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Abstract

This paper presents novel methods to enhance the analysis of Markov chains in situations
where event probabilities are uncertain, a scenario encountered when information about
a system is incomplete or when planning a new system. Fuzzy numbers, which repre-
sent imprecise or vague quantities through the use of a membership function, are utilized
to model these uncertain probabilities. A genetic algorithm, an optimization technique
inspired by natural selection and genetic processes, is utilized to calculate the values of
fuzzy transition matrix powers, streamlining the analysis of reachability and stationary
distribution for fuzzy Markov chains. Reachability investigates whether a state is acces-
sible within a certain number of steps from another state, while stationary distribution
refers to a stable probability distribution that remains unaltered over time. The proposed
algorithm is integrated into a probabilistic model checker STORM. Its performance is
evaluated through convergence towards optimal solutions and scalability. The evaluation
results indicate that although input size, number of steps, and problem type signiőcantly
impact the algorithm’s performance, it effectively handles uncertainty and offers reliable
solutions for fuzzy Markov chain analysis in complex decision-making. This highlights the
effectiveness and promise of the proposed method and makes it a valuable contribution to
the analysis of fuzzy Markov chains.

Keywords : fuzzy Markov chains, uncertain probabilities, restricted fuzzy matrix multipli-
cation, genetic algorithm, probabilistic model checker, STORM



Chapter 1

Introduction

In this paper we consider an extension of Markov chains that utilizes fuzzy probabilities,
namely fuzzy Markov chains [4], and propose methods that improve the analysis of such
models.

Classical Markov chains are stochastic models that describe sequences of possible events
happening within a system, utilizing states and transitions between them [8]. When us-
ing them, we assume that the probabilities of the events (transitions from one state to
another) are known. However, in some problems (e.g. reliability engineering, health care
management) we do not know the exact probabilities and have to either estimate them
from a random sample, or consult experts for such estimates. In both of these cases the
probabilities are burdened with uncertainty and are not łcrispž but represented for exam-
ple by a conődence interval. On such occasions we can model this uncertainty using fuzzy
numbers [4], i.e. connected sets of possible values that are mapped to a value between 0
and 1. This mapping assigns weights to each number from the conődence interval.

Using fuzzy numbers we can model the uncertainties of the values in the transition
matrix of the Markov chain, substituting them with fuzzy probabilities, where the fuzziness
allows us to express the level of conődence within an interval. Using restricted fuzzy
arithmetic, it is possible to carry over the basic properties of classical Markov chains,
such as convergence of the powers of the transition matrix, onto fuzzy Markov chains [4].
Methods for validating these properties will be ŕeshed out in the later chapters.

Ideally, thanks to implementing such methods, when one chooses to model some un-
certainty in their system using fuzzy Markov chains, they would be able to analyze some
properties of this system. The need for such a model could arise when planning a new sys-
tem or if some information about the existing system is unavailable. The latter is common
when dealing with a non-deterministic black-box system, solely by observing its behavior,
hence not knowing the probability values. [6]

The project discussed in this paper concerns integrating fuzzy Markov chains into the
probabilistic model checker STORM [9] by implementing restricted fuzzy matrix multipli-
cation. It is a fuzzy arithmetic approach where the arithmetic operations on fuzzy numbers
are performed under a probabilistic constraint that, despite that the values contain un-
certainty, all of the values in each row of the stochastic matrix must sum up to 1. Its
challenge is that őnding the values of the powers of this matrix, which will be our goal,
is computationally difficult and it is preferable to use a directed search algorithm, such
as a genetic algorithm, to approximate the solutions. Hence, we decided to implement a
genetic algorithm in this project to generate the necessary values.

In Chapter 2 we will present deőnitions and examples of concepts used in latter chap-
ters. In Chapter 3 we discuss methods for verifying properties of fuzzy Markov chains
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currently present in the literature, as well as usage of genetic algorithms used in fuzzy
optimization problems. Chapter 4 presents goals and research questions of the project.
Chapter 5 goes into more detail with the method that will be implemented. We will present
details of the implementation in Chapter 6, and show evaluation results in Chapter 7.
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Chapter 2

Context and definitions

We use [5], [7] to deőne fuzzy subsets, alpha-cuts, and (triangular) fuzzy numbers with
inequality operators; and [4], [7] for fuzzy probabilities, Markov chains, and fuzzy Markov
chains.

2.1 Fuzzy numbers

Deőnition 2.1.1 (Fuzzy subset). A fuzzy subset A of a set Ω is deőned by its membership
function A : Ω Ñ r0, 1s Ă R, where each x P Ω is mapped to a real number in the interval
[0, 1], and R represents the set of real numbers.

If Apxq is equal to 1, we say that x fully belongs to A. If Apxq equals 0, x does not
belong to A at all. For values of Apxq between 0 and 1, we introduce the term membership
value. This value signiőes the degree of membership or the degree to which x belongs to
A, with 1 being full membership and 0 indicating no membership.

Deőnition 2.1.2 (α-cut). Let A be a fuzzy subset of a set Ω and let α P r0, 1s Ă R be a
real number between 0 and 1, inclusive. Then an α-cut of A, written Arαs, is deőned as:
Arαs “ tx P Ω | Apxq ě αu.

For α “ 0, Ar0s is deőned as the closure of the support of A.

Deőnition 2.1.3 (Support). The support of a fuzzy subset A of a set Ω, denoted sppAq,
is deőned as the set of all x P Ω such that Apxq ą 0.

Therefore, Ar0s includes all elements x P Ω where Apxq ą 0 and potentially some
elements where Apxq “ 0, if needed to create a closed set.

Deőnition 2.1.4 (Fuzzy number). A fuzzy number N is a fuzzy subset of R that satisőes
the following three conditions:

1. The α-cut with α “ 1 of N , denoted N r1s, is non-empty. This is the set of all
elements in R that fully belong to the fuzzy number N .

2. All α-cuts of N , denoted N rαs for 0 ď α ď 1, are closed and bounded intervals in R.

3. The support of N , denoted sppNq, is a bounded set in R.

The process of taking α-cuts of fuzzy numbers produces crisp (non-fuzzy) intervals in R,
denoted ra, bs. A ‘crisp intervalž in this context refers to a standard mathematical interval,
where every element either belongs to the set or does not, with no degrees of membership
as in fuzzy sets. This process will later allow us to compose fuzzy probabilities.
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Here we consider a special case of fuzzy numbers, namely triangular fuzzy numbers.
These are fuzzy numbers deőned by three points that form a triangle in a graphical repre-
sentation. Figure 2.1 provides an example of a triangular fuzzy number.

Deőnition 2.1.5 (Triangular fuzzy number). A triangular fuzzy number is a speciőc type
of fuzzy number M “ pa{b{cq deőned by three real numbers a, b, c such that a ă b ă c and
the membership function M : R Ñ r0, 1s Ă R satisőes the following conditions:

1. Mpbq “ 1.

2. The graph of y “ Mpxq forms a straight line segment from pa, 0q to pb, 1q for x P ra, bs
and another straight line segment from pb, 1q to pc, 0q for x P rb, cs. In this graphical
representation, the fuzzy number forms a triangle where the x-coordinate refers to the
value under consideration, and the y-coordinate refers to its degree of membership.

3. Mpxq “ 0 for all x P R such that x ď a or x ě c.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

x

α

Figure 2.1: Triangular Fuzzy Number N “ p1.2{2{2.4q, with N r0.5s “ r1.6, 2.2s

Example 2.1.1 (Triangular fuzzy number). In Figure 2.1, the triangular fuzzy num-
ber N “ p1.2{2{2.4q is depicted. Here, the peak of the triangle is at x “ b “ 2,
where the membership function Npxq reaches its maximum of 1. The line segment from
pa, 0q “ p1.2, 0q to pb, 1q “ p2, 1q indicates increasing membership values, and the line
segment from pb, 1q “ p2, 1q to pc, 0q “ p2.4, 0q indicates decreasing membership values.
Outside the interval ra, cs “ r1.2, 2.4s, the membership function value is 0, representing
non-membership. The dashed red line and the interval r1.6, 2.2s represent the α-cut for
α “ 0.5, showing the set of real numbers whose membership value is at least 0.5. This
graphical representation helps to visualize the distribution of membership values in the
fuzzy number and the concept of α-cuts.

From this point on, unless stated otherwise, when referring to fuzzy numbers, we will
mean triangular fuzzy numbers. On some occasions, we will use the term triangular-shaped
fuzzy numbers instead.

Deőnition 2.1.6 (Triangular-shaped fuzzy number). A triangular-shaped fuzzy number
is a speciőc type of fuzzy number M « pa{b{cq deőned by three real numbers a, b, c such
that a ă b ă c and the membership function M : R Ñ r0, 1s Ă R satisőes the following
conditions:
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1. Mpbq “ 1;

2. The graph of y “ Mpxq is continuous, monotonically increasing for x P ra, bs and
monotonically decreasing for x P rb, cs. It does not need to be a straight line in either
segment; and

3. Mpxq “ 0 for all x P R such that x ď a or x ě c.

As can be seen from the above deőnitions, the primary difference between a triangular
and a triangular-shaped fuzzy number lies in the shape of the graph of their membership
functions. While the former requires straight line segments, the latter allows for curves as
well.

Deőnition 2.1.7 (Comparison between fuzzy and crisp numbers). Let N be a fuzzy
number and δ be a real number. We deőne the α-cut of N as rNLpαq, NRpαqs. In essence,
α-cut deőnes a crisp interval at each level of α for a fuzzy number.

We say that N ą δ if NLpαq ą δ for all 0 ă α ď 1. Similarly, we say that N ă δ if
NRpαq ă δ for all 0 ă α ď 1.

Analogously, the non-strict inequalities N ě δ and N ď δ are deőned by replacing the
strict inequalities in the deőnitions above with non-strict inequalities. In other words, the
comparison has to hold for all elements in all possible α-cuts.

Probabilities can also be represented in terms of fuzzy numbers. We will show this
using an example.

Example 2.1.2 (Fuzzy probabilities). Let X “ tx1, . . . , xnu be a őnite set, and let P be
a probability function deőned on all subsets of X such that P pxiq “ ai, ai P R, for all
1 ď i ď n, where each 0 ă ai ă 1, and

řn
i“1

ai “ 1. Then, we say that X together with P

form a discrete (őnite) probability distribution.
Given the presence of uncertainty in the values of ai, we substitute each ai with a

fuzzy number ai, where 0 ă ai ă 1 for all i. After this substitution, we still require a
valid discrete probability distribution, which implies the existence of ai P air1s such that
řn

i“1
ai “ 1.

In other words, we can choose ai in airαs for all α in such a way that we maintain a
discrete probability distribution.

Deőnition 2.1.8 (Interval matrix). An interval matrix A “ raijs is a matrix of intervals
where each entry aij is an interval of real numbers of the form raij , bijs “ tx P R | aij ď x ď biju.
That is, each element in the matrix is an interval on the real number line rather than a
single real number.

2.2 Markov chains

Deőnition 2.2.1 (Markov chain). A Markov chain M is a tuple pS, s0, P q where:

1. S is a őnite set of states.

2. s0 P S is the initial state.

