
MSc Computer Science
Final Project

A quantitative assessment
method for microservices
granularity to improve
maintainability

Famke Driessen

Supervisors: Luís Ferreira Pires, João Luiz Rebelo Moreira, Anna
Sperotto, Sander van den Bosch, Paul Verhoeven

June, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

List of Abbreviations 4

List of Tables 5

List of Figures 6

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Questions . 3
1.4 Approach . 3
1.5 Report Structure . 4

2 Microservices Granularity 5
2.1 Microservice Architecture . 5
2.2 Granularity in MSA . 6

2.2.1 (Lack of) Definition . 6
2.2.2 Influence on microservice quality . 7

2.3 Maintainability Perspective . 10
2.3.1 Definition . 10
2.3.2 Maintainability in MSA . 11

2.4 Metrics . 12
2.4.1 Size metrics . 13
2.4.2 Coupling metrics . 15
2.4.3 Cohesion metrics . 20

3 Research Strategy 22
3.1 Overview . 22
3.2 Case Selection Requirements . 23
3.3 Tooling . 24

3.3.1 Instrumentation . 24

4 Data Collection 28
4.1 Case 1: Metadata . 28

4.1.1 R1.1 . 29
4.1.2 R1.2 . 29

4.2 Case 2: Loan eligibility checker . 30
4.2.1 R2.1 . 31
4.2.2 R2.2 . 32
4.2.3 R2.3 . 32

2

4.2.4 R2.4 . 33
4.2.5 R2.5 . 33

4.3 Case 3: Spinnaker . 34
4.4 Cases Overview . 35
4.5 Data Preparation . 37

5 Data Analysis 45
5.1 Merges . 45
5.2 Decompositions . 47
5.3 Hybrid refactors . 49
5.4 Spinnaker . 51

6 Validation 53
6.1 Assessment Observations . 53

6.1.1 Merges . 55
6.1.2 Decompositions . 57
6.1.3 Hybrid Refactors . 60

6.2 Validation Interviews . 63
6.2.1 R1.1 . 63
6.2.2 R1.2 . 64
6.2.3 R2.1 . 64
6.2.4 R2.2 . 64
6.2.5 R2.3 . 65
6.2.6 R2.4 . 65
6.2.7 R2.5 . 65
6.2.8 Spinnaker . 66

6.3 Discussion . 67
6.3.1 Implications . 67
6.3.2 Prioritising refactoring candidates 70
6.3.3 Research limitations . 72

7 Final remarks 74
7.1 Related Work . 74
7.2 Conclusion . 76

7.2.1 Contributions to Research . 78
7.2.2 Contributions to Industry . 78

7.3 Future Work . 79
References . 80

Appendices 87
A Research Planning . 88

3

List of Abbreviations

API Application Protocol Interface
CC Change Coupling
CCA→B Directed Change Coupling from A to B
CD Continuous Delivery
CF Change Frequency
CI Continuous Integration
DDD Domain-Driven Design
GWF Global Weighting Factor
IQR Inter-Quartile Range
LOC Lines of Code
LWF Local Weighting Factor
MSA Microservice Architecture
PSD2 Payment Services Directive
REST Representational state transfer
RX.Y Refactor Y from case X
SC Structural Coupling
SIDC Service Interface Data Cohesion
SME Small Medium Enterprise
SOA Service Oriented Architecture
SVN Apache Subversion
SX.Y.Z Service Z, involved in refactor Y from case X
TW Temporal window
UML Unified Modelling Language
WSIC Weighted Service Interface Count

4

List of Tables

2.1 WSIC thresholds proposed by [Bogner et al., 2020] 15
2.2 SIDC thresholds proposed by [Bogner et al., 2020] 21

4.1 Cases overview . 36
4.2 Summary of Data Preparation guidelines . 43

5.1 Coupling metrics of R2.2 and R2.3. 45
5.2 Average metric values for entire application (R2.2 and R2.3) 46
5.3 Cohesion and size metrics of R2.2 and R2.3 47
5.4 LOC values of the services involved in R2.2 and R2.3 47
5.5 Coupling metrics of R1.1 and R2.4 . 48
5.6 Average metric values for the entire application (R1.1 and R2.4) 48
5.7 Cohesion and size metrics of R1.1 and R2.4 49
5.8 Coupling metrics for R1.2, R2.1 and R2.5 50
5.9 Average metric values for entire application (R1.2, R2.1 and R2.5) 50
5.10 Cohesion and size metrics for R1.2, R2.1 and R2.5 51
5.11 Coupling metrics for a selection of the service pairs of Spinnaker 52
5.12 Cohesion and size metrics for the services S3.0.4, S3.0.1 and S3.0.3 52
5.13 Average metric values for entire Spinnaker application 52

6.1 Framework supporting the interpretation of the metric values in different
refactor contexts. 54

6.2 Relation between the assessment outcomes and the expert’s observations for
the analysed merges. 56

6.3 Relation between the assessment outcomes and the expert’s observations for
the analysed decompositions. 58

6.4 Relation between the assessment outcomes and the expert’s observations for
the analysed hybrid refactors. 61

6.5 Effect of different temporal windows on change coupling 68

5

List of Figures

2.1 Example of an ordering system [Newman, 2021] 10
2.2 Verbosity of different programming languages [Goebelbecker, 2022] 14
2.3 Evolution of three software artefacts over time 16
2.4 Example of a co-change matrix [Oliva and Gerosa, 2015] 18
2.5 Sliding window implementation which increases the number of change sets . 20

3.1 Steps of our research strategy . 23

4.1 Overview of Metadata’s architecture [Visockis, nd] 29
4.2 Microservices architecture of the lending system 31
4.3 Overview of the Spinnaker microservices [Spinnaker, a] 35
4.4 Illustrative example of a refactor . 37
4.5 Fictitious service evolving into two other services 40

6.1 Boxplot calculated over the change coupling values pre-R2.3. 71

6

Abstract

Microservice architecture is a widely-adapted architectural style for software systems known
for its advantages in terms of scalability and maintainability. The granularity of such ar-
chitectures is of key importance, as inappropriate granularity levels can result in issues
such as data consistency problems, increased global complexity, and reduced reusability
of individual components. Therefore, determining a suitable granularity level is crucial.
Currently, practitioners make decisions on microservice granularity by identifying bounded
contexts, a concept from domain-driven design. This identification is done mainly based
on experience. This can be limiting as such experience is not always at hand, and more
concrete decision support is lacking. To ultimately develop concrete decision support for
microservices granularity decisions, we developed an approach which allows for an objec-
tive, quantitative assessment of the quality of a granularity of a microservice architecture.
The assessment method focuses on the maintainability of a system, as this is strongly
influenced by granularity and critical for a project to succeed.
To develop this method, a set of six maintainability metrics was selected, tailored for
microservice-based systems. This selection consisted of the following metrics: change cou-
pling, structural coupling, weighted service interface count, lines of code, service interface
data cohesion and change frequency. These metrics were derived from literature on main-
tainability in microservice architecture and service oriented architecture.
To evaluate our assessment method, three microservice-based software projects were se-
lected. Involved engineers were interviewed on refactors that had been carried out or were
planned to improve maintainability, which affected the granularity of the system. Sub-
sequently, we performed our assessment on different versions of the systems, in order to
investigate what kind of trend in maintainability our assessment method identified. We
validated our assessment method by investigating the extent to which it reflected the evo-
lution in maintainability in reaction to the refactors, as perceived by the experts.
Three types of refactors were analysed: merges, decompositions, and hybrid refactors
involving the extraction and subsequent merging of functionality from different services.
The assessments correctly identified services that were candidates for merging, also in the
hybrid refactors, based on the strong change coupling values between the candidates. As
for the decompositions, in which we could measure the evolution of maintainability, we
observed a high ability to reflect the evolution as perceived by the experts. In the hybrid
refactors this ability varied.
We identified several factors that affected the accuracy of the assessment, such as systems
with a small number of services, as the interpretation of the cohesion and size metrics is
partly based on system-averages, which are less reliable in smaller systems. Another factor
was that several systems were behind on maintenance, in the sense that code and interfaces
which had become dead weight during the refactor still were not removed.
The contribution of this research is to provide a validated assessment method for microser-
vices granularity, with a focus on maintainability. To learn more about the applicability of
our assessment method and its validity in different contexts, we suggest conducting future
research to validate it using larger data sets. This would provide a more robust validation
of the method’s accuracy, demonstrating its applicability beyond specific cases and making
it less dependent on individual scenarios.

Keywords: microservice, MSA, granularity, coupling, cohesion, change coupling, architec-
ture, assessment

Chapter 1

Introduction

In this chapter, we provide the motivation behind our research. We subsequently outline
the problem that this study aims to address and formulate the research questions that
guided our investigation. Additionally, we provide a high-level introduction to our ap-
proach, which is discussed in more detail in Chapter 3, and outline the structure of the
present report.

1.1 Motivation

The popularity of microservices has increased tremendously over the past years. The term
“microservice" was first used at a conference in 2011, where the participants used it to
describe a new architectural style that was coming up [Lewis and Fowler, 2014]. Only 10
years later, in 2021, a survey showed that approximately 71% of IT professionals work
with microservices in their enterprise [Statista, 2022]. This undeniable hype around mi-
croservices is caused by several large companies, such as Netflix, Spotify and Amazon
adopting them [Krishna, 2021], and the wide range of benefits they are acclaimed to have
over monoliths such as better scalability, language agnosticy and improved maintainability
[IBM, 2021a, Ghofrani and Lübke, 2018].

Adopting microservice architecture does not come without some challenges however: prac-
titioners describe how matters like the prediction of the performance of microservices in a
production environment and guaranteeing data consistency within such a system can be
quite a hurdle [IBM, 2021b]. Also, the aforementioned benefits are not guaranteed: in a
survey among 60 practitioners conducted by [Bogner et al., 2019], only 2% of the partic-
ipants reported zero symptoms of low maintainability in their system. Often mentioned
were symptoms related to the evolvability of a system, like the implementation of new
functionality being more time-consuming and a high number of defects with new releases.

A common denominator in these problems seems to be the granularity of the system; a
coarse-grained system in which transactions are encapsulated in a single service does not
impose any data consistency problems. A finer-grained system in which multiple services
are involved in a single transaction however does require measures to be taken to guarantee
some form of consistency. This shows how the complexity with regard to data management
stands or falls by the granularity decisions made. The relevance of granularity is under-
lined even more by the consequences of a non-optimal granularity: if a certain granularity
level enforces tightly-coupled services, this can significantly reduce the maintainability and
scalability of the system [Homay et al., 2020].

1

Microservice granularity is surrounded by a prominent research gap: there is a lack of
tooling to identify service boundaries and evaluate the granularity of a system. Both the
identification of service boundaries and the necessary fine-tuning are still mainly done based
on experience, which is subjective and not always available in teams new to microservice
architecture. There is a need for approaches which allow a quantitative assessment of
granularity, to support software engineers in evaluating and reasoning about granularity
more objectively. In this research, we will report on our approach and findings in proposing
and validating a new assessment framework for the granularity level of an application with
regard to maintainability.

1.2 Problem Statement

When designing a microservice architecture (MSA), either from scratch or by decomposing
an existing application, it is crucial to carefully determine the boundaries for each mi-
croservice: sub-optimal microservice scopes can have undesired effects such as data consis-
tency problems, an excessive global complexity or low reusability of individual components
[Auslander, 2017a, Fritzsch et al., 2019, Homay et al., 2020, Shadija et al., 2017].
Currently, practitioners identify service boundaries primarily based on their experience and
insight without making use of any frameworks or tools, except for some Domain-Driven
Design (DDD) concepts. DDD is described often as an approach to determine microser-
vice granularity, but fails to offer concrete decision support, as the guidance provided for
determining service boundaries is not much more than an outline of how bounded con-
texts for each domain concept can be identified [Zimmermann, 2017]. This leaves a lot of
room for subjectivity, which can result in an architecture with a sub-optimal granularity.
Furthermore, the possession of experience in determining microservice boundaries is not
a given in every project. The apparent lack of concrete decision support for reasoning
about microservice granularity is a research gap that needs to be addressed. To allow any
reasoning about granularity at all, it is essential to first establish an assessment framework
which allows for quantitatively assessing MSAs.

An important consideration when discussing the assessment of granularity is that it is not
possible to simply define an optimal granularity which can serve as a "goal granularity",
as in this case, one man’s meat is another man’s poison; different requirements require
different granularities. To give an example: while the local complexity of services might
decrease at a finer granularity, it could impede the flexibility of the system in case it re-
sults in tightly coupled services. The most appropriate granularity level depends on the
(non-functional) requirements of an application. It follows that, for a tool to be useful in
making granularity decisions, the main condition is that it is not requirement-agnostic: it
should assess granularity from the perspective of a specific requirement.

One of the system properties that is influenced by granularity to a great extent is maintain-
ability. Intuitively, the maintainability of a system improves when adopting MSA (which,
if proper design patterns are followed, is naturally more granular than other architectural
styles), as it is now possible for team members to work on different services in parallel
[Li et al., 2020]. On the other hand, a sub-optimal granularity which results in a high num-
ber of dependencies between the different services can result in a maintenance nightmare:
the tight coupling can enforce change propagation, which requires an engineer to update
multiple services as a consequence of modifying one service. Due to maintainability being

2

a common challenge for teams working with MSA, as pointed out by [Bogner et al., 2019],
this research will investigate the assessment of granularity from a maintenance perspective.

The ultimate goal of this research is to reduce the need for experience in making mi-
croservice granularity choices, by proposing an approach which enables the quantitative
assessment of the granularity of microservice-based applications with regard to maintain-
ability.

1.3 Research Questions

Based on the aforementioned research objective, the following research questions have been
formulated:

Main Question
How can the quality of the granularity of a microservice architecture be improved with
regard to the application’s maintainability?

Sub-Questions

1. How can granularity be assessed from a maintainability perspective?

(a) Which metrics allow a quantitative assessment of maintainability in MSAs?

(b) How can these metrics be derived from existing projects?

2. How does this assessment method obtained from our results relate to the intuitive
understanding of the experts?

(a) In what context can the performance of our assessment method be compared to
the intuitive understanding of the experts?

1.4 Approach

In this thesis, we identified a set of maintainability metrics from which we constructed an
assessment method for the granularity of MSAs. Subsequently, we collected microservice-
based software projects in which refactors took place which affected the granularity of the
microservices. Using the version control system in place, we retrieved the versions of the
applications before and after a refactor was carried out, which enabled us to perform our
maintainability assessment on the two different versions of the system (before and after
refactoring). We analyzed how the metrics reflected these changes in granularity, and com-
pared this with the intentions and experience of the engineers who have been working with
the system.

Our research consists of two parts: in the first part, we performed a literature review dur-
ing which we identified six maintainability metrics which are applicable to MSAs. Those
metrics will be discussed in Chapter 2. The second part of this thesis focuses on the con-
struction and testing of our assessment method, covering the necessary preparations, the
data collection process, the results and the validation of the assessment method.

3

1.5 Report Structure

This report is structured as follows: Chapter 2 gives the necessary background on MSA
and how its quality is related to granularity. In this chapter, we also explain why we will
investigate granularity from a maintainability perspective and introduce the maintainabil-
ity metrics we found in the literature which are suitable for MSAs. Chapter 3 provides a
detailed explanation of our research strategy. Chapter 4 introduces the software projects
we include as cases in our research and describes how we pre-processed the data to reduce
noise and make the data compatible with the selected tooling. In Chapter 5 we present the
results of our assessments, which we subsequently validate and discuss in Chapter 6. Fi-
nally, in Chapter 7, we discuss work closely related to our research, present our conclusions
and give recommendations for future work.

4

Chapter 2

Microservices Granularity

In this chapter, microservice granularity is discussed, by giving some background on mi-
croservice architectures, discussing the definition of microservice granularity and finally
discussing the influence of granularity on the quality of an MSA. Subsequently, the ratio-
nale behind our decision to approach granularity from a maintainability perspective in this
research is explained.

2.1 Microservice Architecture

To fully understand the microservice architectural style and the problems it addresses, a
recap on architectural styles for software design is provided. The conceptually simplest
architectural style is monolithic architecture. The three parts that are common to enter-
prise applications, a client-side interface, a service-side application and a database, are all
unified in a single code base in a monolithic architecture. The disadvantages of a system
consisting of a single deployment unit are that the system always needs to be deployed as a
whole and that maintaining the system simultaneously with multiple engineers is complex
as modules are interdependent. Additionally, due to this interdependency, a single change
requires testing of the entire system [Awati and Wigmore, 2022].

To deal with these problems, service-oriented architecture (SOA) has been introduced,
long before microservice architecture. In SOA, the business logic of a system is broken
down into smaller components. These components each define a range of capabilities, i.e.,
a service, through their APIs. In this context, a service can be seen as a collection of
capabilities, which offer their functionality through an API. This allows an enterprise to
reuse parts of a system in other applications within the enterprise [Erl, 2017]. Another
advantage is that developers can work on different services in parallel, as the services are
loosely coupled [RubyGarage, 2019].

Microservice architecture (MSA) is a form of SOA. MSA distinguishes itself by its scope:
where most forms of SOA focus on exposing services on an enterprise-wide level, MSA is
aimed at exposing services within a single application [IBM, 2020]. This extensive granu-
larity is one of the main advantages of MSA; small units can be reused in other applications
as they are less application-dependent, and the scalability of microservice-based systems is
outstanding compared to other architectural patterns, as each microservice can be scaled
independently based on its workload [Harsh, 2022]. There is no widely-accepted definition
of a microservice, but there are some characteristics that are commonly associated with
microservices [Lewis and Fowler, 2014]:

5

• Cohesive blocks: the functionality encapsulated in a microservice should belong to-
gether, in accordance with the single-responsibility principle: a module should only
have one reason to change [Richardson, 2020]. Adhering to this principle enforces
cohesive services with a set of strongly related functions.

• Focused on business capability: MSA advocates for organizing microservices and
their operating teams around business capabilities instead of technical layers as a UI
team, a database team and a team handling the server side of the system. This results
in cross-functional teams which can release new features independently. This newly
gained independence allows for decentralized governance; teams bear responsibility
for their own microservice.

• Loose coupling: where in SOA the integration of services, i.e. the application of
business rules and the routing of messages, is often handled by an integration layer
(e.g., an Enterprise Service Bus), in MSA it is considered good practice to encapsulate
such complexity in the services themselves. This self-containment reduces coupling
between the microservices.

• Decentralized data management: the database-per-service pattern is often adhered
to in MSA, as connecting each microservice to the same central database would lead
to a tight coupling between the microservices.

• Automated integration, delivery and deployment: in MSA, automation in the form of
continuous integration (CI), continuous delivery and continuous deployment (CD) is
embraced. Such infrastructure automation prevents teams from carrying the burden
of a high number of microservices to manage (manually test and deploy).

• Graceful degradation: due to the distributed nature of MSA and the encouragement
to keep components loosely coupled, the failure of one component in a microservice-
based application should not have much impact on the other microservices.

2.2 Granularity in MSA

2.2.1 (Lack of) Definition

Whereas the relevance of microservice granularity is widely acknowledged, the definition
of microservice granularity is not; there are several definitions to be found in literature,
but one that is commonly accepted is still lacking [Vera-Rivera et al., 2021]. The most
straightforward and, inherently, the most intuitive definition of the granularity of a mi-
croservice would be the size of a service, which is a definition described in several papers
[Hassan et al., 2020, Kulkarni and Dwivedi, 2008, Vera-Rivera et al., 2021, Ulander, 2017,
Cojocaru et al., 2019]. Their interpretation of size in this context is quite varying however:
a range of different metrics is used to define granularity. [Cojocaru et al., 2019] interviewed
an expert about metrics currently used in the industry to measure granularity, and he men-
tioned lines of code (LOC) as a metric still used by many practitioners. A drawback of
using LOC to represent the granularity of a system is pointed out by [Bogner et al., 2017b]:
due to the technical heterogeneity which MSA allows, the LOC of a service becomes an
inaccurate representation of the granularity of a service. The different levels of verbosity
of the programming languages used in a microservice-based application distort the indi-
cation LOC can give of granularity: a service A, implemented in a verbose language and

6

only supporting one operation, might falsely appear coarser-grained than a service B con-
taining thrice the number of operations of service A. That this “functional scope” of a
service is part of the definition of granularity is supported by several papers investigat-
ing granularity [Hassan et al., 2020, Kulkarni and Dwivedi, 2008, Vera-Rivera et al., 2021,
Al-Debagy and Martinek, 2021, Glöckner et al., 2016, Ulander, 2017, Jain et al., 2021] and
is another interpretation of size. The functional scope of a service can be expressed by
the number of operations exposed by the service in its interface [Vera-Rivera et al., 2021,
Ulander, 2017, Wang, 2009, Cojocaru et al., 2019]. [Cojocaru et al., 2019] adds here that,
in order to draw meaningful conclusions about granularity based on the number of opera-
tions per interface, one should only consider relative values, by comparing them with other
services’ size values.

Just as important as size in defining granularity, is the number of services that are part
of the whole application [Vera-Rivera et al., 2021, Baresi et al., 2017]. [Baresi et al., 2017]
defines granularity as a trade-off between these two. [Sellami et al., 2022] also takes the
number of services into account in their definition, which is given in the context of a
decomposition, by the following formula:

Granularity(M) =
|C|
|M |

(2.1)

The granularity of a decomposition M is defined here as the ratio between the original sys-
tem size, based on the number of classes C, and the total number of microservices in the
decomposition. [Khoshnevis, 2023] proposes a similar definition, which is especially useful
at design time. In their definition, the number of classes in (2.1) is replaced by the number
of activities which should be implemented by the future application. This definition is
given as part of the explanation of their algorithm for identifying microservice candidates,
so with activities, they refer to the activities defined in the configurable business process
model which serves as input to this algorithm. A last definition for the granularity of
a service is the complexity of a service [Vera-Rivera et al., 2021, Newman, 2021]. While
specific metrics are not explicitly mentioned, the authors of [Vera-Rivera et al., 2021] em-
phasize that factors such as complexity and dependencies should be given less significance
compared to the size and the number of services when determining granularity.

2.2.2 Influence on microservice quality

The relevance of determining an appropriate granularity for an MSA lies within its influence
on the quality of a microservice-based system. A granularity level can maximize the quality
of an MSA with regard to certain system properties, but potentially also hinder the system
quality. Assessing the appropriateness of a granularity level is not a straightforward task:
a range of trade-offs should be taken into account as granularity influences the quality of an
MSA in several ways [Ulander, 2017]. One of these trade-offs is related to complexity: in
a fine-grained system in which the services are relatively small, the complexity per service
might be lower than in a coarser-grained system, but as each service only contains a small
portion of functionality, the number of dependencies in the system rises. This increase
in dependencies can result in a system with high coupling, which negatively influences
the overall system complexity and the understandability of the system [Ulander, 2017].
Such trade-offs also exist for other system properties, like performance and maintainabil-
ity, and complicate the development of evaluation frameworks for microservice granularity

7

[Homay et al., 2019, Homay et al., 2020, Vera-Rivera et al., 2021, Li et al., 2020]. In this
section, we discuss the relationship between granularity and several system quality at-
tributes of MSAs.

Performance and Reliability

Several papers describe the relationship between system performance and granularity.
From a performance perspective, optimal service granularity is a delicate balance between
isolating the services consuming a lot of resources or time and minimizing communication
overhead due to extra service calls [Zórnio, 2020]. This overhead can be in terms of, e.g.,
bandwidth consumption or data propagation.

Splitting the modules which heavily make use of resources into separate services can in-
crease the scalability of a system and with it the system’s performance, but this will result in
more communication between services, which in its turn can negatively affect performance
in terms of response time [Vera-Rivera et al., 2021, Auslander, 2017b, Brown, 2020a]. Both
scalability and performance were the most-mentioned reasons for migrating to microser-
vices in the systematic literature review conducted by [Vera-Rivera et al., 2021] and are
also considered as important quality attributes for microservice granularity.

Another attribute affecting the performance is the so-called chattiness of a system. This
refers to the amount of service calls that the system makes, which is largely influenced by
granularity [Homay et al., 2020, Vera-Rivera et al., 2021, Homay et al., 2019, Wang et al., 2021,
Zórnio, 2020, Auslander, 2017b]. This influence can be explained by the fact that a pro-
cess distributed over multiple services will require more inter-service calls than a process
only involving one service. The accumulated latency of these inter-service calls nega-
tively impacts the response time and inherently the perceived performance of the system
[Shadija et al., 2017].

[Wang et al., 2021] notes how the communication between services can be minimized by
grouping functions with the same dependencies into one service. These groups form sen-
sible initial microservice candidates, as grouping based on dependencies not only reduces
the communication overhead but also the complexity of the system [Zórnio, 2020]; if the
services work in a choreography and are split without considering dependencies, this will
result in a spaghetti of service calls which can be hard to oversee. Furthermore, a higher
number of network calls compromises the overall reliability of the system [Zórnio, 2020].
[Homay et al., 2019] describes how there is a trade-off here, between a finer-grained system
resulting in more message-passing which can be time-consuming, and a coarser-grained sys-
tem which is more process-demanding, and subsequently has a higher power consumption.
The computing time can also be affected negatively by a lower granularity, as a coarser-
grained service has increased computational complexity and has to process larger data
units [Homay et al., 2019]. Communication time and computing time have to be balanced
for an optimal granularity level.

