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Abstract

Accurate sales forecasting plays an integral role in Supply Chain Management (SCM)
for optimizing production and allocating resources, which leads to improved prof-
itability. Since SCM comprises numerous products in a large number of stores, this
research focuses on developing a global model that can be trained in a one-step
process on all time series data. The application of this forecasting uses four novel
Deep Neural Network (DNN) algorithms; namely Long Short-Term Memory (LSTM),
Neural Basis Expansion Analysis for Time Series (NBEATS), Temporal Convolutional
Network (TCN), and Transformer. It involves a comparative analysis based on their
architectures, using real-world sales data in Henkel and simulated data. The TCN
model performs best in both data, exhibiting the smallest evaluation error by taking
almost two hours to train the global model. Implementing the best model resulted
in an average improvement of 10% in forecast accuracy compared to the current
forecasting method implemented in Henkel.

Keywords: Deep Neural Network, LSTM, NBEATS, Sales Forecasting, TCN, Time
Series, Transformer.
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Chapter 1

Introduction

1.1 Background

Sales forecasting is an integral part of Supply Chain Management (SCM) since it has a
substantial impact on corporate financial success. Accurate sales forecasting enables
businesses to make well-informed manufacturing and logistical decisions, avoiding
stock-outs or overstocking. (Loureiro et al., 2018). Businesses may benefit from
accurately forecasting future sales by optimizing inventory levels, reducing waste, and
minimizing inventory costs. Furthermore, effective sales forecasting allows companies
to properly allocate resources and improve production schedules, ultimately leading to
higher profitability, which positively benefits investors and increases company value
(Agrawal & Schorling, 1996; Baecke et al., 2017). On the other hand, I.-F. Chen
& Lu (2017) mentioned that poor sales forecasting might result in insufficient or
overstocked inventories, causing the company to fail to meet customer needs and
potentially harming profitability. Therefore, accurate sales forecasts are critical in
bridging the gap between supply and demand as well as effectively planning its sales
and operations (Gahirwal, 2013; Efat et al., 2022).

Sales forecasting involves utilizing historical sales data, product characteristics, and
other relevant factors to predict short-term or long-term future sales performance
of a business (Ma et al., 2016). In practice, sales forecasting entails acquiring and
transforming raw data into structured information that can be analyzed to predict
future sales, which relies on purchasing behaviour, promotional activities, and mar-
ket conditions to develop the predictions (Paria et al., 2021; Jiménez et al., 2017).
The major challenge in developing big data sales forecasting models is accurately
modelling sparse and skewed data at the store and item levels (Ma & Fildes, 2021),
especially given the large volume, variety, velocity, and veracity that pose several
challenging problems for sales forecasting methods. More specifically, Q. Zhang et
al. (2018) stated when learning how to employ large-scale models, locally optimum
solutions may have a detrimental impact on traditional statistical and Machine Learn-
ing (ML) methods which cannot guarantee the convergence; they also require a high
performance computing capability.
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Traditional sales forecasting models are insufficiently detailed and adaptable to ac-
count for dynamic changes and non-linearities in sales time series at the store and
product levels. Several techniques have been suggested to increase the accuracy of
retail product sales forecasting. In recent years, most research has aimed to estab-
lish a universal or global forecasting strategy that can be applied to all sales time
series under evaluation (Fildes et al., 2022). Deep Neural Network (DNN) method
are proposed to model sales forecasting by extracting the complexity of spatiotem-
poral features from the data due to their ability to capture non-linear and complex
correlations between variables, enabling the forecasting model to be robust to noise
and time series length (Efat et al., 2022). DNNs have become increasingly used as
adaptive parametric models capable of fitting complex data patterns (X.-W. Chen &
Lin, 2014). Nevertheless, other types of DNNs are available, and it is still being deter-
mined which type is suitable for sales forecasting (Ma & Fildes, 2021). Therefore, the
purpose of this research is to evaluate the performance of several DNN algorithms for
sales forecasting and determine the most effective approach. The research findings
will be helpful for businesses and academics interested in deploying DNNs for sales
forecasting.

Applying novel Deep Learning (DL) approaches for sales forecasting brings several
benefits to SCM. To begin with, it can improve the accuracy of sales forecasts when
compared to standard statistical models. This might overcome the limitations of
statistical forecasting approaches that rely heavily on linear relationships to predict
future outcomes (Cecaj et al., 2020). DL techniques are able to model complicated
non-linear relationships and learn to map inputs to outputs arbitrarily (Yang, 2021).
Secondly, DL models can handle large amounts of complex data, including unstruc-
tured data, which provides valuable insights for sales forecasting and can be easily
scaled to handle large volumes of data, making them suitable for large supply chain
networks with many products and stores (Gamboa, 2017). The model has a rapid cal-
culating speed and an excellent non-linear fitting capability (X. Zhang et al., 2018).
Finally, DL models may automate forecasting, saving supply chain managers time
and resources and allowing them to focus on other SCM issues such as logistics,
procurement, and production planning (Jiménez et al., 2017).

In this study, the time series are arranged in a multi-level hierarchy; items are grouped
into subcategories in a product taxonomy and are grouped into each store. In the
context of retail or supply chain forecasting for product sales time series, a hierarchical
structure can often be visualized as a tree, where the leaf nodes represent the finest
granularity and the relationships between them are shown by the edges, reflecting the
parent-child connections especially in Fast-Moving Consumer Goods (FMCG) supply
chain (Paria et al., 2021). FMCG refers to a wide range of consumer goods that
are typically sold quickly at a relatively low cost. These goods are often considered
essential or daily necessities and are typically purchased frequently. Since Henkel is
an FMCG company that produces various types of Laundry and Home Care products
in numerous countries and also be sold in every store around the world, utilizing DNN
techniques for sales forecasting would be a suitable method to manage such a complex
and vast data landscape.
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A comparison analysis is performed using novel DL approaches to demonstrate the
effectiveness of the proposed model. This analysis is conducted on real-world sales
data from Henkel and simulation data, both of which constitute structured time
series datasets. The DNN algorithms employed for sales forecasting in this study
include Long Short-Term Memory (LSTM), Neural Basis Expansion Analysis for Time
Series (NBEATS), Temporal Convolutional Network (TCN), and Transformer. This
thesis will contribute to sales forecasting by predicting future product sales while
accounting for a large and highly diverse number of variables that can impact sales
performance, as well as evaluating the performance of novel DL approaches to perform
predictions in a sales forecasting context.

1.2 Research Objectives

The primary objective of this research is to leverage the proposed framework to de-
velop innovative DNN models capable of accurately forecasting sales in the SCM
domain at Henkel. To accomplish this objective, a comparative analysis is conducted
among four DNN models based on their respective architectures. The performance of
these models is evaluated using both real-world data (sales data) implementation and
simulated data. Additionally, the forecast results from sales data are compared to the
existing forecast utilized by Henkel, with the goal of creating a comprehensive global
forecasting model applicable to all items and stores. Therefore, the research aims to
achieve accurate sales forecasting by evaluating and comparing the performance of
various DNN methods.

The second purpose of this study is to develop a global model that can be trained
using a one-step process on all time series data, eliminating the need for additional
processing. Given the large amounts of data involved, the research aims to make the
model adaptable and efficiently trainable on large datasets, without requiring batch
sizes that increase with the number of time series. In addition, the model incorporates
additive coherence constraints along the edges of the hierarchy, which leads to better
performance.

The application of this forecasting model will be deployed globally by an in-house data
science team and steered centrally by a planning team at Henkel. As a result, this
research offers valuable insights and recommendations for selecting the most suitable
DNN model for sales forecasting in Henkel SCM based on the analysis of real sales
data and experimental results. The long-term goal is reducing inventory, better order
fulfilment, shorter cash-to-cash cycle times, higher profit margins, and minimizing the
stock-out problems.
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1.3 Problem Statements

Following the background, the research questions have been formulated to guide the
achievement of the research objectives.

RQ1. How is the performance comparison between real-world datasets and simu-
lated data by applying the four DNN algorithms?

RQ2. Which novel DL method produces the most accurate sales forecasts?

RQ3. How does the best DNN perform in comparison to the existing forecasting
method in Henkel?

1.4 Related Work

This section presents a comprehensive review of literature related to the research
topic of this final project. We cover the implementation of forecasting in the domains
of global models, the forecasting methods used in several studies in terms of sales
in retail or SCM, and the use of novel DL methods in diverse cases. Sales are
commonly used as a proxy for demand in forecasting. While this is reasonable in most
cases, particularly in supply chain cases, it is essential to understand that when stock-
outs occur frequently or for extended periods of time, it is no longer an appropriate
approximation since consumers with demand will be unable to purchase. Unless
otherwise specified, the words sales and demand are used interchangeably throughout
the rest of the argument. Because historical data on sales per time period is available,
sales forecasting may be seen as a time series forecasting issue. Recently, sales
forecasting has been approached in a number of different ways, and DL techniques
are becoming increasingly popular due to their flexibility and ability to outperform
traditional statistical approaches.

The M-competition, also known as the Makridakis Competitions, is a series of fore-
casting competitions initiated and organized by Professor Spyros Makridakis in the
1980s to compare the accuracy of various forecasting methods for time series data.
The competitions were designed to encourage the development of new forecasting
techniques and to evaluate their performance against existing methods (Makridakis
et al., 2022a, 2018a). The M-competition significantly impacts on forecasting re-
search, resulting in the development of novel approaches and the improvement of
existing ones. The competitions also served as a benchmark for evaluating the accu-
racy of forecasting systems, which aided in the advancement of time series forecasting
methods. The approaches of this competition have become common in large-scale
industrial forecasting applications and have consistently been rated among the top
entries in forecasting competitions (e.g., M4, M5, and M6).
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The latest competition was M6 which had just finished January 2023, but in this
literature review, we want to study the M5 competitions (Makridakis et al., 2022a,b)
since the case study is similar to this research topic. According to Makridakis et al.
(2022c, 2018b), up until now, forecasting models have been trained and optimized
utilizing just the information provided in a single series, which is a series-by-series
method. In cases where there is limited or sparse data or when series have a high
correlation, cross-learning can greatly enhance forecasting accuracy by enabling the
accurate prediction of individual series through learning from multiple series that is
also called "global" model (Montero-Manso et al., 2020; Montero-Manso & Hynd-
man, 2021). The advantages of applying global models were emphasized in the M4
competition results (Smyl, 2020; Montero-Manso & Hyndman, 2021), where the win-
ners used cross-learning approaches to extract meaningful information from the entire
data set, and was followed by many other studies (Godahewa et al., 2021; Li et al.,
2019). Montero-Manso & Hyndman (2021) stated that the benefits of using global
models include developing forecasting algorithms for sets of time series that result
in enhanced forecasting accuracy based on complexity analysis. This can be accom-
plished by including new characteristics as well as alternative model classes such as
kernel approaches, deep networks, or regression trees. As the complexity of the local
algorithm grows with the size of the set, the generalization bounds of the local and
global algorithm can easily surpass the constant complexity. As a result, the existing
empirical data based on DL has significant theoretical validity compared to the individ-
ually simple local method that has poorer generalization. These results are evidence
that global models are a version of multi-task learning (Montero-Manso & Hyndman,
2021) and have antecedents in sequence-to-sequence models for forecasting (Mariet
& Kuznetsov, 2019).

The M5 competition results support these findings and show that cross-learning is
the general method of applying forecasting methodologies to increase overall forecast
accuracy (Makridakis et al., 2022a). The goal of the M5 competition was to create the
most accurate point forecasts for 42,840-time series representing the hierarchical unit
sales of Walmart, the world’s largest retail companies by revenue, as well as the most
accurate prediction of the uncertainty regarding these forecasts (Makridakis et al.,
2022b). The M5 winning approaches enhanced global models to effectively account
for generally observable correlations across series of the same aggregate level and
between series of different aggregation levels (Panagiotelis et al., 2021; Theodorou
et al., 2022). Therefore, the global forecasting practice has long been considered
to deal with such cases on retail or SCM where the challenges rely on extracting
information from multiple time series at various aggregation levels, such as within
store, product, product-category, product-department, product-store, and multiple
countries as the data structure of M5 competition (Makridakis et al., 2022a). Instead
of predicting series-by-series, the winners grouped those hierarchical structures into
one global model that is a typical setup in a retail company. Besides, Spiliotis et
al. (2020) examined retail sales forecasting using a data set of 3300 daily demand
series and discovered that global forecasting strategies outperformed local approaches.
Moreover, in the field of hierarchical forecasting on sales forecasting, Hyndman et al.
(2011); Spiliotis et al. (2019) examined the base predictions produced at different
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cross-sectional or temporal levels are often integrated or altered such that the final
forecasts represent the patterns seen throughout the whole hierarchy while remaining
coherent. Godahewa et al. (2021) research shows that with large datasets readily,
global forecasting models that are trained across sets of time series often beat classic
univariate forecasting models that work on isolated series.

