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ABSTRACT 

Transport systems are one of the driving forces of economic and social development of 
societies. With the growing world economy and the increase in efficiency in manufacturing 
techniques over the years, automobiles have become affordable, and their number has increased 
rapidly. The increasing number of automobiles causes economic losses and social disturbances 
due to air pollution and noise pollution as well as traffic congestion. While these problems that 
arise in cities that cannot plan their infrastructure well are worsening day by day, the cost of the 
investment required for the solution of the problems that arise has been increasing. While 
developed countries aim to minimise the effects of increasing traffic-related problems by 
allocating more financial and human resources to plan urban transport infrastructures by taking 
into account the changing circumstances, developing countries face important problems such 
as economic and well-trained human resources in both planning and implementation of plans. 

Understanding the route choices of road users in urban transport network planning is very 
important in terms of optimum use of the existing network capacity, understanding the 
deficiencies in the transport network, and deciding in which direction the infrastructure 
investments should be made. One of the most frequently used methods to understand the route 
choices of a road user is based on the comparison of the utilities of route alternatives to the road 
user. Quantifying the utility of a route to the road user is not easy since route choice is 
influenced by a wide range of factors, such as traffic safety, travel time, environmental factors, 
habits, etc. Logit and probit models are frequently used to estimate the utility of route 
alternatives. Although logit and probit models have various advantages, they have significant 
disadvantages in the application phase. Depending on the increase in the number of parameters 
considered in the logit model, the number of data should also increase in order to establish a 
reliable model. The probit model, on the other hand, requires mathematically complex 
operations, and its application requires experience and qualification. For this purpose, it is 
aimed to develop a model that can be used in small and medium-sized transport networks of 
developing countries by eliminating the disadvantages of logit and probit models, has low data 
dependency, is mathematically simple, linguistic expressions can be easily digitised, gives 
results quickly, and is easy to modify. The proposed model is a fuzzy logic model used to solve 
problems involving ambiguity. The fuzzy model is used in cases where a feature does not take 
a certain value and has applications in various engineering disciplines.
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1. INTRODUCTION 

Failure to plan the transport network of a country, city, or region effectively has cost, time, and 
environmental impacts. A poorly designed transport network leads to an increase in the 
frequency of traffic jams and traffic accidents. Due to congestion and accidents as a result of 
poor design, road users are likely to spend more time, consume more fuel, and travel on a less 
safe road (Wang et al, 2013; Shi et al., 2016). All these factors have a direct impact on the 
quality of life of the people of the region, economically, socially, and environmentally. 
Therefore, proper planning of transport systems is of economic, environmental, and social 
importance. 

There has been a significant increase in the number of automobiles in last decades as they have 
become more affordable thanks to technological and economic developments. The increase has 
also resulted in an excess demand for trips, which in turn creates new problems that need to be 
solved. As travel demand increases, it becomes more important for each driver to optimise their 
own cost and/or travel time. However, when users' self-interest optimisation reaches a 
saturation point, congestion occurs on a transportation network. Congestion on a traffic network 
has a direct impact on the travel time and cost of travellers. For this reason, various studies have 
been carried out on transport networks in order to alleviate traffic problems and ensure cost 
minimisation of users. 

The shaping of a trip on a transport network is based on the decisions made by the users of the 
network. Each decision made by the road user is part of the transport planning process. In the 
transport planning process, the classical four-stage transport model is commonly used. This 
model consists of trip generation, which estimates how many trips are generated in the traffic 
network, trip distribution, which estimates where the trip starts and ends, modal split, which 
analyses how many trips are generated by which mode of transport, and traffic assignment, 
which assigns passengers to their routes according to their destinations. In this thesis, the 
concept of route choice, which is involved in traffic assignment, will be analysed. 

Route choice in urban transport networks is a complex problem that cannot be handled in by 
considering the effect of one or two factors (Luce, 2005). Various factors such as traffic safety, 
congestion, distance, road works, travelling time, distance, environmental impacts influence the 
decision maker in route choice (Arslan & Khisty, 2005; Hawas, 2004) Typically, drivers aim 
to follow the shortest route to the destination they want to reach in the fastest way possible and 
without encountering any safety problems. It causes vehicle drivers to need an analysis process 
when choosing route alternatives that can meet their expectations at the highest level. 

In a road network, the most basic approach to the route choice problem is generalised cost 
minimisation. Cost minimisation involves several different parameters, such as travel time, 
probability of road congestion, type of road, safeness of the road network and environmental 
impacts (Sheffi, 1985). It is exceedingly difficult to write a generalised cost function that takes 
all of these parameters into account and to construct a reliable mathematical model based on 
this function (Luce, 2005). In order to write a generalised cost function, it is necessary to write 
a cost value for the parameters affecting the route choice. Route length, travelling time, or the 
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probability of road congestion can be expressed as a scalar value and can be converted into a 
cost. For this purpose, various approaches have been developed. These approaches essentially 
form utility functions that express the maximum benefit and cost provided by the routes. Based 
on these functions, logit or probit behaviour modelling methods are used, and the probability 
of choosing the routes is determined (Daganzo, 1979). However, the safeness of the road 
network or environmental impacts are not easy to express using a scalar value and difficult to 
convert to cost. Human reasoning is based on vague and subjective values rather than crisp 
numbers (Arslan & Khisty, 2005). Not everything in the human reasoning has precise values. 
In a crisp set, an expression is either 0 or 1, either yes or no, or more generally, either an element 
of the set or not. In human thinking methodology, an expression can belong to more than one 
set at the same time. For example, a route may be categorised as very safe by one road user due 
to appropriate lighting, pavement conditions, and traffic signs, while the same route may be 
considered as average safe by another road user for the same reasons. Therefore, making 
distinctions using sharp boundaries in human thought logic may not always give accurate 
results. In order to use the difference in the way of reasoning in the data evaluation procedure, 
fuzzy sets, which were introduced by Lotfi Zadeh (1965), are used as an alternative method. 
The use of fuzzy sets can enable the inclusion and analysis of parameters that are not considered, 
neglected, or cannot be separated with precise boundaries in the decision model. By utilising 
this approach, new fuzzy logic-based route choice models have been developed as an alternative 
to the classical model approach. 

The route choice problem is a problem that needs to be addressed carefully before and after 
infrastructure investments. In order to make more efficient use of the existing infrastructure or 
to achieve the target of the investments to be constructed, it is necessary to determine the 
parameters affecting driver decisions and to analyse and understand them well. For the analysis 
of the route choice problem, it is assumed that travellers try to maximise their utility by choosing 
the most favourable alternative for them, which is generally defined as the most cost-effective 
route. This assumption is based on the theory of random utility maximisation Logit and probit 
models are the most common models for the explanation of the theory. Various advantages and 
disadvantages of these models are discussed under the chapter Route Choice Models. The main 
criticism of logit and probit models is that drivers' preferences cannot be captured accurately 
(Gärling et al., 1994). In addition, there is 60-80% similarity between the route choice 
prediction made with the overhead representation obtained by taking the weighted sums of the 
time and distance parameters, which are the two most important parameters affecting the route 
choice, and the actual observations (Outram & Thompson, 1977). Furthermore, gathering the 
necessary data for modelling and building a model on the basis of these data requires meticulous 
work in both the data gathering and modelling process. In this context, the inability to easily 
convert the effects of safety and environmental parameters into the cost function in the writing 
of the utility function, the difficulties in collecting qualified data and the need for qualified 
personnel in the evaluation of the collected data are the main deficiencies in the planning phase 
of small and medium-sized networks, especially in developing countries (Memon et al., 2009; 
Moubayed et al., 2009).  In this context, due to its structure that allows easy quantification of 
linguistic expressions and its practicality of application, its suitability in network-wide route 
choice problems will be investigated. 
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1.1. Definition of the Problem 

Route choice depends on various factors, such as travel time, traffic safety, environmental 
factors, traffic congestion, habits, and distance. It is very difficult to establish a route choice 
model by considering all of these parameters at once. The two most common models used for 
route choice models are probit and logit models. Both of these models are based on the 
estimation of the utility of the preferred alternative for the driver. The utility of the route 
alternative for the driver can be obtained by converting parameters such as travel time or 
distance, which can be expressed in scalar values, into travel cost and includes an error and 
perception term. However, it can be difficult to construct a utility function using parameters 
that are difficult to express using scalar values, such as traffic safety and environmental factors, 
and to observe the effects of these parameters on route choice. In addition, both logit and probit 
models have several disadvantages. 

Probit model estimations involve multiple integral computations. As the number of alternatives 
increases, probit model estimations become more complex. The increasing number of 
alternatives both makes it difficult to estimate the distribution of the probability function and 
increases the labour required to solve the model. For this reason, the probit model is considered 
to be a suitable method for a set of alternatives with a maximum of three or four alternatives 
(Maddala, 1986). The logit model, another widely used model, also has several disadvantages. 
It requires a large data set to build a good prediction model using the logit model (Koppelman 
& Bhat, 2006). The number of data to be used increases as the number of variables in the model 
increases. The increase in the number of variables in the model negatively affects the predictive 
power of the logit model.  

Both the complexity and limited predictive power of the probit model and the increasing data 
dependency according to the number of variables used in the logit model limit the use of both 
models in the analysis of small and medium-sized transport networks. In developing countries 
such as Turkey, traffic planning based on route choice by road users in small and medium-sized 
urban centres is not carried out generally. (Gençoğlu & Cebeci, 1999; Akintola et al., 2010). 
While one of the main reasons for this is the cost of planning projects, another important reason 
is that the job descriptions of engineers working in local governments cover various fields of 
civil engineering rather than having a job description only in a specific field such as traffic 
engineering (Memon et al., 2009; Moubayed et al., 2009). Therefore, instead of developing 
projects and specialising in a specific field, knowledge is acquired in various fields, and 
specialisation in one field is partial. In addition, another problem is that the data collected in 
small and medium-sized networks is quite limited. 

1.2. Purpose of the Study 

With the increase in the number of variables in the probit model, the model becomes more 
complex and requires expertise for the solution. In addition, the predictive power of the model 
decreases as the number of variables considered increases. Although the logit model is more 
widely used than the probit model due to its simpler structure and predictive power, the 
increasing number of independent variables also increases the data size to be used. It is aimed 
to develop an alternative model that can be used in route choice modelling by developing a 
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simpler model rather than a model that requires qualification by eliminating the complexity of 
the probit model and by developing a prediction model with limited data by eliminating the data 
dependency of the logit model. For this purpose, the suitability of fuzzy logic, which can imitate 
human logic and is based on the rule-based expression of the relationships between the 
parameters considered, is easy to apply and has a wide range of applications, for the solution of 
the route choice problem will be investigated. The fuzzy logic model is intended to find the 
utility of a route to the road user without performing extensive calculations to construct a 
function as in the multinomial logit model, or minimising ambiguities in the categorisation of 
parameters whose effect on the cost function is expressed categorically, such as Traffic Safety 
and Environmental Factors. The study aims to develop an alternative model for engineers who 
cannot use one of the route choice models due to lack of financial resources, qualified personnel, 
or limited data, which will give them a basic idea for the route choice problem in their work 
areas and can be easily applied. 

1.3. Importance of the Study 

Fuzzy logic has been used in many fields for many years, both for its ability to process verbal 
information and for the expression of phenomena that are not numerical or cannot be easily 
expressed mathematically. One of the most prominent features of fuzzy logic is that it allows 
the building of models that can easily emulate human logic. Models that predict how human 
logic can make a choice according to the parameters defined by the rule sets to be specified can 
be built. Route choice is also based on road users making a choice as a result of considering 
various factors. Fuzzy logic will be used to investigate how travel time, environmental factors 
and traffic safety parameters affect route preferences. In this context, a fuzzy logic model based 
on these parameters will be built on the cycle route network in Enschede. In order to validate 
the model, open-source route data collected from volunteer cyclists by means of GPS and 
smartphone app within the framework of the "fietstelweek" event organised by Breda 
University Applied Sciences in 2016 will be used. 

Although the first study based on fuzzy logic in route choice was carried out by Teodorovic and 
Kikuchi in 1990, studies on fuzzy logic and route choice are rarely encountered in the literature. 
Most of the studies on fuzzy logic in the literature concentrate on traffic assignment, which is 
the last stage of the four-stage traffic model. Murat and Uludağ (2008) and Dhulipala et al. 
(2020) developed fuzzy logic models that explain the route choices of road users through rule 
sets. In both studies, only one O-D pair was considered and alternative routes in the chosen O-
D pair were evaluated through rule sets. This study aims to generalise and apply the fuzzy model 
on a network using rule sets, to find the probability of choosing any route among the alternatives 
with the obtained utility value, and to validate the established model using real world data. 

1.4. Research Questions 

Each link of the cycleway network in Enschede will be evaluated in terms of traffic safety, 
environmental factors, travel time and length. Then, the routes followed by the "fietstelweek" 
event participants will be compared with the shortest route between the origin and destination 
of the participants in terms of travelling time.  Thus, these three different parameters will be 
used and inferred by building a fuzzy logic model, and the attractiveness for cyclists on the 
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basis of route and link, in other words, the benefit will be obtained. In order to validate the 
model, the results found as a result of the fuzzy logic model will be compared with the route 
data of cyclists who participated “fietstelweek” event. The fuzzy logic will be tuned until the 
threshold, at least 80% of the routes followed have a better or close utility value than route 
alternatives, is satisfied. The questions to be answered within the scope of this thesis are as 
follows. Main question to be answered is, 

“How can a fuzzy logic model be built and validated to model route choice and explain route 
choices of cyclists using GPS data in a cycle network based on travel time, traffic safety, and 
environmental factors?” 

In order to address the main question, answers to the following sub-questions will be sought 
first. 

The first sub-question is which sub-factors including traffic safety and environmental factors 
will be evaluated within the scope of this study. In this context, a literature review will be 
conducted on these two main factors. Following the literature review, it will be analysed which 
of the sub-factors for which data are available for Enschede. Thus, the sub-factors with data 
accessibility and emphasised in the literature will be included in the study. Considering all 
these, the first sub-question to be answered is, 

"Which sub-factors related to traffic safety and environmental factors affect the route choice 
decisions of cyclists and how?" 

By identifying the sub-factors affecting the main factors considered, traffic safety and 
environmental factors can be modelled with an "if-then" fuzzy logic rule structure approach to 
obtain the characteristics of all the links that make up the cycle network in the city of Enschede. 
The second question sought to be answered in this context is, 

"How are the cycle network links in Enschede characterised in terms of traffic safety and 
environmental factors?" 

After determining the features of the links according to the two main factors, they will be 
evaluated in terms of travel time, which is the main factor affecting route choice in many 
studies. Travel time will be evaluated in the context of the sub-factors obtained from the 
literature and the characteristics of each link in the cycle route network in terms of travel time 
will be obtained. In this context, the third question is, 

"How are the links that make up the cycle network in Enschede characterised in terms of travel 
time?" 

After identifying the characteristics of the cycle network links according to the three main 
factors, an analysis model can be built with "if-then" rule sets using fuzzy logic. One of the 
weaknesses of fuzzy logic is that it does not have a generalised systematic approach, and the 
rule sets and membership functions are based on experience and empirical. Therefore, it will be 
possible to understand the accuracy of both rule sets and membership functions by validating 
the model.  This requires formulating the fourth question with two sub-questions. 
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"With what accuracy do the results obtained explain the GPS data obtained within the scope of 
‘fietstelweek’?" 

"If the fuzzy logic model does not explain the results with sufficient accuracy, what is the main 
reason? Are the rule sets or membership functions in the fuzzy logic model faulty, or are the 
parameters/sub-parameters considered insufficient to explain the results?" 

After the validation of the model, several interpretations can be made about the model 
constructed using fuzzy logic. The strengths and conveniences of the model as well as its 
failures and whether it is generalisable or not can be discussed. For this purpose, the fifth 
question can be formulated with two sub-questions. 

"Can a fuzzy logic model be easily generalized? If no, what are the impediments to 
generalizability, and how can these impediments be overcome?" 

"What are the main difficulties that may be encountered in the fuzzy logic model if more factors 
affecting the route choice are added? How might the addition of more factors affect the setup 
and accuracy of the fuzzy logic model?" 

1.5. Assumptions and Delimitations of the Study 

It is assumed that the participants of Fietstelweek - 2016, whose GPS data will be evaluated 
within the scope of the thesis, chose the routes they followed in order to maximise their benefits 
by acting in a rational human behaviour. The average speed of the participants is assumed to be 
15.68 km/h. This is the average speed of all event participants in Enschede. Travel time is 
assumed to be influenced by motor vehicle and pedestrian traffic. Since there is very limited 
data on motor vehicle traffic, pedestrian traffic, and traffic light waiting time, several 
assumptions are made about their effects on travel time. Accordingly, the average time lost by 
a cyclist at an intersection with a traffic light is assumed to be 48 seconds in the city between 
07:00-09:00 and 16:00-18:00 hours, when traffic is heavy and the waiting time changes 
dynamically depending on the traffic density. This time lost includes the time it takes to slow 
down for the traffic light, to wait until the green light is switched on, and to reach the former 
speed again. The time lost due to traffic lights is assumed to be 23 seconds outside the rush 
hour. In addition, on main roads that are not physically separated from motor vehicle traffic, it 
is assumed that cyclists may not be able to overtake the cyclist in front for safety reasons and 
reduce their speed in places during rush hours, and travel time is assumed to increase by 10%-
15% on these links. Finally, it is assumed that cyclists reduce their speed by 20% for pedestrian 
safety due to the pedestrian traffic that occurs between 17:00-20:00 on weekdays and after 
13:00 on weekends in the city centre where pedestrian traffic is heavy. 

The most important limitation of the study is the date difference between the cycle network data 
to which the GPS data belongs and the Open Street Map (OSM) data from which the data such 
as land use, traffic lights, whether the bicycle lanes are separated from vehicle traffic are 
obtained. While the bicycle network that GPS data belongs to 2016, the OSM data belongs to 
2023. In addition, it should be noted that OSM data is open source, and the data is created and 
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checked by volunteers, so there may be various inaccuracies in the data or various discrepancies 
with the real data. 

1.6. Organization of the Study 

In the next section, the theoretical framework of route choice behaviour will be established and 
information about existing route choice models will be given. Then, the advantages and 
disadvantages of fuzzy logic will be discussed by giving information about fuzzy logic, which 
will be evaluated within the scope of the thesis and will be used to propose a new model. By 
giving information about the studies in which fuzzy logic is used to model route choice, the 
factors affecting the route choices of cyclists, which will be used in the study, will be discussed. 
In the third section, information about the methodology will be given. In the Methodology 
section, how the data used in the study are obtained, how the obtained data are prepared for the 
analysis environment, the theoretical framework of fuzzy sets and operations in fuzzy sets, and 
the construction of fuzzy logic rules will be presented to the reader. In addition, information on 
how to validate the established model will be given. In the fourth section, Results, the outputs 
of the model and the rule set derived from trial and error will be presented to the reader. In the 
following section, Discussion, the advantages and disadvantages of the fuzzy logic model 
analysed in this thesis will be discussed, and the research questions will be answered. In 
addition, suggestions for future studies will be given by emphasising how the fuzzy logic model 
discussed in the study should be improved. In the last chapter, Conclusion, the methodology 
followed in the study will be summarised and the findings of the study will be presented.
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2. THEORETICAL FRAMEWORK 

In this chapter, fundamental information about the basic concepts that will be discussed in the 
thesis will be given. Firstly, route choice behaviour will be discussed and detailed. Then, the 
existing theories used to model route choice will be discussed, and the strengths and weaknesses 
of the existing theories will be highlighted. This will be followed by general information about 
fuzzy logic, which will be discussed in the thesis, and which is assumed to overcome the 
weaknesses of the existing theories, and the proposed methods for solving the route choice 
problem with fuzzy logic. Finally, the factors affecting the route choices of cyclists will be 
discussed, and the purpose of the thesis will be referred to again in this context. Thus, it is aimed 
to explain the general concepts and theories related to the study and to provide a better 
understanding of the Methodology section following this chapter. 