Complexity

Several factors contribute to a system’s complexity, which are each influenced by its
granularity. That a microservice-based system is per definition granular to some ex-
tent already implies the system has a higher global complexity compared to a monolith

8

[Waseem et al., 2021]. [Li et al., 2020] explains that a more distributed development leads
to a higher global complexity for the development teams to deal with. Software profession-
als interviewed by [Fritzsch et al., 2019] confirm this, by stating how fine-grained systems
can enforce a complex macro-architecture (the relations between microservices). Such extra
complexity increases the technical costs, another driver to take into account when deciding
on granularity [Li et al., 2020].

[Fritzsch et al., 2019] describes a tendency among its participants to choose a more coarse-
grained architecture, in order to avoid the extra global complexity caused by a more elab-
orate infrastructure enforced by a finer-grained system. [Laskowski, 2019] encourages this
defaulting to coarser-grained services, but notes that one must search for the optimal bal-
ance between extra (global) complexity and the advantages associated with microservices,
such as agility, scalability and resilience. [Seroukhov, 2020] points out that a lower gran-
ularity is not only in favour of complexity; although the interaction between the services
may be simpler, the services will be larger and subsequently have a higher local complexity.
This statement is supported by [Homay et al., 2019] and [Homay et al., 2020], who state
that local complexity increases in coarser-grained systems.
A finer granularity often leads to higher reusability of the microservices [Homay et al., 2020,
Li et al., 2020, Shadija et al., 2017]. This is because the services become more generic and
less complex, which makes it easier to reuse them in another system that requires that
specific functionality.

Data Management

In a database, multiple tables can be updated in a single transaction. If a team adopts the
database-per-service pattern, this can result in the distribution of transactions across multi-
ple databases if multiple microservices are involved in a single transaction. [Newman, 2021]
illustrates these distributed transactions and their consequences using a simple ordering
system as an example (see Figure 2.1). In Figure 2.1A, the system communicates with
one monolithic database, that contains two different tables, one for orders and one con-
taining entries with what needs to be picked by the warehouse team (picking table). In
Figure 2.1B, each table resides in a separate database. [Newman, 2021] explains how the
data monolith in Figure 2.1A provides transactional safety; if one of the tables cannot be
updated for any reason, the entire transaction involving both tables will not be executed.
This transactional safety is lost in Figure 2.1B since the ordering process now spans trans-
action boundaries. The consequence is that in case an order record is inserted successfully,
but the insertion of the picking record fails, this could bring the system into an inconsistent
state.

9

Figure 2.1: Example of an ordering system [Newman, 2021]. A shows a system
with a monolithic database, whereas B shows a system updating multiple databases.

Solutions to roll back the entire transaction in such a case do exist, but these solutions
substantially increase the global complexity of the system.

2.3 Maintainability Perspective

Maintainability is another system attribute which is, according to literature, strongly in-
fluenced by granularity. Obtaining an optimal granularity is challenging because of the
many system properties that are influenced by the level of granularity, each in a different
way. There are many trade-offs to take into account, which complicates the evaluation of a
system’s granularity: one cannot simply rate the general quality of a granularity level, since
this can only be done with regards to a specific (set of) requirement(s). As maintainability
is an important system property, which can be critical for a project to succeed or not, this
research aims to assess microservices granularity mainly from a maintainability perspec-
tive. In this section maintainability as a software characteristic is discussed, covering its
definition and its relation to granularity.

2.3.1 Definition

ISO 25000, a series of standards which define a wide range of terms used in the context
of software product quality, defines maintainability as "a characteristic representing the
degree of effectiveness and efficiency with which a product or system can be modified to
improve it, correct it or adapt it to changes in the environment, and in requirements"
[ISO25000, nd]. Maintainability forms an umbrella for a set of other system attributes,
which are defined in the ISO series:

• Modularity: the degree to which an application is composed of discrete components
such that a change to one component has minimal impact on other components.

10

• Reusability: degree to which an asset can be used in more than one system, or in
building other assets.

• Analysability: degree of effectiveness and efficiency with which it is possible to assess
the impact on a product or system of an intended change to one or more of its parts,
or to diagnose a product for deficiencies or causes of failures, or to identify parts to
be modified.

• Modifiability: the degree to which a product or system can be effectively and effi-
ciently modified without introducing defects or degrading existing product quality.

• Testability: degree of effectiveness and efficiency with which test criteria can be estab-
lished for a system, product or component and tests can be performed to determine
whether those criteria have been met

The relevance of aiming for high maintainability in any software project is emphasized by
research that shows how only 10 percent of the lifecycle of a software product is spent
on the development of the product, while the other 90 percent is spent on maintaining
activities, in terms of time and money [Engelbertink and Vogt, 2014].

2.3.2 Maintainability in MSA

Microservices are acclaimed to have higher maintainability than traditional monoliths,
which makes maintainability a popular driver for adopting microservices [Ghofrani and Lübke, 2018,
Knoche and Hasselbring, 2019, Cojocaru et al., 2019]. This improvement in maintainabil-
ity is explainable as in essence, a microservice architecture is beneficial regarding main-
tainability compared to a monolithic architecture because having all functions in a sin-
gle project obstructs team members from doing maintenance in parallel [Li et al., 2020].
Furthermore, the strong separation of components in MSA prevents a spaghetti of de-
pendencies from developing [Knoche and Hasselbring, 2019, Newman, 2021]. MSA is also
known for advocating a relatively small service size compared to other architectural styles
like traditional SOA, which improves the maintainability of the services even further
[Mella et al., 2019]. These maintainability advantages do not come for free, however,
when adopting microservices. Granularity plays a large and complicated role in this;
for a system to have a high modifiability for instance, it is not obvious which granu-
larity level supports this the best. If a system has a low granularity, which can result
in a tightly coupled structure with complex services, modifiability is affected negatively
[Homay et al., 2020, Auslander, 2017a]. Yet if multiple services have to be changed in or-
der to implement a new business feature, which reduces modifiability, the system might be
too fine-grained [Brown, 2020b].
A high modifiability is essential in case of a high frequency of change. Some of the profes-
sionals interviewed by [Wang et al., 2021] indicate that they see the frequency of change
as the most important splitting criterion. They explain how a high granularity can create
development overhead: “If you want to release, for example, a security patch for Java, [...]
you have to re-release each of your services. The more you split up, the more overhead
you have.” [Shadija et al., 2017] points out that in case of a high frequency of change, it
is common practice to let the functionality itself determine the size of the microservices
based on its change frequency, and thereupon the granularity.

The degree to which an application facilitates change is also dependent on its testabil-
ity, another sub-characteristic of maintainability. A coarser-grained service is larger and

11

more complex than a fine-grained one, and [Brown, 2020b] explains that the testing effort
required in response to a modification will be larger than in the case of a finer-grained
service. However, [Newman, 2021] argues that the overall testing effort will be smaller in
a coarser-grained system as having bigger chunks simplifies the interactions between the
services; in order to test the consumption of service S, each consuming service has to be
stubbed into the context of S. It would be a smaller effort to only stub a coarser-grained
API than having to stub multiple finer-grained ones.

Maintainability can be improved by having proper monitoring and diagnostics in place.
[Homay et al., 2020] stresses how those properties are related to granularity in a control
system context: if the whole machine is controlled by one service, and this service fails,
the whole machine will be marked as erroneous. By letting multiple services each control a
part of the machine, the failure of a service will only lead to the failure of the corresponding
machine part, which enables more accurate diagnosing.

The aforementioned dualities seem to be inherent to the relation of maintainability and
microservice granularity, which complicates reasoning about granularity from a maintain-
ability perspective. Concrete guidance for teams who want to optimize their application’s
granularity in order to improve its maintainability would be valuable here.

2.4 Metrics

This research focuses on evaluating microservice granularity primarily from a maintain-
ability perspective, as maintainability plays a crucial role in the success of a project. In
this section, we discuss a variety of metrics and heuristics that assess maintainability in
the context of microservices architecture (MSA). These metrics and heuristics formed the
basis of our assessment method.

As maintainability entails a variety of sub-characteristics, quantifying it is not a trivial task.
Over the years, maintainability metrics have been proposed for increasingly higher levels
of abstraction. As pointed out by [Bogner et al., 2017a], the earliest metrics which allowed
assessing the maintainability of a system had quite a low-level scope and were mainly
relevant for software written in a procedural style. Examples are McCabe’s Cyclomatic
Complexity [McCabe, 1976] and Halstead’s metrics [Halstead, 1977], which are based on
the number of independent decision paths to take in a program, and on the program
length and vocabulary, respectively. In reaction to the rise in popularity of the object-
oriented programming paradigm (OOP), other metrics became popular. These metrics
were partially inherited from the traditional ones, but also novel metrics, such as the lack
of cohesion in methods and the coupling between object classes, were introduced. These
metrics were still mainly relevant for analysis at a class level, and a need for module-level
maintainability metrics arose. This need was answered by [Lindvall et al., 2003] among
others, who introduced the coupling between modules metric. Service-oriented systems
require a set of tailored metrics, as SOA brings in a new level of abstraction by considering
services instead of modules. According to the results of the literature review performed
by [Bogner et al., 2017a], most maintainability metrics can be accommodated under either
size, coupling or cohesion. These metrics are discussed in the sequel.

12

2.4.1 Size metrics

A well-known, but controversial software metric, related to maintainability, is size.
[Bogner et al., 2017a]. Although size metrics need to be complemented by other maintain-
ability metrics since they are not sufficiently accurate themselves, they can be of use in a
relative sense: they can provide insight into how large a component is with respect to the
rest of the system, which is valuable as in the end, a larger size implies lower maintainability
[Bogner et al., 2017a]. Several metrics can be used to measure the size of a microservice.
We will discuss two prominent ones, which will also be included in our metric suite: lines
of code and the weighted service interface count.

Lines of Code

The controversy surrounding size as a measure for maintainability is partly caused by
the most frequently used metric to assess size: lines of code (LOC) [Siket et al., 2014,
Bogner et al., 2017a]. At first glance, LOC appears to be a simple metric, which can
be measured in a straightforward way, namely by counting lines of code. No consen-
sus is yet reached however on how comments and blank lines should be dealt with, as
[Siket et al., 2014] points out. During this research, we adhered to the definition of LOC
as the number of lines of code from which blank lines and comments are excluded.

A motivation for including LOC as a metric is its relation to complexity. Complexity
is not directly represented by the selected metrics selected, as it is challenging to find a
complexity metric suitable for microservices: due to the freedom in choosing programming
languages MSA is known for, which often results in heterogeneous systems, common com-
plexity metrics such as cyclomatic complexity are hard to measure as the required tooling
is language-dependent. There is, however, a strong correlation between LOC and cyclo-
matic complexity [Heitlager et al., 2007]. LOC itself might be a simple metric to measure,
but it is also language dependent. Therefore, when it comes to the interpretation of the
metric, the programming language of a service should be taken into account, since the
level of verbosity differs per language, as illustrated by the code fragments in Figure 2.2
[Bogner et al., 2017a]. In both fragments, an array is created and subsequently printed
to the console, but the fragment written in Java (lower) requires eight lines whereas the
Python fragment (upper) represents the same functionality in three lines. This advocates
for a weighting factor to be able to compare the LOC of services written in different lan-
guages.

13

s t u f f = ["Hel lo , ␣World ! "]
for i in s t u f f :

print (i)

public class Test {
public stat ic void main (St r ing args []) {

S t r ing array [] = {"Hel lo , ␣World" } ;
for (S t r ing i : array) {

System . out . p r i n t l n (i) ;
}

}
}

Figure 2.2: Verbosity of different programming languages [Goebelbecker, 2022].
The fragments show the implementation of Hello World in Python (above) and Java
(below).

[Bogner et al., 2017a] state that an absolute service size is not of much help to reason about
maintainability, as acceptable value ranges for this metric are lacking. By comparing it to
the average LOC of all services in an application, however, it can help to discover which
services are relatively large and might be candidates for refactoring. In case different
languages are used in the system, one should harmonise the measures using weight factors
or only directly compare measures of similar languages.

Weighted Service Interface Count

As LOC is sometimes considered a sub-optimal metric to assess an MSA implemented with
multiple languages, a size metric which is programming language-independent would be
useful to include in our metric suite, to complement LOC. [Hirzalla et al., 2009] proposes
a size metric which is based on a service’s interface, instead of its source code, namely the
weighted number of exposed interfaces (WSIC), which represents the number of interfaces
or operations per service. The underlying rationale is that a higher number of interfaces
implies a more complex service, and a higher complexity for the system as a whole since
more interfaces directly require higher constructing and testing effort. Additionally, more
monitoring is required with every extra interface and on a service level a higher number of
interfaces can complicate problem determination [Hirzalla et al., 2009]. The metric could
be weighted in different ways to account for the number and complexity of the parameters
of each operation. As to our knowledge no validated weighting methods exist yet, we
used the default weight of 1. The interpretation of WSIC values during this research was
based on the thresholds proposed by [Bogner et al., 2020], who used a benchmark-based
approach to perform a threshold derivation for a set of maintainability metrics. They
labeled the different quartiles of the observed quartile distribution from best to worst. For
the WSIC this resulted in the intervals shown in Table 2.1. Important to highlight is that
Bogner et al. decided to exclude APIs with fewer than 5 operations from their benchmark
analysis. The rationale behind this exclusion was the abundance of such small interfaces,
which could potentially bias the thresholds towards favouring extremely small APIs.

14

Table 2.1: WSIC thresholds proposed by [Bogner et al., 2020]

Quartile Top 25% 25-50% 50%-75% Worst 25%
WSIC [5,8] [8,15] [15,31] [31,1126]

Interplay of LOC and WSIC

Although LOC is a controversial metric, especially when applied to a polyglot MSA, it
is a useful complement to WSIC. WSIC might be a much more service-oriented metric
than LOC, as stated by [Bogner et al., 2017a], but it has not been empirically validated
yet and is more focused on complexity than size [Munialo et al., 2019]. By including both
metrics in our metric suite we aim to obtain a reliable representation of the size property
of maintainability.

2.4.2 Coupling metrics

The two coupling metrics which we included in our metric suite are structural coupling
and change coupling, also known as logical coupling. These metrics are often defined in
the literature and are applicable to MSAs.

Structural coupling

According to traditional software design principles, the coupling between two modules
should be as low as possible, whereas the relations between the artefacts within the mod-
ule should be strong [Yourdon and Constantine, 1979]. Coupling has a strong effect on
maintainability, as changes or bugs in a strongly coupled module are likely to propagate
to other modules, lowering maintainability [Panichella et al., 2021]. Two software modules
are structurally coupled if there are any code or structural dependencies between them. In
the context of MSA, such a structural dependency can be in many forms, e.g., in the form of
service calls or a producer-consumer relation. [Panichella et al., 2021] proposes a definition
of structural coupling specifically for microservices, which is given in the following formula:

StructuralCoupling(s1, s2) = 1− 1

degree(s1, s2)
∗ LWF ∗GWF (2.2)

This definition is based on the local weighting factor (LWF) and the global weighting factor
(GWF), defined by formulas (2.3) and (2.4), respectively.

LocalWeightingFactor(s1, s2) =
1 + outdegree(s1, s2)

1 + degree(s1, s2)
(2.3)

GlobalWeightingFactor(s1, s2) =
degree(s1, s2)

max(degree(allservices))
(2.4)

15

The LWF considers the degree and the out-degree from s1 to s2, where the degree represents
the total number of structural dependencies between s1 and s2, and the out-degree(s1,s2)
the number of dependencies among the total degree which is directed from s1 to s2. The
GWF weighs the degree between two services with the highest degree between a service
pair existing in the application, considering all combinations of services in the application
as possible pairs.

By basing the definition of structural coupling on the LWF and GWF, the metric also
takes into account the general dependencies which are distributed to other services. Due
to the normalization which is done in the formula, the structural coupling between two
services will always be a value between 0 and 1 [Panichella et al., 2021]. A value close to 1
indicates a high structural coupling. As this metric has been validated on 17 open-source
projects, we will adhere to the aforementioned definition of structural coupling and add it
to our metric suite as-is [Panichella et al., 2021].

Change coupling

As an alternative to the traditional code-based metrics, some researchers have started in-
vestigating the use of metrics derived from developer activity to assess maintainability
[Oliva and Gerosa, 2015, Zimmermann et al., 2005]. Already in 1997, [Ball et al., 1997]
described how version control systems contain a lot of data, which, if leveraged wisely, can
provide insights into the evolution of a software system regarding its properties. Version
control data can also be of help in monitoring and assessing maintainability. Below we
discuss one of the metrics used in this research which is mined from version control data,
namely change coupling.

The change coupling between two software artefacts, also known as logical coupling, is
defined as “the implicit and evolutionary dependency of two software artefacts that have
been observed to frequently change together during the evolution of a software system”
[Fluri et al., 2005, Oliva and Gerosa, 2015]. "Changing together" can be defined in many
alternative ways, and the most appropriate definition depends on the purpose of the anal-
ysis. However, an intuitive definition is to let a commit define a logical change set and to
consider artefacts that change simultaneously in a large number of commits to be change-
coupled. Figure 2.3 shows an example of artefacts A and B that co-change through time,
while artefact C seems to evolve independently.

Figure 2.3: Evolution of three software artefacts over time. Each cross represents
a commit in which the corresponding artefact is modified.

16

An important property of this metric is that it can uncover relations between software
artefacts that are not explicitly present in the code of a system. This makes the met-
ric appealing to apply to MSAs, as it is able to reveal hidden dependencies regardless of
hindrances such as REST calls and event buses, which obstruct code-based analyses from
discovering these relations [Tornhill, 2015]. Another advantage is that the metric can be
derived solely from the version control history, which makes it programming language-
agnostic [Oliva and Gerosa, 2015].

The validity of change coupling as a maintainability metric is supported by [D’Ambros et al., 2009]
and [Cataldo et al., 2009], which respectively showed how change couplings correlate with
defects, and how the relationship between change coupling and fault proneness was of
stronger relevance than the effect of structural coupling in two different industrial software
projects [Oliva and Gerosa, 2015]. Additionally, [Hassan and Holt, 2004, Hassan and Holt, 2006]
compared the effectiveness of structural coupling and change coupling in predicting the
propagation of changes, and concluded that change coupling is significantly more relevant.

The application of change coupling analysis in MSA is far from a mature research area.
To our knowledge, [Tornhill, 2015] is the only (grey literature) work where the applica-
tion of change coupling to MSAs is explicitly mentioned, although the concept is not
far-fetched: change coupling analysis is often applied to assess the modularity of an ar-
chitecture, where a module is a generic concept that can correspond to a microservice
[Silva et al., 2014, Zimmermann et al., 2005, Oliva and Gerosa, 2015].

Raw counting
Based on the raw counting approach for change coupling described by [Oliva and Gerosa, 2015]
and used by [Gall et al., 2003, ?, Oliva and Gerosa, 2011], we propose our own identifica-
tion approach which is tailored towards MSAs.

The concept of raw counting can be best explained by visualizing a co-change matrix
(Figure 2.4). This is a symmetric matrix, which should be built based on the version
control data. The value in each cell [i,j] (with i != j) represents the frequency with which
artefact i and j were part of the same change set during a period X. Cell value [i,i] represents
the number of changes artefact i was subjected to in that same period X.
[Oliva and Gerosa, 2015] distinguishes two types of change coupling relationships, namely
non-directed relationships and directed relationships. To infer the non-directed change
coupling relationship between artefact A and artefact B, they simply count the number of
shared revisions (3 in the example of Figure 2.4). Every cell [i!=j] in Figure 2.4 containing
a non-zero value represents a change coupling between artefacts i and j, and the value rep-
resents the strength of the change coupling. This strength, equal to the number of shared
revisions of two artefacts, is also referred to as the support value, a term borrowed from the
data mining field [Oliva and Gerosa, 2015]. In a directed relationship, a coupling strength
is calculated from one artefact to another. To calculate the change coupling strength from
artefact A to artefact B formula (2.5) can be used:

CC_directed(A,B) =
shared_revisions(A,B)

revisions(A)
(2.5)

In the matrix in Figure 2.4, this is equivalent to cell[1,2]/cell[1,1] = 3/4 = 0,75, while the

17

Figure 2.4: Example of a co-change matrix [Oliva and Gerosa, 2015]

change coupling from B to A is weaker (0,33). Directed relationships provide insight into
whether two artefacts are evenly dependent on each other, or whether one artefact is more
dependent on the other than vice-versa. This measure, in which the shared number of
revisions is normalized by dividing it by the absolute number of revisions, is also known
as confidence [Oliva and Gerosa, 2015].

To keep our change coupling analysis as granular as possible, increasing its usefulness in
pinpointing modules which are candidates for refactoring, we inferred directed relation-
ships from the raw countings.

Identifying which change couplings indicate a merge is a research field in itself. The
support value, which refers to the number of shared revisions between two artefacts, can
assist in differentiating between artificial change couplings and meaningful ones. It is
important to establish an appropriate threshold for the support value, taking into account
the specific context of the study. Naturally, the relevant intervals for the support value
would differ between a large industrial project and a small personal project. As suggested
by [Oliva and Gerosa, 2015], a statistical analysis of the distribution of support values can
be performed to determine significant change couplings. One approach is to conduct a
quartile analysis, where it is assumed that change couplings requiring a refactor have a
support value above the third quartile (Q3). In other words, these are the pairs belonging
to the top 25% of pairs with the highest support values. Extra attention should be paid
to outliers on the higher end, which is defined as support values exceeding the sum of
Q3 and 1.5 times the interquartile range (IQR), which represents the difference between
the median of the lower half of the data and the median of the upper half of the data
[Interquartile range, nd].
A high support value is not per definition a reason for refactoring a service pair: if the
coupling between artefacts A and B has a support value which is a high outlier in the
distribution, 100 for instance, but artefacts A and B are each revised independently another
900 times, this should not form a direct indication for merging A and B.
An explanation for the high support value could be that A and B were both subject to
a lot of changes in comparison to the rest of the system, and because they both have a
higher change frequency the support analysis incorrectly prioritises them as refactor can-
didates. This suggests the need for incorporating a confidence threshold, as suggested by

18

[Oliva and Gerosa, 2011], alongside the support threshold. This confidence value, which
provides an indication of the level of coupling between two artefacts by calculating the
ratio of the total number of revisions to the shared number of revisions, is what we refer
to by the term "change coupling" in this report. [Oliva and Gerosa, 2011] proposes the
following change coupling intervals to classify coupling strengths:

• [0.00, 0.33]: low coupling

• [0.33, 0.66]: regular coupling

• [0.66, 1.00]: strong coupling

Logical change set
Necessary in order to derive the change coupling between microservices is the definition
of a logical change set. In most literature available on change coupling, the analysis is
done on a file level, which makes a commit a sensible and straightforward scope for a
logical change set. In MSA however, to emphasize the clear separation of responsibili-
ties, projects often are stored in multiple repositories in which each repository contains
the code of one microservice [Mathews, 2021], and has its own version control history.
Commonly used version control systems like Git [Beckman et al., 2021] do not permit
commits crossing repository boundaries. This obstructs the analysis of change coupling
in a multi-repository system based on individual commits, as logical change sets will not
offer insights into the change coupling between different microservices. As recommended
by [Oliva and Gerosa, 2015] and [Tornhill, 2015], an alternative is to consider a set of com-
mits connected to the same task id as a change set. Such a task id represents a task in
the issue tracker of an application and provides information on which commits are related
to each other and on the context of the commit(s). This context is useful when applying
change coupling as a maintainability metric, as it allows one to categorise the commits
based on their context, and thus to extract the commits which were specifically done for
maintainability purposes.

If issue tracking was not actively done during the lifecycle of a microservice-based project,
another alternative is to group commits in the same temporal window [Tornhill, 2015].
The rationale behind this is that in case each time a microservice A is updated, there is
also a commit to another service B on the same day, this hints at the existence of relevant
change coupling between service A and B. This temporal window does not have to be a
day but can be adjusted to the commit frequency in the project under study. However,
a correct implementation of an algorithm to group commits which are within the same
temporal window will have to use a sliding window (Figure 2.5).

Service A has only been revised once, as indicated by the single green cross in Figure
2.5. However, grouping all commits within a temporal window of two days in the scenario
pictured in Figure 2.5 classifies service A as part of two logical change sets, namely set 2,
in which it is coupled to a revision to service B, and set 3, in which it is coupled to another
revision to service B. Therefore, when considering the output of a change coupling analysis
in which commits were grouped based on a temporal window, one should be aware that
the number of shared revisions can be higher than the absolute number of revisions to a
service.

19

Figure 2.5: Sliding window implementation which increases the number of change
sets. In this example, every revision (represented by a cross) took place on another
day, and they were made on four consecutive days.