By developing generic model structures that can easily handle complex non-linear
patterns in data, artificial neural networks and ML have been shown to outperform
the traditional statistical approaches (Sun et al., 2008; Loureiro et al., 2018; Kharfan
et al., 2021). DNNs are known for their ability to capture complex features and
multilevel representations from sales forecasting datasets (Weng et al., 2020). Weng
et al. (2020) employed LSTM algorithm to predict the supply chain sales and assess
its effectiveness and efficiency. LSTM is a deep learning technique that automatically
extracts high-level temporal features from large datasets and accurately forecasts
sales. The outcomes of the experiment demonstrate that the model presented by
Weng et al. (2020) is capable of forecasting supply chain sales for a long-term period,
making it suitable for application in industrial production environments.

The existing sales forecasting datasets comprise not only sequential data but also other
data components, such as store and item information. Therefore, to incorporate
this additional information, a spatiotemporal matrix must be generated. However,
an Recurrent Neural Network (RNN) alone is insufficient to handle such datasets
effectively. Convolutional Neural Network (CNN) is well-suited for processing such
data as it can capture both scale-invariant features and local trend features (Wu
et al., 2020; Ma et al., 2016). Laptev et al. (2017); Salinas et al. (2020) have
demonstrated that RNN and CNN are capable of modelling intricate non-linear feature
interactions and have achieved significant forecasting performance in situations where
many related time series are present. Y. Chen et al. (2020) proposed TCN as a
technique to learn complex patterns such as seasonality, holiday effects within and
across series, and to enhance forecast accuracy, mainly when historical data is sparse or
missing. TCN is a specialized type of CNN that is specifically designed for processing
sequential data. TCN applies convolutions in the time domain, allowing it to learn
temporal dependencies across multiple time steps (Bai et al., 2018). This makes TCN
well-suited for modelling complex patterns such as seasonality and trend changes in
time series data.

Hosseinnia et al. (2022) conducted a comprehensive systematic review of literature
on the applications of DL in SCM. The study found that DL techniques have been
widely used for sales forecasting due to their ability to effectively capture complex
patterns and context-specific non-linear relationships between critical factors such as
RNN and CNN. Novel DL algorithms are also emerging in the field of forecasting, such
as NBEATS that was first introduced by Oreshkin et al. (2019). Several participants
in M-competition (Makridakis et al., 2022a) used NBEATS algorithm as part of their
solution, and one of them achieved the top rank in the competition by using an
ensemble of NBEATS models with different configurations. The success of NBEATS
in the M5 Competition and its ability to provide interpretable forecasts have made
it a popular choice for time series forecasting tasks in various industries. Besides,
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the transformer model introduced by Vaswani et al. (2017) and developed by Zeng
et al. (2022) for long-term time series forecasting demonstrating the effectiveness in
M-competition competing NBEATS achieved top results (Makridakis et al., 2022a).

1.5 Thesis Structure

The thesis is structured as follows: Chapter 2 provides the fundamental principles and
concepts that are necessary to have a comprehensive understanding of the algorithms
used in this study. Chapter 3 describes the methodology employed and the imple-
mentation of data validation techniques. Chapter 4 explains the implementation of
each DNN algorithm using real-world datasets (sales data), including a comparative
analysis of their performance. The performance results are further compared to the
current forecasting method utilized by Henkel. In Chapter 5, the experiment results
are presented, focusing on the simulation of data using the proposed DNN algorithms.
This is followed by a conclusion and discussion points for further research in Chapter
6.
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Chapter 2

Theoretical Background

2.1 Probability Theory

In probability theory, a random variable is a function that associates a real number
with each element defined on a sample space. (Walpole et al., 1993). A probability
distribution provides a framework for quantifying the likelihood of different possible
outcomes of a random variable. The form of a probability distribution may differ
depending on whether the random variable is discrete or continuous. Discrete random
variables can only take on a finite or countably infinite set of possible values, while
continuous random variables contains an infinite number of possibilities within a given
range. A Probability Mass Function (PMF) is a function defined over the sample space
of a discrete random variable x which provides the probability associated with each
specific value that x is equal to a certain value. To define the random variable’s
probability coming within a distinct range of values, a Probability Density Function
(PDF) is used as a function over the sample space S, where S ⊆ R, of a continuous
random variable x. The probability from random variable x is within a certain interval
can be obtained (Schervish & DeGroot, 2012).

There are several types of probability distributions depending on the nature of the
problem being addressed. The most commonly used distribution over real numbers is
the normal distribution, also known as the Gaussian distribution (Ross, 2014),

N (x;µ, σ2) =

√
1

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
(2.1)

The normal distribution is characterized by two parameters: µ and σ, where µ de-
termines the location of the central peak of the distribution and is equivalent to its
mean. On the other hand, the parameter σ is responsible for controlling the spread
of the distribution, and σ2 is equal to the variance of the distribution.

The exponential distribution is a continuous probability distribution that is frequently
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used to describe the time elapsed between events (Walpole et al., 1993). There are
situations where we need to use a probability distribution that has a concentrated
peak at the point x = 0, which is useful for tasks such as generative modeling and
anomaly detection. To accomplish this, we can use the exponential distribution with
density given by,

p(x;λ) = λ1x≥0 exp(−λx) (2.2)

The exponential distribution uses the indicator function 1x≥0 to assign probability zero
to all negative values of x. Specifically, if we take the negative of the exponential
distribution with rate parameter λ, we get a probability density function that is sharply
peaked at x = 0. This is because the exponential distribution decays rapidly as x
increases, but increases rapidly as x approaches 0. The parameter λ is a measure
of how quickly the probability density function decreases to zero. The mean of the
distribution is 1/λ, and the variance is 1/λ2.

2.2 Time Series Forecasting

According to Brockwell & Davis (2002), time series is a set of observations yt, each
being recorded at a specific time t. The observations are ordered sequentially with
equal time intervals. Suppose there are T periods of data available, with period T
being the most recent. We will let the observation on this variable at time period t
be donated by yt, t = 1, 2, . . . , T (Montgomery et al., 2015). The observational data
yt typically involves collecting an entire interval of time or at fixed time intervals.
It can also represent a cumulative quantity such as the total demand for a product
during period t. Different methods of time sampling require different approaches to
data processing.

A general approach for statistical time series modelling is mentioned by Brockwell &
Davis (2002); Montgomery et al. (2015) follows these steps: plot the time series and
examine the primary aspects of the graph, particularly if there is a trend, a seasonal
component, any obvious sharp changes in behavior, and any outlying findings; get
stationary residuals by eliminating the trend and seasonal components; select a model
to fit the residuals by estimating the unknown model parameters; validate the model
to determine how it is likely to perform in the intended application by splitting the
data into training, validation, and testing; deploy the forecasting model and invert the
transformations performed in previous stages to return to the original series prediction.

Time series can be either univariate (containing a single variable at each point in time)
or multivariate (including more than one variable at each point in time). A univariate
time series is a series with a single time-dependent variable that are sequences of
objects o1, o2, . . . , on declared at successive points t1, t2, . . . , tn in time (Moritz et al.,
2015). However, multivariate time series models include a number of variables that
are both serially and cross-correlated, where each observation at a time t is a vector
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of values instead of a single value. The variables in the vector are typically closely
interrelated for such series, which is considered to be a single observation in vector
form.

A time series can be decomposed into a trend, seasonal, and residual component. The
trend represents an overall increase (upward) or decrease (downward) in the value of
the variable over time (Montgomery et al., 2015). Trends can be long-term or more
dynamic and of shorter duration. The seasonal component repeats itself periodically
on a regular basis, such as a year. The residuals are what is left after detrending and
deseasonalizing the original data (Brockwell & Davis, 2002).

In statistics, each individual observation yt is viewed as a realization of a random
variable Y (Wheelwright et al., 1998). This means that it is important to select the
right probability model for the data in order to make accurate predictions. Choosing
the model with the best fit to historical data does not always result in a forecasting
approach that generates the best forecasts of new data. Focusing too much on the
model that generates the best historical fit frequently results in overfitting, or putting
too many parameters or terms in the model merely to increase the model fit. In gen-
eral, the optimal method is to choose the model with the minimum standard deviation
of one-step-ahead forecast errors when applied to data that were not utilized in the
fitting process (Montgomery et al., 2015). This is referred to as an out-of-sample
forecast error standard deviation or Mean Squared Error (MSE). A common method
for measuring out-of-sample performance is to use data splitting, which divides the
time series data into two segments—one for model fitting and the other for perfor-
mance testing. Cross-validation that will be further explained in Section 2.6 is another
term for data splitting. The manner in which the data is separated is fairly arbitrary.
Therefore, a reasonable rule of thumb is that the performance testing data set should
include at least 20 or 25 observations.

Traditional time series methods are statistical techniques that have been used for many
years to forecast time series data. Some of the common statistical traditional time
series methods include: Naïve forecast, ARIMA (Autoregressive Integrated Moving
Average), and Exponential Smoothing. The naïve forecasting methodology is the
most fundamental approach to generating forecasts, and most often is found to be
incredibly effective to be considered as the benchmark method for comparing models
(Wheelwright et al., 1998). This method takes the observed value from the previous
period and forecasts it for the upcoming period. This is frequently used as a baseline
against which more advanced forecasting approaches are measured.

The ARIMA model can be comprehended by breaking down its components into the
following categories: Autoregression (AR) which the model demonstrates a dynamic
variable that is dependent on its own previous or lagged values; Integrated (I) rep-
resents the process of differencing the raw observations, which aids in making the
time series stationary, thereby replacing the data values with the difference between
them and their preceding values; and Moving Average (MA) where the component
considers the correlation between an observation and an error residual that arises from
a moving average model used on the lagged observations (Brockwell & Davis, 2002).
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One of the most efficient and reliable forecasting methods for time series, which is
also very popular in practice according to Weller & Crone (2012) is Simple Exponen-
tial Smoothing (sometimes also called “Single Exponential Smoothing”). It was first
formulated by Brown & Meyer (1961) to forecast data with no clear trend or seasonal
pattern. The forecast at time t+ 1 is equal to a weighted average between the most
recent observation yt and the previous forecast yt−1 that can be written as,

ŷt+1|t = αyt + (1− α)ŷt|t−1 (2.3)

where α is the smoothing parameter, which is typically restricted within (0, 1) region
(this region is arbitrary).

Let the first fitted value at time 1 be denoted by l0 which we want to estimate. Hence,
the process to calculate exponential smoothing can be explained as

ŷ2|1 = αy1 + (1− α) l0

ŷ3|2 = αy2 + (1− α)ŷ2|1

ŷ4|3 = αy3 + (1− α)ŷ3|2
...

ŷt−1 = αyt−1 + (1− α)ŷt−1|t−2

ŷt+1|t = αyt + (1− α)ŷt|t−1

(2.4)

Substituting each equation into the following equation, we obtain

ŷ3|2 = αy2 + (1− α)[αy1 + (1− α)l0]

= y2 + α(1− α)y1 + (1− α)2l0

ŷ4|3 = αy3 + (1− α)[αy2 + α(1− α)y1 + (1− α)2]l0

= αy3 + (1− α)[αy2 + α(1− α)2y1 + (1− α)3]l0
...

ŷt+1|t =
t−1∑
j=0

α(1− α)jyt−j + (1− α)tl0

(2.5)

The last term becomes small for large t, such that the weighted average form leads to
the same forecast equation 2.3. The smoothing parameter α is typically interpreted as
a weight between the most recent actual value and the one-step-ahead predicted one.
If the smoothing parameter is close to zero, the prior fitted value ŷt has more weight
and the new information is ignored. If α̂ = 0, then the method becomes equivalent
to the global mean method. When it is close to one, then most of the weight is
assigned to the actual value yt. If α̂ = 1, the method transforms into Naïve method.
By modifying the smoothing parameter value, we can decide how to approximate the
data and filter out the noise (Hyndman & Athanasopoulos, 2018).
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2.3 Deep Learning Basics

This section provides the fundamental principles underlying deep learning. In order
to grasp the concepts of DL effectively, it is essential to possess a solid foundation
in the basic principles of ML, as DL is a specialized subset of ML (Goodfellow et al.,
2016). According to Bishop & Nasrabadi (2006) ML is a broad field that includes
a variety of algorithms and techniques that allow machines to learn from data and
make predictions or decisions without being explicitly programmed. It involves using
statistical models and algorithms to analyze and find patterns in data, and uses those
patterns to make predictions or decisions about new data. The goal of ML is to
build systems that can automatically improve their performance with experience, and
ultimately to develop machines that can learn, reason, and act like humans. Therefore,
applying ML allows a system to learn from problem-specific training data to automate
the process of analytical model building and solve associated tasks (Janiesch et al.,
2021).

Based on the given problem and the available data, we can distinguish three types
of ML; supervised learning, unsupervised learning, and reinforcement learning. Su-
pervised learning involves using a training dataset consisting of input examples and
labeled output values to calibrate the parameters of a machine learning model (Jani-
esch et al., 2021). Once the model has been successfully trained, it can be used to
predict the target variable given new input data. On the other hand, unsupervised
learning algorithms are used to identify the underlying structure of a dataset contain-
ing multiple features. In the context of DL, the goal is often to learn the probability
distribution that generated the dataset, either explicitly, such as in density estimation,
or implicitly, for tasks such as synthesis or denoising. Clustering is another unsuper-
vised learning algorithm that divides the dataset into clusters of similar examples
(Goodfellow et al., 2016). Meanwhile, reinforcement learning algorithms involves the
model interacting with an environment and receiving feedback in the form of rewards
or punishments. Instead of providing input and output pairs, reinforcement learning
involves specifying a current state of the system, a goal, and a list of allowable actions
and their environmental constraints. The ML model then experiences the process of
achieving the goal by itself using trial and error to maximize the reward (Janiesch et
al., 2021).