2.1. Route Choice Behaviour 

Travelling is an important part of daily life and is shaped by the mode of transport and route 
choice. When travelling, road users evaluate the route alternatives according to themselves and 
typically choose the most beneficial one for them. Different studies on route choice show that 
route choice depends on various factors, such as travel cost, travel time, traffic safety, comfort, 
habits, and socioeconomic characteristics (Arslan & Khisty, 2005; Prato & Bekhor, 2007). 
Among these parameters, the most prominent factor is travel time (Bovy & Stern, 1990). 

The most general approach to route choice, which is also the basis for traffic assignment, is that 
commuters evaluate the total costs of all routes on a route and anticipate and choose the route 
with the lowest total travel cost (Teodorovic & Kikuchi, 1990). It is argued that differences in 
the route choice of drivers travelling between two points are mainly due to two reasons (Bovy 
and Stern, 1990). The first reason influencing choice is human trait. Drivers have different 
intuitions when choosing a route (Bovy & Stern, 1990). The main factor influencing route 
choice behaviour is not the difference in the parameters that different researchers combine in 
their overall cost functions, but the difference in the perception of these parameters by drivers. 
The second reason for differentiating route choice behaviour is congestion effects due to 
unpredictable accidents or excessive demand (Bovy & Stern, 1990). Shorter routes are initially 
favoured more, so that congestion effects affect the travel time on these routes more than the 
initial conditions. In combination with the congestion effect, the cost of shorter routes, which 
are preferred because they are less costly, can increase to levels comparable to less favoured 
alternatives. Moreover, the preference of a route by more drivers statistically increases the 
probability of a traffic accident on the route (Ivan, 2004). It is not possible to know exactly 
whether a traffic accident will occur on the route. Other unknowns can be when the traffic 
accident occurs, how many vehicles will be involved in the traffic accident, the location of the 
traffic accident, and how the service capacity of the route will be affected depending on the 
number of vehicles involved in the accident. So, in the case of an accident, route costs may 
increase unpredictably and rapidly. 

Parameters affecting route choice behaviour include travel time, traffic safety, traffic 
congestion, travel cost, road type, distance, traffic signing, road works, landscape, and driver 
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habits (Arslan & Khisty, 2005; Hawas, 2004). It is very difficult to produce a generalised cost 
representation that includes all these parameters. It is obvious that it is not practical to represent 
all these parameters in a traffic assignment model. Therefore, various simplifying approaches 
for route choice models are inevitable. A common approach in route choice models is to 
consider the time and cost parameters. Especially when the urban traffic network is considered, 
time becomes the parameter to be considered (Bovy & Stern, 1990). Cost is often directly 
related to travel time (Bovy & Stern, 1990). 

In the next section, the development of various models to explain route choice and the 
involvement of human behaviour in these models are discussed. 

2.2. Route Choice Models 

Differences in drivers' goals, expectations, and intuitions lead to differences in route choice 
behaviour, and different route alternatives are likely to be chosen, even if they are not the most 
attractive route. These behavioural differences can emerge as a stochastic element in the 
modelling. Stochastic approximation models have been developed to extend the restrictive 
assumptions in UE models and to develop a more realistic route choice behaviour model 
(Burrell, 1968; Dial, 1971). The developed stochastic models take into consideration the 
differences in drivers' intuition of costs, as well as the differences in the travel distance, travel 
time, and travel cost parameters that drivers aim to minimise. 

Discrete choice models assume that when confronted with a choice situation, each individual's 
preference for alternatives is shaped by the attractiveness or utility criterion of the alternative 
(Cantillo & Ortúzar, 2005). The attractiveness of alternatives is represented by the concept of 
utility, which each individual tries to maximise. The value of utility is represented as a function 
of the characteristics of the alternatives and the characteristics of the decision maker. Since it 
is not possible to directly observe or measure the utilities, the parameters that are thought to 
benefit the individual are treated as random, and the route choice model shows which route will 
be chosen with what probability (Cantillo & Ortúzar, 2005). 

Probit and logit models have been developed to model the influence of human behaviour on the 
route choice process more explicitly (Jones, 2021). Both models are based on the concept of 
utility in travel demand modelling. The attributes and criteria of the alternatives within the 
choice set confronting each decision maker are assumed to be defined values (Bunch et al., 
1996). Drivers are thus regarded as rational decision makers who maximise their utility. 

The utility that a road user i would obtain from an alternative route a is, 

 𝑈 ൌ  𝑉   𝜀  (2.1) 

In this equation, V is the deterministic component and ε is the random component used to 
account for uncertainty that represent the temper of each individual and 
measurement/observational errors made by modeller (Ortúzar & Willumsen, 2011). 

Decision makers may not have complete information about the road network, and they cannot 
forecast the uncertainties or not accurately. As a result, predicted cost is affected by these 
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uncertainties. Therefore, the uncertainties that may be encountered should be taken into 
account, and the utility function should be rewritten to incorporate these uncertainties. The 
sources of errors are based on the theory of random utility, which argues that some components 
of utilities cannot be observed by the modeller and should therefore be considered random 
(Cascetta, 2009). This variation in random utility models is directly dependent on the 
assumptions made for the random component ε and/or the deterministic component V of the 
equation (Cascetta, 2009). The probability of choosing an alternative is expressed as follows. 

 𝑃 ൌ Pr൫𝑈  𝑈
 ൯  

𝑃 ൌ Pr൫𝑉   𝜀  𝑉
   𝜀

 ൯    

𝑃 ൌ Pr൫𝑉 െ  𝑉
  𝜀

 െ  𝜀 ൯ ∀ 𝑎 ് 𝑏   

(2.2) 

𝑃 is the probability that alternative a will be chosen under the current conditions, i is a road 
user, and it is stated that the maximum utility will be achieved if alternative a is chosen among 
all alternatives in the choice set. Commonly used random utility models are probit model, logit 
model, and generalised extreme value (GEV), discussed in Sections 2.2.1, 2.2.2, 2.2.3, and 
2.2.4, respectively. 

2.2.1. Multinomial Probit Model 

The multinomial probit model fitted to the normal distribution is constructed in a similar way 
to the multinomial logit model, discussed in Section 2.2.2, fitted to the Gumbel distribution. 
However, the multinomial probit model uses the cumulative normal distribution function 
instead of the cumulative logit distribution function (Paleti, 2018). This is due to the assumption 
that the error terms are normally distributed. Unlike the multinomial logit model, this model 
does not assume that the error terms are uncorrelated (Brooks, 2008). In other words, a positive 
correlation between the error terms to reflect a similarity in the characteristics of two or more 
alternatives is not an impediment to the use of the multinomial probit model (Brooks, 2008). 

The multinomial probit model is appropriate when there is a limited set of alternatives. The 
model is suitable for the choosing of at most three or four different alternatives (Maddala, 
1986). Since the calculations of the probit model require the use of multiple integrals, the 
complexity of the calculations becomes more intricate as the number of alternatives increases.  

The multinomial probit model, despite its theoretical attractiveness, considerable flexibility and 
advantages, is not a frequently used method. This is mainly due to computational difficulties. 
The first computational difficulty is that maximum likelihood estimation of complex nonlinear 
models is difficult for many practitioners to model (Bunch & Kitamura, 1989). Thus, the 
multinomial probit model is more complex than many other discrete choice models. Another 
difficulty is that more useful specifications require the estimation of covariance parameters, and 
the properties of the probability function are almost unknown in this context (Kropko, 2007). 
Finally, choice probabilities may require integration of the multivariate normal probability 
density. The workload required for standard integration approaches increases exponentially 
with the number of alternatives in the chosen set (Bunch & Kitamura, 1989). 
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2.2.2. Multinomial Logit Model 

In the multinomial logit model, the probability distribution is S-shaped. If the representative 
utility of an alternative is very low or very high compared to other alternatives, a small increase 
in utility occurs. The point at which this increase in the representative utility of an alternative 
has the greatest effect on the probability of being chosen is when the representative utility is 
equal to the combined utility of the other alternatives (Koppelman & Bhat, 2006). Accordingly, 
a small increase in the utilisation of an alternative can determine the equilibrium and lead to a 
large increase in the probability of choosing the alternative (Koppelman & Bhat, 2006). 

In the model, there is no order in the categories of the dependent variable, and the error terms 
are independent and constant variance. The probability of choosing an alternative i from a set 
of J alternatives is shown in Equation 2.3. In the equation, 𝑃ሺ𝑖ሻ is the probability that the 
decision maker chooses alternative i, and 𝑉 is the systematic utility component of alternative i. 
𝑃ሺ𝑖ሻ is always greater than zero for all i alternatives on the network. 

 
𝑃ሺ𝑖ሻ ൌ  

𝑒

∑ 𝑒
ୀଵ

 (2.3) 

One of the most controversial features of the multinomial logit model is the independence of 
irrelevant alternatives (IIA) (Cheng & Long, 2007). IIA means that the probability rate of any 
decision maker's choice between two alternatives is independent of the existence or 
characteristics of other alternatives. In other words, other alternatives are unrelated to the 
decision to choose between two alternatives within the set. The property has some important 
implications for the use, formulation, and estimation of the model. IIA allows an alternative to 
be added or removed from the choice group without affecting the structure and parameters of 
the model (Cheng & Long, 2007). However, the flexibility in applying the model to conditions 
with different choice alternatives leads to various advantages. The first of these advantages is 
that the model can be applied to situations where different members of the sample have different 
alternatives. Secondly, IIA facilitates the estimation of parameters in the multinomial logit 
model. Finally, when a new alternative is added to the choice model, it is advantageous in 
estimating the probability of choosing of this alternative (Koppelman & Bhat, 2006). 

2.2.3. Nested Logit 

The IIA assumption of the multinomial logit model significantly restricts the model as it 
requires equal competition between all pairs of alternatives, which is an inappropriate 
assumption under conditions where there are many alternatives (Björnersedt & Verboven, 
2014). Thus, the ratio of the choice probabilities of any pair of alternatives is constrained to be 
independent of the existence and properties of other alternatives in the choice set. This 
constraint implies that the introduction of a new mode or improvements to any existing mode 
reduces the choice probabilities of the existing modes in proportion to their probabilities before 
the change. For example, suppose that in the case of urban transport mode choice there are 
alternatives of private car, bus, and light rail. Due to shared attributes not included in the 
measured portion, the bus and light rail alternatives are likely to be similar to each other relative 
to the other binary choice alternatives. However, IIA states that these alternatives are not 
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similar. Therefore, there are cases where the IIA assumption does not appropriately reflect the 
behavioural relationships between alternative groups (Koppelman & Bhat, 2006). 

Although it is easy to work with the multinomial logit model and to estimate with the model, 
various estimation errors occur when the IIA, which is a significant assumption for the 
reliability of the analysis results, is met (Carrasco & Ortúzar, 2002). Since the probit model, 
which was the only alternative when this assumption was not met until the 1980s, could not 
respond with sufficient flexibility to the needs when the choice set was more than three, 
McFadden (1981) proposed GEV models. Practical applications of GEV models have created 
a subclass called nested logit. The nested logit model, first derived by Ben-Akiva & Lerman 
(1985), is an extension of the multinomial logit model designed to capture the correlation 
between alternatives. The nested logit model is a partitioning of a choice set (C) into nests (Ck, 
Cj...). For each pair 𝐶 ∩ 𝐶 ൌ 1. For each alternative, the utility function consists of a part 

associated with the alternative and a part associated with groups of alternatives.  

The nested logit model is represented by a tree structure in which similar alternatives are 
grouped into sets with no commonalities between them. This model is considered as a more 
flexible and statistically improved version of the multinomial logit model. With this model, 
similarities between overlapping alternatives can be captured, and the model offers a more 
flexible error structure (Carrasco & Ortúzar, 2002). In the nested logit model, an alternative can 
belong to only one set. Since the choice set or alternatives are divided into many sets, the model 
becomes very complex in a real road network where a link may belong to more than one set 
(Lai & Bierlaire, 2015). The model does not take into account the correlation between sets. It 
performs worse than the probit model in capturing partial overlap on urban roads (Gommers & 
Bovy, 1986). 

2.2.4. C-Logit 

C-logit is a model developed by adding a commonality factor to the utility function of the 
multinomial logit model. The added commonality factor represents the links shared between 
overlapping routes (Zhang & Du, 2020). Since the commonality factor is derived from the 
utility of overlapping routes, the utility of overlapping routes decreases while the utility of 
independent routes increases (Zhang & Du, 2020).  

The probability of choosing any route n in the presence of more than two route alternatives is 
generally expressed by Equation 2.4. 

 
𝑃 ൌ  

𝑒ೖ
 ି ೖ

∑ 𝑒
 ି  ఢ ூೝೞ

 (2.4) 

In this equation, 𝑐𝑓 is the commonality factor of route k and is directly proportional to the 
degree of commonality between route n and the other routes in the O-D pair. Cascetta et al. 
(1996) expresses the 𝑐𝑓 term as in Equation 2.5. 
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Here, 𝐿 is the length of links common to paths h and k, 𝐿 and 𝐿 are the total lengths of 
routes h and k, respectively, and 𝛾 is a positive parameter. 

2.3. Limitations of the Current Models 

Route choice depends on different factors, such as travelling time, traffic safety, environmental 
factors, traffic congestion, habits, and distance. Considering all of these factors together makes 
a route choice model complex and intricate to solve the problem (Arslan & Khisty, 2005). The 
route choice models mentioned above are the most common methods used for route choice. 
New methods have been derived to overcome the shortcomings of the logit model. Some of the 
disadvantages of the logit model have been overcome by these new logit models. Although the 
new models explain route choices more accurately, one of the biggest disadvantages of the logit 
model derivatives is that they are quite complex compared to the standard logit model and 
require more data for the estimation of the model and more assumptions for the distribution of 
these data (Cascetta et al., 1996; Koppelman & Wen, 2000). Since the probit model is based on 
multiple integral calculations, the workload required for the probit model accrues as the number 
of alternatives increases. The probit model, which becomes more complex with the increase in 
the number of alternatives and the estimation of probability functions becomes difficult, is a 
suitable method in cases where a choice between three or four alternatives is required (Maddala, 
1986). In short, the predictive power of the logit model and its derivatives decreases as the 
number of variables considered increases and the number of data required for the solution 
increases and the solution becomes more complex. In the probit model, as the number of 
alternatives increases, the required processing load increases, and it becomes difficult to 
estimate the distribution of probability functions. 

2.4. Fuzzy Logic and Scope 

Route choice on a network is an intricate problem due to the uncertainties involved. The fact 
that road users choose the routes they are used to or that they do not have sufficient information 
about various route options may cause various problems in the models established while 
addressing the route choice problem. For example, the experience of the road user, the fact that 
the same route has different travel times at different hours of the day, or on different days of 
the week cause various uncertainties that need to be addressed in the problem. The random 
component of the problem can be modelled with the aim of maximising the utility with various 
approaches mentioned above. However, one of major disadvantages of these methods is the 
necessity to study with precise values. The uncertainties, for example travel time affected by 
many factors, in the structure of the problem cannot fully respond to the uncertainty in the 
structure of the problem if precise values are used (Henn, 2000). In addition, in order to 
construct a realistic route choice model by simplifying the complexity of the route choice 
problem, the imprecision, vagueness, and ambiguity properties of the parameters in the route 
choice model must be understood correctly (Lotan & Koutsopoulos, 1993). Unlike classical 
mathematical models, fuzzy logic makes it possible to model these properties. 

Classical logic deals with propositions with crisp values that occur only under certain 
conditions. However, in real life, the number of situations that we can easily distinguish as true 
or false is quite limited and does not occur based on absolute distinction. In addition, the 
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requirement that the data used in classical logic must be precise causes various difficulties in 
solving the problems addressed in real life (Zadeh, 1965). Fuzzy logic, developed to overcome 
these difficulties, can be defined as a flexible application of logic rules (Zadeh, 1965). Classical 
logic is bivalent Aristotelian logic and contains only values, such as "true or false", "1 or 0", 
"yes or no", "exists or does not exist". Fuzzy logic, on the other hand, generalises classical logic 
and includes propositions and statements that can take any value between two values. 
Accordingly, "fuzziness" means multi-variable mathematically. Therefore, it is more effective 
in solving problems where uncertainty or truth values are not precisely defined, and the 
application area of fuzzy logic is wider (Trillas & Eciolaza, 2015). The mentioned comparison 
of "bivalence" and "multivalence" is one of the principles of fuzziness. The fact that real-life 
problems are predominantly multi-valued makes the bivalent approach of classical logic 
inadequate, and it is known that the use of fuzzy logic is more appropriate (Trillas & Eciolaza, 
2015). Fuzzy logic theory is often confused with probability theory. These two theories have 
different definitions. While probability theory deals with uncertainties about whether a well-
defined event occurs or not, fuzzy logic theory deals with uncertainties in defining the 
phenomenon (Trillas & Eciolaza, 2015). 

Fuzzy logic has several advantages due to its flexible structure. The first of these advantages is 
the effectiveness of fuzzy logic in processing verbal information. The human mind uses words. 
Since fuzzy logic has similar properties, inferences close to human logic can be obtained with 
this method (Albertos et al., 1998). Another advantage of fuzzy logic is that it allows modelling 
of experiences that are not numerical or cannot be expressed mathematically (Mendel, 1995). 
For example, a parent who monitors his/her children closely can predict how many pages will 
be read each day from the books he/she gives to his/her children to read. However, predicting 
the number of pages that will be read can be difficult in terms of formulation. In this respect, it 
is a good tool for transferring experiences to the problem solution model in situations where 
numerical data cannot/limitedly be reached. Fuzzy logic includes the mathematical concepts of 
set theory, and the logic behind of the method is quite simple. With its flexible structure, it can 
keep in harmony even with complex and non-linear functions in uncertain probabilistic cases 
(Albertos et al., 1998). Colloquial language can be emulated by using fuzzy logic. It is therefore 
a tool to help build a predictive model for situations where it is difficult to build a mathematical 
model or where there are not enough data/human resources to build a complex mathematical 
model (Safiotti, 1997). Finally, fuzzy logic also includes classical logic and the phenomena 
constructed with classical logic can also be expressed with fuzzy logic (Albertos et al., 1998). 
In addition to all these advantages of fuzzy logic, it also has disadvantages. The most important 
of these is that there is no systematic approach to be followed for the solution of the problem 
with fuzzy logic. The choice of membership functions is very dependent on experience, and the 
most appropriate membership values of functions are found empirically (Albertos et al., 1998). 

2.5. Fuzzy Logic and Application to Route Choice Problems 

Fuzzy logic is a method that acknowledges imprecision, vagueness, and ambiguity in 
accordance with the nature of human thought. Unlike classical logic methods, this method 
works with values expressed in scales instead of a limited and explicit language expressed in 
numbers. The values on the scales need not be strictly separated from each other. For example, 
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a journey time of about 15 minutes may be characterised as short for some road users and as 
average or long for others under the same conditions. The route choice problem is characterised 
by various uncertain attributes, such as travel time, distance, comfort, safety, etc. that road users 
assign to route characteristics. Fuzzy logic allows the input variables to be expressed 
linguistically, whereas models based on precise choices do not have the capacity to incorporate 
the uncertainty and ambiguity that dominate route choice decisions. The method is based on a 
set of rules generated by a simple "if-then" query. The route choice problem can be expressed 
as "Route A is both shorter and safer than route B, so route A is more likely to be preferred by 
a road user than route B". Thus, all factors to be considered on the route can be expressed in a 
rule-based approach and routes can be realistically evaluated in terms of their qualitative 
characteristics.  