Interplay of change coupling and structural coupling

In some applications, change coupling may perform better as a maintainability metric than
structural coupling [Oliva and Gerosa, 2015]. Especially in predicting the propagation of
changes, as shown by [Hassan and Holt, 2004, Hassan and Holt, 2006], change coupling
seems to excel. However, a significant drawback of using change coupling as a standalone
maintainability metric is that it requires historical data. In new green field projects, mea-
suring structural coupling is the only way to gain insight into to which extent components
are coupled [Oliva and Gerosa, 2015]. As in smaller hobby projects, the availability of ver-
sion control history can also be limited, we included both structural coupling and change
coupling in our metric suite to ensure we are able to still assess coupling to some extent in
such projects.

2.4.3 Cohesion metrics

The cohesion metrics that have been identified from the literature are change frequency
and service interface data cohesion. These metrics can both be tailored to MSAs.

Change frequency

Change frequency (CF) is another metric based on developer activity. In the context of
MSA, this metric corresponds to the number of times a service is modified (i.e., the number
of commits) per time unit.
A high change frequency with respect to other services in the system is not a direct indica-
tion for decomposing but in combination with size metrics, CF can be of help in pinpointing
low-cohesive services, which are candidates for refactoring [Tornhill, 2015]. The reasoning
here is that large services with a relatively high change frequency could be covering mul-
tiple bounded contexts, and an engineer should make an informed decision on whether to

20

split these services. Also when only a single bounded context is covered by a service, a
high change frequency could be a reason for refactoring as it might be desirable to extract
the portion which is frequently updated to a separate service which can be labelled as
of higher risk and be governed by a small dedicated team [Ferguson, 2017]. To allow for
comparisons between different CFs, we consistently calculate CF by dividing the absolute
number of changes by the number of months the changes were accumulated over.

Service Interface Data Cohesion

Service interface data cohesion (SIDC) is another notion of cohesion, which is a more
service-specific metric as it is measured on an interface level. This is one of the few
cohesion metrics from the extensive literature review of [Bogner et al., 2017a] that is au-
tomatically derivable and suitable for MSAs. The limited availability of such metrics is
due to the semantic nature of cohesion, which complicates the collection of its metrics
[Bogner et al., 2017a]. SIDC considers the equality between the parameter types of oper-
ations in an interface [Athanasopoulos et al., 2015] so that if all operations defined in an
interface use a common parameter data type, this indicates that the corresponding service
is highly cohesive [Perepletchikov and Ryan, 2011, Bogner et al., 2017a]. Formula (2.6)
defines SIDC, which is equal to the sum of operations with identical data types divided by
the total number of distinct operations, normalising the metric to values between 0 and 1
[Bogner et al., 2017a, Athanasopoulos et al., 2015]:

SIDC(S) =
OC(IS)

OD(IS)
(2.6)

According to this formula, the SIDC of a service S corresponds to the number of operations
of its interface IS which have at least one parameter data type in common (OC), divided by
the total number of discrete operations defined in IS (OD). As for the evaluation of SIDC
values, [Bogner et al., 2020] provided us with thresholds. These thresholds were calculated
using a benchmark-based approach, and the resulting SIDC intervals can be seen in Table
2.2.

Table 2.2: SIDC thresholds proposed by [Bogner et al., 2020]

Quartile Top 25% 25-50% 50%-75% Worst 25%
SIDC [1.00, 1.00] [1.00, 0.64] [0.64, 0.55] [0.55, 0.00]

21

Chapter 3

Research Strategy

This chapter discusses the strategy we put into effect during this research. We first give
a high-level overview of our research plan, after which the different steps are discussed in
more detail.

3.1 Overview

Our strategy consisted of five steps, as depicted in Figure 3.1. Based on the maintainability
metrics identified in Section 2.4, we first formulated two sets of requirements, one for the
software projects we use as cases and one for the instrumentation we selected. Subsequently,
we performed our data collection. During this phase, initially, the cases were selected. The
compatibility of the tools with the selected cases is not always a given: for some cases, it
was not possible to derive certain metrics while for others some case-specific adjustments
to the instrumentation had to be made. The preparation of the data, in terms of extracting
and cleaning the data, was an essential step in our research and is discussed extensively in
Chapter 4. During this phase, the input data required by the tools were extracted from
the cases, and any necessary adjustments to the tooling were made. When all input data
required by our assessment was available, this ushered in the data analysis phase. In this
phase, we analysed the different metrics derived during our assessment and in Chapter 5
an overview of these calculated metrics is presented per refactor type. To validate whether
the findings of our assessment method corresponded with reality, per case an expert who
worked on the project and was involved during the refactor(s) was interviewed. During
these semi-structured interviews, the experts were asked about the team’s intentions for
a refactor, i.e., which system property they tried to improve by that refactoring, and the
aftermath, i.e., the extent to which the refactor can be considered successful. Finally, the
findings of our assessment method were compared to the statements of the interviewees
for each case. The validity of our assessment method depended on whether it could reflect
the same evolution in maintainability as experienced by the experts.

22

Figure 3.1: Steps of our research strategy

3.2 Case Selection Requirements

To constitute a proper validation for the assessment identified in the previous phase, some
standard is needed to which our assessment can measure up. An accessible option would
be the opinion of an expert who has been actively involved in the development of a sys-
tem, as this would make him a golden standard for any reasoning about that system’s
granularity. To not fully rely on the expert’s competency regarding granularity decisions, a
second golden standard has been based on the experiences of the expert with the project,
in the sense of how the expert experienced these decisions. Engineers who were actively
involved in the development of an application, are likely to have experienced any fluctu-
ations in the maintainability of their application over time. By focusing on applications
in which refactors that affect the granularity of the system took place, involved engineers
can be interviewed to report how these changes in granularity affected their application’s
maintainability in their opinion. In the validation phase, having this information on their
experiences allowed us to compare the maintainability evolution our assessment framework
showed with the evolution experienced by the experts, in reaction to changes in the granu-
larity level that took place. This second validation method required us to be able to assess
older versions of an application, i.e., before a refactor took place. Version control data can
provide access to these older versions of an application, which is why the availability of
this data was a requirement for the cases we assessed.
In order to find suitable MSAs for this study we formulated the following set of criteria:

• The application should be microservice-based.

• The source code should be accessible.

• Version control data should be available.

• The application should be implemented to address real-life business needs, i.e., it
should not be a sample application, for instance, to demonstrate a pattern or usage
of a framework.

• At least one refactor, in which the granularity of the application was affected, took
place.

• Version control data should be available through which the code before the refactoring
took place can be recovered.

• The intentions for this refactor and the outcome, as in accordance with the experience
of the engineers working on the application, should be retrievable.

23

To be able to draw any conclusions on the generalizability of our assessment, testing it
on only one case would have been insufficient, as it is then hard to rule out chance and
speculate about whether the assessment would be applicable in other contexts as well.
That is why we included three different contexts (i.e., projects) in this study that fulfil all
the aforementioned criteria. A goal herein was to find three cases which are different from
each other in such a way, that together they can represent a wide range of MSAs. This is
why we aimed to include both a:

• Smaller application consisting of <3 services and a large application consisting of
10> services.

• MSA using orchestration and one based on choreography.

• System using synchronous API calls and system communicating asynchronously via
events.

• One open-source project and one project developed in an enterprise context.

3.3 Tooling

To instrument our research, we identified available approaches to derive the metrics intro-
duced in Chapter 2 from existing applications. As the main motivation of our research
is to support practitioners in the granularity decisions they face, the ease of use of the
approaches required attention. In order to ultimately be able to hand practitioners a tool
in which these approaches are combined, each approach had to allow for automation in
order to be included. Manual derivation of metrics is often not feasible in MSA due to the
relatively high number of components MSA is known for [Bogner et al., 2017a]. To ensure
the feasibility of our research, in which we aimed to perform our assessment on at least 3
different cases, another requirement was that the metrics were derivable statically (i.e., not
only during runtime). It would have required a significant effort to get each system under
analysis to run correctly locally, and as we did not want to exclude larger enterprise-sized
projects from our analysis, requiring access to the in-vivo system would have been a very
limiting criterion.

3.3.1 Instrumentation

In this section, the set of tools is discussed which was used to apply our assessment method
to the cases. This set was selected while respecting the criteria formulated in the previous
section. We aimed to select an instrumentation set which enabled automatic derivation and
calculation of metrics to a large extent. This automation requirement, which is less preva-
lent among SOA-based metrics, is caused by the high number of small services that MSA
often consist of, compared to traditional SOA [Bogner et al., 2017a]. To preserve the feasi-
bility of deriving metrics in MSA, automation is essential. The instrumentation presented
in this section however does not allow for full automation: for some metrics, manual inter-
ventions were inevitable and additional steps that had to be taken were project-specific.
Such data preparation steps are discussed in detail in Chapter 4.

MicroDepGraph

As [Perepletchikov et al., 2007] explains, coupling is a broad term due to the various levels
of abstraction on which components can be coupled. Originally, the term was defined as

24

the degree of association between two components, and as back then most systems were
procedural, the only connection types defined were data and control. Alternative types of
connections were required to make the notion of coupling applicable to object-oriented
systems, which came with several new coupling dimensions, such as, e.g., inheritance
coupling [Perepletchikov et al., 2007, Chidamber and Kemerer, 1994]. Although this en-
forced the development of new coupling metrics and an extension of the definition, these
new metrics were not directly applicable to SOA. This is explainable because one of the
main design principles in SOA is to reuse services only through their interfaces, with-
out any direct calls between the services themselves [Perepletchikov et al., 2007, Erl, 2005,
Singh and Huhns, 2005]. Therefore, essentially, a new layer of abstraction is added.

As we were interested in the interplay between coupling and service granularity, we aimed to
measure structural coupling at the level of services, which matches the abstraction level the
structural coupling metric introduced in Section 2.4 was proposed for by [Panichella et al., 2021].
[Panichella et al., 2021] also proposed MicroDepGraph, which is the tool we used in this re-
search to extract the dependencies between the microservices in an application from the de-
pendencies defined in a Dockerfile and to calculate the structural coupling [Rahman and Taibi, nd].
The tool checks a specified folder for a docker-compose.yml file, which is commonly used
to define the entire service composition of a system. The dependencies are subsequently
derived from the “depends on” section of the file. This section is used by Docker to under-
stand which services a service depends on, and Docker adheres to the dependency order
when starting up and shutting down services [Docker, nd].

Due to the focus of the tool on Docker configurations, the tool has low applicability in
event-driven architectures in which services produce and consume to and from an event
bus. Event-driven architectures adhere to the loose coupling principle, in the sense that
services are agnostic of which services consume their events and of which services produced
the events they consume [IBM, nd]. The tool might be able to identify the dependencies
between the components interacting with the message broker in place, but the dependen-
cies between services remain outside the scope of the analysis.

Panichella’s metric does not allow for any weighting of the coupling between two services,
in contrast to the metrics of Perepletchikov in which the number of calling implementations
was counted [Bogner et al., 2017a]. Although such a lower-level coupling analysis might
have additional value, as it allows a finer-grained insight into a system’s maintainability,
to our knowledge there is no tooling yet which automatically derives these metrics from
MSA.

Code-Maat

Several tools can calculate the change coupling between two artefacts over a specified time
period. In this research, we used the tool Code-Maat, as the tool is open-source and allows
for highly customisable analysis [Tornhill, nd]. The tool mines version control data and is
able to perform several analysis types, such as code age analysis, ownership analysis (in
which the distribution of efforts among developers on a certain artefact can be extracted)
and change coupling analysis.

Code-Maat implements change-coupling analysis in a way that corresponds to our defi-
nition of change coupling given in Section 2.4. Code-Maat allows for the specification of
a temporal window, in which all commits should be considered to be part of the same

25

logical change set. This temporal window can be one or more days. Code-Maat groups
the commits using a sliding time window, as depicted in Figure 2.5, and from this point on
the analysis is independent of how the change sets were grouped (using a time window or
based on commits). Subsequently, for each coupled pair i,j the number of shared revisions
is counted, next to the total number of revisions for both entities i and j. The actual
coupling degree is calculated by the tool as the number of shared revisions of two entities
i and j, divided by the average of the individual revision numbers of i and j :

CC(i, j) =
shared_revisions(i, j)

(
total_revisions(i)+total_revisions(j)

2)
(3.1)

Code-Maat generates a table in which each entry contains the change coupling defined as
in the formula above, the entity names, the number of shared revisions and the average
number of revisions of the two entities. This coupling relation is based on the average
number of revisions and therefore undirected. Code-Maat also offers the option to give a
more verbose output of the analysis, which adds the total number of revisions per entity
to the generated entries. This information enabled us to calculate the directed coupling
relations between the entities ourselves, using the formula presented in Section 2.4.

Change frequency

We decided to implement our own tool to calculate the CF of a service. The implementation
is straightforward: the version control history of a service S is analysed and we count the
number of commits (C) that were committed within the time interval under analysis.
C is subsequently divided over the number of months (M) the time interval spanned to
determine the CF. By doing so, we harmonise the values which can now be compared, as
the absolute numbers of changes were accumulated over different periods of time in each
project and refactor. The formula below summarises this calculation:

CFS =
C

M
(3.2)

cloc

We used an open-source tool named cloc to measure the LOC of a service [cloc]. cloc is
able to recognize a wide range of programming languages and can differentiate between
comment lines, code lines and blank lines for each of these languages. It uses an algorithm
which:

1. Recursively lists all files in a specified directory

2. Based on the file extensions determines in which language the file content is written

3. Opens files without an extension and reads the first line to determine the language

4. Counts the number of original lines

5. Removes the blank lines and repeats the counting

6. Applies comment filters tailored to the programming language of a file, which deletes
the comments, resulting in the residual consisting only of lines of code, which is the
equivalent of the LOC metric as defined in Section 2.4.

26

Finally, the average LOC (LOCavg) for all services in an application has been calculated,
to be able to identify services with a size substantially larger than the average, which might
be candidates for refactoring.

RAMA-CLI

RAMA-CLI is a tool developed by a research group at the University of Stuttgart to derive
maintainability metrics from interface specifications [Rama-Cli, nd]. It is a command-line
tool instrumented to calculate 9 different metrics, which represent either size, complexity or
cohesion. The tool can parse three types of RESTful API specification languages, namely
OpenAPI, RAML and WADL. The metrics calculated by RAMA-CLI of interest in this
research are service interface data cohesion (SIDC) and weighted service interface count
(WSIC).
SIDC quantifies to which degree a service S is cohesive based on the similarity of data
types used in the operations specified in the services interface [Bogner, Perpetklov]. To
calculate the SIDC of a service, RAMA-CLI evaluates the number of operations defined in
the interface which have common input parameter types and the number of operations with
common response types. The final formula used to calculate the SIDC deviates slightly
from the one in Section 2.4: in RAMA-CLI operation pairs with common input types and
operation pairs with common response types are counted separately. Subsequently, the
sum of these numbers of pairs is divided by the number of all operation pairs possible for
the service interface under analysis. To calculate WSIC, RAMA-CLI simply counts the
number of distinct methods exposed in an API specification.

As RAMA-CLI has been designed specifically for the analysis of RESTful APIs, the tool
is not directly applicable to other types of service interfaces. In event-driven architectures,
services can produce and consume events in parallel to exposing a RESTful interface, but
for services which are not required to communicate with the RESTful interface of a front-
end service, exposing any REST endpoints might be redundant. RAMA-CLI is not able
to calculate SIDC for such back-end services in an event-driven architecture which are not
exposing any relevant endpoints. Such services will only expose an endpoint to the message
broker to post events to, but the calculated metrics would not be of value as the interface
does not correspond to the functionalities implemented in the service [Dhanushka, 2021].

27

Chapter 4

Data Collection

In this chapter, we explain how the data collection for this research was performed. We first
discuss the cases that were studied during this research and the refactors that took place
during the life cycle of the cases, which have been the focus of this study. The presented
information is the result of unstructured interviews with the case experts, during which
they were interviewed on the refactors that were carried out, the intentions for those
refactors and how they perceived each refactor to have influenced the maintainability of
their system. Subsequently, we provide the rationale behind our data preparation steps and
present an overview of data preparation guidelines which should be respected to correctly
apply our assessment method.

4.1 Case 1: Metadata

Metadata is a microservice-based metadata-driven user interface (UI) provider. It is an
open-source project, developed by one developer working solo, and is available on GitHub
[Visockis, nd]. The application offers a solution to teams with a high back-end competence
and focus, rather than UI, by offering metadata-driven UI generation. Teams responsible
for database management and access are a representative example: for such database
access systems a minimalistic front-end suffices, especially if it is only used internally.
Metadata essentially aligns elements by invoking a set of endpoints or queries that provide
UI metadata specified by the user, such as the cardinality, font size and font. It allows
for the specification of the UI metadata via REST endpoints, as well as via GraphQL
queries. The architecture of the Metadata system can be found in Figure 4.1, which shows
that only four microservices are present in the system’s architecture; the other modules
are provided as binaries instead of services, to protect the user from having to deploy yet
another microservice. Based on whether the user decides to use the REST endpoints or
the GraphQL queries, only the corresponding two microservices will be active. The two
pairs of microservices will not have to run simultaneously and are structurally completely
independent of each other.

28

Figure 4.1: Overview of Metadata’s architecture [Visockis, nd]

4.1.1 R1.1

Throughout the development process of Metadata, one significant refactor took place. In
the architecture depicted in Figure 4.1, Metadata’s current architecture, the metadata-app
and metadata-deployer are two separate services (both in the case of the REST-oriented
and of the GraphQL-oriented components). Initially, the deployer and application were a
single service however, forming the ref-impl service. To increase the separation of concerns,
as is in line with the single responsibility principle which is a design principle in MSA, the
developer decided to decompose this initial ref-impl service. By doing this, functionality
related to data management now resides in metadata-deployer, whereas the operations
which are performed on the data are all in the metadata-provider-app of their corresponding
provider.

4.1.2 R1.2

The metadata-rest-app and the metadata-graphql-app have a lot of functionality in com-
mon. Besides the REST and GraphQL-specific code, the operations available to both
services are similar as in the end they implement the same features while only using a
different type of API. Currently, adding a field to a domain model in the metadata-engine,
which is used by both services, requires one to also add this field to both the graphql-app
and the rest-app to keep both services compatible with the other components of the sys-
tem. The developer of Metadata pointed out the common functionality of the services to
be a candidate for being extracted into a separate service. However, this refactor was never

29

actually carried out, as the developer foresaw how this would negatively affect the usabil-
ity of the application: extracting the shared functionality into a separate service would
require the user to also deploy this extra service, which results in a possible deployment
overhead. Another option would be to add the common functionality to the binary de-
picted in Figure 4.1, but this would reduce implementation freedom, as it will no longer be
possible to modify fields in the graphql-app and rest-app independently from each other.
We include this refactor in our study, although it was never actually implemented, as we
want to investigate to what extent the described trade-off is reflected by our assessment of
the system.

4.2 Case 2: Loan eligibility checker

The second case we study is an industrial project, in which a bank wanted to automate the
process for small and medium-sized enterprises (SMEs) to validate their eligibility for a
loan. This system has primarily been implemented using Java and has been designed and
developed by a team consisting of over 40 engineers. It has been under active development
for four years. The customer journey of this system, which gives an impression of the
system’s features, is as follows:

1. The user submits some necessary information: company name, the loan being re-
quested, the reason, and the company’s structure.

2. The eligibility of the user for a loan is calculated by the system.

3. Additional information is requested by the system, based on the reason for the loan
request.

4. User provides transaction history.

5. Transaction data is analyzed using risk models.

6. The system returns a “loan denied” or an offer with certain conditions.

7. In case a loan is offered, the user can adjust some parameters, e.g., the loan term
and indirectly the corresponding interest rate.

8. The user can accept the offer, which results in a so-called term sheet.

9. The term sheet is forwarded to the customer for a last check and the formal accep-
tance from the customer’s side.

10. The formal acceptance leads to the money being transferred.

In the background, a workflow is followed by the system, which is depicted in Figure 4.2,
which gives a schematic overview of the system architecture. In reaction to step 1 in the
customer journey, the front-end makes a REST API call to the journey API service (A
in Figure 4.2), which then publishes an event to Kafka’s event bus (B). The rule engine
(C) listens to this event. This rule engine service orchestrates the other services; the rule
engine knows what the subsequent steps in the process are based on the incoming events.
Triggered by the event published in step 1, the rule engine triggers the logic which checks
whether the customer is eligible for a loan, and the business logic, which decides which
subsequent questions should be asked to the customer, based on the reason for the loan
request. Throughout the journey, state events are produced which allow their consuming

30

services to stay synchronised. The journey API service also listens to these state events and
locally keeps track of the state of the request. By doing so, the journey API service is able
to tell the front end what information to request from the customer next. This description
does not explain the entire workflow, as it only focuses on the outline. Other microservices
come into play to handle domain-specific functions. A few examples are given below:

• Risk model services (D): these services decide whether the loan request is approved,
and decide under which conditions the loan will be offered based on the calculated
risk score.

• Transaction processing service (E): processes the transaction data, provided in a
PSD2 or MT940 format, to provide the risk models with input.

• PDS2 service (F): retrieves the customer’s transaction data from the customer’s bank
account (with the consent of the customer).

• Term sheet service (G): gathers all the data for the term sheet and sends it to the
back end of the bank.

Considering inter-service communication, only the services that communicate with the API
gateway directly have REST endpoints at their disposal. The remaining services that are
not part of the front-line, communicate solely by means of events. One of the engineers
explained how services implemented in Python are an exception here. Although services
like the risk model services (D in Figure 4.2) do not communicate with the front-end, they
do expose a set of endpoints: an Apache Kafka framework is also compatible with Python-
based services, but as Python does not allow multi-threading, explicit endpoints are more
convenient as they can run on the main thread. Each refactor that took place during the
lifecycle of the project is discussed in the sequel.

Figure 4.2: Microservices architecture of the lending system. Dashed lines repre-
sent events, whereas solid lines represent (synchronous) API calls.

4.2.1 R2.1

In the initial version of the system, the workflow was implemented as a choreography:
there was no service which centrally controlled the flow, and services invoked each other,

31

i.e., communicated in a peer-to-peer style. For the initial requirements of the system, this
communication pattern seemed suitable, but as soon as the reusability requirements grew,
the choreography pattern became a bottleneck: to allow the reusing of the services in
other journeys, every service needed functionality which enabled them to distinguish the
different journeys, in order to identify which journey they were being called in. To avoid
having to implement this extra check in all services, the team decided to transition to an
orchestration, for which an orchestrator (the rule engine in Figure 4.2) was implemented.
By doing so, a central place was created to control the workflow of a journey, which
increased the maintainability of the system and most importantly: the other microservices
could stay simpler, which increased their individual reusability. As this refactor affected the
entire system, the team took this refactor as an opportunity to revise other aspects of the
architecture as well and create a new version of the system from scratch in a new DevOps
environment. To minimise the bias caused by other modifications than the introduction
of an orchestrator, we have only performed our assessment on the services which directly
correspond to services in the system before the refactor. Other services that underwent
other refactors in parallel during the transition have been ignored. The only exception
here is that the offer-api-service and offer-proxy-service were merged during the transition
into the offer-service, but as the functional scope of the two services pre-refactor directly
translates to the functional scope of the post-refactor service these services are not excluded
from the analysis.

4.2.2 R2.2

The journey API service and the rule engine both keep track of the state of the journey.
As they form the bridge between the front-end and the back-end of the system, the two
services need to be in the same state for each process instance to inherently keep the front-
and back-end in a consistent state. To achieve this, they need to have the same data at their
disposal, so in the architecture depicted in Figure 4.2, complex state-carrying events are
constantly being exchanged by the two services. To improve the global complexity of the
system and reduce the network consumption of the system, the engineering team decided
that the rule-engine and journey-api should be merged. According to the engineers, this
would directly benefit the maintainability of the system, not only in terms of complexity but
also in flexibility, as changes to the state-carrying events would not require modifications in
two services anymore. Although this refactor is acknowledged by the team to be beneficial,
it is not implemented yet as it is still on the planning. This implies that we have not been
able to measure the effect of the refactor, but we still analysed the system version at our
disposal to see whether based on our assessment we can also identify the rule-engine and
journey-api-service as candidates for merging.

4.2.3 R2.3

In the year in which the project started, a company-wide policy existed that prescribed
a strict separation between business logic and the corresponding APIs. Most bounded
contexts were divided over three services back then:

1. A service in which the business logic was implemented.

32

2. A service which implemented the API of the business logic service, and simply passed
the requests and responses.

3. A service which contained the configurations to communicate with the API gateway
of the system.

In a later stage, this separation policy was revised. Over the years, many of these trios, as
described above, have been merged into one service implementing both the business logic
and the API. Unfortunately, the repositories of the API-related and gateway-configuration
services have been deleted for each trio that was merged, so we have not been able to analyse
these refactors. There is still one trio however, the PSD2 microservices (F in Figure 4.2),
for which this refactor has not been carried out yet. This trio is concerned with retrieving
transaction data from a customer’s bank. One of the engineers pointed these services out
as a textbook example of a bounded context divided over multiple services. By considering
these services we were able to investigate if our assessment could recognize the services as
a single bounded context.