Figure 2.1 depicted that deep learning is a subfield of machine learning that in-
volves training artificial neural networks with multiple layers (deep neural networks)
to perform complex tasks such as image recognition, natural language processing,
and speech recognition (Goodfellow et al., 2016). According to Janiesch et al. (2021)
DNN specifically refers to the architecture of neural networks with multiple hidden lay-
ers, DL involves a wider range of methods that are used to optimize the performance
of these networks in various applications.

It is widely believed that DL can overcome the ML problems that is the curse of
dimensionality. This phenomenon occurs when the number of dimensions in the
data is high, making many ML problems exceedingly difficult. When the number of
variables increases, the number of possible distinct configurations of those variables
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Figure 2.1: Venn Diagram of Machine Learning and Deep Learning Concepts

grows exponentially. This poses a statistical challenge since the number of possible
configurations is much larger than the number of training examples.

DL algorithms are particularly well-suited for complex tasks such as image and speech
recognition, complex time series, natural language processing, and decision making.
They can automatically extract relevant features from raw data, and can learn and
improve over time, making them particularly powerful for solving problems that would
be difficult or impossible for humans to solve on their own. According to Schmidhuber
(2015), the primary objective of DNN is to receive a given set of inputs and perform
successive calculations on them to generate outputs that can address real-world prob-
lems, such as sequential data in time series and classification tasks. Typically, DNN
consists of an input layer, an output layer, and a sequential flow of data within a deep
network architecture. To extract high-level functions from input data, DNN employs
multiple layers of nodes. This enables the network to address problems in a more
comprehensive manner, allowing it to make informed conclusions or predictions based
on the available information and the desired outcome.

2.4 Gradient Descent

In gradient-based numerical optimization algorithms, the computation of parameter
updates is mainly based on the gradient or an estimator of the gradient. Online or
Stochastic Gradient Descent (SGD), which is a widely used optimization algorithm,
updates the parameters after each example is processed (Bengio, 2012). The gradient
is essentially a vector that points in the direction of the steepest ascent of a function,
and its estimation is a critical step for optimizing the performance of machine learning
models. SGD computes a noisy gradient estimate using a randomly selected subset
of the training data, which is usually more computationally efficient than processing
the entire dataset at once. By updating the model parameters using the gradient
information, the algorithm aims to iteratively optimize the model’s performance on
the training data.
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θ(t) ← θ(t−1) − ϵt
∂L(zt, θ)

∂θ
(2.6)

where zt is an example sampled at iteration t and where ϵt is a hyperparameter that
is called the learning rate. The choice of the learning rate is an important hyper-
parameter since it determines the size of the update steps taken during the training
process. If the learning rate is set too large, the algorithm may overshoot the optimal
point and the average loss function may increase instead of decreasing, resulting in
poor model performance Bengio (2012). Otherwise, if the learning rate is too small, it
may lead to overfitting and may not adequately represent the true underlying patterns
and variations present in the data. This can lead to biased and incomplete learning,
resulting in suboptimal models that fail to capture the complexity of the problem.
Therefore, it is important to note that the true gradient direction obtained by aver-
aging over the entire training set, represents the locally steepest descent direction, it
may not necessarily indicate the correct direction when considering larger steps.

2.5 Hyperparameter Sets

A hyperparameter is a variable that is set prior to applying the learning algorithm
to data and is not selected by the algorithm itself. The hyperparameters can be
manually fixed or tuned by an algorithm, but their values must be selected. The
basic concept of hyperparameter setting is to find the optimal set of hyperparameters
that can minimize the error on the validation set and improve the performance of the
model. Hyperparameters play a crucial role in DL and can significantly impact the
performance of the model, which are settings that are not learned during the training
process but are instead set before training. Examples of hyperparameters include the
learning rate, regularization strength, batch size, and number of hidden units (Bengio,
2012).

Bergstra & Bengio (2012) proposes a method called "random search" for hyper-
parameter optimization. The basic concept is to randomly sample hyperparameters
from a specified search space and evaluate their performance on a validation set. This
process is repeated for a certain number of iterations or until a stopping criterion is
met. By using random search, the authors aim to find good hyperparameter values
without making any assumptions about the structure of the search space or the rela-
tionship between hyperparameters. They argue that random search is more effective
and efficient than grid search, which is a commonly used method for hyperparameter
optimization that requires a pre-defined grid of hyperparameters to be searched.

Bengio (2012) recommends a systematic approach to setting hyperparameters, such
as random search or Bayesian optimization. They suggest setting a range for each
hyperparameter and randomly sampling from this range to create a set of hyperpa-
rameters. The model is then trained and evaluated for each set of hyperparameters
to determine which set performs best. This process can be computationally expensive
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but is essential to ensure that the model is optimized correctly.

A learning algorithm takes training data as input and produces a predictor or model
as output. In deep learning, there are many hyperparameters to be set, which can
make it difficult to adjust them all manually. The selection of hyperparameter values
is equivalent to model selection, that is how to choose the most appropriate learning
algorithm from a set of options. The performance of the algorithm on its training
data can be used to select the values of some hyperparameters, but most cannot be
selected this way. For hyperparameters that impact the effective capacity of a learner,
it makes more sense to select their values based on out-of-sample data. Once some
out-of-sample data has been used to select hyperparameter values, it cannot be used
to obtain an unbiased estimator of generalization performance, so the generalization
error of the pure learning algorithm (with hyperparameter selection hidden inside) is
typically estimated using a test set (or double cross-validation for small datasets).

2.5.1 Neural Network Hyperparameters

Various learning algorithms have various sets of hyperparameters, and it is useful to
understand the sorts of selections that practitioners must make when deciding on their
values, particularly in applicable neural networks and DL techniques. To understand
learning algorithms, we can break them down into two parts - the training criterion
and the model (which includes a family of functions or a parametrization), and the
procedure used to optimize the criterion. This means there are hyperparameters
associated with the optimizer, and those associated with the model itself - including
the function class, regularizer, and loss function. It is important to distinguish between
the two to effectively optimize the algorithm (Bengio, 2012). The following list is a
comprehensive description of hyperparameters for those DL methods mainly used in
SGD.

• The initial learning rate (ϵ0) is one of the most important hyperparameter
which inputs have been standardized or mapped to the interval (0,1), with
typical values for the learning rate fall between less than 1 and greater than
10−6. However, these values should not be considered fixed ranges as they
greatly depend on the model’s parametrization. Although a default value of
0.01 usually works for standard multi-layer neural networks, relying solely on this
default value would be unwise. If only one hyperparameter can be optimized and
SGD is being used, tuning the learning rate is the most crucial hyperparameter
to optimize.

• The choice of the method to reduce or adjust the learning rate schedule,
along with its hyperparameters such as the time constant τ , is an important
consideration in training a neural network. By default, a constant learning rate
is used over the course of training, with a large value for τ for every iteration.
While it is typically not necessary to deviate from this default, there are cases
where using a non-default learning rate schedule can be beneficial. One such
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example is the O(1/t) learning rate schedule, used in Bergstra & Bengio (2012)
is

ϵt =
ϵoτ

max(t, τ) (2.7)

which maintains a constant learning rate for the first τ iterations and then
decreases of the order O(1/tα), with a recommended value of α = 1 based
on traditional analysis of convex optimization problems. Moulines & Bach
(2011) suggested that smaller values of α should be used in the non-convex case
(α ≤ 1), especially when using a gradient averaging or momentum technique.
The default value for τ is usually infinity, meaning that the learning rate ϵt
remains constant over training iterations from epoch to epoch. However, in
some cases, it may be beneficial to choose a different value for τ . One heuristic
method for setting τ is to keep the learning rate constant until the training
criterion stops decreasing significantly, determined by a relative improvement
threshold. Another approach is to use an adaptive learning rate heuristic, such
as the one proposed by Bottou (2010), which involves training with N different
learning rates in parallel and selecting the value that gives the best results until
the next re-estimation of the optimal learning rate. This method is performed at
regular intervals during training using a small subset of the training set (Bengio,
2012).

• The mini-batch size, denoted by B, is a crucial hyperparameter in deep
learning. The choice of B varies depending on the task, dataset, and available
computational resource. A common range for B is between one and a few
hundred, with a default value B = 32 in many cases. Larger values of B, above
10, can leverage the computational speed-up gained from matrix-matrix prod-
ucts over matrix-vector products. The influence of mini-batch size B primarily
affects the computational aspect of training. With larger values of B, com-
putation is faster (provided proper implementation) but requires more example
visits to achieve the same error since fewer updates occur per epoch. Accord-
ing to theory, this hyperparameter should impact training time rather than test
performance. Hence, it can be optimized independently of other hyperparame-
ters by comparing training curves, such as training and validation error against
the amount of training time, after selecting other hyperparameters except for
the learning rate. It is possible for B and ϵ0 to have a slight interaction with
other hyperparameters. Therefore, it is recommended to re-optimize both at
the end of the optimization process. Once B has been selected, it can be
kept fixed while the other hyperparameters are further optimized, except for
the momentum hyperparameter if it is used (Bengio, 2012).

• Number of training iterations T which is measured in mini-batch updates.
This hyperparameter has a unique characteristic as it can be optimized without
additional costs using the principle of early stopping. By monitoring the out-
of-sample error, estimated on a validation set, as the training progresses (at
regular intervals), one can determine the optimal training time for a given
setting of all the other hyperparameters. Early stopping is a cost-effective
way to prevent severe overfitting, even when other hyperparameters may lead
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to overfitting. It also conceals the overfitting effects of other hyperparameters,
which may obscure the analysis of individual effects. Early stopping can balance
out the performance achieved by various overfitting hyperparameter setups by
compensating for high capacity with a shorter training period.

• Momentum β has been used to smooth out the stochastic gradient samples
produced by SGD. While a default value of β = 1 (no momentum) is sufficient
in many cases, momentum has shown to have a positive impact in certain
situations. According to Bottou (2010), for very large training sets, it may
be impossible to achieve better rates than those obtained with ordinary SGD.
However, the constant in front of the rate can still be significantly reduced by
using second-order information online.

• Layer-specific optimization hyperparameters although rarely done, it is
feasible to employ different values of optimization hyperparameters, including
the learning rate, for individual layers in a multi-layer network, although this is
not commonly implemented. This technique is especially suitable in the context
of layer-wise unsupervised pre-training, as each layer can be trained separately
while maintaining the lower layers (Bengio, 2012)

2.5.2 Hyperparameters of the Model and Training Criterion

In DL, it is important to carefully choose and tune the hyperparameters of a model
and training criterion in order to obtain the best performance. This typically involves
a process of trial and error, where different hyperparameter settings are tried and
evaluated on a validation set, and the best-performing hyperparameters are selected.

• Number of hidden units nh. The size of each layer in a multi-layer neural
network is usually adjustable and affects the model’s capacity. To ensure gen-
eralization performance, it is crucial to set the layer size (nh) to be sufficiently
large, given the use of early stopping and other regularization techniques (such
as weight decay). Even if nh is set too large, it usually has little impact on
generalization performance. However, larger layer sizes require a proportional
increase in computation, typically in O(n2

h) when scaling all layers at the same
time in a fully connected architecture.

• Weight decay regularization coefficient λ. One method to prevent over-
fitting in machine learning models is to include a regularization term in the
training criterion, which restricts the capacity of the model. This term can
push the model’s parameters towards a prior value, usually zero. L2 regular-
ization includes a term λΣiθ

2
i in the training criterion, while L1 regulariza-

tion includes a term λΣi|θi|. Both types of regularization terms can be used,
and the regularization strength is controlled by the regularization coefficient λ.
There exists a sound Bayesian justification for the regularization term, where
it is considered as the negative log-prior − logP (θ) on the parameters θ. The
training criterion is then the negative joint likelihood of data and parameters,
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− logP (data, θ) = logP (data|θ) − logP (θ), where the loss function L(z, θ)

is interpreted as − logP (z, θ) and − logP (data|θ) = −
T∑
t=1

L(z, θ) if the data

comprises of T identically and independently distributed (i.i.d) examples zt.
It is crucial to note that in stochastic gradient-based learning, it is advisable
to use an unbiased estimator of the gradient of the overall training criterion,
which includes both the total loss and the regularizer. However, only a single
mini-batch or example is considered at a time. There are two reasons for treat-
ing output weights differently than other weights in a neural network. Firstly,
we can restrict the network’s capacity by applying regularization solely to the
output weights, which eliminates the need to rely solely on early stopping. Sec-
ondly, the inputs and outputs may be sparse, which necessitates a different
treatment of the output weights compared to the hidden units (Bengio, 2012).

