a user session.
Any request that enters the proxy authentication endpoint
at the authentication provider is a forwarded request that
was originally made to the client application, and is as such
likely to be under a different domain than the main DAS
domain, meaning that established session cookies from the
regular DAS login portal do not persist. As such, clients will
have to be authenticated in a separate way from the normal
login portal.

The most trivial solution to this problem would be to
simply show the login portal for any denied requests, and
have the user establish a session in this manner. However,
this has two major drawbacks. Firstly. the response served
to the user for denied requests is (at least when Nginx is
used) determined by the reverse proxy, and configuring
it to correctly serve the login portal, as well as correctly
handle the subsequent requests required to interact with the
login portal, would have to be done under the domain of
the client application; this would lead to complex reverse-
proxy configurations. Secondly, in this approach the user
would have to enter their credentials for every new reverse-
proxy authenticated service, even if they already established
a session with the main DAS interface.

To avoid both of these drawbacks, a different approach
was taken. If the user makes an unauthenticated request
to the client application, they will be redirected to the a
special DAS endpoint under the DAS domain, which will be
referred to as the session creation endpoint, This endpoint
will check if a session has already been established, and
refer to the login portal if not; after the user has logged in,
the login portal will redirect back to the session creation
endpoint. The session creation endpoint will then reuse
the authorization code feature from OAuth, and create an
authentication code that contains the necessary user info.
It will then redirect the user back to the original request
they made to the client application, but with the authoriza-
tion code as a query parameter (in addition to any query
parameters that were in the original request). The reverse-
proxy endpoint will then redeem the authorization code and



24

establish a session under the domain of the client applica-
tion. This process is essentially a basic implementation of the
OAuth implicit flow where the reverse-proxy endpoint acts
as an OAuth client application. Normally, the implicit flow
in OAuth it is not possible for the authentication provider
to verify the identity of the client application; however,
this is not an issue in this case, as the client application
and authentication provider are both DAS running under
two different domains. To make it more difficult for an
attacker to intercept authentication codes, it is verified that
the authorization code was generated in a request that
redirects to the url that is requested when it is redeemed,
and the client that is attempting to use the code has the
same IP address as the one that the code was generated
for. The session creation endpoint also verifies that the
URL that the user was redirected from actually corresponds
to a registered reverse-proxy application. IP verification is
skipped if the code was generated for an IP address with
a different version as the one trying to redeem it, because
of an issue encountered during testing where verification
would incorrectly fail; the server was reachable over both
IPv4 and IPv6, and the browser used IPv4 to contact the
client application, but IPv6 to contact the DAS portal, failing
the verification because of a different IP address.

As previously mentioned, the DAS forward authentica-
tion endpoint does very little; instead, much of the logic
is handled by the reverse-proxy. This means the reverse-
proxy needs to be configured correctly for this type of
authentication to work. Concretely, the reverse-proxy needs
to be configured to do the following:

• Before any request to the client application, first for-
ward the request to DAS. To improve performance,
the request body should be ommitted from the for-
warded request.

• If DAS returns a 401 response, return a 302 response
to the user, redirecting them to the session creation
endpoint of the authentication provider

• If DAS returns a 200 response, make the request
to the client application; make sure to forward the
Remote-User, Remote-Email, and Remote-Name
from this response to the client application.

• If DAS returns a 200 response, make sure any
Set-Cookie headers from this response are for-
warded to the user.

In order to aid system administrators who use Nginx, a
folder with various configuration snippets that configure
Nginx to the above is provided along with the service, as
well as example configurations that use these snippets.

6.7 Proxy Authentication

Proxy authentication establishes a session with the user in
the same way as forward authentication, and even reuses
the session creation endpoint. Just like with forward au-
thentication, the whole user entity is stored in the session,
in order to improve performance.

The proxy authentication code needs to know where to
forward the request. The location must consist of a scheme
(either HTTP or HTTPS) and a host, with optionally a
port. While the location is stored in the database, in the

destination field of the client application, querying the
database for every request would lead to unacceptable la-
tency. Instead, a Registry is used to couple the Host header
of the HTTP request to the location of the client application.
The Registry is updated every time the destination of
the client application is changed. The values stored in this
Registry are already parsed into separate scheme, host, and
port values.

Requests are made via the Mint library[18]. If the user
is authenticated, the incoming request is forwarded to
the client application as is, although the Remote-User,
Remote-Email, and Remote-Name headers are overwrit-
ten with the values of the corresponding user, and the Host
header is overwritten with the host part of the request
destination. The response from the client application is
forwarded back to the client application with no alterations,
save for one: the Transfer-Encodingwill always be set to
Chunked. This is because the authentication provider may
receive the response from the client application in several
parts, and passes these on to the user without buffering. This
functionality requires the use of the Plug chunked sending
feature, which is applied to all requests.

6.8 TOTP
The implementation of TOTP relies on external libraries for
both the logic and the generation of QR codes. A notable
implementation decision is that the QR code for setting
up a TOTP authenticator app can be viewed at any time
after TOTP has been enabled. Disabling TOTP will delete
the secret from the application, and a new secret will be
generated if TOTP is re-enabled.

Whether the user has TOTP enabled is included when
viewing the user object, but it can’t be edited via the basic
CRUD endpoints, by either the user or the system admin-
istrator. It can only be enabled and disabled via a special
endpoint. If the administrator resets a user’s password,
this will automatically disable TOTP; this is also the only
way to disable TOTP when a user has lost access to their
authenticator app. This is a conscious design decision aimed
at preventing social engineering attacks.