4.2.4 R2.4

By introducing the rule engine, a central point in the system was introduced from where all
services were reachable. Because of this central role, over time the rule engine grew. It was a
convenient place to add new features: as the rule engine handles the entire workflow, it was
relatively simple to add something there. Furthermore, adding a new feature to an existing
service was easier than implementing a new service for this purpose. After doing this one
or two times a vicious circle started: as this recently added code is already in the rule
engine, and the newest functionality needs data from that code, it is even more appealing
to add this newest code to the rule engine as well. This accumulation in one service became
problematic when the bank wanted to reuse certain functionality that was now mixed into
the rule engine in other journeys. Using the rule engine for multiple journeys would become
too complex, so the team was forced to extract the new functionality from the rule engine.
During the refactor, this functionality was extracted into separate services. Among the
extracted functionality were features like the first eligibility check, the overview of loan
offers and the logic which decides whether a certain combination of loans is allowed to be
offered.

4.2.5 R2.5

Employee journeys, which are initiated by employees of the bank, are orchestrated by the
employee-rule-engine and their API gateway is implemented by the employee-api-service.
These services are similar to the rule engine and api-service of the customer journeys, but
tailored towards the employee journeys. The intention for R2.5 was to partly merge the
employee-rule-engine and the employee-api-service to make the constant exchange of com-
plex state events between the two services obsolete. The merge is partial as the employee-
rule-engine and employee-api-service are involved in multiple employee journeys, and the
merge is only done for one specific journey. This means that the employee-api-service,
employee-rule-engine and this new service in which the two are partially merged, the

33

review-flow-engine, co-exist after the refactor. The team is planning to completely de-
compose the employee-rule-engine and employee-api-service into journey-flow-engines in
the near future.

4.3 Case 3: Spinnaker

Spinnaker is a platform for continuous delivery, which was initiated by Netflix and evolved
into a collaboration between Netflix, Google, Microsoft and Pivotal [Netflix, 2015]. It is
designed to facilitate application management and deployment across different cloud envi-
ronments. It enables the release of software changes with high velocity by offering a robust
pipeline management system which is compatible with several major cloud providers. The
project has been open-sourced and is available on GitHub [Spinnaker, c]. In Spinnaker, one
can create Pipelines which correspond one-to-one to delivery processes. Such a Pipeline
consists of Stages, which in their turn represent the building blocks of a traditional delivery
pipeline. Examples of Stages are the baking of images for deployment or the deployment
to a cloud provider. The platform also provides features for the management of deploy-
ment clusters. Figure 4.3 gives an overview of Spinnaker’s architecture. The platform
consists of 12 microservices, each with its own responsibility [Spinnaker, a]. Noteworthy
to understand the architecture are the following services:

• Deck: browser-based UI.

• Gate: API gateway.

• Orca: orchestrator.

• Clouddriver: responsible for all calls to cloud providers.

• Rosco: bakes immutable images for deployment on various cloud providers.

• Echo: event bus.

• Fiat: authorization service.

• Halyard: configuration service which manages the lifecycle of the other services.

34

Figure 4.3: Overview of the Spinnaker microservices [Spinnaker, a]

Similar to the loan eligibility checker, most services do not expose an API, as the back-end
services only communicate via events using Echo (the event bus). A service that does
provide a RESTful interface is the API gateway of the system, known as gate.
We are not aware of any refactors performed on Spinnaker which affected the granularity,
but we include Spinnaker as a case to validate the findings of our assessment on the most
recent version of the system with an involved engineer.

4.4 Cases Overview

As we refer to individual refactors in subsequent sections, Table 4.1 provides an overview
of the investigated projects, refactors and services. Table 4.1 serves as a reference tool to
quickly locate the specific details of each refactor analysed in this report.

35

Table 4.1: Cases overview

Project Refactor Services Description

Metadata R1.1 S1.1.1: ref-impl
S1.1.2: metadata-app
S1.1.3: metadata-deployer

Ref-impl was decomposed
into metadata-deployer and
metadata-app to separate
functionality related to
database management from
operations which are to be
performed on the data.

Metadata R1.2 S1.2.1: metadata-rest-app
S1.2.2: metadata-graphql-app

The common functionality
of the involved services was
pointed out as a reason for
partially merging the ser-
vices. This refactor was never
actually carried out.

LEC R2.1 S2.1.1: authentication-service
S2.1.2: email-service
S2.1.3: file-upload-service
S2.1.4: offer-api-service
S2.1.5: offer-proxy-service
S2.1.6: journey-api-service
S2.1.7: riskmodel-service
S2.1.8: transaction-processing-service
S2.1.9: rule-engine
S2.1.10: offer-service

This refactor entailed a transi-
tion from choreography to or-
chestration, in which the rule-
engine serves as orchestrator.

LEC R2.2 S2.2.1: journey-api-service
S2.2.2: rule-engine

As the journey-api-service
and rule-engine constantly ex-
change complex state events
as they have to be in a con-
sistent state, the team plans
to merge them to increase
maintainability. This refactor
has not been carried out yet.

LEC R2.3 S2.3.1: psd2-retrieval-service
S2.3.2: psd2-api-service
S2.3.3: psd2-token-service

These services were pointed
out to be a bounded con-
text divided over three ser-
vices. This refactor has not
been carried out yet.

LEC R2.4 S2.4.1: rule-engine
S2.4.2: lane-selection-service
S2.4.3: source-docs-service

Due to its central position, the
rule-engine became a breeding
ground for new functionality.
During the refactor, this func-
tionality was extracted into
the lane-selection-service and
source-docs service.

36

Table 4.1 continued from previous page
LEC R2.5 S2.5.1: employee-api-service

S2.5.2: employee-rule-engine
S2.5.3: review-flow-engine

Similar to the services in R2.2,
the employee-api-service and
employee-rule-engine were
kept in consistent states by
exchanging complex state
events. These services were
partially merged into the
review-flow-engine.

Spinnaker - S3.0.1: deck
S3.0.2: gate
S3.0.3: orca
S3.0.4: clouddriver
S3.0.5: rosco
S3.0.6: echo
S3.0.7: fiat
S3.0.8: halyard
S3.0.9: igor
S3.0.10: front50
S3.0.11: kayenta

In Spinnaker, we did not in-
vestigate any refactors in par-
ticular, but we performed our
assessment on the latest ver-
sion of the system to identify
potential refactor candidates
and validated our results with
involved engineers.

4.5 Data Preparation

In order to assess the selected refactors, we undertook several steps to prepare and clean our
data. This data preparation process is crucial for the proper application of our assessment
method. Below, we provide a detailed explanation of our data preparation procedure,
ensuring the reproducibility of our research. Additionally, we highlight the challenges we
encountered during the process and the decisions we made to address those obstacles. The
data preparation procedure is discussed in the context of a fictitious refactor as depicted
in Figure 4.4.
At the end of the section, we summarise the data preparation steps required for our method
in a comprehensive overview, to offer practical guidance for those interested in applying
our assessment method.

Figure 4.4: Illustrative example of a refactor

37

As all the cases studied in this research use of Git as their version control system, we
discuss our data preparation process in a context in which Git is used. This approach
could be adapted to use other version control systems, like Mercurial, SVN, Perforce and
Team Foundation Server, without too much effort. Some of the instrumentation used, like
Code-Maat, is directly compatible with different version control systems.

Determining time intervals for analysis

Of the six metrics that we wanted to measure for each refactor, two of them (change
coupling and change frequency) could only be measured over a time interval. This required
us to define how to determine the time intervals over which we would measure, to ensure
consistency and avoid any biases resulting from an inconsistent determination of time
intervals.
We explain how we consistently chose the time intervals to measure in the different refactors
based on the example in Figure 4.4. The figure illustrates the decomposition of a service
A into services B and C, and the snapshots indicate the points in time to measure the
metrics which are not calculated over a time interval (SC, LOC, WSIC, SIDC). The first
revision of all branches determines the start of the pre-refactor period. In most cases,
this is performed on the master branch. Git is a version control system which allows
distributed revisions, over multiple branches. While performing our assessment we do not
distinguish the different branches in a project, as this would only be of value in specific use
cases, e.g., when a branch which has not been merged with the default branch represents
a new release and one would be interested in comparing the maintainability of different
branches/versions of the system.
In Figure 4.4, the pre-refactor period is the interval between the initial commit and the
start of the transition period. We defined the transition period as the interval between
the first revision which was related to the refactor under study and the latest revision
which was related to this refactor. In some projects, the start and end of the transition
period are represented by the same revision, in case the whole refactor was implemented
in a single commit. In other, mainly larger projects, a refactor can be implemented in
stages. These revisions done in these periods are irrelevant for our analysis as they would
mainly create bias. In Figure 4.4, by including the transition period in our analysis, either
service A would seem to have a higher change frequency or service B and C would seem
more coupled, depending on if the transition period is included in the pre-refactor or post-
refactor period.

Preparing the version control logfiles

Git allows its users to extract the entire version control history of a repository, in which all
branches are included, by a single command. Git’s CLI also allows the specification of a
before or since tag, which lets Git return all revisions before or after a specified date. We
use this feature to retrieve log files of both the period before and after the refactor. For the
refactors that have not been carried out yet, we cannot measure post-refactor, so in those
cases, we create a log file of the entire version control history (from the initial commit to
the most recent commit). After extracting the log files of a repository, we clean the data
by filtering out several types of commits which are discussed in the sequel.

Bot commits
In the Spinnaker project, numerous revisions present in the version control history were
committed by bots. A bot can be in place for several reasons. In Spinnaker’s case, there

38

were two bots for different purposes: one was designed by the Spinnaker team itself, to help
manage the different repositories by handling GitHub events and apply policies to issues
and pull requests [Spinnaker, b], and another one was provided by Mergify, to help in the
process of merging pull requests in different repositories and facilitate the CI/CD process
[Mergify, nd]. As revisions committed by bots do not reflect maintenance behaviour, we
exclude them from our analysis.

Overloaded commits
The accuracy of a change coupling analysis depends on the behaviour of the develop-
ers to a great extent: while some developers might commit their modifications more
frequently, others might tend to commit all their changes at once. In the latter case,
this can result in overloaded commits in which several unrelated changes are covered
[Zimmermann et al., 2003, Oliva and Gerosa, 2015]. Such overloaded commits create arti-
ficial change couplings and should be accounted for by removing them from the log files
[Oliva and Gerosa, 2015]. In our cases, we only excluded commits affecting more than
100 files from the analysis, as larger commits were often statistical outliers. This mainly
removed the commits involving an extremely high number of files, for example, a library
which was directly added to the version control system, which was renamed or refactored
internally. Choosing a lower threshold is not without risk, as it might accidentally exclude
relevant changes from the analysis [Oliva and Gerosa, 2015].
[Oliva and Gerosa, 2015] also mentions incomplete commits, referring to commits which
only represent a part of a change as the other parts of the change are represented by
separate commits, to be another threat to the accuracy of a change coupling analysis. In
general, these related commits should be treated as a single change set, based on a task
id, for instance. As each case we studied in this research consists of multiple repositories,
and subsequently change coupling between the repositories cannot be derived from an
analysis on the level of commits since each repository has its own version control history,
we determine our change sets based on a temporal window. By using a temporal window
of one day, for instance, three related commits which were committed individually over a
day are grouped correctly into the same change set.

Merge commits
[Zimmermann et al., 2004] recommends excluding merge commits. A relevant detail is
that Zimmermann et al. performed their work on Concurrent Versions System data, an
alternative version control system which was popular in the year of writing [GNU, nd].
They argue that merge commits, in which two branches are being merged, often contain
unrelated changes and that changes in branches are ranked higher in a merge commit. This
last argument is no longer valid in the context of this work, as in Git, since during a merge
conflict in Git, the developer can specify which branch should overrule the other and even
manual intervention is allowed [Atlassian, nd].

Addressing renames
A service under analysis could have been renamed or refactored during the time interval
of interest. This complicates a change coupling analysis since it can reduce the accuracy
of the analysis. We illustrate this problem with an example of a refactor in Figure 4.5.
The figure illustrates the decomposition of service A into services B and C, followed by
the subsequent decomposition of service B into services D and E. When applying the
assessment method to learn about the influence of decomposition 1 on maintainability, the
period of interest for this assessment is defined as the interval between the finalisation of

39

Figure 4.5: Fictitious service under analysis (B) evolving into two other services
(D,E)

decomposition 1 and the most recent revision. Here, an obstacle is encountered as after
decomposition 2, service B ceases to exist as it has been decomposed. Now only the interval
between decomposition 1 and 2 can be analysed to learn about the effects of the refactor.
However, since services D and E collectively implement the same functionality as B, it
is reasonable to treat the pair as a representation of service B during the analysis. This
approach allows one to consider the entire time interval after decomposition 1, instead of
only the interval between decomposition 1 and 2, enhancing the accuracy of the metrics.
In practice, we addressed this issue by implementing a labelling mechanism. We appended
a prefix to the lines in the Git logs of services D and E, designating them as service B for
the purpose of our assessment. The exact implementation of this labelling depends on the
version control system in place. Our GitHub page1 contains scripts that can be customized
or extended to fit a project’s individual needs.

Analysing change coupling

For the calculation of the change couplings, we completely relied on Code-Maat, a command
line tool for mining data from version-control systems. Their GitHub page 2 contains an
extensive user manual, so here we only provide a general explanation on the command
line options which were relevant for our analysis. As the tool only allows a single log
file as input, the last data preparation step is to concatenate the log files of the different
repositories. After a concatenation, the information on to which service a commit belongs
to might get lost, as filenames are not always conclusive (think of common files such as
pom.xml). To address this, before concatenating we labeled the files of each commit with
the name of the service. Both concatenation and labelling are only necessary for a multi-
repository project. In our analysis, we used the following command line options offered by
the tool:

• We set the minimum number of revisions to include an entity in the analysis to 1,
just as the minimum number of shared revisions.

• We set the minimum degree of coupling to consider to 1, and the maximum to 100,
to be sure to retrieve all couplings.

1https://github.com/famkedriessen/quantitative-assessment-method-for-microservices-granularity
2https://github.com/adamtornhill/code-maat

40

• Just as with the overloaded commits, we set the maximum entities in a change set
to 100.

• We used the verbose mode of the tool to get all outputs required to perform a directed
coupling calculation afterwards. (Code-Maat does not offer this as a feature itself).

• We specified a temporal period, which lets the tool consider all commits within that
time window as a single change set, instead of considering individual commits as
change sets.

Temporal window
Specifying an appropriate temporal window is challenging: a temporal window which is
too large might result in a higher number of false change couplings, while with a too small
temporal window relevant change couplings are missed. Ideally, the temporal window
should be based on the developer’s behaviour, to find the sweet spot between accuracy and
reliability, i.e., retrieving a minimal amount of artificial change couplings while not missing
any relevant ones. Developer’s behaviour, and specifically developer’s commit behaviour,
however, is a research area in itself. Recent studies have tried to analyse the characteristics
of commit intervals in open-source projects. One study found that commit intervals often
follow a power-law distribution, with most intervals being very short and only a few being
distinctly long [Ma et al., 2013, Oliva and Gerosa, 2015]. Another study discovered that
the number of commits per class and per time unit roughly follows a power-law distribu-
tion [Lin et al., 2013, Oliva and Gerosa, 2015]. However, commit practices are influenced
by various factors, including the project’s development process, the way tasks are defined,
and the version control system used. Different commit behaviours may pose challenges
for detecting change couplings, and further investigation is needed to determine how to
handle these challenges. Relevant questions are whether each commit should be treated
the same, and how periods with similar commit properties can be detected. In developer
teams, should we perform an individual analysis on the behaviour of each developer or can
we rely on the team following the company’s commit policies? These questions require
further investigation to determine how to effectively perform change coupling analysis.

The commit behaviour of developers cannot be precisely captured yet, which leaves us little
support for choosing a suitable temporal window. Therefore, we decided to measure three
different temporal windows, of 1, 2 and 3 days. An alternative way of grouping commits
into change sets, as recommended both by [Oliva and Gerosa, 2015] and [Tornhill, 2018] is
to consider task ids, corresponding to issues of the issue tracking system in place. As our
cases either did not make use of task ids or had an issue tracking system which we could
not access, grouping based on temporal windows was our best viable alternative.

Calculating change frequency

Next to change coupling, CF is the only other metric which is calculated over a period
rather than at a single point in time. We calculated the CF over the same pre-refactor and
post-refactor time intervals that we included in our change coupling analysis. During our
calculations, empty commits (e.g., merge commits) are also taken into account as they still
represent a change in the system. The scripts we used are available on our GitHub page.

41

Resetting to older versions of the system

To enable the tool used to count the LOC (cloc), to analyse the previous version of a
system, a reset to this older version is required. As LOC is measured on a single point in
time, we consistently measure the service sizes right before the refactor under analysis was
carried out and just after the transition period ends.

Extracting the API specification

To enable the analysis of the service interfaces using RAMA-CLI, we needed to obtain the
API specification files of the services. A complicating factor was the implicit requirement
that we had to be able to match an API specification to the service it represented. Two
of our cases used an API gateway, a pattern in which one service, serving as the so-called
gateway, represents the interface of multiple services. This made it complicated to relate
the operations specified in the API specification of the gateway to the services implementing
those operations. We analysed the API specifications of the services that had their own
API. However, for the services that did not have their own interface and were represented
by an API gateway or communicated solely through events, we were unable to calculate the
interface-based metrics (SIDC and WSIC) as we did not find a suitable substitute enabling
their calculation.

Dockerfiles

MicroDepGraph is the tool we used to derive the structural dependencies from a system in
order to calculate the structural coupling. This tool requires Docker-compose files in which
those dependencies are specified. The main hurdle of this approach was that in two of our
cases, these files were not present. As both the loan eligibility checker and Spinnaker were
(partly) event-driven, a central Docker-compose file in which dependencies are explicitly
stated is not realistic, as event-driven architecture dictates loose coupling by design, since
in this architecture services are agnostic of their consumers and producers.

Data Preparation guidelines

To facilitate the application of our assessment method, in Table 4.2 an overview of the
data preparation procedure is provided, specifying the tooling, artefacts and preparation
steps required for each metric. These instructions can serve as practical guidance for those
interested in applying our assessment method, ensuring accurate and replicable results. By
following this procedure, researchers and practitioners can effectively prepare their data
and employ our assessment method in their own studies or projects.

42

Table 4.2: Summary of Data Preparation guidelines

Metric Tooling Artifacts Data Preparation steps

CC CodeMaat,
scripts GitHub
page

Version con-
trol history
of services of
interest

• Determine the time interval to determine the
CC over, which should be the same interval as
used in the CF calculation. In case the effect
of a refactor is to be assessed, exclude the
transition period during which the refactor of
interest was implemented.

• Extract the Git logs of the services of interest
for the selected time interval.

• Remove bot commits and commits affecting
> 100 files (our GitHub contains a script ded-
icated to this).

• In case a service of interest is renamed or
refactored during the selected time interval,
use our labelling scripts to label this new ser-
vice(s) as part of the service of interest.

SC MicroDepGraph Dockerfiles • Run MicroDepGraph while providing the
path to the folder of the service repository.

• In the case of an event-driven architecture,
where the Dockerfiles do not provide informa-
tion on service dependencies, an alternative
approach is to manually calculate the struc-
tural coupling. A condition is that documen-
tation on the dependencies between the ser-
vices is available and complete. The formulas
presented in Section 2.4 can be used to calcu-
late the structural coupling in such cases.

WSIC RAMA-CLI API spec-
ification
(OpenAPI,
RAML or
WADL)

• Find the API specification of the service of
interest and provide the file path to RAMA-
CLI.

• When dealing with architectures that adhere
to the API gateway pattern or follow an
event-driven approach, it is important to note
that not every service may have a dedicated
specification. It is advisable to verify whether
a specification represents a single service or
multiple services, as well as whether it be-
longs to an actual microservice or to compo-
nents of the message broker.

43

Table 4.2 continued from previous page
SIDC RAMA-CLI API spec-

ification
(OpenAPI,
RAML or
WADL)

• Find the API specification of the service of
interest and provide the file path to RAMA-
CLI.

• When dealing with architectures that adhere
to the API gateway pattern or follow an
event-driven approach, it is important to note
that not every service may have a dedicated
specification. It is advisable to verify whether
a specification represents a single service or
multiple services, as well as whether it be-
longs to an actual microservice or to compo-
nents of the message broker.

LOC cloc Source code • Using the git reset command, revert the sys-
tem to the point in time of interest (this is
superfluous if the goal is to analyse the most
recent version of a system).

CF Scripts
GitHub page

Version con-
trol history
of services of
interest

• Determine the time interval to determine the
CF over, which should be the same interval as
used in the CC calculation. In case the effect
of a refactor is to be assessed, exclude the
transition period during which the refactor of
interest was implemented.

• Extract the Git logs of the services of interest
for the selected time interval.

• Remove bot commits and commits affecting
> 100 files (our GitHub contains a script ded-
icated to this).

• In case a service of interest is renamed or
refactored during the selected time interval,
use our labelling scripts to label this new ser-
vice(s) as part of the service of interest.

44

Chapter 5

Data Analysis

In this chapter, the results of our assessment are presented for the different types of refactors
which were analyzed (merges, decompositions and hybrid refactors). Because we are not
aware of any refactors in Spinnaker that affect the granularity, we performed our assessment
only on the most recent version of this system at the time of writing and present these
results separately. In chapter 6, the assessment results are interpreted and validated with
case experts. For each refactor type, we delve into the assessments, examining the results
of both pre-refactor and post-refactor assessments. Throughout the chapter we present a
detailed discussion of the impact of each refactor on the metric suite, providing a foundation
for drawing conclusions regarding the maintainability of the analysed systems.

5.1 Merges

Both R2.2 and R2.3 are refactors which have not been actually implemented, but both have
been recommended by experts to be carried out in order to increase maintainability. As
they have not been implemented yet, we are only able to show the results of the pre-refactor
assessments.

Table 5.1: Coupling metrics of R2.2 and R2.3.

refactor service A service B CC CCA→B CCB→A support SC

pre R2.2 S2.2.1 S2.2.2 0.67 0.82 0.58 258 -
pre R2.3 S2.3.1 S2.3.3 0.74 0.68 0.81 78 -
pre R2.3 S2.3.2 S2.3.3 0.48 0.76 0.35 34 -
pre R2.3 S2.3.2 S2.3.1 0.45 0.8 0.32 36 -

Table 5.1 presents the bidirectional change coupling (CC) and directed change coupling
(CCA→B, CCB→A) between the different service pairs. The structural coupling (SC) could
not be measured for any of the service pairs. As can be seen in the table, the services in-
volved in R2.2 exhibit a strong bidirectional change coupling of 0,67. The coupling also has
a substantial support consisting of 258 shared revisions. The directed coupling is stronger
from S2.2.1 to S2.2.2 than vice-versa, implying that S2.2.1 is more dependent on S2.2.2
than S2.2.2 on S2.2.1.

As for R2.3, the service pair consisting of S2.3.1 and S2.3.3 has a bidirectional change
coupling value which we classify as strong based on the confidence intervals proposed by

45

[Oliva and Gerosa, 2011]. The third service which was pointed out to be a candidate for
merging (S2.3.2) has weaker bidirectional coupling values with the other two services (both
are within the regular coupling interval of [Oliva and Gerosa, 2011]). However, considering
the directed coupling from S2.3.2 to S2.3.1 and S2.3.3, it seems that S2.3.2 is very depen-
dent on both S2.3.1 and S2.3.3, with change coupling values of 0,80 and 0,76, respectively.

Table 5.2 shows the average bidirectional change coupling for all service pairs present in the
application. R2.2 and R2.3 take place in the same system context, so the average metric
values depicted in Table 5.3 are the same for both refactors. The average bidirectional
change coupling is equal to 0,31, which is significantly lower than the coupling between the
services involved in both R2.2 and R2.3. We have not been able to assess the structural
coupling in either of the refactors, as the loan eligibility checker is event-driven and we do
have a complete overview of the service dependencies at our disposal. We were unable to
assess the structural coupling in either of the refactors due to the event-driven nature of
the loan eligibility checker, which made it unsuitable for a dependency analysis using Mi-
croDepGraph. Due to the unavailability of a complete overview of all service dependencies,
it was neither feasible to calculate the structural coupling manually.

Table 5.2: Average metric values for entire application (R2.2 and R2.3)

refactor avg CC avg SC avg LOC avg WSIC avg SIDC avg CF

pre R2.2 0.31 - 34540.90 - - 27.34
pre R2.3 0.31 - 34540.90 - - 27.34

Coupling is a relevant metric in the pre-assessment of a merge, as it can justify the merge
to some extent. Cohesion and size metrics can complement this justification and for R2.2
and R2.3 we present them in Table 5.3. As the LOC and CF are not normalized, and we do
not have any thresholds at our disposal, we discuss these values for the individual services
alongside the average values of all services in the application, which are presented in Table
5.3. As we were only able to measure the WSIC and SIDC of a limited set of services in
the system, as most services do not expose a RESTful API, Table 5.3 does not present
any averages for those metrics. This lack of an average value to compare the WSIC to
decreases its relevancy: we cannot classify a service as large based on its WSIC, as we lack
insight on the size of other services in the system. For R2.2, both services consist of more
lines of code than the average of the services in the application. S2.2.2 is a real outlier here
with a LOC of 175942, while the average is 34540.9. The change frequencies of S2.2.1 and
S2.2.2 are higher than the average CF of the services in the application, respectively 70%
and 219%. Only S2.2.1 contained an analysable interface, exposing 24 distinct operations
which have almost no parameters in common, resulting in a SIDC smaller than 0,01. As for
R2.3, the opposite is true: all services had an under-average LOC value and CF. The LOC
value of the largest service (S2.3.1), is not even half the average LOC value. Furthermore,
the SIDC of S2.3.2 is 0,5, which means that the two operations defined in its interface
(WSIC = 2) have half of their parameters in common.

