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Abstract
In this project, we explore Causal Discovery with the presence of la-
tent variables. We describe a method of testing covariance structures in
order to distinguish causal from effect indicators in structural equation
models. This is done by implementing a statistical hypothesis testing
on simulated data. We analyse and compare different test statistics, in-
cluding a bootstrap technique. We introduce the FOFC algorithm that
checks quartets of measured variables in order to cluster them by their
common cause, based on these statistical tests. Finally, we discuss how
this could be used in more elaborate causal discovery algorithms such as
the Copula PC.
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1 Introduction
Causality is a fundamental concept in the field of statistics and research, aiming to understand the
relationships between variables and determine whether one variable influences another. It explores the
idea of cause and effect in many scientific fields, such as medicine, neuroscience, psychology, social sciences
and economics. The main goal is to obtain an answer to the question ’Does X cause Y ?’ or ’What are
the effects of changing X on Y ?’. This could lead to an estimation of the effect of smoking on lung
cancer, of education on salaries, of carbon emissions on the climate. Understanding causality could lead
to informed decisions by identifying the factors that have a direct impact on desired outcomes.

1.1 Background
In this project we focus on causal discovery within statistical models that contain latent variables. A
latent variable in a statistical model is a random variable that is unmeasured (although not necessarily
’unmeasurable’). There are three main reasons for introducing latent variables into a statistical model.
One reason is to include in the model features of interest that are not directly measurable, or were
not measured. A second reason is that, in some circumstances, latent variables models can be used to
construct estimators that are more efficient than those constructed from non-latent variable models. A
third advantage is that, in some circumstances, latent variables models can be used to construct estimators
of manipulation statistics that are unbiased, unlike those constructed from non-latent variable models
[1].

In order to formulate a definition of causality we first need to explain what counfounding variables are.

Confounder: Confounding variables (also confounders or confounding factors) are a type of extraneous
variable that influences both dependent and independent variables. If we undertake to estimate the effect
of one variable X on another Y by examining the statistical association between the two, we ought to
ensure that the association is not produced by factors other than the effect under study. The presence of
spurious association – due, for example, to the influence of extraneous variables – is called confounding
because it tends to confound our reading and to bias our estimate of the effect studied. Conceptually,
therefore, we can say that X and Y are confounded when there is a third variable C that influences both
X and Y ; such a variable is then called a confounder of X and Y [2].
The existence of confounders is an important quantitative explanation why correlation does not imply
causation (will be described below). In Figure 1 we use a graph to depict an example of a confound
variable C, causing variables X and Y . Then, there might be a correlation between X and Y but it is
not implied that X causes Y or vice versa.

Figure 1: Example of confounder causing two variables, without forcing a causation among them

Now, the concept of causality can be introduced as follows:
For random variables X and Y, X directly causes Y if, with all confounders fixed in constant values, an
intervention in X results in a change in Y, but an intervention in Y does not necessarily change X.

In addition, causality is not only about exploring whether two variables are causally related but also how
they are. In order to describe causal relationships among variables, we use Structural Equation Models
(SEMs).

Structural Equation Models (SEMs): SEMs are models that explain relationships between variables.
SEMs can be viewed as general models of many commonly employed statistical models, such as analysis
of variance, analysis of covariance, multiple regression, factor analysis, path analysis, econometric mod-
els of simultaneous equation and non-recursive modeling, multilevel modeling, and latent growth curve
modeling.
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Relationships among latent variables (or factors) and other variables in a SEM are structural relationships.
Structural questions relate to the regression and correlational relationships among latent variables and
among latent and observed variables. SEMs can include any combination of latent variables and observed
variables. These variables can be measured or latent, that is, variables that cannot be measured directly
but could be influential in other variables [3]. A simple example of such a SEM can be the following:

W := f1(X) + ϵ1 (1)
Z := f2(X) + ϵ2 (2)

Y := f3(X,W ) + ϵ3 (3)

Here, variables W and Z are caused by variable X, and Y is caused by (X,W ), and ϵ1, ϵ2, ϵ3 are noise
terms.

To visualize the causal relations between variables we use Directed Acyclic Graphs (DAGs). Directed
means that each edge has a defined direction, so that it represents a single directional flow from one
vertex to another, and acyclic means that there are no loops in the graph, that is, starting from any
vertex, following any edge that connects this vertex to another, there is no path in the graph to get back
to that initial vertex. The DAG corresponding to the SEM we described above can be seen in Figure 2.

Figure 2: Example of Directed Acyclic Graph (DAG)

In this project, we consider only linear SEMs. That is, the functions that describe the relation among
the variables will be linear, and therefore, these models are called Linear Variable Models. Taking the
example used above, the functions in (1),(2),(3) will have the following form:

f1(X) = a1X + b1 + ϵ1

f2(X) = a2X + b2 + ϵ2

f3(X,W ) = a3X + a4W + b3 + ϵ3

where a1, a2, a3, a4, b1, b2, b3 are scalars and ϵ1, ϵ2, ϵ3 are independent noise variables that follow a Gaussian
distribution.

Finally, the underlying goal is to draw conclusions about the causal relationships between variables in a
system based on observed data. This process is called Causal Inference and it involves identifying the
causes of an observed effect or predicting the effects of a potential cause, accounting for the influence of
other variables that may also affect the relationship.

1.2 Goals
In this project we investigate causal structures that contain latent variables. The goal is to derive an
efficient method for estimating the factor loadings in linear latent variables models. With the main
objective being to obtain the loadings in a data-driven way, we apply a statistical hypothesis testing on
the covariance structure of the observed variables of our model.

1.3 Structure of report
The rest of this paper is organized as follows. In Section 2, we start by describing existing methods
to perform causal discovery using linear models and how to deal with latent variables. In Section 3,
we will describe possible statistical tests that can be used for assessing the existence of common latent
causes of measured variables. Section 4 will cover the implementation of these tests and analysis of their
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application on simulated data. In Section 5, we will introduce an algorithm that systematically checks
quartets of measured variables in order to group them by their common causes based on these statistical
tests. Finally, we close with a general discussion and conclusion in Section 6.
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2 Causal Discovery Methods
Causal discovery is the process of identifying causal relationships among variables in a system. It is a crit-
ical aspect of scientific research because understanding causal relationships allows us to make predictions
and intervene in the system to achieve desired outcomes. Causal discovery can be challenging because
causal relationships are often not directly observable, and there may be multiple possible causal struc-
tures that can explain the relationships among variables. There is a variety of methods used to obtain
and analyse causal relationships from data, including statistical modeling techniques such as structural
equation modeling, Bayesian networks, and causal inference algorithms.

2.1 PC Algorithm
Causal discovery aims to find an underlying directed acyclic graph (DAG), which represents direct causal
relations between variables. It is a very popular approach for multivariate data analysis and therefore is
widely studied in the past few years, resulting in various algorithms. The PC algorithm can be considered
the reference causal discovery algorithm [4][5].

Before describing how the algorithm works, the definition of d-separation is needed.

Definition 1 (d-separated). For a graph G, if X and Y are vertices in G, X ̸= Y , and W is a set
of vertices in G not containing X or Y , then X and Y are d-separated given W in G if and only if
there exists no undirected path U between X and Y , such that
(i) every collider on U has a descendent in W and
(ii) no other vertex on U is in W [6].