3. P is a |S| ˆ |S| transition probability matrix, where each entry pij corresponds to
the probability of transitioning from state si to state sj . It satisőes 0 ď pij ď 1 for

all 1 ď i, j ď |S|, and
ř|S|

j“1
pij “ 1 for all 1 ď i ď |S|.
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The above produces a countably inőnite sequence of state changes, or discrete time
łstepsž. We denote elements of P as pij , and after raising P to the power of n, elements of

Pn are denoted by p
pnq
ij . A Markov chain satisőes the memoryless property, also known as

the Markov property, which states that the probability of transitioning to any particular
state depends solely on the current state and time elapsed, and not on the sequence of states
that preceded it. Here we denote probability as Prob to differentiate from the transition
matrix P :

pij “ Probpsj at step n ` 1 | si at step nq.

Deőnition 2.2.2 (Reachability). In a Markov chain M, a state sj is reachable from a
state si (in k steps) if there exists such a non-negative integer n (n ď k) so that the n-step

transition probability p
pnq
ij ą 0.

Deőnition 2.2.3 (Regular Markov chain). A Markov chain M is said to be regular if
there exists a positive integer n such that, for all pairs of states si and sj in the state space

S, the pn ` 1q-step transition probability p
pn`1q
ij is greater than zero. In other words, it is

possible to transition from any state to any other state in n ` 1 steps with a probability
greater than zero.

Deőnition 2.2.4 (Stationary distribution). A stationary distribution π of a Markov chain
M is a row vector of probabilities that satisőes π “ πP , where each entry πi of π is the
long-term, time-invariant probability of being in state si. The entries of π are non-negative

and sum to one:
ř|S|

i“1
πi “ 1.

If the Markov chain is ergodic, meaning it is both regular (every state can be reached
from every other state in k steps) and aperiodic (the greatest common divisor of the lengths
of its cycles is 1), it has a unique stationary distribution. Moreover, as k approaches inőnity,
the transition matrix P converges to a limit, denoted as limkÑ8 P k “ Π. Each row of
the limiting matrix Π is identical and equal to the stationary distribution π of the Markov
chain.

Below we present an example of calculating the stationary distribution of a simple crisp
Markov chain.

Example 2.2.1 (Stationary distribution: crisp Markov chain). Given the crisp transition
matrix

ˆ

0.6 0.4

0.2 0.8

˙

,

we can őnd the stationary distribution by solving the following system of equations

`

π1 π2
˘

ˆ

0.6 0.4

0.2 0.8

˙

“
`

π1 π2
˘

,

π1 ` π2 “ 1.

From the őrst equation, we have the two equations:

π1 “ 0.6π1 ` 0.2π2,

π2 “ 0.4π1 ` 0.8π2.

Solving this system of equations along with π1 ` π2 “ 1, we get

π1 “
1

3
,
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π2 “
2

3
.

Hence, the stationary distribution is
`

π1 π2
˘ `

1

3

2

3

˘

.

Deőnition 2.2.5 (Absorbing state). An absorbing state si in a Markov chain is a state
such that, once entered, the process will remain in it indeőnitely. Mathematically, we say
a state si is absorbing if the probability of staying in the same state si in the next time
step is 1, that is, pii “ 1. Given this, it follows that the probability of transitioning to any
other state sj from si must be 0 for all j ‰ i.

Deőnition 2.2.6 (Absorbing Markov chain). An absorbing Markov chain is a Markov
chain that has at least one absorbing state, and every state can reach an absorbing state.

2.3 Fuzzy Markov chains

Deőnition 2.3.1 (Fuzzy Markov chain). A fuzzy Markov chain M “ pS, s0, P̄ q is a Markov
chain where each pij from the transition matrix is substituted with a fuzzy probability pij .

These values now make up a fuzzy transition matrix P “ ppijq, where there are such
pij P pijr1s so that P “ ppijq is a valid transition matrix for a őnite Markov chain (the
rows sum up to one).

As we can see from the above deőnition, despite having uncertainty in the values,
the property of rows of the transition matrix summing up to 1 still has to hold. Let us
consider we have a method that lets us calculate consecutive powers of P that preserves
this property, such as the one which will be presented in Chapter 5. We are then able to
make claims about reachability :

Deőnition 2.3.2 (Fuzzy reachability). In a fuzzy Markov chain M, a state sj is reachable

from a state si (in k steps) if there exists such an n (n ď k) so that p
pnq
ij ą 0.

In other words, the state is not reachable if p
pnq
ij “ 0 (and therefore is actually a crisp

number), otherwise it is reachable.

Deőnition 2.3.3 (Regular fuzzy Markov chain). After replacing every fuzzy probability
pij in the stochastic matrix of a fuzzy Markov chain P with a crisp number taken from the

singleton pijr1s, if the resulting crisp Markov chain is a regular Markov chain, then P is
also a regular (in this case, fuzzy) Markov chain.

The above is true because, if the Markov chain is regular for pijr1s, then it is possible
to choose a pij across all α-cuts such that the resulting crisp Markov chain is regular.
This is a similar principle as we discussed earlier with preserving a discrete probability
distribution after adding uncertainty.

Deőnition 2.3.4 (Stationary distribution of a fuzzy Markov chain). The stationary dis-
tribution π of a fuzzy Markov chain is a probability distribution that satisőes π “ πP ,
meaning that it remains unchanged through the transitions as determined by the fuzzy
transition matrix P . In this equation, each entry πi of π represents the long-term, time-
invariant probability of the system being in state si. The entries of π are non-negative and

sum to one:
ř|S|

i“1
πi “ 1.

The concepts of ergodicity, uniqueness of the stationary distribution, and convergence
of the transition matrix as in the non-fuzzy Markov chain case apply here as well. [4]
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Deőnition 2.3.5 (Absorbing states in fuzzy Markov chains). A state si in a fuzzy Markov
chain is absorbing if pii “ 1 and pij “ 0 (both crisp numbers) for i ‰ j.

As we can see, absorbing states in fuzzy Markov chains are represented in the same way
as in crisp Markov chains, therefore the deőnition for absorbing chains is also analogous:

Deőnition 2.3.6 (Absorbing fuzzy Markov chain). An absorbing fuzzy Markov chain is
a fuzzy Markov chain in which it is possible to reach an absorbing state in a őnite number
of steps from every non-absorbing state.

2.4 STORM model checker

STORM [9] is a probabilistic model checker that supports the analysis of both continuous-
and discrete-time Markov chains, with different number types (ŕoating-point numbers,
exact numbers, parameters), but does not yet support fuzzy numbers nor fuzzy Markov
chains. It has a modular setup as well as a Python API which allows for rapid prototyping.
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Chapter 3

Related works

In Chapter 5 we will present a method of calculating consecutive powers of the fuzzy
stochastic matrix P

n
based on restricted fuzzy arithmetic, which in the end comes down

to a fuzzy optimization problem. In this chapter we present some other known methods
for verifying properties of fuzzy Markov chains and compare and contrast it with our
chosen method. Since we will attempt to solve our optimization problem with a genetic
algorithm, we will also discuss some related attempts at using genetic algorithms to solve
fuzzy optimization problems.

[6] gives results on P
n

for fuzzy Markov chains and [3] shows it has őnite convergence,
however both papers deőne their fuzzy Markov chains in terms of possibility theory, not
fuzzy probabilities. Possibility theory is an alternative to probability theory that employs
a possibility measure from 0 to 1, ranging from impossible to possible. In fuzzy Markov
chains based on the possibility theory, each row of the transition matrix is a possibility
distribution, so it operates under restrictions that each entry is non-negative and the
maximum of each row is 1. Then, powers of the transition matrix are calculated using
max-min composition (min in place of multiplication and max for addition). Using this
method preserves the constraints of possibility distributions, but would not be applicable
for probability distributions (because of the constraint that rows have to sum up to 1).
We did not use this deőnition of fuzzy Markov chains as we believe using triangular fuzzy
numbers instead conveys more information and is more practical in real-life applications
considering one can convert conődence intervals to fuzzy numbers.

Another approach that is actually consistent with our deőnition of fuzzy Markov chains
is to use Zadeh’s extension principle as is done in [10]. This principle is a generalized
method of extending the crisp domains of functions to fuzzy sets. Therefore, by treat-
ing powers of the transition matrix as functions of its elements, it provides extensions of
these functions for fuzzy values. However, the authors of the restricted matrix multipli-
cation method [4] claim that their approach is both more comprehensible for humans and
computationally efficient. Unfortunately this claim is substantiated solely by presenting
two methods on a simple example so that the reader can assess the complexity of both
approaches. For lack of better comparisons between the two, we chose restricted matrix
multiplication for use in our implementation. It then still remains, however, a hard prob-
lem, and so the authors suggest to use a directed search algorithm, such as a genetic one,
to approximate the solutions, which we also settled for in this project.

[5] gives an outline for genetic algorithms and fuzzy optimization. Given an optimiza-
tion problem for maximizing a continuous function y “ fpxq, a vector x “ px1, . . . , xnq for
x P D, D Ă R

n, we are presented with an example algorithm:

1. Generate an initial population P0 of some population size M with members xi P

9



D, 1 ď i ď M . Each member is evaluated with fpxiq as their őtness value.

2. Select m ă M best individuals judging by their őtness, rename them to Q “
pq1, . . . , qmq.

3. Generate the next population P1 by:

3.1. Crossover: randomly choose two members of Q: qa “ pqa1, . . . , qanq, qb “
pqb1, . . . , qbnq, then randomly choose an integer k such that 1 ď k ď n and form
two children q1

a “ pqa1, . . . , qapk´1q, qbk . . . , qbnq, q1
b “ pqb1, . . . , qbpk´1q, qak . . . , qanq.

Redo this step again if either child does not belong in D. When successful, place
new members in P 1

1
and continue until P 1

1
has M members.

3.2. Mutation: randomly choose s (a very small number compared to M) members in
P 1
1
and replace a random element in each of them with a random real number x in

some interval. Retry this for each member until it is in D. After mutating each
chosen member we have a new population P1. Since s is small, the probability
of an inőnite loop during crossover is extremely small as there should always be
enough łunalteredž members to be able to generate children that are within the
domain.

4. A predetermined condition, such as reaching some population number K, designates
when the algorithm should stop. If this condition is not met, go to step 2 and generate
the next population in the same way.

5. If the stopping condition is met, select best member of P1 as the őnal estimate.

[5] also speciőes a method of maximizing (minimizing) a fuzzy set using a genetic
algorithm. When maximizing X, it proposes transforming the problem to a multi-objective
one: maximizing the central value y, maximizing the area under the membership function
to the right of y, and minimizing the area to the left of y.