46

Table 5.3: Cohesion and size metrics of R2.2 and R2.3

refactor service LOC WSIC SIDC CF

pre R2.2 S2.2.1 36745 24 0.0054 46.36
pre R2.2 S2.2.2 175942 - - 87.21
pre R2.3 S2.3.1 14021 - - 15.93
pre R2.3 S2.3.2 1155 2.00 0.5 4.52
pre R2.3 S2.3.3 2167 - - 11.37

The average LOC value is greatly influenced by whether all types of code lines are included
in the count or only the Java or Python code in which the business logic of the service is
implemented. Table 5.4 shows this difference for the services involved in R2.2 and R2.3
(which were all Java services rather than Python). The difference is significant, as by only
considering the Java code, S2.2.2 is only 67 percent bigger than the average of all services,
instead of the initial 409 percent.

Table 5.4: LOC values of the services involved in R2.2 and R2.3 (total and only
Java)

service LOC LOC Java

average all services 34.541 7.415
S2.2.1 36.745 8.865
S2.3.1 14.021 3.729
S2.3.2 1.155 110
S2.3.3 2.167 893

5.2 Decompositions

In contrast to the aforementioned merge refactors, R1.1 and R2.4, which both entail a
decomposition, were actually implemented. This enabled us to assess the application not
only pre-refactor, but also post-refactor. This post-refactor assessment provides us with
insights into the effect of the refactor on our metric suite.

In Table 5.5, the coupling values between the services involved in R1.1 and R2.4 are
presented. The change couplings of the pre-refactor services (S1.1.1 for R1.1 and S2.4.1 for
R2.4) cannot be calculated as a change coupling calculation requires two artefacts. As for
the post-refactor assessments, we see bidirectional change couplings varying from weak to
regular in strength. The only coupling that we classify as strong is the directed coupling
from S1.1.3 to S1.1.2, implying that the former is strongly dependent on the latter. We
emphasize that the support for each of these change couplings is not impressive, due to
R1.1 and R2.4 being implemented quite recently, which leaves us only a small time interval
to calculate the change coupling and change frequency over. Only for the service pair
post-R1.1 we were able to calculate the structural coupling, which was 0.75.
With respect to the entire application, most of the bidirectional change couplings between
the services resulting from the refactors are lower than the average change coupling in
the systems before the refactors. In Metadata, before R1.1 was implemented the average

47

Table 5.5: Coupling metrics of R1.1 and R2.4

refactor service A service B CC CCA→B CCB→A support SC

pre R1.1 - - - - - - -
post R1.1 S1.1.3 S1.1.2 0,60 0,93 0,45 14 0,75
pre R2.4 - - - - - - -
post R2.4 S2.4.2 S2.4.3 0,3 0,52 0,21 12 -
post R2.4 S2.4.1 S2.4.3 0,25 0,56 0,16 9 -
post R2.4 S2.4.2 S2.4.1 0,15 0,13 0,19 3 -

change coupling was 1. This average was calculated over the single pair of services that was
available. As only a selection of the services is present in the application after R2.4, we are
not able to calculate mean values for the different metrics of all services of the application
post-refactor.

Table 5.6: Average metric values for the entire application (R1.1 and R2.4)

refactor avg CC avg SC avg LOC avg WSIC avg SIDC avg CF

pre R1.1 1.00 - 632.50 - - 1.00
post R1.1 0.60 - 399.00 - - 1.93
pre R2.4 0.31 - 37696.39 - - 34.24
post R2.4 - - - - - -

The metrics for the individual services are shown in Table 5.7. Since a high change fre-
quency and service size in combination with a low interface cohesion can form an indication
for decomposition, we first discuss the values of these metrics pre-refactor. For the LOC
and CF we do this in the context of the other services of the system, by considering the
averages of all services in the application as presented in Table 5.6.
For R1.1, the SIDC of 0,5 shows that the 4 operations exposed by S1.1.1 share 50% of their
parameters. The LOC and CF of S1.1.1 both were lower than the average. The service
was 0.66 times smaller compared to the average service, and the CF was 0.90 times lower.
Since only one other service was present in the pre-refactor application, the average value
is calculated only over two services. Considering R2.4, we observed that S2.4.1 scored far
above average for both the LOC and the CF, being 4,43 times the average service size
and having a CF which is 4,52 times the average. Furthermore, the LOC of S2.4.1 is high
mainly because of the lines of JSON code, which form 81% of the total number of LOC.
When ignoring the lines of JSON, the size is still larger than average. The post-refactor
metric values show that each service resulting from the decomposition is smaller in terms
of LOC than its ancestor, except in the case of S2.4.1, which increased in size by 3%. Only
considering lines of Java code, the same service decreased in size during the refactor by
10,7%. The change frequencies of the post-refactor services are all lower than the CF of
their ancestor, except in the case of S2.4.3 resulting from R2.4. As S1.1.2 inherits the
complete interface of S1.1.1, their WSIC and SIDC are equal.

48

Table 5.7: Cohesion and size metrics of R1.1 and R2.4

refactor service LOC WSIC SIDC CF

pre R1.1 S1.1.1 417.00 4.00 0.5 9
post R1.1 S1.1.3 93.00 - - 1.07
post R1.1 S1.1.2 279.00 4.00 0.5 2.8
pre R2.4 S2.4.1 166981.00 - - 154.36
post R2.4 S2.4.1 172167.00 - - 84
post R2.4 S2.4.2 4396.00 - - 82
post R2.4 S2.4.3 19417 - - 201

5.3 Hybrid refactors

In the three hybrid refactors discussed here (R1.2, R2.1 and R2.5) a merge as well as a
decomposition took place. During these refactors, the functionality of different services
was extracted and combined into (a) new service(s). R1.2 has never been implemented
and is mainly a recommendation from the engineer who developed Metadata, so only the
pre-refactor metrics are calculated for this individual refactor. For R2.1 the engineering
team switched from a peer-to-peer communication style to an orchestration, which affected
a lot of services so we only analysed the eight services that we could match to each other
pre- and post-refactor. Since presenting the change couplings between all possible service
pairs requires a lot of space without adding much value, the coupling values of those pairs
are omitted here but can be found in our GitHub repository.

Table 5.8 shows that the pre-refactor pairs in both R1.2 and R2.5 have strong change cou-
pling values, which are equal to (R1.2) or higher than (R2.5) the average change coupling
for all service pairs in the system (see Table 5.9 for the system’s averages per refactor
phase). The SC of the service-pair pre-R1.2 is zero since these services are never active
within the same system instance. For R1.2, we are not able to tell how the metrics evolve
in reaction to the refactor, but for R2.5 we observe strong coupling values. Each of these
post-refactor couplings has a support of six, which is significantly less than the support
of the pre-refactor coupling of S2.5.1 and S2.5.2. The directed couplings from S2.5.2 to
S2.5.3 and S2.5.1 are even 1, implying that S2.5.2 is completely dependent on the other
two services. Next to the low support, it is also of relevance that the period over which the
post-refactor metrics of R2.5 were calculated is relatively short. As for R2.1, we only dis-
cuss the averages of the services, which are presented in Table 5.9. Pre-refactor, we observe
an average change coupling of 0.14. After re-implementing the system as an orchestration,
the average change coupling increased to 0.31. In Table 5.9, we also see that the change
coupling for the service pair in R1.2 is equal to the average change coupling of the system.
This is not a coincidence, as this service pair is the only service pair present in the system
of R1.2. As for R2.5, we observe that the pre-refactor change coupling between S2.5.1 and
S2.5.2 is 2,87 times higher than the average chance coupling in the system pre-refactor.
Post-refactor we are not able to provide any averages as only the services involved in the
refactor were at our disposal rather than all services the application is composed of.
Since R1.2, R2.1 and R2.5 entail not only a merge but also a decomposition, the size and
cohesion metrics depicted in Table 5.10 become of extra relevance. We discuss the LOC
and CF values of the services with respect to the corresponding system’s averages shown
in Table 5.9. As we were not able to calculate the interface-based metrics for all services

49

Table 5.8: Coupling metrics for R1.2, R2.1 and R2.5

refactor service A service B CC CCA→B CCB→A support SC

pre R1.2 S1.2.2 S1.2.1 0.66 0.64 0.7 7 0
pre/post R2.1 see GitHub page see GitHub page see GitHub page see GitHub page see GitHub page see GitHub page -
pre R2.5 S2.5.1 S2.5.2 0.89 0.91 0.89 201 -
post R2.5 S2.5.1 S2.5.2 0.92 0.86 1 6 -
post R2.5 S2.5.2 S2.5.3 0.92 1 0.86 6 -
post R2.5 S2.5.1 S2.5.3 0.85 0.86 0.86 6 -

Table 5.9: Average metric values for entire application (R1.2, R2.1 and R2.5)

refactor avg CC avg SC avg LOC avg WSIC avg SIDC avg CF

pre R1.2 0.66 0 951.50 - - 2.05
pre R2.1 0.14 - 37.349.75 - - 24.86
post R2.1 0.31 - 34.540.90 - - 27.34
pre R2.5 0.31 - 34.540.90 - - 27.34
post R2.5 - - - - - -

in the applications, we do not provide any averages for those metrics.
Considering R1.2, the average values do not provide us with new information, as they were
calculated over the only two services in the system, narrowing down to S1.2.2 and S1.2.1.
For R2.1, we see how the average service size decreases by 8,1%, while the average CF
increases by 9,9% post-refactor. Pre-refactor the lowest CF (0.44 revisions per month)
belongs to S2.1.5, a service that solely handles the communication with the API gateway
in place. As for the interface-based metrics, we are not able to observe their evolution
during R2.1, as most services did not expose a RESTful interface pre-refactor. Only for
the S2.1.4, post-refactor merged with S2.1.5 into S2.1.10, we observe an increase of 13
operations in the WSIC, which simultaneously reduces the SIDC by 79,5%.

The entries corresponding to R2.5 show that S2.5.1 and S2.5.2 were both significantly larger
than the average service pre-refactor, 509,6% and 218,8%, respectively. As mentioned
earlier, we are not able to compare their post-refactor sizes to an average value, as we
were not able to assess all services in the system post-refactor. S2.5.1 increased slightly in
size, whereas the LOC of S2.5.2 decreased. S2.5.3 was extracted during this refactor and
had the highest change-frequency post-refactor. The change frequencies of S2.5.1 increased
by 93,3%, while that of S2.5.2 decreased by 6,6%. The interface-based metrics were not
affected by the refactor, in the sense that the WSIC and SIDC of S2.5.1 are equal pre-
refactor and post-refactor. The SIDC shows that this interface is weakly cohesive, with a
value of 0,2875.

50

Table 5.10: Cohesion and size metrics for R1.2, R2.1 and R2.5

refactor service LOC WSIC SIDC CF

pre R1.2 S1.2.2 1189.00 - - 1.3
pre R1.2 S1.2.1 714.00 4.00 0.5 2.8
pre R2.1 S2.1.1 1510.00 - - 6.61
pre R2.1 S2.1.2 38910.00 - - 69.83
pre R2.1 S2.1.3 1.584.00 - - 2.33
pre R2.1 S2.1.4 13.241.00 6 0.5 26.44
pre R2.1 S2.1.5 319 - - 0.44
pre R2.1 S2.1.6 11345 8 0 1.11
pre R2.1 S2.1.7 74673 - - 47.28
pre R2.1 S2.1.8 157216 - - 44.83
post R2.1 S2.1.9 175942 - - 87.21
post R2.1 S2.1.1 2544 - - 26.5
post R2.1 S2.1.2 3370 - - 91
post R2.1 S2.1.3 2640 18 0.5621 14.44
post R2.1 S2.1.10 2231 19 0.1023 16.25
post R2.1 S2.1.6 3533 24 0.0054 46.36
post R2.1 S2.1.7 2497 - - 10.04
post R2.1 S2.1.8 3611 16 0.55 37.5
pre R2.5 S2.5.1 75592 29 0.2875 172
pre R2.5 S2.5.2 176040 - - 170.73
post R2.5 S2.5.1 75943 29 0.2875 332.14
post R2.5 S2.5.2 171476 - - 159.43
post R2.5 S2.5.3 383006 6 0.5 469.43

5.4 Spinnaker

All results of our assessment on Spinnaker can be found in our GitHub repository1. The
assessment reveals that a certain subset of services, consisting of S3.0.6, S3.0.9, S3.0.2,
S3.0.7 and S3.0.10, are frequently modified on the same day as a set of three services
consisting of S3.0.3, S3.0.4 and S3.0.1, for >86% of the revisions of these services. This
trio also has the highest bidirectional change couplings present in the system, which we
each classify as strong. Table 5.11 shows these couplings together with the next highest
coupling degrees in which neither of the services is a member of the trio.

1https://github.com/famkedriessen/quantitative-assessment-of-microservices-granularity

51

Table 5.11: Coupling metrics for a selection of the service pairs of Spinnaker

service A service B CC CCA→B CCB→A support

S3.0.4 S3.0.1 0,79 0,82 0,77 1582
S3.0.1 S3.0.3 0,77 0,69 0,87 1424
S3.0.4 S3.0.3 0,76 0,70 0,83 1355
S3.0.10 S3.0.2 0,42 0,50 0,36 288
S3.0.6 S3.0.9 0,42 0,38 0,47 223

Analyzing the trio further, we observe that these services each have a higher CF compared
to the average, varying from 87,4% to 324,6% more, as can be seen in Tables 5.12 and
5.13. The LOC value of these services is also higher than the average, i.e., the services are
64,1-213,3% larger than an average service in Spinnaker.

Table 5.12: Cohesion and size metrics for the services S3.0.4, S3.0.1 and S3.0.3

service LOC WSIC SIDC CF

S3.0.4 302131.00 - - 67.13
S3.0.1 277895.00 - - 143.72
S3.0.3 158256.00 - - 63.44

Table 5.13: Average metric values for entire Spinnaker application

avg CC avg SC avg LOC avg WSIC avg SIDC avg CF

35.89 - 96424.36 - - 33.85

In this chapter, we presented the results of the assessments. Where CC, LOC and CF could
be calculated in every context, we were not able to calculate the SC and the interface-based
metrics (SIDC and WSIC) for every case, as these had limited applicability in event-driven
architectures. The assessments discussed in this chapter form the basis for the validation
of our assessment method, which is discussed in Chapter 6.

52

Chapter 6

Validation

In this chapter, the validation of our assessment method is discussed. As described in
Chapter 3, our validation strategy is based on how the experts perceived the impact of
each refactor on the system’s maintainability. Hence, insight into these experiences and
into the initial intentions of the experts to implement the refactors was crucial for our
validation. Such insight was gained by conducting an interview with each case expert,
of which the results are described in Chapter 4. In Section 6.1, we first explain how we
interpreted the results from our assessment, i.e., how we drew conclusions on the evolution
of the systems’ maintainability from the raw metric values, which allowed for a comparison
with the observations of the experts. Subsequently, we compare the observations of our
assessment with those of the experts and discuss the extent to which the former matches
the latter.

A second round of interviews was conducted after performing our analysis, during which
we discussed the results of our assessment with the experts. These validation interviews
complemented the initial interviews, as we were now able to discuss the discrepancies we
discovered between our assessment and the experiences of the expert. Discussing these dis-
crepancies in detail allowed us to learn about system-specific details which could influence
our assessment. The results from these interviews are discussed in Section 6.2.

Finally, in Section 6.3, we discuss the overall validity, generalisability and limitations of
our research and objectively describe potential research biases.

6.1 Assessment Observations

In order to validate our assessment using the results of the expert interviews, our initial step
was to extract the conclusions regarding maintainability from the assessment outcomes.
To enable a consistent interpretation of our results, we summarised how the metrics should
be interpreted in different contexts. The resulting interpretation framework can be seen
in Table 6.1. Subsequently, we compared and contrasted the resulting observations with
those of the experts, to determine to what degree they align. In order to generalize the
discussion on the degree to which the assessment captured the actual maintainability, in
this section we discuss the validation process per type of refactor: merges, decompositions
and hybrid refactors.

53

Table 6.1: Framework supporting the interpretation of the metric values in dif-
ferent refactor contexts.

Metric Merge Decomposition

CC pre: if the CC value between two ser-
vices was 0.66 or more, this was re-
garded as evidence in favour of merg-
ing these services.

post: a CC value was considered to
suggest that the decomposition of ser-
vice A into services B and C had
been beneficial for maintainability if
the CC value between service B and
C was 0.33 or less.

SC pre: due to the lack of thresholds pro-
posed in the literature to base the
classification of SC values on, we can
only reason about the alignment of
the evolution of SC during a refactor
and the evolution in maintainability
experienced by the expert. In the case
of a merge, one would expect the av-
erage SC to decrease as the number of
entities to contribute to coupling de-
creases. An SC which is higher than
the system average was regarded as
evidence in favour of merging the in-
volved services.

post: due to the lack of thresholds
proposed in the literature to base the
classification of SC values on, we can
only reason about the alignment of
the evolution of SC during a refactor
and the evolution in maintainability
experienced by the expert. In case of
a decomposition, if the resulting ser-
vices had an under-average SC, the
refactor was regarded as beneficial for
the maintainability of the system.

WSIC pre: a WSIC was considered to con-
tradict the suggestion of merging ser-
vices A and B to be beneficial for
maintainability if the WSIC of ei-
ther service A or B fell within the
lower 50% intervals as proposed by
[Bogner et al., 2020], i.e., if the WSIC
was higher than 15.

pre: considering the thresholds calcu-
lated by [Bogner et al., 2020], we re-
garded WSICs higher than 15 as sup-
porting evidence for decomposing a
service.
post: services resulting from a decom-
position were expected to have lower
WSICs than their ancestor.

SIDC pre: a SIDC value was considered
to contradict the suggestion of merg-
ing services A and B to be beneficial
for maintainability if the SIDC of ei-
ther service A or B fell within the
lower 50% intervals as proposed by
[Bogner et al., 2020], i.e., if the SIDC
was lower than 0.64.

pre: considering the thresholds calcu-
lated by [Bogner et al., 2020], we re-
garded SIDC values lower than 0.64
as supporting evidence for decompos-
ing a service.
post: services resulting from a decom-
position were expected to have higher
SIDCs than their ancestor.

LOC pre: a LOC value was considered to
contradict the suggestion of merging
services A and B to be beneficial for
maintainability if the LOC value of ei-
ther service A or B was higher than
the average LOC value of all services
in the system.

pre: a LOC value of a service which
was higher than the LOC of an aver-
age service in the system was consid-
ered as support for the decomposition
of that service.
post: services resulting from a decom-
position were expected to have lower
LOC values than their ancestor.

54

Table 6.1 continued from previous page
CF pre: a CF was considered to contra-

dict the suggestion of merging services
A and B to be beneficial for maintain-
ability if the CF of either service A or
B was higher than the average CF of
all services in the system.

pre: if the CF of a service was higher
than the average CF of all services
in the system, this was considered as
support for the decomposition of that
service.
post: services resulting from a decom-
position were expected to have lower
CFs than their ancestor.

Table 6.1 provides an overview of the interpretive guidance by which we derived conclusions
on maintainability from the metric values. Per metric, a summary is provided, outlining
the relationship between its value and maintainability. This is done in the context of
different refactor types. Hybrid refactors are not represented in this overview, as they
essentially encompass a combination of a decomposition and a merge. The overview also
specifies whether the pre-refactor value or post-refactor value of the metric is relevant.
For each refactor type, we first formulated the expected assessment outcomes based on
the expert’s observations, as discussed earlier in Chapter 4. Subsequently, guided by
the overview in Table 6.1, we extracted concrete conclusions on maintainability from our
assessment results. In the sequel, we discuss to which extent these conclusions are in line
with the observations of the experts.

6.1.1 Merges

As none of the refactors that involved a merge was actually implemented, we are not able to
reason about the effect of these refactors on maintainability. We can still discuss however
the extent to which the results of our assessment were in line with the opinion of the expert
who deemed a refactor to be beneficial for the maintainability of the application. In both
of the planned refactors, R2.2 and R2.3, the involved services have a similar relation: the
API is implemented in an additional, separate service, next to the service implementing
the business logic. In R2.3 there is also a third service, which handles the communication
with the API gateway of the system. Both service groups have been pointed out by the
involved experts to be prominent candidates for merging, to improve the maintainability
in a modular sense: the experts describe how in R2.2 the two services constantly exchange
complex state events, as they have to be in the same state for every process instance, and
how R2.3 is a textbook example of a bounded context divided over three services.

To assess the degree of alignment between our assessment and the expert’s observations,
we began by formulating the expected assessment outcomes, guided by the overview earlier
presented in Table 6.1. These expected outcomes are based on the expert’s observations,
and form the most-right column in Table 6.2. Subsequently, we summarised the assessment
results per metric for each refactor, which resulted in the second column of Table 6.2. This
table offers a way to gain a rapid understanding of the alignment between the expert’s
observations and the assessment outcomes.

55

Table 6.2: Relation between the assessment outcomes and the expert’s observa-
tions for the analysed merges.

Metric Assessment observations Expectations based on expert’s
experiences

CC Pre-R2.3: two of the services had a
strong bidirectional change coupling,
while the service pairs which included
the third service had a lower change
coupling which we classified as of reg-
ular strength.

Strong bidirectional change couplings
were expected between the services.

Pre-R2.2: a strong change coupling
was observed for the service pair in-
volved in this refactor.

SC Pre-R2.3: SC could not be measured
due to the event-driven nature of the
system.

Above-average SC values were ex-
pected between the services.

Pre-R2.2: SC could not be measured
due to the event-driven nature of the
system.

WSIC Pre-R2.3: only S2.3.2 offered an inter-
face, which had a WSIC of 2.

The WSIC of each service was ex-
pected to be lower than 15.

Pre-R2.2: only S2.2.1 offered an inter-
face, which had a WSIC of 24.

SIDC Pre-R2.3: only S2.3.2 offered an inter-
face, which had a SIDC of 0.5.

The SIDC value of each service was
expected to be higher than 0.64.

Pre-R2.2: only S2.2.1 offered an inter-
face, which had a SIDC of 0.0054.

LOC Pre-R2.3: each service had an under-
average LOC value.

The LOC value of each service was ex-
pected to be under average.

Pre-R2.2: both services had a LOC
value which was higher than the aver-
age of the system.

CF Pre-R2.3: each service had an under-
average CF.

The CF of each service was expected
to be under average.

Pre-R2.2: both services had a CF
which was higher than the average of
the system.

While comparing the expected and actual outcomes, a few things stood out. In both
refactors, the involved group of services contained a service pair with a strong bidirec-
tional change coupling, implying that our assessment correctly identified these services as
candidates for merging. As one of the services involved in R2.3 had a lower bidirectional
coupling to the other two, this made it difficult to recognise this third service as an addi-
tional merge candidate. Its directed change coupling to the other two services was strong
however, so using the directed change coupling we would be able to also identify this third
service as a candidate for merging.

In R2.2, based on the size and cohesion measures one would not suggest a merge, as both

56

services were larger than an average service in the system and changed more often. In
addition, S2.2.1 has a SIDC approaching zero, indicating a service with extremely low
cohesion. As S2.2.1 serves as the API gateway for the entire application, however, this low
cohesion is as expected and should not form the basis for any granularity decisions. Based
solely on these facts the merge of R2.2 would not be recommended, as it would result in a
service with an even larger size.

Our size and cohesion measures barely formed a counterargument for carrying out R2.3:
each service had a LOC and CF which was lower than the average. The only metric
contradicting a merge was the SIDC, which had only been measured for S2.3.2 as this was
the only service offering an interface. The SIDC of this service implied that the interface
was not cohesive, which is undesirable in this scenario, as a merge with another service will
make the service only less cohesive. However, the small size of the interface (WSIC=2)
and the fact that the service acts as an API for two other services undermine the relevance
of the SIDC in this context.
As we look at the service sizes at a more granular level, however, at which we distinguish
between lines of code of different programming languages and only consider lines of Java
code, the services of R2.2 are not such outliers in size anymore. It is justifiable to some
extent to solely consider Java lines of code, as Java is the only programming language
among the top three code types that constitute the service size for both services in R2.2.
The other main contributors, JSON and CSV, are rather data formats which are not used
to implement any logic. When reasoning about service complexity as a sub-characteristic
of maintainability, one could argue that lines of data contribute less to the complexity of
a service than lines of code which actually represent the functionality of the service.

Overall, our assessment was able to identify the services which were pointed out by the
experts as candidates for merging based on the change coupling values. As for the size
and cohesion metrics, the assessment results did not oppose a merge in the case of R2.3.
However, for R2.2, the size and cohesion metrics indicated that the involved services were
relatively large and frequently altered compared to the rest of the system. This contradicts
the suggestion of a merge to enhance maintainability.

