
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Efficient Task Dispatching
for Real-Time Systems:

A Case Study in FreeRTOS

Florian Hagens
M.Sc. Thesis

June 2023

Supervisors:
dr. ing. K.H. Chen

dr. ir. A.L. Varbanescu
dr. ing. A. Chiumento

Computer Architecture for
Embedded Systems group

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
Drienerlolaan 5

7522 NB Enschede
The Netherlands

II

Abstract

Real-time operating systems (RTOS) are vital for managing time-sensitive applica-
tions and ensuring that tasks are executed according to strict deadlines. A key com-
ponent of RTOS is the task dispatcher, which plays a critical role in task periodicity.
The primary objective of optimizing task dispatchers is to reduce computation over-
head, leading to more efficient systems and better guarantees of meeting deadlines.
This thesis presents an in-depth evaluation of various implemented task dispatching
methods based on five distinct data structures, focusing on their impact on compu-
tation overhead and performance in FreeRTOS.

Through rigorous experimentation using a real-world setup, we assessed the
merits and drawbacks of each data structure and its corresponding task dispatcher
implementation. Our findings revealed that the efficiency of a task dispatcher is
heavily influenced by the specific task set and its size. For smaller task sets, the
current List-based implementation in FreeRTOS is satisfactory; however, its effi-
ciency diminishes as the task set size increases. We identified cases where alterna-
tive task dispatchers, such as those based on Red-Black Trees (RBT) and Heaps,
outperformed the List-based implementation. Moreover, we observed that certain
dispatching methods are better suited for specific task set configurations.

Our research contributes to the existing knowledge on task dispatching methods
in real-time operating systems and provides valuable insights for system designers
and developers in optimizing their task dispatchers. By examining the performance
of different dispatchers under various task sets and configurations, we highlight the
potential for improved system performance in specific scenarios. Additionally, our
study emphasizes the importance of tailoring the task dispatcher to the specific task
set at hand, which can contribute to the development of more efficient, reliable, and
high-performance real-time systems.

1

2

Acknowledgment

I would like to express my sincere gratitude to my thesis supervisor, Dr. Kuan-
Hsun Chen, for his insightful expertise, practical advice, and the opportunity to work
under his guidance. His inputs during our weekly meetings and responsiveness to
my progress updates were instrumental in the successful completion of this thesis.
Furthermore, our collaboration on the papers that have been accepted by OSPERT
and CompSys provided an enlightening experience. I appreciate the opportunity
to have developed this thesis under your guidance, Dr. Chen. Thank you for your
support and the learning experience.

3

4

Contents

Abstract 1

1 Introduction 13

2 Background 17
2.1 Real-Time Systems . 17
2.2 Real-Time Operating Systems . 19
2.3 Task Dispatchers . 22

2.3.1 Task Dispatchers in General Purpose Operating Systems . . . 22
2.3.2 Task Dispatchers in Real-time Operating Systems 22

2.4 FreeRTOS . 24
2.4.1 Task Dispatcher in FreeRTOS 25

3 Real-world Measurement Setup 33
3.1 ESP-IDF FreeRTOS . 34
3.2 Embedded Device and PlatformIO . 35
3.3 GDB & OpenOCD . 36
3.4 Measurements . 38

4 Methodology 41
4.1 Task Dispatching Data Structures . 42

4.1.1 Time Complexities . 48
4.2 Task Dispatcher Implementations . 51

4.2.1 Implementation to FreeRTOS 52
4.2.2 List . 56
4.2.3 Bucket of Ignorance . 57
4.2.4 Binary Search Tree . 57
4.2.5 Heap . 59
4.2.6 Red-Black Tree . 61

4.3 FreeRTOS Test Application . 62
4.4 Limitations of Testing on Embedded Devices 62

5

6 CONTENTS

5 Evaluation 65
5.1 Task Set Synthesis . 65
5.2 Worst-Case Computation Overhead 67

5.2.1 List . 68
5.2.2 Bucket of Ignorance . 69
5.2.3 Binary Search Tree . 70
5.2.4 Heap . 71
5.2.5 Red-Black Tree . 73
5.2.6 Comparison of Worst-Case Computation Overhead 76

5.3 Task Sets with Homogeneous Period Distribution 78
5.3.1 List . 79
5.3.2 Bucket of Ignorance . 80
5.3.3 Binary Search Tree . 81
5.3.4 Heap . 82
5.3.5 Red-black tree . 84
5.3.6 Comparison of Homogeneous Period Task Sets Overhead . . 85

5.4 Task Sets with Uniform Period Distribution 88
5.5 Automotive Benchmark Period Distribution 92

6 Conclusion 95

References 97

Appendices

A Pseudo code implemented data structure functions 101
A.1 List . 101

A.1.1 Insertion . 101
A.1.2 Remove First Task . 102

A.2 Bucket of Ignorance . 102
A.3 Red-black Tree . 104

List of Figures

2.1 Utility function for hard real-time tasks. 18

2.2 Utility function for firm real-time tasks. 18

2.3 Utility function for soft real-time tasks. 18

2.4 Layered scheme for GPOS architecture. 20

2.5 Layered scheme for RTOS architecture. 21

2.6 Task dispatching routine. 23

2.7 FreeRTOS software layers. 25

2.8 Flowchart illustrating the operation sequence for delaying tasks with
regards to the task dispatcher in FreeRTOS. 28

2.9 Scenarios for adding the task to the task dispatcher data structure. . . 29

2.10 Flowchart illustrating the operation sequence for tick incrementation
with regards to the task dispatcher in FreeRTOS. 31

3.1 Real-world Measurement Setup. 33

3.2 Real-world Interconnects for Debugging: Comparison of ESP-PROG

(left), Built-in (middle and right) Options. 37

3.3 Debugging Options in GDB Visual Studio Code: An Overview of Key
Features and Functionality. 39

4.1 FreeRTOS list structure . 56

4.2 Flow diagram of the Bucket of Ignorance insertion function. 58

4.3 Flow diagram of the BST insertion function. 59

4.4 Flow diagram of the Array-based Heap insertion function. 60

4.5 Flow diagram of the Array-based iterative first task removal function. . 61

5.1 Worst-case computation overhead of List-based task dispatcher task
insertion implementation per task set size. 68

5.2 Worst-case computation overhead of BST-based task dispatcher task
insertion implementation per task set size. 70

5.3 Worst-case computation overhead of BST-based task dispatcher first
task retrieval implementation per task set size. 71

7

8 LIST OF FIGURES

5.4 Worst-case computation overhead of BST-based task dispatcher first
task removal implementation per task set size. 71

5.5 Worst-case computation overhead of Heap-based task dispatcher task
insertion implementation per task set size. 72

5.6 Worst-case computation overhead of Heap-based task dispatcher first
task removal implementation per task set size. 73

5.7 Worst-case computation overhead of RBT-based task dispatcher task
insertion implementation per task set size. 74

5.8 Worst-case computation overhead of RBT-based task dispatcher first
task retrieval implementation per task set size. 74

5.9 Worst-case computation overhead of RBT-based task dispatcher first
task removal implementation per task set size. 75

5.10 Worst-case computation overhead comparison of different task dis-
patcher task insertion implementations. 76

5.11 Worst-case computation overhead comparison of different task dis-
patcher first task retrieval implementations. 77

5.12 Worst-case computation overhead comparison of different task dis-
patcher first task removal implementations. 78

5.13 Overhead measurements for List-based task dispatcher task insertion
implementation for homogeneous task sets. 79

5.14 Overhead measurements for BoI-based task dispatcher task insertion
implementation for homogeneous task sets. 80

5.15 Overhead measurements for BST-based task dispatcher task inser-
tion implementation for homogeneous task sets. 81

5.16 Overhead measurements for Heap-based task dispatcher task inser-
tion implementation for homogeneous task sets. 82

5.17 Overhead measurements for Heap-based task dispatcher first task
removal implementation for homogeneous task sets. 83

5.18 Overhead measurements for RBT-based task dispatcher task inser-
tion implementation for homogeneous task sets. 84

5.19 Overhead measurements for RBT-based task dispatcher first task re-
trieval implementation for homogeneous task sets. 85

5.20 Overhead measurements for RBT-based task dispatcher first task re-
moval implementation for homogeneous task sets. 85

5.21 Overhead comparison of different task dispatcher task insertion im-
plementations for homogeneous task sets. 86

5.22 Overhead comparison of different task dispatcher first task retrieval
implementations for homogeneous task sets. 87

LIST OF FIGURES 9

5.23 Overhead comparison of different task dispatcher first task removal
implementations for homogeneous task sets. 88

5.24 Overhead comparison of different task dispatcher task insertion im-
plementations for uniform task sets. 89

5.25 Overhead comparison of different task dispatcher first task retrieval
implementations for uniform task sets. 90

5.26 Overhead comparison of different task dispatcher first task removal
implementations for uniform task sets. 91

10 LIST OF FIGURES

List of Tables

2.1 Definitions of terms used in the task dispatcher description. 27

4.1 Worst-case time complexity of task dispatcher data structures, where
n represents the number of items in the data structure and m repre-
sents the number of hierarchical arrays. 50

4.2 Average-case time complexity of task dispatcher data structures, where
n represents the number of items in the data structure and m repre-
sents the number of hierarchical arrays. 51

5.1 Distribution of task periods in automotive benchmark [1]. 66
5.2 Normalized distribution of tasks in automotive benchmark, excluding

angle-synchronous tasks. 66
5.3 Worst case computation overhead of List-based task dispatcher func-

tions in FreeRTOS in CPU cycles, where n is the number of tasks in
the dispatcher. 69

5.4 Worst-case computation overhead of BST-based task dispatcher func-
tions in FreeRTOS in CPU cycles, where n is the number of tasks in
the dispatcher. 70

5.5 Worst-case computation overhead of Heap-based task dispatcher func-
tions in FreeRTOS in CPU cycles, where n is the number of tasks in
the dispatcher. 73

5.6 Worst case computation overhead of RBT-based task dispatcher func-
tions in FreeRTOS in CPU cycles, where n is the number of tasks in
the dispatcher. 75

5.7 Scaled down automotive distribution measurement results given in
CPU cycles [1]. 93

11

12 LIST OF TABLES

Chapter 1

Introduction

”Give me six hours to chop down a tree,
and I will spend the first four sharpening the axe.”

—Abraham Lincoln

In embedded systems, the efficient and timely execution of tasks is of great im-
portance. These systems often require periodic task executions and adherence to
strict deadlines to maintain their functionality and ensure expected operation. Ex-
amples of real-world periodic systems include air traffic control systems, automated
vehicle control systems, industrial robotics, and heart pacemakers. Periodicity is im-
portant in these systems as it ensures that critical operations are performed at reg-
ular intervals, maintaining synchronization between different components, and en-
abling the system to provide consistent and expected performance. Periodicity and
deadlines are essential to maintaining system stability, responding to time-sensitive
events, and ensuring predictable behavior in real-time applications.

The scheduler and the task dispatcher play a crucial role in meeting these re-
quirements. In our review of the current literature, we noticed a strong focus on
various scheduling algorithms, while the task dispatcher seemed to be less exten-
sively explored. Recognizing the importance of the task dispatcher in efficient task
execution in embedded systems, this thesis will contribute to filling this perceived
gap. The scheduler is responsible for managing and organizing tasks based on their
priorities and deadlines, allocating resources, and ensuring that tasks are executed
according to their pre-defined periods. Meanwhile, the task dispatcher is responsible
for initiating task execution by selecting the most suitable task from the scheduler’s
output, introducing the task periodicity.

Optimized task dispatchers can significantly improve the efficiency of task schedul-
ing and thus overall system performance. By basing task dispatchers on suitable
data structures, we can reduce computational overhead, thereby enhancing the pre-
dictability of the system’s behavior. In the realm of task dispatcher optimization,

13

14 CHAPTER 1. INTRODUCTION

several notable studies have contributed to the development of improved methods.
For instance, the potential of hardware-based scheduling in real-time operating sys-
tems (RTOS) [2] [3] [4]. Additionally, research on efficient data structures for timers,
such as hashed and hierarchical timing wheels, provide valuable insights for the de-
velopment of more effective task dispatchers [5]. Furthermore, the work on improved
task management techniques for enforcing EDF scheduling on recurring tasks high-
lights the importance of refining task management processes to enhance task dis-
patcher efficiency [6]. The presence of these studies in the literature serves as a
strong foundation for the current research, as they demonstrate the importance of
optimizing task dispatchers to improve overall system performance. The fact that re-
searchers have dedicated their efforts to investigating task dispatcher optimization
underscores the significance and potential impact of such optimizations in the field
of embedded systems.

Abraham Lincoln’s quote, ”Give me six hours to chop down a tree, and I will
spend the first four sharpening the axe,” serves as a fitting metaphor for the central
theme of this thesis. Much like how Lincoln emphasized the importance of investing
time in selecting and preparing the right tool for the task at hand, this research
focuses on implementing and evaluating various task dispatching methodologies. By
doing so, the research aims to identify the most efficient dispatching implementation
for a diverse range of task sets, thus ensuring that the ”axe” of real-time operating
systems is sharpened for optimal performance.

In order to address this possible improvement, this research adopts a system-
atic and practical approach, focused on implementing and evaluating the task dis-
patcher of FreeRTOS based on five distinct data structures. To address the potential
improvement of reducing computation overhead in task dispatching, this research fo-
cuses on implementing and evaluating the task dispatcher of FreeRTOS using five
distinct data structures: List, Bucket of Ignorance (BoI), BST (Binary Search Tree),
Heap and Red-Black Tree (RBT). The selection of data structure enhancement is
predicated on the assumption that the task dispatcher’s efficiency is primarily im-
pacted by the underlying data structure employed to organize tasks. The chosen
data structures will serve as the foundation for exploring how each implementation
affects the computational overhead of the task dispatcher.

In this thesis, we aim to provide a detailed comparison of selected task dis-
patcher implementations suitable for embedded systems, mainly based on compu-
tation overhead. Our methodology involves both a theoretical analysis and practical
implementation of these task dispatchers on an actual embedded device, specifically
the ESP32-S3-DevKitC-1. By doing so, we ensure that the findings are grounded in
real-world application scenarios and offer a high-level overview of each implemen-
tation’s advantages and disadvantages.

15

This hands-on approach will allow for an accurate assessment of each task dis-
patcher’s effectiveness when integrated into a functional system. The research eval-
uates their computational overhead, thus providing valuable insights for developers
and researchers working in the field of embedded systems.

In order to evaluate the performance of the different task dispatcher implemen-
tations, this study utilizes CPU cycle measurements as the primary metric. Specif-
ically, we focus on the CPU cycles consumed during the crucial operations of task
insertion, first task retrieval, and first task removal within the kernel. CPU cycles
offer a precise, low-level measure of computational effort, allowing us to accurately
quantify the overhead associated with each task dispatcher implementation. This
method enables a direct comparison of each implementation’s efficiency, thereby
shedding light on their relative strengths and weaknesses.

This thesis is structured into several chapters, each addressing a different aspect
of the research on the implementation and evaluation of the different task dispatcher
implementations in FreeRTOS. Below is a brief outline of how the thesis is organized
and what each chapter contains:

• Background: This chapter lays the foundation for the rest of the thesis, pro-
viding essential information on RTOSes, task dispatchers and FreeRTOS.

• Real-World Measurement Setup: This chapter describes the experimental
setup used for evaluating the task dispatcher implementations. It discusses
some of the tools, hardware and software that is used in this research, to
ensure a good understanding of the environment used for the evaluation of the
task dispatcher implementations.

• Methodology: In this chapter, we will detail the methodology used in this re-
search. We begin by exploring potential data structures that could serve as the
basis for task dispatchers. Next, we delve into the implementation process for
selected task dispatchers that use these data structures. We then describe the
test application developed to generate task sets, which will be used to evaluate
the task dispatchers. Subsequently, we present the limitations of the utilized
embedded device, the ESP32-S3-DevKitC-1. Understanding these limitations
is crucial as it provides context for the evaluation of the different task dispatcher
implementations.

16 CHAPTER 1. INTRODUCTION

• Evaluation: This chapter presents the evaluation of the various task dis-
patcher implementations using different sets of task sets. The performance
of each implementation is analyzed based on a real-world automotive bench-
mark, where we measure the worst-case scenario, homogeneous period dis-
tribution, uniform period distribution and a distribution according to the auto-
motive benchmark.

• Conclusion: The Concluding chapter summarizes the key findings of the re-
search, offers insights into the implications of the results in the context of RTOS
development and outlines potential avenues for future research.

To ensure a thorough evaluation of the work presented in this thesis, the com-
plete source code has been made available exclusively to the reviewers. The code
can be accessed through two separate repositories, which can be found at the fol-
lowing links:

• FreeRTOS kernel with additional dispatcher implementations: https://gitlab.
utwente.nl/s2626160/pio_freertos

• Test application with easily adjustable task sets: https://gitlab.utwente.

nl/s2626160/generic_freertos_measuring_application

https://gitlab.utwente.nl/s2626160/pio_freertos
https://gitlab.utwente.nl/s2626160/pio_freertos
https://gitlab.utwente.nl/s2626160/generic_freertos_measuring_application
https://gitlab.utwente.nl/s2626160/generic_freertos_measuring_application

Chapter 2

Background

This chapter of the thesis provides an essential foundation for the research pre-
sented in the subsequent chapters. In this chapter, we discuss the fundamental
concepts and components of real-time operating systems, with a specific focus on
task dispatchers and their use in FreeRTOS.

We will go over the basics of real-time systems and their characteristics, as well
as explore the role of real-time operating systems in managing and executing time-
critical tasks. A key aspect of RTOSes (Real-Time Operating Systems) is the task
dispatcher, which is responsible for task periodicity. We will examine the differences
between task dispatchers in general-purpose operating systems and real-time op-
erating systems.

Furthermore, we will introduce FreeRTOS, a widely adopted real-time operating
system and discuss its task dispatcher implementation in detail. By gaining a good
understanding of the concepts and mechanisms presented in this background sec-
tion, readers will be well-equipped to comprehend the research and analysis that
follow. This foundational knowledge is crucial for both the evaluation of our work and
the broader context of real-time systems and operating systems in general.

Overall, this chapter provides a background on RTOSes, task dispatchers and
FreeRTOS, which is essential to understand the motivation and context of this re-
search.

2.1 Real-Time Systems

Real-time systems (RTSs) are designed to provide predictable and responsive be-
havior, maintaining reliability as a priority over sheer performance. A fundamen-
tal aspect of RTSs is ensuring that processing tasks are executed within specified
timeframes, irrespective of the system load. A critical distinction arises between the
logical correctness of the processing results and their adherence to the required

17

18 CHAPTER 2. BACKGROUND

timing constraints. Consequently, real-time systems are classified according to their
deadlines, real-time tasks can be distinguished into three categories [7]:

• Hard: Producing results after its deadline may cause catastrophic conse-
quences on the system under control. (Figure 2.1)

• Firm: Producing results after its deadline is useless for the system but does
not cause any damage. (Figure 2.2)

• Soft: Producing results after its deadline still has some utility for the system,
although causing performance degradation. (Figure 2.3)

Time

Utility

Release Time

Deadline

Figure 2.1: Utility function for hard real-time tasks.

Time

Utility

Release Time

Deadline

Figure 2.2: Utility function for firm real-time tasks.

Time

Utility

Release Time

Deadline

Figure 2.3: Utility function for soft real-time tasks.

2.2. REAL-TIME OPERATING SYSTEMS 19

In real-time systems, tasks are composed of smaller execution entities known as
jobs (or task instances). Each job, denoted as Ji, can be characterized by a set of
fundamental parameters: Ji = (ri, Ci, di), where:

• ri is the release time (or arrival time ai): The time at which the job becomes
ready for execution.