We have not found any genetic algorithms in the literature which directly relate to
computing the values of the powers of fuzzy stochastic matrices, nor any actual implemen-
tations of property checking for fuzzy Markov chains, making our project a potential large
contribution to the őeld. However, there have been some other attempts at using genetic
algorithms in fuzzy optimization problems which could be useful to us. [14] proposes a
model for solving production problems as fuzzy quadratic programming problems using a
fuzzy objective and fuzzy resource constraints. It uses a genetic algorithm with mutation
along the weighted gradient, as well as human-computer interaction to determine preferred
solutions. [11] is a fuzzy genetic algorithm which searches a state space of a software system
model in order to verify reachability and detect deadlocks. This one is not so useful to us
as it does not solve a problem that contains fuzzy numbers, but instead the method itself
is using a fuzzy inference system to determine appropriate values of some meta-parameters
of the algorithm such as population size. [12] focuses on nonlinear objective functions
with fuzzy coefficients and fuzzy constraints without using α-cuts in their algorithm. [13]
presents a methodology for converting from a fuzzy nonlinear (four-objective) programming
problem of optimizing the scheduling performance to an equivalent nonlinear programming
problem to be solved. Since őnding the stationary distribution of a Markov chain could be
encoded as a linear equation system, we will explore to what extend can we use [12] and
[13] in our implementation.
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Chapter 4

Research question

The goal of this project is formulated as the following question:
Research question: In what ways can we enable the evaluation of structural and prob-
abilistic properties of fuzzy Markov chain-based systems?

We will answer it by extending the probabilistic model checker STORM [9] so that
it can build and analyze fuzzy Markov chains. We will focus on a number of properties
of fuzzy Markov chains, deőned earlier, and explore whether they can be veriőed using
STORM. We therefore formulate the following research sub-questions:

1. How can we represent fuzzy Markov chains in STORM model checker?

1.1. How can we design the structures and functions in STORM model checker in
such a way that it can store information about fuzzy Markov chains, and be
able to verify their properties later on?

2. How can we implement a genetic algorithm based on restricted matrix multiplication
(Chapter 5) to compute powers of the stochastic matrix?

2.1. How can we ensure that the algorithm is able to verify whether a matrix is
feasible? (Deőnition 5.1.3)

2.2. How can we make the algorithm search for powers of the stochastic matrix
within the domain of feasible values?

2.3. How can we use this algorithm to verify properties of the Markov chain?

2.3.1. How can we implement veriőcation of whether the chain is absorbing (Def-
inition 2.3.6) or regular (Deőnition 2.3.3)?

2.3.2. How can we implement veriőcation of reachability from state si to state sj

in k steps? (p
pkq
ij , Deőnition 2.3.2)

3. How can we modify our algorithm to search for the limit of the stochastic matrix?
(limnÑ8 P

n
“ Π, Deőnition 2.3.4)

4. How can we optimize, in terms of performance and accuracy of the outcomes, the
above algorithms (speciőcally the part from Point 2.2)?

4.1. What should be the values of the meta-parameters of the genetic algorithm?

4.1.1. What is the optimal initial population size?

4.1.2. What is the optimal selection sample size?

4.1.3. What is the optimal mutation sample size?
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4.2. What should be the method of creating new generations?

4.2.1. What is the optimal selection method?

4.2.2. What is the optimal crossover method?

4.2.3. What is the optimal mutation method?

4.3. What should be the stopping condition?

4.3.1. What are the results for a stopping condition based on time?

4.3.2. What are the results for a stopping condition based on number of genera-
tions?

4.3.3. What are the results for a stopping condition based on estimated error?

The properties we want to check rely on being able to compute the powers of the
stochastic matrix P

n
for n “ 1, 2, 3, . . . n. We will show a method for computing them in

Chapter 5. A genetic algorithm will be implemented based on [5], described in Chapter 3,
however we will tailor it speciőcally for our context. We will also explore ways to generate
valid fuzzy Markov chains given some state space size in order to obtain a test suite for
our algorithm.

12



Chapter 5

Genetic algorithm for fuzzy numbers

The mathematical foundation for the objective functions to be minimized or maximized
by the genetic algorithm is presented in this chapter. We will detail a restricted matrix
multiplication method for calculating the stochastic matrix powers for a őnite fuzzy Markov

chain, P
n

“ pp
pnq
ij q for n “ 1, 2, 3, . . . as described in references [4] and [7], which will

enable the determination of fuzzy transition probabilities for transitioning from any state
to another state in n steps. Additionally, we will present a method for calculating the
stationary distribution of a fuzzy Markov chain, utilizing a similar approach.

Furthermore, we will propose a design for a genetic algorithm that will be utilized for
the calculation of reachability and stationary distribution, based on these objective func-
tions. The proposed algorithm will be based on the general outline speciőed in Chapter 3,
however, its components including Initialization, Selection, Crossover, and Mutation will
be speciőcally tailored to the problem at hand.

5.1 Restricted matrix multiplication

Given a fuzzy Markov chain (S, s0, P ), we deőne the domain of fuzzy probability values
in such a way that it conforms to the conditions explained in Chapter 2. We start with S1

which is the set of all possible vectors of length r of real, crisp numbers (r “ |S|) which
form a valid probability distribution (all elements are non-negative and sum up to 1).

S1 “

#

x “ px1, . . . , xrq | x P R
r,@ 1 ď i ď r, xi ě 0,

r
ÿ

i“1

xi “ 1

+

.

To obtain the domain for one row pi of the stochastic matrix, we then intersect S1 with a
Cartesian product of α-cuts of all fuzzy probabilities from this row.

Deőnition 5.1.1 (Feasible row domain). The domain of row i, for α-cut α, 0 ď α ď
1, 1 ď i ď r, is:

Domirαs “

˜

r
ą

j“1

pijrαs

¸

č

S1

To get the matrix domain, we then take the Cartesian product of all row domains.

Deőnition 5.1.2 (Feasible matrix domain). The domain of a fuzzy matrix, for α-cut α,
0 ď α ď 1, is:

Domrαs “
r

ą

i“1

Domirαs

13



Deőnition 5.1.3 (Feasible matrix). We say that every crisp matrix whose values conform
to the above domain is feasible (with regards to the domain).

We know that in powers of a crisp transition matrix Pn “ pp
pnq
ij q, their elements are

functions of elements in P : p
pnq
ij “ f

pnq
ij pp11, . . . , prrq. p

pnq
ij rαs is then equal to the set of all

values of f
pnq
ij restricted only to the domain deőned previously, p11, . . . , prr P Domrαs:

p
pnq
ij rαs “ f

pnq
ij pDomrαsq

Note that, f
pnq
ij pDomrαsq itself does not necessarily have to conform to the domain.

Although f
pnq
ij is always a probability distribution by the nature of stochastic matrices, it

is possible that no pij from any element of Domrαs is equal to f
pnq
ij . However, that is not

a problem, since the domain is only a constraint on P , and not Pn.

To get the desired probability value p
pnq
ij , we will őnd endpoints of its α-cuts to later

compose the full fuzzy number. We are able to do this because p
pnq
ij rαs is a closed, bounded

interval [4]. This is due to the fact that f
pnq
ij is continuous and Domrαs is connected, closed

and bounded. We can therefore őnd the endpoints p
pnq
ij rαs “ rp

pnq
ijLpαq, p

pnq
ijRpαqs using these

equations:

Deőnition 5.1.4 (Reachability endpoints for fuzzy Markov chains).

p
pnq
ijLpαq “ min

!

f
pnq
ij ppq | p P Domrαs

)

,

p
pnq
ijRpαq “ max

!

f
pnq
ij ppq | p P Domrαs

)

The above optimization problem is difficult and in general requires employing a directed
search algorithm [4]. In this project, a genetic algorithm will be implemented to estimate
these endpoints. Note that this only produces interval endpoints for given values of α, so
the α-cuts of the desired result. We would therefore compute this for several values of α
in order to compose the intervals into a fuzzy number. This way, one will be able to check
basic properties of fuzzy Markov chains as they carry over from crisp Markov chains.

When it comes to őnding the stationary distribution of the regular fuzzy Markov chains,
or the rows of P

n
Ñ Π, we őrst set P “ ppijq for each pp11, . . . , prrq P Domrαs and get

Pn Ñ Π. Then we have:

Γpαq “ tw | w is a row in Π, Pn Ñ Π, P “ ppijq P pp11, . . . , prrq P Domrαsu

Γpαq is an inőnite set consisting of all possible, with regards to the domain, rows
of Π. Now, to őnd the elements of Π, let each row of it be π “ pπ1, . . . , πnq. Then,
πjrαs “ rπjLpαq, πjRpαqs, 1 ď j ď n. To compute the α-cuts of πj we use:

Deőnition 5.1.5 (Stationary distribution endpoints for fuzzy Markov chains).

πjLpαq “ min twj | w P Γpαqu ,

πjRpαq “ max twj | w P Γpαqu

where wj is the j-th component of the vector w.
Below we present an example of őnding the stationary distribution of a fuzzy Markov

chain that was created by introducing uncertainty to a crisp Markov chain from Example
2.2.1.
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Example 5.1.1 (Stationary distribution: fuzzy Markov chain). Suppose that, given a
fuzzy Markov chain with the following fuzzy transition matrix

P “

ˆ

p0.5{0.6{0.7q p0.3{0.4{0.5q
p0.1{0.2{0.3q p0.7{0.8{0.9q

˙

,

we want to őnd the 0.5-cut of the őrst element of the Markov chain’s stationary distribution.
We can do it by searching through the domain of feasible matrices. That is, per Deőnition
5.1.3, the set of all crisp matrices that comply with both conditions:

1. All rows sum up to 1,

2. All values fall within the interval designated by 0.5-cut of the corresponding element
from P .

We can visualize the second constraint by showing 0.5-cuts of each element by converting
P to an interval matrix:

Pinterval “

ˆ

r0.55, 0.65s r0.35, 0.45s
r0.15, 0.25s r0.75, 0.85s

˙

,

In this space, we search for two matrices P , such that one minimizes and the other
maximizes w1, where w is a row in the stationary distribution of P . In our case, the matrix
that minimizes w1 is:

Pmin “

ˆ

0.55 0.45

0.15 0.85

˙

,

which gives us π1Lp0.5q “ 0.25 and for maximizing w1:

Pmax “

ˆ

0.65 0.35

0.25 0.75

˙

,

with π1Rp0.5q “ 0.416. We therefore obtain our value: π1r0.5s “ r0.25, 0.416s

5.2 Algorithm design

To őnd fuzzy Markov chains’ reachability and stationary distribution through genetic
algorithms, we deőne őtness functions based on Equations 5.1.4 (reachability) and Equa-
tions 5.1.5 (stationary distribution). The search for the optimal solution, maximizing or
minimizing the objective function, is conducted in the space of feasible matrices using
adapted Initialization, Selection, Crossover, and Mutation methods from Chapter 3.

We design a structure to store the input and run the genetic algorithm. The input for
initializing this structure is an r ˆ r matrix of triangular fuzzy numbers, but may also in-
clude crisp 0s and 1s. The user is then able to run a genetic algorithm on this fuzzy matrix,
with an option to either check the stationary distribution, or reachability. Additionally,
they can check whether the matrix is regular or absorbing, but this functionality is sepa-
rate from the genetic algorithm (with the exception that regularity check is automatically
performed if the user wants to őnd the stationary distribution).