The PC algorithm has two main steps. In the first step, it makes use of conditional independence
tests using partial correlation based on Pearson correlations between variables (d-separation), to build
the underlying DAG from observations. Starting from a complete undirected graph, it removes edges
recursively according to the outcome of the conditional independence tests. This procedure yields an
undirected graph, also called the skeleton. In the second step, after applying various edge orientation
rules, the algorithm returns a partially directed graph to represent the underlying DAGs.

A simple example of these steps is depicted in Figure 3 [7]. In (A), we have the original true causal
graph, that is, the desired output of the algorithm. By d-separation, this structure implies that X is
independent of Y , written X ⊥⊥ Y , and that X and Y are each independent of W conditional on Z,
written (X,Y ) ⊥⊥ W |Z. Suppose when called, the statistical decision procedure finds these relations. PC
assumes the Causal Markov and Faithfulness Conditions. These are:

Definition 2 (Causal Markov Condition). Let G be a causal graph with vertex set V and P be a
probability distribution over the vertices in V generated by the causal structure represented by G. G
and P satisfy the Causal Markov Assumption if and only if for every W in V,W is independent of
V \

(
Descendants(W ) ∪ Parents(W )

)
given Parents(W ).

Definition 3 (Faithfulness Condition). Let G be a causal graph and P a probability distribution gener-
ated by G. < G,P > satisfies the Faithfulness Condition if and only if every conditional independence
relation true in P is entailed by the Causal Markov Condition applied to G [6].

Then, the algorithm is based on the fact that under these conditions, when there is no latent confounder,
two variables are directly causally related (with an edge in between) if and only if there does not exist
any subset of the remaining variables conditioning on which they are independent.

In (B), the algorithm starts by forming the complete undirected graph. In (C), after testing for conditional
independence, the X − Y edge is removed because X ⊥⊥ Y . In (D), similar to previous step, X −W and
Y −W edges are removed because X ⊥⊥ W |Z and Y ⊥⊥ W |Z. In (E), the graph results after finding the
v-structures. Finally, (F) displays the final graph after applying orientation propagation, that is, for each
triple of variables such that A → B−C, and A and C are not adjacent, orient the edge B−C as B → C.
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Figure 3: Illustration of how the (original) PC algorithm works [7]

2.2 Gaussian Copula Factor Model
In this section we describe the Gaussian copula factor model, that can be used for cases where a latent
variable can be connected to either one or more observed variables.

Consider a latent random vector η = (η1, ..., ηk)
T , a response random vector Z = (Z1, ..., Zp)

T (will be
referred to as indicators), and an observed random vector Y = (Y1, ..., Yp)

T , satisfying

η ∼ N (0, C) (4)
Z = Λη + ϵ (5)

Yj = F−1(Φ[Zj/σ(Zj)]), ∀j = 1, ..., p (6)

where

Λ = (λij) a p× k matrix of factor loadings (k ≤ p)

ϵ ∼ N (0, C) the Gaussian noise with D = diag(σ2
1 , ..., σ

2
p)

σ(Zj) the standard deviation of Zj and

F−1(t) = inf{x : F (x) ≥ t} the quantile function of a random variable with cumulative distribution function F

Φ the CDF of the standard normal distribution.

This model is called a Gaussian Copula Factor Model with correlation matrix C, factor loadings Λ and
univariate margins Fj . An example of such a model is shown in Figure 4.

Figure 4: Example of Gaussian Copula Factor Model [8]

In this example, our model is a combination of a Gaussian factor model (from η to Z) and a Gaussian
copula model (from Z to Y ). In the special case of a factor having a single response (thus a single
observed variable), e.g., η1 → Z1 → Y1, it reduces to a Gaussian copula model where we set λ11 = 1 and
ϵ1 = 0, thus Y1 = F−1

1 (Φ[η1]).
This could be used, for instance, to infer the causal structure among measured variables and 4 latent
concepts related to Attention Deficit Hyperactivity Disorder (ADHD): inattention, hyperactivity, impul-
sivity, forgetfulness. In the typical design for questionnaires, one tries to get a grip on a latent concept
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through a particular set of well designed questions, which implies that a latent factor (η) in our model is
connected to multiple indicators/questions (Z) while an indicator is only used to measure a single factor
(Y ). This model is called a pure measurement model.

Definition 4 (Pure Measurement Model). A pure measurement model is a measurement model in
which each observed variable has only one latent parent, and no observed parent. That is, it is a tree
beneath the latents.

Copula PC Algorithm

Here, we introduce the Copula PC algorithm for causal discovery. It is based on a two-step approach.
The first step applies Gibbs sampling on rank-based data to obtain samples of the posterior over the
correlation matrices. From these posterior samples, we can extract the expected value and estimate the
effective number of datapoints. In the second step, using these quantities we can apply the standard PC
algorithm to obtain a Completed Partially Directed Acyclic Graph (CPDAG) [9].

Overall, even though the Copula PC Algorithm is flexible in the sense that it can deal with different
data types and missing data, it still requires the user to give the factor loadings (Λ in equation (5)).
Estimating these loadings will be described in Section 3.

2.3 Linear Latent Variable Models
As mentioned before, when trying to estimate causal relationships among variables, some of them can be
unobserved, thus, latent. When these latent variables are believed to influence only one recorded variable
directly, they are usually modeled as noise. In case they influence two or more measured variables directly,
the intent is to identify them and their influence [10].

There are multiple ways to visualize the relations among variables. One example is the Factor Graph
[11], that is, a bipartite graph representing the factorization of a function.
Let us consider a function that factorizes as follows:

g(X1, X2, X3) = f1(X1)f2(X1, X2)f3(X1, X2)f4(X2, X3)

then the corresponding Factor Graph is shown on Figure 5.

Figure 5: Example of Factor Graph

However, when trying to investigate the causal relation among variables, Directed Acyclic Graphs (DAGs)
are most commonly used. In DAGs, the variables are represented by the vertices and the causal relations
by the (directed) edges between them. This type of graph is not only used as a visualization of the causal
relations but also as a tool for further causal inference. A simple example of such a graph can be seen in
Figure 6, where there are three latent variables L1, L2, L3 and nine measured variables X1, ..., X9.
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Figure 6: Example of DAG

The latent structure, the dependencies of measured variables on individual latent variables, and the
linear dependency of the measured variables on their parents and (unrepresented) independent noises
in Figure 6 imply a pattern of constraints on the covariance matrix among the X variables. In our
example, X1, X2, X3 have zero covariances with X7, X8, X9, since the first three variables are caused by
L1, the latter three variables are caused by L3, but L1 and L3 do not effect each other. However, when
considering X1, X2, X3 and any one of X4, X5, X6, then three constraints are implied, since X1, X2, X3

are directly caused by L1, which also influences L2, and L2 is the cause of X4, X5, X6.

Introducing the following lemma will help us explain these constraints.

Lemma 2.1. For every four variables Xi, Xj , Xk, Xl caused by the same latent variable L, following a
linear model, the following equality holds:

σijσkl − σikσjl = 0 (7)

where σij is the covariance of variables Xi and Xj.

Proof. Let us consider the following graph, where Xi, Xj , Xk, Xl are the observed variables and L is the
common latent variable.