6.1.2 Decompositions

In both the refactors entailing a decomposition (R1.1 and R2.4) we were able to perform
our assessment both before and after the refactor. This allowed us to reason about the
evolution of maintainability in reaction to the refactors.

To evaluate the alignment between our assessment and the expert’s observations, we ini-
tially derived the expected assessment outcomes using the guidance provided in Table 6.1.
These expected outcomes, shown in the rightmost column of Table 6.3, were formulated
based on the expert’s observations. Subsequently, we summarised the assessment results
for each refactor per metric, resulting in the second column of Table 6.3.

57

Table 6.3: Relation between the assessment outcomes and the expert’s observa-
tions for the analysed decompositions.

Metric Assessment observations Expectations based on expert’s
experiences

CC Post-R1.1: the CC value of the service
pair resulting from the decomposition
is 0.6, which we classified as of regular
strength rather than weak.
Post-R2.4: the CC values of the ser-
vice pairs resulting from the decompo-
sition could all be classified as weak.

Post-refactor, weak bidirectional
change couplings were expected
between the services.

SC Post-R1.1: the SC between the result-
ing service pair was 0.75, but as we
lacked averages due to this being the
only service pair in the system, this
value was not conclusive.
Post-R2.4: SC could not be measured
due to the event-driven nature of the
system.

Post-refactor, under-average SC val-
ues were expected between the ser-
vices.

WSIC Pre-R1.1: the service had a WSIC of
4.
Post-R1.1: only one of the services
has an interface, also with a WSIC of
4.
Pre- and post-R2.4: neither of the in-
volved services offered an interface, so
no WSIC could be determined.

Pre-refactor, a WSIC higher than 15
was considered an indication for de-
composing.
Post-refactor, the WSICs of the ser-
vices resulting from the refactor were
expected to be lower than the WSIC
of the pre-refactor service.

SIDC Pre-R1.1: the service had a SIDC of
0.5.
Post-R1.1: only one of the services
has an interface, also with a SIDC of
0.5.
Pre- and post-R2.4: neither of the in-
volved services offered an interface, so
no SIDC could be determined.

Pre-refactor, a SIDC lower than 0.64
was considered an indication for de-
composing.
Post-refactor, the SIDC values of the
services resulting from the refactor
were expected to be higher than the
SIDC of the pre-refactor service.

58

Table 6.3 continued from previous page
LOC Pre-R1.1: the service had an under-

average LOC.
Post-R1.1: the LOC values of the ser-
vices resulting from the decomposi-
tion were lower than the LOC of the
pre-refactor service.
Pre-R2.4: the service had a LOC
value which was above average.
Post-R2.4: the LOCs of the ser-
vices resulting from the decomposi-
tion were lower than the LOC of the
pre-refactor service, except for the
LOC of S2.4.1, which is only lower
when only considering lines of Java.

Pre-refactor, an above-average LOC
was considered an indication for de-
composing.
Post-refactor, the LOC values of the
services resulting from the refactor
were expected to be lower than the
LOC value of the pre-refactor service.

CF Pre-R1.1: the service had an under-
average CF.
Post-R1.1: the CFs of the services re-
sulting from the decomposition were
lower than the CF of the pre-refactor
service.
Pre-R2.4: the service had a CF which
was above average.
Post-R2.4: the CFs of the services re-
sulting from the decomposition were
lower than the CF of the pre-refactor
service, except for the CF of the
source-docs-policy.

Pre-refactor, an above-average CF
was considered an indication for de-
composing.
Post-refactor, the CFs of the services
resulting from the refactor were ex-
pected to be lower than the CF of
their ancestor.

Our pre-refactor assessment did not identify the service decomposed in R1.1 to be a candi-
date for decomposition: both the CF and size of the service were lower than the average. A
side note here is that this average is calculated over only two artefacts, making it vulnerable
for extreme values, and less helpful in determining appropriate size and CF ranges for ser-
vices in this system. The SIDC of 0.5 gave the only indication for decomposing. Regarding
the service which was decomposed in R2.4, our assessment supported the decision of the ex-
pert to decompose the service: the CF and size were both more than 4 times above average.

Post-refactor, we observed a decrease in both CF and size for each of the two services
resulting from R1.1, compared to the metric values of the pre-refactor service. This indica-
tion for an improved maintainability is in line with the experiences of the expert. Another
observation was that the WSIC and SIDC were exactly the same for the pre-rafctor service
and one of the post-refactor services, which could indicate that the latter inherited the
entire interface of the former.

The assessment of R2.4 showed a decrease in LOC and CF in the post-refactor services,
which is an indication of more cohesive services. Two exceptions were S2.4.1, which only
decreased in size when considering lines of Java, and S2.4.3, which CF was higher than
that of S2.4.1 pre-refactor. These observations were discussed with the expert during the
validation interviews, to gain a better understanding of their cause.

59

As a refactor should increase the modularity in order to increase maintainability, successful
decompositions are expected to result in services which are not tightly coupled. Our assess-
ment showed that there are no strong bidirectional change couplings post-refactor, which
suggests that the modules which were extracted into separate services are not (strongly)
dependent on each other, which is in line with the experiences of the experts of both cases.

The structural coupling observed between the service pair resulting from R1.1 (0,75) should
not be interpreted as strong either, as we lack thresholds to justifiably reason about its
implications: currently, there is a lack of empirical research that validates structural cou-
pling intervals as indicators of maintainability.

Our assessment demonstrated a high degree of consistency with the maintainability trend
observed by the experts during the refactors, whereas its ability to identify candidates for
decomposition differed strongly per refactor. The inadequate identification of decomposi-
tion candidates in R1.1 may be attributed to the limited number of services in the system.
This makes the average size and cohesion values susceptible to extremes, providing less
reliable guidance in granularity decisions.

6.1.3 Hybrid Refactors

In the hybrid refactors, during which functionality was both extracted and merged simul-
taneously, certain services existed both pre- and post-refactor. This provided us with an
opportunity to investigate the extent to which the individual metrics reflect the evolution
of maintainability as perceived by the engineer involved in the refactor. This was not
possible in the previously discussed merges and decompositions, as services never persisted
throughout these refactors.

We first discuss R1.2 and R2.5 in parallel as they are considered comparable, in the sense
that they both encompass a partial merge of two services. The corresponding assessment
outcomes and expectations based on the expert’s experiences can be found in Table 6.4.
R2.1 is addressed separately due to its unique nature of transitioning from a choreogra-
phy to an orchestration. This change in architectural style, which aimed at improving
maintainability, is discussed individually since it is not directly comparable to the other
refactors.

60

Table 6.4: Relation between the assessment outcomes and the expert’s observa-
tions for the analysed hybrid refactors.

Metric Assessment observations Expectations based
on expert’s
experiences

CC Pre-R1.2: the two
involved services
exhibited strong
bidirectional change
couplings.
Pre-R2.5: a strong
change coupling was
observed for the service
pair involved in this
refactor.

Post-R1.2: this
measurement was not
feasible as R1.2 was
never implemented.
Post-R2.5: strong
change coupling values,
higher than the change
coupling of the
pre-refactor service-pair,
were observed between
the services.

Pre-refactor, regular to
strong bidirectional
change couplings were
expected between the
services.
Post-refactor, the
bidirectional change
couplings between the
services were expected
to decrease.

SC Pre-R1.2: the SC of 0 of
the service-pair is equal
to the average SC, as
the average is only
based on this single
service pair.
Pre-R2.5: SC could not
be measured due to the
event-driven nature of
the system.

Post-R1.2: -
Post-R2.5: -

Pre-refactor,
above-average SC values
were expected between
the services. .
Post-refactor, the SC
values between the
services were expected
to decrease.

WSIC Pre-R1.2: the single
service that did offer an
interface, had a WSIC
of 4.
Pre-R2.5: only S2.5.1
offered an interface,
which had a WSIC of
29.
Post-R2.5: S2.5.1 still
had a WSIC of 29, and
the new service (S2.5.3)
had a WSIC of 6.

Post-R1.2: -
Post-R2.5: the S2.5.1
still had a WSIC of 29,
and the new service
(S2.5.3) had a WSIC of
6.

Pre-refactor, a WSIC
higher than 15 was
considered an indication
for decomposing.
Post-refactor, the WSIC
of each service was
expected to decrease.

SIDC Pre-R1.2: the single
service that did offer an
interface, had a SIDC of
0,5.
Pre-R2.5: only the
S2.5.1 offered an
interface, which had a
SIDC of 0,2875.

Post-R1.2: -
Post-R2.5: the S2.5.1
still had a SIDC of
0,2875, and the new
service (S2.5.3) had a
SIDC of 0,5.

Pre-refactor, a SIDC
lower than 0,64 was
considered an indication
for decomposing.
Post-refactor, the SIDC
value of each service
was expected to
increase.

61

Table 6.4 continued from previous page
LOC R1.2: one service had

an under-average LOC
and one an
above-average LOC.
Pre-R2.5: both services
had a LOC value which
was higher than the
average of the system.

Post-R1.2: -
Post-R2.5: only the
LOC of S2.5.2
decreased, while the
LOC of S2.5.1
increased. The new
service (S2.5.3) had a
LOC larger than each of
the pre-refactor
services.

Pre-refactor, an
above-average LOC was
considered an indication
for decomposing.
Post-refactor, the LOC
value of each service
was expected to
decrease.

CF Pre-R1.2: as the
system-average is
calculated over the two
involved services,
naturally one service
had an under-average
CF while the other one
had a CF higher than
the average.
Pre-R2.5: both services
had a CF which was
higher than the average
of the system.

Post-R1.2: -
Post-R2.5: the CF of
S2.5.2 decreased, while
the CF of S2.5.1
increased. The new
service (S2.5.3)
exhibited a CF higher
than each of the
pre-refactor services.

Pre-refactor, an
above-average CF was
considered an indication
for decomposing.
Post-refactor, the LOC
value of each service
was expected to
decrease.

The pre-refactor assessments of R1.2 and R2.5 each showed strong change coupling val-
ues between the pre-refactor services, which matched the experiences of the experts who
described these services as tightly coupled. Structural coupling measurements could not
provide additional support, as this could not be measured in the event-driven context of
R1.2 and R2.5.
In addition to the change coupling values, we are also able to identify the service pair in-
volved in R2.5 as candidates for extracting functionality based on size and cohesion-related
metrics. Their LOC and CF values are significantly larger than the average service in the
pre-refactor system. The high WSIC and low SIDC of the involved API-gateway service
are additional indicators supporting the decomposing of this service, as these values imply
a large interface with a low cohesiveness, both indicators for a lowly cohesive service. In
the case of R1.2, we measured less prominent indications for extracting functionality. One
service exhibited an above-average CF and LOC, while the other service scored below av-
erage in these metrics. This is partly due to the system-average, being based solely on the
service pair involved in the refactor, which makes this average unreliable.

While we could not reason about the impact of R1.2 as this was never carried out, for
R2.5 we observed that the three services resulting from R2.5 have change coupling values
even stronger than the pre-refactor pair. The goal of the expert to reduce the coupling
between the initial two services does not align with this observation. As the support for
these post-refactor change coupling values is relatively low however, the extent to which
this calculation reflects the actual change coupling can be questioned. The support is low
as the change coupling was calculated over the short time interval which was available post-
refactor. Calculating only over the interval just after the refactor can give biased results,

62

as the revisions which were made in this period could also be related to the aftermath of
the refactor instead of maintenance activity. These observations were discussed during the
validation interviews, which are described in Section 6.2.

We did not formulate specific expectations for the assessment results of R2.1. Due to
the unique nature of this refactor, involving a large-scale switch in architectural style, we
considered it more useful to observe and learn how our assessment would respond to such
a change. A main observation was that the average change coupling between service pairs
increased during the refactor. This implies that in the post-refactor architecture, the ser-
vices are more dependent on each other than in the initial architecture. Intuitively this
is correct, as an event-driven choreography allows a producer and consumer to operate
independently, without being dependent on a central orchestrator. Services in such an ar-
chitecture are by design already more independent than in an orchestration, as having an
orchestrator in place creates extra interdependencies [Singhal et al., 2019]. The evolution
in change coupling observed by our assessment aligns with theoretical expectations. The
average service size decreased, which can be explained by the flow logic of each service
being refactored into the orchestrator. As the interface-based metrics and SC could not be
calculated for many of the involved services, these are less conclusive.

Due to the different natures of the hybrid refactors it is hard to draw any general con-
clusions, but we now summarise our main observations. For refactors involving a partial
merge (R1.2 and R2.5), the assessment accurately identified tightly coupled services and
supported the expert’s recommendations for partly merging the services. Our assessment
is not able to distinguish candidates for a merge from candidates from a partial merge
though, since this would require a finer-grained analysis in which internal components of
the services are assessed. The assessment’s ability to identify the involved services as candi-
dates for decomposition was weaker in the case of R1.2 due to the small number of services
in the system, making average size and cohesion values less reliable references. Overall, the
assessment demonstrated to be able to identify the candidates for a (partial) merge, and
showed good alignment with the experts’ observations on the evolution of maintainability.
Limitations were found in the identification of candidates for decomposition.

6.2 Validation Interviews

During the post-analysis interviews, we presented the results of our assessment to the case
experts. Subsequently, we interviewed the experts on how they explained the results based
on their extensive knowledge of the system under analysis. In this section, we discuss any
additional information provided by the experts during these interviews. We discuss this
on a case-by-case basis, discussing first the two refactors in Metadata, followed by the five
refactors in the loan eligibility checker, and concluding with the Spinnaker project.

6.2.1 R1.1

Based solely on our pre-refactor assessment, the functionality that is provided as binary
code, core, would be a more likely candidate for a decomposition than S1.1.1, as it has
a slightly higher LOC value and CF. We inquired with the expert regarding the level of
cohesion they attributed to the binary code and the reasons behind choosing to refactor
the S1.1.1 instead of this binary code. The expert explained that the binary code is less
cohesive than S1.1.1, which matches the observations from our assessment, but adds that as

63

this code is distributed as a jar to the end-user, and not as a highly-configurable application
such as, for instance, S1.2.1, it was more convenient to let all binary code remain to be a
single unit. After the refactor, we observed a strong directed coupling from S1.1.3 to S1.1.2,
while vice-versa, the coupling degree was of regular strength. The expert acknowledged
that S1.1.3 was indeed more dependent on S1.1.2: revisions to S1.1.3 are often related to
adding or renaming a column in the database schema, and these changes are often required
due to a change to S1.1.2. In addition, S1.1.2 evolves more independently as changes which
do not involve the persistence layer and thus a change in the database schema, such as
a renaming or internal refactor, does not influence S1.1.3 in any way. The expert also
explains why the WSIC and SIDC values of S1.1.1 (pre-refactor) and S1.1.2 (post-refactor)
are identical: S1.1.2 inherited the entire interface of S1.1.1. As S1.1.3 is only responsible
for communicating with the database, this service did not require its own REST API.

6.2.2 R1.2

Regarding R1.2, we observed a strong change coupling between S1.2.2 and S1.2.1. We
consulted the expert to determine if they were aware of this coupling. The expert em-
phasized that structurally, the two services are not related, since end-users typically use
either S1.2.1 (REST) or S1.2.2 (GraphQL), but not both simultaneously. However, the
expert recognised the change coupling. The expert aimed to offer a similar user experi-
ence in terms of functionality to every user of Metadata, regardless of whether they use
the GraphQL or REST version. To achieve this goal, both services were maintained syn-
chronously with regard to functionality. This explains the strong change coupling between
these structurally unrelated services.

6.2.3 R2.1

One of the primary observations derived from our assessment was the increase in average
change coupling of the system of 0,17 during the refactor. The expert suspects S2.1.9 to
be the main cause for this. Per definition, an orchestrator introduces additional coupling
between all services, and according to the expert that is an important cause of the increase
in the average change coupling. Another observation was a decrease in average service size
of 8,1%. The expert suspected this to be the flow logic of the individual services which
was refactored into the orchestrator (S2.1.9) during R2.1.

6.2.4 R2.2

The services which are candidates for R2.2 (S2.2.1 and S2.2.2) are outliers in the system
considering LOC and CF. Their extreme size is caused mainly by JSON code, which in
S2.2.2 solely serves as stubs for integration tests. These services are larger compared
to other sets of API gateways and orchestrators involved in different customer journeys,
mainly because S2.2.1 and S2.2.2 enable seven distinct journeys instead of just one. This
high number of dependent journeys is the reason why they are behind on maintenance: in
other journeys, it was less complex to extract functionality from similar services over time.
These extractions in other journeys have proven to be beneficial for maintainability, which
forms an extra indication for the refactoring of S2.2.1 and S2.2.2 to be improvements as
well regarding maintainability.

64

6.2.5 R2.3

Based on the high change coupling and relatively low CF and size of S2.3.1, S2.3.2 and
S2.3.3, compared to the system averages, these services would all be candidates for merging,
which is in line with the opinion of the expert. To gain more insight into what can
be the cause of the low change frequencies, we asked the expert whether there was a
concrete reason for the change frequencies of these services to be under average. The expert
explained that although the functional scope of the services is not that elaborate, which
explains the relatively low LOC values, the testing of the services is quite complex. This
service group is responsible for the connection with the endpoints of the customer’s bank in
order to retrieve data following the guidelines from the PSD2 directive [Rijksoverheid, nd].
This directive prescribes a range of security standards which should be adhered to during
data exchange. To enable proper testing of all the hashing procedures, elaborate sandboxes
are required. The expert points out that the offer of PSD2 sandboxes is limited and that
the sandboxes are often not representative. This forces the team to test any changes to this
group of services directly in a production environment, which in its turn causes the team
to modify these services the least possible. Another factor contributing to the relatively
low CF is the integration of SaltEdge, a third-party module, which provides comprehensive
functionality for handling integrations with other banks in adherence to the PSD2 directive
[SaltEdge, nd]. The bank’s policy aims to eventually transition all systems to exclusively
use SaltEdge for such integrations. As the team was aware of the impending replacement
of the PSD2 services by SaltEdge in the near future, actively maintaining the services
received a low priority.

6.2.6 R2.4

Considering our assessment of R2.4, S2.4.1 was a high outlier in size with regard to the
other services of the system. JSON code formed 81% of the total service size, so the service
size did not map one-to-one with the functional scope of the service. During the interview,
we asked the expert whether this JSON code was mainly static or also a main contributor
to the high CF of the service. The expert explained that most of the JSON code resides in
the test folder, and serves as stubs to enable integration testing of the service. The central
position of S2.4.1 as an orchestrator requires a large number of stubs.
This also explains our observation that S2.4.1 slightly increased in size during the refactor,
despite it being decomposed: the creation of two new services introduces additional JSON
stubs that are added to S2.4.1. Apparently, the inclusion of these stubs generates more
lines of code than the number of lines removed by extracting functionality into the two
new services. As a result, the overall size of S2.4.1 slightly increased.
The decrease in functionality is only reflected when considering lines of Java code: during
the refactor, this number decreased by 10,7%. The expert explained the high CF of S2.4.3
as a symptom of a new service: his expectation is that CF decreases over time.

6.2.7 R2.5

We asked the expert about the strong change coupling values which we observed post-
refactor. The expert explained that these coupling values represent the actual coupling
and are not artificial, as S2.5.3 is still dependent on the other two services when considering
the workflow: the system supports multiple journeys, among others the revision journey.
Although the workflow of this journey is handled by S2.5.3 since the refactor, the start
of the journey is still handled by S2.5.2 and S2.5.1, creating a change coupling which the

65

expert expects to decrease over time. In S2.5.1 we noticed a slight increase in size during
the refactor, which was counter-intuitive considering that functionality from this service
was extracted into S2.5.3. The expert clarified that this increase is due to the fact that
the original code in S2.5.1, which has become redundant, still needs to be removed from
the service. Thus, the increase in size is a temporary effect caused by a delay in removing
the now unnecessary code in S2.5.1. In addition, to ensure a smooth transition, the team
implemented a switch in S2.5.1 which either instructed S2.5.3 or used the original internal
code. The code related to this switch explains the small increase. This also explains why
WSIC and SIDC are identical pre- and post-refactor, as the operations which are now
implemented by S2.5.3 are simply not removed yet from the interface of S2.5.1.
The service which was extracted during this refactor (S2.5.3) had the highest CF in the
post-refactor period which was analysed. The expert described how in his experience newer
services are often more prone to changes, and how he expects the CF to decrease when the
service matures and becomes more stable.

6.2.8 Spinnaker

The assessment revealed that a varying range of services, among which S3.0.6, S3.0.9,
S3.0.2, S3.0.7 and S3.0.10, have a directed change coupling of more than 0,86 to S3.0.3,
S3.0.4 and S3.0.1, which we classify as strong. These three services also have a higher CF
compared to the system average, which could be the cause of the high number of services
showing a strong directed change coupling towards the three: as S3.0.3, S3.0.4 and S3.0.1
are modified very frequently, the chance is high that if a modification is made to another
service, these three services were modified on this same day. This could possibly create
false change couplings. We asked two experts who are actively contributing to Spinnaker
about our observation and asked them whether they recognised the high directed coupling
to these three services from their experiences, or whether they suspected most of it to be
false couplings.

As Spinnaker is such a large system, contributors often are involved in the development
of a number of services, but rarely in all services. The experts we were able to interview
were familiar with S3.0.4, S3.0.2, S3.0.7, S3.0.3, S3.0.11, S3.0.5 and S3.0.6. One of the
experts recognises the strong dependency of several services on S3.0.3, as S3.0.3 has a
central position in the application: it is the orchestrator of the system and coordinates
the other services. The expert remarks that he would expect S3.0.2 to also come forward
as a service on which a high number of services depend, as S3.0.2 fulfils a central role
in the system as the API gateway. Another observation from our assessment was the
strong bidirectional change coupling between the three services (S3.0.1, S3.0.4 and S3.0.3).
Furthermore, the three services each have a size which is above average in terms of lines of
code. We inquired whether the experts would consider it to be an improvement to extract
some artefacts out of (one of) these services, to increase their cohesiveness and ultimately
prevent them from being maintainability bottlenecks. One of the experts gave a nuanced
answer to this question: he explained that when considering refactors that cross service
boundaries, first a thorough assessment is required to check whether the refactor would not
result in other issues such as increased complexity or a decrease in performance. The other
expert mentioned that an often-proposed refactor is to extract the artefact functionality out
of S3.0.4 and create an artefact service. In the context of Spinnaker, an artefact is a JSON
object which refers to an external resource, such as a Docker image or a file in GitHub.
As this artefact functionality only constitutes 2% of the total size of S3.0.4, we asked the
expert why this refactor would improve the maintainability of the system. The expert

66

explains that currently, an artefact has to be stored in multiple services, among others
S3.0.4, S3.0.5 and S3.0.6, and it would be beneficial for the maintainability to centralise
this functionality. A final remark of the experts is that the Spinnaker team is currently
working on the transition from multiple repositories to one central mono-repository. They
see the value of monitoring change coupling and want to create the possibility of calculating
change coupling based on atomic commits instead of logical change sets.

6.3 Discussion

In this section, we discuss the implications of our assessment method, while covering its
validity, reliability and generalizability. We focus on these properties specifically, as they
determine the rigour of our research [Heale2015]. We also discuss the ability of our assess-
ment method to identify services which are candidates for refactoring. Additionally, we
reason about how our assessment method could be improved to be better equipped to serve
as decision support for microservices granularity. Subsequently, research design choices are
pointed out which may have influenced our results and we explain the limitations of our
research.

6.3.1 Implications

Validity

The validity of the assessment, i.e., the extent to which our measurements correspond to
the real world [Parveen and Showkat, 2017], is supported by several components of our
research, amongst them the alignment of the assessment observations and the experiences
of the experts, as discussed in Section 6.1. Considering the merge refactors, our assessment
was in line with the opinions of the involved experts: the assessment enabled the identi-
fication of the services which were pointed out by the experts as candidates for merging.
As for the analysed decompositions, we were able to measure the same evolution in main-
tainability as described by the experts: both the CF and size decreased for each service
resulting from the decomposition, and the decompositions did not lead to services with
high change coupling values. Finally, for the hybrid refactors, our assessment was able to
identify the same refactor candidates as pointed out by the experts. Based on the assess-
ment it was not possible to come to the same conclusions as the involved engineers did, as
this would have required a finer-grained analysis: our assessment did not provide insight
into the maintainability metrics of the different service components, which is necessary in
order to recommend the extraction of an artefact into a separate service. The assessment
did however indicate an evolution in maintainability similar to how this was experienced
by the involved engineers.

Effect of temporal window
The tooling used to calculate change coupling values from the version control data (Code-
Maat) allows for the specification of a temporal window. All revisions which were commit-
ted within this logical window are considered as one change set. This temporal window
is specified in days, and decimals are not allowed. This implies that commits cannot be
grouped based on an interval smaller than a day, while these groupings could be more
accurate. Finding the most accurate temporal window is a research field on its own, but
the effect of an increased temporal window is straightforward: a larger temporal window
always results in change couplings equal or stronger than with a smaller temporal window.
An example of how the change coupling between two services increases while enlarging the

67

temporal window can be seen in Table 6.5. We did not have validated approaches at our
disposal to find the most accurate temporal window for each project but were still able
to minimise biases by opting for the safest approach which yields the least false coupling,
by selecting a temporal window of 1 day. While it is possible that this approach led to
weaker couplings appearing less significant, thereby potentially undermining the perceived
performance of our assessment, it ensures that we do not overestimate the performance of
our assessment.