• Ci is the computation time or Worst-Case Execution Time (WCET): The time
necessary for the processor to execute the job without interruption.

• di is the absolute deadline: The time by which the job should be completed.

Activating a job by a fixed interval of time, a task is said to be periodic. A periodic
task denoted as τi has its first job τi,1 activated at time ϕi, known as the task phase.
Subsequent job activations τi,j+1, occur at time ri,j+1 = ri,j +Ti, where Ti represents
the task period.

Tasks can also exhibit irregular job activation patterns, leading to the classifica-
tion of aperiodic tasks. Specifically, an aperiodic task τi is defined such that the acti-
vation time of job τi,j+1 is greater than or equal to that of its previous job (ri,j+1 ≥ ri,j)

When an aperiodic task has a defined minimum time interval between the ac-
tivations of successive jobs, it is referred to as a sporadic task. In other words, a
sporadic task τi is a task in which the time difference between the activations of
two adjacent jobs τi,j and τi,j+1 is never less than a certain value Ti, denoted by
ri,j+1 ≥ ri,j + Ti. In this context, Ti is referred to as the minimum interarrival time.
This concept is similar to the task period used in the definition of periodic tasks, but
it represents a minimum limit rather than a fixed interval.

To realize RTSs, an RTOS is needed to ensure that the system behavior is pre-
dictable and the OS should manage the timing and scheduling of the tasks [8]. In
the following section, we will compare RTOSes with General-Purpose Operating
Systems (GPOS) to motivate the need for efficient task dispatchers.

2.2 Real-Time Operating Systems

The first distinction between General Purpose Operating Systems (GPOS) and RTOSes
lies in their application scope and programming approach. GPOS are designed to
support a broad range of unknown applications and permit regular programming by
end-users. In contrast, RTOSes cater to predefined applications, and programming
is exclusively performed by system designers.

Another critical difference concerns the manner in which system resources are
accessed. In GPOS, processes typically do not access hardware directly, as de-
picted in Figure 2.4. When an application requires hardware access, a system call

20 CHAPTER 2. BACKGROUND

is made either directly to the OS or through the corresponding middleware. The
OS then interacts with the hardware, either directly or via an appropriate driver, and
responds accordingly. The OS kernel acts as a Hardware Abstraction Layer (HAL).
This approach offers wide hardware support by simplifying device driver program-
ming and providing a consistent foundation. Moreover, it enables portability as stan-
dardized system calls facilitate program compilation and execution across various
platforms without substantial modifications. Additionally, the HAL promotes isola-
tion and protection by maintaining system stability, coordinating access to shared
resources, and preventing unauthorized access to other programs’ resources.

Application

Middleware

Operating System

Device Drivers
Kernel Space

User Space

Figure 2.4: Layered scheme for GPOS architecture.

However, an essential disadvantage arises from relinquishing control over re-
source access. Since applications cannot directly influence the operation and prior-
itization of mediating layers, precise predictions concerning timing are unattainable.
Additionally, indirect access generates overhead; although generally negligible on
modern PCs, such overhead is undesirable in embedded systems where resource
efficiency is paramount.

In contrast to GPOS, which typically integrates numerous functions and drivers
directly into the kernel, RTOSes adhering to the microkernel principle relocate many
of these functions to the user space. In such systems, the kernel is responsible
for a limited set of tasks, including memory and process management and funda-
mental synchronization and communication functions. An Application Programming
Interface (API) is provided to ensure the correct utilization of these kernel functions.

RTOSes generally adhere to a set of principles that differentiate them from GPOS.
First, they follow the “everything is a task” approach, wherein the OS does not need
to directly support a majority of devices, such as network interfaces or hard disks.
Instead, tasks are responsible for managing device access and control as illustrated
in Figure 2.5.

2.2. REAL-TIME OPERATING SYSTEMS 21

Application

Middleware

Kernel

Device Drivers

Kernel Space

User Space

Figure 2.5: Layered scheme for RTOS architecture.

Second, RTOSes are typically designed for a specific purpose, and the software
they employ is extensively tested, rendered reliable, correct and safe. Consequently,
protecting mechanisms are considered optional features in such a system. Tasks
perform their own I/O operations and directly access hardware. Although protec-
tion may be beneficial for safety or security reasons, it is not required for normal
operations.

Lastly, RTOSes facilitate efficient management of interrupts, owing to the robust
and reliable nature of their software. Unlike in GPOS, where the OS typically man-
ages interrupts, RTOSes allow tasks to handle their own interrupts more directly.
This does not mean interrupts are unrestricted, but they are managed in a way that
supports the real-time, deterministic requirements of RTOS applications. This ap-
proach streamlines program sequences and minimizes overhead. However, it is
worth noting that this requires stringent software design and testing to ensure that
interrupt handling does not disrupt the system’s real-time behavior.

Specifically, scheduling and task dispatching play a crucial role in managing sys-
tem resources and meeting the timing requirements of tasks. So far we have already
discussed the fundamental differences between GPOSes and RTOSes. We now
dive a bit deeper into the scheduler and task dispatcher component in RTOSes.

Schedulers are responsible for determining which tasks should be executed at
any given moment, with the primary goal of meeting real-time constraints and main-
taining system predictability. Various scheduling algorithms can be employed in
an RTOS, such as Rate-Monotonic Scheduling (RMS) and Earliest Deadline First
(EDF) scheduling [9] [10]. Given a queue of jobs, released by their corresponding
tasks, the scheduler is responsible for determining which job should be executed,
according to their pre-defined rules.

Task dispatchers serve as a critical component in managing task execution. The
task dispatcher is responsible for managing the periodicity of tasks by waiting for

22 CHAPTER 2. BACKGROUND

certain conditions and determining when a task should be moved to the “ready” state
for execution. In the following section, we show the differences between dispatchers
in GPOS and RTOSes to motivate why the efficiency of task dispatchers is of interest
in this thesis.

2.3 Task Dispatchers

Task dispatchers are crucial components of modern operating systems, responsi-
ble for introducing periodicity in tasks and processes. In this chapter, we will ex-
plore task dispatchers in both GPOS and RTOSes. Specifically, we will examine
the timerqueue in Linux, a widely-used GPOSes, and look into the task dispatcher
structure in RTOSes.

2.3.1 Task Dispatchers in General Purpose Operating Systems

To be able to really look into the implementation of task dispatchers in GPOSes
and be able to compare their current state-of-the-art implementation and that of
the RTOS state-of-the-art implementation we have to consider that an operating
system must be open source in order to check what data structures are used for
their respective task dispatching implementation. In this chapter we look into what
data structure Linux uses, Linux is the most popular open-source operating system
in computing [11].

Since the Linux kernel is open source we can inspect their respective code base
at how a comparable mechanism is implemented in a general-purpose OS. In the
Linux kernel, the timerqueue is used to release timers based on their respective ex-
piry time. When a timer is created in the kernel, it is added to the timerqueue, which
is implemented as a Red-Black Tree (RBT) structure, sorted by the timer’s expira-
tion time [12]. The timerqueue is managed by the kernel’s timer interrupt handler,
which periodically checks the timerqueue to determine if any timers have expired. If
a timer has expired, the kernel invokes the timer’s callback function, which typically
performs a specific action, such as waking up a sleeping process or rescheduling
a task. In the following chapter, we will examine that this implementation is very
similar to the generic implementation in RTOSes.

2.3.2 Task Dispatchers in Real-time Operating Systems

The task dispatcher is the part of the RTOS kernel maintaining the task periodicity
by managing the tasks, making sure that the correct task is going to be executed.
In Figure 2.6 a generic overview of a task dispatcher is presented. Let τ be a data

2.3. TASK DISPATCHERS 23

structure that contains a set of n tasks, where each task τi is defined by its release
time ri. In other words, τ = {τ1(r1), τ2(r2), ..., τn(rn)}. t is the time counter used
to maintain the periodicity of the task dispatcher. R is the ready queue, where all
the ready-to-be-executed tasks are stored. The dispatcher waits on a tick from the
kernel by which it enters the critical state, i.e. making sure there are no interrupting
factors that might interfere with the dispatching routine. At this point, the tick counter
is increased by one because a tick occurred. Now the first (lowest release time) task
in the data structure is checked. If it is the case that the first task is ready to be
executed (i.e. the release time has been reached or even passed) the task is added
to the ready queue and removed from the data structure of the task dispatcher. After
this a new task can be added to the dispatcher.

Yes No

Yes

No

Figure 2.6: Task dispatching routine.

Note that if a task is periodic it could be the case that the periodic task is sched-
uled again immediately by defining a task by not only its release time ri, but also
its period pi such that τ = {τ1(r1, p1), τ2(r2, p2), ..., τn(rn, pn)}. If this is the case the
NewTask() could be replaced by updating the release time by ri = ri + pi and in-
serting τi into the data structure again.

24 CHAPTER 2. BACKGROUND

Implementations in Different RTOSes Based on the principle explained above,
it is up to the designers how they want to implement the task dispatchers. We give a
brief overview of the task dispatcher mechanisms deployed in two popular RTOSes
used in practice, RTEMS and Zephyr [13].

In RTEMS (Real-Time Executive for Multiprocessor Systems) task management
is accomplished through a combination of internal data structures, primarily utilizing
list and RBT structures [14]. RTEMS manages ready tasks using lists organized by
priority levels. Each list represents a distinct priority level, and tasks are enqueued
within these lists according to their priority. This allows RTEMS to maintain an effi-
cient structure for identifying the next task to be executed based on its priority.

To manage time-related functionality, including task delays, RTEMS deploys a
so-called watchdog mechanism. The watchdog system consists of an RBT sorted
on priority, wherein each node represents a timed event. When a task requires a
delay, a watchdog is set up with the appropriate timeout and subsequently inserts it
into the RBT.

As time advances, RTEMS decrements the remaining time for the watchdog in
the RBT. When the remaining time reaches 0, the associated task is unblocked and
moved back to the suitable ready task list (based on its priority).

The task dispatcher in Zephyr, for maintaining the periodicity, is implemented by
the timeout queue. When a new task is added to the timeout queue, it is inserted into
its correct position based on its expiration time. The timerqueue is based on relative
time, so not on absolute time, where an event is based on the relative tick count of
the previous event [15]. The insertion operation requires updating the relative tick
counts of the affected nodes, which can be done into both an RBT and a doubly-
linked list in Zephyr.

Upon the expiration of a task’s timeout, the task is removed from the timeout
queue and returned to its appropriate priority queue. This removal operation involves
updating the relative time fields of the subsequent nodes in the timeout queue.

The delta list-based timeout queue also enables efficient updating of task time-
outs. If a task’s timeout needs to be modified, it can be removed from the timeout
queue, its expiration time updated, and then reinserted into the queue.

2.4 FreeRTOS

FreeRTOS is a widely used open-source RTOS for microcontrollers and small mi-
croprocessors that is distributed freely under the MIT open-source license [16] [17].
FreeRTOS is written in C and provides an RTOS with a small footprint and low over-
head [18]. FreeRTOS also provides support for multiple processors and has been
ported to many different architectures [19]. The goal of this section is not to give a

2.4. FREERTOS 25

detailed description of FreeRTOS with all of its insights into implementation or func-
tionality, but rather to give a base-level understanding that may be required for the
rest of the thesis. Figure 2.7 presents the structure of the software layers used for a
FreeRTOS application.

Application Layer

Kernel Layer

Portability Layer

Figure 2.7: FreeRTOS software layers.

In this research, our attention is primarily concentrated on the kernel layer, striv-
ing to limit our interaction with the application and portability layer to a necessary
minimum. The portability layer manages system-related functions such as memory
management and other hardware-specific related matters. The application layer is
where developers that make use of FreeRTOS make their application by defining
and creating their respective tasks [20]. The core code of the FreeRTOS kernel is
contained within just two C files, list.c and task.c [21] [22]. This kernel is the in-
terface between hardware and the RTOS application. For developers making use of
FreeRTOS, it is disencouraged to make changes to the kernel. The kernel provides
everything that is required by the application code e.g. creating tasks, scheduling,
timer management and many other RTOS features.

2.4.1 Task Dispatcher in FreeRTOS

The task dispatcher in FreeRTOS is primarily governed by two major components:
the system tick and delay functions. The system tick is an internal timer that ticks at
regular intervals. It provides a time base that allows the system to track the passage
of time, and it serves as the heartbeat that drives the scheduling of tasks.

On the other hand, delay functions are used to ensure periodicity in a FreeRTOS
application. Periodicity refers to the regular intervals at which tasks are scheduled
for execution, an essential aspect of predictable performance in real-time systems.
Delay functions help manage this by allowing tasks to be delayed for a set period,
facilitating the scheduling and execution of tasks at their predetermined times.

In this section, we discuss how the task dispatcher in FreeRTOS works generi-
cally. We will not go into every detail and leave out e.g. edge cases of the standard

26 CHAPTER 2. BACKGROUND

routine, hooks and checks of the kernel. Only information regarded as relevant with
regard to the understanding of the task dispatcher within FreeRTOS is presented.
After this section we have a base understanding of how the task dispatcher works
in the case of FreeRTOS. The structure corresponds mostly to Subsection 2.3.2,
where τ is a data structure that contains a set of n tasks, where each task τi is
defined by its release time ri. In other words, τ = {τ1(r1), τ2(r2), ..., τn(rn)}. t is
the tick counter used to maintain the periodicity of the task dispatcher. R corre-
sponds with the ready queue, where all the ready-to-be-executed tasks are stored,
such that R = {R1(r1), R2(r2), ..., Rn(rn)}. In addition for this part of the task dis-
patcher in FreeRTOS we have a value MAX which holds the largest value the
tick counter can have. The τO is a data structure (set) that holds the overflowed
tasks (τO = {τO1 (r1), τ

O
2 (r2), ..., τ

O
n (rn)}), i.e. tasks that have a release time past

the MAX value. S represents the suspended task list in FreeRTOS. This list is a
repository for tasks that have been explicitly suspended, preventing them from be-
ing triggered prematurely by any timing events. The suspended task list S is defined
as: S = S1(r1), S2(r2), ..., Sn(rn), where Si(ri) symbolizes a suspended task. This
suspended state guarantees that the task will not execute or be disturbed by timing
events until it is deliberately resumed. This adds a layer of control in the real-time
operation, ensuring tasks perform as expected without unexpected disruptions. Fur-
thermore, u is introduced, which holds the (global) value for the next unblock time,
which stores the next time a task currently in the dispatcher should be moved to the
ready queue. Lastly, we have i, w and wp which hold the value for the release time
increment of the task1, the wake-up time and the previous wake-up time respectively.
For a summary of these terms and their definitions, please refer to Table 2.1.

Task delays: Starting off with the delay functions in FreeRTOS. There are two
main delay functions xTaskDelayUntil() and vTaskDelay() which are the functions
that can be used by periodic tasks to ensure a constant execution frequency2. The
primary difference between vTaskDelay() and xTaskDelayUntil() is the way they
handle time delays. While vTaskDelay() uses a relative time delay, xTaskDelayUntil()
uses an absolute time delay. The use of absolute time in xTaskDelayUntil() makes
it more suitable for applications that require precise timing. This is why we go
through a generic presentation of xTaskDelayUntil()3, in Figure 2.8, to see how
the insertion end of the data structure within the task dispatcher of FreeRTOS oper-
ates.

1When a task is periodic this value would be the period of the task.
2Or by non-periodic tasks to state their next release time
3xTaskDelayUntil() and vTaskDelay() match for the most part, looking at Figure 2.8 the main

difference from w = wp + i up until wp = w, vTaskDelay() does not use this part since it takes into
account relative time compared to the absolute time used by xTaskDelayUntil().

2.4. FREERTOS 27

Table 2.1: Definitions of terms used in the task dispatcher description.

Term Definition

τ A set of tasks, each task τi defined by its release time ri

t The tick counter, used to maintain the periodicity of the task dispatcher
R The ready queue, where all the ready-to-be-executed tasks are stored
MAX The largest value the tick counter can have
τO A set holding the overflowed tasks, i.e., tasks with a release time past

the MAX value
S The suspended task list, holding tasks that should be suspended
u The next unblock time, storing the next time a task should be moved to

the ready queue
i The release time increment of the task
w The wake-up time of the task
wp The previous wake-up time of the task

First, the task delay is called, this initially triggers the critical state, making sure
that the functionalities until the exit of the critical state can not be influenced or
interrupted. Next, the wake-up time is set to the previous wake-up time combined
with the requested time increment of the task. Now we check if the tick counter did
not exceed the previous wake-up time. Should this condition be met, it indicates
that the tick count has overflowed since the function’s last call. In this scenario, a
delay for the task should only occur if the wake time has also overflowed, and it
surpasses the tick counter. If these conditions align, the situation can be considered
as if neither the tick count nor the wake time had overflowed. If this is however
not the case the previous wake time is updated and the critical section is exited
and the function stops. If the tick counter did exceed the previous wake time this
means that the tick counter was not overflowed and in this case we will either delay
if the wake time has overflowed and/or the tick counter is less than the wake time.
If not, similar to the earlier decision, the previous wake time will simply be updated
and the critical section will be exited. If however the {w|w < wp} ∩ {w|w > t} or
{w|w < wp} ∪ {w|w > t} conditions did hold true, the previous wake time will be
updated but we do not exit the critical state. The scenarios in which the task should
be added to the data structure (hence no immediate exit) are visually presented
in Figure 2.9 to give a more clear overview. In the upper case, there is a tick count
overflow, in the second case the wake time has overflowed and in the last case there
is no overflow, but the tick count is less than the wake-up time, if any of these cases
appear the task should not immediately exit the critical state.

28 CHAPTER 2. BACKGROUND

Yes

No

No

Yes

No

Yes

yes

No

Yes

No

yes

No

Figure 2.8: Flowchart illustrating the operation sequence for delaying tasks with re-
gards to the task dispatcher in FreeRTOS.

Instead, we take the current task (which is in the ready queue) out of the ready
queue and check if wake time without the tick count reaches the maximum value, if
true, the task is added to the suspended task list and we will exit the critical section. If
it does not reach the max release time of the task, Ri will be set to this wake time and

2.4. FREERTOS 29

Tick

Wake up time

Previous wake up time

Wake up time Previous wake up time

Previous wake up time Tick

Tick Wake up time

Figure 2.9: Scenarios for adding the task to the task dispatcher data structure.

we check if the wake time is smaller than the tick count. If the wake time is smaller
than the tick count, it implies a condition known as an ’overflow’. To understand this
concept, consider the following: In our system, the ’tick count’ works like a clock,
incrementing at regular intervals. It is cyclical, meaning it resets back to zero after
reaching the maximum value, MAX. ’Wake time’, on the other hand, represents
the time when a task is scheduled to wake up and is typically based on the task’s
release time and its period.

When we say ’wake time has overflowed’, it means that the wake time is sched-
uled beyond the current cycle of the tick count, i.e., it is scheduled to occur after
the tick count resets and starts from zero again. In other words, if the wake time is
smaller than the current tick count, it indicates that the wake time has been sched-
uled for the next cycle of the tick count.

To manage such tasks that have their wake times in the next cycle of the tick
count, FreeRTOS uses a special structure we call the ’overflowed task dispatcher
data structure’ or τO. So, when the condition of w < t is met, the task is moved into
this τO structure, waiting for the tick count to reset and reach its wake time in the
next cycle.

If the wake time is not overflowed, the task is put in the normal task dispatcher
data structure. Lastly, we check if the wake time is smaller than the next unblock
time, if this is the case this means the unblock time should be updated to the wake
time, since this wake time occurs before the previously set unblock time. After this,
we will exit the critical section and the scheduler continues.