The linear equations that describe the causal relations in this graph are the following:

Xi = biL+ ϵi

Xj = bjL+ ϵj

Xk = bkL+ ϵk

Xl = blL+ ϵl

where bi, bj , bk, bl are scalars and ϵi, ϵj , ϵk, ϵl are noise terms.
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Considering that mean(Xi) = mean(Xj) = mean(L) = 0 and var(L) = 1, we have:

σij = E[XiXj ]−������:0
E[Xi]E[Xj ]

= E[XiXj ]

= E[(biL+ ϵi)(bjL+ ϵj)]

= E[bibjL
2 + ϵjbiL+ ϵibjL+ ϵiϵj ]

= E[bibjL
2] + E[ϵjbiL] + E[ϵibjL] +����:0

E[ϵiϵj ]

= bibjE[L2] + bi����:0
E[ϵjL] + bj����:0

E[ϵiL]

= bibj����:1
var(L)

= bibj .

Similarly we have:

σkl = bkbl

σil = bibl

σjk = bjbk

σik = bibk

σjl = bjbl

Therefore

σijσkl − σikσjl = bibjbkbl − bibkbjbl = 0

These constraints will be referred to as tetrad constraints and for example, for variables X1, X2, X3, X4,
they will be defined as follows:

ρ12ρ34 = ρ14ρ23 (8)
ρ14ρ23 = ρ13ρ24 (9)
ρ13ρ24 = ρ12ρ34 (10)

where ρij is the Pearson correlation between Xi and Xj
1.

It is important to notice that any two of the three constraints above entail the third [10].

Also, assuming that the variables X1, ..., X9 are normalized, thus, var(X1) = ... = var(X9) = 1, we have
that:

corr(Xi, Xj) =
cov(Xi, Xj)

σXi
σXj

=
cov(Xi, Xj)√

var(Xi)
√
var(Xj)

= cov(Xi, Xj)

for every Xi, Xj in X = {X1, ..., X9}. Therefore, the constraints above hold as well if correlations are
substituted by covariances. That is,

σ12σ34 = σ14σ23 (11)
σ14σ23 = σ13σ24 (12)
σ13σ24 = σ12σ34. (13)

In this project, we focus on 1-pure variable models with 4 measured variables per latent variable. That
is, models that are both pure and 1-Factor. The definitions of pure and 1-Factor variable models are
given below:

1Pearson correlation: ρXiXj
= corr(Xi, Xj) =

cov(Xi,Xj)

σXi
σXj

=
E[(Xi−µXi

)(Xj−µXj
)]

σXi
σXj

, if σXi
σXj

> 0
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Definition 5 (1-Factor variable model). 1-Factor variable model is a model where each (observed)
variable has precisely 1 latent parent and might have observed parents, in addition to its "error"
variable [12].

Definition 6 (pure variable model). A pure variable model is a variable model in which each observed
variable has only one latent parent. That is, it is a tree beneath the latent [10].

Therefore, a 1-pure variable model with 4 variables is a model where each observed variable has at most
one latent parent, no observed parents and no correlated errors. Such a model can be seen in Figure 7,
where L1 and L2 are the latent and X1, ..., X8 are the measured variables.

Figure 7: Example of 1-pure variable model with 4 measured variables per latent variable

Using lemma 2.1, we conclude that the tetrad constraints (11), (12) and (13) hold for such a model.
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3 Estimating Lambda Factors
As mentioned in Subsection 2.2, in order to use the Copula PC algorithm, it is required from the user
to give the lambda factor loadings. Since Machine2Learn has already developed an implementation of
the Copula PC algorithm with extensions, it is highly interested in ways to find the factor loadings in a
data-driven way. Hence the rest of this thesis will focus on this specific problem.

Here, we describe the technique we used, called Tetrad Test, and some variations of it, as well as a
bootstrapped version of it. Finally, we compare and elaborate on the results.

Tetrad Test
In order to estimate the lambda factors we will use the statistical hypothesis testing method (see Ap-
pendix A) where the test statistic is based on tetrads. Tetrads are differences in the product of pairs of
covariances among four random variables. Since the lambda factors are defined by the covariances among
the variables, a tetrad test could give an estimation of suitable lambda factors, necessary for the Copula
PC algorithm implementation.

However, the implementation of the test statistic can be complicated and computationally expensive.
In the following sections, we describe the original tetrad test statistic, introduced by Bollen and Ting
(1998) [13]. Moreover, we describe an extension based on a statistical technique, following closely the
publication by Johnson and Bodner (2007) [14]. We compare their performance and visualize some of
the results.

3.1 Background
Let X be an n×m matrix, consisting of n m-dimensional observations. These m-dimensional observations
are assumed to be realizations from a distribution with covariance matrix Σ with elements σij . The terads
are:

τijkl = σijσkl − σikσjl (14)

and can be estimated by

τ̂ijkl = σ̂ij σ̂kl − σ̂ikσ̂jl (15)

where σ̂ij is the estimated covariance between the i-th and j-th variables from the observed covariance
matrix computed from X.

We consider the problem of modeling Σ and notice that some restrictions on the covariance structure may
imply that some of the tetrads equal zero. These will be referred to as vanishing tetrads. As mentioned
in Subsection 2.3, for every four variables, if at least two of the tetrad constraints (11), (12) and (13)
hold, then these variables could have a common cause (common latent variable). Therefore, if at least
two vanishing tetrads are present, it is implied that i, j, k and l could have a common latent variable.

Then, we can define a statistical test with:

- null hypothesis: H0 = having vanishing tetrads

- alternative hypothesis: Ha = not having vanishing tetrads.

In order to reject the null hypothesis, we use a test statistic that is a function of those estimated tetrads,
so that it captures whether they vanish, as well as a distribution which the test statistic follows under
the null hypothesis [14].

3.2 Original Tetrad Test
We start by describing the steps of the original tetrad test and the computation of the tetrad test statistic.

Step 1. The null hypothesis assumes that the 4 variables are all caused by the same latent variable.
Thus, the observations matrix will be (n × 4). This implies that there exist a set of vanishing tetrads,
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that is, τabcd = 0. The alternative hypothesis assumes that this is not the case, thus, τabcd ̸= 0. The test
tries to verify which hypothesis is true, therefore, whether τabcd is vanishing or not.

Step 2. Compute the estimate covariance matrix of τ̂ , the estimator of the vanishing tetrads identified
in the previous step. This is

D(σ̂)
′
Ĉov(σ̂)D(σ̂) (16)

where D(σ̂) is a gradient matrix and Ĉov(σ̂) is the estimated covariance matrix of sample covariances σ̂.
Note that Ĉov(σ̂) must not be confused with the sample covariance matrix Σ.

The gradient matrix D(σ̂) is defined as D(σ̂) =
∂τ

∂σ

∣∣∣
σ=σ̂

but it can be easily computed by noting that
the partial derivative of τabcd with respect to σij is

∂τabcd
∂σij

=



σcd if i = a and j = b or if i = b and j = a

σab if i = c and j = d or if i = d and j = c

−σbd if i = a and j = c or if i = c and j = a

−σac if i = b and j = d or if i = d and j = b

0 otherwise

The covariance matrix Cov(σ̂) has elements Cov(σ̂ij , σ̂kl) = E(ZiZjZkZl)−σijσkl. When variables in X
follow a multivariate normal distribution, this difference between the expected value of the product of 4
variables and the product of (co)variances simplifies to [15]:

Cov(σ̂ij , σ̂kl) = σikσjl + σilσjk. (17)

These (co)variances are estimated by replacing the true tetrads (see equation (14)) with the estimates
based on the sample moments (see equation (15)) leading to the estimated covariance matrix Ĉov(σ̂).

