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Abstract— Automatic semantic segmentation of abdomi-
nal aortic aneurysms is a crucial medical task, given that
manual segmentation, often required multiple times for
various scans over time, can be a highly tedious job for
professionals. Over the past decade, convolutional neural
networks (CNNs), especially U-Net like models, have been
the predominant research area in this field. Recently, vi-
sion transformer models, with segmentation-related mod-
ifications, have exhibited significant promise. However,
these models almost invariably adopt the same patching
mechanism that divides the input into equal-sized, non-
overlapping sections. This method is not necessarily the
most effective, but it has become a common practice since
it was a remnant from the transition of transformers from
text to images and was the first approach to successfully
accomplish this. Consequently, it has been employed sim-
ply because it works. In this study, we introduce a tree-like
patching method that utilizes a multi-scale perspective of
the input with a vision transformer. By tokenizing multiple
levels of the image with constant size patches, we aim
to provide the transformer with more information, taking
advantage of the long-range attention inherent in trans-
former networks. Furthermore, we propose an architecture
that fundamentally incorporates this patching approach, in
tandem with a fusion of U-Net-like structures and vision
transformers. We demonstrate that, given the same archi-
tecture, the multi-scale patching outperforms its traditional
counterpart in semantic segmentation of an abdominal
aortic aneurysm dataset consisting of 90 CT scans. Our
findings clearly show that there is a promising research
direction in experimenting with more complex patching
mechanisms.

I. INTRODUCTION

Deep learning has revolutionized the field of medical imag-
ing in recent years. Its rapid development, combined with the
exponential increase in hardware capabilities, has enabled the
accomplishment of many tasks that were previously consid-
ered unfeasible. With new processes and model architectures
continually outperforming their predecessors it is becoming
increasingly challenging for researchers to keep up with the
pace of advancements. The exploration of higher performing
and more efficient methods frequently sparks novel ideas,
and concepts from diverse fields are often applied to medical
imaging, occasionally yielding exceptional outcomes [1].

Semantic segmentation, aiming to assign a class label to
each pixel (or voxel in 3D) in an input image, is an area
of substantial research interest. Medical image segmentation
using deep learning can serve as a valuable tool across various
image modalities. It not only aids in diagnosis and can uncover

findings that may be overlooked by other methods, but it
can also facilitate early detection, reduce the need for highly
trained personnel in poorer regions, and decrease reliance on
costly measuring equipment by leveraging cheaper or older
technologies. This is especially true for segmentation since
manual segmentation of big scans is a laborious process that
can take hours by a trained person. Moreover, the segmentation
of medical images proves invaluable when applying other pro-
cesses, such as classification, since segmented scans provide
more information than raw ones [2].

U-Net [3] models and similar architectures have dominated
the field of medical image segmentation for the past decade
[4]. These models are intuitive, easy to understand, and
effective, with a wealth of research focusing on improving U-
Net-like models and their application to specific tasks. They
process input images to leverage a multi-scale representation
of the input through an convolutional encoder and decoder
architecture.

Among the most prominent models in recent years, the
transformer stands out due to its popularity and impressive
performance. Initially designed for natural language process-
ing tasks [5], this model has formed the backbone of numerous
major deep learning architectures in recent years [6]. More-
over, through a few modifications to the images and the model
architecture, it has recently been adapted for vision tasks in
the form of the vision transformer [7]. Several instances of
vision transformers outperforming other types of models in
various tasks have been reported in the last two years [6].
In contrast to U-Net models, vision transformers harness the
power of long-range attention to effectively capture relation-
ships between every patch in a given input. By employing
self-attention mechanisms, they can directly compute attention
scores between any pair of patches, thereby modeling complex
spatial interactions and global context, irrespective of their
distance within the input image. In this paper, we explore a
potential method of combining these two architectures into a
single model designed to capitalize on multi-scale view of the
U-Net and the long range attention of the transformer.