Table 6.5: Effect of different temporal windows on change coupling. Legend:
CC represents the bidirectional change coupling, CCA→B represents the directed
coupling from artefact A to artefact B, CCB→A represents the directed coupling
from artefact B to artefact A and TW specifies the temporal window used for
grouping revisions.

refactor service A service B CC shared-revisions CCA→B CCB→A TW
pre-R2.2 S2.2.1 S2.2.2 67 258 0,82 0,58 1
pre-R2.2 S2.2.1 S2.2.2 81 344 0,91 0,74 2
pre-R2.2 S2.2.1 S2.2.2 85 376 0,95 0,78 3

Lack of revision context

In the change coupling analysis and CF calculations we performed as part of our assess-
ment, the assumption was made that every revision included in the calculations of the
metrics was maintenance-related. In literature, several types of maintenance activities
are distinguished [Gomez, 2022], where development (i.e., the initial implementation of
an application based on the requirements) is defined as a distinct phase in most software
design life cycles [Kumar and Rashid, 2018]. The accidental inclusion of revisions part of
this development phase in our analysis could have influenced the accuracy of our metrics
negatively, as they do not represent maintenance activity and the commit behaviour of
the developers might be different in the development phase compared to the maintenance
phase. We expect this to have been of minimal impact since we explicitly consulted with
the experts to determine the periods during which the refactors were implemented.

With the exception of R1.1, all the analysed refactors involved multiple Git repositories.
To calculate change couplings between services involved in these refactors, revisions made
within a temporal window of a single day were treated as part of the same change set.
This grouping approach helps to identify logical change sets across repositories, but it does
not eliminate the possibility of false change couplings. These false couplings occur when
revisions that are completely independent of each other are grouped into the same change
set. The presence of an issue tracking system that allows grouping revisions based on
related issues, or the consistent mentioning of task IDs in commit messages, would have
reduced the likelihood of creating artificial couplings. However, neither of these conditions
were met in the selected projects.

As we were not able to tell to which maintenance task a revision was related, determining
the optimal points in time within the system’s history to conduct the post-refactor assess-
ment was challenging. The challenge lies in identifying when a refactor is considered fully
implemented. In our cases, there were a few examples of functionality being extracted into a
new service. As in industrial projects, downtime should often be minimised, such refactors
entail a transition process. During this process, in the service to be decomposed a toggle

68

is implemented, which can be used to indicate whether the new service (implementing the
extracted functionality) should be called or the internal version of this functionality should
be used. Once the new service is completed, the toggle can be switched to exclusively use
the new service. However, removing the duplicated old functionality from the decomposed
service may not be considered a top priority. As a result, the team may begin working on
other maintenance tasks, postponing the actual removal of the duplicate code until a later
stage. This mainly influences the accuracy of the metrics that are not measured over a
period but at a specific point in time, like SC, LOC, WSIC and SIDC. Using the commit
messages as a reference, we made an effort to identify clean-up commits, which served as
indicators for the end of the measured transition periods.

Developer behaviour

Another threat to the validity of our assessment is the potential variability in developer
behaviour, more specifically in commit behaviour. Both change coupling and CF are met-
rics strongly influenced by this factor. One commit practice that can introduce bias is
that of incomplete commits, where an engineer commits revisions that do not represent a
complete atomic maintenance task, but only a fraction of it [Oliva and Gerosa, 2015]. In
such cases, the entire maintenance task is typically completed through multiple commits.
This results in an increased CF and lower change coupling values which, if these depen-
dent commits are committed over multiple days, are lower than the actual change coupling.

Developer behaviour is a research field itself: several studies tried to analyse the commit
behaviour of developers. One of those studies analysed commit intervals in four open-source
projects, in an attempt to fit the intervals into statistical distributions [Ma et al., 2018,
Oliva and Gerosa, 2015]. Their findings suggested that the majority of intervals between
consecutive commits followed a power-law distribution, indicating that most of them were
short, with only a few being notably long. The study also focused on the size of commits,
which varies a lot and is further influenced by factors such as the project’s development
process, issue tracking systems, and the version control system being used. The use of a
multi- or mono repository is also of influence here: developers make smaller commits in
distributed repositories compared to centralised ones, and a change is split over multiple
commits more frequently [Brindescu et al., 2014, Oliva and Gerosa, 2015].

The presence of a commit policy within an engineering team can significantly reduce the
described biases, as they enforce more consistent commit behaviour among the different
developers. Such a commit policy was in place in both Spinnaker and the loan eligibility
checker, ensuring a more aligned committing approach. As Metadata was developed by an
engineer working solo, we assumed a constant commit behaviour throughout the life-cycle
of the project. We do not consider the influence of developer behaviour as a significant
threat to the validity of our research, as our assessment primarily focuses on the impact
of refactors on maintainability metrics. Under the assumption that developer behaviour
before and after a refactor does not differ extremely, we expect the evolution of maintain-
ability, as measured by our assessment, not to be substantially affected by it. However, we
acknowledge that we cannot fully prevent developer behaviour and commit practices from
still introducing some level of bias and variability in our assessment.

69

Reliability

In research, reliability refers to the degree of consistency in measurement [Gidron, 2013].
In this research, consistency was ensured by extensively describing the methodology used,
covering the instrumentation used and other prerequisites and criteria, which has been
discussed in Chapter 3. Rather than providing case-specific details such as the exact
revisions involved in a refactor or the precise period over which a metric was calculated, we
describe in detail our approaches to address the hurdles we encountered, as these challenges
are not unique to our cases but can be encountered in general scenarios. An example is
the exclusion of bot commits in the Spinnaker case: while we do not mention the specific
commits which were excluded from the analysis, we explain what kind of revisions should
be excluded and provide a potential approach in Chapter 4.

Generalizability

We discuss the generalizability of our research on two levels: the level of the analysed
refactors and the level of the software projects in which these refactors were carried out.
We analysed a total of seven refactors during our research, comprising two merges, two
decompositions, and three hybrid refactors. These refactors each involved a range of two
to seven microservices. The diversity of refactor types in our study provides the initial
support for the generalizability of our research. Considering the software projects in which
the refactors were analysed, we included three projects where each one represents a different
type of project:

• Metadata is a small, solo-developer project consisting of two microservices.

• The loan eligibility checker is a large industrial project consisting of >17 microser-
vices.

• Spinnaker is a large, open-source project consisting of >10 microservices.

By including projects of different sizes, implemented in different contexts (industrial and
open-source), a wide range of projects is represented. This diversity is essential as we
aimed to develop an assessment method with a broad applicability.

6.3.2 Prioritising refactoring candidates

Our current research objective is to enable a quantitative granularity assessment with re-
gard to maintainability. The ultimate goal is to realise a tool which can serve as actual
decision support for microservices granularity choices by identifying candidates for differ-
ent types of refactors. Using both our pre-refactor assessments and expert input on why
certain refactors would increase the maintainability, we were able to effectively evaluate
the ability of our assessment to function as decision support.

Our assessment method exhibited a strong capability of identifying candidates for a merge.
Services that the experts pointed out as candidates for merging were consistently recog-
nized by our assessment through strong change coupling values. The assessment method’s
strength in recognising candidates for a decomposition varied, which we attribute to the
system averages, crucial for the interpretation of size and cohesion metrics, being less reli-
able in systems with a small number of services.

70

In addition to identifying refactor candidates, useful decision support should also be able
to prioritise them. Box plot analyses could be valuable in this scenario, as they enable the
identification of outliers. In Figure 6.1 a box plot is depicted which was constructed using
the change coupling values of the system of R2.3. The bottom and top lines of the box
represent the start of the second and fourth quartile, respectively. In this example, the
service pair which was pointed out as a candidate for merging by the expert is an outlier
in terms of change coupling, represented by the dot. This suggests that our assessment
method was able to prioritise the refactor of these services over those of other refactor
candidates.

Figure 6.1: Boxplot calculated over the change coupling values pre-R2.3.

Finer-grained analysis

While our assessment method was able to identify candidates for a merge, the metrics
which can support decompositions (size and cohesion metrics) offer less guidance, as our
assessment was only performed on a service level. By not performing our assessment on a
more fine-grained level, in which we calculated the metrics for individual modules within a
service, we are not able to reason about the extent to which a module belongs in a service.
At such a finer-grained level, change coupling could be useful to identify modules with
extremely low change couplings, which could indicate that these modules are not cohesive.
Next to performing the assessment on a module level, we could perform it on a file level
as it could help to pinpoint the roots of change couplings or high change frequencies. Such
fine-grained analyses can be of additional use, but only when interpreted by someone with
in-depth knowledge of the analysed system. As this research focuses on granularity on a
service level these finer-grained analyses were not performed.

71

6.3.3 Research limitations

Acquiring a data set

While in this research eventually three diverse projects were used as cases, the challenge of
finding suitable cases is a limitation that needs to be addressed. A first remark is that there
are only a few open-sourced microservice-based projects available. [Rahman et al., 2019]
collected a data set of projects implementing an MSA, but most of these projects are sample
projects, demonstrating a design pattern or the use of a framework. These projects are
expected to not be under active maintenance and consequently are no proper representation
of reality. This is a limitation which we expect to confine research to maintainability in
MSAs in general. An additional limiting factor in our research was the requirement to have
access to an expert who could provide essential information to enable the analysis of the
refactors and in order to validate our findings. While [Rahman et al., 2019] does mention
11 industrial projects, the requirement of having contact with an expert involved in the
project forced us to exclude most of them.

Interface-based metrics

As for the interface-based metric we measured (WSIC and SIDC) we identified two limi-
tations:

1. Since not every service has an interface, these metrics are not always able to reflect the
maintainability evolution in reaction to a refactor. Due to this limited applicability,
we were often not able to calculate any meaningful system-wide averages, and as we
do not have any other thresholds at our disposal, the metrics are not conclusive in
most cases.

2. An interface does not map one-to-one to the functionality of a service, which some-
times caused a misalignment between our assessment and the expert’s experience.

We encountered this second limitation in, for instance, S1.1.1 during R1.1: this service
was decomposed into S1.1.3 and S1.1.2, and S1.1.2 inherited its entire interface. S1.1.3
implements functionality which had always been present in S1.1.1 but was not exposed in
its interface. We observed a similar problem in Spinnaker and the loan eligibility checker:
in both the event-driven architectures, some services do expose an API. As both systems
follow the API gateway pattern however, the metrics calculated from an API specification
are not always representative of the functionality implemented by the corresponding ser-
vice. The API gateway pattern is a design pattern in which one service (the API gateway)
serves as the single entry point to the system [Richardson, 2020], and routes incoming re-
quests to the appropriate services. This pattern comes with a few advantages, one being
that an API gateway hides the actual partitioning of the API into the different services
from clients, removing the need for clients to interact with multiple APIs of individual
microservices. This obstructs us from calculating the interface-based metrics for the indi-
vidual services that do expose an API, as we can no longer relate the operations specified
in the API specification to the corresponding service. The loan eligibility checker has sev-
eral services adjacent to the API gateway that provide an API. However, these services,
in turn, expose an API that represents the functionality of another group of services, so
these API specifications do not allow us to calculate interface-based metrics corresponding
to the functionality of a single service.

72

Measuring structural coupling

Structural coupling has proven to be a metric which is more complicated to measure than
change coupling, as the ease of measuring and its accuracy are both strongly dependent on
the available documentation on dependencies. The tool which was introduced in Chapter 3
(MicroDepGraph) calculates the structural coupling for each pair of services defined in the
Docker compose file of the project under analysis. The availability of a Docker compose
file was not an inclusion criterion during our case selection, to preserve generalizability,
and consequently in both Spinnaker and the loan eligibility checker there was no such file.
The absence of this Dockerfile in projects with an event-driven architecture is explain-
able, as in such architectures, per definition, services are agnostic of their producers and
consumers. Manual calculation of the systems’ structural coupling based on the available
documentation on service dependencies was omitted as the engineers remarked that sev-
eral dependencies were abstracted away in the documentation. Consequently, we were only
able to measure the structural coupling for two refactors. This limited number of measured
structural couplings reduces the robustness of our validation regarding the usefulness of
structural coupling as an addition to our assessment method.

73

Chapter 7

Final remarks

In this chapter we give our final remarks by discussing related work, the conclusions we
drew based on our research and the contributions this research makes, and finally by
making recommendations for future research.

7.1 Related Work

In this section, we provide an overview of other relevant studies in the field that focused
on quantitatively assessing microservice granularity. We discuss how our research relates
to these works and highlight the contributions of our approach.

Inherent to the popularity of microservices is the high research activity in the field. Al-
though we found only a few works which focused directly on assessing granularity in mi-
croservices, many papers describe approaches for decomposing monoliths, or to scope
bounded contexts at design time in a green field application [Santos and Paula, 2021,
Baresi et al., 2017, Li et al., 2019, Jin et al., 2018, Ahmadvand and Ibrahim, 2017]. Some
of these papers only propose an approach for identifying microservice candidates, while
others apply their approach to real software projects and provide a validation strategy
which involves quantitatively assessing the quality of the resulting MSA. We consider the
latter, despite their main focus being on identifying microservices candidates, as related
work, as they do suggest evaluation strategies to assess the quality of a microservice archi-
tecture.

For instance, [Santos and Paula, 2021] applied the silhouette coefficient to identify mi-
croservices in a monolithic architecture, which is a quality measure related to the extent
of cohesion and coupling. They define microservices as clusters and calculate the silhou-
ette coefficient to assess cohesion within clusters and coupling between clusters. These
notions of cohesion and coupling are based on the number of change sets in which A and
B co-changed. While their approach was not validated specifically in the context of mi-
croservices, and they do not provide this validation themselves, it provides insights into
assessing cohesion and coupling from version control data. As the focus of their research
is decomposing a monolith however, their research does not provide insights on how to
assess a green field MSA: their approach requires the version control data of a monolithic
repository. Different in our work is the wide applicability to green field and brown field
MSAs. Furthermore, we strongly focus on validation, and the use of a larger metric suite
which considers more aspects than cohesion and coupling allows for a more comprehensive
assessment of maintainability.

74

[Vural and Koyuncu, 2021] validated their decomposition approach by performing a qual-
ity assessment on the resulting granularity. Their assessment also focuses on the notions of
cohesion and coupling, but measures these in a different way: in the paper, the metrics are
not derived from the source code or version control data, but from the UML diagrams rep-
resenting the microservice-based system. They measure the efferent and afferent coupling
between the different microservices, and the relational cohesion within the microservices,
concepts which were presented in [Atole and Kale, 2006]. These metrics were originally
meant for object-oriented systems, and Vural et al. do not give any support for the valid-
ity of the metrics in an MSA context. In contrast to our work, their assessment approach
has limited applicability as it is completely dependent on the availability of UML diagrams.
The accuracy of the assessment in its turn depends on the completeness and correctness of
the diagrams. As our assessment method only involves language-independent, automati-
cally derivable metrics, we expect the applicability of our method to be significantly larger.

[Ntentos et al., 2020] proposes to assess the quality of MSAs by measuring the conformance
of the architecture to a range of well-established design patterns and specifically coupling
patterns, as these can affect the quality of an MSA strongly according to the authors.
Ntentos et al. aimed to create a foundation for automatically assessing this conformance,
but in order to calculate the different metrics the authors first manually analysed the code
bases of the cases to derive representative model diagrams. Subsequently, the metrics were
calculated based on these models. While their approach offers a foundation for assessing
conformance, our research expands on this by introducing an approach with a maintainabil-
ity focus which requires minimal manual intervention, increasing the feasibility of assessing
large systems.

[Cardarelli et al., 2019] presents a method based on Model-Driven Engineering techniques,
which provides insight into the evolution of different quality attributes of an MSA in re-
action to architectural changes. Coincidentally, the paper uses the maintainability quality
attribute as an example of an attribute to assess, but emphasises that their approach could
be tailored for measuring other quality attributes. An obstacle to using their approach is
that a model of the architecture is required: although there are techniques to automat-
ically recover architectures from MSAs [Granchelli et al., 2017a, Granchelli et al., 2017b,
Alshuqayran et al., 2018], these techniques require specific input data which is not always
available. As an example, the recovery technique used in their case study requires Docker-
files, and if those are not available the alternative of deriving the model manually can be
challenging. In contrast, our work focuses primarily on maintainability and uses metrics
automatically derivable from the software and version control data.

The research of Apolinario et al. focuses specifically on monitoring the evolution of main-
tainability in an MSA [Apolinário and de França, 2021]. They developed a method called
SYMBIOTE, which collects coupling metrics at runtime, and measured their metrics in
every release in the history of Spinnaker, which also was their (only) case. Although their
results are promising, as the evolution in metrics seems to correspond with the architectural
evolution of the system, their method does not assess cohesion and requires a test suite
covering the complete system, which decreases the accessibility of their method as such a
test suite is not always at hand. Our research addresses these limitations by introducing
metrics that capture cohesion as well as coupling and size, providing a different perspective
for evaluating maintainability in relation to granularity.

75

We conclude that the existing work on microservices granularity assessments and measure-
ment of quality with regard to maintainability mainly focuses on coupling metrics. These
coupling metrics can be derived either statically or dynamically, but do not mine version
control data, which to our knowledge is a novel way of assessing the maintainability of
MSAs. An exception here is the work of [Santos and Paula, 2021], but their approach is
only applicable to brownfield MSAs for which the version control data of the monolithic
architecture is still available. Aside from the coupling-based metrics, [Bogner et al., 2020]
is one of the few works that propose an approach to assess maintainability in MSAs based
on cohesion metrics, which is why we used their tool (RAMA-CLI) in our work. The as-
sessment methods presented in the related works often require assets which can only be
obtained with a substantial effort, such as very accurate UML diagrams or elaborate test
suites. In contrast, one of the contributions of our research is to provide an assessment
method which can be applied with minimal manual intervention.
In summary, while there are related works that address aspects of granularity assessment
in microservices, our research provides a unique contribution by introducing an assess-
ment method focused on measuring maintainability. Our research complements existing
works by offering a different methodology, using a larger metric suite, which enhances the
understanding and evaluation of microservice architecture quality.

7.2 Conclusion

In this section, we revisit our initial research questions and provide answers based on our
research findings. Subsequently, we summarise the contributions of this research to both
science and the industry.

1. How can granularity be assessed from a maintainability perspective?
(a) Which metrics enable a quantitative assessment of maintainability in MSAs?
(b) How can these metrics be derived from existing projects?

To assess granularity from a maintainability perspective, we constructed a quantitative
method to assess the quality of a microservice granularity. This assessment method focused
on maintainability, as this system property is crucial for the long-term success of a software
project. We selected a set of six maintainability metrics tailored for microservice-based
systems: change coupling (CC), structural coupling (SC), lines of code (LOC), weighted
service interface count (WSIC), service interface data cohesion (SIDC) and change fre-
quency (CF). These metrics were derived automatically, by utilising a set of tools which
could be combined into a single assessment tool. We learned that it is not possible to
measure our complete set of metrics in every type of project. For instance, measuring the
SC using the MicroDepGraph tool required Dockerfiles in which the dependencies between
services were explicitly stated. In event-driven architectures, services are agnostic of their
producers and consumers, and the SC could not be determined. Similarly, WSIC and
SIDC, both interface-based metrics, have limitations in their applicability. These metrics
can only be derived from RESTful APIs, which are always available. Additionally, in the
case of the API gateway pattern, where a single service represents a set of other services
through its API, these metrics can be influenced in an inaccurate manner. Hence, the cal-
culation of WSIC and SIDC may not always be feasible or may provide misleading results
in certain scenarios. Nevertheless, the complementary nature of our metric set ensured
that the unavailability of certain metric calculations did not undermine the usefulness of

76

our assessment method. We applied our method to the selected projects, both before and
after refactors, to evaluate the impact of granularity on maintainability.

2. How does this assessment method obtained from our results relate to the intuitive un-
derstanding of the experts?
(a) In what context can the performance of our assessment method be compared to the in-
tuitive understanding of the experts?

In order to compare the performance of our assessment method with the observations of
the experts, we selected three microservice-based projects that met our criteria: the source
code and version control data of the projects were accessible, the systems addressed real-life
business needs and were not sample projects which demonstrated a certain design pattern
for instance, at least one refactor had been carried out which affected the granularity of
the system, and we were able to contact an involved expert about the intentions behind
the refactor and its aftermath regarding the maintainability of the system. We applied our
assessment method to each of the selected projects and subsequently compared the results
to the observations of the experts who were involved in the selected projects. Beforehand,
we conducted interviews with the experts to gather their insights on the refactors and how
they experienced the refactors to have impacted maintainability. We found out that our
assessments aligned with the experts’ experiences in most cases, indicating a correlation
between our quantitative assessment method and their intuitive understanding. However,
there were some exceptions, particularly when our metrics were measured over a short in-
terval of time or compared to system averages based on a small number of services. These
factors disturbed the alignment between our method and the experts’ observations and
should be taken into account as criteria when evaluating the usability of our assessment
method in future studies.

How can the quality of the granularity of a microservice architecture be improved with re-
gards to the application’s maintainability?

Based on our research findings, the quality of the granularity of a microservice architecture
can be improved with respect to maintainability by applying our assessment method to
the system. Our assessment method showed to be of different strength when identifying a
merge beneficial for maintainability compared to a decomposition but nevertheless proved
to be useful in both cases. As for the merge refactors, we observed strong change coupling
values between the pre-refactor service pairs which were all above average, implying that
our assessment method was able to recognise these services as candidates for merging. In
the case of decompositions, our pre-refactor assessment was only able to identify one of
the two refactors as a candidate for decomposing. The service which was not identified
was part of a project with a small number of services, which we assume to be of influence
on the performance of our assessment method: when identifying candidates for decompo-
sition, the method relies on cohesion and size metrics, which are interpreted in relation
to the system averages. However, in smaller systems, these averages may be less reliable.
Our post-refactor assessments were able to recognise the refactors as beneficial for main-
tainability, as we did not observe any strong change coupling values between the services
resulting from the decompositions. In the three hybrid refactors we analyzed (combinations
of merges and deompositions), our assessment method was able to recognise the same trend
in maintainability as experienced by the experts. We observed strong pre-refactor change
coupling values, between the services about to be partially merged. These services also

77

had a higher LOC and change frequency than an average service in the system, advocating
for the extraction of functionality. Our method was not able to consistently distinguish
candidates for a complete merge from candidates from a partial merge, as this would re-
quire a finer-grained analysis, on the service-component level rather than the service-level.
Overall, we found our the results of applying our assessment method to align well with
the experiences of the experts, providing valuable insights into improving maintainability
through appropriate granularity decisions. However, some exceptions were observed when
measuring over a short time interval or comparing metrics to system averages based on
a small number of services. Therefore, these and other context-specific factors need to
be considered when applying our assessment method to enhance the maintainability of a
microservice architecture.

7.2.1 Contributions to Research

Several contributions are made by this research to the research fields of microservice gran-
ularity and maintainability in MSAs:

1. A quantitative assessment method for microservice granularity: the quantitative as-
sessment method developed during this research provides a systematic approach to
evaluate the quality of the granularity level in microservice architectures with respect
to maintainability. This method constitutes a basis for future decision support to
help determine appropriate granularity levels.

2. Integration of multiple metrics: by integrating multiple metrics, change coupling,
structural coupling, LOC, WSIC, SIDC and change frequency, the assessment method
provides a complementary evaluation of microservice granularity. The multi-dimensional
approach increases the reliability of the assessment method.

3. Identification of refactor candidates: the assessment method demonstrated to be
proficient in identifying refactor candidates, specifically in recognizing services as
candidates for merging. The method’s ability to accurately identify candidates for
merging based on change coupling values can serve as an inspiration for future work
aiming to provide objective decision support in microservice granularity decisions.
The results and methodology presented in this report can serve as a basis for such
future work, enabling researchers to build upon this work and increase the potential
of microservice architecture by developing automated and objective decision-making
tools, which can assess microservice architectures and give recommendations to im-
prove their granularity.

7.2.2 Contributions to Industry

This research also offers valuable contributions and insights to the industry, especially in
the context of microservice architectures:

1. Decision support for refactoring: our assessment method provides decision support
which helps to identify refactor candidates in microservice-based applications. By
identifying and to a certain extent also prioritizing refactor candidates, the assess-
ment method can guide software teams in making informed decisions about the gran-
ularity level of their systems, ultimately improving maintainability.

78

2. Validation strategy: this research presented a methodology for validating metric-
based results through expert input in the context of real-world refactors. This
methodology increases the applicability of the assessment method in industrial soft-
ware development settings.

7.3 Future Work

As mentioned earlier, one of the threats to the validity of our research is the lack of em-
pirical evidence showing that grouping revisions based on a temporal window reflects the
actual change sets to an appropriate extent. Research to empirically validate this cor-
relation would be valuable, as many microservice-based projects are implemented in a
multi-repository style, which does not allow for a change coupling analysis on the level of
commits.