• Sparsity of activation regularization coefficient α. A prevalent approach in
the DL field, as described by Goodfellow et al. (2012), involves introducing
a regularization term into the training objective that promotes sparsity in the
hidden units. This sparsity constraint aims to encourage the hidden units to
have values that are close to 0 or exactly 0. Sparse representations are often
considered advantageous since they promote representations that disentangle
the underlying factors of representation. It is worth noting that increased spar-
sity can be offset by incorporating more hidden units in the network. Various
methods have been proposed to encourage the activation of hidden units to be
sparse or close to zero. Le et al. (2011) proposed a method of penalizing the
L1 norm of the representation or another function of the hidden units’ activa-
tion. However, this approach may not work well with non-linearities such as
the hyperbolic tangent, which saturate around -1 and 1, rather than around 0.
Alternatively, it is possible to penalize the biases of the hidden units, pushing
them towards negative values (Goodfellow et al., 2009).

• Neuron non-linearity. The typical neuron output is s(a) = s(w′x+b), where
x is the vector of inputs into the neuron, w the vector of weights and b the offset
or bias parameter, while s is a scalar non-linear function. The most commonly
used activation functions are the sigmoid 1/(1 + e−a); the hyperbolic tangent
ea−e−a

ea+e−a ; the rectifier max(0,a) and the hard tanh (Collobert & Bengio, 2004).

• Weights initialization scaling coefficient. Biases can generally be set to
zero initially, but weights should be initialized carefully to avoid symmetries
among hidden units in the same layer. Deciding whether to use unsupervised
pre-training and which algorithm to use for unsupervised feature learning is a
crucial decision. In most cases, unsupervised pre-training has been found to be
helpful and seldomly to be harmful, but it does require additional training time
and the specification of extra hyperparameters (Bengio, 2012).

• Random seeds. In general, the choice of a random seed has a minimal impact
on the results and can be disregarded for most of the hyperparameter search
processes. However, if computing resources are available, running a final set of
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jobs with different random seeds (typically 5 to 10) for a small set of best choices
of hyperparameter values may lead to a slight improvement in performance.

• Preprocessing. A commonly used nonlinear preprocessing technique recom-
mended by Mesnil et al. (2012) is the uniformization of features. This method
estimates the cumulative distribution of each feature, denoted as Fi, and trans-
forms each feature value xi using its corresponding quantile, F−1

i (xi). This
transformation produces a normalized rank or quantile for the value of xi. An-
other simple transformation is to apply a nonlinear function such as the loga-
rithm or square root to the input features, which can help reduce the tails of
the distributions and make them more Gaussian-like.

2.6 Cross-Validation

Certain settings, referred to as hyperparameters, are not learned through the gradient
descent algorithm. This is because optimizing these hyperparameters directly using
gradient descent can be challenging or computationally expensive. In such cases,
a cross-validation set is used to evaluate the hyperparameters which the algorithm
did not observe during the training process. This helps in avoiding overfitting of the
model to the training data and ensures that the model is generalizable to new, unseen
data. By tuning the hyperparameters using the cross-validation set, we can find the
optimal settings that result in the best performance of the model on the test set.
The process of selecting the best hyperparameters is also known as hyperparameter
tuning, which can be done using various methods such as grid search, random search,
and Bayesian optimization (Goodfellow et al., 2016).

To make proper choices about the model, including its hyperparameters, a standard
approach is to split the data into two parts. One subset is used for learning the
model parameters, while the other subset is used as a validation set for estimating
the generalization error during or after training. The validation set helps in updating
the hyperparameters accordingly. The subset of data used to learn the parameters is
still commonly called the training set, even though it may cause confusion with the
larger pool of data used for the entire training process. On the other hand, the subset
of data used to guide the selection of hyperparameters is called the validation set.
Typically, we use around 80 percent of the training data for training and 20 percent for
validation. However, since the validation set is used to "train" the hyperparameters,
it may underestimate the generalization error. Nonetheless, it usually underestimates
the generalization error by a smaller amount than the training error does. After
hyperparameter optimization is complete, the generalization error can be estimated
using the test set.

The process of dividing a dataset into a fixed training set and test set can be prob-
lematic, particularly if the test set is small. A small test set results in statistical
uncertainty around the estimated average test error, which can make it difficult to
claim that one algorithm works better than another on the given task. In cases where
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the dataset is small, alternative procedures are available that enable the use of all
examples in the estimation of the mean test error, at the cost of increased compu-
tational complexity. One such procedure is k-fold cross-validation, which involves
partitioning the dataset into k non-overlapping subsets, and estimating the test error
by taking the average across k trials. In each trial, the i-th subset of the data is used
as the test set, and the rest of the data is used as the training set (Grandvalet &
Bengio, 2004).

2.7 Overfitting and Underfitting

The training and test data are generated by a probability distribution over data sets
called the data generating process. To study the relationship between training error
and test error, we assume that the individual samples are i.i.d. These assumptions
imply that the examples in each data set are not related to each other, and that the
training set and test set have the same statistical properties, i.e., they are drawn from
the same probability distribution. By making these assumptions, we can describe the
data generation process using a single probability distribution that generates every
example in both the training and test sets. This probabilistic framework allows us to
study the relationship between the training error and test error in a mathematical way
(Goodfellow et al., 2016).

One important observation is that the expected training error of a randomly selected
model is equal to the expected test error of that model. This is because both expec-
tations are formed using the same data set sampling process, where we repeatedly
sample from the probability distribution p(x, y). However, when using an ML al-
gorithm, we sample the training set and use it to choose the parameters to reduce
training set error, then sample the test set. In this case, the expected test error is
greater than or equal to the expected value of training error.

In practical ML applications, we do not set the parameters of the algorithm beforehand
and then sample the data sets. Rather, we sample the training set and use it to adjust
the algorithm parameters to minimize the training error. Then, we sample the test
set to evaluate the performance of the algorithm. Noting that under this process,
the expected test error is always greater than or equal to the expected training error.
Therefore, it is crucial to develop ML algorithms that are effective at minimizing both
the training error and the gap between the training and test error. The primary goals
in assessing its overall performance are to minimize training error and the gap between
training and test error.

Therefore, the goal of a good ML algorithm is to have low training error while gener-
alizing well to new, unseen test data. Those two factors correspond to the two central
challenges in machine learning as well as deep learning: underfitting and overfitting.
Underfitting occurs when the model is not able to achieve a sufficiently low error
value on the training set. Meanwhile overfitting occurs when the model performs
very well on the training data, but it does not generalize well to the test data. In
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other words, overfitting happens when the difference between the error values on the
training and test sets is too large (Goodfellow et al., 2016). Once overfitting happens,
there are two general strategies to overcome as mentioned by James et al. (2013):
Slow Learning and Regularization. The Slow Learning approach involves gradually
fitting the model in an iterative manner by utilizing gradient descent. The fitting
procedure is then halted when the signs of overfitting due to gradient descent are
detected. The second solution is regularization which involves adding a penalty term
to the objective function that the model is trying to minimize. This penalty term dis-
courages the model from learning complex, high-variance relationships between the
features and the target variable. In regularization, we modify the learning algorithm
that is intended to reduce its generalization error but not its training error.

There are two common types of regularization: L1 regularization and L2 regulariza-
tion. L1 regularization adds a penalty term to the objective function that is propor-
tional to the absolute value of the model weights. This penalty term encourages the
model to learn sparse weights, where many of the weights are exactly zero. This has
the effect of reducing the number of features that the model uses, which can help to
prevent overfitting. L2 regularization, on the other hand, adds a penalty term that is
proportional to the square of the model weights. This penalty term encourages the
model to learn small weights, which has the effect of smoothing the decision boundary
and reducing the sensitivity of the model to small changes in the input data.
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Chapter 3

Methodology

3.1 Long Short-Term Memory

RNN is a family of neural networks for processing sequential data x(1), . . . ,x(τ), which
allow cyclical connections in the network (Rumelhart et al., 1986). RNN possesses
the ability to handle much longer sequences than non-recurrent networks due to their
specialization in sequential data processing. Moreover, these networks can efficiently
process sequences of varying lengths over time (Goodfellow et al., 2016).

RNNs have a crucial advantage in utilizing contextual information for mapping input
and output sequences, by allowing connections between hidden units with a time
delay (Graves & Graves, 2012). This unique structure enables the model to retain
information from the past and discover temporal relationships between distant events
in the data. However, despite its simple yet powerful design, recurrent networks
are challenging to train due to the potential exponential decay or explosion of input
influence on the hidden layer and network output as it cycles through the recurrent
connections. This issue is commonly known as the vanishing gradient and exploding
gradient problems, which have been discussed by Bengio et al. (1994); Hochreiter et
al. (2001).

The approach favored to tackle those problems is the LSTM method (Hochreiter
& Schmidhuber, 1997). The LSTM architecture consists of a set of recurrently con-
nected subnets, known as memory blocks that can capture the long-term dependencies
of the data. Each block contains one or more self-connected memory cells and three
multiplicative units (Graves & Graves, 2012). The multiplicative gates allow LSTM
memory cells to store and access information over long periods of time, thereby miti-
gating the vanishing gradient problem. This memory cell is controlled by three gates:
an input gate, an output gate, and a forget gate. The input gate determines how
much new information should be stored in the memory cell, based on the current input
and the previous output. The forget gate decides how much of the old information
should be discarded from the memory cell. The output gate determines how much
of the memory cell’s contents should be output to the next layer or time step. By

22



selectively adding or removing information from the memory cell, LSTM can effec-
tively maintain relevant information over long sequences, while filtering out noise and
irrelevant information.

Figure 3.1: Block Diagram of the LSTM

Figure 3.1 shows the architecture of the LSTM within RNN cell, which is designed to
address the vanishing gradient problem in conventional recurrent networks (Goodfel-
low et al., 2016). Unlike ordinary recurrent networks that use hidden units, cells are
recurrently connected to each other. The input feature is computed using a regular
artificial neuron unit, and its value is accumulated into the state if the sigmoidal input
gate permits. The state unit contains a linear self-loop whose weight is regulated by
the forget gate. The output gate can disable the output of the cell. All gating units
employ a sigmoid nonlinearity, while the input unit can use any squashing nonlinearity.
The state unit can also serve as an additional input to the gating units. The black
square signifies a delay of a single time step.

Leaky units enable the network to gather information such as evidence for a certain
characteristic or category over time. However, once that information is used, it
may be beneficial for the neural network to forget the previous state (Pascanu et
al., 2013). In addition to the RNN’s outside recurrence, LSTM recurrent networks
contain "LSTM cells" with an inside recurrence (a self-loop). Each cell has the same
inputs and outputs as a traditional recurrent network, but it includes extra parameters
and a gating system that regulates the flow of information. The state unit s(t)i , which
possesses a linear self-loop like the leaky i units mentioned in the preceding section,
is the most significant component. The self-loop weight is controlled by a forget unit
f
(t)
i for time step t and cell i, that sets this weight to a value between 0 and 1 via a

sigmoid unit as follows.

f
(t)
i = σ

(
bfi +

∑
j

U f
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j

)
(3.1)
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where x(t) refers to the current input vector and h(t) is the current hidden layer vector
containing the outputs of all LSTM cells. Moreover, bf ,U f ,W f are respectively
biases, input weights, and recurrent weights for the forget gates. Then, the LSTM
cell internal state is updated with a conditional self-loop as follows.

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i σ

(
bi +

∑
j

Ui,jx
(t)
j +

∑
j

W f
i,jh

(t−1)
j

)
(3.2)

where b,U ,W are respectively biases, input weights, and recurrent weights into
LSTM cell. The external input gate unit g

(t)
i is computed similarly to the forget

gate with a sigmoid unit to obtain a gating value between 0 and 1, but with its own
parameters that can be written as.

g
(t)
i = σ

(
bgi +

∑
j

U g
i,jx

(t)
j +

∑
j

W g
i,jh

(t−1)
j

)
(3.3)

The LSTM cell’s output h
(t)
i may likewise be turned off using the output gate q

(t)
i

which similarly employs a sigmoid unit for gating:

h
(t)
i = tanh(s

(t)
i ) q

(t)
i (3.4)

q
(t)
i = σ

(
boi +

∑
j

U o
i,jx

(t)
j +

∑
j

W o
i,jh

(t−1)
j

)
(3.5)

which contains parameters bo,U o,W o for its biases, input weights and recurrent
weights, respectively.

Rectified Linear Unit (ReLU) activation function is employed in this study, which can
be expressed as f(x) = max(0, x). ReLU contributes to the enhancement of neural
networks by expediting the training process. The computation of gradients becomes
straightforward, resulting in values of either 0 or 1 based on the sign of x. Further-
more, the computational step involved in ReLU is not complicated: negative elements
are simply replaced with 0, eliminating the need for exponentials, multiplication, or
division operations (Niu et al., 2020; Krizhevsky et al., 2017):

3.2 Neural Basis Expansion Analysis for Time
Series

The NBEATS architecture is a DNN that uses backward and forward residual links
and a very deep stack of fully-connected layers to perform time series forecasting.
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It diverges from other deep learning frameworks for time series forecasting in sev-
eral fundamental ways. Firstly, the fundamental architecture is designed to be basic
and universal while also expressive, which enables the exploration of pure DL archi-
tectures in time series prediction. Secondly, the architecture does not rely on time
series-specific feature engineering or input scaling. Finally, the architecture can be
extended towards making human interpretable results, which is necessary for investi-
gating interpretability.