This study seeks to answer the research question: to what ex-
tent does a multi-scale representation of input tokens achieved
with an encoder network enhance the segmentation perfor-
mance of a vision transformer in 3D CT images? Throughout
the course of this report, we will examine this question in
depth, aiming to contribute valuable insights and advances to
the field of medical imaging. We will start by providing some
necessary background knowledge in section II, followed by



2 MASTERS IN COMPUTER SCIENCE, DATA SCIENCE, 2023

an introduction to the proposed model in section III and the
dataset used in all experiments in section IV. The experimental
setup and the benchmarks used for performance evaluation
will be presented in section V. Then, we will introduce five
variations of the architecture to understand and evaluate the
components that make up this model in section VI. Finally,
we will critically discuss the results and insights derived from
these experiments in section VII.

II. RELATED WORKS

A. Segmentation and convolutional neural networks
Image segmentation is a well-established area of research.

As early as 1979, N. Otsu presented a paper discussing a
smart, yet straightforward, threshold selection for gray-level
histograms [8]. This method categorizes a series of pixels
by optimally deciding on a threshold value for their his-
tograms. Numerous image segmentation algorithms have been
developed over the years, spanning from simple thresholding
calibrations to region growth, k-means clustering, conditional
and Markov random fields, and many more [9].

In recent years, deep learning methods have continually
improved. Convolution operations and convolutional neural
networks (CNN) [10] have been extremely popular in deep
learning and medical image segmentation [11]. One of the
earliest tangible results of deep learning applied in medical
image segmentation was accomplished by Ciresan et al. [12],
where they automatically segmented biological brain mem-
branes in electron microscopy images. Fully convolutional
networks (FCNs) [13] are among the early architectures that
utilize convolutions exclusively in image segmentation. Long
et al. [13] showed that end-to-end convolutional networks can
train and infer segmentation tasks with high performance.

B. U-Net
U-Net [3] is a popular deep learning architecture that has

made a significant leap in segmentation with deep learning.
The U-Net architecture is arguably still one of the most
popular methods within segmentation, especially in medical
fields [14]. As its name suggests, U-Net is a ”U” shaped
network. An input image is gradually downsampled on the
contracting side (left) of the architecture using max-pooling
layers while passing through convolutional blocks [10]. The
result is a set of feature maps that are downsampled and sets
of feature maps from the various levels of the encoder with
various levels of downsampling. This process is reversed on
the expanding (right) side of the network, where the feature
maps are upsampled using transposed convolutions and the
multiple levels from the encoder are concatenated into the
feature maps gradually. These skip connections throughout the
network enable the architecture to use a multi-scale view of
the input.

C. Transformers
Attention is all you need [5] is the original paper that

proposed the transformer architecture, using scaled dot product
self-attention. This paper more or less defined the landscape of

transformers and the future direction of transformer research
for the past 5 years. The idea of transformers came from
the following motivational path. In many natural language
processing (NLP) tasks, the input of a system is sequential.
The reason for this is simple, text or speech in nature is a
sequential construct. Analyzing text without word order loses
a significant amount of information since it is the ordered
combination of words that makes it meaningful. In the world
of deep learning, before transformers, these tasks were handled
with recurrent neural networks or their (advanced) variants
like LSTMs [5]. These models processed data in a sequential
fashion since usually the output of one iteration is needed for
the next iteration as input. This makes parallelization and thus
efficient training quite difficult and actually in most cases not
possible. On top of this, sequential models represent order
with connected inputs and outputs in consecutive timesteps,
meaning the relation of tokens that are far apart is diminished
or has the potential to diminish over iterations. So in the end,
there was a need for a parallelizable model that could represent
long and short-distanced sequence information. Hence the
transformer.

The transformer, is an innovative architecture primarily
designed for sequence transduction, or translation tasks [5].
At its core, it uses a mechanism called ”attention” that weighs
the influence of different input parts in the generation of each
output part. Unlike traditional sequence-to-sequence models,
the transformer does not require sequence-aligned inputs and
outputs, and it avoids the need for recurrent computations,
making it highly parallelizable and removes the problem of
vanishing gradients. The architecture comprises two parts: an
encoder that processes the input and a decoder that generates
the output, both being stacks of self-attention and position-
wise fully connected layers.