If the tick counter did not exceed the last wake time there is a check if the wake
time is lower than the last wake time and the wake time is higher than the tick
counter. If this is not true this will result in an update of the previous wake time
and then the exit of the critical section, resulting in the resumption of the scheduler.

However, if the counter did exceed the previous wake time, there is a check if it is
true that either the wake time is lower than the previous wake time or the wake time

30 CHAPTER 2. BACKGROUND

is higher than the tick counter. If both are false this also results in the update of the
previous wake time and exit of the critical section and resumption of the scheduler.
When however, the wake time is indeed lower than the previous wake time and the
wake time is larger than the tick count, this means the tick count has overflowed.

System ticks: The system tick interrupt is generated by a hardware timer
at a fixed frequency. When the interrupt occurs, the xPortSysTickHandler()

function is called. The xPortSysTickHandler() function is an integral part
of the FreeRTOS kernel and is automatically called by the system tick inter-
rupt. It is implemented as a weak function in the FreeRTOS portability layer,
which means that it can be overridden by the user if necessary. In the
ESP-IDF framework, the xPortSysTickHandler() function is implemented in the
esp-idf/components/freertos/port.c file, and it is configured to run on the
ESP32’s main CPU by default. The other core functionalities of the data struc-
ture of the task dispatcher are the retrieval and removal from the data structure.
This is handled by the function xTaskIncrementTick(), which is primarily called by
this xPortSysTickHandler(). In Figure 2.10 the flow of the xTaskIncrementTick()

from the task dispatcher is presented. In the xTaskIncrementTick() there is also
handling done with regards to the ready queue in relation to preemption and time
slicing, we do however not regard this as part of the task dispatcher and as so will
not include this in the description.

Starting off at the moment the tick comes in, the critical state is entered, i.e. mak-
ing sure that the routine is not interrupted or influenced during execution, followed
by an increment of the tick counter. Now there is a check if the tick counter is at its
highest value, if this is the case the data structure (set) of overflowed tasks will be-
come the normal task dispatcher data structure of tasks and vice versa. Next up we
check if the tick counter is larger than or equal to the next unblock time. If this is not
the case, there is nothing left to do and we leave the critical state. If it is the case we
check if the data structure of tasks is empty, if this is the case the next unblock time
will be set to the maximum of the tick counter and we exit the critical state. When the
data structure of tasks is not empty we find the task with the lowest release time and
check if the lowest release time is larger than the tick counter. When this is true the
next unblock time will be set to the lowest release time of the data structure. When
it is false the task is removed from the data structure and added to the ready queue
and we go back to check if the task dispatcher data structure is empty again.

2.4. FREERTOS 31

Yes

No

Yes

No

Yes

No

Yes

No

Figure 2.10: Flowchart illustrating the operation sequence for tick incrementation
with regards to the task dispatcher in FreeRTOS.

32 CHAPTER 2. BACKGROUND

Chapter 3

Real-world Measurement Setup

The accurate measurement of the performance of a system is crucial in any research
study. In this chapter, we present the real-world measurement setup that is utilized in
our research, which involves the software, hardware and interfacing used to collect
the data for this research. Of which an overview is presented in Figure 3.1.

Host PC

GDB OpenOCD

idf.py esptool.py USB-to-UART

JTAG Adapter

ESP32-S3-DevKitC-1

VSCode PlatformIO ESP-IDF

FreeRTOS-Kernel

FreeRTOS-
Application

Figure 3.1: Real-world Measurement Setup.

First, we will describe the ESP-IDF FreeRTOS kernel used in our research, which
is a FreeRTOS kernel inside a development framework that provides a platform for
software development specifically designed for the ESP32 series.

Next, we will introduce the embedded device used in our research, an ESP32
microcontroller. We will describe the PlatformIO structure used to configure and
manage this device and the possibility of easily changing devices or other configu-
rations. In PlatformIO we can make a streamlined development process simplifying
the configuration, managing of devices and toolchains for (future) development.

To debug the system and get more insight into the measurement results we utilize
GDB and OpenOCD. We will provide an overview of how these can be used to
enable reliable debugging and measuring of the embedded device.

33

34 CHAPTER 3. REAL-WORLD MEASUREMENT SETUP

Finally, we will explain the measurement process, which utilizes two major meth-
ods, one with the use of the debugging tool set and one with run-time measure-
ments.

Overall, this chapter aims to provide a comprehensive understanding of the real-
world measurement setup utilized in our research. By detailing the software, hard-
ware, and interface components used to collect data, we aim to ensure the accuracy
and reliability of our research findings.

3.1 ESP-IDF FreeRTOS

For FreeRTOS, version V10.4.3 is used in the ESP-IDF (Espressif IoT Development
Framework) version 4.4.1. ESP-IDF is a set of software tools and libraries devel-
oped by Espressif Systems for building applications on their System-on-Chip (SoC)
devices, such as the ESP32 which is used in this research and described briefly
in Section 3.2 [23]. This set of tools and libraries includes an RTOS which is a
modified implementation of FreeRTOS. The FreeRTOS used in this research is a
version modified for use with the ESP-IDF, which we will simply refer to as ’FreeR-
TOS’ throughout this thesis. This version extends the capabilities of the original
FreeRTOS to support multi-core functionalities on various ESP targets [24]. While
the original FreeRTOS is a single-core RTOS, our focus will be on this multi-core
variant provided by ESP-IDF.

This FreeRTOS kernel can be found after installing ESP-IDF and PlatformIO (see
Section 3.2) in
.platformio\packages\framework-espidf\components\freertos. With regard to
our research, there are no relevant differences between the FreeRTOS we used and
the original FreeRTOS other than the Symmetric Multiprocessing (SMP) mentioned
before.

Two essential tools play a significant role in the development of the FreeRTOS
kernel modifications and application in ESP-IDF, which streamline the process heav-
ily. These are the idf.py and esptool.py presented in Figure 3.1. We use idf.py

as a development tool that automates development tasks such as building, flash-
ing and monitoring target devices. We use esptool.py for custom firmware and
bootloader flashing, as well as reading and writing the device’s flash memory.

3.2. EMBEDDED DEVICE AND PLATFORMIO 35

3.2 Embedded Device and PlatformIO

In this research, we have chosen the ESP32 as the primary hardware platform for
measuring computation overhead within the task dispatcher of FreeRTOS.

The ESP32 series are low-cost, low-power microcontrollers that are well-suited
for embedded applications. One of the primary reasons for selecting the ESP32
platform in our measurement setup is its compatibility with the ESP-IDF with its
support for FreeRTOS, which is described in Section 3.1.

We have tested the setup with multiple ESP32 devices (ESP32-C3-DevKitC-
02, ESP-WROVER-KIT-VE and the ESP32-S3-DevKitC-1) to see if the established
toolchain and implemented task dispatcher implementations would also work on
other ESP32 devices with only changing minor board dependent configuration set-
tings, which was successful.

The embedded device utilized for the measurements discussed in Chapter 5
is the ESP32-S3-DevKitC-1. This development board, designed by Espressif, is
equipped with a dual-core 32-bit Xtensa LX7 microprocessor capable of reaching
clock speeds of up to 240 MHz. A Multitude of features such as Wi-Fi (IEEE 802.11
b/g/n-compliant) and Bluetooth (BLE, Bluetooth 5). For our research, two features
on this device that make it easier for us to do measurements are the USB-to-UART
bridge and the JTAG controller. As presented in Figure 3.1 these functionalities are
used in our setup.

PlatFormIO is used in this research in order to make our implementations more
easily reusable for follow-up research, as well as to simplify/automate the toolchain.
PlatformIO is an open-source ecosystem with cross-platform build system, library
manager, and full support for over 1400 development boards [25]. This includes
very popular platforms such as Arduino, ESP8266, ESP32, STM32 and Raspberry
Pi. This makes it very easy to switch boards or even platforms during a project. This
decision was made after originally ESP-IDF was used in the extension provided by
Espressif, which made it more laborious to switch even between two different ESP32
devices. For this research, PlatformIO is set up such that a large multitude of ESP
devices can be used to run the same code without having to adapt a large part of
the project manually. The platformio.ini file is used to set flags for compilation
of the code for the given hardware. An example is board = esp32-s3-devkitc-1.
In the given example the board that is defined is the esp32-s3-devkitc-1, which
means that all the required settings for this specific board are set correctly. This
option makes it easy to switch boards without changing the implementation code.
Many other flags can be found and configured by consulting the PlatformIO docu-
mentation1.

1e.g. in https://docs.platformio.org/en/latest/projectconf/index.html

36 CHAPTER 3. REAL-WORLD MEASUREMENT SETUP

3.3 GDB & OpenOCD

The debugging method described in this chapter is designed to provide reliable re-
sults. We give some insights into the use of GDB and OpenOCD to ensure proper
debugging and instrumentation of the system, which enables us an extra manner of
collecting data for our measurements to ensure accuracy.

OpenOCD, working in conjunction with GDB, serves as our debugging tool of
choice for this research. OpenOCD (Open On-Chip Debugger) is an open-source
JTAG debugger, known for its compatibility with a variety of devices, and can be con-
trolled from GDB (GNU debugger) [26]. GDB, on the other hand, is a versatile tool
that allows developers to inspect their program during execution, providing valuable
insights that aid in debugging and optimization processes [27].

The combination of OpenOCD and GDB enables us to read data from the MCU
and debug our application with minimal impact on its run-time behavior. This ap-
proach presents a significant advantage over alternatives such as using print state-
ments, which can lead to considerable alterations in kernel behavior.

To facilitate the understanding of the program during execution, GDB employs
four main elements, each serving a distinct purpose in the debugging process [27]:

• Program startup can be controlled and customized by specifying various exe-
cution parameters.

• Execution of the program can be paused, resumed, or terminated on specified
conditions or events.

• Developers can inspect the program’s internal state, such as memory content,
variable values and call stack when the execution is paused.

• Changes can be made to the program’s state, such as variable values or
memory content, while the program is paused to observe the effect of those
changes on program behavior.

JTAG interface, OpenOCD and GDB can be interconnected to enable debug-
ging for a variety of ESPs including the ESP32-S3-DevKit-1 which is used for the
measurements of this research [28].

The interfacing of the JTAG interface can be different per device, this should be
checked per device before usage. However due to the setup of PlatformIO during
this research, changing between these JTAG interfaces can easily be adjusted as
was the case for changing to another board, described in Section 3.2. This is also
done in the platformio.ini file, under debug tool. E.g. some ESP devices have an
onboard debugger that can be used without the use of an external debugger, in this

3.3. GDB & OPENOCD 37

case, the debug tool can be set to debug tool = esp-builtin. Other ESPs that
do not have an onboard debugger or if it is preferred to use an external debugger,
can, in this case, use a debugger such as the ESP-PROG, by adjusting the setting
debug tool to debug tool = esp-prog. A wide variety of external JTAG debuggers
can be used for debugging ESP devices2.

In this research the esp-prog and esp-builtin were tested and used. Figure 3.2
showcases three distinct setups, two of which (middle and right) demonstrate the
interconnect with a built-in JTAG debugger, where one (middle) utilizes a DIY
solution, a USB-cable is cut open, and the D- of the MCU is connected to the D-

of the USB-cable, D+ to D+, 5V to V BUS, and Ground to Ground. The third setup
illustrates the interconnect with an ESP-PROG (left). Their interconnect can be found
in the documentation by Espressif on the page of the respective JTAG debugger or
ESP board.

Figure 3.2: Real-world Interconnects for Debugging: Comparison of ESP-PROG (left),
Built-in (middle and right) Options.

We have 3 debug options defined in the launch.json, which are the PIO Debug,
PIO Debug (skip Pre-Debug) and the PIO Debug (without uploading) options.
The first two are identical, the only difference is the presentation of build results,
where the main difference is that the first option outputs the results in the VSCode
Debug Console and the second option in the VSCode built-in Terminal. The third
option however, is somewhat different, this option allows for the debugger to be run
without re-uploading the code (i.e. no compiling and building of the code is required).

2https://docs.platformio.org/en/latest/plus/debugging.html

38 CHAPTER 3. REAL-WORLD MEASUREMENT SETUP

The debugging options described in this section make it possible to see what
is happening ”inside” of the microcontroller. We can e.g. read out registers, set
breakpoints in the code run-time where we want to check behavior and keep track
of variables and registers.

In Figure 3.3 we showcase the most frequently utilized debugging options during
this research. On the top right, the defined debug options mentioned earlier can
be seen. Next, we discuss some useful information that can be extracted from the
microcontroller using this debugging approach.

The VARIABLES includes Local, Global and Static variables which can all be
expanded to see all the variables available to us. The WATCH allows adding elements
to be monitored during run-time. The BREAKPOINTS displays the breakpoints placed
in the code at specific points, where the program execution is paused to examine the
system’s state. (You can also place conditional breakpoints, e.g. only pause when a
variable is bigger than x or if the function is executed y times.) Furthermore, we have
the REGISTERS. Here we can check what the current values are in all the registers of
the device. Currently, at the top, we see the ccount register, which we use to track
the computation overhead of the device as we will present in Section 3.4.

Finally, to analyze the system’s behavior, variables can be modified in the debug-
ger to observe the resulting response from the system.

3.4 Measurements

In our research, we have identified the CPU cycle counter—a tool that measures the
number of processor cycles elapsed—as an effective mechanism for quantifying the
overhead of the task dispatcher. In this section, we present some of the advantages
of using the CPU cycle counter for this purpose as well as the methods used to
obtain the CPU cycle counter overhead.

Firstly, the CPU cycle counter provides a high-resolution measurement of time,
with an accuracy down to a single clock cycle. This level of resolution was consid-
ered very important for measuring the overhead of software that is measured based
on computation performance. By using the CPU cycle counter, we can obtain a de-
tailed understanding of the impact of our implementations on the overhead of the
task dispatcher implementations.

Secondly, the CPU cycle counter has a very low overhead, as it is a hardware-
based mechanism for measuring time. There is little to none additional processing
time, ensuring that the measurement mechanism itself does not add significant over-
head to the system. This allows us to isolate the impact of our implementations of
the computation overhead.

3.4. MEASUREMENTS 39

Figure 3.3: Debugging Options in GDB Visual Studio Code: An Overview of Key
Features and Functionality.

Thirdly, the CPU cycle counter is independent of external factors that may in-
terfere with other time measurement mechanisms, such as changes in the clock
frequency. By measuring the clock cycle counter the interference of external factors
is ruled out.

Finally, the CPU cycle counter provides a consistent measure of time across
different systems, as it is based on the internal clock of the processor. This makes it
a useful tool for comparing the performance and overhead of devices or dispatcher
implementations, providing a standard measurement mechanism that can facilitate
a fair comparison.

The use of the CPU cycle counter for measuring system overhead is not neces-
sarily considered the best way in all circumstances. There are other methods and
techniques for measuring system overhead that may be more appropriate depend-
ing on the specific context and requirements.

For example, if the goal is to measure the overhead of I/O operations or other
system calls, then using the CPU cycle counter may not provide a complete picture,
as it does not account for the time spent waiting for I/O operations to complete.

40 CHAPTER 3. REAL-WORLD MEASUREMENT SETUP

In such cases, techniques such as system call tracing or profiling may be more
appropriate.

Additionally, the use of the CPU cycle counter for measuring system overhead
can be impacted by factors such as power management and CPU frequency scaling,
which can affect the number of clock cycles that have elapsed. In such cases,
alternative methods that take these factors into account may be more appropriate.

In summary, the CPU cycle counter offers numerous advantages for measuring
the overhead of a software system. Its high resolution, low overhead, independence
from external factors, and consistency across systems make it an effective tool for
providing accurate and reliable measurements of system overhead, enabling us to
gain a good understanding of the performance of the implemented task dispatchers.

The CPU cycle counter overhead measurements were conducted by monitoring
the run-time clock cycles based on the ccount register of the ESP32-S3-DevKitC-1.
For the run-time measurements the average, best and worst-case scenarios were
traced along a span of several tens of thousands of task executions up to several
hundreds of thousands of task executions, for every single measured size for every
task set, to ensure reliable results. Additionally, the debugger tool was deployed
to track the ccount register in order to investigate and trigger specific cases and
thoroughly examine function execution. The utilization of these techniques allowed
us to give a good analysis of the CPU cycle counter overhead and thereby providing
valuable insights into the characteristics of the task dispatcher.

For the measurements of the setup, we have disabled most compiler optimiza-
tions (so-called optimization level -O0) to prevent the compiler to optimize the per-
formance. Enabling compiler optimization can significantly reduce the overhead of a
system, making it faster and more efficient. However, the use of compiler optimiza-
tions will make it more difficult to accurately measure the overhead of a system, as
the optimized code may be significantly different from the original code. By employ-
ing this approach, the measurement outcomes become less reliant on the compiler
or CPU architecture, resulting in greater reproducibility and accuracy of the results.

Chapter 4

Methodology

In this chapter, we provide a comprehensive account of the research strategies,
tools, and techniques employed to explore the effectiveness of task dispatcher im-
plementations in embedded systems using FreeRTOS. The section is structured to
present a coherent overview of our approach, with a focus on the data structures
used, task dispatcher implementations, testing application, and limitations encoun-
tered during real-device testing.

Initially, we review various data structures found in literature that have been pro-
posed for managing task dispatching. We examine their suitability for our research
objectives, weighing the trade-offs between complexity, efficiency, and ease of im-
plementation. This evaluation enables us to identify the most promising options for
implementation in our study.

Subsequently, we discuss our implementation of the selected task dispatchers
in FreeRTOS, providing an in-depth account of the design choices and some of
the modifications made to the standard FreeRTOS kernel. We explain the rationale
behind our decisions, highlighting the factors that influenced our choices and how
they align with the goals of our research.

Additionally, we provide a concise description of the test application we devel-
oped for evaluating the implemented task dispatchers. We outline the key features
of the application, its structure, and its functionality, including the metrics we used to
assess the performance of the task dispatchers.

Lastly, we briefly address the limitations posed by memory constraints in real-
device testing. Specifically, we discuss the challenges arising from the shortage of
memory on the embedded device, which may impact the extent of our research and
the scalability of our solutions.

41

42 CHAPTER 4. METHODOLOGY

4.1 Task Dispatching Data Structures

Finding useful data structures for task dispatchers in FreeRTOS is dependent on
different factors. Since there are in reality three major functions required as can be
seen in Section 2.4, task insertion, first task retrieval and first task removal. Compar-
ing the number of executions for these functions is evident for insertion and removal.
They must always become equal to ensure that tasks neither disappear nor spawn
nondefined tasks (nRemovalCalls ≈ nInsertionCalls), but the number of retrieval calls is
not always equal to these. Looking at the implementation of the incrementation of
ticks in FreeRTOS described in Figure 2.10 it can be seen that the execution of the
retrieval of tasks will always be equal or higher than the removal (and thus also the
insertion) of tasks.

While the number of task insertion and removal operations must be equal to
maintain the integrity of the system, the number of retrieval operations can be equal
to or greater than these. The specific ratio depends heavily on the nature of the
task set, particularly the overlap in task release times. If task release times overlap
significantly, i.e., if many tasks have the same period or multiples of each other’s
periods (e.g. for 1ms and 2ms period tasks, the 1ms task will have the same release
time as the 2ms task 50% of the time), the number of retrieval operations will become
closer to the number of removal operations.

However, if task release times do not overlap, this can result in a ratio that ap-
proaches two retrieval operations for each removal operation. This occurs because
the system retrieves the next task, removes it, then retrieves the next task again,
which is not yet ready to be removed.