Oreshkin et al. (2019) published NBEATS with a simple, general, and expressive
architecture that does not rely on time-series-specific feature engineering or input
scaling. The basic idea behind the architecture is to use a set of basis functions to
model the time series data. These basis functions are learned by the network during
training, and they are combined in different ways to produce the final forecast. The
network uses a stack of fully connected layers to learn how to combine these basis
functions in an optimal way. Therefore, NBEATS can be trained on multiple time
series, each one representing a different distribution. Because there are no recurrent
or self-attention layers in the model, training is faster and gradient flow is stable.

Consider a length-H forecast horizon a length-T observed series history [y1, . . . , yT ] ∈
RT with lookback window of length t ≤ T ends with yT . We want to predict the future
values y ∈ RH = [yT+1, yT+2, . . . , yT+H ], which the forecast of y denoted by ŷ. The
last observed value yT serve as model input, given by x ∈ Rt = [yT−t+1, . . . , yT ].

Figure 3.2: The Architecture of NBEATS

The proposed deep architecture consists of a basic building block, which is replicated
throughout the network (depicted in blue in Figure 3.2). Each block that is presented
by l contains one input xl and two outputs (x̂l and ŷl), referred to as backcast
and forecast. The overall model input that represents xl for the very first block in
the model is a historical lookback window of a particular length end with the last
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measured observation. Considering the length of input window to be a multiple of
the forecast horizon H, and typical lengths of x in a range from 2H to 7H. The
remaining block inputs xl are residual outputs of the previous blocks. Similar to the
output from the very first block, the rest of the blocks produce two outputs; ŷl for
the block’s forward forecast of length H and x̂l for the block’s backcast estimate of
xl by considering the constraints of the functional space that the block is allowed to
employ for approximating signals.

The global model output is generated as the sum of all the forecasts from the individual
blocks. The backcast generates a set of historical embeddings from the previous inputs
that are used for the following block. This mechanism ensures that the subsequent
input does not contain the portion that has already been predicted by the previous
block. As a result, the following blocks can concentrate on the remaining unexplained
parts of the input data. The forecast then generates a set of future embeddings that
are used to make predictions about future values in the time series.

The block architecture is basically comprised of two parts. The first part is a fully
connected network that produces the forward θfl and the backward θbl predictors of
expansion coefficients. As we can see at Figure 3.2, the block index l dropped for
θbl , θ

f
l , g

b
l , g

f
l . The second part comprises of the backward gbl and the forward gfl basis

layers that accept the respective forward θfl and backward θbl expansion coefficients,
project them internally on the set of basis functions and produce the backcast x̂l and
the forecast outputs ŷl.

The following equations describe the functioning of the first section of the l-th block:

hl,1 = FCl,1(xl),

hl,2 = FCl,2(hl,1),

hl,3 = FCl,3(hl,2),

hl,4 = FCl,4(hl,3).

θbl = LINEARb
l (hl,4),

θfl = LINEARf
l (hl,4).

(3.6)

LINEAR layer is a linear projection layer which means θfl = W f
l hl,4 and the FC

layer is a standard fully connected layer with ReLU layer. Therefore, for FCl1 we
have hl1 = ReLU(Wl,1xl + bl,1). This section of the architecture is responsible
for predicting the forward expansion coefficients θfl with the ultimate objective of
optimizing the accuracy of the partial forecast ŷ by appropriately combining the basis
vectors given by gfl . Furthermore, the subnetwork estimates backward expansion
coefficients θbl which are utilized by gbl to construct an estimate of xl with the ultimate
objective of assisting the downstream blocks by deleting components of their input
that are not useful for forecasting.

After that, the network uses basis layers to translate the expansion coefficients θfl
and θbl to outputs, ŷl = gfl (θ

f
l ) and x̂l = gbl (θ

b
l ). The operation can be described by
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the following,

ŷl =

dim(θfl )∑
i=1

θfl,iv
f
i ,

x̂l =

dim(θbl )∑
i=1

θbl,iv
b
i ,

(3.7)

where vf
i and vf

i are forecast and backcast basis vectors, respectively, with θfl,i is the

element of θfl . The function of gbl and gfl is to produce sufficient rich sets {vf
i }

dim(θfl )

i=1

and {vb
i}

dim(θbl )
i=1 . The outputs of these sets can be represented by different expansion

coefficients θfl and θbl . As demonstrated below, gbl and gfl can be adjusted to certain
functional forms to represent specific problem-specific inductive biases in order to
suitably limit the structure of outputs.

NBEATS employs doubly residual stacking, which consists of two residual branches,
one running over the backcast prediction of each layer and the other running over the
forecast branch of each layer, that can be written as the following.

xl = xl−1 − x̂l−1, ŷl =
∑
l

ŷl. (3.8)

As previously stated, the model level input x,x1 ≡ x is the input of the first block
in the particular instance. For all other blocks, consider the backcast residual branch
xl to be a sequential examination of the input signal. The previous block eliminates
the component of the signal x̂l−1 that it can reasonably approximate, making the
forecasting work on subsequent blocks easier. Moreover, this structure makes it
easier to perform gradient backpropagation. Each block produces a partial prediction
ŷl, which is then decomposed hierarchically by being aggregated at the stack level,
followed by the global network level. Therefore, the overall global output is just the
sum of the partial outputs of each block (Oreshkin et al., 2019).

3.3 Temporal Convolutional Network

TCN was first introduced by Bai et al. (2018) by conducting systematic evaluation of
generic convolutional and recurrent architectures for sequence modeling. The TCN
architecture is based on recent convolutional architectures for sequential data, but
is designed to combine simplicity, autoregressive prediction, and very long memory.
TCNs have unique features that distinguish them from other models. Firstly, the
convolutions in the architecture are causal, meaning that information from the future
is not used in the prediction process. Secondly, the architecture can accommodate
input sequences of any length and produce output sequences of the same length,
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similar to an RNN. In addition, Bai et al. (2018) highlighted the importance of
constructing highly extended effective history sizes, which refer to the ability of neural
networks to analyze data from a distant past to produce predictions. This is achieved
through a combination of deep networks, which are reinforced with residual layers, and
dilated convolutions. For example, the TCN algorithm is much simpler than WaveNet
(Oord et al., 2016) (no skip connections across layers, conditioning, context stacking,
or gated activations). Compared to the language modeling architecture of Dauphin
et al. (2017), TCNs do not use gating mechanisms and have much longer memory.

Figure 3.3: The Architecture of TCN

Suppose we have an input sequence x0, . . . , xT , and want to predict some correspond-
ing outputs yo, . . . , yT at each time. The fundamental constraint for predicting the
output yt at a given time t is that we can only utilize the inputs that have been ob-
served prior to that time: x0, . . . , xt. In formal terms, a sequence modeling network
can be defined as a function f : X T+1 → YT+1 that produces mapping as follows.

ŷ0, . . . , ŷT = f(x0, . . . , xT ) (3.9)

In the setting of sequence modeling, a network f is considered to be any func-
tion that maps input sequences X = (x0, x1, . . . , xT ) to output sequences Y =
(y0, y1, . . . , yT ), provided it satisfies the causal constraint where the output yt only de-
pends on the inputs x0, x1, ..., xt and not on any inputs in the future, xt+1, xt+2, . . . , xT .
The objective of learning in this context is to find the network f that minimizes
the expected loss between the predicted outputs and the actual outputs, given by
L(y0, y1, . . . , yT , f(x0, x1, . . . , xT )), where the input and output sequences are drawn
from some distribution.

The formal definition presented here can be applied to various settings, including
auto-regressive prediction where the objective is to predict a signal based on its past.
In such a scenario, the target output is simply the input shifted by one time step.
However, this definition does not apply to sequence-to-sequence prediction or machine
translation, as these domains allow the use of the entire input sequence to predict
each output (Bai et al., 2018).

TCN works by using a 1D fully-convolutional network (FCN) architecture, where each
hidden layer is the same length as the input layer, and zero padding of length (kernel
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size − 1) is added to keep subsequent layers the same length as previous ones. The
TCN uses causal convolutions, which are convolutions where an output at time t
is convolved only with elements from time t and earlier in the previous layer. This
ensures that there is no information "leakage" from future to past. The architecture
can take a sequence of any length and map it to an output sequence of the same
length, just as with an RNN. To build very long effective history sizes, TCNs use
a combination of very deep networks (augmented with residual layers) and dilated
convolutions. This could be simply expressed by TCN = 1D FCN + Causal
convolutions.

However, the main problem of the basic design for achieving a lengthy effective history
size is that it requires an incredibly deep network or extremely large filters, neither
of which were especially viable when the approaches were initially proposed. This
makes it challenging to apply the aforementioned causal convolution on sequence
tasks, especially those requiring longer history. To address this issue, techniques from
modern convolutional architectures can be integrated into a TCN to allow for both
very deep networks and very long effective history (Bai et al., 2018).

Dilated convolutions are employed in the TCN architecture to enable an extensive
receptive field by skipping input values with a specific step size known as the dilation
rate. This convolutional operation is used to simplify the use of causal convolution
in sequence tasks that need a longer history, allowing the network to look back at an
exponentially larger history corresponding to the network’s depth. Therefore, dilated
convolutions permit an exponentially large receptive field, which helps in applying
causal convolution on sequence tasks requiring longer history. More formally, for 1-D
sequence input x ∈ Rn and a filter f : 0, . . . , k − 1 → R, the dilated convolution
operation F on element s of the sequence can be written as the following

F (s) = (x ∗d f)(s) =
k−1∑
i=0

f(i) · xs−d·i, (3.10)

where d is the dilation factor, k is the filter size, and s−d ·i accounts for the direction
of the past. Dilated convolutions introduce a fixed step between adjacent filter taps,
resulting in a wider range of inputs being represented by the output at the top level.
When the dilation rate is set to 1, the dilated convolution behaves like a regular
convolution. Increasing the dilation rate allows the receptive field of a convolutional
network to expand, thereby increasing its effectiveness.

There are two ways to expand the receptive field of the TCN. The first way is to
increase the filter size k, and the second way is to increase the dilation factor d. In
particular, the effective history of one layer is (k−1)d. To achieve an extremely large
effective history using deep networks, it is common to increase d exponentially with
the depth of the network (i.e., d = O(2i) at level i of the network). This ensures
that there is a filter that hits each input within the effective history while allowing for
a vast deep network of effective history as illustrated in Figure 3.3 (a).

According to He et al. (2016), a residual block is described as consisting of a branch
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that leads to a sequence of transformations F . The outputs of these transformations
are then added to the input x of the block as follows.

o = Activation(x+ F(x)) (3.11)

The use of residual blocks, as proposed by He et al. (2016), enables layers to learn
modifications to the identity mapping, rather than the entire transformation, resulting
in improved performance in very deep networks. However, since the receptive field
of a TCN depends on its depth, filter size, and dilation factor, stabilization of larger
and deeper networks becomes crucial. In situations where a large receptive field is
required, such as for a history of size 212 and a high-dimensional input sequence, a
network with up to 12 layers may be necessary. Each layer is composed of multiple
filters for feature extraction. Therefore, we use a generic residual module in place of
a convolutional layer when designing the TCN model.

The residual block used in our baseline TCN model consists of two layers of dilated
causal convolution with a ReLU non-linearity. To normalize the convolutional filters,
Bai et al. (2018) applied weight normalization and added spatial dropout after each
dilated convolution for regularization. Unlike standard ResNet, where the input is
directly added to the output of the residual function, in TCN and ConvNets in general,
the input and output can have different widths. To handle the difference in input-
output widths, an additional 1x1 convolution is applied to ensure that the element-wise
addition operation receives tensors of the same shape which is illustrated in Figure
3.3 (b,c).

In an experimental experiment that was conducted by Bai et al. (2018), TCN models
have demonstrated superior performance when compared to generic recurrent archi-
tectures, such as LSTMs and GRUs. However, before the introduction of architectural
elements like dilated convolutions and residual connections, convolutional architec-
tures were generally weaker. The results suggest that, with these added elements, a
simple convolutional architecture can outperform recurrent architectures like LSTM
in various sequence modeling tasks.

3.4 Transformer Neural Network

Vaswani et al. (2017) introduced a novel architecture called Transformer that is built
entirely on attention mechanisms, without relying on recurrence or convolutions. The
proposed model architecture abandons the use of recurrence and solely relies on at-
tention mechanisms to establish global dependencies between the input and output.
Moreover, the Transformer is the first transduction model to calculate representations
of its input and output using just self-attention rather than a sequence-aligned RNN
or convolution.

The main working power of Transformers is from its multi-head self-attention mech-
anism, which has a remarkable capability of extracting semantic correlations among
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elements in a long sequence. The Transformer model consists of an encoder and
a decoder structure (Vaswani et al., 2017). The encoder takes an input sequence
and generates a set of hidden representations for each element in the sequence. The
decoder then takes these hidden representations as input and generates an output
sequence. The self-attention mechanism allows the model to attend to different parts
of the input sequence at different times, allowing it to capture long-term dependencies
between elements.

Figure 3.4: The Architecture of Transformer

To facilitate preserving some ordering information, positional encoding techniques
are used to add unique position embeddings to each element in the sequence before
feeding them into the Transformer. However, it is still inevitable to have temporal
information loss after applying self-attention on top of them. This is usually not a
serious concern for semantic-rich applications but may be problematic for time series
modeling tasks where temporal ordering plays a crucial role (Vaswani et al., 2017).