Teodorovic and Kikuchi (1990) presented the first study using a fuzzy logic model to solve the 
route choice problem. They developed a rule set based on the travel time difference between 
two routes. The travel time difference between two routes was expressed as fuzzy with four 
different categories and a fuzzy logic probability rule set was developed that generates a value 
between 0 and 1 according to the result of the travel time difference output. As a result of the 
defuzzification of the developed rule sets, the choice probabilities of the two routes analysed 
were calculated. Lotan and Koutsopolous (1993) introduced a new method based on the fact 
that the fuzzy logic model developed by Teodorovic and Kikcuhi is limited to a binary choice 
and the proposed method cannot be generalised easily for multiple choices. In the model 
developed by the duo, it is accepted that the most important factor affecting the route choice is 
the travel time and a fuzzy logic model based on the travel time is built. The travel time 
advantage/disadvantage of the considered route over other routes is quantified with the defined 
rule set fuzzy logic model. The quantified values are summed and defuzzified and the 
attractiveness of each route according to travel time is obtained numerically. Vythoulkas and 
Koutsopoulos (2003) proposed a new approach by extending the fuzzy logic framework 
developed by Lotan and Koutsopoulos to include the weights of the defined rules that form the 
decision process. In the study, fuzzy sets and verbal variables are used to model how the 
decision maker perceives different attributes (time, cost, and transfers) of alternatives. The basic 
approach in the model is that the decision taker makes a decision based on a few simple 
inferences with these attributes. These inferences are expressed as rule sets using fuzzy logic 
and artificial neural networks are used to find and calibrate the weights of each rule. The basic 
hypothesis on which the model is based, that drivers will decide based on simple rules rather 
than trying to maximise their decisions by writing a complex utility function, is tested. For this 
purpose, a logit model was developed, and the results of the proposed model are compared with 
the logit model. The proposed model gives better results compared to the logit model. 

Murat and Uludağ (2008) investigated the probability of choosing four different alternative 
routes between a chosen O-D pair in Denizli/Turkey by using fuzzy logic and logit model with 
a survey of 500 respondents using the parameters of travel time, traffic safety, environmental 
impacts, and road congestion. They developed a rule-based fuzzy logic model consisting of 
three categories for each parameter. With the defined fuzzy logic rule model, a utility function 
was obtained according to the characteristics of each route, and the obtained utility function 
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was converted into a probability value using a logit model. The survey results are also quantified 
using a logistic regression model and the probability of choosing each route is found. The fuzzy 
logic and logistic regression models are compared, and it is stated that the route choices of the 
respondents are better explained by the fuzzy logic model. In a similar approach, Dubey et al. 
(2013), based on a survey of 150 respondents in Delhi, modelled the probabilities of choosing 
three different route alternatives between an O-D pair using three different methods by using 
nine different variables including distance, speed, time, and delay. The authors compare the 
results obtained by using multinomial logit (ML), fuzzy rule-based inference system (FIS), and 
adaptive neuro-fuzzy inference system (ANFIS) models. As a result of the rule sets defined in 
the FIS model, a route preference value is obtained. The obtained value is converted into a 
probability value by using the multinomial logit formula. The results for all three models are 
similar to each other. The models have predicted the data set with an accuracy in the range of 
95%-100%. The authors emphasised that the FIS model is the most effective method in terms 
of ease of calculation and flexibility. A study similar to these two studies was conducted by 
Dhulipala et al. (2020) in Surat, India. Three different route alternatives between an O-D pair 
in Surat are evaluated in terms of travel time, traffic density, and environmental impact 
parameters. The choice probabilities of each route alternative are calculated using multinomial 
logit model (MNL) and fuzzy logic. Unlike the other two similar papers, the authors do not 
utilise the multinomial logit formula to calculate the probability of choosing a route and propose 
a hierarchical method. Accordingly, the defined rule sets are defuzzified as a number ranging 
from 0-100 for the route choice preference of three different parameters. According to the 
drivers' answers to the questionnaires, three different routes are compared and grouped in 
groups of two. For example, when comparing routes, A and B, if a road user's preference for 
route A is obtained as a value of 50 or more than the preference for route B, it is assumed that 
the driver chooses route A between route A and route B. In the next stage, the comparison is 
made for routes A and C in the same way to find out which route the driver ultimately prefers. 
According to this validation model developed by the authors using fuzzy logic, the survey data 
is explained with 92% accuracy, while the model built with MNL achieved to explain the survey 
data with 78% accuracy. 

2.6. Route Choice Parameters of Cyclists 

Unlike motor vehicle drivers, cyclists consider many incomparable objects when making a 
route choice decision. It is not realistic to consider generalised cost as the only objective cyclists 
aim to achieve (Ehrgott et al., 2012). In this respect, cyclists might differ from motor vehicle 
drivers. Cyclists have different factors affecting their route choice decisions. Therefore, unlike 
motor vehicle drivers, it is essential to understand what factors cyclists consider for route choice 
other than travel time or distance in order to make a good route choice prediction and to be able 
to model it mathematically. 

Many researchers have conducted numerous studies centred on cyclists' route choices. Based 
on the literature, the findings can be categorised into three main categories: traffic safety, 
environmental factors, and travel time. Although the main purpose of transportation is to get 
from one origin to another destination as fast as possible, this purpose cannot be considered in 
isolation from safety. Especially for cyclists, the shortest route does not always mean the safest 
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route. Cyclist safety is only partially recognised where cycle lanes alongside main roads are not 
separated by a physical barrier (Ehrgott et al., 2012). If the cyclist has an alternative that is 
much safer and does not have a significant difference in terms of travel time, the cyclist may 
choose this route alternative for safety reasons. Studies in the literature confirm the cyclists' 
view of safety. Hopkinson and Wardman (1996) conducted a survey of 7900 respondents in 
Bradford, West Yorkshire in 1994 showed that cyclists place more importance on safety than 
travel time. In addition to traffic safety, the effects of environmental factors on cyclists' route 
choice have been confirmed by various researchers. Various factors, such as the number of 
traffic lights and intersections on the route, variation in elevation, water bodies, land use 
diversity, public transport transfer on the route, the presence of a facility such as a gym, 
shopping centre, the presence of green space can be a reason for cyclists' route choice (Prato et 
al., 2018; Hood et al., 2013; Menghini et al., 2010). In addition, some of these factors have a 
direct and some have an indirect effect on travel time. In the following subsections, the studies 
and findings in the literature on the effects of travel time, traffic safety, and environmental 
factors on cyclists' route choice are presented. 

2.6.1. Travel Time 

Travel time is considered to be the most important element of the utility value used to find the 
probability of choosing a route, and most modelling based on route choice is based on this 
assumption. As emphasised before, although the parameters that are valid for route choice for 
cyclists are different from motor vehicles, it is undeniable that travel time is also one of the 
main factors in route choice for cyclists. It is not possible to consider travel time independently 
from traffic safety and environmental factors. Travel time is affected by both safety factors on 
the chosen route and environmental factors. For example, due to the presence of residential 
areas along the route or areas with a high pedestrian population, such as a city centre, may 
require cyclists to ride at a slower than normal speed for their own safety and safety of 
pedestrians. Or, the presence of traffic lights on a route may increase safety for cyclists at 
intersections, while waiting at traffic lights lengthens the travel time. 

The presence of a cycle path affects traffic safety as well as travel time. On a cycle path 
separated from motorised traffic, cyclists can travel as fast as their physical condition allows 
without safety concerns (Clarry et al., 2019). Band (2022) emphasises that cyclists are willing 
to cycle on average 3.3 minutes more to travel on a route with a cycle lane. The same study also 
states that it is not a problem for cyclists to travel 4.7 and 5.2 minutes longer in the presence of 
a one-way or two-way cycle track, respectively. Sobhani et al. (2019) state that cyclists tend to 
use routes where they can avoid traffic as much as possible during peak traffic hours. In 
addition, many factors such as the number of intersections on the route, the number of red lights, 
left turns, the quality of the road surface and the road slope play an important role in both the 
travel time and the route preference of cyclists (Lawrence & Oxley, 2019; Lu et al., 2018; Ton 
et al., 2017; Beheshtitabar et al., 2014). Due to these factors, the shortest road alternative in 
terms of distance may not be preferred by cyclists. 
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2.6.2. Traffic Safety 

A common finding of research on cyclists' route preferences is that routes that offer a safe 
infrastructure for cyclists are more attractive routes for cyclists. Cyclists are vulnerable road 
users and in the event of a vehicle-cyclist collision, the cyclist is more likely to be seriously 
injured or die than the vehicle driver (Klanjčić et al., 2022). Therefore, separating cyclists from 
vehicle traffic with a physical barrier, especially on roads with a speed limit of more than 50 
km/h, is important to ensure road safety for cyclists. The preference and use of cycle lanes 
separated from motorised traffic by a physical barrier is increasing significantly (Trofimenko 
& Shashina, 2021; DiGioia et al., 2017; Chen et al., 2016). In cases where physical separation 
of the cycle lane is not possible due to infrastructural deficiencies, clearly marking and painting 
the cycle lane is an effective and inexpensive method to prevent vehicle drivers from violating 
the cycle lane while driving (Oršić et al., 2022). Similarly, the marking of intersections for 
cyclists is a simple and effective practice for the navigation and safety of both vehicle drivers 
and cyclists at an intersection (Schepers et al., 2011; Wall et al., 2016). 

The characterisation of a cycle route as safe is not limited to its physical separation from 
vehicular traffic or the marking of the cycle route to make it easier for everyone to navigate. 
The superstructure of the cycle path is another factor to be considered for a safe and comfortable 
cycling experience and the attractiveness of the route. The presence of potholes on the surface 
of the cycle path or the deterioration of part of the road directly affects cyclist safety (Dondi et 
al., 2011). Potholes on the road may cause the cyclist to trip and fall while travelling and affect 
the road grip. In addition, the pavement material used on the cycle path should provide 
sufficient friction to ensure grip and safe riding on wet surfaces (Dondi et al., 2011). Finally, 
lighting on the cycle path is considered as a factor affecting cyclist safety for night journeys. 
Illumination of cycle paths increases cyclist safety by increasing the visibility of cyclists, 
enabling faster action in case of any factors affecting driving safety, and providing a mentally 
more comfortable driving experience (Osama & Sayed, 2017). The most comprehensive study 
on this subject was conducted by Wanvik (2009) in the Netherlands and concluded that road 
lighting in rural areas reduces the number of accidents by half, as well as the severity of the 
accidents that occur. In addition, various researchers have shown that lighting reduces the 
likelihood of cyclists being involved in an accident (Osama & Sayed, 2017; Chen & Shen, 
2016; Reynolds et al., 2009). 

2.6.3. Environmental Factors 

Unless the cycle route is independent of motorised traffic, any factor affecting motorised traffic 
can also affect cyclists. One of the most important environmental factors for cyclists' route 
choice is the number of stops along the route (Lawrence & Oxley, 2019; Hood et al., 2013; 
Menghini et al., 2010). The red-light duration of traffic lights depends on the volume of vehicle 
traffic due to the widespread use of smart signalling systems in many cities. Therefore, for a 
route choice with heavy traffic, the waiting time at a red-light may be longer than expected. 
Signalling at intersections has a negative impact on travel time compared to traffic safety. 
Several studies show that the presence of signalling on the route affects cyclists' route 
preferences differently. While Ehrgott et al. (2012) and Lawson et al. (2013) argue that traffic 
signalisation increases cyclists' perception of safety and makes the route preferable, Lawrence 
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& Oxley (2019), Ton et al. (2017), and Hood et al. (2013) conclude that traffic signalisation 
affects travel time and negatively affects cyclists' route preferences. In a study by Band (2022), 
cyclists prefer to travel 5.3 minutes more on a route with two or fewer stops rather than stopping 
five or more times on a route due to signalling or intersections. 

Another factor affecting the route preferences of cyclists is the road gradient. Gradient of a 
cycle path is a negative factor for cyclists as they require more effort than flat paths. Scarf & 
Grehan's (2005) study shows that cyclists prefer to travel 8 m horizontally rather than 1 m 
vertically. Cyclists do not tend to detour on routes with relatively low road gradient, while the 
tendency increases in terms of gradient. The study of Lu et al. (2018) emphasises that a road 
gradient of 2% or less makes the route an ideal route alternative for cyclists. The same study 
states that road gradients between 2% and 6% make the route partially detouring for cyclists, 
while road gradients above 6% make the route highly detouring for cyclists (Lu et al., 2018). 

Cyclists' route preferences are influenced by road characteristics and safety as well as 
environmental factors, such as the presence of green space, blue space, recreational space, 
parkland on the route, which make the cycling experience more enjoyable and relaxing. Prato 
et al. (2018) emphasise that scenic areas contribute positively to cyclists' route preferences. 
Marquart et al. (2020) emphasise that the presence of blue space on the route has a positive 
effect on the cycling experience and that cyclists with no time constraints are more likely to 
choose such cycling routes by sacrificing travel time if they have a longer travel time. In 
addition to green and blue areas, the presence of facilities on the road also affects the route 
choice. The presence of facilities with different qualities, such as grocery market, shopping 
centre, bakery, library, gym/fitness facility, school, recreation facility on the route has a positive 
effect on the route choice decisions of cyclists (Kerr et al., 2016). 

Finally, the diverse effects of land use and demographics on cyclists' route choice and route 
attractiveness can be addressed. Cycling in residential areas does not allow for a smooth cycling 
experience due to the relatively narrow roads, the lack of separated cycle lanes, and the presence 
of many uncontrolled intersections with crossing side streets. Therefore, cyclists avoid cycling 
in residential areas and densely populated settlements as much as possible (Koch & Dungundji, 
2021; Prato et al., 2018). Studies investigating the impact of mixed land use, industrial land use, 
and commercial land use on cyclists' route preferences are limited in the literature. Winters et 
al. (2010) and Prato et al. (2018) emphasised that mixed land use has a positive effect on 
cyclists' route choice, and Prato et al. (2018) indicated that industrial land use contributes 
positively to cyclists' route choice. Koch & Dugundji (2021) state that commercial land use has 
a positive effect on route choice, while Winters et al. (2010) argue that commercial land use 
has a negative effect on route choice with the opposite finding. 

2.6.4. Overview of Factors 

In the sub-headings above, several factors affecting the route choice behaviour of cyclists are 
grouped and discussed as travel time, traffic safety, and environmental factors and supported 
by the studies in the literature. Accordingly, traffic safety plays an essential role in cyclists' 
route choice behaviour. A cycle lane physically separated from vehicular traffic increases the 
safety perception of cyclists. Cycle lanes marked with a different colour than the road pavement 
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at intersections and non-physically separated cycle lanes have an importance for the navigation 
of both cyclists and motor vehicles and for the safety of commuters. Signalisation, which has a 
positive impact on safety, increases travel time and acts as a deterrent for experienced cyclists 
and a preference for inexperienced cyclists. While hills and road gradient, number of left turns, 
number of red lights and intersections, and traffic volume are the environmental factors that 
negatively affect the route choice of cyclists, the presence of various facilities on the road, 
scenery, greenery area, and blue space are listed as factors that positively affect the route choice. 
Land use and demography are also considered as other environmental factors affecting route 
choice. Although the number of studies centred on land use and cyclists' route choice is quite 
limited in the literature, residential areas negatively affect cyclists' route choice due to 
population density and some deterrent factors in cycling infrastructure, while mix, industrial 
and commercial land use positively affect cyclists' route choice. Table 1 shows various studies 
in the literature in order to better understand all these factors and their effects. 

Table 1.; List of various factors influencing cyclists' route choice 

Parameter Factor 

Influence 
on the 
route 
choice 

Source 

Travel Time 

Traffic signalization Negative 
Band (2022), Lawrence & Oxley (2019), 
Lu et al. (2018) 

Cycle path Positive Band (2022) 

Number of 
intersections, left 
turns, and 
roundabouts 

Negative 

Lawrence & Oxley (2019), Lu et al. 
(2018), Beheshtitabar et al. (2014), 
Hood et al. (2013), Menghini et al. 
(2010) 

Traffic volume Negative Lawrence & Oxley (2019) 

Traffic Safety 

Lighting Positive 
Osama & Sayed (2017), Chen & Shen 
(2016), Reynolds et al. (2009), Wanvik 
(2009) 

Separated cycle lane  Positive 
Trofimenko & Shashina (2021), DiGioia 
et al. (2017), Chen et al. (2016) 

Traffic signalization Positive 
Trofimenko & Shashina (2021), Lawson 
et al. (2013) 

Traffic volume Negative Lawrence & Oxley (2019) 

Painted cycle lane Positive 
Oršić et al. (2022), Schepers et al. 
(2011), Wall et al. (2016) 
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Paved infrastructure Positive 
Dondi et al. (2011), Beheshtitabar et al. 
(2014) 

 

 

 

 

 

 

 

Environmental  
Factors 

Existing a facility on 
a route 

Positive Prato et al. (2018) 

Greenery area and 
blue space 

Positive 
Marquart et al. (2020), Prato et al. 
(2018) 

Gradient Negative 
Lu et al. (2018), Beheshtitabar et al. 
(2014), Broach et al. (2012), Scarf & 
Grehan (2005) 

Population density Negative 
Koch & Dugundji (2021), Prato et al. 
(2018) 

Residential area Negative 
Koch & Dugundji (2021), Prato et al. 
(2018) 

Commercial area Positive Prato et al. (2018), Winters et al. (2010) 

Industrial area Positive Prato et al. (2018) 

Mixed use area 
Positive - 
Negative 

Koch & Dugundji (2021) - Winters et al. 
(2010) 

2.7. Research Gap and Aim of the Thesis 

The factors that cyclists consider for route choice differ from those of drivers. For drivers, 
maximisation of utility comes to the forefront, while the most essential criterion for maximising 
utility is travel time (Teodorovic & Kikuchi, 1990). For cyclists, although travel time is 
important for route choice, safety, and environmental factors are also parameters that affect the 
final route decision (Ehrgott et al., 2012). Some of the results of various approaches on cyclists' 
route choice have been presented above. Although the studies generally reveal the factors 
affecting the route choice and how the preferences are affected, they do not provide an approach 
to integrate these factors together to develop a utility function and the probability with which 
route alternatives can be chosen. As shown in the studies of various researchers, fuzzy logic 
stands out as an alternative method that is both simple and more effective in obtaining the utility 
function compared to existing methods (Dhulipala et al., 2020; Dubey et al., 2013; Murat & 
Uludağ, 2008). Fuzzy logic has been used to evaluate route alternatives in an O-D pair for the 
route choice problem and to estimate the probability of choosing the available alternatives, but 
studies on generalising the route choice problem to a network have been limited. This study 
aims to develop a fuzzy logic model that can be used in small and medium-sized networks under 
limited data by considering the factors affecting the route choice of cyclists based on the route 
choice approach of fuzzy logic for an O-D pair in the literature. The developed fuzzy logic 
model will be tested using GPS data collected during the "fietstelweek" event in 2016.
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3. METHODOLOGY 

In this section, the fuzzy logic analysis model and its validation will be discussed. The flow 
diagram of the fuzzy logic model and model validation is shown in Figure 1. Accordingly, it is 
aimed to identify the factors affecting the route choice behaviour of cyclists through literature 
review. In this context, in the second step, the factors affecting route choice behaviour are 
discussed in detail under three headings: travel time, traffic safety, and environmental factors. 
The factors that form each of the three parameters are listed, and the effects of the factors on 
route selection are already presented in Table 1 above. Most of the factors in Table 1 will be 
used in the fuzzy logic model that is aimed to be created within the scope of this thesis. The 
main reason why some factors are not included in the analysis model is that Enschede, which 
is the study area, does not carry a distinctive function or the necessary data is not 
accessible/available due to the fact that cycling has an important place in daily life and the 
infrastructure has been shaped accordingly, unlike the cities and countries where studies in the 
literature are conducted in the Netherlands in general. After finding the necessary data sets and 
preparing the data, the analysis environment will be set up. Thus, the membership functions of 
the parameters considered will be determined, rule sets will be defined, and the appropriate 
fuzzy inference system will be selected for the model. The obtained results will be defuzzified. 
Thus, the attractiveness of all links in Enschede's cycling network for cyclists in terms of traffic 
safety and environmental factors will be obtained. While building the fuzzy logic model, GPS 
data collected during the "fietstelweek" event organised in 2016 is used. Since there is no 
systematic approach to be followed when building the fuzzy logic model, a threshold is set for 
finalising the rules to be used in the model. According to the threshold, the utility value of at 
least 80% of the routes followed must be close to or larger than the utility value of the fastest 
routes. The same threshold is valid not only for the fastest routes but also for the safest and 
most appealing route alternatives in the set of route alternatives. The fuzzy logic model thus 
constructed is applied to the city of Hengelo, which is similar to Enschede in terms of 
urbanization and socially and is located only 10 km west of Enschede. The fuzzy logic model 
is finalised if the utility values of the routes followed yield similar results in Hengelo. Then, the 
probabilities of route alternatives are found by using the logit formula, which has a simple 
formulation and is widely used to find the probabilities of being chosen of route alternatives 
according to their utilities. In addition to the logit formula, the C-logit formulation, which 
includes a commonality factor and reduces the probability of being chosen the routes if the 
route followed and a route alternative overlap, is used. 
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explain the dataset 
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When the model describes the data 
with sufficient accuracy (≥80%) 

Figure 1.; Methodological framework 
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3.1. Study Area 

The fuzzy logic model to be built within the scope of the thesis focuses only on the cycle trips 
that take place within the borders of Enschede within the event "Fietstelweek 2016". In this 
context, all links containing the cycle network within the borders of Enschede are matched with 
the data collected within the scope of "Fietstelweek 2016", and a total of 302 bicycle journeys 
taking place only within the borders of Enschede are filtered. Although cycling to other cities 
close to Enschede, such as Hengelo, Haaksbergen, Losser, Oldenzaal, etc. is frequently 
preferred, the study is limited to Enschede data due to the limitation of the analysis environment 
and the fact that the data sources to be used to build the analysis environment are open source 
and have various reliability problems. The location of Enschede on the map is shown in Figure 
2. 