The only scenario where the ratio of retrieval operations to removal operations
would exceed 2 is if the global unblock time does not match the actual wake-up time
of the next task, as can be derived from Figure 2.10. Thus, the ratio of retrieval calls
to removal calls generally falls within the range of 1 · nRemovalCalls ≤ nRetrievalCalls ≤
2 ·nRemovalCalls, with the potential to exceed the upper limit in the case of a mismatch
between the global unblock time and the actual task wake-up times. This ratio is a
key factor influencing the overhead of the task dispatcher and should be taken into
account when assessing performance.

In task dispatching related literature a few data structures are described to be
viable for an RTOS [6] [29] [5]. In this section, we walk through some of these
data structures with a short description and some advantages and disadvantages
for these data structures.

Originally, most of the data structures mentioned in this subsection were not
specifically designed as task dispatcher data structures. However, we describe them
in this context to demonstrate how they can be adapted for this purpose.

4.1. TASK DISPATCHING DATA STRUCTURES 43

Sorted List

The list structure is a basic data structure often utilized in computer science, as
currently done in FreeRTOS. The structure consists of nodes that are interconnected
via pointers. A sorted list, for example, can serve as the basis for a task dispatcher,
where the list is ordered based on the relative release time. This way, retrieving
and removing the first task to be released would have a time complexity of O(1).
However, inserting in a linked list has a time complexity of O(n), as we need to
traverse through the list to place the item in the correct location within the linked list.

Understanding the implications of time complexity, as we explore further in Sub-
section 4.1.1, is crucial in assessing the efficiency of an algorithm or operation. In
this context, the disparity between the highly efficient retrieval operation (O(1) com-
plexity) and the less efficient insertion operation (O(n) complexity) prompts a search
for alternative data structures. These alternatives aim to strike a balance between
improved time complexity and the simplicity of code that can be executed faster,
thereby reducing overhead.

Bucket of Ignorance

The Bucket of Ignorance (BoI) is a data structure proposed by Ebbrecht et al., which
is designed to optimize computational efficiency in task scheduling [29]. The under-
lying assumption of this data structure is that inserting an item with a high release
time into a list structure potentially squanders computational time. This inefficiency
arises because items with a long period (later release times) are added to the end
of the list, and each insertion requires traversal through these items to place tasks
with shorter periods (earlier release times) appropriately.

Ebbrecht et al., therefore, designed a data structure that keeps ”soon to be re-
leased” items in a sorted list and items are not due for soon release in an unsorted
list [29]. This should result in the insertion having a relatively low overhead, on aver-
age, but can increase overhead at certain points in time when the two lists (ordered
and unordered) have to be merged.

The goal of this approach is to get a lower average computation time overhead
on the insertion of the data structure, compared to the list data structure, while main-
taining the efficiency of removing and retrieving the head of the list, which remains
O(1). It is described that in the number of comparisons required by the BoI versus
the ordered list structure, the BoI should outperform the list structure at around 32
tasks with log-uniform distribution with two orders of magnitude over the interval [1,
100] [29] [30].

44 CHAPTER 4. METHODOLOGY

Timing Wheel

The Timing Wheel is a data structure described by George Varghese and Anthony
Lauck [5]. A Timing Wheel can conceptually be seen as a clock, where the current
time stamp points to a task or a multitude of tasks. The paper describes three main
types of timing wheels, normal, hashed and hierarchical timing wheels.

A normal timing wheel is a data structure that consists of an array of timer slots,
each slot representing a unit of time, e.g. seconds or milliseconds. These slots are
arranged in a circular fashion, and the current time is indicated by a pointer that
points to the current time slot (hence the clock-like concept). When a release time
is set, it is added to the slot that corresponds with this release time. When the timer
advances to a successive slot, all the tasks in the current slot are examined, and
those that have expired are removed from the timing wheel and added to the ready
queue accordingly.

However, it is worth noting that the performance of the timing wheel can degrade
if the number of active timers becomes very large, or if the timer intervals become
very small. In such cases, more complex data structures, such as the hashed timing
wheel, may be more appropriate.

The hashed timing wheel is a variant of the timing wheel that uses a hash function
to directly map timers to slots in the wheel. This approach eliminates the need to
scan all the timers in a slot when the wheel advances, making it more efficient in
terms of time complexity than the standard timing wheel for systems with a large
number of timers. However, this efficiency comes with a trade-off: the hash values
of each timer need to be stored, which increases memory usage. This can introduce
a significant memory overhead, especially when the number of timers is large.

The hashed timing wheel consists of an array of buckets, where each bucket
contains a linked list of timers that hash to that bucket. When a timer is added, its
hash value is used to determine the bucket it belongs to, and it is added to the linked
list in that bucket.

When the wheel advances, only the timers in the buckets that correspond to
the current slot are examined. This reduces the number of timers that need to be
processed and improves the efficiency of the timer facility.

The main advantage of the hashed timing wheel is that it is more efficient than
the standard timing wheel for systems with a large number of timers. The hashed
timing wheel is however more complex than the standard timing wheel and requires
a hash function to map timers to buckets. The hashed timing wheel may have higher
memory overhead than the standard timing wheel, depending on the number of
buckets used.

The hierarchical timing wheel is another variation introduced in the paper by
George Varghese and Anthony Lauck [5]. In a hierarchical timing wheel, multiple

4.1. TASK DISPATCHING DATA STRUCTURES 45

timing wheels are arranged in a hierarchical structure. Each wheel covers a range
of time intervals and has a finer granularity than the one before it. E.g. the “highest”
level wheel may have a granularity in terms of hours and the “lowest” level wheel
may have a granularity in terms of milliseconds.

Adding a timer to the hierarchical timing wheel, it is placed in the correct gran-
ularity wheel based on its release time. When a timing wheel “ticks” all of the finer
granularity wheels are checked (recursively until the finest granularity wheel).

A key advantage of the hierarchical timing wheel is the possibility to handle a
large range of release times with fine granularity. However, the hierarchical timing
wheel is a more complex timing wheel and may require more computation overhead
due to its additional bookkeeping in order to maintain the recursive processing.

Differences between standard timing wheel, hashed timing wheel and hierarchi-
cal timing wheel mainly comes down to the task set. With a small range of release
times, the standard timing wheel might be more beneficial due to its efficiency and
simplicity. The hashed timing wheel might be preferred if the distribution of release
times is more uneven and the number of release times is rather small. The hier-
archical timing wheel is more flexible and should be more suited for a large range
and a large amount of release times, but is more complex and might cause more
computation overhead.

Binary Search Tree

A Binary Search Tree (BST) is a widely used data structure and is often described in
literature [31] [32]. The BST can be used as a data structure for the task dispatcher
to manage a collection of tasks based on their respective release time. A BST exists
out of nodes, where a node N contains a left child, right child, parent and key

(which is based on the release time of the task), such that N(right, left, parent, key).
By design, the left node should always point to a node that has a lower key value
than the current node and the right child should always point to a node that has
a higher key value. It is important to note that only nodes at the bottom (so-called
leaves) of the BST can have both NULL children and only the root node can have
a NULL parent.

To insert a task into a BST, the key is checked and the node will move down the
tree recursively (according to the previously described rules) until the appropriate
location for this task is found. Once the location is identified the task is added as a
new leaf node.

To retrieve the task with the lowest release time, you simply traverse through the
tree by keep going left on every node until a node is reached that has a left child
that is NULL, this is the node with the minimal key-value / lowest release time.

46 CHAPTER 4. METHODOLOGY

Removing the lowest release time will start off with the same process as the
retrieval of the lowest release time task. Now the node can be removed. If the
removed node still had a right subtree, the parent should be updated, where the
right subtree of the removed node is now a child of the removed node’s parent. If
this is not the case, the left child of the parent node of the removed node should be
set to NULL. This is a useful feature when only the lowest value should be removed
and this has reduced overhead compared to removing random nodes in the BST.

One advantage of using a BST as the base of a task dispatcher is that the task
insertion and retrieval of the first task operations can be performed in O(log n) time
complexity on average, where n is the number of tasks in the tree. This is because
the BST can maintain a balanced tree structure, which allows for efficient search and
insertion operations. Additionally, the removal of the first task can also be performed
in O(log n) time complexity in this average case.

However, one disadvantage of using a BST-based task dispatcher, is that the
worst-case time complexity for the task insertion, first task retrieval and first task
removal is O(n), where n is the number of tasks in the tree. This can occur if the
BST is heavily skewed (unbalanced), which can happen if tasks are added to the
tree in sorted order. To address this issue, self-balancing binary search trees, such
as the Red-Black Tree (RBT), can be used to maintain a balanced tree structure and
ensure efficient operations in both the average and worst cases.

Red-black Tree

A Red-Black Tree (RBT) is a self-balancing BST that guarantees a balanced tree
height as is given in Equation 4.1, where n is the number of nodes in the tree and h

is the height of the tree [31].

h

2
≤ log2(n+ 1) ≤ h (4.1)

To ensure that the tree is balanced and the height of the tree is at most 2 ·
log2(n+ 1), the RBT must satisfy the following set of properties [31] [33]:

• Every node is either red or black.

• The root node is always black.

• Every leaf node (NULL node) is black.

• If a node is red, then both its children are black.

• For each node, all simple paths from the node to descendant leaves contain
the same number of black nodes.

4.1. TASK DISPATCHING DATA STRUCTURES 47

When these properties are fulfilled, the BST is an RBT. To keep these proper-
ties they must be held into account and adjusted accordingly in the insertion and
removal functionalities of the task dispatcher. Some papers however also disregard
or change the second and/or fourth given property [34] [32] [35].

Inserting an item into an RBT can be implemented in a similar fashion to the
method presented for the BST. However, this insertion can cause a violation of one
of the properties, which is where a so-called ”fixup” (or ”rebalance”) function comes
into play.

If you only have to remove the earliest release time task, then you do not need
to implement a fixup function for regular remove operations. The reason is that re-
moving the earliest release time task only removes the smallest node from the tree,
which is always a leaf node or a node with one child. Therefore, removing the lowest
release time node can only violate the same properties as the task insertion function
can and there is no need to implement additional fixup functions (which would be
the case if a random item of the RBT would be removed). The fixup function of an
RBT can increase the overhead due to increased instructions. However, it may also
result in a decrease because of the lower time complexity. This would most likely be
a consideration depending on specific task sets.

2-3-4 Tree

A 2-3-4 tree (sometimes called a (2,4)-tree or a 2-4 tree) is a data structure de-
scribed in literature [36] [37] [34]. The 2-3-4 Tree can be used as the base of the
task dispatcher to manage a collection of tasks based on their respective release
time.

The 2-3-4 tree is a self-balancing search tree where a node can have two, three
or four children. Each node stores one or two keys and the children are arranged in
ascending order. The insertion function will look for the leaf where the task should
be inserted based on the release time. If this leaf is full, the node is split into two
new leaf nodes and the middle release time is moved up to the parent. If the parent
node is now also full, this one will split the same way and this process is repeated
recursively until the root is reached.

To retrieve the task with the earliest release time we traverse the leftmost path of
the tree and there we find the earliest release time task.

If we want to remove this task we also traverse to this minimal value and remove
the task from this node. If the node is now less than half full, it is either merged with
one of the children nodes of its parent or one of these nodes is split to maintain the
balance. This process is also repeated recursively until the root is reached.

48 CHAPTER 4. METHODOLOGY

An advantage of using a 2-3-4 tree for a task dispatcher is its efficient man-
agement of tasks with varying release times. The self-balancing nature of the tree
ensures that the time complexity of operations remains relatively stable even as the
tree grows in size. However, a disadvantage is that the tree requires more memory
overhead compared to simpler data structures like a linked list or a binary search
tree.

Heap

When we are talking about a “Heap” in this research without extra annotations we
are talking about a “Min Binary Heap”. Where “Min” means that the root of the
heap will always hold the lowest value and “Binary” means that each node has 2
children. This means that in the context of the task dispatcher, the order of the tasks
is based on their release time, where the first release time will always be the root of
the heap. A Heap is often used in the field of computer science and is an efficient
implementation for a priority queue [38] [31]. In an Array-based Heap, the parent
of the node in position i is in position ⌈ i

2
⌉, and the other way around children of the

node will always be in position 2i and 2i+ 1.
To insert an item into a Heap structure we simply add the node as a new leaf

and see if it violates the property that the parent should always be smaller than the
children nodes. If this is the case we swap the violating child node with its parent
recursively until the property holds again for the entire Heap. Retrieving the first
to-release task is simply examining the root node of the Heap. Removing this node
will mean that there will be a vacuum and this should be filled and the Heap property
should be restored again. This step can be done in several ways, one of these ways
is by putting a leaf node into the empty root position and recursively swapping it
down until the Heap property is restored again. An advantage of the Heap structure
in a task dispatcher is its efficiency, the insertion removal and retrieval can all be
done efficiently. The earliest release time is always the root of the tree which makes
it so that getting the task with the first release time can be done very quickly. A
disadvantage of using a Heap structure is that it can require additional memory.

4.1.1 Time Complexities

In this subsection, we give an overview of the time complexities, average and worst-
case of the aforementioned data structures with regards to their task insertion, first
task retrieval and first task removal functionalities. The idea of complexity theory
is classifying problems to their intrinsic computational difficulty. For this we use the
Big O notation, the Big O notation is a mathematical notation used to describe the

4.1. TASK DISPATCHING DATA STRUCTURES 49

growth rate of a function. More specifically, the upper bound of its growth rate. It
is widely used in computer science, particularly in analyzing the performance of
algorithms. Given two functions, f(n) and g(n), we say that f(n) is O(g(n)) if there
exist positive constants k and n0 such that f(n) ≤ k · g(n) for all n ≥ n0.

In this context, f(n) represents the runtime or “complexity” of an algorithm, and
g(n) is a simpler function that captures the dominant growth behavior of f(n). The
constant k and n0 help us ensure that the inequality holds for sufficiently large input
sizes (n).

In other words, f(n) is said to be “order of g(n)” or “Big O of g(n)” if, beyond a
certain input size the growth rate of f(n) is always bounded by a constant multiple
of g(n). This allows us to compare the efficiency of different algorithms by focusing
on their dominant growth behavior as the input size increases.

The Big O notation serves as a useful tool for comparing algorithmic efficiency by
characterizing their asymptotic growth rates. As a result, distinct functions sharing
the same growth rate can be represented with identical O notation, simplifying the
comparison process.

Functions can be described by means of this Big O notation by a small list of
bounds. For the described data structures three of these complexities are relevant
namely [39]:

• O(1), Constant: there exists a constant k such that f(n) ≤ k.

• O(log n) Logarithmic: there exists a constant k such that f(n) ≤ k · log n

• O(n), Linear: there exists a constant k such that f(n) ≤ k · n

Where f is the algorithm and n is the input size.
Constant time complexity, often denoted as O(1), describes an algorithm whose

execution time remains constant regardless of the size of the input, i.e. the algorithm
is independent of the input size. This makes an algorithm with constant complexity
highly efficient for large inputs, since the execution time does not increase as the
input size grows.

Logarithmic time complexity, often denoted as O(log n), describes an algorithm
whose execution time increases logarithmically with the size of the input, i.e. as the
time to execute an algorithm increases at a much slower rate compared to the input
size. Algorithms with logarithmic complexity are algorithms that divide the task at
hand into smaller sub-tasks.

Linear time complexity, often denoted as O(n), describes an algorithm whose
execution time increases linearly with the size of the input, i.e. the execution time of
the function grows proportionally to the input size. Algorithms with linear complexity
are algorithms that perform a fixed number of operations for every input element.

50 CHAPTER 4. METHODOLOGY

First, we present an overview of the worst-case execution time of the functions
that are described in this research in Table 4.1. The worst-case execution time is the
time complexity of the function in the worst-case scenario. The worst-case scenario
is when the function is called with the worst possible input. For example, the worst-
case scenario for the function ”insertion” in a list structure is when you have to
traverse through every node in the list to find the right position (i.e. the highest or
lowest value dependent on implementation). The time complexity of the functions is
given in n or m, where n is the number of items in the data structure and m is the
number of arrays in the hierarchy (only applicable to the Hierarchical Timing Wheel),
to find the right table to insert the timer into and to find the remaining time [5].

Secondly, we present an overview of the average case computation overhead
in Table 4.2. As can be seen, there are some differences between the average
and worst-case performance of the data structures, we will elaborate on why these
differences occur.

The first case is the Hashed Timing Wheel where the retrieval of the first task has
a worst-case of O(n) and on the average case is O(1). This is true if n < tableSize,
and if the hash function (which is TimerV aluemodTableSize) distributes timer values
uniformly across the table [5].

The second case where there is a difference between the average and worst-
case complexity, is for the BST. On average the BST is expected to have a complexity
of O(log n) compared to the O(n) complexity in the worst case. This is because
of the depth of the BST. If the BST is evenly distributed there is a complexity of
O(log n) but when e.g. all items are inserted in descending order, the BST will be
fully unbalanced, essentially becoming a linked list where the lowest value is also
retrieved at the last checked node, thus getting a complexity of O(n).

Table 4.1: Worst-case time complexity of task dispatcher data structures, where n

represents the number of items in the data structure and m represents
the number of hierarchical arrays.

Implementation Task Insertion Retrieve First Task Remove First Task

Sorted List O(n) O(1) O(1)

Timing Wheel O(1) O(1) O(1)

Hashed Timing Wheel O(1) O(n) O(1)

Hierarchical Timing Wheel O(1) O(m) O(1)

Bucket of Ignorance O(n) O(1) O(1)

Binary Search Tree O(n) O(n) O(n)

Heap O(log n) O(log n) O(1)

Red-Black Tree O(log n) O(log n) O(log n)

4.2. TASK DISPATCHER IMPLEMENTATIONS 51

Table 4.2: Average-case time complexity of task dispatcher data structures, where
n represents the number of items in the data structure and m represents
the number of hierarchical arrays.

Implementation Task Insertion Retrieve First Task Remove First Task

Sorted List O(n) O(1) O(1)

Timing Wheel O(1) O(1) O(1)

Hashed Timing Wheel O(1) O(1) O(1)

Hierarchical Timing Wheel O(1) O(m) O(1)

Bucket of Ignorance O(n) O(1) O(1)

Binary Search Tree O(log n) O(log n) O(log n)

Heap O(log n) O(log n) O(1)

Red-Black Tree O(log n) O(log n) O(log n)

4.2 Task Dispatcher Implementations

In this research, several task dispatchers have been implemented within the FreeR-
TOS kernel, with each of these task dispatchers being based on a different data
structure. Starting this section, there will also be a short description of the main
differences between the implementation as is given in the description of the different
data structures and the real FreeRTOS implementation.

The rest of the section is used to describe the different data structures, which are
presented and explained in the fashion they are implemented in the kernel for this
research. Here we only talk about the standard implementation of the task insertion,
first task retrieval and first task removal functionalities outside of the kernel context.
This means that extra information regarding the integration in the kernel is left out.
All of the data structures are handled as if each data item in the structure is the same
as the entire task and the wake time of the task, which is in reality not the case. This
abstraction is made to make the described functionalities much less cluttered and
more understandable for the reader.

As can be observed in this section, not all dispatcher implementations described
in Section 4.1 are implemented. The Timing Wheel and 2-3-4 Tree are not described
in this section and further evaluation sections. For Timing Wheels, there was a gap
during implementation between the FreeRTOS kernel and the Timing Wheel imple-
mentation that resulted in large overheads and faulty implementations. The timing
wheels are fundamentally different from the other implemented data structures in
various ways, which makes it difficult to align them in the FreeRTOS kernel. One of
these things is that the first task that should be released can not easily be obtained
from the timing wheel. This is the case because the timing wheel is designed to only

52 CHAPTER 4. METHODOLOGY

check the location of the current time, whereas checking for the first to be released
task resulted in a much larger overhead.