When using TOTP over LDAP, the client application,
and by extension the login interface, are not aware that
TOTP is being used, and will not communicate this to the
user. Instead, the user is expected to remember this by
themselves, and append the TOTP code to their password
(with no separator). To add to the inconvenience for the user,
the client application does not display the reason for au-
thentication failure, and as such the user can’t be reminded
to enter the TOTP code. Furthermore, if the authentication
does not succeed, the user is unable to determine whether
this is due to a wrong password or a wrong TOTP code.
As such, TOTP over LDAP can be enabled by each user
separately from TOTP, and is disabled by default.

6.9 Static files
To save effort and maintain a fully RESTfull API, the deci-
sion was made not only serve HTML as static files, and force
the front-end to use REST API calls to retrieve any relevant
data. This means that the HTML is completely devoid of
data, but includes JavaScript which retrieves the data from



25

the correct endpoint. This logic extends to the login page; the
login request is done via JavaScript, and it’s the JavaScript
which then redirects to the appropriate page.

All the static files are stored in the same directory, and
all have file extensions; there are no API requests with
a file extension. An optimally efficient deployment would
configure the reverse-proxy to serve these files directly for
all requests which end on a file extension. However, to
ensure maximum compatibility and allow for much simpler
reverse-proxy configuration in deployment, these files are
also served by the service itself for the appropriate requests.

6.10 Front-end
The front-end webpages implemented entirely RESTfully,
i.e. the original HTML contains no dynamic information,
but instead this information in filled in by JavaScript based
on the results of some API calls. The pages have been styled
using the Pure.css[25] framework; this framework has been
chosen because of its exceptionally light weight, and the
relative ease with which it allows for making both desktop
and mobile websites.

The most important page of the front-end is the login
page, which is used not only to log in to the service itself, but
also used by the OAuth, Forward Authentication, and Proxy
Authentication flows. The page itself is extremely simple,
containing only one form that tries to log the user in and
redirects appropriately upon success. If the user has two-
factor authentication enabled, the page will ask for the users
two-factor authentication code without reloading the page.

Apart from the login page, there are three pages: the
page where users can change their own data, the page where
administrators can administer users, and the page where
administrators can administer client applications. The latter
two of these page are only accessible to users who are
administrators.

Fig. 8. The home page of the DAS interfacet

The “My Page” page allows users to view their own data,
and change their name, password, and enable or disable

two-factor authentication. Figure 8 shows what this page
looks like.

Fig. 9. The page where administrators can administer users

The “Users” page allows administrators to create new
users and update or delete existing ones. It also allows the
administrator to create new administrators, or to change
users passwords to a temporary random value. Figure 9
shows what the “Users” page looks like.

Fig. 10. The page where administrators can administer client applica-
tions

The “Client” page allows administrators to adminis-
ter client applications and update or delete existing ones.



26

The interface that is presented to the administrator differs
somewhat per type of client application. For LDAP client
applications, the BIND DN is presented instead of the ID.
For Proxy client applications, the proxy destination is to
be configured in addition to the other values. For OAuth
client applications, callback URIs are to be additionally
configured.

Figure 10 shows what the “Clients” page looks like.

6.11 Practical Protocol Comparison
This subsection will compare the four supported protocols
as supported by DAS, discussing aspects that concern the
practical deployment and have not yet been discussed in
section 4.7.

The first of these aspects the complexity of configuring a
client application with the correct credentials. An OAuth
application, in the best case scenario, only needs to be
informed of three values: the client id, the client secret, and
the automatic discovery URL. However, not all applications
use the automatic discovery URL, and is this case the
application needs to additionally be configured with the
authorization, token, and userinfo URLs, as well as the
scope, bringing the total amount of required configuration
settings to 6. In either case, DAS will have to be additionally
configured with the callback URL. An LDAP client needs to
be configured with the URL of the LDAP server, the bind
DN and password, the default search DN, object class, and
filter, which is also 6 values; however, it should be noted
that DAS ignores the search DN and object class. Either way,
configuring LDAP is less complex than configuring OAuth,
as one only needs to generate the bind DN and password,
and then only needs to configure the client application, in
contrast to having to configure the callback URL with DAS
as well. Forward and proxy authentication are considerably
more complex to configure, as they require configuration
of the client application and the reverse-proxy. In both
cases, the client application needs to be configured with
the name of the headers in which the user information
will be transmitted; this usually amounts to two values,
one for the username and one for the email. For forward
authentication, configuration of the reverse-proxy is by far
the most complicated configuration discussed yet, and will
usually require combining the configuration file suggested
by the developer of the client application for the reverse-
proxy with the one suggested by the authentication service.
For proxy authentication, this configuration can be simpler
if the client application can be accessed entirely via an HTTP
socket, and does not require further reverse-proxy configu-
ration. If this is not possible, as is the case for e.g. PHP and
UWSGI applications, a second reverse-proxy will need to
be configured between the authentication service and the
client application; this means the request will first travel to
the reverse-proxy to distinguish it from other HTTP services
on the same server, then through DAS for authentication,
then through the reverse-proxy a second time to translate
the request to FastCGI/UWSGI/etc, before finally arriving
at the client application. This is obviously the most complex
to configure, and may also incur a significant performance
penalty.