The genetic algorithm is performed 2 ¨acc times, where acc is the number of alpha-cuts
that will be checked (not including α “ 1, which is trivial), in order to calculate a single
output triangular-shaped fuzzy number. This output number signiőes a reachability value
or a value from the stationary distribution vector. The algorithm must őnd the left and
right endpoint of each α-cut for the given element in the matrix, and it must do so for
each value of α in the range of 0 to 1 with a step size of 1

acc
.

15



5.2.1 Fitness functions

A member structure represents a single crisp matrix instance belonging to the feasible
matrix domain, paired with a őtness value that our algorithm will either minimize or
maximize. The őtness value will ultimately (as it is being continuously updated in the
Selection stage) contain the approximation of either left or right endpoint of some α-cut of
the triangular fuzzy number that is the solution of the given problem. For the reachability
problem, a member consists of a 2D crisp matrix P 1 within the feasible domain, a pair of
indices idx that denotes the łfromž and łtož states, and the exponent n that represents the
number of steps. In the case of the stationary distribution, a member only consists of the
feasible matrix P 1 and index idx.

To update the őtness for reachability, we need a crisp matrix P 1, steps n and indices
idx as input, we calculate the n-th power of the matrix, and return its idx-th element.

To update the őtness for stationary distribution, we calculate the limiting distribution
of a given transition matrix and return the element signiőed by idx. The function checks
whether the Markov chain is regular, and if so, calculates the stationary distribution by
iterating over the product of the transition matrix and an initial probability vector until
the change between successive iterations is below a certain threshold.

The two őtness functions mentioned above use standard, common algorithms for per-
forming matrix multiplication and calculating stationary distribution, therefore their pseu-
docode can be found in the Appendix (Algorithms 8, 9).

5.2.2 Wrapper function

The algorithm begins by transforming the fuzzy matrix P into an interval matrix
intervalMatrix by replacing each fuzzy element with its corresponding α-cut, as well
as storing the indices of the elements that were triangular fuzzy numbers and not crisp
numbers inside a intervalIndices vector. Other inputs for the algorithm are passed by
the user and include the number of steps steps, the indexes of the element being cal-
culated idx, and the direction isMin (true or false). Optional meta-parameters include
populationSize, selectionSample, mutationRate, and a stopping condition, for example
generations. These are then passed to a wrapper function (Algorithm 1).

The algorithm iterates until a predetermined condition is met (in the case of the above,
some set number of generation, but other options will be explored), at which point either
the left or right endpoint, depending on isMin, of the α-cut for the element of the fuzzy
stochastic matrix can be determined. Ultimately, the algorithm can be run for either an
α-value given by the user, or using another helper function that takes in an acc value and
runs the above wrapper for multiple α values. The acc parameter signiőes the number
of α-cuts the algorithm will calculate (not counting α “ 1, which is trivial and therefore
always calculated by default), from 0 to 1 with equal distance between them. Therefore,
the larger the value of acc, the more accurate the őnal result will be. However, even at just
acc “ 1, the a, b, and c values for the triangular-shaped fuzzy number will be obtained,
since a and c values belong to the 0-cut, and b belongs to the 1-cut.

When the user requests running the genetic algorithm for multiple α-cuts by providing
the acc parameter, the 1-cut matrix is calculated őrst, since it is used to check whether a
matrix is regular in case the user requests to obtain a stationary distribution vector. It is
trivial because it simply comes down to taking the peak (b value) of every element in the
fuzzy matrix. The algorithms for checking whether the Markov chain is regular or absorbing
are standard algorithms used for crisp Markov chains, just that they are inputted with this
1-cut of the fuzzy matrix. These functions, isRegular and isAbsorbing, are therefore
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Algorithm 1 Genetic Algorithm endpoint wrapper

1: function fuzzyGAEndpoint(intervalMatrix, intervalIndices, steps, idx, isMin,

populationSize, selectionSample,mutationRate, generations)
2: intervalRowIndices Ð rowIndicespintervalIndicesq Ź extract only the row

indices from intervalIndices

3: population Ð initializePopulationpintervalMatrix, populationSize, steps, idxq
Ź population is a vector of Members

4: for i Ð 0 to generations do

5: population Ð selectPopulationppopulation, selectionSample, isMinq
6: population Ð crossPopulationppopulation, populationSize,

intervalRowIndicesq
7: population Ð mutatePopulationppopulation,mutationRate, intervalIndices,

intervalRowIndices, intervalMatrixq
8: end for

9: population Ð selectPopulationppopulation, selectionSample, isMinq
10: if isMin then

11: return populationr0s.fitness
12: else

13: return populationr´1s.fitness Ź Last element of population
14: end if

15: end function

included in the Appendix (Algorithms 10, 13).

5.2.3 Initialization

First, we present a randomCrisp function (Algorithm 2) for generating a matrix con-
sisting of values that are within their corresponding intervals from
intervalMatrix, while at the same time its rows sum up to 1. We achieve this by őrst
generating random values from each interval of the given row, and then either increasing or
decreasing all elements by some correction value in order to make the sum equal to 1. This
approach is guaranteed to provide a valid solution, provided that the input fuzzy matrix
itself is valid (1-cuts of each row’s elements sum up to 1).

The function can then be used to initialize the population, see Algorithm 3.

5.2.4 Selection

The algorithm then selects the n best individuals from the current population based
on their őtness values, see Algorithm 4. The őtness value of a member is updated in this
stage and contains the approximation of either left or right endpoint of some α-cut of the
solution. Two őtness functions are possible: one for reachability, which calculates the power
of a given matrix and returns its i-th element, and one for stationary distribution, which
checks whether the Markov chain is regular and calculates the stationary distribution by
iterating over the product of the transition matrix and an initial probability vector until
the change between successive iterations is below a certain threshold.

5.2.5 Crossover

Crossover, see Algorithm 5, involves choosing two members of the current population
and creating two new members by combining rows from each member. Namely, it takes a
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Algorithm 2 Random crisp matrix generator

1: function randomCrisp(intervalMatrix)
2: n Ð intervalMatrix.size

3: crispMatrix Ð matrixpnq Ź empty 2D matrix of size n ˆ n

4: for all i in intervalMatrix do Ź For each row i

5: rangesLengths, randomV alues Ð rs, rs
6: for all r in intervalMatrixris do Ź For each element from the row
7: rangesLengths.appendpr.upper ´ r.lowerq
8: randomV alue Ð randomDoublepr.lower, r, upperq.
9: randomV alues.appendprandomV alueq.

10: end for

11: difference Ð 1.0 ´ sumprandomV aluesq.
12: if difference ‰ 0.0 then

13: margins Ð vectorpq, distributedCorrections Ð vectorpq Ź Empty vectors
14: if difference ą 0.0 then

15: for j Ð 0 to n do

16: margins.appendpintervalMatrixrisrjs.upper´ randomV aluesrjsq
17: end for

18: else

19: for j Ð 0 to n do

20: margins.appendprandomV aluesrjs´ intervalMatrixrisrjs.lowerq
21: end for

22: end if

23: marginSum Ð sumpmarginsq
24: for j Ð 0 to n do

25: distributedCorrections.appendpdifference¨pmarginsrjs{marginSumqq
26: randomV aluesrjs Ð randomV aluesrjs ` distributedCorrectionsrjs
27: end for

28: end if

29: crispMatrix.appendprandomV aluesq
30: end for

31: return crispMatrix

32: end function

Algorithm 3 Initialize population

1: function initializePopulation(intervalMatrix, populationSize, steps, idx)
2: population Ð vectorpq Ź empty vector
3: for i Ð 0 to populationSize do:
4: r Ð randomCrisppintervalMatrixq
5: m Ð Memberpr, steps, idxq
6: population.appendpmq
7: end for

8: return population

9: end function

random amount of random rows from the input matrix (disregarding the ones that do not
correspond to fuzzy elements, as these will be identical for every member), and these rows
will be inherited from the őrst parent, while the remaining ones will be inherited from the
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Algorithm 4 Select population

1: function selectPopulation(population, selectionSample, isMin)
2: for all member in population do

3: member.updateF itnesspq
4: end for

5: sortppopulationq Ź Comparison for members implemented based on őtness
6: n Ð population.size ¨ selectionSample

7: selected Ð vectorpq
8: if isMin then

9: selected.extendppopulationr0s, populationrn ´ 1sq Ź extend selected with the
őrst n elements

10: else

11: selected.extendppopulationr´ns, populationr´1sq Ź extend selected with the
last n elements

12: end if

13: return selected

14: end function

Algorithm 5 Cross population

1: function crossPopulation(population, populationSize, intervalRowIndices)
2: crossed Ð vectorpq Ź empty vector
3: while crossed.size ă populationSize do

4: q1, q2 Ð randomSampleppopulation, 2q Ź randomSampleparr, nq selects n
unique elements from an array

5: children Ð crossParentsppopulationrq1s, populationrq2s,
intervalRowIndicesq

6: function crossParents(q1, q2, intervalRowIndices)
7: randRows Ð randAmountOfRandRowspintervalRowIndicesq
8: c1 Ð Memberpq1q Ź Copy matrix, n, idx from q1

9: c2 Ð Memberpq2q Ź Copy matrix, n, idx from q2

10: for all randomRow in randRows do

11: c1.matrixrrandomRows Ð q2.matrixrrandomRows
12: c2.matrixrrandomRows Ð q1.matrixrrandomRows
13: end for

14: return c1, c2

15: end function

16: crossed.extendpchildrenq
17: end while

18: return crossed

19: end function

other parent (and vice versa for the second child).

Example 5.2.1 (Crossover operation). Consider this pair of crisp matrices, randomly
selected from a population:

q1 “

¨

˝

0.47 0.25 0.28

0.23 0.58 0.19

0.07 0.48 0.45

˛

‚, q2 “

¨

˝

0.56 0.04 0.4

0.27 0.45 0.28

0.2 0.38 0.42

˛

‚
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Algorithm 6 Mutate population

1: function mutatePopulation(population,mutRate, intervalIndices,

intervalRowIndices, intervalMatrix)
2: amount Ð mutRate ¨ population.size
3: toMutate Ð randomSampleppopulation, amountq Ź Assume randomSample

gives references to Member objects
4: for all m in toMutate do

5: mutMemberpm, intervalIndices, intervalRowIndices, intervalMatrixq
6: end for

7: return population
8: end function

The matrices were picked from a population in a genetic algorithm that is analyzing the
following interval matrix:

intervalMatrix “

¨

˝

r0.46, 0.65s r0.03, 0.96s r0.27, 0.62s
r0.22, 0.73s r0.36, 0.59s r0.18, 0.76s
r0.06, 0.8s r0.21, 0.54s r0.3, 0.96s

˛

‚

Then, a random amount of random rows is selected. That is, an integer is picked from a
closed interval r0, n ´ 1s, where n is the number of rows. In this example, 2 was picked,
and therefore two rows were randomly selected: 0 and 2 (indexed from 0). This means
that child c1 will inherit rows 0 and 2 from q2, and row 1 from q1. Child c2 will be the
opposite: rows 0 and 2 from q1, and row 1 from q2. The children will therefore look like
this:

c1 “

¨

˝

0.56 0.04 0.4

0.23 0.58 0.19

0.2 0.38 0.42

˛

‚c2 “

¨

˝

0.47 0.25 0.28

0.27 0.45 0.28

0.07 0.48 0.45

˛

‚,

They are inserted into a new population and this process repeats until this new population’s
size reaches populationSize.