The model architecture has an encoder-decoder structure, where the encoder maps an
input sequence of symbol representations (x1, . . . , xn) to a sequence of continuous
representations z = (z1, . . . , zn). Given z, the decoder then generates an output
sequence (y1, . . . , ym) of one element at a time. At each step the model is auto-
regressive (Graves & Graves, 2012), consuming the previously generated symbols as
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additional input when generating the next.

To facilitate the encoder and decoder stacks in a Transformer model, each stack
consists of multiple layers of self-attention and feed-forward neural network modules
(Vaswani et al., 2017; Zeng et al., 2022). The Transformer model uses an encoder
stack to process input sequences and generate hidden representations for each element
in the sequence. This stack consists of a set of N = 6 identical layers, each of which
has two sub-layers: a multi-head self-attention mechanism and a fully connected
feed-forward network. Each sub-layer is followed by normalization and produces an
output of dimension dmodel = 512, which is added to the input of the sub-layer to
create a residual connection. The use of residual connections allows the model to
attend to different parts of the sequence at different times, and to generate hidden
representations that can capture global dependencies between input and output.

The decoder stack receives the hidden representations generated by the encoder stack
and produces the output sequence. Each layer in the decoder stack attends to both the
input sequence and the output generated by previous layers, enabling it to generate
predictions that depend on both the input and previous predictions. The decoder
also consists of a stack of N = 6 identical layers, with three sub-layers in each
layer. In addition to the multi-head self-attention mechanism and the fully connected
feed-forward network, the decoder includes a third sub-layer that performs multi-head
attention over the output of the encoder stack. Similar to the encoder, the decoder
uses residual connections around each sub-layer, followed by layer normalization. The
self-attention sub-layer in the decoder stack is modified to prevent positions from
attending to subsequent positions. This masking, combined with the fact that the
output embeddings are offset by one position, ensures that the predictions for position
i depend only on the known outputs at positions less than i (Vaswani et al., 2017).

To facilitate communication between the encoder and decoder stacks, an attention
mechanism is used to allow the decoder to attend to different parts of the encoded
input sequence at different times. This allows it to generate predictions that are
informed by relevant information from the input (Wen et al., 2022). The attention
function can be defined as a function that maps a query and a set of key-value pairs to
an output. All of these, including the query, keys, values, and output are represented
as vectors. The output is determined by a weighted sum of the values, where the
weight assigned to each value is calculated using a compatibility function of the query
with the corresponding key.

There are two types of attention mechanisms used in this context, namely Scaled Dot-
Product Attention and Multi-Head Attention. Scaled Dot-Product Attention takes
inputs in the form of queries and keys with a dimension of dk, and values with a
dimension of dv. The dot product of the query with each key is computed, followed
by division by

√
dk and applying a softmax function to derive the weights assigned

to each value. In practice, the attention function is computed for a set of queries
simultaneously by packing them together into a matrix Q (Vaswani et al., 2017). The
corresponding keys and values are also packed together into matrices K and V , which
can be expressed as follows.

32



Figure 3.5: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention

Attention(Q,K, V ) = softmax
(
QKT

√
dk

V

)
(3.12)

where queries Q ∈ RN×dk , keys K ∈ RM×dk , values V ∈ RM×dv , N , M denote
the lengths of queries and keys (values), and dk, dv denote the dimensions of keys
(queries) and values (Wen et al., 2022).

The multi-head attention mechanism allows the model to attend to input from mul-
tiple representational subspaces simultaneously and across different positions. It in-
volves projecting the queries, keys, and values into several subspaces and applying
the attention function independently on each of them in parallel. The output values
of each subspace are concatenated and projected again to obtain the final output
values, as depicted in Figure 3.5. Zeng et al. (2022) mentioned that transformer uses
multi-head attention with H different sets of learned projections instead of a single
attention function as

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)W
O

where headi = Attention(QWQ
i , KWK

i , V W V
i )

(3.13)

where the projections are parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dv ,
and WO ∈ Rhdv×dmodel .

3.5 Evaluation Metrics

It is important to evaluate forecast accuracy by looking at how well the model performs
on data that was not used during development. This measure provides an indication
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of the magnitude of realistic forecasting mistakes. As a result, the number of residuals
is a reliable indicator of the extent of realistic forecast errors. Forecast accuracy can
only be determined by examining how well a model performs on fresh data that was
not used during the model’s development (Hyndman & Athanasopoulos, 2018).

When selecting models, it is common practice to divide the available data into two
parts: training and test data. The training data helps estimate the parameters of a
forecasting method, while the test data is used to evaluate its accuracy. Since the
test data isn’t used for predictions, it should deliver an accurate indication of how
well the model will perform on new datasets.

The forecast residual is the difference between the actual value and its forecast, where
residual or error refers to unpredictable part in an observation. It can be written as

êt = ŷt − yt (3.14)

A wide variety of forecasting performance measures is available and on a high level
they can be classified into four main types: absolute, percentage, relative and scaled
(Hyndman & Koehler, 2006). It is important to choose appropriate performance mea-
sures based on the data set. Absolute measures are scale-dependent, while percentage,
relative, and scaled measures are scale-independent. A benefit of scale-independent
measures is that they are easier to compare across different forecasts. This is es-
pecially helpful when there is a difference in the orders of magnitude of different
forecasts, for example when one item is sold much more often than another.

When selecting performance measures, it is important to consider scale-independent
metrics. These measurements are not dependent on the size of the data set and can be
easily compared across different forecasts. This makes them particularly useful when
there is a large difference in magnitude between different predictions, for example
when one item sold more often than another. In this project, we use statistical error
metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Symmetric Mean Absolute Percentage Error (SMAPE), Weighted Average Percentage
Error (WAPE).

a. Root Mean Squared Error (RMSE)

RMSE is a quadratic scoring mechanism that calculates the average magnitude of the
error. It is also known as the metric that evaluates the quality of a forecasting model
or predictor. RMSE additionally takes into account variance (the difference between
anticipated values) and bias (the distance of predicted value from its true value).

RMSE =

√√√√( 1

n

n∑
t=1

(ŷt − yt)2

)
(3.15)

RMSE can also be compared to MAE to determine whether the forecast contains
large but infrequent error. A forecast approach that minimizes RMSE generates mean
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predictions, whereas one that minimizes MAE delivers median forecasts (Hyndman &
Athanasopoulos, 2018).

The squared value of the residuals is used in RMSE, which magnifies the impact of
outliers. The RMSE is the most significant measure in use scenarios where a few large
mispredictions can be highly expensive. Moreover, the impact of squared error before
averaging, RMSE gives a comparatively high weight to large errors. RMSE is more
sensitive to outliers and penalises large errors more than MAE due to the fact that
errors are squared initially. This means RMSE is most beneficial when large errors
are very undesirable. The variation of the frequency distribution of error magnitudes
increases the variance of RMSE, not the variance of the mistakes. In consequence,
while being harder to comprehend, RMSE is commonly utilized.

b. Mean Absolute Error (MAE)

MAE represents the average magnitude of the absolute values between the forecasted
values and the corresponding observed values that can be written as

MAE =
1

n

n∑
t=1

|ŷt − yt| (3.16)

where ŷ is the forecasted value and y is the actual value, and n is total number of
values in the test set.

MAE indicates how much inaccuracy we may expect from the forecast on an average
(Armstrong, 2010). The lower the MAE number, the better the model; a value of 0
implies that the forecast is error-free. In other words, when comparing models, the
model with the lowest MAE is deemed superior. If the absolute value is not used
(the signs of the errors are not eliminated), the average error is known as the Mean
Bias Error (MBE) and is typically used to assess average model bias. Hyndman &
Koehler (2006) mentioned that MBE can convey important information but should
be evaluated with caution because positive and negative mistakes would balance out.

However, MAE does not identify the proportional scale of the error, making it impos-
sible to distinguish between large and small errors. It may be used in association with
other metrics such as RMSE to assess if the errors are greater. Furthermore, MAE
might obscure issues related to low data volume. MAE and RMSE can be used jointly
to diagnose the variety in forecast errors. RMSE will always be more than or equal to
MAE; the greater the difference between them, the greater the variation of individual
residual in the sample. If RMSE equals MAE, all errors have the same magnitude.

c. Symmetric Mean Absolute Percentage Error (SMAPE)

SMAPE was proposed by Armstrong (2010) during M3 forecasting competition that
can be defined by
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SMAPE =
1

n

n∑
t=1

|ŷt − yt|
(ŷ + yt)/2

(3.17)

If yt is close to zero, ŷ is also likely to be close to zero. Thus, the computation
remains unstable since the measure still includes division by a value close to zero.
Furthermore, because the value of SMAPE might be negative, the interpretation of
"absolute error" can be misleading. SMAPE has a drawback in that if the actual
value or forecast value is 0, the error value approaches 100%. The lower a forecast’s
SMAPE value, the more accurate it is.

d. Weighted Absolute Percentage Error (WAPE)

WAPE, also known as Mean Absolute Deviation (MAD), quantifies the overall de-
viation between the forecasted values and the observed values. WAPE is calculated
by summing the total of the observed and forecasted values and then computing the
difference between these two quantities. A lower WAPE score indicates a higher level
of accuracy in the model’s predictions.

When the total of observed values for all time points and all items in a given backtest
window is close to zero, the weighted absolute percentage error expression is unde-
fined. In these cases, forecast produces the unweighted absolute error total, which is
the numerator in the WAPE expression.

WAPE =

∑n
t=1 |ŷt − yt|∑n

t=1 |yt|
(3.18)

WAPE is less robust to outliers than RMSE since it use the absolute error rather
than the squared error. Kolassa (2016), on the other hand, highlighted that one key
drawback with WAPE, particularly in an intermittent demand forecasting setting, is
that WAPE will be minimized in expectation in future distribution. In the case of
intermittent data, this can quickly lead to zero, and the "best" forecast, in terms of
MAD, may be a flat zero line.

3.6 Hyperparameter Optimization

This section discusses the optimization techniques employed for tuning the hyperpa-
rameters of different forecasting methods. It highlights the necessity of fine-tuning
hyperparameters, as explained in Section 2.5, to attain optimal performance in the
respective techniques. The problem of identifying a good value for hyperparame-
ters λ is called the problem of hyperparameter optimization that can be represented
generally in the equation 3.19.

λ∗ = argmin
λ∈Λ

Ex∼Gx [L
(
x;Aλ(X

train)
)
] (3.19)
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where Gx is the unknown natural distribution of the independent observation values
Aλ Bergstra & Bengio (2012). Regarding the expectation over Gx, we utilize the
commonly adopted approach of employing cross-validation explained in Section 2.6
to estimate it. By using cross-validation, we replace the expectation with a mean over
a validation set X(valid) whose elements are drawns i.i.d x ∼ Gx which cross-validation
is unbiased as long as X(valid) is independent. Therefore, the hyperparameter opti-
mization problem, represented by the function Ψ, can be formulated using Equation
3.20.

λ∗ ≈ argmin
λ∈Λ

µ
x∈X (valid)

L
(
x;Aλ(X

train)
)

≡ argmin
λ∈Λ

Ψ(λ)

≈ argmin
λ∈{λ(1),...,λ(S)}

Ψ(λ)

≡ λ̂

(3.20)

Grid search is a widely-used approach that evaluates a set of hyperparameters exhaus-
tively and selects the best one. In grid search, the set of trials is formed by assembling
every possible combination values of trial points λ(1), . . . , λ(S) to find a good λ. It
involves specifying a grid of hyperparameter values to search over, and evaluating the
model’s performance for each combination of hyperparameters.

Grid search computation is straightforward to implement and can be easily parallelized.
However, Bergstra & Bengio (2012) mentioned that grid search has certain limita-
tions. This method is most effective in low-dimensional search spaces, such as one or
two dimensions, and may not perform well in high-dimensional spaces. Grid search is
suitable for simple cases with a small number of hyperparameters and when working
with a single time series. Therefore, in this research, grid search techniques are not
utilized due to the nature of DL, which involves a large number of hyperparameters
and the handling of multiple time series.

Additionally, there are advanced hyperparameter optimization frameworks to auto-
mate the process of finding an optimal hyperparameter configuration in a fast and
efficient manner like Optuna and Ray Tune. Optuna offers interpretability through
visualizations and can handle global models with multiple time series, while Ray Tune
has automatic pruning capabilities. Akiba et al. (2019) introduced Optuna as a solu-
tion to handle the intricate nature of hyperparameters in deep learning models across
diverse scenarios, encompassing both large-scale and small-scale data experiments.

Optuna is a framework for hyperparameter optimization that uses a combination of
Bayesian optimization and pruning to efficiently search the hyperparameter space.
Bayesian optimization uses a probabilistic model to select the next set of hyperpa-
rameters to evaluate, based on the results of previous evaluations. Optuna gradually
constructs the objective function by interacting with the trial object. The search
spaces are dynamically constructed during the runtime of the objective function using
the methods provided by the trial object. Pruning is used to stop the evaluation of
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unpromising hyperparameter combinations early, to reduce computational cost (Akiba
et al., 2019).