Another important aspect is the performance, which
we can define as the amount of time it takes the user to

be authenticated to the client application, given that they
are already authenticated with the authentication provider.
There are several factors that introduce latency to this pro-
cess: database queries, computation, data exchange between
the client application and the authentication provider, and
data exchange with the user. In a domestic self-hosting
environment, we can assume that the client application
and the authentication provider are running on the same
machine, but that any communication with the user must
go over a network call. As such, we will assume that
the amount of requests the user has to make is far more
significant than any other factor. We shall count the amount
of network requests after the client application realises the
user is not authenticated, and until the user is authenticated
with the client application. LDAP requires one user request
to the client application containing the user credentials,
and is thereby the fastest. OAuth, forward authentication,
and proxy authentication require two network requests:
one towards DAS to generate an authentication code, and
one towards the client application to retrieve this code. In
case of OAuth using the id tokens from OpenID Connect,
this second request contains the user information, and as
such completes the flow. In the case of forward or proxy
authentication, this request will be forwarded to DAS before
being sent to the client application, which introduces a
slight delay compares to the OpenID Connect flow. In the
case of base OAuth, the client application must separately
contact the authentication provider, which should introduce
comparable delay. As such, LDAP has the highest per-
formance, followed by OAuth using the OpenID Connect
flow, followed by a shared third place between forward
authentication, proxy authentication, and base OAuth.

Another important performance metric is the perfor-
mance after the user has been authenticated. While this
is outside the control of the authentication provider for
LDAP and OAuth, it is extremely relevant for forward and
proxy authentication, where DAS must authenticate every
request. This necessarily takes time, and as such forward
and proxy authentication will always slow down a client
application when compared to OAuth or LDAP. It is unclear
whether forward or proxy authentication adds more delay;
while proxy authentication does require DAS to process the
full request, it does not require a response to be returned
to the reverse-proxy before being processed. What can be
said, however, is that the worst-case scenario for proxy
authentication, where the request travels through a second
reverse-proxy before reaching the client application, is very
likely to incur the greatest performance penalty.

From the above comparisons, it may look like LDAP
is the most ideal protocol, as it is the easiest to configure
and the most performant. However, it does suffer from a
major drawback in convenience to the user, as it is the only
protocol where the user has to enter their credentials for
every client application, even if they are already authenti-
cated with DAS. Furthermore, using TOTP in combination
with LDAP leads to even more inconvenience, as described
in section 6.8. Instead, OAuth should be considered the
most ideal protocol, as it is unique in both allowing DAS to
control the login portal, and not affecting the performance of
the client application after the user has been authenticated.



27

7 RESULTS ACHIEVED

Section 1 asked 5 research questions, which have been
answered by the rest of the document. This section will
review these questions, list a summary of their answers, and
direct to where they have been answered.

What are the differences between OAuth, LDAP, Reverse-
proxy, SAML, and PAM?
OAuth and SAML function analogously, as do LDAP and
PAM. Reverse-proxy should be split into two separate pro-
tocols, forward authentication and proxy authentication. as
such, there are essentially four types of protocols. As in the
rest of the document. SAML will be grouped under OAuth
and PAM will be grouped under LDAP.

The main distinction between the four protocols is the
flow of data between the authentication provider and the
client application. This data includes the user credentials,
which have to be communicated to the authentication
provider, and the information on the authenticated user,
which has to be communicated to the client application.
In LDAP, the user credentials are first transmitted directly
to the client application, which exchanges them for user
information with the authentication service. In OAuth, the
user first transmits their credentials to the authentication
provider, then receives a one-time use code, which is trans-
mitted to the client application via the user’s browser, and
then exchanged for user information with the authenti-
cation provider. In forward authentication, the credentials
are transmitted to the authentication provider through the
reverse-proxy, which then transmits the user information to
the client application. In proxy authentication, the creden-
tials are transmitted to the authentication provider, which
then transmits the user information to the client application,
along with the rest of the user request.

More information on this topic can be found in section 4

What are the challenges involved in making a service that
can natively support multiple protocols, most notably OAuth,
LDAP, and reverse proxy?
Implementing a service that can handle all four protocols is
not much more difficult than implementing all four proto-
cols separately. The main challenge is in creating a product
line; that is, understanding the protocols and definining
their commonalities and distinctions, such that code dupli-
cation can be avoided. This has been resolved by making
a single datastructure for all protocols with unified CRUD
endpoints, but different handlers for each protocols.

An additional challenge is posed by LDAP, which is
designed to browse a directory structure; this poses a prob-
lem, given that none of the other protocols are designed to
interact with directory structures. This has been resolved by
ignoring the directory part of the LDAP queries, and always
returning the any user entities that match the search.

More information on the exact nature of these challenges,
see section 5.5; for information on how they have been
resolved, see section 6

What are the challenges involved in ensuring such a service
is suitable for domestic self-hosting?
The main challenges involved in making DAS suitable for
domestic self-hosting lie in compatibility. This compatibility

has several aspects. Firstly, domestic self-hosting has a wide
variety of different system configurations, and any service
should be able to deal with as many of these environ-
ments as possible; for example, the service can operate
with MySQL, PostgreSQL, and SQLite databases. The ability
to offer reverse-proxy authentication even under Apache,
which does not normally support it, is another great ex-
ample of this kind of compatibility. Secondly, DAS should
also be compatible with several usecases, especially with a
service that aims to interact with other services. This also
implies that one should leave decisions up to the user as
much as possible; for example, the only password restriction
imposed by the service is a minimum length, and the
value of this minimum length is adjustable via configuration
option. The application can also be configured to listen on
any port or Unix socket, and some features can be disabled
via the configuration file entirely. Finally, one should also
take hardware compatibility into account; this could mean
offering releases for both x86 and ARM, but also means
that one should take into account that the hardware may
be outdated and not particularly powerful.