5.2.6 Mutation

Mutation, see Algorithm 6, involves randomly choosing a small number (mutRate) of
members from the population and randomly altering a row of interval elements in each
member while still maintaining the constraints imposed by PI and preserving the sum
of the row. We achieve this by altering only two elements, and adding some random
number to one of them while subtracting the same number from the other. This random
number is chosen from such a range that it will not violate constraints of neither element’s
corresponding interval.

One of the inputs for Algorithm 7, intervalIndices, is a vector of x/y pairs, and it lists
indices of all elements which are non-zero length intervals in the intervalMatrix. A similar
input vector is intervalRowIndices, which contains just the indexes of rows that have such
elements in them. Therefore, we randomly select one row using intervalRowIndices, and
iterate over intervalIndices to extract indices of desirable elements from this random row.

Later on, when we have chosen the elements that we want to mutate (and assigned
values to mutV 1, mutV 2), we compute the minimum and maximum number that we can
add to one of them while subtracting from the other. We do this by assigning the corre-
sponding interval ranges to mutR1, mutR2 and calculating how much we can shift mutV 1

and mutV 2 such that they stay within the intervals mutR1 and mutR2, respectively.
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Algorithm 7 Mutate member

1: function mutMember(member, intervalIndices, intervalRowIndices,

intervalMatrix)
2: row Ð randompintervalRowIndicesq Ź Random element of intervalRowIndices

vector
3: elementsInRandomRow Ð vectorpq
4: for all intervalIndex in intervalIndices do

5: if intervalIndex.x = row then

6: elementsInRandomRow.appendpintervalIndex.yq
7: end if

8: end for

9: toMutate1 Ð randompelementsInRandomRowq
10: toMutate2 Ð randompelementsInRandomRowq Ź toMutate1 and toMutate2

should be different
11: mutMatrix Ð member.matrix

12: mutV 1 Ð mutMatrixrrowsrtoMutate1s
13: mutV 2 Ð mutMatrixrrowsrtoMutate2s
14: mutR1 Ð intervalMatrixrrowsrtoMutate1s
15: mutR2 Ð intervalMatrixrrowsrtoMutate2s
16: feasibleMR Ð getFeasibleMRpmutV 1,mutV 2,mutR1,mutR2q
17: function getFeasibleMR(mutV 1,mutV 2,mutR1,mutR2)
18: left Ð minpmutV 1 ´ mutR1.lower,mutR2.upper ´ mutV 2q
19: right Ð minpmutR1.upper ´ mutV 1,mutV 2 ´ mutR2.lowerq
20: return Intervalp´left, rightq
21: end function

22: mutOffset Ð randompfeasibleMR.lower, feasibleMR.upperq
23: mutMatrixrrowsrtoMutate1s “ mutMatrixrrowsrtoMutate1s ` mutOffset

24: mutMatrixrrowsrtoMutate2s “ mutMatrixrrowsrtoMutate2s ´ mutOffset

25: member.matrix “ mutMatrix

26: Return member
27: end function

Example 5.2.2 (Mutation operation). We present mutation executed on one of the new
members produced in Example 5.2.1, namely:

mutMatrix “

¨

˝

0.47 0.25 0.28

0.27 0.45 0.28

0.07 0.48 0.45

˛

‚

which is an instance of the following interval matrix:

intervalMatrix “

¨

˝

r0.46, 0.65s r0.03, 0.96s r0.27, 0.62s
r0.22, 0.73s r0.36, 0.59s r0.18, 0.76s
r0.06, 0.8s r0.21, 0.54s r0.3, 0.96s

˛

‚

All elements in this matrix are non-zero length intervals, therefore we choose a random
row out of all rows, and random two elements out of this row. Assume we selected row 1,
and elements 1 and 2 out of this row (all indexed from 0). Corresponding elements from
mutMatrix are assigned to mutV 1 and mutV 2 respectively:

mutV1 “ 0.45, mutV2 “ 0.28
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And elements from intervalMatrix are assigned to mutR1 and mutR2:

mutR1 “ r0.36, 0.59s, mutR2 “ r0.18, 0.76s

We then calculate bounds of the feasible mutation range:

left “ minpmutV 1 ´ mutR1L,mutR2R ´ mutV 2q “ minp0.09, 0.48q “ 0.09

right “ minpmutR1R ´ mutV1 ,mutV2 ´ mutR2Lq “ minp0.14, 0.1q “ 0.1

We randomly select a number in the range r´left , rights, let us assume it is 0.09. We
therefore add 0.09 to the element 1 and subtract 0.09 from element 2 (both from row 1)
in the crisp matrix, producing our őnal mutated matrix:

mutMatrix “

¨

˝

0.47 0.25 0.28

0.27 0.54 0.19

0.07 0.48 0.45

˛

‚

Note that both elements still fall within their respective interval ranges and the sum of all
elements in row 2 is still 1.
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Chapter 6

Implementation

The code for this project has been published at GitHub [2].

6.1 TriangularFuzzyNumber class

The őrst phase of implementation is focused on addressing Research Question 1, specif-
ically the representation of fuzzy Markov chains within the STORM model checker. The
objective of this phase is to design the structures and functions in the STORM model
checker that will enable the storage and veriőcation of properties of fuzzy Markov chains.

The őrst step in this process was the implementation of a number type for triangular
fuzzy numbers, as these will serve as the value type for the elements of the stochastic
matrix. To accomplish this, a TriangularFuzzyNumber class was created in STORM, which
includes member variables for leftBound, peak, and rightBound that store the a, b, and c
values respectively of a triangular fuzzy number.

In addition, the already existing SparseMatrix class was selected as the class that will
be utilized as the stochastic matrix in fuzzy Markov chains. To integrate the Triangular-
FuzzyNumber class, the class was added as a class template for both SparseMatrix and
SparseMatrixBuilder (a class used to construct a sparse matrix by adding values incremen-
tally).

To ensure proper compilation in STORM, several arithmetic operators were over-
loaded for the TriangularFuzzyNumber class, utilizing placeholder exception throws for
non-implemented functionality. A notable exception was the += operator, which was re-
quired for the proper creation of the model, as it checks whether all rows of the matrix sum
to one. In this instance, the operator was deőned as summing the peaks of the triangular
fuzzy numbers. Furthermore, comparison operators such as ą and ă were implemented to
compare the peaks of the triangular fuzzy numbers, in line with the operator used in ref-
erence [4]. A hash value function and output stream ăă operator were also implemented
to facilitate successful compilation.

As a result of these changes, the user is now able to create a sparse matrix with triangu-
lar fuzzy numbers as a template parameter, add values to it using the SparseMatrixBuilder,
and create models such as a StandardRewardModel using the stochastic matrix as a com-
ponent. These modiőcations to the data structures pave the way for the implementation
of property-checking for fuzzy Markov chains in the subsequent implementation phases.
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6.2 FuzzyAnalysisResult class

The FuzzyAnalysisResult class was implemented based on the design outlined in Chap-
ter 5 to represent a result of a fuzzy analysis. It has a nested class called Member, which
represents a member of a population in a genetic algorithm. They both include getter
and setter methods, implementations of the algorithms from Chapter 5, as well as some
simple helper functions that we provide in the next paragraph. Additionaly, Member has
an overloaded ă operator so that the population can be sorted by their őtness atribute in
Algorithm 4, and a ““ operator that compares if the underlying matrices are the same in
Algorithm 5.

The FuzzyAnalysisResult class has the following helper functions which were not ex-
plicitly written out in Chapter 5 nor the Appendix:

1. fuzzyGA

• Input: pair of integers idx, integer acc, integer populationSize. Optional ar-
guments: integer steps, ŕoating-point number threshold, ŕoating-point number
selectionSample, ŕoating-point number mutationRate, enum stopping, boolean
reachability

• Behaviour: serves as a wrapper for Algorithm 1 (fuzzyGA, which itself is a
wrapper for the genetic algorithm). It runs the algorithm for both endpoints
for each α-cut, for α “ 0, α “ 1, and acc ´ 1 evenly spaced α-cuts in-between.
It calculates the values of a triangular-shaped fuzzy number placed at index
idx in some structure. Possible structures include either the stochastic matrix
raised to the power of steps (in case of reachability), or in the stationary dis-
tribution vector. It runs for reachability by default, otherwise the user has to
provide reachability=false and some value of steps. Three different termination
conditions are possible, the choice of which is determined by an enumerated
type parameter stopping. By default it is based on the number of generations,
other options are the number of milliseconds, or the average difference of scores
between successive generations (as percentage). threshold parameter then de-
termines, depending on the value of stopping, the exact number of generations,
milliseconds, or percentage. If values of the meta-parameters are not provided,
the recommended ones will be used based on the size of the fuzzy matrix (ex-
plained in Chapter 7.3). Returns the triangular-shaped fuzzy number as a vector
of px, yq pairs, where y is the membership value of x.

• Output: vector of ŕoating-point number pairs result

2. getIntervalMatrix

• Input: ŕoating-point number alpha

• Behaviour: returns an interval matrix constructed by taking α-cuts of each
element of the matrix (attribute of the class)

• Output: 2D Interval matrix intervalMatrix, vector of index pairs of (non-zero
length) intervals in the matrix intervalIndices

3. getCrispMatrix

• Input: none

• Behaviour: returns a crisp matrix constructed by taking peaks (1-cuts) of each
triangular fuzzy element of the matrix (attribute of the class)
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• Output: 2D crisp (double) matrix crispMatrix

4. getAlphaCut

• Input: triangular fuzzy number t, ŕoating-point number alpha

• Behaviour: returns the α-cut of t

• Output: Interval

Member class also contains the following helper function, called in Algorithm 4:

updateFitness

‚ Input: none

‚ Behaviour: assign the output of either matrixMul or stationaryDistribution,
depending on the value of this->reachability , to this->őtness

‚ Output: none

The fuzzyGAEndpoint and fuzzyGA functions serve as wrappers of the genetic algo-
rithm and are the primary functions that are to be called by the user directly.

The Interval type is built-in in STORM, and deőned in the őle RationalFunction-
Adapter.h as carl::Interval<double>, coming from the open source C++ library CArL [1].
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Chapter 7

Evaluation

7.1 Testing phase

The őrst step in testing the algorithm was to implement unit tests for the determin-
istic utility functions. These functions form the backbone of the algorithm and were cru-
cial to its performance. We implemented a series of unit tests, including testMatrixMul,
testGetIntervalMatrix, testGetAlphaCut, testGetFeasibleMutationRange, testIsRegular, and
testIsAbsorbing, to conőrm that these functions were working as intended and producing
the expected results. The unit tests were run multiple times with different inputs and the
results were carefully analyzed to identify any issues or bugs.

After the deterministic functions were conőrmed to be working correctly, we moved
on to test the parts of the algorithm that involve randomness. The genetic algorithm
uses a genetic search strategy and includes elements of randomness such as mutation and
crossover. It was important to ensure that these elements of randomness were not produc-
ing biased or unexpected results. We did this by observing if the whole range of possible
outcomes could be generated by running the algorithm multiple times with different inputs
and different random seed.