Thomas Gleixner, which is one of the top 30 developers of Linux, together with
Ingo Molnar, tried to implement a timing wheel into the Linux kernel for a timer that
has corresponding functionalities with the task dispatcher in FreeRTOS [40]. They
unfortunately were also unsuccessful in doing so for various reasons [41].

For the 2-3-4 Tree, in the early stages of the development there was a larger
overhead in the function calls compared to the RBT function calls. Since 2-3-4
trees are isomorphic to RBTs, meaning they are equivalent data structures (they can
be mapped to each other) we have decided to only continue with the RBT. Similar
considerations and decisions were also made with regard to other data structures as
will be clarified later in this section for different specific dispatcher implementations.

4.2.1 Implementation to FreeRTOS

In FreeRTOS, each task is represented by a ListItem t structure, as illustrated in
Listing 4.1, which encapsulates essential information about the task.

Listing 4.1: ListItem t FreeRTOS
struct xLIST ITEM
{

listFIRST LIST ITEM INTEGRITY CHECK VALUE
configLIST VOLATILE TickType t xItemValue ;
struct xLIST ITEM * configLIST VOLATILE pxNext ;
struct xLIST ITEM * configLIST VOLATILE pxPrevious ;
void * pvOwner ;
struct xLIST * configLIST VOLATILE pxContainer ;
listSECOND LIST ITEM INTEGRITY CHECK VALUE

} ;
typedef struct xLIST ITEM L i s t I t e m t ;

In this structure, the pvOwner is the actual item of importance in the list structure.
For the case of the task dispatcher, this would be the Task Control Block (TCB)
which in terms contains all the properties of the task, such as the state of the task,
priority, the stack of the task, etc. The delay (period) of the task however is in the
ListItem t under xItemValue. Moreover, the pxContainer is used to link list items
(and by implication also the task) to a specific list that holds e.g. the number of items
in that list. This list structure List t, presented in Listing 4.2, is used in the kernel
to keep track of what the state of a ListItem t (and therefore the task) is at.

4.2. TASK DISPATCHER IMPLEMENTATIONS 53

Listing 4.2: List t FreeRTOS
typedef struct xLIST
{

listFIRST LIST INTEGRITY CHECK VALUE
v o l a t i l e UBaseType t uxNumberOfItems ;
L i s t I t e m t * configLIST VOLATILE pxIndex ;
M i n i L i s t I t e m t xLis tEnd ;
listSECOND LIST INTEGRITY CHECK VALUE

} L i s t t ;

The FreeRTOS kernel has the following of these List t structures to track the
tasks throughout the kernel:

• Ready task lists

• Pending ready task list

• Suspended task list

• Waiting termination task list

• Delayed task list

• Overflowed delayed task list

The ready task lists is an array of lists with a set priority, e.g. index [0] of the ready
task list is a list of all the ready tasks with priority 0, and index [12] of the ready task
list is a list of all the ready tasks with priority 12. These ready task lists are used to
track through the kernel if the task is ready to be executed. The ready task lists are
used by the scheduler to determine the highest-priority task that is ready to run, and
to switch context to that task. When a task is created, it is added to the appropriate
ready task list according to its priority. As tasks become ready to run (e.g. when they
are unblocked or when a higher-priority task yields the processor), they are moved
between the ready task lists.

By maintaining a separate list for each priority level, the scheduler can quickly
determine which task to run next without having to search through all of the tasks
in the system. This allows the scheduler to be highly efficient and responsive to
changes in the system, even in large-scale real-time systems with many tasks.

When a task becomes ready to run, for example when a higher-priority task
unblocks it, the FreeRTOS kernel adds the task to the pending ready task list. This
list holds all the tasks that are ready to run but are currently blocked by tasks that
are already running.

54 CHAPTER 4. METHODOLOGY

The pending ready task list is checked by the scheduler at the end of each task’s
time slice or when a higher-priority task becomes unblocked. If there are any tasks
in the pending ready task list, the scheduler moves them to the ready list.

The purpose of the pending ready task list is to ensure that tasks that become
ready to run are not overlooked by the scheduler. By keeping a separate list of tasks
that are pending, FreeRTOS can ensure that all ready tasks get their fair share of
CPU time, even if they cannot be scheduled immediately.

The suspended task list is a list used by the FreeRTOS kernel to hold a list of
tasks that are currently suspended. Tasks can be suspended in FreeRTOS for a
variety of reasons, e.g. when they are waiting for a semaphore or when they have
been placed in the Blocked state by a call to a blocking API function.

When a task is suspended, it is removed from the ready list and placed into the
suspended task list. This prevents the task from being scheduled by the FreeRTOS
kernel until it is unsuspended.

The waiting termination task list is a list of tasks that have been deleted, but
whose memory has not yet been freed. A task that is deleting itself can not be done
within the task itself due to the need for a context switch to another task. This is why
the task is placed in the termination list, later the idle task will check this list and free
up any allocated memory allocated by the scheduler for the TCB and the stack of
the removed task.

When a task is blocked on a delay, it is added to the delayed task list with its delay
period specified. The task remains in this list until its delay period has elapsed, at
which point it is moved to the appropriate ready task list based on its priority.

The delayed task list is updated on each system tick, which is a regular time
interval set by the kernel configuration. When a tick interrupt occurs, the kernel
checks the delayed task list to see if any tasks have completed their delay period. If
so, the tasks are moved to the appropriate ready task list.

The delayed task list is used by FreeRTOS to implement software timers and
other time-based features. By using the delayed task list to manage time-based
events, FreeRTOS can provide accurate and efficient timing in real-time embedded
systems.

The overflowed delayed task list is a list that essentially does the same as the
normal delayed task list but it stores the tasks that have a delay that exceeds the
maximum value of the timer. When the timer resets (when it reaches its maximum)
the lists are swapped and so the ”normal” delayed task list becomes the overflowed
delayed task list and vice versa, under the condition that the ”normal” delayed task
list is empty, which should always be the case when the timer resets.

The delayed task list and the overflowed delay task list are essentially the core
of the task dispatcher in FreeRTOS.

4.2. TASK DISPATCHER IMPLEMENTATIONS 55

An ”active” task is always part of one of these lists and therefore this should
be taken into account when changing the implementation of the task dispatcher
of FreeRTOS. When stepping away from this list structure entirely, not only the task
dispatcher has to be reformed but a very large part of the kernel has to be recreated.

To work around this, for this research, the list structure is encapsulated in every
implemented structure. As can be seen in the source code in the list.c and list.h

files. E.g. the Heap can be implemented as an Array of ListItem t’s (In Array be-
cause this in early stages of measurements resulted in less overhead as described
in Subsection 4.2.5), the RBT has the ListItem t of the task as data inside the
node. With ”Workarounds” such as these it was possible to implement new task
dispatchers into FreeRTOS by changing as little as possible kernel behavior outside
that of the task dispatcher.

In addition, every implemented data structure should be linked to the correspond-
ing delayed task list or overflowed delayed task list defined by the List t structure
in Listing 4.2.

Besides the implementation of the data structure based on the existing ListItem t

and linking the data structures to the correct List t some important changes have
to be made to the kernel to get different data structures to work correctly.

Firstly, all data structures should be declared and initialized correctly in corre-
spondence with the kernel. Some data structures need extra initialization to setup
the data structure which can be handled in the prvInitialiseTaskLists() FreeR-
TOS function, which is called by the kernel on the very first task that is added to the
ready task list.

Secondly, if a data structure makes use of more than one location to store the
tasks, e.g. the BoI which makes use of two lists, one sorted and one unsorted, you
have to make sure that all of the items in both lists are regarded as blocked tasks.

Lastly, it is crucial to manage the overflow of the task dispatcher’s data structure
in relation to its maximum release time. When the FreeRTOS timer overflows, tasks
may surpass this maximum release time. To account for this, an overflowed task
list is employed. Each data structure necessitates a corresponding mechanism —
an ’overflow handler’ — to ensure the task dispatcher continues to function correctly
after the timer resets. This handler is managed in the taskSWITCH DELAYED LISTS()

function. Here, the overflowed task data structure is swapped with the regular data
structure, which should be empty at the time of the switch. This approach allows the
system to operate continuously, even following an overflow event.

The aforementioned alterations constitute the most significant changes neces-
sary within the kernel, external to the actual task dispatcher implementations. In the
subsequent sections, we will present the data structures as they are currently im-
plemented, with the assumption that these structural modifications have also been

56 CHAPTER 4. METHODOLOGY

incorporated. These changes are integral to ensuring the correct functioning of the
data structures in the kernel’s context.

4.2.2 List

The list data structure is currently being used in the FreeRTOS kernel for a multi-
tude of functionalities, one of which is the bases for the task dispatcher. The means
of this implementation is currently done via a circular doubly linked list as can be
seen in Figure 4.1, which is a list that points to the next node as well as to the previ-
ous node. The ”last” node of the list points with its next pointer to the first item in the
list, and the first item in the list points with the previous pointer to the last item in the
list. In FreeRTOSes implementation the tail node of the linked list is pointed to by a
ListEnd pointer. This tail node in the linked list of the task dispatcher contains the
maximum possible value, meaning the tail node is always the same and is therefore
used as a marker. In this case this would be the longest possible delay value of a
task, which is defined by portMAX DELAY.

1 2 3 MAX ListEnd

nextnextnext

next

previous previous previous

previous

Figure 4.1: FreeRTOS list structure

In order to keep the list ordered in FreeRTOS we can insert an item as is given
in Algorithm 1 in Section A.1. Where we iterate through the list and place the item
in the list where the previous value is larger than the inserted value.

Since the doubly linked list is ordered in an increasing fashion (w.r.t. the wake
time), the item that is first to be dispatched is at the head of the list. Which can be
accessed quickly by taking the pointer to the next item of the ListEnd pointer.

Removing an item in the linked-list structure is also evident, by setting the previous

pointer of the next item to the previous pointer of the item that will be removed and
setting the next pointer of the previous item to the next pointer of the item that will
be removed. This can also be seen in Algorithm 2 within Section A.1.

4.2. TASK DISPATCHER IMPLEMENTATIONS 57

4.2.3 Bucket of Ignorance

The implementation of the BoI is equal to the list with regard to retrieval and removal
of the first task from the data structure. Insertion is where the data structure differs
from the list structure.

The implementation of the BoI is done using the existing list structure within the
task dispatcher and therefore very few changes to the rest of the kernel had to be
made outside of the transformation of the insertion function (i.e. little changes to the
kernel outside of the mentioned changes in Subsection 4.2.1).

In Figure 4.2 we give an overview of the insertion function of the BoI, which is
represented more extensively in Section A.2. But this image gives a good overview
of how the BoI is ordered with regard to the release time. We regard a task only
as its release time where τi is the task (i.e. the release time) to be inserted, Lo is
the ordered list, and Lu is the unordered list of the BoI data structure. From the
flow of the BoI insertion in Figure 4.2 it becomes clear that the new task is inserted
into the unordered list when either this list is empty beforehand or when the release
time of the newly inserted task τi is lower than the current head of the unordered
list. If this is the case and the ordered list Lo is also empty this will require a refill of
the unordered list Lu into the ordered list Lo, which can be found in Algorithm 4 in
Section A.2. The new task is only inserted directly into the ordered list Lo when the
unordered list Lu is not empty and the newly inserted task has a lower release time
than the current head of this list.

There are different implementations of the BoI tested earlier in the development
stage with a wide variety of task sets. As a result of these measurements, we
found that the BoIList implementation gave the most optimal results with regard to
computation overhead [42]. This is why we use this implementation from this point
forward, discussing the BoI and only measurement results of this implementation
are given in Chapter 5.

4.2.4 Binary Search Tree

For the BST we have created the BSTItem t which is shown in Listing 4.3. As can be
seen, we use the ListItem t from Listing 4.1 as the data of the BST node. So also
the information e.g. the release time stays within the ListItem t and we do not save
the data multiple times. We also do not use a pointer to the parent node because
for the implementations required for the task dispatcher, this is not necessary.

58 CHAPTER 4. METHODOLOGY

Yes

No

Yes

No

Yes

No

No Yes

Figure 4.2: Flow diagram of the Bucket of Ignorance insertion function.

Listing 4.3: BSTItem t Implementation
struct xBINARY SEARCH TREE ITEM
{

struct xLIST ITEM * xItem ;
struct xBINARY SEARCH TREE ITEM * pxLe f t ;
struct xBINARY SEARCH TREE ITEM * pxRight ;

} ;
typedef struct xBINARY SEARCH TREE ITEM BSTItem t ;

In Figure 4.3 we describe in a flow chart how the insertion of the BST is imple-
mented. For simplicity, we only take into account the release time (as described
earlier) in this description. Let B be the root of the BST, c and p as the pointer to the
current node and its parent node respectively and τi be the task (release time) that
is to be inserted into the BST.

If a BST is not yet established, the root is NULL, and the item for insertion
becomes the root node, with its left and right children also being NULL. This is, of
course, the case at the startup of the system, where the kernel sets the root of the
BST to PRIVILEGED DATA static BSTItem t *pxDelayedTaskBST = NULL;. If a root
exists, the current node c, utilized for traversing the tree, is set to the root B, with the
parent p being set to NULL.

4.2. TASK DISPATCHER IMPLEMENTATIONS 59

The subsequent step involves checking if the current node c is NULL. If this is
the case, the parent node p is set to the current node c, after which we check if the
task to be inserted has a lower release time than the parent node. If this holds true,
we set the current node to the left child of the current node, if not we set it to its
right node. This process repeats until we have traversed the entire current node. At
which instance, the new release time should be inserted as either the left or the right
child of the parent node, depending on if the release time of the to-be-inserted task
is lower than its parent.

Yes

No Yes

No

Yes

No

YesNo

Figure 4.3: Flow diagram of the BST insertion function.

For the retrieval and removal of a node within the BST data structure in the task
dispatcher the first task will always be located at the leftmost node in the tree. By
consecutively traversing through the left side of the tree until there is a NULL node at
the left of the current node. The current node would then be the lowest value. For
the retrieval, we want to give the contents of this node to the kernel. For the removal,
the node should be removed and the right child of the current node should be made
the new left child of the parent node. This way the BST properties will hold and no
nodes will be lost.

4.2.5 Heap

For the implementation of the Heap, we have considered (and tested out) two dif-
ferent implementations. We have the pointer-based Heap and the Array-based
Heap. The first is far less common, an implementation of this however exists in
e.g. libuv, which is a multi-platform software library that provides asynchronous I/O
and event-driven programming capabilities for building high-performance network
applications [43]. An advantage of this would be that the upper size would not have
to be pre-defined, which is the case for an Array-based implementation. However,

60 CHAPTER 4. METHODOLOGY

since in FreeRTOS tasks are predefined, the upper bound of the Heap can also be
predefined. Testing in early stages of the implementation of the Heap-based task
dispatcher we measured computation overhead for both implementations and the
Array-based Heap outperformed the pointer-based Heap. We therefore did not in-
clude the pointer-based Heap implementation when conducting the measurement
results in Chapter 5.

Within the Array-based Heap implementation, there were also two implemen-
tations tested. A recursive implementation and an iterative implementation. In this
case, the iterative implementation outperformed the recursive implementation on ev-
ery task set we measured them for, this is the version that will be described in this
chapter and that is measured in Chapter 5.

In Figure 4.4 a brief visual description is given of how the release time would be
inserted into the implemented Array-based iterative Heap data structure. Let H be
the Array-based Heap, τi the to-be-inserted task (release time) and n corresponds
initially with the value of the number of items in the Heap.

Initially, the new task is assigned to the final slot in the Heap. Following this inser-
tion, we determine whether the original Heap was not empty and whether the Heap
item at index n is less than its parent (i.e., the item located at index n−1

2
). If these

conditions hold true, the items at these positions interchange, with an appropriate
adjustment of n. This process is repeated until the Heap’s properties are restored
and maintained.

Yes

Figure 4.4: Flow diagram of the Array-based Heap insertion function.

For the retrieval of the first task, we can simply address the root of the Heap.
However, to remove this we will have to make sure that we have a complete Heap
and that the Heap property will hold. Our manner of implementation is described in
Figure 4.5.

4.2. TASK DISPATCHER IMPLEMENTATIONS 61

Let n initially be the number of tasks in the dispatcher, H be the Array-based
Heap, c the current node that is under iteration (starting with 0) and r and l be
the right and left children respectively. In the Array-based Heap, the right and left
children are equal to the respective parent where l = 2 · parent + 1 and r = 2 ·
parent+ 2.

We start off by decrementing the size of the Heap by one, followed by overwriting
the root of the Heap by the last item in the Array of the Heap. This is followed by
iteratively comparing the root node to its children and swapping them if necessary.
This continues until the root node is smaller than both of its children. I.e. the first to
be released task is replaced by the last node in the Heap and the Heap property is
restored by iteratively swapping nodes in the Heap.

Yes

Yes

No

Yes

Figure 4.5: Flow diagram of the Array-based iterative first task removal function.

4.2.6 Red-Black Tree

Insertion into the RBT works almost similar to that of the BST in Subsection 4.2.4, as
was presented in Section 4.1. The main difference is that the newly inserted node
is initially marked as RED and after insertion the RBT is ”fixed up” (see Algorithm 6
in Section A.3), which is the algorithm that is used to make sure that after changes
made to the RBT, the RBT will be made compliant the RBT properties.

Since only the lowest value node has to be removed from the RBT the removal
function can be improved in terms of computation overhead compared to a normal
RBT removal function (see Algorithm 7 in Section A.3). When removing the low-
est value of the RBT there is another advantage that can be taken into account
compared to a normal removal, only two violations of the RBT properties that are
presented in Section 4.1 can be violated because of this. The two properties that
can be violated are:

62 CHAPTER 4. METHODOLOGY

• For each node, all simple paths from the node to descendant leaves contain
the same number of black nodes.

• If a node is red, then both its children are black.

In the way the insertion is handled, these are also the only violations that can
happen for insertion. This creates an opportunity for this research to use one FixUp

function for both the insertion and the removal of the first task functions, which gen-
erally is not the case for arbitrary removal functions in RBTs

4.3 FreeRTOS Test Application

In order to evaluate changes made with regard to the task dispatcher in a real-world
context, we need to have a FreeRTOS application that will create the tasks for the
desired task set.

The test application contains three important files for its execution. For this, we
do not take into account other important files with regards to e.g. the debugger, such
as the launch or ini files. The

The helpers.c file primarily offers the implementation of the tasks for the test
set. The config.h and main.c files allow the definition of each task using a struc-
ture, enabling the customization of various attributes such as periods or execution
times. This flexibility significantly simplifies the creation of numerous tasks without
the necessity of individually specifying and establishing each one.

The main.c file iteratively processes the tasks configured in config.h, generat-
ing the tasks accordingly. Through the use of defines, we can seamlessly obtain
overhead measurements from the kernel. This information can then be transmitted
via UART.

4.4 Limitations of Testing on Embedded Devices

Measuring software on a real device is an essential practice, providing a realistic and
accurate assessment of the software’s performance, behavior, and compatibility with
different devices and configurations. This information aids developers in refining the
software and ensuring it meets the needs and expectations of its users.

Despite its importance, conducting FreeRTOS kernel testing on an embedded
device introduces certain constraints and limitations. While some of these limiting
factors were mitigated using the tools described in Chapter 3, a significant constraint
pertains to the testing of task dispatcher implementations.

4.4. LIMITATIONS OF TESTING ON EMBEDDED DEVICES 63

This constraint is imposed by limited system resources, specifically memory.
Embedded systems typically operate within a constrained environment, with lim-
ited memory capacity. As tasks in a real-time operating system like FreeRTOS are
primarily stored in memory, the number of tasks that can be handled simultaneously
is directly influenced by the available memory.