An additional note that should be taken into account is
ease of installation; since the system administrator may be
inexperienced, it should be as easy as possible to install the
application. In this case, this means the service ships as a
single binary, which opens a single HTTP socket to which a
reverse-proxy can be connected. It also serves static files,
in order to allow for the simplest possible reverse-proxy
configuration. Finally, it is important that the application
ships as a single binary without relying on too many exter-
nal dependencies and environment configuration.

Some examples of the unique requirements of domestic
self-hosting can be found in section 5.1, and section 6
contains some details on how this research addresses these
requirements.

What are the differences between a self-hosted authentica-
tion service and its enterprise counterparts
DAS is missing several features of its enterprise counter-
parts. Most notably, DAS does not support any mechanism
that would allow a specific user access to one client appli-
cation without allowing access to all applications, such as
realms or access control lists. DAS also does not offer any
way for its client applications to distinguish groups of users.
More information on features can be found in section 5.4.

Another important distinction between DAS and its en-
terprise counterparts is that DAS both provides authentica-
tion protocol services and holds user data in an integrated
manner, and does not support any methods of separating
this data. Enterprise services sometimes separate holding
user data and providing authentication protocol services
into two different applications, with LDAP being used as
a protocol between the two services; this can be seen in e.g.
Keycloak[27].

The protocols which are commonly used in domestic
self-hosting are also notably different from those used in
enterprise hosting. Enterprise authentication providers em-
phasise support for SAML[6], which is quite uncommon in
domestic self-hosting. On the other hand, forward authen-
tication support is quite rare for enterprise authentication
providers, whereas there are many application common



28

in domestic self-hosting that exclusively support forward
authentication. DAS is also, to the best of my knowledge,
the only application that offers an alternative to forward
authentication that works with the Apache reverse-proxy.
There is also a unique technical aspect to DAS; to the best
of my knowledge, DAS is the only application that provides
authentication services for multiple protocols using a single
datastructure for the client applications in all protocols.
More information on the unique technical aspects and fea-
tures of DAS can be found in section 6.

Finally, DAS can operate in much more barebones en-
vironments than its enterprise counterparts, being able to
run on most Unix systems without requiring any language
runtime, container system, or database program. It is also
extremely lightweight compared to its enterprise counter-
parts, requiring little disk space and little memory.

What authentication schemes (e.g. traditional user-
name/password, TOTP, asymmetric) can operate within
the commonly used protocols?
Because of the limitations of LDAP (and PAM), only user-
name/password is fully suitable. Any other solution that
can authenticate a web browser can be used for OAuth,
SAML, forward authentication, and proxy authentication.
Theoretically, LDAP supports all solutions so long as they
do not require more than a single transmission of two
variable-length string fields; in practice, however, many
such solutions would require modification of the client
software, which would greatly diminish compatibility and
are as such not suitable for domestic self-hosting. TOTP can
used across all protocols as a second factor, but doing so
when LDAP is used is inconvenient for the user, as the user
must remember that TOP is enabled and will not be able to
distinguish between a wrong password and a wrong TOTP
code.

This question is primarily discussed in section 4.8. Some
discussion on the practical implementation of TOTP can be
found in section 6.8.

8 CONLUSION

This research has produced DAS, an authentication ser-
vice which supports OAuth, LDAP, and Reverse-proxy au-
thentication, and is specifically tailored for domestic self-
hosting. In doing so, it has establised some ground rules
for writing software for domestic self-hosting.These rules
can be summarised under three categories: compatibility
with the variety of domestic self-hosting technologies, ease
of installation and maintenance, and lack of features tar-
geting large userbases. Furthermore, DAS is, to the best
of my knowledge, the first service to approach the prob-
lem of multi-protocol authentication by defining a single
datastructure to define client applications in any protocol.
To the best of my knowledge, it is also the first service
to allow for reverse-proxy authentication in combination
with the Apache reverse-proxy, and also the first service
to allow users to authenticate with TOTP-based two-factor
authentication for LDAP-based services.

REFERENCES

[1] About Samba. 2022. URL: https ://www.samba.org/
(visited on 2022-01-17).

[2] Ampache. Ampache - Music Streaming Server. 2023.
URL: https://ampache.org/ (visited on 2023-01-26).

[3] Lorenzo Angeli et al. “Conceptualising Resources-
aware Higher Education DigitalInfrastructure
through Self-hosting: a Multi-disciplinary View”.
English. In: Eighth Workshop on Computing within
Limits. 2022.

[4] Apache support - uWSGI 2.0. 2016. URL: https://uwsgi-
docs.readthedocs.io/en/latest/Apache.html (visited
on 2023-01-27).

[5] The Vouch Proxy Authors. Vouch Proxy. 2022. URL:
https : / / github . com / vouch / vouch - proxy (visited
on 2022-11-27).

[6] BeryJu.org. Making authentication simple. 2022. URL:
https://goauthentik.io/ (visited on 2022-10-07).

[7] Floris Breggeman. Data from the Self-hosting sur-
vey 2021. 2022. URL: https : / / github . com /
florisbreggeman/selfhosting-survey-2021 (visited on
2022-10-27).