An attention function can be described as mapping a query
and a set of key-value pairs to an output, where the query, keys,
values, and output are all vectors [5]. This paper primarily
focuses on a type of attention mechanism called ”scaled
dot-product attention”. This mechanism involves a simple
mathematical process depicted in equation 1. The queries (Q),
keys (K), and values (V ) are all vectors derived from the
encoded input. The queries are matrix multiplied by the keys to
form a compatibility function result. This result is then scaled
by the dimension of the keys (dk) because larger values could
lead to very small gradients in the softmax function. The result
is then multiplied by the values to generate an attention matrix
that captures the relative attention of each token in a sequence
to every other token.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

D. Vision Transformers
The idea of transformers dominated the area of NLP for

some years before there were successful implementations of
the architecture to images. The paper An image is worth
16x16 words: transformers for image recognition at scale [7]
is one of the first successful implementations that adapted
the transformer architecture to a visual task. The input of a
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regular transformer is a sequence of tokens. Especially text
is very straightforward to convert into a sequence of tokens.
However, with images, some steps need to be taken before
we can use the transformer architecture. In this paper, the
following method is used to convert an image into a sequence
of tokens. Starting with an image x ∈ RH×W×C as input,
the image is divided into square patches of size (P ×P ×C).
These patches are flattened and gathered into an array, making
our input xp ∈ RN×(P 2·C) where N is the number of patches
in the image. As transformers use a constant embedding size,
these patches are projected to this constant size with a trainable
linear projection (in later works sets of convolutions are used
to project patches into tokens). From this point on, the input
of the model is identical to the original transformer paper
[5]. However, in this work only the encoder network of the
transformer is necessary. After passing through the encoder
stack, the output is put through a final fully connected layer
to perform the actual task (called a task-specific head).

Swin UNETR [15] is a state-of-the-art deep learning ar-
chitecture that combines swin transformers (a variant of the
Vision transformer) and U-Net decoder. A swin (shifted win-
dow) transformer has two alteration to a vision transformer.
Firstly, attention is computed within local windows, hence
this computation is more local but much faster. Furthermore,
these windows are shifted so that boundaries of attention are
crossed between windows. Secondly, following every block
within the swin transformer, patches (tokens) are merged into
bigger groups with increasing embedding dimensions, and
attention windows are also merged. This has an effective
downsampling on the image. Swin UNETR uses a Swin
transformer as an encoder, while sampling from every layer of
the architecture for a multi-scale representation of the input.
These representations are merged using a U-Net like decoder
to achieve a state-of-the-art segmentation result. Due to this
patch merging in the encoder and the structure of the decoder
Swin UNETR uses a multi-scale view of the input to perform
a segmentation task.

III. METHODS

A. Multi-scale patches

As explained in section II, vision transformers patch inputs
into tokens before processing them. Conventionally the size of
the patches within a single architecture is constant [6]. Given
an image of size (H ×W ×C) and a square patching of size
P , a conventional vision transformer would patch this input
into H

P × W
P × C

P patches all with the size (P × P × P ). In
this study, we add on top of this by rescaling the input by
downsampling it multiple times and applying this patching,
still with a constant patch size, to all of these scales. In this
way, we create patches that embed different scales within
the same input. For example, given an input image of shape
128 × 128 × 128 and a patch size of 16, a regular patching
would result in 512 ( 12816 = 8, 8 × 8 × 8 = 512 ) patches all
with size (16 × 16 × 16). This holds true for our approach
as well, however it is only the first scale. Then if this input
was to be downsampled by a factor of 2, the size would be
(64×64×64). Applying the same patching would then result

Fig. 1. A 2D example of multi-scale patching. The red squares
represent one patch (token) each. Initially the image is not downsampled
hence there are 16 × 16 patches. Afterwards, the image is downsam-
pled to half the size while the patch size is constant meaning there are
8 × 8 patches. This approach continues until the entire image is one
patch. This also shows that with the bigger image one patch embeds a
smaller part of the image while with smaller images one patch embeds
bigger parts of the image.