Memory constraints can cause complications such as slow system performance,
task execution failures, or in severe cases, system crashes due to memory exhaus-
tion. As a result, it is necessary to manage the task set size diligently to prevent
such issues.

Through extensive testing with various task set sizes and by tracking the heap
memory—which is stored in the RAM—we have determined the upper limit of safe
operation. To prevent potential issues that could arise from exhausting the device’s
memory and to ensure the behavioral correctness of the implementations under
test, we have set a cap on the task set size, restricting it to a maximum of 150 tasks.
This limitation was established based on the observed memory usage and system
behavior during our testing.

64 CHAPTER 4. METHODOLOGY

Chapter 5

Evaluation

In this chapter, we will evaluate the performance of the task dispatcher using the
various task dispatcher implementations described in Chapter 4 to determine if the
computation overhead of the task dispatcher is reduced using these new task dis-
patcher implementations and if they provide possibilities for optimization benefits for
specific scenarios.

To achieve this, we have set up an evaluation process, as described in Chapter 3,
by running esp-idf FreeRTOS with the customized task dispatcher implementations
on an ESP32-S3-DevKitC-1 microcontroller. For the evaluation of the performance,
two main methods of analysis were used, debugging toolset and run-time tracking
of the clock cycles within the task dispatcher functions.

During the evaluation process, we measured the clock cycles within the task dis-
patcher for the three main functionalities (task insertion, first task retrieval and first
task removal) for each implemented task dispatcher and plotted them to provide vi-
sual insight. The evaluation results will be presented and discussed in this chapter,
providing insights into the performance of the different implemented task dispatch-
ers. This assessment will aid in determining the appropriateness of various task
dispatchers within FreeRTOS, while also providing insights into potential improve-
ments across a wider range of RTOS task dispatchers concerning computational
overhead

5.1 Task Set Synthesis

In this section, we discuss the task sets used to evaluate the performance of the var-
ious task dispatcher implementations. The task sets were based on the real-world
automotive benchmarks given in a paper by Kramer et al. [1]. These benchmarks
were chosen due to their significance as they were provided by Bosch, abstracted
from real-world automotive applications, and demonstrate the importance of period

65

66 CHAPTER 5. EVALUATION

variance in task dispatcher performance. The task sets’ variance in period is signifi-
cant, as it enables a thorough assessment of the task dispatcher’s adaptability and
efficiency in managing tasks with differing timing requirements.

The automotive benchmark includes a task distribution shown in Table 5.1. It is
important to highlight that the original distribution also includes 15% angle-synchronous
(AS) tasks. These tasks, which are dependent on the speed of the crankshaft and
the number of cylinders in the engine, can exhibit a high degree of variability. For
the purpose of our measurements, these tasks were not included. Consequently,
we adapted the distribution by proportionally distributing the remaining 85% across
the different task periods to sum up to 100%, as shown in the table. In Table 5.2, we
present the adjusted distribution, where each task period’s share has been propor-
tionally adjusted to account for the total of 100%. This normalized distribution was
used in our analysis.

Table 5.1: Distribution of task periods in automotive benchmark [1].

Period (ms) 1 2 5 10 20 50 100 200 1000 AS
Share (%) 3 2 2 25 25 3 20 1 4 15

Table 5.2: Normalized distribution of tasks in automotive benchmark, excluding
angle-synchronous tasks.

Period (ms) 1 2 5 10 20 50 100 200 1000
Share (%) 3.53 2.35 2.35 29.41 29.41 3.53 23.53 1.18 4.71

We evaluated four different sets of task sets to provide a comprehensive under-
standing of the performance of the task dispatchers under various scenarios. The
first set of task sets involves evaluating the worst-case scenario for a single execu-
tion of the primary functionalities (i.e. task insertion, first task retrieval and first task
removal). The primary objective of this set was to create an upper bound, providing
a realistic view of the potential risks that may arise given a specific task dispatcher
implementation. We evaluated this set for each implementation, ranging from one
task per implementation up to 150 tasks per implementation.

The second set of task sets we evaluated was a homogeneous set, where every
task had the same period. We evaluated this set for each implementation ranging
from one task per implementation up to 150 tasks per implementation. We exam-
ine if there is a notable trend in the behavior of the task dispatcher functionalities
in response to these sets of fully homogeneous period task sets. This aspect is of
particular significance for industries such as the automotive sector, where substan-
tial proportions of tasks operate within a limited number of periods. For instance, as

5.2. WORST-CASE COMPUTATION OVERHEAD 67

highlighted in the ”Real World Automotive Benchmark For Free” paper [1], merely
two task periods account for 50% of the tasks (rising to 59% if angle-synchronous
tasks are excluded).

The third set of task sets was based on a completely uniform task distribution of
the task periods described in the paper by Kramer et al. [1]. For every period used
in the benchmark, an equal amount of tasks was created. In this instance, there is
a total of 9 different task periods as is presented in Table 5.1. We evaluated this set
for each implementation ranging from a task set of one uniform distribution subset
(existing of 9 tasks) up to a task set of 16 uniform distribution subsets, resulting in
a range of 9 up to 144 tasks. This set of task sets has been selected due to its
capacity to produce a well-distributed data structure within the task dispatcher. This
approach allows for an assessment of the impact that the distribution of task periods
has on the task dispatcher’s overhead.

The fourth and final task set encompassed the automotive distribution. This set
replicated the distribution as specified in the cited automotive benchmark paper,
featuring one task for each percentage point in the non-normalized distribution. (For
the normalized distribution, this distribution is unique in its ability to ensure tasks
are expressed as integer values without altering the overall distribution.) In this set,
we measured only one task set. This task set is included as it can provide valuable
insights into the advantages that may be specific to this case. It is crucial to note,
however, that the findings are not directly scalable to accommodate the desired
quantity of tasks running concurrently.

Overall, by evaluating these four sets of task sets, we were able to obtain some
understanding of the performance of the various implementations under different
scenarios. Please note that the measurements in this chapter are done for specific
task sets and cannot be applied universally. Instead, this thesis presents a selection
of measurement results from specific task sets that provide valuable insight into
the correlation between overhead and task set. Each measurement is described in
detail to provide a clear understanding of the correlation.

While these benchmarks were specifically designed for automotive applications,
the results we obtained are applicable to a wide range of real-time operating system
(RTOS) applications due to the similarities between them.

5.2 Worst-Case Computation Overhead

Here we evaluate the computational overhead of the task dispatching implementa-
tions based on the five data structures described in Chapter 4. It is important to
note that the worst case is based on a single execution worst-case. It is evident
that triggering the worst-case computation overhead is different per data structure,

68 CHAPTER 5. EVALUATION

e.g. the worst-case insertion for the implementation of the List could be triggered by
adding all tasks in descending order based on release time, where the last item that
is inserted will have the worst-case computation overhead since it has to traverse
through all the release times in the list. Which is not necessarily the worst-case
execution time for other data structures/function calls.

5.2.1 List

We present the worst-case execution of the three different functionalities of the List-
based task dispatcher.

The List-based task dispatcher task insertion function is performing a sorted in-
sertion into a doubly linked list. The operation that consumes most of the time is
the for loop that iterates over the list to find the correct position where the new item
should be inserted. In the worst-case scenario, the for loop is iterating n times,
therefore the time complexity of this function is O(n) in the worst case. The worst-
case execution is presented in Figure 5.1 from 1 up to 150 tasks. The linear relations
between the number of tasks and the computation overhead is evident in this case,
which is exactly as was expected.

20 40 60 80 100 120 140
0

500

1,000

1,500

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.1: Worst-case computation overhead of List-based task dispatcher task
insertion implementation per task set size.

For the retrieval of the first task, we can easily retrieve this by calling
((&((pxList)->xListEnd))->pxNext->pvOwner). The CPU clock cycle
overhead of this call will remain the same and results in a constant of 3 CPU per
call.

The function for removing the first item of the list (or any item for that matter) also
performs a constant number of operations regardless of the inputs of the structure.

5.2. WORST-CASE COMPUTATION OVERHEAD 69

The function simply updates the pointer of the previous and the next. Which in turn
gave us an overhead of 12 CPU cycles.

The results for the measurements done for the List-based task dispatcher, de-
scribed in this subsection and graphically displayed in Figure 5.1, are summarized
in Table 5.3, allowing for a more precise quantitative analysis of the relationship
between the overhead and the number of tasks.

These formulas, which we will continue to use in this and following subsections,
offer several advantages. They enhance precision, facilitate predictive analysis, sim-
plify calculations, and provide insights into the underlying relationship between vari-
ables, without needing repeated explanations.

Table 5.3: Worst case computation overhead of List-based task dispatcher functions
in FreeRTOS in CPU cycles, where n is the number of tasks in the dis-
patcher.

Task Insertion f(n) = 21 + (8 · n)
First Task Retrieval f(n) = 3

First Task Removal f(n) = 12

5.2.2 Bucket of Ignorance

The worst-case execution of the BoI-based task dispatcher would be if the bucket
would fill up the unsorted list, which in terms triggers the Refill() function for a
large unsorted list. To order this again as is described in Subsection 4.2.3 causes
a very large worst-case overhead. The worst-case was not deemed to be useful for
the BoI since it is much larger than all the other data structures due to the afore-
mentioned effect. We can see that, e.g. in later task set specific measurements the
worst-case of specific task sets is already explosive, see Figure 5.14. Where in ear-
lier unoptimized implementations could reach up to 100 000CPU cycles, now it can
still easily reach up to 10 000CPU cycles. The goal of the BoI implementation is not
to improve worst-case, but to improve average case computation overhead for task
sets and this becomes very clear in worst-case analysis. Triggering worst cases for
the BoI-based task dispatcher also caused noticeable jitter in the kernel, which can
cause missing of deadlines due to synchronization issues.

The function calls for the retrieval and the removal of the first task are the same
function calls done for the List based task dispatcher, presented in Subsection 5.2.1,
and thus result in the same overhead.

70 CHAPTER 5. EVALUATION

5.2.3 Binary Search Tree

The worst computation overhead of the BST-based task dispatcher task insertion,
retrieval of the first task and removal of the first task functionalities, presented in
Figure 5.2 5.3 and 5.4 respectively, do all indeed have a linear complexity as was
described in Subsection 4.2.4. As can be seen, the difference between the retrieval
and the removal of the first task in Figure 5.3 and 5.4 respectively, is rather low. This
is due to the fact that the only addition to the removal of the first task compared to the
retrieval of the first task is the removal of the node, which can be done in constant
time.

20 40 60 80 100 120 140
0

500

1,000

1,500

2,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.2: Worst-case computation overhead of BST-based task dispatcher task
insertion implementation per task set size.

The graphical data presented in Figure 5.2, 5.3 and 5.4 was transformed into
mathematical formulas seen in Table 5.4, allowing for a more precise quantitative
analysis of the relationship between the overhead and the number of tasks.

Table 5.4: Worst-case computation overhead of BST-based task dispatcher func-
tions in FreeRTOS in CPU cycles, where n is the number of tasks in the
dispatcher.

Task Insertion f(n) = 14 + (14 · n)
First Task Retrieval f(n) = 1 + (8 · n)
First Task Removal f(n) = 20 + (8 · n)

5.2. WORST-CASE COMPUTATION OVERHEAD 71

20 40 60 80 100 120 140
0

500

1,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.3: Worst-case computation overhead of BST-based task dispatcher first
task retrieval implementation per task set size.

20 40 60 80 100 120 140
0

500

1,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.4: Worst-case computation overhead of BST-based task dispatcher first
task removal implementation per task set size.

5.2.4 Heap

For the worst-case computation overhead measurements of the Heap-based task
dispatcher task insertion presented in Figure 5.5, we can see the logarithmic relation
of the function that was described in Subsection 4.2.5 very well. The declarations
of values and steps that are always executed contribute to 77 CPU cycles and each
iteration for the insertion loop costs at most 166 CPU cycles, resulting in a total
calculated overhead of (⌊(log2(n)⌋ · 166) + 77. This corresponds with the measured
values given in Figure 5.5. The next overhead increment should e.g. be at 256 tasks
where then the total would come down to 1405 if this were possible on the device.

72 CHAPTER 5. EVALUATION

20 40 60 80 100 120 140
0

500

1,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.5: Worst-case computation overhead of Heap-based task dispatcher task
insertion implementation per task set size.

Retrieving the first task has a constant time complexity and will only take one (1)
CPU cycle.

The worst-case time complexity of the first task removal function also has a time
complexity of O(log n). This is because the function uses a min Heap data structure,
which is a complete binary tree where each parent node has a value less than or
equal to its child nodes. The ”heapify” equivalent, which is used to maintain the
Heap property of the tree, takes O(log n). Also for this function, it can be seen in
Figure 5.6 that, in the measurements, there is a logarithmic relationship between
the function and the number of tasks. There is however, as can also be seen if you
look closely near the places where log2(n− 1) would reach a new integer value that
it is not instantly a stable value. This is because of the second if statement inside
the loop, which makes the first two values of the new increase a little lower than the
ones following.

The CPU cycles of the removal of the first task of the Heap based task dispatcher

can be fairly well estimated as f(n) ≈

{
77 if n ≤ 2

⌊log2(n− 1)⌋ · 185 + 82 otherwise
.

The graphical data presented in Figure 5.5 and 5.6 was transformed into mathe-
matical formulas seen in Table 5.5, allowing for a more precise quantitative analysis
of the relationship between the overhead and the number of tasks.

5.2. WORST-CASE COMPUTATION OVERHEAD 73

0 20 40 60 80 100 120 140
0

500

1,000

1,500

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.6: Worst-case computation overhead of Heap-based task dispatcher first
task removal implementation per task set size.

Table 5.5: Worst-case computation overhead of Heap-based task dispatcher func-
tions in FreeRTOS in CPU cycles, where n is the number of tasks in the
dispatcher.

Task Insertion f(n) = (⌊log2(n)⌋ · 166) + 77

First Task Retrieval f(n) = 1

First Task Removal f(n) ≈

{
77 if n ≤ 2

(⌊log2(n− 1)⌋) · 185) + 82 otherwise

5.2.5 Red-Black Tree

The time complexity of the insertion function is O(log n) worst-case, where n is the
number of elements in the tree. This is because it performs a search operation
in the tree, which has a time complexity of O(log n), and then performs additional
operations to fix up the red-black tree properties, which also have a time complexity
of O(log n).

As was outlined in Section 4.1, it can be proven that the maximum height of an
RBT is 2 · log(n + 1), where n is the number of tasks in the RBT. However, in the
RBT, triggering the full scope of worst-case measurements, particularly a large im-
balance, was not achieved. For this reason, we calculated the worst-case based on
the maximum number of iterations of the while loop for finding the appropriate node,
along with the maximum possible number of ”fixup” calls (worst-case). These calcu-
lations underpin the findings presented in this subsection; note, however, they are
not entirely corroborated by measurements due to the aforementioned limitations.

74 CHAPTER 5. EVALUATION

The insertion results are composed of a static 22 CPU cycles before and after
the loop and fixup function. The loop constitutes 17 CPU cycles per iteration and
the fixup function to 98 CPU cycles per execution at max. Since both of these can in
theory be called 2·log(n+1) times, this gives a total of f(n) = 22+(230·⌈log2(n+1)⌉)
as given in Figure 5.7

20 40 60 80 100 120 140
0

500

1,000

1,500

2,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.7: Worst-case computation overhead of RBT-based task dispatcher task
insertion implementation per task set size.

The retrieval of the first task consists only of a while loop to the leftmost node
and will in turn result in a total overhead of 6 CPU cycles per loop iteration, resulting
in a worst-case overhead of f(n) = 12 · ⌈log2(n+1)⌉, visually displayed in Figure 5.8

20 40 60 80 100 120 140
0

20

40

60

80

100

Tasks

O
ve

rh
ea

d

Figure 5.8: Worst-case computation overhead of RBT-based task dispatcher first
task retrieval implementation per task set size.

5.2. WORST-CASE COMPUTATION OVERHEAD 75

The removal of the first task is built up in a similar fashion, where a total CPU
cycle overhead of 18 is static, the loop constitutes 6 CPU cycles per iteration and the
fixup function again constitutes 98 CPU cycles per call at a maximum. This results in
a total worst-case computation overhead of f(n) = 18 + (208 · ⌈log2(n+ 1)⌉). Which
is graphically presented in Figure 5.9.

20 40 60 80 100 120 140
0

500

1,000

1,500

2,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.9: Worst-case computation overhead of RBT-based task dispatcher first
task removal implementation per task set size.

The graphical data illustrated in Figures Figure 5.7, Figure 5.8 and Figure 5.9
has been translated into mathematical formulas, as seen in Table 5.6. This transfor-
mation enables a more detailed quantitative examination of the relationship between
computational overhead and the number of tasks.

Table 5.6: Worst case computation overhead of RBT-based task dispatcher func-
tions in FreeRTOS in CPU cycles, where n is the number of tasks in the
dispatcher.

Task Insertion f(n) = 22 + (230 · ⌈log2(n+ 1)⌉)
First Task Retrieval f(n) = 12 · ⌈log2(n+ 1)⌉
First Task Removal f(n) = 12 · ⌈log2(n+ 1)⌉

76 CHAPTER 5. EVALUATION

5.2.6 Comparison of Worst-Case Computation Overhead

The evaluation of the worst-case computation overhead for different task dispatcher
implementations based on five data structures - List, BoI, BST, RBT and Heap- pro-
vides several key insights. By comparing the overhead of insertion, first task retrieval
and first task removal functions presented in Figure 5.10, 5.11 and 5.12 respectively,
we can better understand the worst-case performance of these implementations un-
der various task set sizes.

20 40 60 80 100 120 140
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

List
BST
Heap

RB Tree

Figure 5.10: Worst-case computation overhead comparison of different task dis-
patcher task insertion implementations.

Up to 150 tasks (our maximum), the List-based task dispatcher demonstrates
superior worst-case performance compared to the other implementations, not only
due to the constant removal and retrieval functions but also the lowest overhead
for task insertion. Based on the evident trend in the presented figures, if this trend
persists, we can state that the worst-case performance of the List-based task dis-
patcher will be outperformed by the Heap-based task dispatcher at approximately
370 tasks. Which includes the performance of task insertion, first task retrieval and
first task removal, due to their respective log(n) complexity.

5.2. WORST-CASE COMPUTATION OVERHEAD 77

20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

400

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

List / BoI
BST
Heap

RB Tree

Figure 5.11: Worst-case computation overhead comparison of different task dis-
patcher first task retrieval implementations.

In contrast, the BoI-based implementation performs significantly worse than its
counterparts, even in some cases resulting in noticeable jitter inside the RTOS when
the task set is large. It is essential to note that the worst-case values presented are
derived from a single execution comparison, it is impossible for every function execu-
tion to be equal to the worst-case scenario, which is where the following subsections
will give a better indication of what to expect in reality. It is however good to know the
upper bound of the execution in order to make a well-balanced decision. Therefore,
these worst-case values should be considered an indication of the maximum jitter
that can be expected in the kernel when implementing these different task dispatch-
ers.

It is evident that the task dispatcher implementations do comply with the worst-
case complexity discussed in Subsection 4.1.1 and presented in Table 4.1. It is also
a good illustration that better time complexity does not always translate into lower
overhead. This is especially true in lower input sizes due to the simplicity of code
for data structures such as lists that outweigh the time complexity of data structures
with a better time complexity than lists.

78 CHAPTER 5. EVALUATION

20 40 60 80 100 120 140
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

List / BoI
BST
Heap

RB Tree

Figure 5.12: Worst-case computation overhead comparison of different task dis-
patcher first task removal implementations.