[8] Conor P. Cahill et al. Assertions and Protocols for the OA-
SIS Security Assertion Markup Language (SAML) V2.0 –
Errata Composite. Oasis Standards Working Draft sstc-
saml-core-errata-2.0-wd-07. OASIS, Sept. 2015. URL:
https : / / www . oasis - open . org / committees /
download . php / 56776 / sstc - saml - core - errata - 2 . 0 -
wd-07.pdf.

[9] Conor P. Cahill et al. Bindings for the OASIS Secu-
rity Assertion Markup Language (SAML) V2.0 – Errata
Composite. Oasis Standards Working Draft sstc-saml-
bindings-errata-2.0-wd-06. OASIS, Sept. 2015. URL:
https : / / www . oasis - open . org / committees /
download . php / 56779 / sstc - saml - bindings - errata -
2.0-wd-06.pdf.

[10] Conor P. Cahill et al. Metadata for the OASIS Secu-
rity Assertion Markup Language (SAML) V2.0 – Er-
rata Composite. Oasis Standards Working Draft sstc-
saml-metadata-errata-2.0-wd-05. OASIS, Sept. 2015.
URL: https : / / www. oasis - open . org / committees /
download .php/56785/sstc - saml - metadata - errata -
2.0-wd-05.pdf.

[11] Conor P. Cahill et al. Profiles for the OASIS Security As-
sertion Markup Language (SAML) V2.0 – Errata Compos-
ite. Oasis Standards Working Draft sstc-saml-profiles-
errata-2.0-wd-07. OASIS, Sept. 2015. URL: https : / /
www.oasis- open.org/committees/download.php/
56782/sstc-saml-profiles-errata-2.0-wd-07.pdf.

[12] Sean Callan. Testing. 2021. URL: https://elixirschool.
com/en/lessons/testing/basics (visited on 2023-01-
26).

[13] Scott Cantor. SAML V2.0 X.500/LDAP Attribute Profile.
Oasis Standards Draft draft-sstc-saml-attribute-x500-
01. OASIS, Oct. 2006. URL: https://www.oasis-open.
org/committees/download.php/20650/draft- sstc-
saml-attribute-x500-01.pdf.

[14] Oracle Corporation. Oracle Java. 2021. URL: https://
www.oracle.com/java/ (visited on 2022-01-13).

https://www.samba.org/
https://ampache.org/
https://uwsgi-docs.readthedocs.io/en/latest/Apache.html
https://uwsgi-docs.readthedocs.io/en/latest/Apache.html
https://github.com/vouch/vouch-proxy
https://goauthentik.io/
https://github.com/florisbreggeman/selfhosting-survey-2021
https://github.com/florisbreggeman/selfhosting-survey-2021
https://www.oasis-open.org/committees/download.php/56776/sstc-saml-core-errata-2.0-wd-07.pdf
https://www.oasis-open.org/committees/download.php/56776/sstc-saml-core-errata-2.0-wd-07.pdf
https://www.oasis-open.org/committees/download.php/56776/sstc-saml-core-errata-2.0-wd-07.pdf
https://www.oasis-open.org/committees/download.php/56779/sstc-saml-bindings-errata-2.0-wd-06.pdf
https://www.oasis-open.org/committees/download.php/56779/sstc-saml-bindings-errata-2.0-wd-06.pdf
https://www.oasis-open.org/committees/download.php/56779/sstc-saml-bindings-errata-2.0-wd-06.pdf
https://www.oasis-open.org/committees/download.php/56785/sstc-saml-metadata-errata-2.0-wd-05.pdf
https://www.oasis-open.org/committees/download.php/56785/sstc-saml-metadata-errata-2.0-wd-05.pdf
https://www.oasis-open.org/committees/download.php/56785/sstc-saml-metadata-errata-2.0-wd-05.pdf
https://www.oasis-open.org/committees/download.php/56782/sstc-saml-profiles-errata-2.0-wd-07.pdf
https://www.oasis-open.org/committees/download.php/56782/sstc-saml-profiles-errata-2.0-wd-07.pdf
https://www.oasis-open.org/committees/download.php/56782/sstc-saml-profiles-errata-2.0-wd-07.pdf
https://elixirschool.com/en/lessons/testing/basics
https://elixirschool.com/en/lessons/testing/basics
https://www.oasis-open.org/committees/download.php/20650/draft-sstc-saml-attribute-x500-01.pdf
https://www.oasis-open.org/committees/download.php/20650/draft-sstc-saml-attribute-x500-01.pdf
https://www.oasis-open.org/committees/download.php/20650/draft-sstc-saml-attribute-x500-01.pdf
https://www.oracle.com/java/
https://www.oracle.com/java/


29

[15] Debian. LDAP PAM Authentication. 2021. URL: https:
//wiki.debian.org/LDAP/PAM (visited on 2022-12-
31).

[16] Dovecot — The Secure IMAP server. 2022. URL: https :
//www.dovecot.org/ (visited on 2022-01-14).

[17] Ecto. Ecto v3.9.4. 2023. URL: https : / / hexdocs . pm /
ecto/Ecto.html (visited on 2023-02-25).

[18] elixir-mint. Mint. 2023. URL: https : / / github . com /
elixir-mint/mint (visited on 2023-04-10).

[19] erlang. Practical functional programming for a parallel
world. 2023. URL: https://www.erlang.org/ (visited
on 2023-01-05).

[20] Fedetask. Writing a Linux PAM module. 2019. URL:
https : / / web . archive . org / web / 20190523222819 /
https : / / fedetask . com / write - linux - pam - module/
(visited on 2022-12-31).