Liaw et al. (2018) proposed Ray Tune as an alternative framework for hyperparame-
ter optimization that incorporates a combination of grid search, random search, and
adaptive search techniques to effectively explore the hyperparameter space. It in-
cludes the capability of automatic pruning to terminate the evaluation of unpromising
hyperparameter combinations early on, and supports distributed computing to expe-
dite the search process. The interface of Ray Tune fulfills the requirements for a wide
range of hyperparameter search algorithms, enabling easy scalability of the search to
large clusters and simplifying the implementation of algorithms.

Similar with Optuna which is an automatic software framework for hyperparameter
optimization, specifically designed for DL techniques. It emphasizes an imperative and
define-by-run style user API, allowing users to dynamically construct search spaces for
hyperparameters. Optuna falls under the categories of "derivative-free optimization"
and "black-box optimization" (Liaw et al., 2018).

38



Chapter 4

Real Dataset Results

In this chapter, we present the study results in the real-world dataset that uses his-
torical sales data at Henkel. We compare four different DNN algorithms namely
LSTM, NBEATS, TCN, and Transformer. In each section, we describe the archi-
tecture of their respective DNN. Additionally, we compare the performance of these
DNN models with the current forecasting method employed by Henkel, which serves
as a baseline for our analysis.

4.1 Data Description

Figure 4.1: Data Structure

The dataset used in this research comprises weekly sales data of Henkel Laundry and
Home Care products in Germany, spanning from January 1, 2020, to February 28,
2023. The Laundry and Home Care business consists of detergents, fabric softeners,
laundry performance enhancers, automatic dishwashing, and cleaning products. More
than 100 brands are under Laundry and Home Care category, with well-known prod-
ucts are Persil, Bref, Prill, Fleuril, and Witte Reus. The dataset is structured using a
three-dimensional data model, which facilitates effective analysis and decision-making
at the store level, considering specific products. Henkel operates a total of 24 fac-
tories dedicated to manufacturing Laundry and Home Care products. However, for
this study, our focus is specifically on the sales areas within Germany that demon-
strate the highest production volume of these products. Figure 4.1 depicted that
the first dimension represents the sales area, focusing solely on the German market.
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This implies that the products were manufactured in Germany and distributed within
the country. Production from each factory is transported to the distribution center
and subsequently to the retailers who act as customers (APO Partner) as the second
dimension in Figure 4.1. The term "APO Partner" represents a group of customers
located in a particular region and is associated with advanced planning and opti-
mization strategies. It includes store location services and delivery information for
customers such as LIDL, ALDI, and other supermarkets operating in a specific area.
The Global Trade Item Number (GTIN) is the parent identifier for items sharing the
same product name. Lastly, the International Data Harmonization (IDH) represents
the specific unit of an item. For example, different sizes of Persil Power Bar, such
as 472 grams and 975 grams, are categorized under a single GTIN, where Persil
represents the GTIN and IDH denotes the specific variant of Persil based on size.

In this research, we aggregate the IDH level into their respective parent IDs known
as GTIN. This aggregation allows us to establish time series granularity based on the
APO Partner and GTIN levels. As a result, we grouped those hierarchical structures
into one global model. Due to the computational limitation, we restrict our research
to 24 APO Partners and 10 GTIN, resulting in a total of 240-time series for analysis.

Table 4.1: Data Description

Features Description

Actual Sales The historical sales (target value)

IDH International Data Harmonization that means item or product

APO Partner Customers to whom we will deliver the products that means stores or
retailers who ordered Henkel products

GTIN Parent ID that is one category above IDH that means the brand of all
sizes for each specific product

Date The data in "y-m-d" format

Day The day based on date

Month The month of the date

Year The year of the date

Week The week of the year

Table 4.1 provides a detailed description of the data attributes utilized in this re-
search. The primary data attribute is the actual sales data, which constitutes the
historical time series. Additionally, we incorporate time calendar variations such as
day, month, year, and week number. The granularity of the forecasting is specified
on a weekly basis, considering the GTIN and APO Partner within the German re-
gion. To ensure the integrity of the analysis, the data is partitioned into three sets:
the training set, utilized for model fitting; the validation set, employed to assess the
model’s performance; and the test set, employed to evaluate the model’s ability to
handle unforeseen data. Since historical sales data is a sequence based on time series,
randomizing the cross-validation technique is not feasible. Because the prediction
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objective in time series analysis involves predicting future values, the test data must
have a higher index than the training set. This ensures that the test data always
represents future time points compared to the data used for model training. In our
study, the model fitting process encompasses the period from 1st January 2020 to
15th April 2022, while the validation data spans from 16th April 2022 to the end of
December 2022. The test set, on the other hand, covers the period from 1st January
2023 to the end of February 2023, enabling a comparison with the actual sales data
recorded until February 2023 that is 7 weeks.

4.2 LSTM Performance

During prediction, the LSTM model incorporates the previous target value, previous
hidden state, and covariates at time t to forecast the target at time t. To achieve the
desired performance, this research utilized particular hyperparameters, as described
in Section 2.5. The first hyperparameter set is the input chunk length, initially set
to 14, implying that the model will take the previous 14 time steps as input to make
predictions. Moreover, training length refers to the length of the time series used
during training, including both input (target and covariates) and output (target) time
series. The length of the training time series should be set to a higher value than
the input chunk length because the RNN should run for as many iterations as it will
during inference. We set the training length to 30, which means the model will be
trained using a time series of length 30, including the past 14 time steps as inputs
and the next time step as output. The model will be trained to predict the target
values at time steps 15 through 30 based on the past 14 time steps and any available
covariate data.

The hidden dimension or hidden size refers to the number of hidden units or neurons
in the LSTM layer, which we set initially to 7. These hidden units process the input
sequence and create a new representation that is passed to the output layer. The
higher the hidden dimension, the more complex the model can be and the better it can
capture complex patterns in the input data. However, a higher hidden dimension also
increases the number of model parameters, which can lead to overfitting and longer
training times. Besides that, the number of RNN layers needs to be considered
based on the complexity of the problem and the available computational resources.
Due to the limitation of computational resources in this study, we create an initial
LSTM model with a single stacked layer.

Batch size is a hyperparameter representing the number of time series (input and
output sequences) used in each training pass. Setting a larger batch size can improve
training efficiency by allowing the model to process more samples simultaneously, while
setting a smaller batch size can help prevent overfitting and improve generalization.
However, larger batch sizes may require more memory, resulting in slower convergence.
The initial batch size is set to 32, which is the default option.

The learning rate initially set to 0.001 determines the degree of adjustment to
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the neural network weights based on the loss gradient during backpropagation. The
subsequent hyperparameter to be considered is an epoch, which signifies a complete
iteration of the neural network on the entire training dataset. In this study, the initial
epoch value is set to 100. Another crucial hyperparameter is the random state,
which is used to manage the random weight initialization. This hyperparameter is
discussed in detail in Sub-section 2.5.2 and is set to 10.

Those initial hyperparameter settings mentioned earlier may not be optimal for the
model’s performance. Therefore, experimentation is necessary to find the optimal
values that can be found through a combination of cross-validation and optimization
techniques, which are explained in Section 3.6.

Table 4.2: Hyperparameter Setting for LSTM

Hyperparameter Initial Values Optimal Values

Input Chunk Length 14 14

Training Length 30 30

Hidden Dimension 7 7

Number of RNN Layers 1 3

Learning Rate 0.01 0.001

Batch Size 16 32

Epoch 100 300

Through the implementation of a 5-fold cross-validation and an optimization ap-
proach, a set of hyperparameters was evaluated with various values assigned to each
hyperparameter. Table 4.2 presented the findings that setting up the number of RNN
layers to 3 was better than using a single layer. A higher number of layers can help
capture more complex patterns in the data. However, it also increases the number of
parameters in the model, which may require more training time and computational
resources. Additionally, the optimal batch size was determined to be 16 through
various experiment setups to avoid overfitting and improve the generalization of the
model. This research shows that the model will produce the optimal result with a
learning rate = 0.001. Thus, it ensures that the same initial weights are used for each
training run, making the model result reproducible.

The optimal hyperparameter settings were determined by evaluating the model’s per-
formance based on the evaluation error and computation time, which are detailed in
the table below.

Table 4.3: LSTM Performance through Hyperparameter Setting

Performance Initial Hyperparameter Optimal Hyperparameter

RMSE 5818.29 5402.12

Computation Time 01:06:39.04 01:45:28.01
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The process of optimizing hyperparameters involved calculating the RMSE in the
validation data, and a lower value is desirable. Table 4.3 depicted that in the optimal
hyperparameter setup, the RMSE was found to be smaller than that in the initial
setup. Nevertheless, the optimal model’s computational time is longer than the initial
model since the epoch value is also higher. Before determining the optimal values,
multiple values were assigned to each hyperparameter to explore their effects. The
initial hyperparameters were carefully determined based on the characteristics of the
real data, adjusting the definitions of each hyperparameter as discussed in Section
2.5. Consequently, the optimal hyperparameters closely align with the initially selected
values.

4.3 NBEATS Performance

The next DNN algorithm utilized in this research is NBEATS, which is a novel ap-
proach that can handle multivariate series and covariates by flattening the inputs of
the model to a 1-D series and then reshaping the outputs to a tensor of appropriate
dimensions. To determine the length of the input sequence that is fed into the model,
the hyperparameter input chunk length is used, which was initially set to 7, along
with the output chunk length that was also set to 7. The output chunk length is
crucial in determining the length of the forecast model, as the aim is to predict at
least 7 weeks ahead.

As described in Section 3.2, there are two types of NBEATS architecture: the generic
and interpretable architecture consisting of one trend and one seasonality stack with
appropriate waveform generator functions. The hyperparameter generic architec-
ture determines whether the generic architecture of NBEATS is used or not. In this
study, we set the generic architecture to be true because we are not aiming to achieve
interpretable results using this model. Since we have set the generic architecture
to True, the number of stacks represents the number of stacks to comprise the
entire model, which initially set to 10. It is essential to avoid overfitting the model
to the training data, such that it is recommended to employ techniques such as early
stopping and regularization to prevent the model from becoming too complex.

The hidden dimension is an important parameter in the NBEATS model as it
affects the size of the expansion coefficients for each layer. The initial value for this
parameter is set to 3 dimensions. Moreover, the default value of batch size is 32,
and we use this value as our starting point. The initial number of blocks used in
deployed NBEATS is 1, which is necessary to build blocks stacked on top of each
other to create a deep neural network. In addition, the parameter for the number of
layers is set to 4 as a starting value, which determines the quantity of fully connected
layers in each of the stack layers. In order to maintain consistency with other models,
the choice of activation function is a critical hyperparameter. In this study, we use
the same activation function as in other models that is ReLU. Moreover, we set the
number of epochs to 100 and initialize the random state to 423. This is the
same initial value we set for RNN in our experiment.
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Table 4.4: Hyperparameter Setting for NBEATS

Hyperparameter Initial Values Optimal Values

Input Chunk Length 30 30

Output Chunk Length 7 7

Number of Stacks 10 30

Hidden Dimensions 3 3

Batch Size 32 32

Number of Blocks 1 3

Number of Layers 4 4

Number of Epochs 100 800

Table 4.4 presents the hyperparameters used in the NBEATS model, along with their
initial and optimal values. These hyperparameters play an essential role in determin-
ing the performance and accuracy of the NBEATS model, and their optimal values
were determined through experimentation and 5-fold validation. After conducting a
hyperparameter search, the optimal number of blocks was determined to be 3, while
the optimal number of stacks was found to be 30, which differed from the initial
value of 10. For the remaining hyperparameters, multiple values were tested before
ultimately converging to the same values as the initial ones.

Table 4.5: NBEATS Performance through Hyperparameter Setting

Performance Initial Hyperparameter Optimal Hyperparameter

RMSE 5464.36 4728.09

Computation Time 00:25:06.03 00:32:18.08

Table 4.5 summarizes the performance of the NBEATS model with different hyper-
parameter settings. The model’s performance is evaluated based on two metrics,
the evaluation error by RMSE and the computation time. The table compares the
performance of the model with its initial hyperparameter values and optimal hyper-
parameter values. The initial RMSE was 5464.36, which decreased to 5454.9 with
optimal hyperparameters.

4.4 TCN Performance

In TCN, the input chunk length, which represents the number of past time steps
fed to the forecasting module, is set to 30. Additionally, the output chunk length,
which determines the length of the forecasted sequence, is set to 7. The initial
dropout rate for each convolutional layer is set to 0.1 and later tested with a value
of 0.2 in the subsequent search. Through optimization, it was determined that the
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optimal dropout rate is 0.1. Other hyperparameters are detailed in Table 4.6 with the
main difference with other DNN algorithms lies on dilation. Its architecture includes
dilated convolutions that allow the model to have a wider receptive field and capture
patterns over longer sequences. This enables TCN to capture complex temporal
dependencies in the data, which is crucial for accurate forecasting. In addition, the
number of filters refers to the number of channels or feature maps generated by
the convolutional layers in the network. Each filter captures different patterns or
features from the input data. By adjusting the number of filters, we can control the
complexity and capacity of the TCN model. Initially, we set the number of filters
to 3 and subsequently explored various values to identify the optimal configuration.
Through experimentation, we determined that setting the number of filters to 5
yielded the best performance in terms of capturing and representing the underlying
patterns and features in the data.