5.3 Task Sets with Homogeneous Period Distribution

The purpose of this measurement is to see how the different task dispatchers re-
spond to a task set that exists of n tasks that all have the same period x. For these
measurements, it does not matter what value is used for x as long as the schedule
is viable (i.e. deadlines are met) and the x is equal in all tasks.

In the evaluation of these results, it is important to note that there is an area with
lower opacity around the data points in the graph. This lower opacity area indicates
the range between the best- and worst-case performance for that specific task set. It
is worth noting that a single execution of the task set can have any value between the
lower and upper bound. The line in between these bounds represents the average
value of the execution times.

By observing the area with lower opacity around the data points, we can gain
a better understanding of the performance of the task dispatchers under different
scenarios. For instance, a smaller area with lower opacity would suggest that the
task dispatcher’s performance is more consistent and reliable, while a larger area
with lower opacity would suggest that the task dispatcher’s performance is more
variable and unpredictable.

5.3. TASK SETS WITH HOMOGENEOUS PERIOD DISTRIBUTION 79

5.3.1 List

In this section, we examine the list-based task dispatcher response to cases where
all tasks have an equal period as presented in Figure 5.13. Our analysis reveals
that the worst-case computation overhead (the upper bound) corresponds with the
analysis of Subsection 5.2.1. This is expected behavior since the task list will be
filled completely, meaning that there have to be insertions at both ends of the list
determining the worst and best-case overhead. The best case is constant for ev-
ery number of tasks because of the optimal insertion position. The worst and the
average case increment by 8 and 4 CPU cycles per additional task respectively,
meaning that the average case for inserting a task into a List-based task dispatcher
with homogeneous periods will always be approximately half of its worst case.

20 40 60 80 100 120 140
0

200

400

600

800

1,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.13: Overhead measurements for List-based task dispatcher task insertion
implementation for homogeneous task sets.

Retrieval and removal of the first task to be dispatched remain 3 and 12 clock
cycles respectively, as presented in Subsection 5.2.1 it remains the same execution
independent on the task set.

80 CHAPTER 5. EVALUATION

5.3.2 Bucket of Ignorance

Examining the measurement results of the BoI insertion presented in Figure 5.14, a
unique characteristic stands out compared to other dispatching methodologies: the
upper bound, or worst-case computation overhead, becomes quite substantial. This
increase is clearly visible in the graph as a distinct increase in the lower opacity area
representing the possible computation overheads. As a reference around n = 14

the CPU cycles in the worst-case for this task set exceed 1000CPU cycles and at
n = 90 it already exceeds 9000CPU cycles in overhead. However, its average is
not increasing as much (201 and 534 respectively). This is due to its design choice
to only sort the ”bucket” when needed. This in terms gives a high computation
overhead when the ”bucket” is at a high capacity and the ordered list is almost empty.
The average case seems to be rising with approximately 4 CPU cycles per task.
Retrieval and removal of the first task remain equal to the List-based task dispatcher
implementation i.e. 3 and 12 clock cycles respectively.

20 40 60 80 100 120 140
0

200

400

600

800

1,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.14: Overhead measurements for BoI-based task dispatcher task insertion
implementation for homogeneous task sets.

5.3. TASK SETS WITH HOMOGENEOUS PERIOD DISTRIBUTION 81

5.3.3 Binary Search Tree

The set of homogeneous period task sets for the BST-based task dispatcher pro-
vides the same worst-case computation overhead as the overall worst-case over-
head (14 + (14 · n) for the insertion. The best-case computation overhead takes 20

clock cycles for insertion in the BST-based task dispatcher. When looking at the
average measurements it gives a clear linear relation which can be described as
10 + 7 · n. Which in terms of overhead increment per task is half of the worst-case
computation overhead.

20 40 60 80 100 120 140
0

500

1,000

1,500

2,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.15: Overhead measurements for BST-based task dispatcher task insertion
implementation for homogeneous task sets.

Looking at the retrieval and removal functionalities of the BST-based task dis-
patcher, the computation overhead takes a constant amount of clock cycles, which
are 7 and 17 CPU cycles respectively.

Examining the measurement results, it becomes apparent that the BST-based
implementation in the case where all tasks have equal release times becomes a
fully leaning BST, essentially becoming a linked list. This supports the notion that
the retrieval and removal of the first task are indeed constant.

82 CHAPTER 5. EVALUATION

5.3.4 Heap

Inspecting the results of the Heap-based task dispatcher for the set of homogeneous
period task sets it is indicated that for the task insertion presented in Figure 5.16,
the worst, best and average case have little to no change when the task set is in-
creased. The insertion algorithm follows the standard approach of adding the new
item to the last position of the Heap and then moving it up through the Heap until
the Heap property is restored. Interestingly, when the input tasks have the same re-
lease time, the overhead of the insertion operation does not increase as the number
of the inserted tasks grows. When a new item is inserted into a Heap, the Heap’s
structure must be adjusted to maintain the Heap property, which specifies that par-
ent nodes must always be smaller than or equal to their children. This adjustment
process involves swapping the new item with its parent node repeatedly until the
Heap property is satisfied. In a scenario where the same release times are being in-
serted repeatedly into the Heap, the structure of the Heap remains unchanged with
respect to the release times for each new insertion. As a result, there are no swaps
or adjustments required, and the time it takes to insert a new item into the Heap
remains constant. This results in a constant time complexity for the Heap insertion
operation. While this is a specific scenario, it highlights the importance of testing
for various input scenarios to determine how a system or algorithm performs under
different conditions.

20 40 60 80 100 120 140
0

20

40

60

80

100

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.16: Overhead measurements for Heap-based task dispatcher task inser-
tion implementation for homogeneous task sets.

The retrieval of the first task will stay constant at only 1 CPU cycle to get this
task.

5.3. TASK SETS WITH HOMOGENEOUS PERIOD DISTRIBUTION 83

For the removal of the first task presented in Figure 5.17 we see a similar phe-
nomenon as was seen for the insertion, where the overhead becomes constant at
some point. When the root of a Heap is removed, the last element in the Heap is
moved to the root position. This creates a temporary violation of the Heap property,
as the new root may not be greater than or equal to its child nodes. To resolve this,
the Heap’s structure is adjusted by repeatedly swapping the new root with its child
nodes until the Heap property is satisfied.

However, if the Heap contains the same release times, the Heap’s structure
remains unchanged after each root removal, as the new root will have the same
release time as the previous root. Therefore, there are no swaps or adjustments
required, and the time it takes to remove the root remains constant. This is be-
cause the Heap’s structure is already optimal for the given set of release times, and
removing the root does not change the structure in terms of release time order.

20 40 60 80 100 120 140
0

50

100

150

200

250

300

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.17: Overhead measurements for Heap-based task dispatcher first task re-
moval implementation for homogeneous task sets.

84 CHAPTER 5. EVALUATION

5.3.5 Red-black tree

Examining the computational overhead of the RBT-based task dispatcher w.r.t. the
set of homogeneous period task sets, all three of the functionalities (task insertion,
first task retrieval and first task removal) result in a clear logarithmic relation between
the number of tasks and the computation overhead.

For the insertion, presented in Figure 5.18, there is a clear smooth logarithmic
scale for the average and a more logarithmic staircase relation for the worst case.
Which is in line with the logarithmic time complexity we expect for the RBT inser-
tion. The smooth logarithmic relation for the average case indicates that the RBTree
structure is efficient in maintaining on average a balanced structure as more data is
added to the tree. This leads to a continuous and smooth increase in overhead as
more tasks are added. However, the staircase-like logarithmic relation for the upper
cases suggests that the RBT structure has insertions at larger heights of the tree
compared to the average. This can lead to sudden jumps in the overhead when
inserting tasks into the RBT-based task dispatcher

20 40 60 80 100 120 140
0

100

200

300

400

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.18: Overhead measurements for RBT-based task dispatcher task insertion
implementation for homogeneous task sets.

The function for the retrieval of the first task, presented in Figure 5.19, is also
given in a more logarithmic staircase relation. This is due to the fact that it is only
dependent on the height of the tree on the left side of the RBT. When this height
(on the left side) increases the retrieval of the first task also increases. Examining
the removal of the first task, presented in Figure 5.20, Also a logarithmic scale can
be seen with some more clear outliers. These outliers remain throughout very large
execution times and are not incidental.

5.3. TASK SETS WITH HOMOGENEOUS PERIOD DISTRIBUTION 85

20 40 60 80 100 120 140
0

10

20

30

40

50

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.19: Overhead measurements for RBT-based task dispatcher first task re-
trieval implementation for homogeneous task sets.

20 40 60 80 100 120 140
0

20

40

60

80

100

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

Figure 5.20: Overhead measurements for RBT-based task dispatcher first task re-
moval implementation for homogeneous task sets.

5.3.6 Comparison of Homogeneous Period Task Sets Overhead

In this subsection, we analyze the computation overhead of the different task dis-
patcher implementations based on the List, BoI, BST, RBT and Heap data structures
for a set of task sets with homogeneous periods (every period is equal for a set with
a size of 1 up to 150). The objective is to compare the performance of these task
dispatcher implementations by considering task insertion, first task retrieval and first
task removal operations.

86 CHAPTER 5. EVALUATION

With respect to task insertion, presented in Figure 5.21, the Heap-based task
dispatcher excels (after approximately 18 tasks, over the list) converging to constant
time due to the implementation which favors homogeneous task periods. Compar-
ing the RBT-based task dispatcher to that of the List-based, we can see that in the
average case, the RBT-based task dispatcher outperforms the List-based task dis-
patcher at around 50 tasks. The BST-based task dispatcher remains underwhelming,
as it essentially behaves like a linked list with additional overhead. Interestingly, the
average performance of the List and BoI are quite similar, exhibiting the same slope
in Figure 5.21 and of course utilizing the same functions for first task retrieval and
removal. However, the worst-case performance of the BoI for this set of task sets
is notably poor and increases significantly, while its average performance remains
acceptable. The performance of both the RBT and Heap-based task dispatcher
implementations exhibits lower variability, as evidenced by the closer proximity of
their best and worst-case execution times. This contrast is particularly notable when
compared to the more substantial disparities observed in the computation overhead
of the List-based task dispatcher’s insertion functionality.

20 40 60 80 100 120 140
0

200

400

600

800

1,000

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

List
BoI
BST
Heap
RBT

Figure 5.21: Overhead comparison of different task dispatcher task insertion imple-
mentations for homogeneous task sets.

5.3. TASK SETS WITH HOMOGENEOUS PERIOD DISTRIBUTION 87

In terms of the first task retrieval, presented in Figure 5.22, all task dispatcher
implementations, except for the RBT-based task dispatcher, exhibit constant-time
behavior, which would be optimal considering the frequency of this operation com-
pared to the insertion and first task removal executions. However, in the case of the
fully homogeneous task set, the overlap is 100%, resulting in an almost equal ratio
as is described in Section 4.1 (nRemovalCalls ≈ nInsertionCalls ≈ nRetrievalCalls). The sig-
nificance of this observation is that we can leverage these insights to estimate the
total computational overhead when these three functions are combined. By under-
standing the performance characteristics of each individual function we can better
predict the overall system performance, thereby enabling more informed decisions
for system design and optimization.

20 40 60 80 100 120 140
0

10

20

30

40

50

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

List/BoI
BST
Heap
RBT

Figure 5.22: Overhead comparison of different task dispatcher first task retrieval
implementations for homogeneous task sets.

For first task removal, presented in Figure 5.23, all implementations behave on
average in constant time or converge to constant time for homogeneous task sets,
again except for the RBT-based task dispatcher. This increment is however a loga-
rithmic function with low incrementation, with an average increment of only 2 CPU
cycles for the last 50 task sets.

88 CHAPTER 5. EVALUATION

20 40 60 80 100 120 140
0

50

100

150

200

250

300

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

List/BoI
BST
Heap
RBT

Figure 5.23: Overhead comparison of different task dispatcher first task removal
implementations for homogeneous task sets.

Combining all operations and taking into account that insertion, first task retrieval
and first task removal occur approximately equally often in a fully homogeneous task
set (nRemovalCalls ≈ nInsertionCalls ≈ nRetrievalCalls), we can compare the overall perfor-
mance of these task dispatchers for this case. As a result, the Heap-based task
dispatcher outperforms the List-based task dispatcher in terms of computation over-
head at approximately 25 tasks. Similarly, the RBT-based task dispatcher surpasses
the List-based task dispatcher in computation overhead at approximately 65 tasks
for these specific task sets. Other implementations do not outperform the List-based
task dispatcher implementation in terms of computation overhead for a fully homo-
geneous task set.

5.4 Task Sets with Uniform Period Distribution

The following results are more heavily based on the different task periods that are
given in the Real World Automotive Benchmark by Kramer et al. [1]. The benchmark
gives 9 different periods used in the automotive industry presented in Table 5.2. Due
to the limitation of the embedded device described in Chapter 4, we can only range
the uniform distribution from 1 to 16 tasks per period.

5.4. TASK SETS WITH UNIFORM PERIOD DISTRIBUTION 89

In this task set evaluation, it’s important to remember that the graph’s lower opac-
ity area around data points represents the range between the best and worst per-
formance for the specific task set, with the line in between indicating the average
execution times. As discussed previously, the size of this area provides insight into
the consistency and predictability of the task dispatcher’s performance.

To provide a more comprehensive representation of the data points, markers
have been included in addition to the plot line. This is particularly important given the
limited number of data points available, with only 16 data points per implementation.
To prevent over-cluttering of the graph, markers have only been used for the average
case data points and not for the outliers (i.e., the best and worst case data points).

The result of the task insertion for the set of uniform period distribution task sets
is presented in Figure 5.24. Here we can clearly see that for task insertion the
List-based task dispatcher, for a lower number of tasks remains the optimal imple-
mentation compared to the other implementations on average. We can however also
see that for a higher number of tasks per period, the performance of the List-based
task dispatcher diminishes comparing the average overhead to the BoI, Heap and
RBT-based task dispatchers.

2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

1,200

1,400

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

List
BoI
BST
Heap
RBT

Figure 5.24: Overhead comparison of different task dispatcher task insertion imple-
mentations for uniform task sets.

90 CHAPTER 5. EVALUATION

Moreover, when examining the worst-case overhead of the RBT-based imple-
mentation, it was observed that the overhead was more consistent with the average
overhead compared to the other implementations. This suggests that the RBT im-
plementation was less affected by outliers and had more stable performance.

The retrieval of the first task from the various task dispatchers for the uniform
period task distribution is presented in Figure 5.25. The overhead of the retrieval
functionalities is still rather low compared to the insertion and removal for the task
dispatchers. For the List / BoI and Heap-based dispatchers they remain constant,
while the RBT and BST implementations slightly increase over time with respect to
their average and worst-case computation overhead.

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

List / BoI
BST
Heap
RBT

Figure 5.25: Overhead comparison of different task dispatcher first task retrieval
implementations for uniform task sets.

For the removal of the first task from the dispatcher based on the different data
structures, presented in Figure 5.26, all dispatcher implementations remain low in
overhead, except for the Heap based dispatcher. This is due to the reordering of the
Heap while preserving the Heap property. The List and BoI implementations remain
constant of course and the RBT and BST increase slightly over time because of their
logarithmic scale if the height of the tree is preserved supported by the fact that the
overhead for each iteration is rather low.

5.4. TASK SETS WITH UNIFORM PERIOD DISTRIBUTION 91

2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

1,200

1,400

Tasks

O
ve

rh
ea

d
(C

P
U

cy
cl

es
)

List / BoI
BST
Heap
RBT

Figure 5.26: Overhead comparison of different task dispatcher first task removal
implementations for uniform task sets.

Comparing the results for all of the task dispatchers for the uniform period task
distribution, we can state that for 16 tasks per period (144 total tasks), the List and
RBT-based task dispatchers have almost equal performance, since the ratio of re-
trieval of the first task is slightly higher, the List-based task dispatcher does keep the
best average performance for this size, by just a few CPU cycles. However, if we
look at the difference between the best and worst performance (jitter), we can see
that, even though for the List-based task dispatcher first task retrieval and removal
are constant, the RBT-based task implementation, combining all the functionalities,
has a lower difference (almost half).

92 CHAPTER 5. EVALUATION

5.5 Automotive Benchmark Period Distribution

Given the constraints of the embedded device (ESP32-S3-DevKitC-1), there is a
limit to the tasks that can be run simultaneously. This limitation means that the real
automotive benchmark distribution of periods in Table 5.1 can only allocate one (1)
task per percentage point. If we want to increase this to a higher value where the
outcome would be an integer value for each task, the embedded device used in
this research would not suffice in terms of memory. This constraint results in one
measurement result per task dispatcher implementation for this task distribution,
which is given in Table 5.7.

During task insertion, the List-based task dispatcher is revealed to be the most
efficient in terms of average computation overhead (181), outperforming the BoI-
(226), BST- (277), Heap- (344), and RBT-based task dispatchers (219). In the worst-
case scenario, however, the RBT-based task dispatcher exhibits the lowest overhead
(474), thereby suggesting more stability compared to the other methods. Further-
more, the BoI-based task dispatcher resulted in the highest worst-case scenario
overhead (6543), while indicating a comparatively good average-case performance
(especially when considering first task retrieval (3) and first task removal (12) over-
heads into account). Both the stable performance of the RBT-based task dispatcher
and the unstable performance of the BoI-based task dispatcher, again underline the
importance of evaluating not only the average-case performance but also consider-
ing the implementation’s worst-case performance.

The respective overheads for first task retrieval remain comparatively low to those
of the task insertion. With the List- (3), BoI- (3) and Heap-based task dispatchers
(1) demonstrating their O(1) time complexity, remaining static in terms of overhead.

Regarding first task removal, again both List- and BoI-based task dispatchers
showcase their O(1) complexity stability. In stark contrast, the Heap-based task
dispatcher exhibits substantial overhead, peaking at 1176 in the worst-case scenario
and averaging at 946.

In light of the obtained results from the scaled-down automotive benchmark pe-
riod distribution, it can be concluded that for this specific task set, the List-based
task dispatcher tends to be the most efficient in terms of the average-case computa-
tion overhead. However, shifting the focus towards minimizing worst-case overhead
paints a slightly different picture.

5.5. AUTOMOTIVE BENCHMARK PERIOD DISTRIBUTION 93

Upon reviewing the worst-case performance of the RBT-based task dispatcher
and taking into account the weighing of task insertion, first task retrieval, and first
task removal calls described in Section 4.1 (nRemovalCalls ≈ nInsertionCalls and 1 ·
nRemovalCalls ≤ nRetrievalCalls ≤ 2 · nRemovalCalls), we observe a computation range of
between 699 and 747 CPU cycles. This range is marginally less than the List-based
task dispatcher’s range, which lies between 747 and 750 CPU cycles.

Such observations lead us to an intriguing insight into the stability of single ex-
ecution performance, wherein the RBT-based task dispatcher exhibits superior sta-
bility compared to its List-based counterpart. Therefore, while the average-case
performance would suggest a preference for the List-based dispatcher, considera-
tion of the worst-case scenario and execution stability leans more favorably toward
the RBT-based task dispatcher.

Table 5.7: Scaled down automotive distribution measurement results given in CPU
cycles [1].

Task Insertion First Task Retrieval First Task Removal
Best Worst Average Best Worst Average Best Worst Average

List 19 732 181 3 3 3 12 12 12
BoI 55 6543 226 3 3 3 12 12 12
BST 20 1200 277 6 72 28 16 92 40
Heap 81 1064 344 1 1 1 100 1176 946
RBT 61 474 219 6 48 17 47 177 54

Furthermore, considering a device with greater memory, our results would be
even more beneficial. A higher-capacity device would allow us to increase the num-
ber of tasks per percentage point, leading to a more granular task distribution. The
increase in tasks per percentage point would ideally stretch to 1500 tasks. This
would offer us a more precise understanding of the task dispatcher performance
for the real automotive benchmark [1]. For example, we could explore how their
efficiency evolves as the number of tasks increases.