[21] Apache Software Foundation. Apache HTTP Server
Project. 2022. URL: https://httpd.apache.org/ (visited
on 2022-01-13).

[22] OpenLDAP Foundation. OpenLDAP. 2022. URL: https:
//www.openldap.org/ (visited on 2022-09-26).

[23] Gitea: Git with a cup of tea. 2022. URL: https://gitea.
com/ (visited on 2022-01-28).

[24] npm Inc. About npm. 2023. URL: https://www.npmjs.
com/about (visited on 2023-01-05).

[25] Yahoo Inc. Pure.css. 2014. URL: https ://purecss . io/
(visited on 2023-05-21).

[26] Kanboard. 2023. URL: https://kanboard.org/ (visited
on 2023-01-26).

[27] KeyCloak. Open Source Identity and Access Management.
2022. URL: https ://www.keycloak.org/ (visited on
2022-09-29).

[28] Keycloak. Server Installation and Configuration Guide.
2022. URL: https://www.keycloak.org/docs/latest/
server installation / # database (visited on 2022-09-
07).

[29] Martin Kováčik. Using the NGINX Auth Request Mod-
ule. 2017. URL: https://redbyte.eu/en/blog/using-
the-nginx-auth-request-module/ (visited on 2022-11-
26).

[30] Mengyi Li et al. “A Multi-protocol Authentication
Shibboleth Framework and Implementation for Iden-
tity Federation”. In: Security and Privacy in Communi-
cation Networks. Ed. by Raheem Beyah et al. Cham:
Springer International Publishing, 2018, pp. 81–101.
ISBN: 978-3-030-01704-0.

[31] Chengwei Liu et al. “Demystifying the Vulnerability
Propagation and Its Evolution via Dependency Trees
in the NPM Ecosystem”. In: Proceedings of the 44th In-
ternational Conference on Software Engineering. ICSE ’22.
Pittsburgh, Pennsylvania: Association for Computing
Machinery, 2022, pp. 672–684. ISBN: 9781450392211.
DOI: 10 . 1145 / 3510003 . 3510142. URL: https : / / doi .
org/10.1145/3510003.3510142.

[32] Collabora Ltd. Collabora Online. 2021. URL: https ://
www.collaboraoffice.com/collabora- online- 3/ (vis-
ited on 2022-10-10).

[33] Connect2id Ltd. LDAP user authentication explained.
2022. URL: https : / / connect2id . com / products /
ldapauth/auth-explained (visited on 2022-11-18).

[34] D. M’Raihi et al. TOTP: Time-Based One-Time Password
Algorithm. RFC 6238. RFC Editor, May 2011, pp. 1–16.
URL: https://www.rfc-editor.org/rfc/rfc6238.

[35] Ami Marowka. “Python accelerators for high-
performance computing”. In: The Journal of Supercom-
puting 74 (Apr. 2018), pp. 1449–1460. DOI: 10 . 1007 /
s11227-017-2213-5.

[36] Matrix. 2021. URL: https://matrix.org (visited on 2021-
12-27).

[37] Clement Michaud. authelia. 2022. URL: https://www.
authelia.com/ (visited on 2022-01-17).

[38] David Molnar and Stuart Schechter. “Self Hosting vs.
Cloud Hosting: Accounting for the security impact
of hosting in the cloud”. In: The Ninth Workshop on
the Economics of Information Security (WEIS 2010). Mi-
crosoft Research. 2010. URL: https : / / econinfosec .
org/archive/weis2010/papers/session5/weis2010
schechter.pdf.

[39] Nextcloud. Your cloud, your rules. 2021. URL: https://
nextcloud.com/athome/ (visited on 2021-12-17).

[40] Node.js. 2021. URL: https : / / nodejs . org / en / about/
(visited on 2021-01-13).

[41] OAuth Working Group Specifications. 2022. URL: https:
//oauth.net/specs/ (visited on 2022-11-16).

[42] Marc Ohm et al. “Backstabber’s Knife Collection: A
Review of Open Source Software Supply Chain At-
tacks”. In: Detection of Intrusions and Malware, and
Vulnerability Assessment. Ed. by Clémentine Maurice
et al. Cham: Springer International Publishing, 2020,
pp. 23–43. ISBN: 978-3-030-52683-2.

[43] Oracle. Package java.security. 2023. URL: https://docs.
oracle . com / javase / 8 / docs / api / java / security /
package-summary.html (visited on 2023-01-27).

[44] Aaron Pecki. OAuth 2.0 Simplified. Lulu Press Inc, 2018.
ISBN: 9781387813650.

[45] PHP. 2021. URL: https://www.php.net/ (visited on
2022-01-13).

[46] Postfix. Postfix feature overview. 2022. URL: http : / /
www.postfix.org/features.html (visited on 2022-01-
14).

[47] Michael Pradel and Koushik Sen. “The Good, the Bad,
and the Ugly: An Empirical Study of Implicit Type
Conversions in JavaScript”. In: 29th European Confer-
ence on Object-Oriented Programming (ECOOP 2015).
Ed. by John Tang Boyland. Vol. 37. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2015, pp. 519–541. ISBN: 978-3-939897-86-6.
DOI: 10 . 4230 / LIPIcs . ECOOP. 2015 . 519. URL: http :
//drops.dagstuhl.de/opus/volltexte/2015/5236.

[48] L. Prechelt. “An empirical comparison of seven pro-
gramming languages”. In: Computer 33.10 (2000),
pp. 23–29. DOI: 10.1109/2.876288.