 

Figure 2.; Location of the study area Enschede in the Netherlands  
(Source: Wikimedia Commons, 2009) 

3.2. Identifying Parameters 

The factors affecting the route choices of cyclists are discussed in detail in the second section 
in order to answer the first sub-question. Route choices are affected by travel time, traffic safety, 
and environmental factors. In the fuzzy logic model to be built within the scope of the thesis, 
traffic signalisation, link length, and traffic density on links that are not physically separated 
from motor vehicle traffic are considered as factors affecting travel time. Cyclists' safety and 
safer route choices are influenced by many factors. The Netherlands attaches importance to the 
construction and development of cycle infrastructure in its cities and shapes its infrastructure 
accordingly, both because of the widespread use of bicycles and because it follows a policy that 
encourages the increased use of bicycles (Government of the Netherlands, n.d.). In this context, 
with some exceptions, cycle lanes are marked in red, the cycle symbol indicating that it is a 
cycle lane is placed at intervals of 50-100 metres in residential areas and 500-750 metres outside 
residential areas, cycle lanes are physically separated from vehicle traffic on roads where the 
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speed limit exceeds 50 km/h, where it is not possible to separate the cycle lane from vehicle 
traffic, the speed limit is limited to 30 km/h, and intersection points are controlled by 
signalisation to increase traffic safety (Bicycle Dutch, 2020). Therefore, paved infrastructure, 
traffic signalisation and painted cycle lanes will not be taken into account when assessing traffic 
safety on the links in the Enschede cycle network. In addition, road lighting is assumed to be 
given due consideration for cyclists, and lighting is another factor that will not be assessed for 
traffic safety, as lighting data on cycle lanes is not available. The assessment of traffic safety 
for cyclists considers whether the link is physically separated from motorised traffic, and if not, 
the traffic intensity to which the link is exposed. Environmental factors have a direct 
relationship with land use. High population density in residential areas has a negative effect on 
cyclists, while low population density in commercial or industrial areas has a positive effect on 
cyclists' route choice. In the analysis model, the land use in Enschede will be taken into account, 
and the effect of land use on the links passing near/along the land will be evaluated and included 
in the model. Since there is no significant elevation difference in Enschede, gradient is not taken 
into account. In addition, since a link-based analysis model has been built, the presence of a 
facility on the route is not taken into consideration in the environmental factors parameter in 
the analysis model. 

3.3. Data 

The data belonging to the parameters determined in order to build the analysis model are 
accessed by using different sources. All of the data to be used in the analysis model are obtained 
from secondary sources and are open-source data. Land use data in Enschede, the study area, is 
obtained from BBBike, an open-source map site. Infrastructure-related data, such as traffic 
lights, bicycle lanes, whether bicycle lanes are separated from motorised traffic by a physical 
barrier, and the type of road that forms the basis for traffic density are sourced using 
OpenStreetMap. For GPS data, as mentioned before, the data collected during the ‘fietstelweek’ 
event organised by the University of Breda in 2016 are used. 

3.3.1. Fietstelweek GPS Data 

The GPS data were collected as part of the Nationale Fietstelweek (National Bicycle Counting 
Week), a nationwide event from 19 to 25 September in which 42,658 people participated 
voluntarily (Fietstelweek, n.d.). The event was organised as a joint initiative between national 
agencies and companies to obtain more detailed and reliable information about the cycling 
behaviour of cyclists in the Netherlands, and to plan and make improvements based on the 
information collected. GPS data was collected using the Fietsel-app, developed specifically for 
the event, and participants were asked to answer a questionnaire with sociodemographic and 
travel behaviour questions in order to identify the GPS data (Fietstelweek 2016, n.d.). Within 
the scope of the event, a total of 416,376 cycle journeys covered 1,786,147 kilometres across 
the country. The average speed of cyclists during these journeys was 15.8 km/h (Fietstelweek 
2016, n.d.). The sociodemographic and travel behaviour data collected during the event is not 
available as of 2023, the year the thesis was written. Therefore, the characteristics of the trips 
made, and the purpose of the trips are not known. 
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The GPS data collected during the event is available in csv and shp file format. The shp file 
format shows the location of the GPS data collected during the event on the cycling network in 
the Netherlands. The csv file contains the unique participant number of each participant, the 
name of the links that the cyclists travelled through in the shp file, the average speed of the 
cyclist on the link, whether the cyclist travelled on weekdays or weekends and the time of the 
trip. The time information includes only the hour the cyclist started travelling and does not 
include minutes or seconds. 

In Enschede, which is chosen as the study area, a total of 302 cyclists participated in the event. 
Participants travelled approximately 1750 km within the borders of Enschede. Figure 3 shows 
the GPS data collected from the participants during the event within the borders of Enschede. 
The average speed of the participants was 15.68 km/h.  

 

Figure 3.; GPS data of the participants of Fietstelweek 2016 in Enschede 
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According to the data, data was collected only once from all participants in Enschede. In other 
words, each participant attended the event for only one day. During the week of the event, 294 
of the journeys were made on weekdays and 8 on weekends. Most trips were made on weekdays 
between 8:00-09:00, 16:00-17:00 and 17:00-18:00. Approximately 47% of the journeys took 
place in these three time periods. Figure 4 shows the distribution of journeys in Enschede during 
the event by weekday and weekend hours. 

 

Figure 4.; Distribution of cycle trips within the scope of the Fietstelweek 
 by weekdays/weekends and hours 

The distribution of the trip lengths of the cyclists participating in the event within the borders 
of Enschede is shown in Figure 5. The average distance travelled per cyclist is 5.79 km. 69% 
of the cyclists travelled 7 km or less. While 39% of the journeys are between 1-4 km, 26% of 
the trips are between 4-7 km. The fewest trips by distance travelled are under 1 km, with a total 
of 13 trips under 1 km. Approximately 17% of cyclists travelled over 10 km. 42 cyclists 
travelled between 7-10 km, which is about one seventh of the total trips. 

 

Figure 5.; Distribution of cycling trips during the Fietstelweek by distance travelled 
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Figure 6 shows the routes followed by the participants within Enschede. The blue colour 
indicates the cycling network in Enschede, while the other colours on the cycling network 
indicate the route followed by each cyclist.  

 

Figure 6.; Routes followed by participants on the cycling network in Enschede 

3.3.2. Land Use 

Land use data for the study area Enschede is obtained from BBBike. BBBike is a free open 
source map site that allows saving data on Planet.osm in various formats such as OSM, PBF, 
SHP, GeoSJON. Users provide data access by selecting the format they want and the area they 
want to work on. The maximum area that can be accessed at one time through the site is limited 
to 24 million square kilometres or 500 MB file size. 

Cycle Network 
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In the land use map downloaded from BBBike, 30 different land use types are grouped under 
eight different labels by grouping similar land uses. The land use in Enschede is shown in Figure 
7. 

 

Figure 7.; Land use in Enschede 

Enschede has a total area of 142.72 km2. Within the total area, Brownfield is the land use label 
with the smallest land use among the labels with an area of approximately 0.17 km2. Land use 
labels with Construction and Blue Space labels have very close areas to each other. These labels 
have an area of 0.21 km2 and 0.22 km2, respectively. The total area of land use with these three 
labels is 0.42% of Enschede's area. The size of commercial areas in the city is approximately 
1.18 km2. The total size of industrial areas, the majority of which are located east of the city 
centre, is measured at 6.60 km2. The sum of the commercial and industrial areas in Enschede 
accounts for 5.45% of the total area. The total area of residential areas clustered around a radius 
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of about 3 km around the city centre is 22.70 km2, corresponding to 15.91% of the total area. 
Finally, due to the large amount of forested areas in the city, the total area of green areas, which 
are regularly spread around the city and cover the largest area, is 58 km2. Green areas constitute 
approximately 41% of the total city area. The 53.64 km2 area, which is 38% of the total area, is 
not classified under any land use label.  

3.3.3. Cycle Network of Enschede 

The cycling network of Enschede is obtained as part of the Fietstelweek data. The data shows 
the GPS data collected during the event and the locations of these GPS data on the cycling 
network in the Netherlands. The event data does not contain detailed information about the 
links that constitute the bicycle network. For this reason, OpenStreetMap (OSM) is used in 
order to use the bicycle network obtained within the scope of the activity more effectively. Map 
data, such as bicycle path, traffic lights, whether the bicycle path is physically separated from 
motor vehicle traffic, etc., are thus included in the existing bicycle network. OSM is a free open-
source geographical database that is created and updated with the co-operation of volunteers 
from all over the world. Since the maps in OSM are produced as a result of the collaborative 
work of volunteers and no commercial concerns are pursued, there may be errors in both the 
characterisation of the data and the validation. Therefore, it should be kept in mind that the data 
obtained through OSM may not be accurate. 

The cycle network in Enschede can be characterised in three ways: roads without a separate or 
marked cycle lane, roads with a separate and marked cycle lane but not separated from motor 
vehicle traffic, and roads dedicated to cyclists, separated from motor vehicle traffic by a 
physical barrier. The cycling network in Enschede and the characteristics of the links that 
constitute the network are shown in Figure 8. 

 

Figure 8.; Characteristics of the links that form the Enschede bicycle network  
(based on data from OSM) 



31 
 

Enschede has a total cycle route network of 1522 km, of which 843 km, or 55%, do not have a 
separate cycle lane. The total length of separated roads is 679 km in the city, where there is a 
separate road for cyclists on roads with heavy motorised traffic. Of the separated roads, 46 % 
are physically separated from motorised traffic, while 367 km are separated from motorised 
traffic only by means of cycle lane markings.  

3.4. Building the Analysis Environment 

Information about building a fuzzy logic model from data obtained from open sources, 
determining the membership functions of the parameters considered, associating the parameters 
with each other with rule sets and defuzzification will be given both in the context of this 
problem and the theoretical framework of fuzzy logic. 

Among the travel time, environmental factors, and traffic safety parameters to be used in the 
fuzzy logic model, travel time is directly associated with the route chosen by the road user. 
Therefore, no result is going to be obtained on a link basis. Environmental factors and traffic 
safety parameters will be evaluated by considering the factors previously discussed within the 
scope of the effect of different factors on the route choice behaviour of cyclists, and traffic 
safety and environmental factor scores will be assigned to each link. Thus, it will be possible to 
analyse any desired route for any O-D pair on the network in terms of traffic safety, 
environmental factors, and travel time with a fuzzy logic model. If different routes are to be 
compared for the same O-D pair, the fuzzy logic utility values obtained for the routes will be 
compared and an approach will be developed to determine which route will be chosen with 
which probability. 

3.4.1. Fuzzy Logic 

3.4.1.1. Fuzzy Sets 

In classical logic, a set is defined as a collection of certain distinguishable objects. According 
to this definition, it is known exactly to which set any element belongs. In fuzzy logic, the 
elements of a set can be elements of one or more clusters according to their membership 
degrees, which indicate the degree to which an element belongs to a cluster. In other words, for 
any element x of a fuzzy set, the expression 'element x belongs to set A with membership degree 
µÃ(x)' is used instead of 'belongs to set A' or 'does not belong to set A'. The aim of the theory 
of fuzzy sets is to assign a degree of membership to vague, ambiguous, and difficult to define 
concepts in order to define, specify, and express them more easily (Ross, 2009). Specificity 
comes from the transformation of the theory of two-valued sets into the theory of multi-valued 
sets (Ross, 2009). 

Operations on fuzzy sets 

The most significant identifier of a fuzzy set is its membership function (Ross, 2009). 
Therefore, basic set theory operations are defined through the membership functions of fuzzy 

sets. The basic set theory operations proposed by Zadeh, where Ã and 𝐵෨  are fuzzy sets defined 
on the universal set X, are shown below. 
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Equality: The necessary and sufficient condition for the fuzzy sets Ã and 𝐵෨  to be equal is that 
the degrees of membership for all points of the fuzzy sets defined in the universal set X are 

equal. Accordingly, if µÃሺ𝑥ሻ ൌ  µ෨ሺ𝑥ሻ (x) for ∀𝑥 ∈ 𝑋, then Ã = 𝐵෨ . 

Intersection (AND): Let X be a universal set, and the intersection of fuzzy sets Ã and 𝐵෨  is 
defined by the membership function µÃ⋂෨ ሺ𝑥ሻ ൌ min ሼµÃሺ𝑥ሻ, µ෨ሺ𝑥ሻ} for ∀𝑥 ∈ 𝑋 and is shown 
in Figure 9. 

 

Figure 9.; Intersection of two fuzzy sets (Source: Tutorialspoint) 

Union (OR): The union of fuzzy sets Ã and 𝐵෨ , where X is a universal set, is defined by the 
membership function µÃ∪෨ሺ𝑥ሻ ൌ max ሼµÃሺ𝑥ሻ, µ෨ሺ𝑥ሻ} for ∀𝑥 ∈ 𝑋 and is shown in Figure 10. 

 

Figure 10.; Union of two fuzzy sets (Source: Tutorialspoint) 

Complement (NOT): The complement of a fuzzy set Ã, where X is a universal set, is denoted 

by Ãഥ and is defined by the membership function µÃሺ𝑥ሻ ൌ 1 െ  µÃሺ𝑥ሻ for ∀𝑥 ∈ 𝑋. 

 

Figure 11.; Complement of a fuzzy set 
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3.4.1.2. Membership Function 

The membership functions required for fuzzy logic operations are a group of expressions 
consisting of linguistic qualifiers. A numerical range represented by a fuzzy word or expression 
under consideration can be determined by analysts who have knowledge of that expression. For 
example, the range of variation of the temperature in Enschede can be stated to be from -10 oC 
to 30 oC. This range specifies the range in which the elements of the temperature set for 
Enschede can be placed. Thus, the whole temperature space is determined. However, in 
colloquial language, the temperature space can also be thought of as consisting of several 
subsets, such as very hot, hot, warm, cold, very cold. If it is necessary to decide where the range 
of each subset begins and ends, it can be stated that each of these subsets is not overlapping, 
but as if they are the continuation of each other at the border. There is no overlap in the range 
estimates made here. It may not always be correct to conclude that these intervals are formed 
by precise boundaries without overlapping each other. 

Another question is whether the temperature degrees belonging to each subset are of the same 
importance. For example, as we approach the lower and upper ends of the warm range, we can 
expect transitions towards its neighbouring sub-sets of warm at the bottom and cold at the top, 
so it cannot be said that the intervals coinciding with the transition zones will have the warm 
property in full. Thus, it can be concluded that the temperatures falling in each subset will lose 
their relative importance near the extremes of that subset. From this point of view, if a value 
called the degree of importance is considered in a subset, it can be said that the highest values 
of this value will be in the middle and the lowest values will be at the lower and upper ends. 
The mathematical representation of this mental experiment is given in Figure 12. 

 

Figure 12.; A membership function 

3.4.1.3. Fuzzy Logic Rules and Inference 

In order to build a fuzzy logic model, certain rules must be defined, and an inference must be 
derived from this set of rules. There are two approaches or connectives that are frequently used 
to combine a large number of rules in a fuzzy logic model. The first one is to combine all the 
rules defined in the fuzzy logic system with the conjunction "AND". The intersections of the 
rules are taken with the equivalent of this conjunction in set theory. The second approach is the 
use of the conjunction "OR", and an inference is drawn by taking the intersections of 
independent variables with each other. 

In the fuzzy logic model, independent variables are connected to each other with "IF-THEN" 
structure. In the model, the part between 'if' and 'then' is called precondition, and the part after 
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then is called inference. In the rule-based fuzzy logic model, preconditions and inference are 
obtained by fuzzification separately. Mamdani fuzzy-inference system developed by Mamdani 
(1976) is widely used to obtain a result by combining fuzzy rule-based expressions with 'and/or' 
connectives.  

3.4.1.4. Defuzzification 

As the inputs of a fuzzy logic model are fuzzy, its outputs are also fuzzy. However, it is not 
desirable that the values to be used in decision making are not fuzzy; therefore, fuzzy values 
should be converted into a classical value. The transformation of a fuzzy value generated as a 
result of a fuzzy logic model into a number value used in classical mathematics is referred to 
as "defuzzification" (Ross, 2009). Defuzzification is performed by means of the membership 
functions of the fuzzy set obtained as a result of fuzzy operations. The classical value obtained 
as a result of the defuzzification is a value between the left and right components of the fuzzy 
set (Ross, 2009). There are a wide variety of methods in the literature. Only centroid method is 
covered in this study, since it is used as the defuzzification method within the scope of this 
thesis. 

Centroid Method 

It is a method in which all elements in the fuzzy set affect the result with their membership 
values. Centroid Method, where the membership function of an element in the fuzzy set is µ(z), 

𝑧∗ ൌ  
 µሺ𝑧ሻ𝑧𝑑𝑧

 µሺ𝑧ሻ𝑑𝑧
 (3.1) 

is expressed in the form. Since it is algebraically more efficient, the centroid method is one of 
the most widely used defuzzification methods (Ross, 2009). 