Step 3. Identify a set of non-redundant vanishing tetrads. As mentioned in subsection 2.3, for every
three tetrad constraints, any two imply the third, therefore only two vanishing tetrads are non-redundant.
To identify them, we apply a sweep operator [16], namely, a matrix A consisting of zeros and ones, to the
estimated covariance matrix of τ̂ based on the fitted covariance matrix computed in the previous step
(see formula (16)).
Randomization of the selection of the set of non-redundant vanishing tetrads can be done by randomly
permuting the variables. Under the null hypothesis, if t and t∗ are the number of all vanishing tetrads
(this is three in our case) and the number of non-redundant vanishing tetrads (this is two in our case)
respectively, with t∗ ≤ t, then a t∗ × t matrix A of zeros and ones can effectively select a set of non-
redundant vanishing tetrads τ∗ = Aτ .

Step 4. Compute the tetrad test statistic

T = τ̂ ′A′[AD(σ̂)′Ĉov(σ̂)D(σ̂)A′]−1Aτ̂

= τ̂∗′[AD(σ̂)′Ĉov(σ̂)D(σ̂)A′]−1τ̂∗

= τ̂∗′[Cov(τ̂∗)]−1τ̂∗

(18)

where the estimated covariance matrix of τ̂ is based on the gradient matrix D(σ̂) and the estimated
covariance matrix of sample covariances σ̂, Ĉov(σ̂), following (16). This formula is the original tetrad
test statistic and will be referred to as T0. The statistical test that uses T0 will be referred to as
OrigTetradTest.

Convergence of T0

According to Bollen & Ting (1993) [17], under the null hypothesis, T0 converges in distribution to χ2
k

for large sample sizes and thus, is a suitable test statistic for our null hypothesis using a χ2
k reference
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distribution, where k is the number of degrees of freedom. In our case, k is equal to the number of non-
redundant vanishing tetrads, that is, k = 2, as explained in subsection 2.3. We visualize this convergence
in subsection 4.2 by implementing the test and comparing the distribution of T0 to the χ2

2-distribution.

Now, in order to decide whether to reject our null hypothesis, we need to calculate the p-value for the
T0.

Definition 7 (p-value). Consider an observed test statistic Tobs from unknown distribution. Then
the p-value p is what the probability would be of observing a test statistic value T at least as ‘extreme’
as Tobs, if T follows the distribution given by null hypothesis H0. That is:

• p = Pr(T ≤ Tobs|H0) for a one-sided left-tail test,

• p = Pr(T ≥ Tobs|H0) for a one-sided right-tail test,

• p = 2×min{Pr(T ≤ Tobs|H0), P r(T ≥ Tobs|H0)} for a two-sided test.
If the distribution of Tobs is symmetric about zero, then p = 2× Pr(T ≥ |Tobs| |H0)[18].

In our case, we use the original tetrad test statistic T = T0. Since our null hypothesis is that the tetrad
difference is equal to 0, then the p-value is defined as the probability that the observed test statistic Tobs

is larger than T0. That is,

p = Pr(Tobs ≥ T0|H0) =

∫ Tobs

0

p(T0) dT0. (19)

Moreover, there are two degrees of freedom (k = 2), since any two of the three vanishing tetrad differences
(see (8), (9) and (10)) entail the third. Therefore, the p-value as defined in (19), can be calculated from
the quantile function of the χ2

2-distribution.

Alternative tetrad test statistics
Even though using test statistic T0 has proven to be efficient and has the advantage of an asymptotic
distribution (χ2), there are some disadvantages that motivate us to experiment with alternative test
statistics.
Starting from the formula of T0, we notice that we need to invert the covariance matrix of τ̂ (see formula
(16)). In some cases this matrix can be singular. To prevent this, we need to use matrix A, which makes
computations more complicated and increases the chances of getting an error. Moreover, according to
Bollen & Ting (1993) [17], decreasing the sample size, T0 deviates from the asymptotic distribution.

To overcome the above complications, we will use some alternative tetrad test statistics, originally intro-
duced by Johnson and Bodner (2007) [14]. These are the following:

– T1 = τ̂ ′
[
diag[D(σ̂)′Ĉov(σ̂)D(σ̂)]

]−1
τ̂ (20)

by replacing D(σ̂)′Ĉov(σ̂)D(σ̂) with diag[D(σ̂)′Ĉov(σ̂)D(σ̂)]2

and setting A = I, with I being the identity matrix of size t (number of all vanishing tetrads).
– T2 = τ̂ ′Iτ̂ (21)

by replacing D(σ̂)′Ĉov(σ̂)D(σ̂) with I and setting A = I.

– T3 = τ̂ ′A′[A · diag[D(σ̂)′Ĉov(σ̂)D(σ̂)]A′]−1
Aτ̂ (22)

by replacing D(σ̂)′Ĉov(σ̂)D(σ̂) with diag[D(σ̂)′Ĉov(σ̂)D(σ̂)].

However, altering the original test statistic T0 to formulate T1, T2 and T3 implies that we cannot use the
χ2-distribution as a reference, so we need to estimate the distribution of the test statistics under the null
hypothesis H0. To do so, we will use a bootstrapping technique that will be described in detail in the
following subsection 3.3.

2Here, diag[D(σ̂)′Ĉov(σ̂)D(σ̂)] is a matrix with the same diagonal elements as of [D(σ̂)′Ĉov(σ̂)D(σ̂)] and zero as the
non-diagonal elements.
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3.3 Bootstrap Tetrad Test Statistic
As mentioned before, when using one of the alternative tetrad test statistics, we do not know the sampling
distribution under the null hypothesis.Therefore, we need to estimate the distribution of the test statistics
under the null hypothesis H0 and calculate the p-value based on that. To do so, we resample our data
in such a way that the null hypothesis holds, while keeping all other statistical properties as similar as
possible.

Bootstrapping is a sampling method that independently samples with replacement from an existing
sample data with the same sample size n and performing inference among these resampled data. More
details of this technique can be found in Appendix B. Here, we apply this technique to the tetrad test
statistic.
The bootstrap tetrad test [13] is based on comparing the observed test statistic, T = T (X), with B
simulation realizations of the test statistic, T (Z(1)), T (Z(2)), . . . , T (Z(B)).

That is,

Z = X(Q−1)′R′ (23)

where

– Q is obtained from the Choleski decomposition S = QQ′, with S the sample covariance matrix

– R is obtained from the Choleski decomposition Σ̂0 = RR′, with Σ̂0 the estimated covariance matrix
under the null hypothesis.

In order to obtain the Choleski decomposition for R, we need to estimate the covariance matrix under the
null hypothesis, Σ̂0. This can be done by minimizing the Kullback–Leibler (KL) divergence between two
multivariate normal distributions. The first normal distribution follows the empirical statistics, with mean
µ = 0 and covariance matrix S, and the other with covariance matrix Σ0. Note that Σ0 is constrained to
follow the null hypothesis, by enforcing its elements to follow equality (7). A more detailed description
of this approach is given in Appendix C. Resampling is done with respect to Z rather than X. For every
simulation realization we generate an array of N elements chosen randomly with replacement from the
range 1 to n. These elements are used as indexes on Z, creating a new array, that is, a new Z. Next, the
new Z is used in the tetrad test. This way, the bootstrap sampling distribution is consistent with the
null hypothesis in the sense that the sample covariance matrix computed from Z equals the covariance
matrix under the null hypothesis. That is, if H0 holds, then Σ̂0 = S which implies that Z = X.