[49] William Pugh. “The Java memory model is fatally
flawed”. In: Concurrency: Practice and Experience 12.6
(2000), pp. 445–455. DOI: https://doi.org/10.1002/
1096-9128(200005)12:6〈445::AID-CPE484〉3.0.CO;2-A.
eprint: https :/ / onlinelibrary. wiley. com /doi / pdf/
10.1002/1096-9128%28200005%2912%3A6%3C445%
3A%3AAID-CPE484%3E3.0.CO%3B2-A. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/1096-

https://wiki.debian.org/LDAP/PAM
https://wiki.debian.org/LDAP/PAM
https://www.dovecot.org/
https://www.dovecot.org/
https://hexdocs.pm/ecto/Ecto.html
https://hexdocs.pm/ecto/Ecto.html
https://github.com/elixir-mint/mint
https://github.com/elixir-mint/mint
https://www.erlang.org/
https://web.archive.org/web/20190523222819/https://fedetask.com/write-linux-pam-module/
https://web.archive.org/web/20190523222819/https://fedetask.com/write-linux-pam-module/
https://httpd.apache.org/
https://www.openldap.org/
https://www.openldap.org/
https://gitea.com/
https://gitea.com/
https://www.npmjs.com/about
https://www.npmjs.com/about
https://purecss.io/
https://kanboard.org/
https://www.keycloak.org/
https://www.keycloak.org/docs/latest/server_installation/#_database
https://www.keycloak.org/docs/latest/server_installation/#_database
https://redbyte.eu/en/blog/using-the-nginx-auth-request-module/
https://redbyte.eu/en/blog/using-the-nginx-auth-request-module/
https://doi.org/10.1145/3510003.3510142
https://doi.org/10.1145/3510003.3510142
https://doi.org/10.1145/3510003.3510142
https://www.collaboraoffice.com/collabora-online-3/
https://www.collaboraoffice.com/collabora-online-3/
https://connect2id.com/products/ldapauth/auth-explained
https://connect2id.com/products/ldapauth/auth-explained
https://www.rfc-editor.org/rfc/rfc6238
https://doi.org/10.1007/s11227-017-2213-5
https://doi.org/10.1007/s11227-017-2213-5
https://matrix.org
https://www.authelia.com/
https://www.authelia.com/
https://econinfosec.org/archive/weis2010/papers/session5/weis2010_schechter.pdf
https://econinfosec.org/archive/weis2010/papers/session5/weis2010_schechter.pdf
https://econinfosec.org/archive/weis2010/papers/session5/weis2010_schechter.pdf
https://nextcloud.com/athome/
https://nextcloud.com/athome/
https://nodejs.org/en/about/
https://oauth.net/specs/
https://oauth.net/specs/
https://docs.oracle.com/javase/8/docs/api/java/security/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/security/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/security/package-summary.html
https://www.php.net/
http://www.postfix.org/features.html
http://www.postfix.org/features.html
https://doi.org/10.4230/LIPIcs.ECOOP.2015.519
http://drops.dagstuhl.de/opus/volltexte/2015/5236
http://drops.dagstuhl.de/opus/volltexte/2015/5236
https://doi.org/10.1109/2.876288
https://doi.org/https://doi.org/10.1002/1096-9128(200005)12:6<445::AID-CPE484>3.0.CO;2-A
https://doi.org/https://doi.org/10.1002/1096-9128(200005)12:6<445::AID-CPE484>3.0.CO;2-A
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1096-9128%28200005%2912%3A6%3C445%3A%3AAID-CPE484%3E3.0.CO%3B2-A
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1096-9128%28200005%2912%3A6%3C445%3A%3AAID-CPE484%3E3.0.CO%3B2-A
https://onlinelibrary.wiley.com/doi/pdf/10.1002/1096-9128%28200005%2912%3A6%3C445%3A%3AAID-CPE484%3E3.0.CO%3B2-A
https://onlinelibrary.wiley.com/doi/abs/10.1002/1096-9128%28200005%2912%3A6%3C445%3A%3AAID-CPE484%3E3.0.CO%3B2-A
https://onlinelibrary.wiley.com/doi/abs/10.1002/1096-9128%28200005%2912%3A6%3C445%3A%3AAID-CPE484%3E3.0.CO%3B2-A


30

9128%28200005%2912%3A6%3C445%3A%3AAID-
CPE484%3E3.0.CO%3B2-A.

[50] Python. 2022. URL: https://www.python.org/ (visited
on 2022-01-13).

[51] Ken Reese et al. “A Usability Study of Five Two-Factor
Authentication Methods”. In: SOUPS’19: Proceedings
of the Fifteenth USENIX Conference on Usable Privacy
and Security. Ed. by Heather Richter Lipford. Brigham
Young University. USENIX Association, Aug. 2019.
URL: https : / / www . usenix . org / system / files /
soups2019-reese.pdf.

[52] Registry — Elixir v1.14.2. 2022. URL: https://hexdocs.
pm/elixir/Registry.html (visited on 2023-01-09).

[53] N. Sakimura et al. OpenID Connect Core 1.0 incorporat-
ing errata set 1. 2014. URL: https://openid.net/specs/
openid-connect-core-1 0.html (visited on 2022-11-17).

[54] N. Sakimura et al. OpenID Connect Discovery 1.0 incor-
porating errata set 1. 2014. URL: https://openid.net/
specs/openid-connect-discovery-1 0.html (visited on
2022-11-18).