Table 4.6: Hyperparameter Setting for TCN

Hyperparameter Initial Values Optimal Values

Input Chunk Length 30 30

Output Chunk Length 7 7

Dropout 0.1 0.1

Dilation 1 2

Number of filters 3 3

Kernel size 3 5

Batch Size 32 32

Number of Epochs 100 500

Table 4.7: TCN Performance through Hyperparameter Setting

Performance Initial Hyperparameter Optimal Hyperparameter

RMSE 5285.05 4318.74

Computation Time 01:40:20.89 01:59:48.18

Through the hyperparameter optimization process of TCN, significant improvements
were achieved. The error evaluation was reduced by 14%, resulting in a lower value of
4532.84. Additionally, the optimization led to improved computational efficiency, en-
abling faster processing time and the generation of more accurate forecasting results.
Although the TCN model has a longer training computation time, it is able to capture
and model complex temporal patterns and dependencies in the data more effectively.
As a result, the TCN model outperforms other DNN algorithms in terms of predictive
accuracy, as reflected by the lower RMSE value. This suggests that the additional
training time invested in the TCN model is justified by the improved accuracy of its
forecasts.
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4.5 Transformer Performance

The initial hyperparameter configuration for the Transformer model in the Darts pack-
age is consistent with the TCN model discussed in the previous section, including the
dropout rate. However, the notable difference lies in the number of encoder layers
and decoder layers. The encoder layers are crucial in encoding the input time series
sequence and extracting its underlying features. Increasing the number of encoder
layers has the potential to enable the model to capture more intricate temporal pat-
terns and dependencies within the data. On the other hand, the decoder layers are
responsible for generating the output sequence based on the encoded input sequence.
By increasing the number of decoder layers, the model’s capacity to capture complex
patterns and dependencies in the time series data can be improved. In the case of the
Transformer model, both the encoder and decoder layers were initially set to 2, and
through hyperparameter optimization, the optimal number of layers was determined
to be 3.

Table 4.8: Hyperparameter Setting for Transformer

Hyperparameter Initial Values Optimal Values

Input Chunk Length 30 30

Output Chunk Length 7 7

Dropout 0.1 0.2

Batch Size 32 32

Number of Encoder Layers 2 3

Number of Decoder Layers 2 3

Number of Epochs 100 200

Table 4.9: Transformer Performance through Hyperparameter Setting

Performance Initial Hyperparameter Optimal Hyperparameter

RMSE 5530.42 4433.02

Computation Time 01:07:17.96 01:23:10.06

Table 4.9 highlights the significant impact of hyperparameter tuning on the perfor-
mance of the Transformer model, as evidenced by the reduction in RMSE and com-
putation time. The computation time for training the Transformer model to compute
the optimal hyperparameters is comparable to that of the LSTM model in Section
4.2. Despite their different architectures, both models require a similar amount of
computational resources and time to train. Furthermore, the Transformer model’s
evaluation error is similar to that of the LSTM model. This suggests that both
models perform comparably in terms of their predictive accuracy on sales forecasting.
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4.6 Performance Comparison Results

To demonstrate the effectiveness of the novel DNN algorithms implemented in this
thesis, a comparative analysis is conducted using a real sales dataset at Henkel, as
discussed in Sections 4.2 to 4.5. The evaluation begins by comparing the performance
of each algorithm in terms of evaluation error on the test set, as outlined in Section
3.5. The evaluation error of the validation data, which was previously discussed
in the preceding section, was employed for hyperparameter optimization purposes.
However, at this stage, we aim to compare the performance on the test set of optimal
hyperparameters to assess the models’ ability to capture unforeseen data, which can
be seen in Figure 4.10.

Table 4.10: Error Evaluation of Test Data

Evaluation Error LSTM NBEATS TCN Transformer

RMSE 4187.24 3692.7 3224.53 3686.15

MAE 1563.92 1105.46 1335.31 1448.49

SMAPE 1.67 1.71 1.66 1.67

WAPE 2.3 1.62 1.96 2.13

The evaluation of the test set, conducted with the optimal hyperparameters, confirms
that TCN is the top-performing DNN algorithm. This outcome is consistent with
the validation results, which also identified TCN as the most effective approach.
Analysis of the validation data across previous sections shows that TCN consistently
outperforms other models, exhibiting the lowest error metrics. According to the test
data, TCN achieves the lowest error of RMSE with a value of 3224.53, followed closely
by Transformer with an error of 3686.15.

In terms of MAE, NBEATS has the lowest error with a value of 1105.46, followed by
the Transformer with an error of 1448.49. However, we consider the best performing
model based RMSE since RMSE is more sensitive to larger errors and provides an
overall measure of accuracy. As explained in Section 3.5, RMSE is more sensitive to
larger errors and provides an overall measure of accuracy because it penalizes larger
errors more heavily, as squaring amplifies the effect of larger errors.

Table 4.11: Error Evaluation Compared to the Current Forecast

Evaluation Error LSTM NBEATS TCN Transformer Current Method

RMSE 5474.90 4779.91 4532.84 4890.35 6174.65

MAE 1323.96 1666.82 1237.44 1338.25 2326.38

SMAPE 1.42 1.30 1.26 1.27 1.56

WAPE 1.04 1.31 0.97 1.05 1.83

In the current forecasting method implemented in Henkel, predictions are made for
a one-week time horizon, and the model is retrained by appending the most recent
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week’s data to predict the subsequent week. To make it comparable, we evaluate
the accuracy of the one-week ahead predictions for all APO partner and GTIN com-
binations within the time series. It shows that TCN model performs best for sales
forecasting in the SCM, as it has the smallest evaluation error.

The existing forecasting approach at Henkel employs exponential smoothing with
customized adjustments made by the demand planning team, where predictions are
made on a series-by-series basis. In this research, we utilize global models that can
simultaneously predict all series with a specific focus on weekly forecasts for each
APO Partner-GTIN combination. By incorporating calendar variations such as day,
month, year, and week number, we aim to enhance the accuracy of predictions com-
pared to univariate time series methods like exponential smoothing. Additionally, the
computational time required to train the DNN algorithms is relatively fast. The 240-
time series data training process required almost two hours for TCN, while NBEATS
exhibited a faster training time of only a half an hour.
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Chapter 5

Simulation Data Results

Simulation studies offer a valuable approach for comprehending the behaviour of sta-
tistical methods, as they provide insights into the performance of these methods when
the underlying "truth" is known through the generation process of the data. Simula-
tion studies enable us to gain a deeper understanding of the methods by examining
properties such as bias. In this context, the term "data-generating mechanism" refers
to the process by which random numbers are utilized to create an artificial dataset.
The objective of this experiment is to validate the performance of the best-performing
DNN model using the optimal hyperparameters obtained in the previous chapter.

5.1 Simulation Settings

The distribution of sales data in Henkel exhibits characteristics consistent with an
exponential distribution which can be seen in Appendix C. To create the simulation
data, we utilize the same parameter value as the sales data, specifically λ = 1717.63.
To better understand the data, a log normal transformation is applied and normalized
into range 0 to 1. This transformation aids in visualizing the data and potentially
normalizing its distribution. To do this, we build time series datasets that are au-
tocorrelated. In this experiment, we set the autocorrelation value to 0.6, indicating
that the subsequent data points have a positive correlation with the preceding data
points, in accordance with the characteristics of a time series function. In addition,
the performance of the DNN algorithm is examined under a sample size of n=100,000
to assess its effectiveness.

Furthermore, we use the specified hyperparameters to evaluate the effectiveness of
the model for the simulated data. In this study, the simulation data is divided into
training and validation datasets. The optimized hyperparameters obtained from the
real dataset are then applied to the simulation data. A log transformation is applied
to address the right-skewness of the exponential data with the small values that
occur more frequently than higher values. By transforming the data into a log-normal
distribution within the range from 0 to 1, we can achieve a more balanced distribution
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where smaller values occur more frequently compared to higher values.

The comparison of the loss function, particularly RMSE, on the validation simulation
data serves as the basis for conducting a robustness analysis and evaluating the
performance of the DNN models. By analyzing the loss values in both the train and
the validation dataset, we can assess the effectiveness and reliability of the DNN
algorithms in accurately predicting the simulated data.

Figure 5.1: Data-generating Distribution Figure 5.2: Log-normal Transformation

5.2 Experiment Results

Based on the performance comparison results presented in Section 4.6, it can be con-
cluded that TCN model performs the best among the evaluated models. Additionally,
NBEATS model demonstrates the fastest computation method. These findings sug-
gest that the TCN model achieves superior performance in terms of accuracy, while
the NBEATS model excels in computational efficiency. In order to assess the perfor-
mance of the models, the simulated data is evaluated, taking into account both the
evaluation error and computation constraints.

Table 5.1: Error Evaluation of Simulated Data

Evaluation Error LSTM NBEATS TCN Transformer Exponential

RMSE 9.63 10.36 9.59 9.67 12.9

MAE 7.67 8.22 7.59 7.66 10.45

SMAPE 0.01 0.01 0.01 0.01 0.01

WAPE 0.01 0.01 0.01 0.01 0.01

This evaluation is conducted in all models to analyze their effectiveness in handling the
simulated data. The TCN model demonstrated superior performance, as evidenced
by its minimal evaluation error, as shown in Table 5.1. This outcome aligns with
the findings from the analysis of the real dataset, where TCN also emerged as the
top-performing model. Despite employing the optimal hyperparameters identified in
the previous section. This consistency further reinforces the superiority of TCN, as
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it utilizes temporal convolutions to capture complex temporal dependencies across
multiple time steps. Compared to the baseline model, exponential smoothing, all four
DNN models perform better. Therefore, TCN is well-suited for effectively modelling
intricate patterns like seasonality and temporal changes in time series data.

The simulated data was trained using a fixed epoch value of 100 to ensure consistency
and facilitate a fair comparison in determining the optimal model. Subsequently,
the loss function was computed for both the training and validation datasets. The
resulting loss values are visualized in Figure 5.3 for the NBEATS model and Figure
5.4 for the TCN model. These figures provide a graphical representation of how
the loss function evolves during the training process for each model, highlighting the
convergence and performance of the models over time.

Figure 5.3: Loss Values of NBEATS Figure 5.4: Loss Values of TCN

The training process of the TCN model requires a longer duration compared to the
NBEATS model, specifically when employing the optimal hyperparameters of 3 blocks
and 3 filters. Despite the increased training time, the TCN model exhibits enhanced
performance in capturing the temporal dependencies and patterns within the data.
This finding suggests that the additional training time invested in the TCN model is
justified by its ability to effectively learn and model complex relationships in the time
series data, ultimately leading to improved forecasting accuracy. TCN benefits from
parallelism in computation, as convolutions can be performed concurrently across dif-
ferent time steps. This parallel processing capability speeds up training and inference,
making TCN more efficient than sequential models like LSTM.
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Chapter 6

Conclusion and
Recommendations

6.1 Conclusion

The DNN models with a global forecasting approach, which involve selecting the
optimal forecasting technique for each individual item, show promising potential for
achieving superior performance in sales forecasting within the SCM context. Among
the evaluated models, the TCN stands out as the best performing model, exhibiting
the smallest evaluation error and generating forecasts that closely resemble the actual
sales trends. Through the evaluation of the forecast results using the testing data, it
can be concluded that the selected DNN model outperforms the current forecasting
method used in Henkel. Implementation of the best model results in an average
improvement of 10% in forecast accuracy compared to the current forecasting method,
enabling the adoption of more sophisticated forecasting models.

Moreover, the analysis of the simulated data demonstrated that the TCN model
outperforms other models in terms of accuracy, displaying consistency with the results
obtained from real-world data. It is important to note that the TCN model does
require additional computation time and exhibits a slower convergence towards the
minimum error compared to the alternative models. This finding highlights the trade-
off between computation time and forecast accuracy, indicating that the TCN model
is a promising choice for achieving highly precise predictions.

6.2 Recommendations

In order to enhance the forecasting performance, it is worth considering the possibility
of ensembling the TCN and NBEATS models in future research. This combination
holds potential advantages as TCN exhibits the smallest error and NBEATS has the
advantage of shorter training time. By leveraging the strengths of both models, the
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ensemble approach could lead to enhanced forecasting accuracy while maintaining
computational efficiency.

Furthermore, it is recommended to incorporate additional external factors in future
research. Consideration should be given to factors from various domains, including
weather conditions, economic indicators, events and promotions. By incorporating
these external factors into the forecasting models, a more comprehensive and holistic
understanding of the underlying dynamics influencing sales patterns can be achieved.
This has the potential to improve the accuracy and reliability of the forecasts, thereby
enhancing the decision-making processes in supply chain management.
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Appendices

A. Comparison Error of Validation Real-Dataset
Before Tuning

Evaluation Error LSTM NBEATS TCN Transformer

RMSE 5818.29 5464.36 5285.05 5530.42

MAE 2236.64 1266.79 1358.34 1535.72

SMAPE 1.25 1.3 1.31 1.31

WAPE 1.38 1 1.07 1.21

B. Comparison Error of Validation Real-Dataset
After Tuning

Evaluation Error LSTM NBEATS TCN Transformer

RMSE 5402.12 4728.09 4318.74 4433.02

MAE 1345.73 1436.25 1352.88 1396.91

SMAPE 1.24 1.34 1.2 1.23

WAPE 1.06 0.89 0.84 0.86
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