Now, the bootstrap p-value is defined as the number of all the simulation realizations of the test statistic
that are larger or equal to the observed test statistic, divided by the number of simulations. That is,

pbs = B−1
B∑

b=1

I[T (Z(b)) ≥ T (X)]. (24)

When applying the bootstrap in the tetrad test, we notice that we go through Step 2, Step 3, and Step
4 (B + 1) times. However, when choosing T1 instead of the original test statistic T0 the computations in
Step 2 and Step 4 are significantly reduced, and Step 3 is omitted.
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4 Implementation of Tetrad Test Statistic
In this section, we apply the tetrad test introduced in the previous chapter to simulated data, using
different tetrad test statistics. The Python script for every implementation that is mentioned below, can
be found here: https://github.com/KonstantinaXK/CDFCLC.git

4.1 Implementation Settings
We start by creating simulated data. More specifically, we generate the observation matrix X we need as
input in the tetrad test, with size (N ×D), where D is the number of variables in the test, thus D = 4,
and N is the number of observations per variable.
We experimented with two types of observation matrices: one according to a linear latent variable model
and one sampled from a multivariate normal distribution.

Observation matrix sampled from model: This observation matrix is sampled from a linear latent
variable model, with 4 variables, whose covariance structure satisfies equality (7), giving that:

X =


X11 = λ1L1 + ϵ1 X12 = λ2L1 + ϵ2 X13 = λ3L1 + ϵ3 X14 = λ4L1 + ϵ4
X21 = λ1L2 + ϵ1 X22 = λ2L2 + ϵ2 X23 = λ3L2 + ϵ3 X24 = λ4L2 + ϵ4

...
...

...
...

XN1 = λ1LN + ϵ1 XN2 = λ2LN + ϵ2 XN3 = λ3LN + ϵ3 XN4 = λ4LN + ϵ4


where
λ1, ..., λ4 the factor loadings
L1, ..., LN the latent variable L sampled from a standard normal distribution
ϵ1, ..., ϵ4 the noise terms.

Observation matrix sampled at random: This observation matrix is sampled from a multivariate
normal distribution, with mean µ = 0 and a randomly generated covariance matrix. We do so, simply
by using a NumPy function that gives the desired output.

Moreover, in our implementation, we use the following notation:
– N : the number of observations per variable, as mentioned above
– M : the number of observation matrices
– B: the number of simulation realizations in bootstrap

4.2 Implementing tetrad test using T0

As mentioned in subsection 3.2, T0 converges in distribution to χ2
k, with k = 2 (see Figure 8). This is

visualized in Figure 9, where the test statistic has been calculated for M = 200 observation matrices
sampled according to the model, with N = 2000 observations per matrix.
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Figure 9: Test statistic T0 and χ2 distribution with 2 degrees of freedom

Moreover, even though Bollen & Ting (1993) [17] mention that decreasing the sample size, makes T0

deviate from the reference distribution χ2, we notice that in our case, where we consider only m = 4
variables, this deviation is quit small. In Figure 10a, we can see an example of three distributions with
different sized observation matrices, compared to the χ2-distribution. Here, the distribution of the test
with the largest observation matrix is, indeed, closer to the χ2-distribution, but the distance from the
other two distributions is insignificantly small. In Figure 10b, we implement the test, starting from a
very small observation matrix (N = 10) and gradually going to a large observation matrix (N = 5000),
comparing the Wasserstein distance from the reference distribution. That is:

Definition 8 (Wasserstein distance [19]). For p ∈ [1,∞) and probability measures P , Q on Rd with
finite p-moments, their p-Wasserstein distance is

Wp(P,Q) =

(
inf

π∈Γ(P,Q)

∫
Rd×Rd

||X − Y ||pdπ
)1/p
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where Γ(P,Q) is the set of all joint probability measures on Rd × Rd whose marginals are P , Q, i.e.
such that for all subsets A ⊂ Rd we have π(A× Rd) = P (A) and π(Rd ×A) = Q(A).

Again, the conclusion that decreasing the sample makes T0 deviate from the χ2-distribution is confirmed,
but this deviation is insignificant.
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Figure 10: Distribution of test statistic compared to distribution of χ2 (for different sizes of Xi)

Additionally, implementing the tetrad test using T0 for M = 2000 observation matrices Xi, (i = 1, ...,M),
sampled from the model, with N = 1000 observations per matrix, we get the p-values that can be seen in
Figure 11. As we can observe, the majority of the derived p-values are larger than the threshold α = 0.05,
thus, the tetrads are vanishing, as expected for an observation matrix sampled from the model.
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Figure 11: Observed p-values of the tetrad test using T0 with observation matrices sampled from the
model

Finally, we implement the test for M = 2000 observation matrices Xi, (i = 1, ...,M), sampled randomly,
with N = 1000 observations per matrix. As expected, the vast majority of the p-values equal 0, since
the probability of achieving a vanishing tetrad when sampling the observation matrix at random, is quite
small. This can be seen in Figure 12.
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Figure 12: Observed p-values of the tetrad test using T0 with randomly sampled observation matrices

4.3 Implementing bootstrapped tetrad test
Implementing the bootstrapped tetrad test using T1, we first calculate the simulation realizations T (Z(b))
and then we compare them with the observed test statistic T (X). Figure 13 is the result of an example
where the observation matrix X is sampled from the model with N = 1000 observations and we compare
the observed test statistic T1 with B = 300 simulation realizations. As we can observe, the derived p-
value is larger than the threshold α = 0.05, thus, the tetrads are vanishing, as expected for an observation
matrix sampled from the model.
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Figure 13: Observed test statistic T1 (here T) and 300 simulation realizations T (Z(b)) (here T_b)

Now, when sampling the observation matrix from a multivariate distribution with a given covariance
matrix (generated at random), we observe that the p-value becomes zero. This is expected from a
randomly sampled observation matrix, since there is a really low chance of entailing a vanishing tetrad.
The histogram of the test statistic and the simulation realizations can be seen in Figure 14. We observe
that the simulation realizations Tb are smaller than the observed test statistic T , and thus, according to
formula (24), the p-value is zero.
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Figure 14: Test statistic T1 for random observation matrix

Comparing alternative tetrad test statistics

In order to conclude which of the test statistics is the most appropriate to use in our case, we need to
investigate the alternatives. Thus, we compare the performance of T1, T2 and T3.
We start by sampling an observation matrix X from the model, with N = 1000 observations. Then
we repeatedly calculate the test statistics and the corresponding simulation realizations with B = 100,
leading to the p-value of every test statistic. This step is repeated 1000 times. The result can be seen
in Figure 15. Here, we observe that the histogram of T1 is centered closer to 1 than that of T2 and T3,
indicating that the majority of the tetrads are vanishing, as expected when sampling from the model.
We notice that even though we use the same observation matrix as input, there is a small variance
on the p-values, within each test statistic repetition. This is expected, since, in the bootstrap method
generates additional randomness. However, the difference is really small and thus, has no influence on
the outcome of the statistical test. Moreover, we observe that the test statistics give different sets of
p-values. Therefore, we will investigate further the differences between them.
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Figure 15: p-values of different tetrad test statistics for the same simulated observation matrix