7.2 Correctness

We veriőed the results of the genetic algorithm by comparing them to those produced
by an exact algorithm using the same input data. This provided a way to conőrm that
the genetic algorithm is producing accurate and reliable results. The exact algorithm
checked every possible combination of values, up to a given precision, that complies with
the constraints and returned one with the best őtness value. Fitness functions themselves
(i.e. calculating powers of a matrix and the stationary distribution) remain the same as
in the genetic algorithm. Of course, because the intervals produced by taking α-cuts are
continuous, it is impossible to őnd the result with inőnite precision. Therefore, we used a
step of 0.005 when traversing the interval range, and an identical value of tolerance when
verifying whether the rows sum up to 1. This way, we were able to obtain exact results up
to two decimal places, although ŕoating-point precision and rounding errors could slightly
impact the őnal accuracy.

Another limitation was that the time needed to obtain exact results exceeded reasonable
boundaries for matrices bigger than 3 ˆ 3. That is, for a 4 ˆ 4 matrix, it reached over
20 minutes without completion. However, we have no reason to suspect that the validity
wouldn’t scale to larger input sizes. The pseudocode for the exact algorithm is included in
the Appendix (Algorithm 15).
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p0.1186{0.6295{0.7851q p0.1681{0.3705{0.9169q
p0.0836{0.0847{0.3535q p0.4557{0.9153{0.999q

Matrix 1

p0.05{0.5299{0.9781q p0.2347{0.4701{0.8581q
p0.0008{0.0017{0.4762q p0.4801{0.9983{0.9992q

Matrix 2

p0.6009{0.6234{0.7413q p0.1817{0.3766{0.3955q
p0.1875{0.6253{0.9766q p0.1219{0.3747{0.4586q

Matrix 3

p0.2652{0.3345{0.9675q p0.2098{0.6655{0.7439q
p0.3292{0.7275{0.8695q p0.1466{0.2725{0.9207q

Matrix 4

p0.1619{0.7688{0.8779q p0.0778{0.2312{0.6171q
p0.0971{0.3756{0.5179q p0.0622{0.6244{0.9049q

Matrix 5

Figure 7.1: Input matrices for the algorithm comparison

Matrix Exact, left Genetic, left Exact, right Genetic, right Difference, larger Exact, time [s]

1 0.4304 0.4281 0.9251 0.9134 0.0117 45.9
2 0.3423 0.3464 0.9961 0.9990 0.0041 82.1
3 0.2236 0.2256 0.4224 0.4223 0.0029 5.0
4 0.1953 0.1972 0.6920 0.6905 0.0019 88.5
5 0.2291 0.2285 0.8719 0.8671 0.0048 79.9

Table 7.1: Comparison of results between the exact and genetic algorithm

Using the exact algorithm as a reference, and observing that values of the genetic
algorithm approach the reference results, allowed us to conődently conclude that the genetic
algorithm is an accurate solution for checking properties of fuzzy Markov chains.

To illustrate this, in Table 7.1 we present a result comparison, with measurements taken
using őve 2 ˆ 2 input matrices (Figure 7.1). The problem which was solved in these tests
was reachability from state 2 to itself in 3 steps. The exact algorithm took 60.3 seconds on
average to arrive at the results, while the genetic algorithm’s time was őxed to 40 seconds
(20 seconds per endpoint). The values in input matrices as well as results presented here
are rounded to 4 decimal places. As we can see, the results in this test differed by at most
0.0117, proving the genetic algorithm’s validity.

Overall, the combination of unit tests and comparison to an exact algorithm helped
us to thoroughly test and validate the genetic algorithm for checking properties of fuzzy
Markov chains. Through this process, we were able to identify and őx any issues or bugs
and develop a high-performing algorithm that could be used in real-world applications.

7.3 Optimization phase

The őrst goal of the optimization phase of the project was to őnd optimal values of
meta-parameters of the genetic algorithm, namely:

1. Initial population size

2. Selection sample size

3. Mutation sample size

Ideally, the end-user would be able to not provide any of the above parameters but nonethe-
less get a desired solution in an acceptable amount of time. This will be achievable if we are
able to design an algorithm that approximates each of the parameters based on any input
size. For the future, the number of generations could also be included in the calculation,
however this argument is optional (since the user can choose a different stopping condi-
tion), therefore formula that includes this value would have to be approximated separately
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and only used on condition that the number of generation is speciőed. Otherwise, with
stopping condition such as amount of time per α-cut, it would produce different results for
different machines. α value is also a factor that could be included in the calculations, as
our observations showed more deviation from optimal results for lower values of α, but we
chose sticking with the same parameters across all α values for the sake of simplicity and
because of time constraints.

The further goals were as follows:

1. Reŕect on the chosen selection, crossover and mutation methods

2. Compare and contrast the stopping conditions

For the őrst point, we will discuss pros and cons of the current design and implementation
of aforementioned parts of the genetic algorithm, consider whether they can be improved,
and if so, in what way. For the second point, we will compare the currently implemented
stopping conditions, and discuss which is the best one depending of the particular use case.

7.3.1 Meta-parameters optimization

Grid search was chosen as a method of tuning the parameters for particular input
sizes. Namely, an exhaustive search was performed for every combination of population
size, selection rate, and mutation rate, each with predeőned range and step size.

The grid search was performed for three input matrix sizes: 10 ˆ 10, 30 ˆ 30, and
50ˆ 50. These numbers were chosen as they could have been analyzed in reasonable time.

When running the benchmark for a particular input size, three different random fuzzy
matrices were generated and benchmarked independently. To achieve this matrix gener-
ation, an algorithm is performed: selection of a uniformly random ŕoating-point number
between 0 and 1 for each peak (b value) of a fuzzy value in a single row, following by row
normalization (multiplying every value times 1{rowSum), and őnally selecting a and c

values of the fuzzy number as a uniformly random ŕoating-point number between 0 and b,
or b and 1, respectively. This is repeated for every row in the matrix.

The analyzed ranges of parameters were chosen as ones that seemed to provide best
results in initial, manual and non-formal testing, namely:

1. Population size: 50, 100, 150, 200

2. Selection rate: 0.05, 0.1, 0.15, 0.2

3. Mutation rate: 0.05, 0.1, 0.15, 0.2

Each combination of the above (64 in total) was run 5 times in a given benchmark. Ex-
treme values were discarded, and three medium values were averaged out to produce the
benchmark value. Value of α was set to 0.5 for all benchmarks as an approximation, as
we assumed that optimizing for 0.5 would on average give best results in practice (i.e.
running the algorithm across multiple α-cuts). Number of steps for reachability was set
arbitrarily to 3, simply to have a consistent computational complexity of computing the
őtness function (matrix multiplication) for a given matrix size.

Since we are considering only the input size in our calculations, our measurements were
set to last a relatively long amount of time. The reason for this is that in our optimization
we want to prioritize the type of user for whom the accuracy of the result is more important
than the amount of time it takes. We assume that the user who cares more about getting an
acceptable result as fast as possible should still beneőt from our optimization. Therefore,
each measurement was taken for a stopping condition based on the following amount of
time:
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Figure 7.2: Results for input sizes 10, 30, 50

1. 10 ˆ 10 matrix: 25 seconds

2. 30 ˆ 30 matrix: 49 seconds

3. 50 ˆ 50 matrix: 81 seconds

The tests were performed on a machine with Intel® Core™ i5-1035G1 CPU with max
frequency of 3.6 GHz and 8 GB of RAM. However, since the system ran on a Docker
container, only 4 GB of RAM were allocated to it, with additional 8 GB of swap space.
Naturally, different machines might need more or less time to compute the same number
of generations, but we deemed the chosen time intervals a good compromise between what
is able to produce test results in a reasonable amount of time and what is unlikely to make
a difference beyond these values.

The heatmaps on 7.2 show how the results compare for the entire analyzed range of
selection rates and mutation rates. The population size that is shown is the one whose
best result was the best overall. The values inside the squares symbolize how good the
result was relative to the best result found, normalized from 0 to 1, where 0 is the worst
and 1 is the best result for the given input size and population size.

Based on the results we can draw the following blueprint for tuning the parameters:

1. Population size:

ś 50 for input sizes ă 30

ś 200 for input sizes ě 30

2. Selection rate:

ś 0.05 for input sizes ă 30

ś 0.15 for input sizes ě 30

3. Mutation rate:

ś 0.2 for input sizes ă 30

ś 0.15 for input sizes ě 30 and ă 50

ś 0.1 for input sizes ě 50

More measurements are needed, perhaps with less accuracy thanks to using the above
results as a starting point, to remain more accurate on how the parameters should behave
for input sizes that were not measured.
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Figure 7.3: Difference from the assumed optimal solution against time for a 10ˆ10

matrix

After applying these newly-found parameter values, we measured how quickly the algo-
rithm is able to converge in the same reachability problem that we used in our benchmarks.
We logged the results of the algorithm until no better solutions were found for over 10 thou-
sand generations, and assumed the őnal value to be the optimal solution. We present on
Figure 7.3 that the algorithm reaches within 0.01 of this assumed optimum in less than a
second for a 10 ˆ 10 matrix. See Chapter 7.4 for more in-depth performance analysis and
comparison with other input sizes.

7.3.2 Reŕection on parts of the algorithm

Selection

The selection part of the genetic algorithm is crucial for the algorithm’s success as it
determines which members of the population will be used to create the next generation.
The current design and implementation of the selection part, as presented in Algorithm 4,
have both advantages and disadvantages.

The selection process favors individuals with better őtness values, which should increase
the chances of producing better solutions in the next generation. It is based on a simple
and easy-to-implement algorithm, which makes it efficient and scalable. However, since
it doesn’t consider diversity among the selected individuals, it may lead to loss of genetic
diversity and premature convergence of the algorithm, i.e., it may get stuck in a local
optima. We didn’t encounter this problem when testing accuracy with smaller inputs, but
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Figure 7.4: Best result and variance of the population across 1000 generations

it is possible that this issue appears as the search space becomes larger.
To explore how quickly the algorithm converges and how it relates to genetic diversity,

we performed experiments where we ran the genetic algorithm multiple times on the same
problem and on the same 10ˆ10 matrix and measured the average őtness value of the best
individual in each generation as well as the variance between members. We then plotted
the results on a graph (Figure 7.4) with the number of generations on the x-axis and both
the average őtness value and the variance on the y-axis.

We observed that the variance remains high despite the converging value of őtness of
the best member of the population. Therefore, the algorithm is likely converging towards
the true best result, and not towards some local optimum because of low genetic variation.

Crossover

The crossover part of the genetic algorithm, presented in Algorithm 5, involves selecting
two members of the current population (parents) and combining their rows to create two
new members (children). This way, by copying the entire rows, the crossover operation
avoids the problem of having to modify row elements in order to őt the constraints (it is
only later in the mutation stage where such complexities arise). This is the main advantage
of this approach, making it exceptionally simple to comprehend and implement, as well as
scalable and efficient.