3.4.2. Traffic Safety and Environmental Factors 

Traffic safety and environmental factors are assessed on the basis of each link forming the cycle 
network. When evaluating the traffic safety of each link, membership functions are generated 
by considering whether the cycle path is separated from motorised vehicle traffic and which 
road classification (pedestrian, primary, secondary, etc.) the link belongs to. Similarly, when 
evaluating a link in terms of environmental factors, membership functions are generated by 
evaluating the land use around the link. In the literature review studies, it has been concluded 
that the presence of blue/green areas increases the attractiveness of a route, industrial and 
commercial land use has a positive contribution to route choice, while residential and 
construction areas have a negative effect on route choice. This framework is used in the fuzzy 
logic model to be constructed. Membership function values and rule sets are also constructed 
by considering this framework. 

A map is prepared by using the scores obtained as a result of analysing the bicycle network 
with the fuzzy logic model in terms of environmental factors and traffic safety parameters. The 
map can be used as a guide for road users to determine a safe and attractive route. The steps in 
Figure 13 are followed to get and visualise the attractiveness values of the links forming the 
bicycle network in Enschede by using the environmental factors and traffic safety parameters. 
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3.4.2.1. Defining the Membership Functions 

 
In the traffic safety parameter, the links are grouped in three different ways as safe, normal, and 
unsafe. In the traffic safety parameter, each link takes a value between 0 and 60 considering 
whether it is separated from the motorised vehicle traffic on the road segment on which it is 
located, if separated, the separation is physically or not, and the characteristics of the road 
segment for roads that are not physically separated. For the Traffic Safety parameter, it is a 
totally arbitrary choice for the values to vary between 0-60. One of the most basic features of 
fuzzy logic is that the membership function for a parameter can be defined within the desired 
value range. Thus, comparable values can be obtained due to the attribute it has while 
calculating the utility value. Values between 0-30 are characterised as 'Unsafe', values between 
15-45 as 'Normal', and values between 30-60 as 'Safe' and represented by triangular fuzzy 
numbers. The triangular fuzzy number function showing traffic safety is shown in Figure 14. 

Traffic Safety 

Safe Normal Unsafe 

Defining of the membership functions 
of the Traffic Safety parameter 

Environmental Factors 

Attractive Neutral Repellent 

Defining of the membership functions 
of the Environmental Factors parameter 

Visualization of the results by assigning on the map 

Crisp output 

Defuzzification 

Inference Engine 

Defining the rule sets 

Characteristic of each link 

Figure 13.; Evaluation and visualisation of links in the frame of traffic safety and environmental 
 factors with fuzzy logic model 
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Figure 14.; The triangular fuzzy number function used for the Traffic Safety parameter 

In the bicycle network from open sources, the links are grouped under five headings as 
pedestrian, cycleway, primary, secondary, and tertiary, and some links are not included in any 
group and are excluded from the classification. In this context, roads physically separated from 
vehicular traffic are characterised as 'Safe' and assigned to the 'Safe' fuzzy set with a high 
membership rate. All links belonging to this subset are assigned scores ranging from 50 to 60 
and membership degrees are generated. A wide range of values are assigned to cycle paths that 
are separated from motorised traffic by markings rather than physical barriers. These values 
ranged from 20 to 50 depending on the characteristics of the road segment. For example, if the 
link is on a primary road and separated from vehicular traffic by markings instead of physical 
barriers, a range of values between 20 and 40, in other words safe-normal-unsafe, is assigned. 
This is based on the assumption that such roads can be categorised as safe, unsafe, or normal 
depending on the experience of the road user. Finally, links that are not separated from vehicular 
traffic are assigned values ranging from 0 to 30 depending on their nature on the road. No link 
in this group has taken a value higher than 30, where the 'Safe' fuzzy set starts. Therefore, a link 
that is not physically or markedly separated does not have a degree of membership in the 'Safe' 
fuzzy set. Table 2 shows the range of values assigned to the links that make up the cycling 
network according to the nature of the cycle path and the grouping of neighbouring 
vehicular/pedestrian traffic. 

Table 2.; Traffic safety fuzzy number values assigned according to link characteristics 

Link characteristics 
Physically 
Separated 

Separated Unseparated 

Pedestrian 55/60 35/50 20/30 
Cycleway 55/60 40/50 20/30 
Primary 50/60 20/40 0/20 
Secondary 50/60 30/45 5/20 
Tertiary 55/60 35/45 10/30 
Unclassified 50/60 20/40 10/30 
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Similar to the traffic safety parameter, the environmental factors parameter is grouped into three 
different fuzzy sets as repellent, neutral, and attractive to indicate the attractiveness of the link. 
The attractiveness of a road user's trip on a link is associated with the land use to the left and 
right of the link. Depending on how the land use on both sides of a link is used, a link is assigned 
a value between 0 and 50 in the environmental factors parameter. In the triangular fuzzy number 
function, the environmental factors value is defined as 'Repellent' if it is between 0-25, 'Neutral' 
if it is between 15-35, and 'Attractive' if it is between 25-50. The triangular fuzzy number 
function of the environmental factors parameter is shown in Figure 15. 

 

Figure 15.; The triangular fuzzy number function used for the Environmental Factors parameter 

Using the land use data obtained from BBBike, each link is assigned a value according to the 
surrounding land use. The links according to the surrounding land use are found by using the 
selection by location feature in ArcGIS software. Land use is grouped into seven categories as 
Blue Space/Greenery, Brownfield, Commercial, Construction, Industrial, and Residential. 
Links with Blue Space/Greenery land use on both sides are considered as the links with the 
highest membership to the 'Attractive' fuzzy set, and values ranging between 45-50 are assigned 
to links with this attribute. For links with Blue Space/Greenery on one side and other land use 
labels on the other side, value ranges are assigned considering the effect of land use on 
attractiveness. Links neighbouring areas with Brownfield, Construction, and Residential land 
use labels are considered unattractive. If there are areas with unattractive land use on both sides 
of a link, these links are assigned values ranging from 0 to 20. Thus, the membership degree of 
these links to the 'Attractive' fuzzy set is 0. Values ranging from 0 to 20 are defined by 
considering that in areas with unattractive land use, some road users may consider these links 
as unattractive, and some road users may consider them as neutral. Therefore, they are defined 
in a wide range. The links adjacent to Commercial and Industrial areas are also defined as 
having a quality that increases attractiveness based on the literature. However, it is assumed 
that these two land use labels do not increase attractiveness as much as Blue Space/Greenery. 
Table 3 shows the fuzzy values assigned to the links depending on the land uses on both sides 
of a link. 
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Table 3.; Environmental factors fuzzy number values assigned according to the land use 

Land Use 
Blue 

Space / 
Greenery 

Brownfield Commercial Construction Industrial Residential 

Blue Space / 
Greenery 

45/50 35/40 40/45 30/35 40/45 30/35 

Brownfield 35/40 10/20 25/35 10/20 25/35 5/15 
Commercial 40/45 25/35 30/40 15/25 30/40 15/25 
Construction 30/35 10/20 15/25 0/15 15/25 0/15 
Industrial 40/45 25/35 30/40 15/25 30/40 15/25 
Residential 30/35 5/15 15/25 0/15 15/25 0/15 

 
3.4.3. Travel Time 

While calculating the travel times of the links, several assumptions have been made for the 
travel speed by considering traffic lights, traffic density, pedestrian density in pedestrian-
dominated areas, and rush hour factors in addition to the link length. The travel time on each 
link is calculated as the ratio of the link length to the speed on the link. The travel speed of a 
cyclist on a link is assumed to be 15.68 km/h, which is the average travel speed of the cyclists 
participating in the event in Enschede. Since the travel time is affected by traffic density and 
pedestrian density, two different travel times are used for vehicle and pedestrian peak hours. 
One of the most significant factors affecting the travel time is the traffic lights. Since the 
duration of the traffic lights in Enschede changes dynamically depending on the traffic density, 
it is assumed that the waiting time at the traffic lights increases due to the increased traffic 
density between 07:00-09:00 and 16:00-18:00 during rush hour. Outside of rush hour, it is 
assumed that a cyclist waits for 25 seconds when he/she encounters a traffic light and loses 23 
seconds at a traffic light, assuming that he/she needs 8 seconds to reach his/her average speed 
again when the light turns green. In the rush hour, due to the increased traffic density, the 
waiting time increases by 60% to 40 seconds, and it is thought that the cyclist loses a total of 
48 seconds to encounter a traffic light. According to OSM data, the time lost at traffic lights 
has been added to the travel time on links with a total of 142 traffic lights in 31 different 
locations. Figure 16 shows the locations of the traffic lights in Enschede based on OSM data. 
In addition, on primary roads that are not physically separated from vehicle traffic by a physical 
barrier, the speed of the cyclist in front is affected by the cyclist travelling in front of him due 
to increased cycle traffic during rush hours. Overtaking the cyclist in front may not always be 
a safe and rational move due to heavy vehicle traffic. For this reason, if the roads characterised 
as primary and secondary roads in rush hour are not separated from vehicle traffic by a physical 
obstacle, the travel times of cyclists on these links are increased by 15% and 10%, respectively, 
taking into account the impact on the speed of cyclists. Finally, it is assumed that cyclists will 
reduce their speed by 20% in order to ensure their own safety and not to endanger the safety of 
pedestrians due to the increased pedestrian traffic between 17:00-20:00 on weekdays and after 
13:00 on weekends in the city centre where pedestrian traffic is intense. 
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Figure 16.; Characteristics of the links in the Enschede cycle path network 

It is not possible to evaluate the fuzzy logic membership functions for travel time only on link 
basis in terms of building a fuzzy logic model. Therefore, the travel time is determined by 
considering the entire route followed. Based on the shortest possible route from origin to 
destination, the travelling time of the route followed can be expressed as fuzzy. In this context, 
the 'k shortest path' algorithm is used to find the shortest path in terms of travelling time for any 
O-D pair to be determined and other shortest path alternatives if necessary. Depending on how 
different the route alternatives are from the shortest path in terms of percentage, fuzzy number 
values are determined, and membership functions are constructed. Five different fuzzy sets are 
defined as 'very short, short, normal, long, very long' depending on the percentage difference 
of the travel time from the shortest path. The main purpose of defining the travel time with five 
different fuzzy sets different from traffic safety and environmental factors is to minimise the 
loss of information. Since travel time is the most significant factor in the choice of a route as 
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shown by various studies, five fuzzy sets are defined for travel time instead of three in order to 
obtain more precise values. In order for the defined fuzzy sets to take a value between 0 and 
100, another fuzzy set is defined, and road alternatives are given a value. Figure 17 shows the 
quantification of the Travel Time parameter of the travel time on a route compared to the 
shortest travel time between route alternatives. The figure on the left shows the membership 
degrees in which fuzzy sets a route is classified depending on the percentage difference between 
the travel time of a route and the travel time of the shortest route between the same O-D pair. 
The figure on the right shows the value between 0-100 for the Travel Time parameter according 
to the membership degrees in which it is classified. Accordingly, if the travel time is up to 10% 
longer than the shortest route, it is defined to belong to the 'very short' fuzzy set with a triangular 
changing membership degree and it is provided to get a score ranging between 75 and 100 
depending on the membership degree. The 'very long' fuzzy set is defined as belonging to the 
travel time fuzzy set with varying degrees of membership starting from 30% up to 60% travel 
time difference. If the travel time difference is 60% and above, the travel time belongs to the 
'very long' fuzzy set. A travel time belonging to the 'very long' fuzzy set takes a value between 
0 and 40 depending on the membership degree. 

 

Figure 17.; Fuzzy representation of the Travel Time parameter based on the percentage difference of 
the travel time of a route to the travel time of the shortest route between the same O-D pair, the 

difference (left) and fuzzy value according to the difference (right) 

3.5. Model Tuning 

One of the most significant disadvantages of fuzzy logic is that it does not have a systematic 
approach and is based on personal experience and knowledge as well as tuning the output values 
of the fuzzy model by comparing them with real data. Although it provides flexibility for the 
solution of the problem, how to validate the results is a crucial question. The lack of a systematic 
model validation approach requires the building of model validation options suitable for the 
problem for the validation of fuzzy logic models. 

In the route choice problem addressed within the scope of the thesis, it is assumed that the utility 
provided to the user by the routes chosen by the participants who participated in the 
"Fietstelweek 2016" event and whose GPS data were analysed is higher than alternative routes. 
Therefore, it is presumed that the participants choose the routes they follow. Accordingly, the 
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attractiveness score of followed routes as a result of fuzzy modelling and inference of traffic 
safety, travel time, and environmental factors parameters should be greater than the alternatives 
of the route followed, primarily the shortest route in terms of travel time. In other words, if a 
route provides a greater attractiveness score to the road user than its alternatives in terms of 
traffic safety, environmental factors, and travel time, that route should be chosen by a road user. 
In order to determine which rules should be used to combine these three factors and which fuzzy 
set values should be considered, the value obtained as a result of fuzzy inference of the route 
followed is compared with the best route alternatives in terms of travel time, environmental 
factors, and traffic safety parameters. It can be concluded that the fuzzy logic model is valid if 
at least 80% of the attractiveness values of the routes followed by the participants are greater 
than all of the route alternatives compared. 

How travel time is handled in a fuzzy logic analysis model for an O-D pair has been discussed 
above. On the other hand, it has not been emphasised how to use environmental factors and 
traffic safety for a route and generate a value since they are assessed on a link basis. In order to 
obtain the traffic safety and environmental factors values of a route and use them in the fuzzy 
logic model to be built, the traffic safety and environmental factors values of each link forming 
the route are multiplied by the length of each link. The sum is divided by the total length of the 
route to obtain two separate values for environmental factors and traffic safety that can be used 
in the fuzzy logic model. 

𝑇𝑆 ൌ  
∑ 𝑇𝑆 ∗ 𝑙

ୀଵ

∑ 𝑙
ୀଵ

,𝐸𝐹 ൌ  
∑ 𝐸𝐹 ∗ 𝑙

ୀଵ

∑ 𝑙
ୀଵ

 (3.2) 

 
In Equation 3.2, TS and EF represent the traffic safety and environmental factors parameter, 
respectively, of a selected route between an O-D pair. 𝑙 represents the length of each link 
forming the route, while 𝑇𝑆 and 𝐸𝐹 represent the traffic safety and environmental factors 
parameter, respectively, of the ith link. 

The routes chosen by the cyclists participating in the event are analysed with a fuzzy logic 
model consisting of 5*3*3 = 45 rules composed of travel time, traffic safety, and environmental 
factors as explained above. The routes chosen in the event for the O-D pair are compared with 
the best alternatives in terms of traffic safety, travel time and environmental factors. Since there 
is no systematic approach to be followed for the fuzzy logic model, a threshold is set for the 
membership degrees of the parameters and the rules to be determined. The rules and the 
membership degrees of the parameters are tuned until the threshold is met, and the fuzzy logic 
model has been finalised. According to the threshold set, the utility value of at least 80% of the 
routes followed must have a value greater than or close to the route alternatives in the set of 
fastest routes. Likewise, the same threshold must be satisfied for the safest and most appealing 
route alternatives in the set of route alternatives. 

3.6. Model Validation and Utility to Probability 

In order to validate the rules and membership functions in the fuzzy logic model, the model will 
be applied in Hengelo, which is very similar to Enschede in terms of economic, social, network 
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size, population, and urbanism and is located approximately 10 km west of Enschede. Thus, the 
validity and accuracy of the fuzzy logic model tuned for the city of Enschede will be tested in 
another residential area with similar characteristics. Since the fuzzy logic model is directly 
dependent on the defined rules, it is very difficult to generalise easily compared to other 
mathematical and statistical methods. Therefore, instead of choosing a very different residential 
area in terms of location and demographics, Hengelo, which has great similarities with 
Enschede, is preferred. 

After the tuning and validation of the model, the probability of choosing a route alternative 
within the alternative set will be estimated by using the utility values obtained as a result of the 
model. Although a method using fuzzy logic to find the probability of choosing a route has been 
developed, there are no studies in the literature on the use of fuzzy logic to write probability 
formulae. While Teodorovic and Kikuchi (1990) conducted a study in which the probability of 
choosing one route over the other was calculated by using the difference in benefits between 
the two routes, it was concluded that this approach is not effective when the number of 
alternatives increases. Lotan and Koutsopolous (1993) carried out a study to estimate the 
probability of choosing of routes using fuzzy logic in the case of more than two alternatives, 
but the methodology of the study is not generalisable to this study due to the network-wide 
nature of this study. Therefore, in order to find the probability of choosing the routes within a 
set of alternative routes by using utility values, the logit formula, which is widely used and quite 
simple to apply, will be used. The C-logit formula, which is a variation of the logit formula with 
the addition of a commonality factor, will be used since it has the property of decreasing the 
utility of overlapping routes and increasing the utility of independent routes, and hence their 
choice probability. The main reason why the C-logit formulation will be specifically utilised is 
to reduce the probability of choosing the shortest route due to the large number of overlapping 
link lengths between the chosen routes and the shortest routes by utilising the C-logit method 
to increase the probability of choosing an independent route. In this context, maximum 
likelihood is used, 

 
𝑃
ఒభ ൌ  

𝑒ఉೕ
ഊభିభ

∑ 𝑒ఉೕ
ഊି

ୀଵ

 (3.3) 

In Equation 3.3, the coefficient β, which represents the parameter controlling dispersion in 
mode choice, will be found. Vij represents the utility of a route and will be calculated with a 
fuzzy logic model. cfk represents the commonality factor, and the utility of the overlapping 
routes is calculated with a fuzzy logic model and subtracted from the utility of the entire route. 
Thus, for any set of route alternatives between any O-D pair, the probability of choosing each 
alternative can be calculated. 
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4. RESULTS    

Since fuzzy logic does not have a systematic approach and a validation method, the utility 
values of the routes are obtained by using rule sets defined by using travel time, traffic safety, 
and environmental factors parameters. In order to finalise the rule set for the fuzzy logic model, 
according to the criterion defined, the utility of at least 80% of the routes followed between all 
O-D pairs must have a utility value close to or larger than the utility values of the fastest route 
alternatives. The criterion is valid not only for the fastest route alternatives but also for the 
safest and most appealing route alternatives. That is, the utility value of at least 80% of all 
routes followed must have a utility value close to or larger than the utility value of the fastest, 
safest, and appealing route alternatives individually. Therefore, the fuzzy logic model is tuned 
until the specified threshold is met. Before constructing the fuzzy logic model consisting of 
three parameters, these three parameters are analysed by considering two parameters each. 
Travel time utility is calculated by considering the difference in travel time between the shortest 
travel time on a route basis and the route followed. Traffic safety and environmental factors are 
evaluated on link basis and a utility value is determined for any route with the contribution of 
the links in the route. Traffic safety and environmental factors parameters are evaluated with a 
fuzzy logic model and the attractiveness of each link forming the cycle network in terms of 
these two factors will be mapped. Considering the three parameters, the fuzzy logic model is 
finalised by trial and error, and the probabilities of choosing the route alternatives between the 
O-D pair of any route are found with the help of the logit formula. Thus, with a fuzzy logic 
model, the utility values of route alternatives for any O-D pair in a cycling network can be 
found and based on the utility, the probabilities of route alternatives being chosen by a cyclist 
are obtained.  