To circumvent the use of temporal windows for the grouping of change sets, a promising
approach would be to make use of Integrated Development Environments (IDEs) that are
well-instrumented for monitoring change evolution. The Eclipse plug-in proposed by Ne-
gara et al. is an example of such instrumentation, and it allows to collect finer-grained
data than solely the data saved by the version control system, which can be summarized as
the changes to files and their corresponding metadata [Negara et al., 2012]. Their plug-in
is able to measure other data related to the evolution of an application, such as the invo-
cation of tests. This could form another basis for grouping commits into change sets, and
the accuracy of the resulting change coupling should be investigated.

Another research direction that is quite critical to enable the assessment of the granu-
larity of microservice architectures, is the investigation of approaches to automatically
identify dependencies between microservices in existing systems. The existing techniques
for deriving dependencies, such as the MicroDepGraph tool which considers Docker de-
pendencies, are helpful but have a low applicability as they are not suited for event-driven
architectures, for instance, as in such architectures services are often agnostic of their con-
sumers and producers. Furthermore, the detection of dependencies at the level of Docker
dependencies abstracts away the information relevant to assign weights to the coupling
relations so that it is not possible to distinguish a service pair between which only one a
small transaction takes place from time-to-time, from a pair which constantly exchanges a
high volume of data. This limitation highlights the need for more fine-grained approaches,
which can provide a deeper understanding of the dependencies between microservices. A
potential approach would be to leverage machine learning techniques in order to derive
more detailed and accurate dependency information from existing systems. This requires
models that can be used to analyse transaction types, data volumes, and other relevant
factors to assign weights to the coupling relations between microservices.

Finally, for our assessment method to ultimately serve as a decision support tool for mi-
croservice granularity, our main recommendation for future research is to empirically val-
idate our findings on larger data sets. Given that a larger data set of refactors could
be acquired, it would be interesting to categorise the experiences of experts systemati-
cally, which would enable the application of statistical tests to investigate the correlation
between the results of applying our assessment method and the system maintainability
quantitatively.

79

Bibliography

[Ahmadvand and Ibrahim, 2017] Ahmadvand, M. and Ibrahim, A. (2017). Requirements
reconciliation for scalable and secure microservice (de)composition. pages 68–73. Insti-
tute of Electrical and Electronics Engineers Inc.

[Al-Debagy and Martinek, 2021] Al-Debagy, O. and Martinek, P. (2021). Microservices
identification methods and quality metrics.

[Alshuqayran et al., 2018] Alshuqayran, N., Ali, N., and Evans, R. (2018). Towards mi-
cro service architecture recovery: An empirical study. Proceedings - 2018 IEEE 15th
International Conference on Software Architecture, ICSA 2018, pages 47–56.

[Apolinário and de França, 2021] Apolinário, D. R. and de França, B. B. (2021). A method
for monitoring the coupling evolution of microservice-based architectures. Journal of the
Brazilian Computer Society, 27:1–35.

[Athanasopoulos et al., 2015] Athanasopoulos, D., Zarras, A. V., Miskos, G., Issarny, V.,
and Vassiliadis, P. (2015). Cohesion-driven decomposition of service interfaces without
access to source code. IEEE Transactions on Services Computing, 8:550–5532.

[Atlassian, nd] Atlassian (n.d.). Git merge conflicts.

[Atole and Kale, 2006] Atole, C. S. and Kale, K. V. (2006). Assessment of package cohesion
and coupling principles for predicting the quality of object oriented design. 2006 1st
International Conference on Digital Information Management, ICDIM, pages 1–5.

[Auslander, 2017a] Auslander, D. (2017a). Getting the balance right in microservices de-
velopment.

[Auslander, 2017b] Auslander, D. (2017b). Getting the balance right in microservices de-
velopment.

[Awati and Wigmore, 2022] Awati, R. and Wigmore, I. (2022). What is monolithic archi-
tecture in software?

[Ball et al., 1997] Ball, T., Kim, J. M., Porter, A., and Siy, H. P. (1997). If your version
control system could talk.

[Baresi et al., 2017] Baresi, L., Garriga, M., and Renzis, A. D. (2017). Microservices
identification through interface analysis. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
10465 LNCS:19–33.

80

[Beckman et al., 2021] Beckman, M. D., Çetinkaya Rundel, M., Horton, N. J., Rundel,
C. W., Sullivan, A. J., and Tackett, M. (2021). Implementing version control with git
and github as a learning objective in statistics and data science courses. Journal of
Statistics and Data Science Education, 29:S132–S144.

[Bogner et al., 2019] Bogner, J., Fritzsch, J., Wagner, S., and Zimmermann, A. (2019).
Assuring the evolvability of microservices: Insights into industry practices and chal-
lenges. Proceedings - 2019 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2019, pages 546–556.

[Bogner et al., 2017a] Bogner, J., Wagner, S., and Zimmermann, A. (2017a). Automati-
cally measuring the maintainability of service- and microservice-based systems - a lit-
erature review. volume Part F131936, pages 107–115. Association for Computing Ma-
chinery.

[Bogner et al., 2017b] Bogner, J., Wagner, S., and Zimmermann, A. (2017b). Towards a
practical maintainability quality model for serviceand microservice-based systems. ACM
International Conference Proceeding Series, Part F130530:195–198.

[Bogner et al., 2020] Bogner, J., Wagner, S., and Zimmermann, A. (2020). Collecting
service-based maintainability metrics from restful api descriptions: Static analysis and
threshold derivation. volume 1269 CCIS, pages 215–227. Springer Science and Business
Media Deutschland GmbH.

[Brindescu et al., 2014] Brindescu, C., Codoban, M., Shmarkatiuk, S., and Dig, D. (2014).
How do centralized and distributed version control systems impact software changes?

[Brown, 2020a] Brown, K. G. (2020a). What’s the right size for a microservice?

[Brown, 2020b] Brown, K. G. (2020b). What’s the right size for a microservice?

[Cardarelli et al., 2019] Cardarelli, M., Salle, A. D., Iovino, L., Malavolta, I., Francesco,
P. D., and Lago, P. (2019). An extensible data-driven approach for evaluating the
quality of microservice architectures. Proceedings of the ACM Symposium on Applied
Computing, Part F147772:1225–1234.

[Cataldo et al., 2009] Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, J. D. (2009).
Software dependencies, work dependencies, and their impact on failures. IEEE Trans-
actions on Software Engineering, 35:864–878.

[Chidamber and Kemerer, 1994] Chidamber, S. R. and Kemerer, C. F. (1994). A metrics
suite for object oriented design. IEEE Transactions on Software Engineering, 20:476–
493.

[Cojocaru et al., 2019] Cojocaru, M. D., Oprescu, A., and Uta, A. (2019). Attributes
assessing the quality of microservices automatically decomposed from monolithic appli-
cations. Proceedings - 2019 18th International Symposium on Parallel and Distributed
Computing, ISPDC 2019, pages 84–93.

[D’Ambros et al., 2009] D’Ambros, M., Lanza, M., and Robbes, R. (2009). On the relation-
ship between change coupling and software defects. Proceedings - Working Conference
on Reverse Engineering, WCRE, pages 135–144.

[Dhanushka, 2021] Dhanushka, D. (2021). Event-driven apis — understanding the princi-
ples.

81

[Docker, nd] Docker (n.d.). Compose file version 3 reference.

[Engelbertink and Vogt, 2014] Engelbertink, F. and Vogt, H. (2014). How to save on
software maintenance costs: an omnext white paper on software quality.

[Erl, 2005] Erl, T. (2005). Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, USA.

[Erl, 2017] Erl, T. (2017). Service-Oriented Architecture: Analysis and Design for Services
and Microservices.

[Ferguson, 2017] Ferguson, P. (2017). What size should microservices be?

[Fluri et al., 2005] Fluri, B., Gall, H. C., and Pinzger, M. (2005). Fine-grained analysis
of change couplings. Proceedings - Fifth IEEE International Workshop on Source Code
Analysis and Manipulation, SCAM 2005, pages 66–74.

[Fritzsch et al., 2019] Fritzsch, J., Bogner, J., Wagner, S., and Zimmermann, A. (2019).
Microservices migration in industry: Intentions, strategies, and challenges. pages 481–
490. Institute of Electrical and Electronics Engineers Inc.

[Gall et al., 2003] Gall, H., Jazayeri, M., and Krajewski, J. (2003). Cvs release history
data for detecting logical couplings. International Workshop on Principles of Software
Evolution (IWPSE), 2003-January:13–23.

[Ghofrani and Lübke, 2018] Ghofrani, J. and Lübke, D. (2018). Challenges of microser-
vices architecture: A survey on the state of the practice.

[Gidron, 2013] Gidron, Y. (2013). Reliability and validity.

[Glöckner et al., 2016] Glöckner, M., Ludwig, A., and Franczyk, B. (2016). How low should
you go? - conceptualization of the service granularity framework. In European Confer-
ence on Information Systems.

[GNU, nd] GNU (n.d.). Cvs - open source version control.

[Goebelbecker, 2022] Goebelbecker, E. (2022). Java vs python: Code examples and com-
parison.

[Gomez, 2022] Gomez, J. (2022). The four types of software maintenance.

[Granchelli et al., 2017a] Granchelli, G., Cardarelli, M., Francesco, P. D., Malavolta, I.,
Iovino, L., and Salle, A. D. (2017a). Microart: A software architecture recovery tool
for maintaining microservice-based systems. Proceedings - 2017 IEEE International
Conference on Software Architecture Workshops, ICSAW 2017: Side Track Proceedings,
pages 298–302.

[Granchelli et al., 2017b] Granchelli, G., Cardarelli, M., Francesco, P. D., Malavolta, I.,
Iovino, L., and Salle, A. D. (2017b). Towards recovering the software architecture of
microservice-based systems. Proceedings - 2017 IEEE International Conference on Soft-
ware Architecture Workshops, ICSAW 2017: Side Track Proceedings, pages 46–53.

[Halstead, 1977] Halstead, M. H. (1977). Elements of Software Science (Operating and
Programming Systems Series). Elsevier Science Inc., USA.

82

[Harsh, 2022] Harsh, K. (2022). Soa vs. microservices: A head-to-head comparison | scout
apm blog.

[Hassan and Holt, 2004] Hassan, A. E. and Holt, R. C. (2004). Predicting change propa-
gation in software systems.

[Hassan and Holt, 2006] Hassan, A. E. and Holt, R. C. (2006). Replaying development
history to assess the effectiveness of change propagation tools. Empirical Software En-
gineering, 11:335–367.

[Hassan et al., 2020] Hassan, S., Bahsoon, R., and Kazman, R. (2020). Microservice tran-
sition and its granularity problem: A systematic mapping study. Software - Practice
and Experience, 50:1651–1681.

[Heitlager et al., 2007] Heitlager, I., Kuipers, T., Visser, J., Heitlager, I., Kuipers, T., and
Visser, J. (2007). Software evolution open universiteit 20 artikel 2 a practical model for
measuring maintainability artikel 2 a practical model for measuring maintainability a
practical model for measuring maintainability-a preliminary report.

[Hirzalla et al., 2009] Hirzalla, M., Cleland-Huang, J., and Arsanjani, A. (2009). A metrics
suite for evaluating flexibility and complexity in service oriented architectures. volume
5472 LNCS, pages 41–52.

[Homay et al., 2020] Homay, A., de Sousa, M., Zoitl, A., and Wollschlaeger, M. (2020).
Service granularity in industrial automation and control systems. volume 1, pages 132–
139.

[Homay et al., 2019] Homay, A., Zoitl, A., de Sousa, M., Wollschlaeger, M., and
Chrysoulas, C. (2019). Granularity cost analysis for function block as a service. volume 1,
pages 1199–1204.

[IBM, 2020] IBM (2020). Event storming.

[IBM, 2021a] IBM (2021a). Microservices in the enterprise, 2021: Real benefits, worth the
challenges.

[IBM, 2021b] IBM (2021b). Soa vs. microservices: What’s the difference? | ibm.

[IBM, nd] IBM (n.d.). Event-driven architecture.

[Interquartile range, nd] Interquartile range (n.d.). Median and interquartile range-
nonparametric univariate statistics for quantitative variables.

[ISO25000, nd] ISO25000 (n.d.). Iso25000.

[Jain et al., 2021] Jain, G., Thakar, U., Tewari, V., and Varma, S. (2021). A survey on
trending topics of microservices. International Journal of Emerging Trends in Engineer-
ing Research, 9:1091.

[Jin et al., 2018] Jin, W., Liu, T., Zheng, Q., Cui, D., and Cai, Y. (2018). Functionality-
oriented microservice extraction based on execution trace clustering. pages 211–218.
Institute of Electrical and Electronics Engineers Inc.

[Khoshnevis, 2023] Khoshnevis, S. (2023). A search-based identification of variable mi-
croservices for enterprise saas. Frontiers of Computer Science, 17.

83

[Knoche and Hasselbring, 2019] Knoche, H. and Hasselbring, W. (2019). Drivers and bar-
riers for microservice adoption-a survey among professionals in germany 1 drivers and
barriers for microservice adoption-a survey among professionals in germany. 14.

[Krishna, 2021] Krishna, H. (2021). 5 microservices examples: Amazon, netflix, uber,
spotify etsy.

[Kulkarni and Dwivedi, 2008] Kulkarni, N. and Dwivedi, V. (2008). The role of service
granularity in a successful soa realization - a case study. volume PART 1, pages 423–
430.

[Kumar and Rashid, 2018] Kumar, M. and Rashid, E. (2018). An efficient software de-
velopment life cycle model for developing software project. International Journal of
Education and Management Engineering, 8:59–68.

[Laskowski, 2019] Laskowski, D. (2019). Moving to microservices: How granular should
my services be? - technology insights blog.

[Lewis and Fowler, 2014] Lewis, J. and Fowler, M. (2014). Microservices.

[Li et al., 2019] Li, S., Zhang, H., Jia, Z., Li, Z., Zhang, C., Li, J., Gao, Q., Ge, J., and
Shan, Z. (2019). A dataflow-driven approach to identifying microservices from monolithic
applications. Journal of Systems and Software, 157.

[Li et al., 2020] Li, Y., Wang, C. Z., Li, Y. C., Su, J., and Chen, C. H. (2020). Granularity
decision of microservice splitting in view of maintainability and its innovation effect in
government data sharing. Discrete Dynamics in Nature and Society, 2020.

[Lin et al., 2013] Lin, S., Ma, Y., and Chen, J. (2013). Empirical evidence on developer’s
commit activity for open-source software projects. In International Conference on Soft-
ware Engineering and Knowledge Engineering.

[Lindvall et al., 2003] Lindvall, M., Tvedt, R. T., and Costa, P. (2003). An empirically-
based process for software architecture evaluation. Empirical Software Engineering,
8:83–108.

[Ma et al., 2018] Ma, S. P., Fan, C. Y., Chuang, Y., Lee, W. T., Lee, S. J., and Hsueh, N. L.
(2018). Using service dependency graph to analyze and test microservices. volume 2,
pages 81–86. IEEE Computer Society.

[Ma et al., 2013] Ma, Y., Wu, Y., and Xu, Y. (2013). Dynamics of open-source software
developer’s commit behavior: An empirical investigation of subversion.

[Mathews, 2021] Mathews, S. (2021). How many repositories do you need for a microser-
vices project?

[McCabe, 1976] McCabe, T. (1976). A complexity measure. IEEE Transactions on Soft-
ware Engineering, SE-2(4):308–320.

[Mella et al., 2019] Mella, F. P., Márquez, G., and Astudillo, H. (2019). Migrating from
monolithic architecture to microservices: A rapid review.

[Mergify, nd] Mergify (n.d.). Mergify - ci/cd pipeline optimizer.

84

[Munialo et al., 2019] Munialo, S. W., Muketha, G. M., and Omieno, K. K. (2019). Size
metrics for service-oriented architecture. International Journal of Software Engineering
Applications (IJSEA), 10.

[Negara et al., 2012] Negara, S., Vakilian, M., Chen, N., Johnson, R. E., and Dig, D.
(2012). Is it dangerous to use version control histories to study source code evolution?
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics), 7313 LNCS:79–103.

[Netflix, 2015] Netflix (2015). Global continuous delivery with spinnaker.

[Newman, 2021] Newman, S. (2021). Building microservices : designing fine-grained sys-
tems.

[Ntentos et al., 2020] Ntentos, E., Zdun, U., Plakidas, K., Meixner, S., and Geiger, S.
(2020). Assessing architecture conformance to coupling-related patterns and practices
in microservices. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 12292 LNCS:3–20.

[Oliva and Gerosa, 2011] Oliva, G. A. and Gerosa, M. A. (2011). On the interplay between
structural and logical dependencies in open-source software. pages 144–153.

[Oliva and Gerosa, 2015] Oliva, G. A. and Gerosa, M. A. (2015). Change coupling be-
tween software artifacts: Learning from past changes. The Art and Science of Analyzing
Software Data, pages 285–323.

[Panichella et al., 2021] Panichella, S., Rahman, M. I., and Taibi, D. (2021). Structural
coupling for microservices. International Conference on Cloud Computing and Services
Science, CLOSER - Proceedings, 2021-April:280–287.

[Parveen and Showkat, 2017] Parveen, H. and Showkat, N. (2017). Review view project
mass communication theory view project.

[Perepletchikov and Ryan, 2011] Perepletchikov, M. and Ryan, C. (2011). A controlled ex-
periment for evaluating the impact of coupling on the maintainability of service-oriented
software. IEEE Transactions on Software Engineering, 37:449–465.

[Perepletchikov et al., 2007] Perepletchikov, M., Ryan, C., Frampton, K., and Tari, Z.
(2007). Coupling metrics for predicting maintainability in service-oriented designs. Pro-
ceedings of the Australian Software Engineering Conference, ASWEC, pages 329–338.

[Rahman et al., 2019] Rahman, M. I., Panichella, S., and Taibi, D. (2019). A curated
dataset of microservices-based systems. CoRR, abs/1909.03249.

[Rahman and Taibi, nd] Rahman, M. I. and Taibi, D. (n.d.). Microdepgraph.

[Rama-Cli, nd] Rama-Cli (n.d.). rama-cli: Restful api metric analyzer cli.

[Richardson, 2020] Richardson, C. (2020). Decompose by business capability.

[Rijksoverheid, nd] Rijksoverheid (n.d.). Payment service directive 2 (psd2).

[RubyGarage, 2019] RubyGarage (2019). Monolith vs soa vs microservices vs serverless
architecture.

[SaltEdge, nd] SaltEdge (n.d.). Salt edge | open banking for every business.

85

[Santos and Paula, 2021] Santos, A. and Paula, H. (2021). Microservice decomposition
and evaluation using dependency graph and silhouette coefficient. ACM International
Conference Proceeding Series, pages 51–60.

[Sellami et al., 2022] Sellami, K., Ouni, A., Saied, M. A., Bouktif, S., and Mkaouer, M. W.
(2022). Improving microservices extraction using evolutionary search. Information and
Software Technology, 151.

[Seroukhov, 2020] Seroukhov, S. (2020). What’s the right size for a microservice?

[Shadija et al., 2017] Shadija, D., Rezai, M., and Hill, R. (2017). Microservices: Granu-
larity vs. performance. pages 215–220. Association for Computing Machinery, Inc.

[Siket et al., 2014] Siket, I., Beszédes, Á., and Taylor, J. (2014). Differences in the defini-
tion and calculation of the loc metric in free tools.

[Silva et al., 2014] Silva, L. L., Valente, M. T., and Maia, M. D. A. (2014). Assessing
modularity using co-change clusters. MODULARITY 2014 - Proceedings of the 13th
International Conference on Modularity (Formerly AOSD), pages 49–60.

[Singh and Huhns, 2005] Singh, M. P. M. P. and Huhns, M. N. (2005). Service-oriented
computing : semantics, processes, agents. page 549.

[Singhal et al., 2019] Singhal, N., Sakthivel, U., and Raj, P. (2019). Selection mechanism
of micro-services orchestration vs. choreography. International Journal of Web Semantic
Technology (IJWesT), 10.

[Spinnaker, a] Spinnaker. Spinnaker architecture overview.

[Spinnaker, b] Spinnaker. Spinnaker bot: A github bot for managing spinnaker’s repos.

[Spinnaker, c] Spinnaker. Spinnaker project.

[Statista, 2022] Statista (2022). Microservices adoption level worldwide 2021.

[Tornhill, 2015] Tornhill, A. (2015). Your Code as a Crime Scene.

[Tornhill, 2018] Tornhill, A. (2018). Software Design X-Rays: Fix Technical Debt with
Behavioral Code Analysis.

[Tornhill, nd] Tornhill, A. (n.d.). Code maat: A command line tool to mine and analyze
data from version-control systems.

[Ulander, 2017] Ulander, D. (2017). Software architectural metrics for the scania internet
of things platform : From a microservice perspectiv. Beschrijft metrics voor:
-
complexity
- importance of a service
- absolute criticality of a service.

[Vera-Rivera et al., 2021] Vera-Rivera, F. H., Gaona, C., and Astudillo, H. (2021). Defin-
ing and measuring microservice granularity—a literature overview. PeerJ Computer
Science, 7:e695.

[Visockis, nd] Visockis, S. (n.d.). Metadata.

[Vural and Koyuncu, 2021] Vural, H. and Koyuncu, M. (2021). Does domain-driven design
lead to finding the optimal modularity of a microservice? IEEE Access, 9:32721–32733.

86

[Wang, 2009] Wang, X. J. (2009). Metrics for evaluating coupling and service granularity
in service oriented architecture. Proceedings - 2009 International Conference on Infor-
mation Engineering and Computer Science, ICIECS 2009.

[Wang et al., 2021] Wang, Y., Kadiyala, H., and Rubin, J. (2021). Promises and challenges
of microservices: an exploratory study. Empirical Software Engineering, 26.

[Waseem et al., 2021] Waseem, M., Liang, P., Shahin, M., Salle, A. D., and Márquez, G.
(2021). Design, monitoring, and testing of microservices systems: The practitioners’
perspective. Journal of Systems and Software, 182.

[Yourdon and Constantine, 1979] Yourdon, E. and Constantine, L. L. (1979). Fundamen-
tals of a Discipline of Computer Program and Systems Design.

[Zimmermann, 2017] Zimmermann, O. (2017). Microservices tenets: Agile approach to
service development and deployment. Computer Science - Research and Development,
32:301–310.

[Zimmermann et al., 2003] Zimmermann, T., Diehl, S., and Zeller, A. (2003). How history
justifies system architecture (or not). International Workshop on Principles of Software
Evolution (IWPSE), 2003-January:73–83.

[Zimmermann et al., 2004] Zimmermann, T., Weißgerber, P., Diehl, S., and Zeller, A.
(2004). Mining version histories to guide software changes. Proceedings - International
Conference on Software Engineering, 26:563–572.

[Zimmermann et al., 2005] Zimmermann, T., Weißgerber, P., Diehl, S., and Zeller, A.
(2005). Mining version histories to guide software changes. IEEE Transactions on
Software Engineering, 31:429–445.

[Zórnio, 2020] Zórnio, L. (2020). How to choose wisely when defining microservices gran-
ularity.

87

88

2022 2023

dec jan feb mrt apr mei

28. 05. 12. 19. 26. 02. 09. 16. 23. 30. 06. 13. 20. 27. 06. 13. 20. 27. 03. 10. 17. 24. 01. 08. 15.

Model and case
selection finished

Research proposal finished

Gather cases

Write results section

Reporting (FP)
Write remaining sections thesis

Prepare presentation

Process feedback

Write research proposal

Finalize RT

Development (FP)

Preparation (FP)

Final Presentation (FP)

Implement model

Data analysis (FP)

Prepare presentation

holidays

Collect data

Prepare validation

Collect additional
background information

Validate results

Start writing thesisData collection finished

Activity

Appendices

A Research Planning

	List of Abbreviations
	List of Tables
	List of Figures
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Approach
	Report Structure

	Microservices Granularity
	Microservice Architecture
	Granularity in MSA
	(Lack of) Definition
	Influence on microservice quality

	Maintainability Perspective
	Definition
	Maintainability in MSA

	Metrics
	Size metrics
	Coupling metrics
	Cohesion metrics

	Research Strategy
	Overview
	Case Selection Requirements
	Tooling
	Instrumentation

	Data Collection
	Case 1: Metadata
	R1.1
	R1.2

	Case 2: Loan eligibility checker
	R2.1
	R2.2
	R2.3
	R2.4
	R2.5

	Case 3: Spinnaker
	Cases Overview
	Data Preparation

	Data Analysis
	Merges
	Decompositions
	Hybrid refactors
	Spinnaker

	Validation
	Assessment Observations
	Merges
	Decompositions
	Hybrid Refactors

	Validation Interviews
	R1.1
	R1.2
	R2.1
	R2.2
	R2.3
	R2.4
	R2.5
	Spinnaker

	Discussion
	Implications
	Prioritising refactoring candidates
	Research limitations

	Final remarks
	Related Work
	Conclusion
	Contributions to Research
	Contributions to Industry

	Future Work
	References

	Appendices
	Research Planning