However, one might consider whether it is in fact the case that when using this method,
őtness of the child correlates to the őtness of its parents. This question may arise when we
realize that the őtness functions we are using can be quite chaotic. That is, introducing
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Figure 7.5: Correlation between parents and children

such large variation as swapping multiple rows in a parent matrix can possibly make its
őtness value not correlated with the őtness value of its child. To ensure that this correlation
exists, we performed an experiment in which we generated 64 members (from which we
create every possible pair, 64¨63

2
“ 2016 in total) and mapped the average őtness value of

the parents against the children’s average őtness value. We tested a 50 ˆ 50 matrix on
the reachability problem with 5, 20 and 50 steps, as well as on the stationary distribution
problem.

As we can see on Figure 7.5, no matter the type of the problem, the average őtness of
children correlated perfectly with the average őtness of their parents. This makes our sole
concern resolved and further convinces us that the chosen crossover method is appropriate.

Perfect correlation between parent őtness and child őtness does not necessarily mean
that we are limiting genetic variability. It simply means that the crossover operation is
effective in passing on the best traits from the parents to the offspring. It does not imply
that the offspring will be identical to the parents, as the crossover operation introduces
new combinations of genetic information that can produce offspring with new and better
traits. Therefore, a high correlation between parent őtness and child őtness is desirable.

Mutation

The current design and implementation of the mutation part of the genetic algorithm,
presented in Algorithm 6 and 7, have several pros and cons. The mutation operation
introduces genetic diversity in the population and can help the algorithm escape from
local optima, while at the same time it is designed to maintain the constraints imposed by
the interval matrix, which is essential for őnding feasible solutions.
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Figure 7.6: Impact of the number of mutated rows on the results

One potential drawback is that the mutation rate is őxed and does not adapt to the
progress of the algorithm. This can result in the mutation operation being applied too
frequently or not enough, which can hinder the algorithm’s performance. One approach
is to adapt the mutation rate based on the progress of the algorithm. For example, the
mutation rate could be increased if the algorithm gets stuck in local optima or decreased
if the algorithm is exploring the search space well.

Next consideration is that the mutation operation only alters one row of the member’s
matrix. It is possible that it limits the search space and slows down the convergence of
the algorithm, especially for larger input size. In an effort to enhance the efficiency and
convergence rate of the algorithm, we proposed a modiőcation to the mutation operation
by allowing it to alter multiple rows of a member’s matrix simultaneously. We examined
the effectiveness of this approach by comparing the results of modifying 1, 2, . . . 10 rows at
a time for when running the genetic algorithm for 25 seconds on a reachability problem
with 10x10 input matrix.

As depicted in Figure 7.6, we normalized the results using the original algorithm as
a baseline. The data reveals that the optimal number of rows to modify is 3, yielding a
0.3% improvement in average performance. Consequently, we updated the code to enable
users to input the number of mutated rows as a parameter. Further research is necessary
to determine the preferred number of rows to modify for different input sizes and problem
types. However, our current őndings suggest that a mutation rate of 0.3 times the input
size holds the most promise.

Finally, instead of altering only two elements in the row, the mutation operation can
be modiőed to alter multiple elements randomly. However, one would need to develop
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Figure 7.7: Visualization of different time-based stopping thresholds

another way to perform such mutation and preserve both constraints (that the sum of the
row is preserved and resulting values still fall within their corresponding intervals), since
the current method cannot be trivially scaled to more than two elements. If achieved, this
could potentially help the algorithm explore the search space more efficiently and reduce
the likelihood of getting stuck in local optima.

7.3.3 Comparison of stopping conditions

Stopping conditions determine when the genetic algorithms terminates and outputs the
best candidate solution found so far. The choice of stopping condition can have a signiőcant
impact on the performance and efficiency of the algorithm. In the case of fuzzy Markov
chains, we implemented and therefore can compare and contrast the following stopping
conditions for our genetic algorithm:

Time-based stopping condition: This stopping condition terminates the algorithm after
a certain amount of time has elapsed, regardless of the progress made by the algorithm.
For example, we could specify that the GA should stop after running for 5 minutes. This
stopping condition can be useful when we have limited computational resources and need
to ensure that the algorithm does not run indeőnitely. However, it does not take into
account the progress made by the algorithm towards őnding a good solution.

Number of generations stopping condition: This stopping condition terminates the
algorithm after a certain number of generations, regardless of the progress made by the
algorithm. For example, we could specify that the GA should stop after running for 100
generations. This stopping condition can be useful when we have a good idea of the number
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of generations needed to converge to a good solution. However, it also does not take into
account the progress made by the algorithm towards őnding a good solution, and it may
terminate prematurely if the algorithm has not converged.

Convergence detection stopping condition: This stopping condition terminates the al-
gorithm when the population has converged to a good solution. In our case, it is detected
by monitoring the difference between consecutive generations, and terminating the algo-
rithm when a rolling average of last 100 such differences falls below a certain threshold.
This stopping condition takes into account the progress made by the algorithm towards
őnding a good solution and can terminate the algorithm when it has converged, rather
than running for a őxed amount of time or generations. However, it may take longer to
converge than time or generation-based stopping conditions.

On Figure 7.7 we can see three different points at which the time-based stopping condi-
tion could trigger in some particular problem, depending on the chosen threshold. Red line
signiőes a threshold of 0.001, which means that for the last 100 generations, the average
difference between two consecutive generations got below 0.001 (mind that here, vertical
bars have a different meaning than in Figures 7.8 and 7.9). Here, this happened at genera-
tion 123 and 2.4 seconds of real-time computing. Subsequently, 0.0001 cutoff was triggered
at generation 305 at 4.2 seconds, and 0.00001 cutoff happened at generation 647 and 7.7
seconds.

In general, the best stopping condition for a GA depends on the speciőc problem
being solved and the resources available. In the case of fuzzy Markov chains, convergence
detection is likely the most appropriate stopping condition since it takes into account the
progress made by the algorithm towards őnding a good solution. However, if there are
computational resource constraints, a time-based stopping condition may be necessary. If
we have prior knowledge about the number of generations needed to converge, a generation-
based stopping condition may be appropriate.

7.3.4 Optimization results

The optimization phase of the project has achieved its goals by identifying optimal
values of meta-parameters for different input sizes, analyzing the performance of the im-
plemented selection, crossover, and mutation methods, and comparing different stopping
conditions. Through grid search, we were able to determine the ideal population size,
selection rate, and mutation rate for different input sizes, which has led to improved per-
formance of the algorithm.

The reŕection on the selection, crossover, and mutation parts of the algorithm showed
that our implementation is efficient and effective in preserving genetic diversity and main-
taining a high correlation between parent őtness and child őtness. These őndings suggest
that our implementation is robust and suitable for solving the reachability and stationary
distribution problems for various input sizes.

Furthermore, the analysis of the convergence and the relationship between genetic
diversity and the őtness of the best individual demonstrated that our algorithm is likely
converging towards the true best result and not getting stuck in local optima. This is an
important aspect of a genetic algorithm, as it ensures the algorithm is capable of őnding
high-quality solutions to complex problems.

Next, we tested different stopping conditions and compared their performance in terms
of the quality of the solution and the computation time. Our results showed that the őxed
amount of time stopping condition can be a good choice for users who prioritize getting
an acceptable result as fast as possible, while the őxed number of generations stopping
condition can be more suitable for users who are willing to wait longer for potentially better
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solutions. The no signiőcant improvement stopping condition can be used as a compromise
between the two, as it allows the algorithm to continue searching for better solutions until
it gets stuck in a local optimum. Overall, the choice of the stopping condition should be
made based on the speciőc needs and preferences of the user.

Overall, the optimization phase provided valuable insights into the performance of the
genetic algorithm and helped us őne-tune its parameters for optimal results.

7.4 Scalability

Scalability is an crucial aspect of any computational algorithm. The ability of our
algorithm to handle larger matrices is necessary for its effectiveness and utility in real-
world applications.

In the following measurements, our goal was to compare how quickly does the algorithm
converge towards the optimal solution. However, because we lacked testing data for larger
input size, we had to assume that the algorithm converges towards the global optimum
given enough time. We base this assumption off of the fact that it holds for smaller
input sizes (Section 7.2) and because genetic diversity remains high despite convergence
(7.3.2). Therefore, for the sake of this section, we assumed that the optimal solution was
reached after the algorithm didn’t progress (in terms of improving the result) for at least
10 thousand generations.

To achieve scalability in our algorithm, it is important to address several factors.
Firstly, the size of the input matrices should be considered. The algorithm should be
able to handle different sizes of matrices without signiőcant performance degradation or
loss of accuracy. On Figure 7.8, you can see a performance comparison for computing
reachability in 5 steps in 5ˆ5, 10ˆ10 and 20ˆ20 matrices. Vertical bars are marking the
time when the algorithm reached the optimal solution within two, three, and four decimal
places. Exact values are provided in Table 7.2. As we can see input size has a big impact
on performance, especially when the user needs an approximation more precise than two
decimal places. One way to mitigate this in the future can be through the use of parallel
computing techniques, which can potentially improve the efficiency of the algorithm.

Secondly, the needed number of steps in reachability problem can also have an impact
on scalability, since the őtness function, ie. raising the matrix to the power of n, is more
complex the bigger n gets. Indeed, raising n from 5 to 20 seems to have a moderate
impact on performance, as shown in Figure 7.9 and Table 7.2. Having said that, when
looking at the average time per generation in Table 7.3, we can see that it is similar. This
suggests that the computational expensiveness of the őtness function does not linearly
impact performance. Instead, it makes the search space more difficult to navigate, requiring
more generations to őnd the optimal solution within the desired precision. Relationship
between the matrices in the search space and their corresponding őtness values might be
more chaotic for higher n values, which in turn leads to a slower convergence.

Finally, we considered to what extent can switching problems from reachability to
stationary distribution make a difference in performance. In our tests (Figure 7.9 and
Table 7.2), it showed to be more demanding than computing reachability in both 5 and 20
steps, at all three precision thresholds. Looking at time per generation values in Table 7.3
again suggests that the reason for this is increased difficulty of search space exploration.
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Figure 7.8: Performance for input sizes 5, 10, 20; Reachability in 5 steps

Figure 7.9: Performance for reachability in 5 and 20 steps
and stationary distribution (5 ˆ 5 matrix)

∆
Reachability, 5 steps Reachability, 20 steps Stationary distribution

5 ˆ 5 10 ˆ 10 20 ˆ 20 5 ˆ 5 5 ˆ 5

0.01 100 802 3647 331 1143
0.001 1129 4914 90719 2821 6767
0.0001 7262 17606 378538 15127 43741

Table 7.2: Reaching within ∆ difference from optimal solution
for various problems and input sizes, time in milliseconds
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∆
Reachability, 5 steps Reachability, 20 steps Stationary distribution

5 ˆ 5 10 ˆ 10 20 ˆ 20 5 ˆ 5 5 ˆ 5

0.01 0.1500 0.0569 0.0165 0.1124 0.1211
0.001 0.0951 0.0700 0.0211 0.0992 0.1537
0.0001 0.1109 0.0851 0.0209 0.1305 0.1795

Table 7.3: Reaching within ∆ difference from optimal solution
for various problems and input sizes, milliseconds per generation
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Chapter 8

Conclusion and future work

In conclusion, this paper presented an approach for improving the analysis of Markov
chains in situations where the probabilities of events are uncertain and modeled by fuzzy
numbers. We proposed methods to validate the basic properties of fuzzy Markov chains
and discussed the challenges of implementing restricted fuzzy matrix multiplication, a
fuzzy arithmetic approach that enables us to handle uncertain probabilities in the transi-
tion matrix. We chose to implement it in the form of a genetic algorithm that generates
the values of the powers of the fuzzy transition matrix (reachability) as well as stationary
distribution, which is appropriate for approximating the solutions of such hard problems.
The algorithm was implemented into the probabilistic model checker STORM. Tests indi-
cate that the results of the algorithm converge towards optimal solutions, preserve genetic
variation over time, retain high correlation between parent and child őtness, and scale
reasonably well, in particular when compared to the exact algorithm.