In Enschede, a total of 302 participants took part in the event. The routes that are not considered 
for the fuzzy logic model are routes with a total travel time of less than 4 minutes and routes 
with a total travel time of more than 75 minutes. For routes under 4 minutes, although the travel 
time differences considered in the fuzzy logic model are small, the percentage differences are 
quite large due to the very short travel time. For example, if the alternative of a route with a 
travel time of 3 minutes is 4 minutes, although the travel time difference is 1 minute, the 
percentage difference is 33% and this percentage difference in the fuzzy logic model expresses 
the difference between the two routes as long/very long. In reality, it is assumed that a 1-minute 
difference would not be considered as long/very long by a road user at such short distances. For 
this reason, it is assumed that the percentage expression of the differences in travel time for 
journeys under 5 minutes is not significant, and these trips are not included in the model. For 
trips longer than 70 minutes, the travel times of the safest and most appealing routes differ 
significantly from the travel time of the shortest route for the same O-D pair. Hence, for such 
long trips, the attractive and safe route alternatives are not considered as realistic route 
alternatives because they have too long travel times to be followed by any route user. For this 
reason, journeys under 4 minutes and some journeys for outliers were not included in the 
analysis model, and a fuzzy logic model was built with the data of 235 participants in total. 

Fuzzy logic values have been obtained using the Scikit-Fuzzy library. Scikit-Fuzzy is a Python-
based open-source fuzzy logic library developed by the SciPy community, which produces tools 
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for scientific and engineering-based computing. It contains many basic features of fuzzy logic 
and is also a useful tool for advanced applications such as fuzzy clustering (SciPy, 2023).  

In the following sections, fuzzy logic models are constructed and evaluated by considering 
Traffic Safety & Environmental Factors, Travel Time & Traffic Safety, Travel Time & 
Environmental Factors and Travel Time & Traffic Safety & Environmental Factors, 
respectively. The purpose of the analysis models using two parameters is to make it easy to 
understand the effect of each parameter by comparing it with the analysis model using three 
parameters. It is also aimed to demonstrate how an extra parameter changes the rules that need 
to be defined in the analysis model and the results obtained. 

4.1. Traffic Safety & Environmental Factors 

Since traffic safety and environmental factors parameters contain three fuzzy sets each, 3*3=9 
rules are used in the inference system to be built. These rules are blended with 'AND' 
conjunction and a rule set consisting of 'IF-THEN' block is defined. The value obtained as a 
result of the defined rule sets and the defuzzification is 'Attractiveness'. 'Attractiveness' is 
defined by five different fuzzy sets. Five different fuzzy sets are labelled as 'very high, high, 
medium, low, very low', and the fuzzy numbers showing the membership degrees of the fuzzy 
sets are shown in Figure 18. 

 

Figure 18.; Fuzzy number membership function of Attractiveness Score, the result of fuzzy logic 
inference system 

According to the defined rule set, if a link is both safe and attractive, the attractiveness score is 
very high, or if a link with normal traffic safety has low attractiveness, the attractiveness score 
is considered as low. Table 4 shows the rules defined using traffic safety and environmental 
factors parameters and their inference. 

Table 4.; Rule set and inference system consisting of traffic safety and environmental factors 

Rule 
Number 

IF 
Traffic 
Safety 

AND 
Environmental 

Factors 
THEN 

Attractiveness 
(Utility)  

Rule 1 IF Safe AND Repellent THEN High 
Rule 2 IF Normal AND Repellent THEN Low 
Rule 3 IF Unsafe AND Repellent THEN Very Low 
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Rule 4 IF Safe AND Neutral THEN High 
Rule 5 IF Normal AND Neutral THEN Medium 
Rule 6 IF Unsafe AND Neutral THEN Low 
Rule 7 IF Safe AND Attractive THEN Very high 
Rule 8 IF Normal AND Attractive THEN High 
Rule 9 IF Unsafe AND Attractive THEN Medium 

The results obtained as a result of the rule set and the inference mechanism are then defuzzified 
and a classical value is obtained. As mentioned before, a classical number value is obtained by 
using the centroid method for the defuzzification. Figure 19 shows the attractiveness scores of 
the links forming the cycling network in Enschede. Since it is not possible to display the results 
as fuzzy in ArcGIS used in the preparation of the map, the results are classified according to 
the classical set logic using more ranges of values. According to Figure 19, priority should be 
given to increasing the attractiveness of links with a score of 60 and below. These links have 
received low scores either because their traffic safety is insufficient or because their 
environmental factors have low attractiveness, or even both factors for some links. In order to 
increase the attractiveness of these links, their traffic safety should be increased since it is not 
possible to change the land use, which is considered under the environmental factors parameter 
within the scope of the study. For this reason, cycle lanes should be provided to the links that 
do not have cycle lanes, starting with the links with a score of 40 and below. In the links where 
cycle paths are not separated by physical barriers, especially in the links with heavy vehicle 
traffic, efforts should be made to separate the cycle path with physical barriers. Thus, the traffic 
safety of links with low attractiveness can be increased and they can be made more attractive 
for road users. 

 

Figure 19.; The attractiveness of the Enschede cycle network in terms of traffic safety and 
environmental factors 
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In the fuzzy logic model built using only traffic safety and environmental factors parameters, 
82.55% of the routes followed by the participants have better utility values than the shortest 
route. On the other hand, the utility values of the best routes in terms of traffic safety and 
environmental parameters are better than a significant portion of the utility values of the routes 
followed. Accordingly, 57.02% of the most attractive routes in terms of environmental factors 
have a better utility value than the followed routes, while 65.53% of the best routes for traffic 
safety provide a higher utility value to the road user than the followed routes. When the shortest 
route alternatives are compared with the safest and most appealing route alternatives, the utility 
values obtained are quite unfavourable to the shortest route alternatives. 30.64% of the shortest 
route alternatives have a better utility value than the shortest route alternatives. When the 
shortest route alternatives are compared with the most appealing route alternatives in terms of 
environmental factors, only 37.02% of the shortest route alternatives have a higher utility value. 

4.2. Travel Time & Environmental Factors 

Since travel time and environmental factors contain five and three fuzzy sets, 5*3=15 rules are 
used in the inference system to be built. These rules are blended with 'AND' conjunction as in 
the comparison of traffic safety and environmental factors parameters and a rule set consisting 
of 'IF-THEN' block is defined. The defined rule sets and the values obtained as a result of the 
defuzzification are based on the same 'Attractiveness' fuzzy set. Table 5 shows the defined rules. 

Table 5.; Rule set and inference system consisting of travel time and environmental factors 

Rule 
Number 

IF Travel Time AND 
Environmental 

Factors 
THEN 

Attractiveness 
(Utility)  

Rule 1 IF Very short AND Repellent THEN High 
Rule 2 IF Short AND Repellent THEN Medium 
Rule 3 IF Normal AND Repellent THEN Low 
Rule 4 IF Long AND Repellent THEN Very low 
Rule 5 IF Very long AND Repellent THEN Very low 
Rule 6 IF Very short AND Neutral THEN Very high 
Rule 7 IF Short AND Neutral THEN High 
Rule 8 IF Normal AND Neutral THEN Medium 
Rule 9 IF Long AND Neutral THEN Low 
Rule 10 IF Very long AND Neutral THEN Very low 
Rule 11 IF Very short AND Attractive THEN Very high 
Rule 12 IF Short AND Attractive THEN Very high 
Rule 13 IF Normal AND Attractive THEN High 
Rule 14 IF Long AND Attractive THEN Medium 
Rule 15 IF Very long AND Attractive THEN Low 

Considering the travel time, significant differences in favour of the shortest route are observed 
in the results compared to the fuzzy logic model constructed with traffic safety and 
environmental factors parameters. Accordingly, in the fuzzy logic model constructed by 
considering environmental factors and travel time parameters, the utility of only 63.40% of the 
routes followed by the participants is larger than the attractiveness values of the shortest route 
alternatives. Compared to the results of the fuzzy logic model constructed with the traffic safety 
and environmental factors parameters discussed in the previous sub-heading, considering the 
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travel time reduced the utility of 45 routes below the shortest route alternative. However, the 
followed routes have a larger utility than a significant portion of the safest and most appealing 
route alternatives. Accordingly, when only travelling time and environmental factors are 
considered for the followed routes, the utility is higher than 83.83% of the safest route 
alternatives and 89.36% of the most appealing route alternatives. It is observed that travelling 
time significantly reduces the attractiveness of the safest and most appealing route alternatives. 
This difference in travel times suggests that road users need to detour in order to choose the 
safest or most attractive routes, with a significant trade-off in travel time. The route followed 
by the 4 event participants and the shortest, safest, and most appealing route alternatives 
between the O-D pair are shown in Figure 20. The main reason for demonstrating route 
alternatives for a limited number of event participants is to avoid cluttering the figure due to 
the common use of many links in the O-D pair followed by the participants.  

 

Figure 20.; For five event participants, the route followed between O-D pairs (yellow) and the fastest 
(purple), most attractive (green), and safest (orange) route alternatives 
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4.3. Travel Time & Traffic Safety 

Since travel time is included in the analysis model with five fuzzy sets and traffic safety is 
included in the analysis model with three fuzzy sets, the 'Attractiveness' values of the routes 
followed and the best route alternatives in terms of travel time and traffic safety were found as 
a result of the inference system built by defining a total of 5*3 = 15 rules. Table 6 shows the 
rules defined in the fuzzy logic analysis model constructed with travel time and traffic safety. 

Table 6.; Rule set and inference system consisting of travel time and traffic safety 

Rule 
Number 

IF Travel Time AND Traffic Safety THEN 
Attractiveness 

(Utility)  
Rule 1 IF Very short AND Safe THEN Very high 
Rule 2 IF Short AND Safe THEN Very high 
Rule 3 IF Normal AND Safe THEN High 
Rule 4 IF Long AND Safe THEN Medium 
Rule 5 IF Very long AND Safe THEN Low 
Rule 6 IF Very short AND Normal THEN High 
Rule 7 IF Short AND Normal THEN High 
Rule 8 IF Normal AND Normal THEN Medium 
Rule 9 IF Long AND Normal THEN Low 
Rule 10 IF Very long AND Normal THEN Low 
Rule 11 IF Very short AND Unsafe THEN High 
Rule 12 IF Short AND Unsafe THEN Medium 
Rule 13 IF Normal AND Unsafe THEN Low 
Rule 14 IF Long AND Unsafe THEN Very low 
Rule 15 IF Very long AND Unsafe THEN Very low 

As a result of the fuzzy logic model constructed using travel time and traffic safety parameters, 
the utility of the routes followed by the event participants is better than 73.19% of the route 
alternatives compared. Accordingly, when the utility of the routes followed for the road user is 
compared with the most appealing route alternatives, similar results are observed with the fuzzy 
logic model based on travel time and environmental factors. The utility of 216 of the routes 
followed has a value larger than the utility of the most appealing route alternatives, which 
constitutes 91.91% of the routes included in the analysis model. It indicates that the most 
appealing route alternatives are quite unfavourable in terms of travel time, and if a road user 
follows these route alternatives, he/she must compromise significantly in terms of travel time. 
Comparing the shortest route alternatives between the routes followed and the O-D pair, the 
utility of the followed route for 172 road user is larger. 172 routes constitute approximately 
73% of the routes included in the analysis model. Finally, in 191 routes, which constitute 
81.28% of all routes, the utility of the routes followed for the road user are larger than the utility 
of the safest road alternatives. When the results are compared with the fuzzy logic model where 
travel time and environmental factors are evaluated, the results show that the shortest route 
alternatives between O-D pairs are better than the followed routes in terms of environmental 
factors but provide lower utility to road users in terms of traffic safety. 
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4.4. Travel Time & Traffic Safety & Environmental Factors 

In order to analyse the route choice with a fuzzy logic model, a rule-based fuzzy logic model 
has been built using three selected parameters. In the first fuzzy logic model, travelling time 
was represented by four fuzzy sets in order to define fewer rules. However, the use of four fuzzy 
sets caused various inconsistencies in terms of results. The most significant of these 
inconsistencies is that the comparison of the travel time with the shortest travel time is 
represented by two fuzzy sets as 'long' and 'very long', while the travel lengths close to the 
shortest travel time are represented by only one fuzzy set 'short'. Especially for routes up to 
15% longer than the shortest travel time, the utility values were lower than expected due to the 
single set representation. Therefore, when defining the travel time, the routes described as 'long' 
and 'short' were represented by two fuzzy sets in order to eliminate the situation that occurred 
to the disadvantage of the routes described as 'short' while obtaining the utility values in the 
modelling. Although the increasing number of fuzzy sets in fuzzy logic models increases the 
number of rules that need to be defined in the rule set to be defined, it is only possible to obtain 
more accurate utility values as a result of the inference mechanism by constructing a sufficient 
number of fuzzy sets. In the fuzzy logic model built by considering three parameters, the 
inference mechanism has been formed by defining 5*3*3 = 45 rules. These defined rules are 
given in Appendix 1 and the code block showing how the defined rules are applied in Fuzzy 
Scikit is given in Appendix 2. 

Since there is no specific systematic to be followed in the fuzzy logic model, the rules can be 
defined arbitrarily. In order for the rules not to be defined arbitrarily and for the defined rules 
to create a coherent whole, the criteria should be chosen, and the results obtained should be 
compared with this criterion, and the rules should be changed if the results are not consistent. 
In this context, it has been aimed to obtain a utility value greater than the utility values of 80% 
of the shortest, safest, and most attractive route alternatives of the utility values obtained for the 
routes followed by the participants of the event with the defuzzification of the fuzzy numbers 
defined within the framework of the defined rules. Nine fuzzy logic models built for this 
purpose were not successful. Four of the fuzzy logic models produced less accurate results as a 
result of representing the travel time as a result of being represented by four different fuzzy 
sets. The other five analysed models, represented by five different fuzzy sets, all showed a 
utility value larger than at least 80% of the most appealing routes from an environmental point 
of view. In three of the five models, the 80% threshold for comparing the utility values of the 
followed routes with the safest route alternatives could not be exceeded. For the shortest route 
alternatives, the utility values obtained as a result of the fuzzy logic models tested had a lower 
utility than the routes followed for at least 68% and at most 78% of the routes and remained 
below the 80% threshold. In the tenth fuzzy logic model tested, the utility values obtained from 
the routes followed had a higher utility value than at least 80% of the shortest, safest, and most 
appealing route alternatives. Accordingly, 81.28% of the routes followed in the finalised fuzzy 
logic model are larger than the shortest route alternatives between O-D pairs for the road user. 
When the utility values of the routes followed are compared with the safest route alternatives, 
it is observed that 83.83% of the routes followed have larger utility values than the safest route 
alternatives. On the other hand, only 12.34% of the most appealing route alternatives from an 
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environmental point of view had larger benefits for the road user than the followed routes. For 
206 routes, the routes followed provided higher utility to the road user compared the most 
appealing route alternatives. Figure 21 shows a total of 171 routes where the highest benefit 
belongs to the followed route as a result of the comparison of the benefit values of the followed 
route, the shortest route, the safest route, and the most appealing route alternatives. The origin 
and destination of each route are marked with a different colour. 

 

Figure 21.; Routes where the route followed provides more utility to the road user than the shortest, 
safest, and most appealing route alternatives 

When the utility of the four route alternatives for the road user is compared according to the 
fuzzy logic model, the routes chosen by the event participants are the routes with the highest 
utility value among the alternatives in 73% of all routes. For 6 routes, which constitute 
approximately 2.50% of all routes, the most appealing route provides the highest utility to the 
road user among the route alternatives. Similarly, for 13 routes, which constitute approximately 
5.50% of all routes, the safest route is the route with the highest utility value. For 44 routes, 
corresponding to 18.72% of all routes, the shortest route alternative has a larger utility value for 
a road user compared to the other route alternatives. In Figure 22, the routes with the highest 
utility value among the alternatives are shown in three different colours. The routes shown in 
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orange are the routes where the safest route alternatives have a greater utility value than the 
other route alternatives. Safe route alternatives generally have greater utility value on longer 
routes in terms of travel time. The routes shown in green are the routes where the most 
environmentally attractive routes provide the largest utility value. For routes with a travel time 
between 5-8 minutes, the utility values of the most appealing route alternatives are larger 
compared to their alternatives. The routes shown in purple are the route alternatives where the 
shortest route alternatives provide the highest utility. 

 

Figure 22.; Route alternatives with the highest utility values among the O-D pairs travelled by the 
event participants 

4.5. Results in Hengelo 

Although there are 215 cyclists participating in the event in Hengelo, the fuzzy logic model is 
analysed using the data of only 136 participants. 57 of the participants in Hengelo are not 
included in the analysis model because their travel time within the scope of the event is less 
than 5 minutes. The remaining 22 routes are not included in the analysis model because the 
route followed completely overlapped with one of the fastest/safest/most attractive routes, and 
the time differences between the route alternatives are significantly larger. According to the 
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136-participant fuzzy logic analysis model, 81.62% of the routes followed have a greater utility 
for the road user than the shortest route alternatives. When the utility values of the safest and 
most appealing route alternatives are compared with the utility values of the routes followed, 
this is larger than both the proportion of the shortest route alternatives and the proportion of the 
same route alternatives in Enschede. The 122 routes followed by event participants in Hengelo, 
which corresponds to approximately 89.71%, have utility values larger than the safest route 
alternatives. For a total of 117 routes, corresponding to 86.03% of all routes, the utility values 
of the routes followed are larger than the utility of the most appealing route alternatives. Figure 
23 shows the attractiveness of the links forming the Hengelo network in terms of traffic safety 
and environmental parameters. Since it is not possible to display the results as fuzzy in ArcGIS 
used in the preparation of the map, the results are classified according to the classical set logic 
using more ranges of values. 

 

Figure 23.; The attractiveness of the Hengelo cycle network in terms of traffic safety and 
environmental factors 

For 73.53% of the set of route alternatives consisting of four route alternatives, which means 
100 routes, the utility values of the routes followed are the largest. For 31 routes, which 
constitute 22.79% of all routes, the shortest route between O-D pair has the largest utility value. 
For a total of 5 routes, the safest or most attractive route alternative between O-D pair has the 
largest utility value. Figure 24 shows the route alternative with the largest utility value between 
O-D pairs. 
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Figure 24.; Routes with the highest utility values among the O-D pairs travelled by the event 
participants in Hengelo 

According to the fuzzy logic model, a route chosen by a road user should be larger than its 
alternatives in terms of the utility value obtained from the combination of travel time, traffic 
safety, and environmental factors parameters. The greater the algebraic difference between the 
utility value obtained for a route and the utility values of the routes in the alternative set, the 
higher the probability of choosing that route compared to its alternatives. According to the 
results of the fuzzy logic model established in this context, there are 172 routes in Enschede, 
which corresponds to 73.19%, and 100 routes in Hengelo, which corresponds to 73.53%, with 
the highest probability of being chosen. It demonstrates that the fuzzy logic model is able to 
correctly predict about 73% of the route choices in the analysed "fietstelweek" dataset. The 
approach to probability calculations is discussed in the following heading. 

4.6. Utility to Probability 

By using the utility functions found, the probabilities of choosing the routes in the alternative 
set are estimated using C-logit. The point where the C-logit model differs from the classical 
logit model is the common links in the routes in the alternative set. The total utility of the 
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common links of the routes in the set of alternatives to the user is calculated fuzzily. Then, the 
commonality factor, cfk, is calculated using Equation 4.1. 
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In Equation 4.1, Vhk is the total utility of the common links of routes h and k, Lhk is the total 
length of the common links of routes h and k, Lh and Lk are the total lengths of routes h and k, 
respectively, and β0 and γ are positive parameters. After calculating the utility of the common 
routes, the probability of choosing each route within a set of route alternatives is calculated 
using Equation 4.2. 
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However, since the β value is not known at this point, the β value is calculated using maximum 
likelihood. Since the route alternatives for each O-D pair and the route selected among these 
alternatives are known, the β value that maximises the probability for 235 routes is calculated 
and is found 1/19. Thus, the probabilities of choosing the fastest, safest, and most appealing 
route alternatives for each O-D pair are calculated by excluding the route followed from the set 
of alternative routes. Table 7 shows the utility values and choosing probabilities of the route 
alternatives for the five O-D pairs in Enschede. 