Now, we sample M observation matrices X1, X2, ..., XM the same way as in Figure 15, that is, according
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to our model, with N = 1000 observations per matrix. For every matrix Xi (i = 1, ...,M), we calculate
the test statistics and the corresponding simulation realizations. Finally, using formula (24), we derive
the p-values for the different test statistics, for all the observation matrices. The p-value histogram
for M = 2000 can be seen in Figure 16. We observe that all the histograms approximate a uniform
distribution, as expected, without, however, giving any insight on which statistic is most suitable for our
tetrad test.
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Figure 16: p-values of different tetrad test statistics for multiple observation matrices

Moreover, we want to explore the p-values of every test statistic in relation to all the other ones. Therefore
we consider the following pairs, (T1, T2), (T2, T3) and (T1, T3), and we compare the p-values within each
pair. To do so, we draw the scatter plots with the identity line, for an example of M = 500 observation
matrices sampled from the model, as can be seen in Figure 17. We observe that most dots of the pair (T1,
T2) fall above the identity line, suggesting that the test T2 has more power than T1 (see 17a). Similar
is the case of (T1, T3), where the deviation from the identity line is larger, thus, T3 leads to much larger
p-values than T1 (see 17c). Finally, for pair (T2, T3), we cannot safely conclude whether the majority of
the dots fall under or above the line (see 17b).

In conclusion, after comparing the three alternative test statistics T1, T2, T3 and taking into account that
we deal with a small number of observed variables (D = 4), we cannot claim any statistic to be more
efficient for our case, since their performance is quite similar. Thus, we will follow the suggestion by
Bollen & Ting (1993) [17] and choose T1 for our implementation.
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Figure 17: Correlation of p-values for every pair of test statistics

Here, using statistic T1, we implement the test for multiple observation matrices and we obtain the
histogram in Figure 18a. This is an example of the p-values obtained from M = 4000 observation
matrices, sampled from the model, with N = 1000 observations per matrix. It can be observed that the
majority of p-values are larger than threshold α = 0.05, which is expected, since the observation matrices
are sampled from the model.

However, when we sample the observation matrices from a multivariate distribution with a given covari-
ance matrix (generated at random), we observe that the p-value is zero for almost all the observation
matrices, with very few exceptions. This makes sense, since a randomly sampled observation matrix is
expected to have a really low chance of entailing a vanishing tetrad. The histogram of the p-values in
such an example, for M = 1000 observation matrices, can be seen in Figure 18b (notice that y-axis is in
logarithmic scale).
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Figure 18: p-values of bootstrapped test T1 with observation matrices sampled (a) from model and (b)
randomly (in (b): y-axis in logarithmic scale)

4.4 Comparing original and bootstrapped tetrad test
Finally, we compare the original tetrad test using test statistic T0 with the bootstrapped tetrad test using
test statistic T1.

There are some definite advantages of T1 when it comes to singularity, matrix A (mask), computational
savings and bootstrapping. Starting off with singularity, in the T1 formula (see (20)), we notice that
instead of calculating the inverse of a matrix, we consider a diagonal matrix2, thus a non singular matrix
(unless there are zero variances, which is highly unlikely), thus invertible. Moreover, it becomes clear
that there is no need for matrix A as stated in Step 3 of the Original Tetrad Test, since we use the inverse
of the diagonal covariance matrix and thus, the properties and outcome of the test are independent of the
selected set of non-redundant vanishing tetrads. Also, T1 can result in significant computational savings,
especially in the bootstrap test, where the test statistic is repeatedly computed. Only the diagonal
elements of the covariance matrix of τ̂ need to be computed, and the inverse matrix is obtained by simply
computing the reciprocals of the variances. Finally, since there are fewer elements in the covariance
matrix of τ̂ to be estimated, this may result in a reduction in the variance in T1 and, therefore, more
power in smaller samples [14].

In Figure 19, we depict 3 examples of M = 4000 observation matrices sampled from the model, with
N = 1000, 2000 and 4000 observations per matrix and B = 500 simulations in bootstrapping test T1. T0

appears to perform better, since its p-value histogram follows a uniform distribution, as expected, under
the null hypothesis, while T1 seems skewed towards 1, decreasing the power of the tetrad test. Thus, T1

appears to be a more conservative test towards the null hypothesis.
Considering that the tetrad test performs slightly better when using T0 and in this case, the bootstrap
step is not required, making the test easier and quicker to implement, we conclude that T0 is the most
appropriate test statistic for our problem. To conclude, we will use the OrigTetradTest.
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Figure 19: Examples of test statistic T0 and bootstrapped T1 for different sized observation matrices
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5 FOFC Algorithm
In the previous section, we explained how the confirmatory tetrad test could be used to confirm whether
a quartet of observed variables coming from a certain SEM, have a common latent cause. However, we
want to do some data-driven analysis instead. To this end, we would like to have a stable method to
search through the large space of all possible models with the measured variables and latent causes. To
do so, we describe and implement the FindOneFactorClusters (FOFC) algorithm, originally introduced
by Kummerfeld and Ramsey (2016) [12]. Using FOFC, one can reliably infer measurement models from
measured indicators (variables), without prior knowledge of the causal relations or the number of latent
variables.
The FOFC receives as input an observation matrix and gives a list of non-intersecting clusters of variables,
where it is implied that the variables within the same cluster have a common latent variable. In order
to obtain these clusters, we need to test whether a given quartet of variables is vanishing, examining its
covariance structure. For that, we use the tetrad test described in the previous section.

While describing the FOFC, we use the following notation:

– K: the number of observed variables

– X = {X1, X2, ..., XK}: the set of observed variables

– α: the threshold of hypothesis testing (critical value)

The FOFC algorithm works as follows. It calls three main functions: FindPureClusters, GrowClusters
and SelectClusters. It first calls FindPureClusters, which tests each triple of variables to see if it has the
property that adding any other member of X creates a vanishing quartet; if it does have the property it
is added to the list PureList of pure triples. FindPureClusters tests whether a given quartet of variables
is a vanishing quartet by calling the OrigTetradTest, described in the previous section.
Then, GrowClusters initializes CList to PureList. If any two pure sets of variables overlap, their union is
also pure. FOFC calls GrowClusters to see if any of the pure triples in PureClusters can be combined into
a larger pure set. In order to determine whether a given variable u can be added to a cluster C in CList,
GrowClusters checks whether a given fraction (determined by the parameter Cpar) of the sub-clusters of
size 3 containing 2 members of C and u are on PureList. If they are not, then GrowClusters tries another
possible expansion of clusters on CList ; if they are, then GrowCluster adds u to C in CList and deletes
all subsets of the expanded cluster of size 3 from PureList. GrowClusters continues until it exhausts all
possible expansions.
Finally, when GrowClusters is done, SelectClusters goes through CList, iteratively outputting the largest
remaining cluster C still in CList, and deleting any other clusters in CList that intersect C (including C
itself).

Even though the algorithm follows closely the steps described by Kummerfeld and Ramsey (2016) [12],
we made some adjustments in GrowClusters function.