Future work could involve extending the modelling language JANI to handle fuzzy
Markov chains as well as optimizing the algorithm further to achieve greater scalability,
especially with higher input sizes. This could be done by utilizing parallel computing,
better meta-parameter optimization (including dynamic selection and mutation rates), and
optimizing the őtness functions. Additionally, exploring the applications of fuzzy Markov
chains in various őelds and domains could be an interesting direction for further research.
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Chapter 9

Appendix

9.1 Fitness function, raising matrix to the power of n

The matrixMul algorithm takes a matrix P 1, raises it to a power p, and returns an
element at a speciőc index. This is achieved through iterative matrix multiplication within
nested loops. Each element in a temporary matrix temp is updated by multiplying and
accumulating corresponding elements from the result matrix and P 1. After each iteration,
result is updated to hold the current result values, which is then reset for the next round
of multiplication. The process repeats p ´ 1 times, effectively raising the matrix to the
desired power, with the speciőed element being returned at the end.

Algorithm 8 Matrix exponentiation

1: function matrixMul(P 1, p, idx)
2: n Ð P 1.size Ź Number of rows in P 1

3: temp Ð matrixpn, n, 0q Ź matrix with size of n ˆ n, őlled with 0s
4: result Ð P 1

5: for l Ð 0 to p ´ 1 do

6: for j Ð 0 to n do

7: for k Ð 0 to n do

8: for i Ð 0 to n do

9: temprisrjs Ð temprisrjs ` resultrisrks ¨ P 1rksrjs
10: end for

11: end for

12: end for

13: result Ð temp

14: fillptemp, 0q
15: end for

16: return resultridx.xsridx.ys
17: end function

9.2 Fitness function, stationary distribution

The stationaryDistribution algorithm őnds the stationary distribution of an input ma-
trix P 1 by iteratively multiplying a vector w with P 1 until the vector’s change drops below a
given threshold ε. This distribution is the vector that remains unchanged when multiplied
with the matrix. Once the vector stabilizes, it is normalized to sum to 1. The algorithm

40



then returns a speciőc element from the normalized stationary distribution, as indicated
by the provided index.

Algorithm 9 Stationary distribution

1: function stationaryDistribution(P 1, idx)
2: n Ð P 1.size Ź Number of rows in P 1

3: w Ð vectorpnq Ź 2D vector of length n

4: diff Ð 1, prev_diff “ 0.
5: while diff ă ε do

6: prev_w Ð w.
7: for i Ð 0 to n do:
8: wris Ð 0

9: for j Ð 0 to n do

10: wris Ð wris ` prev_wrjs ¨ P rjsris
11: end for

12: end for

13: prev_diff Ð diff, diff Ð 0

14: for i Ð 0 to n do

15: diff “ diff ` |wris ´ prev_wris|
16: end for

17: end while

18: sum Ð 0

19: for i Ð 0 to n do

20: sum “ sum ` wris
21: end for

22: for i Ð 0 to n do

23: wris “ wris{sum
24: end for

25: return wridx.ys
26: end function

9.3 Check whether a Markov chain is regular

The isRegular algorithm checks if a given matrix P forms a regular Markov chain.
This is determined by two conditions: irreducibility and aperiodicity. Both conditions are
checked using their respective helper algorithms, isIrreducible and isAperiodic.

The isIrreducible algorithm examines if there’s a path from every state to every other
state in the system. This is done by iteratively checking and updating reachable states
from each state in the system. If any state isn’t reachable from others, the system isn’t
irreducible.

The isAperiodic algorithm veriőes that the system doesn’t oscillate in a deterministic
cycle. For each state, it őnds the size of cycles it’s part of. If the greatest common divisor
of cycle sizes for any two states isn’t 1, the system isn’t aperiodic.

If the input matrix satisőes both conditions, it forms a regular Markov chain. Other-
wise, it doesn’t.
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Algorithm 10 Check if Markov chain is regular

1: function isRegular(P, n)
2: if isIrreduciblepP, nq “ false||isAperiodicpP, nq “ false then

3: return false

4: end if

5: return true

6: end function

Algorithm 11 Check if Markov chain is irreducible

1: function isIrreducible(P, n)
2: reachable Ð vectorpnq Ź Number of rows in P

3: reachabler0s Ð 1

4: for k Ð 0 to n do

5: newReachable Ð reachable

6: for i Ð 0 to n do

7: if reachableris “ 1 then

8: for j Ð 0 to n do

9: if P risrjs ą 0 then

10: newReachablerjs Ð 1

11: end if

12: end for

13: end if

14: end for

15: reachable Ð newReachable

16: end for

17: irreducible Ð true

18: for i Ð 0 to n do

19: if reachableris “ 0 then

20: irreducible Ð false

21: break
22: end if

23: end for

24: if irreducible “ false then

25: return false

26: end if

27: end function
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Algorithm 12 Check if Markov chain is aperiodic

1: function isAperiodic(P, n)
2: d Ð vectorpnq Ź Number of rows in P

3: for i Ð 0 to n do

4: dris Ð 1

5: for k Ð 1 do

6: if P risris ą 0 then

7: dris Ð k

8: break

9: end if

10: p Ð vectorpnq
11: for j Ð 0 to n do

12: for l Ð 0 to n do

13: prjs Ð prjs ` P rlsrjs ¨ P risrls
14: end for

15: end for

16: P ris Ð p

17: end for

18: end for

19: aperiodic Ð true

20: for i Ð 0 to n do

21: for j Ð 0 to n do

22: if gcdpdris, drjsq ‰ 1 then

23: aperiodic Ð false

24: break

25: end if

26: end for

27: if aperiodic “ false then

28: return false
29: end if

30: end for

31: if aperiodic “ false then

32: return false

33: end if

34: return true

35: end function

9.4 Check whether a Markov chain is absorbing

The isAbsorbing algorithm checks whether a given crisp matrix P forms an absorbing
Markov chain. An absorbing Markov chain is one in which every state can reach an
absorbing state (a state that, once entered, cannot be left) in a őnite number of steps.

The algorithm starts by identifying all absorbing states in the matrix, i.e., those states
where the probability of staying in the same state is 1. If no absorbing states are found,
the function immediately returns false, concluding that the Markov chain isn’t absorbing.

Next, for each non-absorbing state, the algorithm determines if there’s a path to an
absorbing state. This is done by computing the state transition probabilities for a step
and checking if there’s a non-zero probability of reaching an absorbing state. If all non-
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absorbing states have a reachable path to an absorbing state, the function returns true,
conőrming that the Markov chain is absorbing. Otherwise, it returns false.

Algorithm 13 Check if Markov chain is absorbing

1: function isAbsorbing(P, n)
2: k Ð 0

3: absorbingStates Ð vectorpq
4: for i Ð 0 to n do Ź Number of rows in P

5: if P risris “ 1 then

6: absorbingStates.appendpiq
7: k Ð k ` 1

8: end if

9: end for

10: if k “ 0 then

11: return false

12: end if

13: for i Ð 0 to n do

14: reachable Ð false

15: for j Ð 0 to absorbingStates.size do

16: if i “ absorbingStatesrjs then

17: reachable Ð true

18: break

19: end if

20: end for

21: if reachable “ false then

22: p Ð vectorrns
23: for k Ð 0 to n do

24: prks Ð P risrks
25: end for

26: for k Ð 0 to n do

27: for l Ð 0 to n do

28: prks Ð prks ` P risrls ¨ P rlsrks
29: end for

30: end for

31: for j Ð 0 to absorbingStates.size do

32: if prabsorbingStatesrjss ą 0 then

33: reachable Ð true

34: break

35: end if

36: end for

37: if reachable “ false then

38: return false

39: end if

40: end if

41: end for

42: return true

43: end function
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9.5 Exact algorithm to use as a reference for genetic algo-

rithm’s validity

The bruteForceMatrixMul function performs a brute force search to őnd the matrix
that, when raised to a certain power, yields a speciőc element with the optimal value, as
per a given direction (either maximum or minimum). It receives an interval matrix, in
which each cell contains a range of potential values, and explores all possible matrices that
can be formed within these intervals.

The function iterates through the interval matrix cell by cell, using nested recursion
to explore all combinations of potential cell values. Each time it őlls all the cells of
currentMatrix, it checks if the matrix is valid (e.g., the sum of each row’s elements equals
1 with a certain tolerance). If the matrix is valid, it calculates the result by raising the
matrix to a given power and retrieving a speciőc element (idx ). If the current result is
better than the best one found so far, it updates the bestResult and bestMatrix.

The function uses depth-őrst search to explore the matrix conőguration space and will
return the best matrix found, or an empty matrix if no valid matrix is found within the
provided intervals.

Algorithm 14 Matrix validity check

1: function isValidMatrix(matrix, tolerance)
2: for all row in matrix do

3: if abspsumprowq ´ 1.0q ě tolerance then

4: return false
5: end if

6: end for

7: return true
8: end function

45



Algorithm 15 Brute Force Matrix Multiplication

1: function bruteForceMatrixMul(intervalMatrix, currentMatrix, bestResult, i,

j, steps, idx, direction, tolerance “ 0.005, iterStep “ 0.005)
2: if i “ intervalMatrix.size then

3: if isV alidMatrixpcurrentMatrix, toleranceq then

4: currentResult Ð matrixMulpcurrentMatrix, steps, idx.x, idx.yq Ź
Fitness function, equivalent to one in the genetic algorithm

5: if pdirection&&currentResult ă bestResultq||p!direction&&

currentResult ą bestResultq then

6: bestResult Ð currentResult

7: return currentMatrix

8: end if

9: end if

10: return tu Ź Empty matrix
11: end if

12: bestMatrix Ð matrixpq
13: for x Ð intervalMatrixrisrjs.lower to intervalMatrixrisrjs.upper, step iterStep

do

14: currentMatrixrisrjs Ð x

15: newBestMatrix Ð bruteForceMatrixMulpintervalMatrix, currentMatrix,

bestResult, i ` pj ` 1q{intervalMatrixris.size, pj ` 1q%intervalMatrixris.size, steps,
idx, direction, tolerance, iterStepq

16: if newBestMatrix “ tu then

17: bestMatrix Ð newBestMatrix

18: end if

19: end for

20: return bestMatrix

21: end function
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