Table 7.; Utility values of the alternative routes between the five O-D pairs in Enschede, and their 
probabilities of being chosen according to the C-logit and logit formula 

Participant 
No 

Shortest 
Route 
Utility 

Safest 
Route 
Utility 

Appealing 
Route 
Utility 

Pr C-logit 
(Shortest 
Route) 

Pr C-logit 
(Safest 
Route) 

Pr C-logit 
(Appealing 

Route) 
1 78.72 76.84 34.74 47.10% 46.65% 6.25% 
2 91.00 91.00 83.20 35.55% 34.95% 29.51% 
3 79.77 59.17 62.33 55.66% 21.92% 22.42% 
4 78.18 37.24 45.00 76.00% 9.33% 14.67% 
5 91.94 84.90 78.29 46.70% 39.20% 14.10% 

Participant 
No 

Shortest 
Route 
Utility 

Safest 
Route 
Utility 

Appealing 
Route 
Utility 

Pr Logit 
(Shortest 
Route) 

Pr Logit 
(Safest 
Route) 

Pr Logit 
(Appealing 

Route) 
1 78.72 76.84 34.74 48.89% 45.18% 4.93% 
2 91.00 91.00 83.20 37.55% 37.55% 24.90% 
3 79.77 59.17 62.33 57.55% 19.46% 22.99% 
4 78.18 37.24 45.00 77.50% 8.98% 13.52% 
5 91.94 84.90 78.29 45.92% 31.70% 22.38% 
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5. DISCUSSION 

A study has been carried out on the use of fuzzy logic model on a network and its predictive 
power in order to predict the utility of alternatives, which is frequently used in prediction 
models to estimate which route a road user may prefer. Unlike similar studies aiming to estimate 
the utility of a route with fuzzy logic, GPS data is used instead of a survey. Due to the structure 
of the data used, it is aimed to build a fuzzy logic model that can be valid for any O-D pair in 
the whole network. In the study, a constraint is set in order to determine the membership 
functions and fuzzy logic rules that should be defined in the fuzzy logic model, since no 
information about the route choice behaviour of road users can be obtained through a survey 
and direct real-world data is used. With the constraint, the rules and membership functions of 
the fuzzy logic model are tested, and the model is finalised. 

According to the fuzzy logic model, travel time is the most influential parameter among the 
three parameters for maximising the utility of cyclists, while the least influential parameter is 
the environmental factors parameter. The utilities of the routes followed have a utility value 
larger than 81.28% of the fastest route alternatives, while the same proportions are 83.83% for 
the safest road alternatives and 87.66% for the most appealing road alternatives, respectively. 
When the utilities of the routes in a four-alternative option set consisting of the route followed 
and the best route alternatives in terms of three parameters are compared, the route followed 
for 171 routes, the fastest route alternative for 44 routes, the safest route alternative for 14 
routes, and the most appealing route alternatives for 6 routes have the largest utility. From this 
point of view, it can be said that only 73% of the routes followed in the fuzzy logic model have 
the largest utility value among the route alternatives. Compared to the results of three studies 
in the literature using fuzzy logic models, the result of the study has a low predictive power. 
The fuzzy logic models developed by Murat and Uludağ (2008), Dubey et al. (2013) and 
Dhulipala et al. (2020) in survey-based studies for only one O-D pair were able to predict the 
probability of a road user's choice of road alternatives in a route set consisting of three or four 
route alternatives between an O-D pair with an accuracy of 90% or more. The main reasons for 
the high difference in prediction power are the set of alternative routes, the number of rules 
used, the methodological difference in the study, and the application of the results to the whole 
network instead of a specific O-D pair. These reasons for the difference in practice and 
suggestions for future studies to minimise the effects of these reasons will be discussed below. 

The set of route alternatives used in this study consists of the safest, fastest, and most appealing 
routes between the O-D pair followed by the road user according to GPS data. As such, it is 
questionable to what extent the route alternatives for any O-D pair represent actual or potential 
route alternatives. Even the shortest route in terms of travel time between an O-D pair may not 
always be a direct route alternative for various reasons, such as road safety, traffic congestion, 
necessity of detouring from the route alternative for a while (Duckham & Kulik, 2003). Since 
the shortest route alternative always scores the highest in terms of travel time by definiton, it is 
not possible to obtain a utility value higher than the utility of the shortest route alternative unless 
it scores below the average in terms of safety and environmental factors parameters, or the 
travel time of the route alternative followed is close to the route with the shortest route 
alternative. In addition, for the most appealing route alternatives for O-D pairs with a travel 
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time longer than 25 minutes and for the safest route alternatives for a travel time longer than 40 
minutes, the travel time deviates significantly from both the shortest route alternative and the 
travel time of the route followed. This situation leads to a low fuzzy value of the route 
alternatives in terms of travel time, while the total utility value obtained as a result of the fuzzy 
logic model decreases. Widely used navigation applications, such as Google Maps, Waze, 
Apple Maps, etc. list route alternatives with close travel times to a road user while listing route 
alternatives. Therefore, a set of route alternatives consisting of routes with close travel times 
may be more effective in terms of both the realistic alternatives of the route alternatives and the 
accuracy of the utility values generated by the fuzzy logic model. When evaluating the utility 
of route alternatives in terms of travel time, a similar approach to the one used in this study can 
be adopted. Instead of taking the travel time of the route with the shortest travel time as a basis, 
the utility of other route alternatives in terms of travel time can be evaluated by taking the travel 
time of the route alternative with the shortest travel time in the set of route alternatives as a 
basis. In short, instead of the set of route alternatives consisting of the best route alternatives in 
terms of the parameters between an O-D pair, the use of route alternatives given by navigation 
applications actively used by many road users in transportation will contribute both to increase 
the explanatory power of the obtained results and to obtain the utility values of these routes by 
evaluating realistic route alternatives. 

Another factor affecting the explanatory power of the fuzzy logic model is the number of fuzzy 
sets used to represent the parameters included in the model. In general, the more fuzzy sets used 
to describe a parameter in a model, the more accurately the complexity of the relationship 
between inputs and outputs can be captured (Trillas & Eciolaza, 2015). The use of more fuzzy 
sets allows the model to represent a wider range of inputs, as well as to better account for 
uncertainty and imprecision in the relationship between inputs and outputs. The travel time used 
in the fuzzy logic model is represented by five fuzzy sets, traffic safety and environmental 
factors parameters are represented by three fuzzy sets each, and the output of the fuzzy logic 
model, attractiveness (utility), is represented by five different fuzzy sets. The representation of 
traffic safety and environmental factors parameters with three fuzzy sets may have caused the 
route alternatives to have less or more utility values than they were supposed to be as a result 
of the fuzzy logic model. The representation with three fuzzy sets affected the values of the 
membership function used to separate safe route-normal-unsafe route for traffic safety. 
Considering the mathematical application of the centroid method, which is used as a fuzzy logic 
model, small changes in rules or membership functions can cause relatively large effects in the 
results when the fuzzy sets are small. For this reason, representing the traffic safety and 
environmental factors parameters with five fuzzy sets instead of three will both increase the 
precision of the utility values of the routes and contribute positively to the accuracy of the 
model's explanation of the results. However, this increase in the number of fuzzy sets will 
require the definition of 125 rules instead of 45 rules. This will complicate the model and 
increase the time to be spent for changes in the rules in case the desired result is not obtained. 
At this point, Adaptive Neuro-Fuzzy Inference System (ANFIS) can be used as an alternative 
method. ANFIS is a model based on a hybrid learning algorithm that automatically adjusts the 
membership functions and rules of the fuzzy logic inference system based on a set of input-
output training data. With ANFIS, the rule system to be defined to obtain the utility value and 
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the membership functions of the parameters included in the model can be derived automatically. 
However, ANFIS may require large training data in order to learn the parameters of the fuzzy 
inference system and neural network accurately. It contradicts the aim of developing an 
alternative model based on less data. Nevertheless, ANFIS can be considered as an alternative 
to fuzzy logic for fuzzy models that will be built using a small number of parameters as in this 
study. Thus, the time spent in building and tuning the fuzzy logic model can be significantly 
reduced. 

Another important reason for the low performance of the methodology followed in the study in 
explaining the results compared to similar studies is the methodological difference. In similar 
studies, a fuzzy logic model was built by using the expectations and opinions of road users by 
conducting a survey, while in this study, a fuzzy logic model was built by reverse reasoning 
about the reasons why users may have chosen the route they followed. Fuzzy logic is a method 
used for modelling problems where it is difficult to make an absolute separation between 
categories, based on subjectivity and containing various uncertainties. The success of the fuzzy 
logic model depends on the degree of membership, which is defined as the degree of 
membership and is defined as the conformity of a variable to a fuzzy set, and the rules defined 
between the fuzzy sets to which the variable is connected with a degree of membership. There 
is no specific systematic in obtaining the membership degrees and defining the rules. In 
addition, the definition of the utility of a route varies for each road user. For some road users, 
the safety of the route may come to the forefront, while for others the shortest possible travel 
time may be reason enough to put safety concerns aside. A small survey consisting of 8-10 
questions could have been conducted with the event participants to better understand their 
reasons for choosing the routes they followed and the factors affecting their cycling and route 
choice behaviour. Thus, the utility of a cyclist's chosen route could be found more accurately 
by taking into account various situations, such as whether a parameter other than the three 
factors suggested based on the literature review should be used, membership functions, the rules 
by which fuzzy sets should be combined, how the parameter used should be weighted, and the 
weighting of the participant's travel purpose in the model. Furthermore, utilising the views and 
opinions of road users would have resulted in less trial and error in the finalisation of a fuzzy 
logic model, resulting in less time loss and a model with more explanatory power. In this 
context, instead of utilising only real-world data, it would be useful to take the opinions of road 
users for the building and results of the fuzzy logic model developed with a subjective approach. 

One of the biggest advantages of the fuzzy logic model proposed in the study is the utilisation 
of open-source data without an active data collection process. Other advantages of the model 
can be listed as the fact that the parameters considered can be easily modelled thanks to the use 
of linguistic expressions, as well as the fact that it can be applied free of charge with the Scikit-
Fuzzy library in the Python coding language, which is widely used. By means of the proposed 
fuzzy logic model, the best route alternatives can be quickly generated according to the desired 
parameters, and the chosen route alternatives between any desired O-D pair can be quickly 
evaluated. The disadvantage of the model is that the membership functions of the fuzzy sets 
and the rules are completely dependent on the practitioner of the model due to the lack of a 
systematic approach in both the construction and verification of the model, which are the 
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general disadvantages of fuzzy logic. In order to finalise the rules and membership functions in 
this proposed model, the routes followed must have a utility better than at least 80% of the best 
route alternatives for the selected parameters. By using different approaches, the model can be 
finalised by setting various constraints for the fuzzy logic model according to the data type and 
amount of data. 

The proposed model aims to propose an alternative model for small and medium-scale networks 
in developing countries with limited data that is devoid of mathematical complexity and can be 
understood with basic engineering education. Although the cycle network considered in this 
study does not constitute a direct example for developing countries, various approaches used in 
this study can also be used for vehicle networks. For the travel time, which is one of the most 
crucial parameters in route choice, a fuzzy set can be constructed as a percentage difference 
from the shortest travel time among the alternative routes between the selected O-D pair. For 
the traffic safety parameter, various factors, such as road pavement, traffic density, number of 
lanes, lane width, whether the travelled link is divided or not can be evaluated under a single 
parameter. For environmental factors and other parameters that are likely to be used, various 
other factors can be included in the model based on the needs of the project or the expectations 
of the project owner. OSM includes many such data in its maps. However, it should be noted 
that these maps have limited data reliability. 

A similar study can be developed for route cost analysis in maritime transport. As a result of 
the melting of glaciers in the polar regions, which is one of the most visible consequences of 
global warming, it is becoming increasingly popular to investigate the suitability of using Arctic 
shipping routes as an alternative to existing sea routes (Theocharis et al., 2018). It is stated that 
the effects of global warming will be felt more severely in the coming decades (Dreyfus et al., 
2022). Therefore, the seasonal use of Arctic routes is likely to increase, and they can be an 
alternative to existing shipping routes as they reduce the travelling time.  However, Arctic 
routes have various disadvantages, such as being risky for navigation safety, inadequate search 
and rescue facilities, lack of ports along the polar route, and the need for experienced crews. 
The effects of cost changes in maritime transport (Wilmsmeier & Martinez-Zarzoso, 2009), 
where costs vary considerably due to seasonal conditions and fluctuations in the world 
economy, can be represented using fuzzy numbers and a fuzzy logic analysis model can be 
developed for the economic feasibility of Arctic routes. 

In the fuzzy logic model proposed, it has been found that the routes followed in the fuzzy logic 
model have a better utility value than only 70% of the other alternatives in the route choice set, 
and various suggestions have been made to improve the model and make it more explanatory. 
There is a date mismatch between the data used in the model developed within the scope of this 
study. While the GPS data collected belongs to 2016, the current OSM data as of 2023 is used 
for the cycling infrastructure. Various improvements may have been made in the cycling 
infrastructure in the intervening seven years. This may be the reason for the ambiguities in some 
of the results obtained when looking at some route choices with the current cycling 
infrastructure. For this reason, paying attention to data timeliness in future projects may 
contribute positively to the explanatory power of the model. In addition, as mentioned above, 
knowing the travel purposes of road users, asking subjective questions to road users such as 
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what they pay attention to in route choice, forming a set of route alternatives to be considered 
with the help of navigation applications, and finding the benefit of a route more precisely by 
using more rules can be listed as methods that can be used both to spend less time to tune the 
fuzzy logic model and to increase the explanatory power of the model. 
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6. CONCLUSION 

Transport systems have an undeniable importance in planning the future of countries or cities, 
both because of their social structure serving the society and because they are one of the main 
locomotives of a country's development. Today, the number of vehicles in cities is increasing 
rapidly with the rapidly growing world economy and technological developments in industrial 
production techniques compared to the past decades. The increasing number of vehicles brings 
along economic and social problems such as congestion, air and noise pollution. In order to 
prevent or minimise the problems that may arise from the increase in the number of vehicles, 
transport infrastructure investments should be well planned. In small and medium-sized cities 
of developing countries, planning may not be done properly due to insufficient human resources 
and project budgets. Another obstacle to effective planning is the lack of infrastructure to collect 
the data required to be used in the planning phase in a qualified manner. 

Understanding the route choices of road users in urban transport network planning is important 
for the optimum use of the capacity of the existing transport network, understanding the 
shortcomings of the existing transport network, and identifying the direction of the investments 
to be made. Logit and probit models are widely used in modelling the route choices of road 
users. Although logit and probit models have various advantages, they have significant 
disadvantages in the application phase. Depending on the increase in the number of parameters 
considered in the logit model, the number of data should also increase in order to establish a 
reliable model. Probit model, on the other hand, requires mathematically complex operations, 
and its application requires experience and qualification. For this purpose, a new model that has 
low data dependency, is not complex, can be used at network scale, and can be applied easily 
and quickly is proposed by using real world data especially for the planning of small and 
medium scale transport networks of developing countries. The proposed model is a fuzzy logic 
model that is frequently used in many other fields due to the ease of mathematical expression 
of linguistic expressions and ease of operation. With the proposed fuzzy logic model, it is aimed 
to answer the following questions within the scope of the thesis. The eight questions addressed 
in the research questions section are answered below, respectively. 

Q.1. “How can a fuzzy logic model be built and validated to model route choice and explain 
route choices of cyclists based on GPS data in a cycle network based on travel time, traffic 
safety, and environmental factors?” 

While building the fuzzy logic model, the parameters to be used in the model are determined 
by the literature research and categorised under three groups. The parameters of travel time, 
traffic safety, and environmental factors are used in the fuzzy logic model. An inference 
mechanism is built by using the 'and' conjunction and the 'if-then' structure. The fuzzy number 
obtained as a result of the inference mechanism has been defuzzified. The number obtained as 
a result of the defuzzification is the utility of the route for a road user. In an inference 
mechanism built in a fuzzy logic model, rules can be defined arbitrarily. In order to prevent this 
arbitrariness, the rules have been changed until the preferred routes between the O-D pairs 
travelled by the road users, whose travel data were collected within the scope of the 'fietselweek' 
event in 2016 and used as a dataset, have a utility value higher than at least 80% of the safest, 
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fastest, and most environmentally attractive road alternatives between these O-D pairs. After a 
total of 10 different rule set attempts, a fuzzy logic model has been built. Using the obtained 
utility values, the probability of choosing the route alternatives between any O-D pair is 
investigated. By substituting in the logit formula, it can be found which route is likely to be 
chosen among the alternatives identified between an O-D pair and with which probability. Thus, 
with a simple approach, a fuzzy logic model has been built using the available data set, with the 
fuzzy logic model constructed, the benefit of any desired route for the user has been found, and 
the probability of choosing the routes has been determined by comparing the utility of a route 
with the route alternatives. 

As a result, fuzzy logic as a data analysis method stands out as an easy and fast method to apply 
even for those who have no experience with the method. Categorical data can be quantified, 
and "AND" or "OR" connectives can be easily processed without the need for a strict distinction 
for categorisations within a data set and without needing a large data set. Thus, a numerical 
value that can be used in practice is obtained for traffic safety and environmental parameters 
that are not easy to quantify. In addition to these advantages, fuzzy logic has significant 
disadvantages. The most prominent of these is that there is no systematic approach that can be 
followed both to build a fuzzy logic model and to validate it. This may pose a problem for 
inexperienced implementers when establishing an analysis model. Therefore, although the 
fuzzy logic model is quite easy to apply, the fact that it does not contain a systematic approach 
contradicts the argument of developing a method that is not complex and requires less 
experience, especially for inexperienced implementers. 

The fuzzy logic model built within the scope of the study can be said that the utility values of 
only 73% of the routes followed in the "fietselweek" dataset have the highest utility value 
among the route alternatives. In order to increase this rate and to develop a fuzzy logic model 
with higher predictive power, the following suggestions can be adopted. When tuning the rule 
set, an analysis can be made by using the route alternatives suggested by navigation 
programmes as route alternatives between each O-D pair instead of the used route alternatives. 
Secondly, by using five fuzzy sets instead of three for traffic safety and environmental factors 
parameters, both the rules to be defined and the utility value to be obtained as a result of the 
rules can be obtained more accurately. Finally, in order to make sense of the route preferences 
of road users, a questionnaire consisting of questions about their route choice habits as well as 
the data of the routes can be made. Thus, rule sets can be built faster according to the route 
choice habits of road users. By using Adaptive Neuro Fuzzy Inference System (ANFIS) 
method, both the fuzzy sets and the rule set can be formed with less effort by considering the 
answers given by the road users and the routes followed. Thus, the construction of the fuzzy 
logic model can be accelerated, and more accurate results can be obtained by eliminating the 
necessity to define more rules as a result of using more fuzzy sets for a parameter. 

Q.2. "Which sub-factors related to traffic safety and environmental factors affect the route 
choice decisions of cyclists and how?" 

The factors affecting route choice for cyclists can be grouped under three categories: travel 
time, traffic safety, and environmental factors. Travel time of cyclists is affected by the number 
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of traffic lights on the route, cycle path, traffic volume, and number of intersections. All factors 
other than cycle lanes have a negative effect on travel time. Traffic safety is directly affected 
by lighting, cycle lane separated from vehicle traffic, traffic safety, traffic volume, cycle lane 
markings, and paved infrastructure. Among these factors, lighting, separated cycle lane, traffic 
signalling, and marked cycle lane positively affect the safety of cyclists, while traffic volume 
negatively affects traffic safety. Finally, environmental factors are directly related to gradient, 
population density, and land use. Gradient and population density negatively affect cyclists' 
preferences, while different land uses have different effects. Greenery area, blue space, 
commercial area, and industrial area have a positive effect on cyclists' decisions, while 
residential area has a negative effect. 