In Algorithm 1, the steps are described in more detail.
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Algorithm 1 FindOneFactorClusters
Input: Set of variables V, observation matrix X, alpha
Output: Set of non-intersecting clusters SelClusters
1: PureList = FindPureClusters(V, X, alpha=0.05)
2: CList = GrowClusters(PureList, Cpar=0.7)
3: SelClusters = SelectedClusters(CList)

FindPureClusters(V , X, alpha)
4: PureList = ∅
5: for S ⊆ V , |S| = 3 do
6: pure=True
7: for v ∈ V /∈ S do
8: if

(
OrigTetradTest((S ∪ v), X, alpha)

)
=True then

9: pure=False
10: BREAK
11: end if
12: if pure then
13: if S /∈ PureList then
14: PureList = PureList +S
15: end if
16: end if
17: end for
18: end for
19: RETURN PureList

GrowClusters(PureList, Cpar)
20: union=

⋃
i∈PureList i

21: CList = PureList
22: for cluster ∈CList do
23: for u ∈union /∈cluster do
24: for sub⊂cluster, |sub|=2 do
25: testcluster=sub∪{u}
26: if testcluster∈PureList then
27: acc+ = 1
28: else
29: rej+ = 1
30: end if
31: end for
32: if acc/(rej + acc) >= Cpar then
33: CList = CList +cluster ∪ {u}
34: for s ∈cluster∪{u}, s ∈CList do
35: PureList = PureList −s
36: end for
37: end if
38: end for
39: end for
40: RETURN CList

SelectedClusters(CList)
41: CListNew = sort(CList) ▷ Sort CList from largest clusters to smallest
42: for cluster1, cluster2 ∈CListNew, cluster1̸=cluster2 do
43: if cluster1∩cluster2 ̸= ∅ then
44: if cluster1⊆cluster2 then
45: CListNew = CListNew - cluster1
46: else
47: CListNew = CListNew - cluster2
48: end if
49: end if
50: end for
51: RETURN CListNew
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Implementation of FOFC
In order to test the efficiency of the FOFC algorithm, using the OrigTetradTest, we implement it for
a simple example of generated data. We consider 10 variables and their observation matrix, generated
according to the following linear latent variable model:

L1 = λLL0 + ϵ

Xi = λiL0 + ϵ for i = 0, 1, 2, 3, 4

Xi = λiL1 + ϵ for i = 5, 6, 7, 8, 9

(25)

with
L0, L1 the latent variables,
X0, ..., X9 the observed variables,
λL, λ0, ..., λ9 the factor loadings,
ϵ the noise.

This example is visualized in Figure 20.

Figure 20: True DAG of Model (25)

Now, using this generated data as input in the FOFC algorithm, we get a list of two non-intersecting
clusters, indicating that the variables coming from the same cluster, also caused by the same latent
variable, and the variables coming from different clusters, are caused by different latent variables. Taking,
for example, an observation matrix with N = 10.000 observations, Cpar = 0.7 and alpha = 0.05, we get
the following output:

Non-intersecting Clusters = [(0, 1, 2, 3, 4), (5, 6, 7, 8, 9)]

This output translates to Figure 21, which is identical to the true DAG in Figure 20, except from the
causal relation between the latent variables, that the FOFC is unable to identify. This is where the
Copula PC algorithm comes in use, that investigates the relations among latent variables.
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Figure 21: DAG resulted from FOFC

However, when running the FOFC 500 times, for different observation matrices (N = 10.000, Cpar = 0.7,
alpha = 0.05) that are generated according to Model (25), we observe that the output can be inaccurate.
More specifically, 120 out of 500 outputs look like the DAGs in Figure 22, where we notice that an
observed variable can be absent in either one or both of the clusters. This inaccuracy could occur due to
underperformance of the tetrad test.

Figure 22: Examples of inaccurate outputs of FOFC

Therefore, we can conclude that the algorithm is able to identify the clusters that indicate the causal
relationships among observed variables, but further analysis is needed, in order to improve its perfor-
mance. For instance, experimenting with the parameters Cpar (GrowClusters step of Algorithm 1) and
alpha (OrigTetradTest in FindPureClusters step of Algorithm 1) could potentially change the number
of inaccurate outputs.
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6 Conclusions
In this project, we implemented a confirmatory tetrad test, that is able to verify whether a quartet of
observed variables come from the same latent cause. We experimented with different test statistics and
compared their performance on simulated data. We proved that, using this test together with a search
algorithm such as the FOFC, one is ablr to infer measurement models from measured variables and
discover their common latent causes, without prior knowledge of the causal relations. However, further
analysis is necessary, in order to improve its performance. After this, the result could be used in more
complex causal discovery algorithms, such as the Copula PC.

7 Future Research
Future research could investigate how the FOFC algorithm could be used into the Copula PC algorithm.
The Copula PC can deal with discrete variables and missing values. However, FOFC uses continuous
variables and thus, it is required to investigate how to ’convert’ the data in such a way that would work
for both algorithms. One method could be to develop an algorithm similar to Copula PC, using Gibbs
sampling, to estimate the covariance matrix of Z instead of Y (refer to Gaussian Copula Factor Model)
and then use this matrix on a tetrad test. This way, a discrete matrix Y can be used in the software,
with possibly missing values.
Furthermore, since we only experimented with linear variable models, it would be quite useful to extend
the use of these methods to other types of causal relations, such as, non-linear or non-Gaussian.
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Appendix

A Statistical Hypothesis Testing
The principle idea of a statistical hypothesis test is to decide if a data sample is typical or atypical
compared to a population assuming a hypothesis we formulated about the population is true. In gen-
eral, regardless of the specific hypothesis test one is conducting, there are seven steps underlying all of
hypothesis tests. These components are summarized in Figure 23.

Figure 23: Overview for hypothesis tests

– Step 1: Select Test Statistic
Put simply, a test statistic quantifies a data sample. In statistics the term ‘statistic’ refers to any mapping
(or function) between a data sample and a numerical value. Popular examples are the mean value or the
variance. Formally, the test statistic can be written as

tn = T (D(n)) (26)

whereas D(n) = {x1, ..., xn} is a data sample with sample size n. Here we denoted the mapping by T and
the value we obtain by tn. Typically the test statistic can attain real values but restrictions are possible.

The test statistic plays the central role in a hypothesis test because by deciding which test statistic to
use one determines a hypothesis test to a large extend. For this reason one needs to carefully select a
test statistic that is of interest and importance for the conducted study.

We would like to emphasize that in this step, we select the test statistic but we neither evaluate it nor
we use it yet. This is done in step 5.

– Step 2: Null Hypothesis H0 and Alternative Hypothesis H1

At this step, we define two hypotheses which are called the null hypothesis H0 and the alternative
hypothesis H1. Both hypotheses make statements about the population value of the test statistic and
are mutually exclusive. For the test statistic t = T (D) we selected in step 1, we call the population value
of t as θ. Based on this we can formulate the following hypotheses:

null hypothesis: H0 : θ = θ0

alternative hypothesis: H1 : θ > θ0

As one can see, the way the two hypotheses are formulated, the value of the population parameter θ
can only be true for one statement but not for both. For instance, either θ = θ0 is true but then the
alternative hypothesis H1 is false or θ > θ0 is true but then the null hypothesis H0 is false.
Figure 23 shows the four possible outcomes of a hypothesis test. Each of these outcomes has a specific
name that is commonly used. If the null hypothesis is false and we reject H0 this is called a ‘true positive’
(TP) decision. The reason for calling it ‘positive’ is related to the asymmetric meaning of a hypothesis
test, because rejecting H0 when H0 is false is more informative than accepting H0 when H0 is true. In
this case one can consider the outcome of a hypothesis test a positive result.