[55] Jone Samra. “Comparing Performance of Plain PHP
and Four of Its Popular Frameworks”. Bachelor’s
Thesis. Linnaeus University, Department of Computer
Science, Aug. 2015. URL: https://www.diva- portal.
org / smash / record . jsf ? pid = diva2 % 3A846121 &
dswid=1611.

[56] Servarr. 2021. URL: https://wiki.servarr.com/ (visited
on 2021-12-17).

[57] Toyotaro Suzumura et al. “Performance Comparison
of Web Service Engines in PHP, Java and C”. In: 2008
IEEE International Conference on Web Services. 2008,
pp. 385–392. DOI: 10.1109/ICWS.2008.71.

[58] Sylvestre. sun-java6 packages removed soon from De-
bian/Ubuntu (and all other linux distros). 2011. URL:
https://sylvestre.ledru.info/blog/2011/08/26/sun
java6 packages removed from debian u (visited on
2023-01-27).

[59] The Elixir Team. Elixir. 2022. URL: https://elixir-lang.
org/ (visited on 2023-01-05).

[60] Debian Wiki. Java. 2022. URL: https ://wiki .debian .
org/Java (visited on 2023-01-05).

[61] Jonas Winkler. Paperless-ng. 2021. URL: https://github.
com/jonaswinkler/paperless-ng (visited on 2021-12-
27).

[62] Kara R. Wong. “Vendor-hosted versus Self-hosted
Implementation of Open-Source”. MA thesis. Chapel
Hill, North Carolina: University of North Carolina,
Apr. 2022. URL: https://cdr.lib.unc.edu/downloads/
q237j2611.

[63] Yunohost. Be the cloud you want to see in the world. 2022.
URL: https://yunohost.org/ (visited on 2022-03-10).

[64] K Zeilinga and OpenLDAP Foundation. LDAP Au-
thentication Password Schema. RFC 3112. RFC Editor,
May 2001, pp. 1–9. URL: https://www.rfc-editor.org/
rfc/rfc3112.

[65] K Zeilinga and OpenLDAP Foundation. Lightweight
Directory Access Protocol (LDAP): Directory Information
Models. RFC 4512. RFC Editor, June 2006, pp. 1–52.
URL: https://www.rfc-editor.org/rfc/rfc4512.

https://onlinelibrary.wiley.com/doi/abs/10.1002/1096-9128%28200005%2912%3A6%3C445%3A%3AAID-CPE484%3E3.0.CO%3B2-A
https://onlinelibrary.wiley.com/doi/abs/10.1002/1096-9128%28200005%2912%3A6%3C445%3A%3AAID-CPE484%3E3.0.CO%3B2-A
https://www.python.org/
https://www.usenix.org/system/files/soups2019-reese.pdf
https://www.usenix.org/system/files/soups2019-reese.pdf
https://hexdocs.pm/elixir/Registry.html
https://hexdocs.pm/elixir/Registry.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A846121&dswid=1611
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A846121&dswid=1611
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A846121&dswid=1611
https://wiki.servarr.com/
https://doi.org/10.1109/ICWS.2008.71
https://sylvestre.ledru.info/blog/2011/08/26/sun_java6_packages_removed_from_debian_u
https://sylvestre.ledru.info/blog/2011/08/26/sun_java6_packages_removed_from_debian_u
https://elixir-lang.org/
https://elixir-lang.org/
https://wiki.debian.org/Java
https://wiki.debian.org/Java
https://github.com/jonaswinkler/paperless-ng
https://github.com/jonaswinkler/paperless-ng
https://cdr.lib.unc.edu/downloads/q237j2611
https://cdr.lib.unc.edu/downloads/q237j2611
https://yunohost.org/
https://www.rfc-editor.org/rfc/rfc3112
https://www.rfc-editor.org/rfc/rfc3112
https://www.rfc-editor.org/rfc/rfc4512

	Introduction
	Terminology

	Background
	Domestic self-hosting
	Authentication

	Related Work
	Protocols
	Oauth
	Client Application Registration
	Basic Authentication Flow
	Variations
	Notable details
	OpenID Connect
	Considerations for DAS

	LDAP
	Database Structure
	Client Application Registration and Configuration
	Authentication Flow
	Considerations for DAS

	Forward Authentication
	Client Application Registration
	Basic Authentication Flow
	Integration with Reverse-Proxies
	Notable Details
	Considerations for DAS

	Proxy Authentication
	Client Registration
	Authentication Flow
	Considerations for DAS

	SAML
	Client Application Registration
	Methods of data exchange
	Authentication Flow
	Comparison with OAuth
	Considerations for DAS

	PAM
	Client Application Registration
	Basic Authentication flow
	Considerations for DAS

	Comparison
	Authentication Schemes

	Architecture
	Stakeholders
	End Users
	System Administrators:
	System Integrators
	Developer

	Position View
	Choice of Language
	PHP
	Python
	Java
	C++
	JavaScript
	Elixir
	Decision

	Functionality View
	End Users
	System Administrators
	System Integrators

	Component View
	User Database
	Session Manager
	Client Database
	Persistent Storage
	LDAP
	OAuth
	Forward Authentication
	Proxy Authentication
	Admin
	Plug

	System Integration View
	/client_ldap_area

	Testing View
	Unit Testing
	Development Environment
	Evaluation


	Implementation Details
	Persistent Storage
	User Database
	Client Database
	LDAP
	OAuth
	Forward Authentication
	Proxy Authentication
	TOTP
	Static files
	Front-end
	Practical Protocol Comparison

	Results Achieved
	Conlusion