Q.3. "How are the cycle network links in Enschede characterised in terms of traffic safety 
and environmental factors?" 

Figure 19 shows the attractiveness (utility) of the links as a result of the fuzzy logic model built 
using only traffic safety and environmental factors. According to the figure, while the 
attractiveness is low for the links surrounding the city centre, the attractiveness increases as you 
move towards the city centre due to the increase in traffic safety. Nevertheless, the 
attractiveness of the city centre is not very high. As moving towards the outer part of the city 
centre, the attractiveness of the links increases due to the increase in the green area and the 
presence of cycle paths. 

Q.4. "How are the links that make up the cycle network in Enschede characterised in terms 
of travel time?" 

According to OSM data, there are 142 traffic lights in the city. The traffic lights are marked on 
the links where they are located and an assumption is made about their effect on the travel time. 
This assumption is related to the waiting time at traffic lights. The waiting time at traffic lights 
in Enschede varies dynamically according to the traffic density. Therefore, it is assumed that 
there are different waiting times during rush hour and off rush hour. For trips between 07:00-
09:00 and 16:00-18:00, when traffic is heavy, a total of 48 seconds is assumed to be lost for 
slowing down, waiting at a traffic light, and accelerating again, and a total of 23 seconds is 
assumed to be lost for the other time intervals when traffic is less heavy. On links that are not 
separated from vehicular traffic by a physical barrier during rush hour, cyclists are assumed to 
reduce their speed by 10-15% for the reason that they cannot overtake safely, and in the city 
centre where pedestrian density is high. In addition, cyclists are assumed to reduce their speed 
by 20% after 13:00 on weekends and between 17:00-20:00 on weekdays for their own and 
pedestrians’ safety owing to crowdedness. 

Q.5. "With what accuracy do the results obtained explain the GPS data obtained within the 
scope of ‘fietstelweek’?" 

The routes travelled by the volunteers participating in the ‘fietstelweek’ event are compared 
with various route alternatives between the O-D pairs travelled. The route alternatives 
compared are the shortest, safest, and most environmentally appealing route alternatives 
between each O-D pair. Comparing the routes taken with these route alternatives, 81.28% of 
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the routes taken have larger utility for a road user than the shortest route alternatives, 87.66% 
of the routes taken have larger utility for a road user than the most environmentally appealing 
route alternatives, and 83.83% of the routes taken have larger utility for a road user than the 
safest route alternatives. In case the set of route alternatives for a road user participating in the 
event has these four route alternatives for each O-D pair, the route followed for a total of 171 
road users, the most environmentally appealing route for 6 road users, the safest route for 14 
road users, and the fastest route for 44 road users, the utility obtained by the fuzzy logic model 
is the largest. 

Q.6. "If the fuzzy logic model does not explain the results with sufficient accuracy, what is 
the main reason? Are the rule sets or membership functions in the fuzzy logic model faulty, 
or are the parameters/sub-parameters considered insufficient to explain the results?" 

The use of more fuzzy sets in the fuzzy logic model increases the accuracy of the results 
obtained. The fuzzy logic model uses five fuzzy sets to represent travel time, three fuzzy sets 
each to represent parameters of traffic safety and environmental factors, and five different fuzzy 
sets to represent the output of the model, which is the attractiveness (utility). The use of three 
fuzzy sets to represent parameters of traffic safety and environmental factors in the fuzzy logic 
model may have resulted in the route alternatives having utility values that are either higher or 
lower than their actual values. Since the fuzzy logic model employs the centroid method, even 
slight modifications in the rules or membership functions can lead to significant differences in 
the results, particularly when the numbers of considering parameters are small. Therefore, 
increasing the number of fuzzy sets from three to five for representing traffic safety and 
environmental factors parameters would improve the accuracy and precision of the utility 
values of the routes and enhance the model's ability to explain the outcomes.  

Q.7. "Can a fuzzy logic model be easily generalized? If no, what are the impediments to 
generalizability, and how can these impediments be overcome?" 

It is not possible to easily generalise the fuzzy model developed to understand the route choices 
of cyclists because the weights of the parameters that constitute the utility of road users are 
subjective. However, the influential factor here is not the generalisability of the rule set that 
forms the fuzzy logic model, but rather how the utility value obtained as a result of the 
defuzzification of the inference mechanism after the rule set is built is subjected to comparison. 
Although it is not possible to generalise the rule set established for the model as it is, the rule 
of by obtaining a final rule set by changing the best route alternatives in the sub-parameters of 
the rule set until they exceed the 80% threshold value can be generalised. Even though there is 
not a systematic approach for fuzzy logic models, determining a threshold value and defining a 
rule set accordingly prevents arbitrary rule definition and imposes a constraint. Thus, the rule 
set can be defined according to the constraint. In addition, rule sets can be defined by using the 
answers obtained from cyclists through a survey consisting of various questions including their 
travelling habits. One of the most important advantages of fuzzy logic is that it can easily 
express linguistic expressions mathematically. Thus, rule sets can be defined with less effort to 
test the model. 
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Q.8. "What are the main difficulties that may be encountered in the fuzzy logic model if more 
factors affecting the route choice are added? How might the addition of more factors affect 
the setup and accuracy of the fuzzy logic model?" 

A fuzzy logic model has been created by considering three different parameters: travel time, 
traffic safety, and environmental factors. Three different analysis models have been built using 
binary combinations of these three different parameters, and a fuzzy logic analysis model has 
been constructed using all of the parameters together. The results obtained by using three 
different parameters explained the routes followed by the participants of the 'fietstelweek' event 
more accurately. The increase in the number of parameters taken into account in fuzzy logic 
models increases the number of rules to be defined. Although increasing the number of rules 
increases the accuracy of the model, an excessive increase in the number of rules may cause the 
parameters considered to lose their significance (Trillas & Eciolaza, 2015). In addition, the 
increasing number of rules requires more time to be spent during the model building and makes 
the modification of the rule sets more difficult. In order to avoid it, it may be a good way to 
limit the number of parameters considered and to model some parameters that are considered 
to be added to the model under other parameters. In addition, the membership degrees of the 
parameters to be used in the fuzzy logic model developed with ANFIS and the rule relationship 
can be created automatically by neural network method. ANFIS can be a good alternative to 
avoid the time spent to manually build the rule systems and constantly modify them in 
accordance with the outcome.
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8. APPENDICES 
Appendix 1 

Rule 
Number 

IF 
Traffic 
Safety 

AND 
Environmental 

Factors 
AND 

Travel 
Time 

THEN 
Attractiveness 

(Utility)  
Rule 1 IF Safe AND Attractive AND Very short THEN Very high 
Rule 2 IF Safe AND Neutral AND Short THEN High 
Rule 3 IF Safe AND Repellent AND Normal THEN Medium 
Rule 4 IF Safe AND Attractive AND Long THEN Medium 
Rule 5 IF Safe AND Neutral AND Very long THEN Low 
Rule 6 IF Safe AND Repellent AND Very short THEN High 
Rule 7 IF Safe AND Attractive AND Short THEN Very high 
Rule 8 IF Safe AND Neutral AND Normal THEN High 
Rule 9 IF Safe AND Repellent AND Long THEN Low 
Rule 10 IF Safe AND Attractive AND Very long THEN Low 
Rule 11 IF Safe AND Neutral AND Very short THEN Very high 
Rule 12 IF Safe AND Repellent AND Short THEN High 
Rule 13 IF Safe AND Attractive AND Normal THEN High 
Rule 14 IF Safe AND Neutral AND Long THEN Medium 
Rule 15 IF Safe AND Repellent AND Very long THEN Low 
Rule 16 IF Normal AND Attractive AND Very short THEN Very high 
Rule 17 IF Normal AND Neutral AND Short THEN High 
Rule 18 IF Normal AND Repellent AND Normal THEN Medium 
Rule 19 IF Normal AND Attractive AND Long THEN Medium 
Rule 20 IF Normal AND Neutral AND Very long THEN Low 
Rule 21 IF Normal AND Repellent AND Very short THEN High 
Rule 22 IF Normal AND Attractive AND Short THEN High 
Rule 23 IF Normal AND Neutral AND Normal THEN Medium 
Rule 24 IF Normal AND Repellent AND Long THEN Low 
Rule 25 IF Normal AND Attractive AND Very long THEN Low 
Rule 26 IF Normal AND Neutral AND Very short THEN High 
Rule 27 IF Normal AND Repellent AND Short THEN Medium 
Rule 28 IF Normal AND Attractive AND Normal THEN High 
Rule 29 IF Normal AND Neutral AND Long THEN Medium 
Rule 30 IF Normal AND Repellent AND Very long THEN Very low 
Rule 31 IF Unsafe AND Attractive AND Very short THEN High 
Rule 32 IF Unsafe AND Neutral AND Short THEN Medium 
Rule 33 IF Unsafe AND Repellent AND Normal THEN Low 
Rule 34 IF Unsafe AND Attractive AND Long THEN Medium 
Rule 35 IF Unsafe AND Neutral AND Very long THEN Very low 
Rule 36 IF Unsafe AND Repellent AND Very short THEN Medium 
Rule 37 IF Unsafe AND Attractive AND Short THEN High 
Rule 38 IF Unsafe AND Neutral AND Normal THEN Medium 
Rule 39 IF Unsafe AND Repellent AND Long THEN Very low 
Rule 40 IF Unsafe AND Attractive AND Very long THEN Low 
Rule 41 IF Unsafe AND Neutral AND Very short THEN Medium 
Rule 42 IF Unsafe AND Repellent AND Short THEN Medium 
Rule 43 IF Unsafe AND Attractive AND Normal THEN Low 
Rule 44 IF Unsafe AND Neutral AND Long THEN Low 
Rule 45 IF Unsafe AND Repellent AND Very long THEN Very low 
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Appendix 2 

import numpy as np 
import skfuzzy as fuzz 
from skfuzzy import control as ctrl 
import pandas as pd 
import os 
 
#Traffic Safety 
 
traffic_safety = ctrl.Antecedent(np.arange(0, 61, 1), 'Traffic Safety') 
 
traffic_safety['Safe'] = fuzz.trimf(traffic_safety.universe, [30, 60, 60]) 
traffic_safety['Normal'] = fuzz.trimf(traffic_safety.universe, [15, 30, 45]) 
traffic_safety['Unsafe'] = fuzz.trimf(traffic_safety.universe, [0, 0, 30]) 
 
traffic_safety.view() 
 
#Environmental factors 
 
environmental = ctrl.Antecedent(np.arange(0, 51, 1), 'Environmental Factors') 
 
environmental['Attractive'] = fuzz.trimf(environmental.universe, [25, 50, 50]) 
environmental['Neutral'] = fuzz.trimf(environmental.universe, [15, 25, 35]) 
environmental['Repellent'] = fuzz.trimf(environmental.universe, [0, 0, 25]) 
 
environmental.view() 
 
#Travel time 
 
travel_time = ctrl.Antecedent(np.arange(0, 101, 1), 'Travel Time') 
 
travel_time['Very short'] = fuzz.trimf(travel_time.universe, [75, 100, 100]) 
travel_time['Short'] = fuzz.trimf(travel_time.universe, [60, 75, 90]) 
travel_time['Normal'] = fuzz.trimf(travel_time.universe, [40, 55, 70]) 
travel_time['Long'] = fuzz.trimf(travel_time.universe, [20, 40, 60]) 
travel_time['Very long'] = fuzz.trimf(travel_time.universe, [0, 0, 40]) 
 
travel_time.view() 
 
#Attractiveness 
 
attractive = ctrl.Consequent(np.arange(0, 101, 1), 'Attractiveness') 
 
attractive['Very high'] = fuzz.trimf(attractive.universe, [80, 100, 100]) 
attractive['High'] = fuzz.trimf(attractive.universe, [60, 75, 90]) 
attractive['Medium'] = fuzz.trimf(attractive.universe, [45, 60, 75]) 
attractive['Low'] = fuzz.trimf(attractive.universe, [25, 45, 65]) 
attractive['Very low'] = fuzz.trimf(attractive.universe, [0, 0, 45]) 
 
attractive.view() 
 
# Rule set when traffic safety is safe 
 
rule1 = ctrl.Rule(traffic_safety['Safe'] & environmental['Attractive'] & 
travel_time['Very short'], attractive['Very high']) 
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rule2 = ctrl.Rule(traffic_safety['Safe'] & environmental['Neutral'] & 
travel_time['Short'], attractive['High']) 
rule3 = ctrl.Rule(traffic_safety['Safe'] & environmental['Repellent'] & 
travel_time['Normal'], attractive['Medium']) 
rule4 = ctrl.Rule(traffic_safety['Safe'] & environmental['Attractive'] & 
travel_time['Long'], attractive['Medium']) 
rule5 = ctrl.Rule(traffic_safety['Safe'] & environmental['Neutral'] & 
travel_time['Very long'], attractive['Low']) 
rule6 = ctrl.Rule(traffic_safety['Safe'] & environmental['Repellent'] & 
travel_time['Very short'], attractive['High']) 
rule7 = ctrl.Rule(traffic_safety['Safe'] & environmental['Attractive'] & 
travel_time['Short'], attractive['Very high']) 
rule8 = ctrl.Rule(traffic_safety['Safe'] & environmental['Neutral'] & 
travel_time['Normal'], attractive['High']) 
rule9 = ctrl.Rule(traffic_safety['Safe'] & environmental['Repellent'] & 
travel_time['Long'], attractive['Low']) 
rule10 = ctrl.Rule(traffic_safety['Safe'] & environmental['Attractive'] & 
travel_time['Very long'], attractive['Low']) 
rule11 = ctrl.Rule(traffic_safety['Safe'] & environmental['Neutral'] & 
travel_time['Very short'], attractive['Very high']) 
rule12 = ctrl.Rule(traffic_safety['Safe'] & environmental['Repellent'] & 
travel_time['Short'], attractive['High']) 
rule13 = ctrl.Rule(traffic_safety['Safe'] & environmental['Attractive'] & 
travel_time['Normal'], attractive['High']) 
rule14 = ctrl.Rule(traffic_safety['Safe'] & environmental['Neutral'] & 
travel_time['Long'], attractive['Medium']) 
rule15 = ctrl.Rule(traffic_safety['Safe'] & environmental['Repellent'] & 
travel_time['Very long'], attractive['Low']) 
 
# Rule set when traffic safety is normal 
 
rule16 = ctrl.Rule(traffic_safety['Normal'] & environmental['Attractive'] & 
travel_time['Very short'], attractive['Very high']) 
rule17 = ctrl.Rule(traffic_safety['Normal'] & environmental['Neutral'] & 
travel_time['Short'], attractive['High']) 
rule18 = ctrl.Rule(traffic_safety['Normal'] & environmental['Repellent'] & 
travel_time['Normal'], attractive['Medium']) 
rule19 = ctrl.Rule(traffic_safety['Normal'] & environmental['Attractive'] & 
travel_time['Long'], attractive['Medium']) 
rule20 = ctrl.Rule(traffic_safety['Normal'] & environmental['Neutral'] & 
travel_time['Very long'], attractive['Low']) 
rule21 = ctrl.Rule(traffic_safety['Normal'] & environmental['Repellent'] & 
travel_time['Very short'], attractive['High']) 
rule22 = ctrl.Rule(traffic_safety['Normal'] & environmental['Attractive'] & 
travel_time['Short'], attractive['High']) 
rule23 = ctrl.Rule(traffic_safety['Normal'] & environmental['Neutral'] & 
travel_time['Normal'], attractive['Medium']) 
rule24 = ctrl.Rule(traffic_safety['Normal'] & environmental['Repellent'] & 
travel_time['Long'], attractive['Low']) 
rule25 = ctrl.Rule(traffic_safety['Normal'] & environmental['Attractive'] & 
travel_time['Very long'], attractive['Low']) 
rule26 = ctrl.Rule(traffic_safety['Normal'] & environmental['Neutral'] & 
travel_time['Very short'], attractive['High']) 
rule27 = ctrl.Rule(traffic_safety['Normal'] & environmental['Repellent'] & 
travel_time['Short'], attractive['Medium']) 
rule28 = ctrl.Rule(traffic_safety['Normal'] & environmental['Attractive'] & 
travel_time['Normal'], attractive['High']) 
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rule29 = ctrl.Rule(traffic_safety['Normal'] & environmental['Neutral'] & 
travel_time['Long'], attractive['Medium']) 
rule30 = ctrl.Rule(traffic_safety['Normal'] & environmental['Repellent'] & 
travel_time['Very long'], attractive['Very low']) 
 
# Rule set when traffic safety is unsafe 
 
rule31 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Attractive'] & 
travel_time['Very short'], attractive['High']) 
rule32 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Neutral'] & 
travel_time['Short'], attractive['Medium']) 
rule33 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Repellent'] & 
travel_time['Normal'], attractive['Low']) 
rule34 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Attractive'] & 
travel_time['Long'], attractive['Medium']) 
rule35 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Neutral'] & 
travel_time['Very long'], attractive['Very low']) 
rule36 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Repellent'] & 
travel_time['Very short'], attractive['Medium']) 
rule37 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Attractive'] & 
travel_time['Short'], attractive['High']) 
rule38 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Neutral'] & 
travel_time['Normal'], attractive['Medium']) 
rule39 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Repellent'] & 
travel_time['Long'], attractive['Very low']) 
rule40 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Attractive'] & 
travel_time['Very long'], attractive['Low']) 
rule41 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Neutral'] & 
travel_time['Very short'], attractive['Medium']) 
rule42 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Repellent'] & 
travel_time['Short'], attractive['Medium']) 
rule43 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Attractive'] & 
travel_time['Normal'], attractive['Low']) 
rule44 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Neutral'] & 
travel_time['Long'], attractive['Low']) 
rule45 = ctrl.Rule(traffic_safety['Unsafe'] & environmental['Repellent'] & 
travel_time['Very long'], attractive['Very low']) 
 
 
attractiveness_ctrl = ctrl.ControlSystem([rule1, rule2, rule3, rule4, rule5, rule6, 
rule7, rule8, rule9, rule10, rule11, rule12, rule13, rule14, rule15, rule16, rule16, 
rule17, rule18, rule19, rule20, rule21, rule22, rule23, rule24, rule25, rule26, 
rule27, rule28, rule29, rule30, rule31, rule32, rule33, rule34, rule35, rule36, 
rule37, rule38, rule39, rule40, rule41, rule42, rule43, rule44, rule45]) 
attractiveness_result = ctrl.ControlSystemSimulation(attractiveness_ctrl) 
 
 
 
 
# Read the Excel file 
df = pd.read_excel('Excel file name.xlsx', sheet_name='Sheet Name') 
 
# Get the values from the columns 
traffic_safety = df['Traffic Safety'].tolist() 
environmental_factors = df['Environmental Factors'].tolist() 
travel_time = df['Travel Time'].tolist() 
 



77 
 

# Combine the values into a list of tuples 
values = list(zip(traffic_safety, environmental_factors, travel_time)) 
 
attractiveness_values = [] 
for i, (traffic_safety, environmental_factors, travel_time) in enumerate(values): 
    attractiveness_result.input['Traffic Safety'] = traffic_safety 
    attractiveness_result.input['Environmental Factors'] = environmental_factors 
    attractiveness_result.input['Travel Time'] = travel_time 
    attractiveness_result.compute() 
    attractiveness_values.append(attractiveness_result.output['Attractiveness']) 
 
df['Attractiveness of the Route'] = attractiveness_values 
 
df.to_excel(r"Folder location", index=False) 

 