34



The alternative hypothesis formulated above is an examples for a one-side hypothesis. Specifically, we
formulated a right-sided hypothesis because the alternative assumes values larger than θ0. In addition,
we can formulate a left-sided alternative hypothesis stating

alternative hypothesis: H1 : θ < θ0

Furthermore, we can formulate a two-side alternative hypothesis that is indifferent regarding the side by

alternative hypothesis: H1 : θ ̸= θ0.

Despite the fact that there are hundreds of different hypothesis tests, the above description principally
holds for all of them.
In order to connect the test statistic t, which is a sample value, with its population value θ one needs
to know the probability distribution of the test statistic. Because of this connection, this probability
distribution received a special name and is called the sampling distribution of the test statistic. It is
important to emphasize that the sampling distribution represents the values of the test statistic assuming
the null hypothesis is true. This means that in this case the population value of θ is θ0.

– Step 3: In our general discussion about the principle idea of a hypothesis test above, we mentioned
that the connection between a test statistic and its sampling distribution is crucial for any hypothesis
test.

Definition 1. Let X(n) = {X1, ..., Xn} be a random sample from a population with Xi ∼ Ppop ∀i and
T (X(n)) be a test statistic. Then the probability distribution fn(x|H0 is true) of T (X(n)), assuming H0

is true, is called the sampling distribution of the null hypothesis or the null distribution.

Similarly, one defines the sampling distribution of the alternative hypothesis by fn(x|H1 is true). Since
there are only two different hypotheses, H0 and H1, there are only two different sampling distributions
in this context.

– Step 4: Significance Level α
The significance level α is a number between zero and one, that is, α ∈ [0, 1]. It has the meaning

α = P (Type 1 error) = P (reject H0|H0 is true) (27)

giving the probability to reject H0 provided H0 is true. This is the probability of making a Type 1 error
resulting in a false positive decision.
When conducting a hypothesis test, we have the freedom to choose this value. The most frequent choice
of α is 0.05.
Finally, we want to remark that formally we obtain the value of the right-hand side of equation (27) from
the quantiles of the sampling distribution, as given by equation (31) (discussed below).

– Step 5: Evaluate Test Statistic from Data
This step is our connection to the real world, as represented by the data, because everything until here
has been theoretical. For D(n) = X(n) = {x1, ..., xn} we estimate the numerical value of the test statistic
selected in Step 1 giving

tn = T (D(n)). (28)

Here tn represents a particular numerical value obtained from the observed data D(n). Due to the fact
that our data set depends on the number of samples n, also this numerical value will be dependent on n.
This is explicitly indicated by the subscript.

– Step 6: Determine the p-Values
For determining the p-values of a hypothesis test, we need to use the sampling distribution (Step 3)
and the estimated test statistic tn (Step 5). That means the p-values results from a comparison of
theoretical assumptions (sampling distribution) with real observations (data sample) assuming H0 is
true. This situation is visualized in Figure 24 for a right-sided alternative hypothesis. The p-values is
the probability for observing more extreme values than the test statistic tn assuming H0 is true

p = P (observe × at least as extreme as |t||H0 is true) = P (x ≥ |t||H0 is true) (29)
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Formally it is obtained by an integral over the sampling distribution

p =

∫ ∞

tn

fn(x
′|H0 is true)dx′ (30)

The final decision if we reject or accept the null hypothesis will be based on the numerical value of p.
Furthermore, we can use the following integral

α =

∫ ∞

θc

fn(x
′|H0 is true)dx′ (31)

to solve for θc. That means, the significance level α implies a threshold θc. This threshold can also be
used to make a decision about H0.

Figure 24: Determining the p-values from the sampling distribution of the test statistic

– Step 7: Make a Decision about the Null Hypothesis
In the final step we are making a decision about the null hypothesis. In order to do this there are two
alternative ways. First, we can make a decision based on the p-values or, second, we make a decision
based on the value of the test statistic tn.

1. Decision based on the p-values:

if p < α reject H0

2. Decision based on the threshold θc:

if tn > θc reject H0

In case we cannot reject the null hypothesis we accept it [18].

B Bootstrapping
The bootstrap method is a resampling technique that uses random sampling with replacement, mimicking
the sampling process, and it is used in statistics and data analysis. Its purpose it to estimate the
sampling distribution of a test statistic or to obtain robust estimates of parameters when the underlying
assumptions are unknown or violated. The method works by generating multiple bootstrap samples from
the original data set. A bootstrap sample is created by randomly sampling observations from the original
data set with replacement, meaning that each observation has an equal chance of being selected in each
sample.

Let X = {X1, X2, ..., Xn} be a dataset with n observations. The goal is to estimate a population
parameter or statistic, standard errors for estimators or the p-values for test statistics under a null
hypothesis. The method consists of the following steps:
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– Resampling: The method starts by generating B bootstrap samples, denoted as T (1), T (2), ..., T (B).
Each bootstrap sample is obtained by randomly sampling n observations from the original dataset with
replacement. This means that each observation has an equal chance of being selected in each bootstrap
sample, and some observations may be selected multiple times while others may not be selected at all.

– Statistic Calculation: For each bootstrap sample T , the statistic of interest is calculated. Let us
denote the statistic of the i-th bootstrap sample as θi, where i ranges from 1 to B. These bootstrap
statistics represent estimates based on the resampled data.

– Statistical Inference: Using the distribution of the bootstrap statistics θi (i = 1, ..., B), we can
make inferences about the population parameter or estimate the sampling variability. The most common
approach is to construct a bootstrap confidence interval, which provides a range of plausible values for
the parameter. Alternatively, hypothesis tests can be performed by comparing the observed statistic from
the original dataset to the distribution of bootstrap statistics.

In conclusion, by generating multiple bootstrap samples, calculating the desired statistic for each sample,
and analyzing the distribution of the bootstrap statistics, we can obtain robust estimates, confidence
intervals, and perform hypothesis tests without strong distributional assumptions [20][21].

C Estimating Covariance Matrix Σ̂0

The Kullback–Leibler divergence is a type of statistical distance, that is, a measure of how one probability
distribution P is different from a second, reference probability distribution Q [22]. More specifically, for
two discrete probability distributions P and Q defined on the same sample space X , the relative entropy
from Q to P is defined as:

DKL(P ||Q) =
∑
x∈X

P (x) log
(P (x)

Q(x)

)
which is equivalent to

DKL(P ||Q) = −
∑
x∈X

P (x) log
(Q(x)

P (x)

)
.

As mentioned in subsection 3.3, in order to estimate the covariance matrix Σ̂0, we minimize the Kull-
back–Leibler (KL) divergence between two multivariate normal distributions, with mean µ = 0, where
one has covariance matrix S and the other has covariance matrix Σ0. We do that by implementing an
optimization algorithm from a PyTorch package, and minimizing the KL-divergence, using stochastic
gradient descent.
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