94 CHAPTER 5. EVALUATION

Chapter 6

Conclusion

In this thesis, we have examined the impact of task set characteristics on the effi-
ciency of our implemented task dispatchers in real-time operating systems, focusing
on FreeRTOS. Our research compared List, BST RBT, Heap, and BoI-based task
dispatchers, identifying their respective strengths and weaknesses across various
scenarios. This highlights the critical role of task set properties in determining dis-
patcher performance and underscores the importance of tailoring task dispatchers
to specific system requirements.

We addressed a key limitation of previous research by utilizing a real-world ex-
perimental setup. This enabled us to analyze task dispatcher behavior under prac-
tical constraints and provide valuable insights for system designers and develop-
ers, while guiding future research in the field. Our findings contribute to existing
knowledge about task dispatcher performance and can help develop more efficient
real-time operating systems.

Key Findings of our research revealed several important insights into the perfor-
mance of various task dispatchers in FreeRTOS. The currently used List-based task
dispatcher performs well on average for smaller task sets, exhibiting lower over-
head compared to other implementations. However, as the task set size increases,
its efficiency diminishes. In contrast, the RBT-based task dispatcher demonstrates
comparatively good performance for larger task sets and, notably, exhibits a very low
difference between the worst and best case (jitter) for the sets of task sets examined
in our study. This highlights the RBT’s consistency and suitability. Additionally, the
Heap-based task dispatcher excels in homogeneous task sets, further emphasizing
the importance of selecting the appropriate task dispatcher based on the specific
characteristics of the task set at hand. Our research findings also suggest that as
the task set size increases beyond those tested in this study, the performance ad-
vantage of the RBT-based task dispatcher over the List-based implementation is
likely to become even more pronounced. This projected trend is particularly relevant

95

96 CHAPTER 6. CONCLUSION

for real-world applications, such as the benchmark that was discussed and used for
our evaluation, where task sets may range from approximately 1000 to 1500 tasks.

Limitations of our research include the inability to measure larger task sets, due
to the constraints of the small embedded device used in our experiments, and the
lack of diversity in task set periods. These limitations may impact the generalizability
of our findings and warrant further research with larger task sets and more diverse
period distributions. Testing more diverse task sets might reveal other factors that
contribute to the preferred dispatcher implementation and shed light on the specific
conditions under which each method is best suited.

Real-world implications of our research emphasize the potential benefits of opti-
mizing task dispatchers in real-time systems. Improved task dispatcher performance
can lead to better overall performance in specific scenarios, including higher tick fre-
quencies and enhanced deadline guarantees. This can impact system designers,
developers, and vendors in the field of real-time systems, and encourage FreeRTOS
and other vendors to investigate further optimization of task dispatchers.

Future work should address our research limitations by increasing task set sizes
e.g. to 1000-1500 tasks, which is more representative of real-world automotive ap-
plications. This can be achieved by using a more powerful embedded device with a
larger memory capacity, enabling more accurate performance assessments of task
dispatching implementations in realistic systems. Integrating a timing wheel into the
FreeRTOS kernel has proven challenging due to fundamental differences in design.
This would involve understanding the existing codebase, implementing dynamic in-
sertion and removal of tasks, efficient memory use, and rigorous testing and verifi-
cation. Fundamentally different approaches to task dispatching may offer increased
performance, e.g. one approach involves using a per-task counter in the dispatcher
and consolidating tasks with identical periods. This could transfer the overhead from
dispatch checks to the actual process and potentially enable multiple dispatches in
a single period

In summary, our research adds value to the field by offering a deeper under-
standing of the impact of task dispatchers on real-time system performance and
promoting further exploration and optimization of task dispatcher designs. We hope
that our findings will encourage continued research and development in this area,
ultimately leading to better and more efficient real-time systems.

Bibliography

[1] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive benchmarks
for free,” in 6th International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), vol. 130, 2015.

[2] W. Hofer, D. Danner, R. Müller, F. Scheler, W. Schröder-Preikschat, and
D. Lohmann, “Sloth on time: Efficient hardware-based scheduling for time-
triggered rtos,” in 2012 IEEE 33rd Real-Time Systems Symposium. IEEE,
2012, pp. 237–247.

[3] P. Kohout, B. Ganesh, and B. Jacob, “Hardware support for real-time operating
systems,” in Proceedings of the 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, 2003, pp. 45–51.

[4] Y. Li, X. Liu, Y.-f. Ding, H.-x. Cui, Y.-b. Du, and Y. Li, “An improvement of task
scheduling algorithms and hardware scheduler of real-time operating system,”
International Journal of Hybrid Information Technology, vol. 7, no. 3, pp. 337–
344, 2014.

[5] G. Varghese and A. Lauck, “Hashed and hierarchical timing wheels: efficient
data structures for implementing a timer facility,” IEEE/ACM Transactions on
Networking, vol. 5, no. 6, pp. 824–834, 1997.

[6] M. Short, “Improved task management techniques for enforcing edf scheduling
on recurring tasks,” in 2010 16th IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, 2010, pp. 56–65.

[7] G. C. Buttazzo, Hard real-time computing systems: predictable scheduling al-
gorithms and applications. Springer Science & Business Media, 2011, vol. 24.

[8] Q. Li and C. Yao, Real-time concepts for embedded systems. CRC press,
2003.

[9] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,” J. ACM, vol. 20, no. 1, p. 46–61, jan 1973.
[Online]. Available: https://doi.org/10.1145/321738.321743

97

https://doi.org/10.1145/321738.321743

98 BIBLIOGRAPHY

[10] A. Phillip, J. L. Seppo et al., “Real-time systems design and analysis: Tools for
the practitioner,” ISBN: 978–0470768648, 2012.

[11] A. McPherson, B. Proffitt, and R. Hale-Evans, “Estimating the total development
cost of a linux distribution,” The Linux Foundation, vol. 198, no. 198, p. 198,
2008.

[12] Torvalds, “Linux/timerqueue.c,” Apr 2020. [Online]. Available: https://github.
com/torvalds/linux/blob/master/lib/timerqueue.c

[13] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis, “An empirical
survey-based study into industry practice in real-time systems,” in 2020 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 2020, pp. 3–11.

[14] “Rtems/rtems: Realtime smp kernel, networking, file-systems, drivers, bsps,
samples, and testsuite.” [Online]. Available: https://github.com/RTEMS/rtems

[15] “Kernel timing,” Jun 2022. [Online]. Available: https://docs.zephyrproject.org/3.
1.0/kernel/services/timing/clocks.html

[16] F. Guan, L. Peng, L. Perneel, and M. Timmerman, “Open source freertos
as a case study in real-time operating system evolution,” Journal of
Systems and Software, vol. 118, pp. 19–35, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121216300383

[17] “Market leading rtos (real time operating system) for embedded systems
with internet of things extensions,” Dec 2022. [Online]. Available: https:
//www.freertos.org/

[18] R. Kase, “Efficient scheduling library for freertos,” 2016.

[19] “Microcontrollers and compiler tool chains supported by freertos,” Jan 2022.
[Online]. Available: https://www.freertos.org/RTOS ports.html

[20] “Freertos demo applications,” Jan 2022. [Online]. Available: https://www.
freertos.org/a00102.html

[21] “Github freertos-kernel.” [Online]. Available: https://github.com/FreeRTOS/
FreeRTOS-Kernel

[22] R. Barry. [Online]. Available: https://www.freertos.org/fr-content-src/uploads/
2018/07/161204 Mastering the FreeRTOS Real Time Kernel-A Hands-On
Tutorial Guide.pdf

https://github.com/torvalds/linux/blob/master/lib/timerqueue.c
https://github.com/torvalds/linux/blob/master/lib/timerqueue.c
https://github.com/RTEMS/rtems
https://docs.zephyrproject.org/3.1.0/kernel/services/timing/clocks.html
https://docs.zephyrproject.org/3.1.0/kernel/services/timing/clocks.html
https://www.sciencedirect.com/science/article/pii/S0164121216300383
https://www.freertos.org/
https://www.freertos.org/
https://www.freertos.org/RTOS_ports.html
https://www.freertos.org/a00102.html
https://www.freertos.org/a00102.html
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://github.com/FreeRTOS/FreeRTOS-Kernel
https://www.freertos.org/fr-content-src/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf

BIBLIOGRAPHY 99

[23] “Esp-idf, official iot development framework.” [Online]. Avail-
able: https://www.espressif.com/en/products/sdks/esp-idf#:∼:text=ESP%
2DIDF%20is%20Espressif’s%20official,as%20C%20and%20C%2B%2B.

[24] “Freertos (overview).” [Online]. Available: https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/api-reference/system/freertos.html

[25] PlatformIO, “A professional collaborative platform for embedded development.”
[Online]. Available: https://platformio.org/

[26] H. Högl and D. Rath, “Open on-chip debugger–openocd–,” Fakultat fur Infor-
matik, Tech. Rep, 2006.

[27] R. Stallman, R. Pesch, S. Shebs et al., “Debugging with gdb,” Free Software
Foundation, vol. 675, 1988.

[28] “Jtag debugging.” [Online]. Available: https://docs.espressif.com/projects/
esp-idf/en/latest/esp32s3/api-guides/jtag-debugging/index.html

[29] M. Ebbrecht, K.-H. Chen, and J.-J. Chen, “Bucket of ignorance: A hybrid data
structure for timing mechanism in real-time operating systems.”

[30] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis of
multiprocessor tasksets,” in proceedings 1st International Workshop on Analy-
sis Tools and Methodologies for Embedded and Real-time Systems (WATERS
2010), 2010, pp. 6–11.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algo-
rithms. MIT press, 2009.

[32] R. Sedgewick and K. Wayne, Algorithms. Pearson Education, 2011.

[33] R. Wiener, “Generic red-black tree and its c# implementation.” J. Object Tech-
nol., vol. 4, no. 2, pp. 59–80, 2005.

[34] K. Mehlhorn, P. Sanders, and P. Sanders, Algorithms and data structures: The
basic toolbox. Springer, 2008, vol. 55.

[35] J. Morris, 8.2 Red-Black Trees. John Morris, 1998.

[36] M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Data structures and algo-
rithms in Java. John wiley & sons, 2014.

[37] R. Sedgewick, “Left-leaning red-black trees,” in Dagstuhl Workshop on Data
Structures, vol. 17, 2008.

https://www.espressif.com/en/products/sdks/esp-idf#:~:text=ESP%2DIDF%20is%20Espressif's%20official,a s%20C%20and%20C%2B%2B.
https://www.espressif.com/en/products/sdks/esp-idf#:~:text=ESP%2DIDF%20is%20Espressif's%20official,a s%20C%20and%20C%2B%2B.
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/freertos.html
https://platformio.org/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/api-guides/jtag-debugging/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/api-guides/jtag-debugging/index.html

100 BIBLIOGRAPHY

[38] N. Deo and S. Prasad, “Parallel heap: An optimal parallel priority queue,” The
Journal of Supercomputing, vol. 6, pp. 87–98, 1992.

[39] D. S. JOHNSON, “Chapter 2 - a catalog of complexity classes,” in Algorithms
and Complexity, ser. Handbook of Theoretical Computer Science, J. VAN
LEEUWEN, Ed. Amsterdam: Elsevier, 1990, pp. 67–161. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780444880710500072

[40] T. L. Foundation, “Linux kernel developer: Thomas gleixner,”
Sep 2022. [Online]. Available: https://www.linuxfoundation.org/blog/blog/
linux-kernel-developer-thomas-gleixner

[41] T. Gleixner and I. Molnar, “The linux kernel.” [Online]. Available: https:
//docs.kernel.org/next/timers/hrtimers.html

[42] M. Ebbrecht, “Benchmarking timer mechanisms in real-time operating sys-
tems,” Ph.D. dissertation, Technical University Dortmund, 2022.

[43] Libuv, “Libuv/heap-inl.h,” May 2014. [Online]. Available: https://github.com/
libuv/libuv/blob/v1.x/src/heap-inl.h

https://www.sciencedirect.com/science/article/pii/B9780444880710500072
https://www.linuxfoundation.org/blog/blog/linux-kernel-developer-thomas-gleixner
https://www.linuxfoundation.org/blog/blog/linux-kernel-developer-thomas-gleixner
https://docs.kernel.org/next/timers/hrtimers.html
https://docs.kernel.org/next/timers/hrtimers.html
https://github.com/libuv/libuv/blob/v1.x/src/heap-inl.h
https://github.com/libuv/libuv/blob/v1.x/src/heap-inl.h

Appendix A

Pseudo code implemented data
structure functions

A.1 List

A.1.1 Insertion

Algorithm 1 Insert a node into a sorted doubly linked list
Require: A pointer to the tail of a sorted doubly linked list z and a pointer to the

node to be inserted x.
Ensure: The node pointed to by x has been inserted into the list in sorted order.

procedure LISTINSERT(x, z)
y ← z.previous

while y ̸= z and y > x do
y ← y.previous

end while
x.next← y.next

x.next.previous← x

x.previous← y

y.next← x

end procedure

101

102 APPENDIX A. PSEUDO CODE IMPLEMENTED DATA STRUCTURE FUNCTIONS

A.1.2 Remove First Task

Algorithm 2 Remove a node from a doubly linked list
Require: A pointer to the node to be removed x

Ensure: The node pointed to by x has been removed from the list and the list re-
mains sorted.
procedure LISTREMOVE(x)

x.next.previous← x.previous

x.previous.next← x.next

end procedure

A.2 Bucket of Ignorance

Algorithm 3 Insert a node into the Bucket of Ignorance [29] [42]
Require: A pointer to the node to be inserted x, a pointer to the (tail of the) sorted

linked list y and a pointer to the unsorted bucket z.
Ensure: The node pointed to by x has been inserted in the list y or z, where y is

ordered with the first expiry times compared to y.
procedure BOIINSERT(x, y, z)

if z is empty then
ListInsertEnd(x, z)

else
if y is empty then

if x < z.head then
ListInsert(x, y) ▷ Algorithm 1

else
ListInsertEnd(x, z) ▷ Algorithm 1 but to the end of the list
Refill(y, z) ▷ Algorithm 4

end if
else

if x < z.head then
ListInsert(x, y) ▷ Algorithm 1

else
ListInsertEnd(x, z) ▷ Algorithm 1 but to the end of the list

end if
end if

end if
end procedure

A.2. BUCKET OF IGNORANCE 103

Algorithm 4 Refilling the Bucket of Ignorance [29] [42]
Require: A pointer to the (tail of the) sorted linked list y and a pointer to the unsorted

bucket z.
Ensure: The sorted list y is refilled with the unsorted list z,based on the splitting

point s
procedure REFILL(y, z)

MergeSort(z)
s← SizeOf(z)/2
for i = 0, i < s, i++ do

emin ← z.Head

ListInsertEnd(z.head, y) ▷ Algorithm 1 but to the end of the list
ListRemove(z.head) ▷ Algorithm 2

end for
for i = 0, i < s, i++ do

if emin == z.head then
ListInsertEnd(z.head, y) ▷ Algorithm 1 but to the end of the list
ListRemove(z.head) ▷ Algorithm 2

else
break

end if
end for

end procedure

104 APPENDIX A. PSEUDO CODE IMPLEMENTED DATA STRUCTURE FUNCTIONS

A.3 Red-black Tree

Algorithm 5 Left-Rotate operation in a Red-Black tree
Require: A pointer to the root of a Red-Black tree root and a pointer to the node

that it should be rotated left around.
Ensure: The node pointed to by x has been rotated to the left.

procedure ROTATELEFT(root, x)
y ← x.rightChild

x.rightChild← y.leftChild

if y.leftChild ̸= NULL then
y.leftChild.parent← x

end if
y.parent← x.parent

if x.parent = null then
root← y

else if x = x.parent.leftChild then
x.parent.leftChild← y

else
x.parent.rightChild← y

end if
y.leftChild← x

x.parent← y

end procedure

A.3. RED-BLACK TREE 105

Algorithm 6 Fix up a Red-Black tree after insertion
Require: A pointer to the root of a Red-Black tree root and a pointer to a newly

inserted node z.
Ensure: The Red-Black tree is fixed up so that it satisfies the Red-Black tree prop-

erties.
procedure FIXUP(root, z)

while z.parent ̸= null and z.parent.color = red do
if z.parent is the left child of its grandparent then

y ← the right child of z’s grandparent
if y is non-null and y is red then

z.parent.color ← black

y.color ← black

z.grandparent.color ← red

z ← z.grandparent

else
if z = z.parent.rightChild then

z ← z.parent

ROTATELEFT(root, z) ▷ Algorithm 5
end if
z.parent.color ← black

z.grandparent.color ← red

ROTATERIGHT(root, z.grandparent) ▷ Algorithm 5 but to the right
end if

else
y ← z.grandparent.leftChild

if y ̸= null and y.color = red then
z.parent.color ← black

y.color ← black

z.grandparent.color ← red

z ← z.grandparent

else
if z = z.parent.leftChild then

z ← z.parent

ROTATERIGHT(root, z) ▷ Algorithm 5 but to the right
end if
z.parent.color ← black

z.grandparent.color ← red

ROTATELEFT(root, z.grandparent) ▷ Algorithm 5
end if

end if
end while
root.color ← black

end procedure

106 APPENDIX A. PSEUDO CODE IMPLEMENTED DATA STRUCTURE FUNCTIONS

Algorithm 7 Remove the minimum node from a Red-Black tree
Require: A pointer to the root of a Red-Black tree root.
Ensure: The minimum node in the Red-Black tree has been removed.

procedure RBTREEREMOVEMIN(root)
x← root

while x.leftChild ̸= null do
x← x.leftChild

end while
y ← x.parent

z ← x.rightChild

if z ̸= null then
z.parent← y

end if
if y = null then

root← z

else if x = y.leftChild then
y.leftChild← z

else
y.rightChild← z

end if
if z ̸= null then

FIXUP(root, z) ▷ Algorithm 6
end if

end procedure

	Abstract
	Introduction
	Background
	Real-Time Systems
	Real-Time Operating Systems
	Task Dispatchers
	Task Dispatchers in General Purpose Operating Systems
	Task Dispatchers in Real-time Operating Systems

	FreeRTOS
	Task Dispatcher in FreeRTOS

	Real-world Measurement Setup
	ESP-IDF FreeRTOS
	Embedded Device and PlatformIO
	GDB & OpenOCD
	Measurements

	Methodology
	Task Dispatching Data Structures
	Time Complexities

	Task Dispatcher Implementations
	Implementation to FreeRTOS
	List
	Bucket of Ignorance
	Binary Search Tree
	Heap
	Red-Black Tree

	FreeRTOS Test Application
	Limitations of Testing on Embedded Devices

	Evaluation
	Task Set Synthesis
	Worst-Case Computation Overhead
	List
	Bucket of Ignorance
	Binary Search Tree
	Heap
	Red-Black Tree
	Comparison of Worst-Case Computation Overhead

	Task Sets with Homogeneous Period Distribution
	List
	Bucket of Ignorance
	Binary Search Tree
	Heap
	Red-black tree
	Comparison of Homogeneous Period Task Sets Overhead

	Task Sets with Uniform Period Distribution
	Automotive Benchmark Period Distribution

	Conclusion
	References
	Pseudo code implemented data structure functions
	List
	Insertion
	Remove First Task

	Bucket of Ignorance
	Red-black Tree