in 64 more patches, still all with size (16 × 16 × 16). These
new patches however, would actually represent a bigger part
of the input image since we donwsampled by a factor of 2. In
other words, one of these (16× 16× 16) sized patches would
actually represent a (32×32×32) patch in the original input.
Meaning this effectively bigger patch would embed the same
part of the input as 8 smaller patches combined. Continuing
this approach for multiple steps then results in an array of
patches that represent different parts of the image in different
scales all while having the same size. A 2D example of this
patching is presented in figure 1. Another way of thinking
about this is an octree (or quadtree in a two dimensional
image) where the initial patches without the downsampling are
the leaves of the tree and gradually we build this tree up with
patches that represent bigger parts and hence combine multiple
patches. Since all of these patches have the same size, they
can be used as tokens in a vision transformer. This also means
that the attention mechanism of the vision transformer can
compute attention between a patch that represents a smaller
part of the input and a patch that represents a big part of the
input, potentially increasing its capabilities and understanding
of the image.

B. Abstract Architecture

To achieve the patching explained above, and to use a vision
transformer (transformer encoder) for segmentation, we have
designed a network architecture. Figure 2 shows this architec-
ture with abstract building blocks. These blocks (modules) will
be explained individually further. In this part, we will explain
their purpose within the network and why they are necessary.
Multi-scale patching has two parts. First, the input needs to be
downsampled for different scales. For this purpose we use a U-
Net like encoder, that adapts the contractive path of the U-Net
architecture. The result of this network are skip connections
that can be viewed as the multiple scales of the input. This
is also a learned way of achieving the downscaling, we have
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Fig. 2. The overall architecture of the proposed model. The input is
encoded to a multi-scale representation by the encoder (represented by
the multiple arrows), embedded into tokens by the embedder, processed
by the vision transformer. Finally. reconstructed by the de-embedder and
the decoder. Input is a 3D CT scan and the output is a segmentation
map with one-hot encoding.

found that this works a bit better than non-learned ways of
downscaling such as pooling methods. This part as a whole is
called the encoder within the proposed network. The second
part of the multi-scale patching is the extraction of the patches
and their embeddings. Each skip connection of the encoder
needs to be patched separately into tokens, and these tokens
need to be embedded into the correct token size. We have also
chosen to do this in a learnable way. This is handled by the
embedder module. These tokens are processed in the vision
transformer, which is just a transformer encoder. The output
tokens of the vision transformer need to be de-tokenized. This
is done by the de-embedder module that reverses the embedder
module in a learnable way. This results in a multi-scale view
of the input that has been processed by the vision transformer
and shaped like smaller scales of the input. To combine these
views, we use a decoder module that adapts the expanding
path of a U-Net.

C. Building Blocks
In this subsection, we explain each building block of the pre-

sented architecture with technical details and design choices.
The combination of these blocks form the network.

1) Convolutional Block: Every convolutional block in the
proposed network is comprised of a convolutional layer fol-
lowed by a parametric rectified linear unit (PReLU) acti-
vation function, dropout layer, and instance normalization
layer sequence. The PReLu activation function introduces non-
linearity to the network, enabling the learning of more complex
relationships between input and output [16]. The dropout
layer is a regularization technique that reduces overfitting and
memorization by the network [17]. The instance normalization
layer is used to stabilize and accelerate the training process
by normalizing the activations within each instance of the
input data [18]. This block can be comprised of regular 3D
convolutions or 3D transposed convolutions to accommodate
for needs of the specific part it is placed in. Strides, kernel
sizes and padding are all configurable. Figure 3 visualizes the
convolutional blocks.

2) Double residual convolution block: The main building
block for the convolutional part of this network is a double
convolutional residual block. This is inspired by ResNet [19]
to provide more stability, higher learning ability, and mitigate
vanishing gradients within all the convolutional parts of this
architecture. Figure 4 shows this building block. The single
convolutional block on the residual path is to match the
channels correctly with the output of the main flow and uses
a kernel size of 1.

Fig. 3. Visualizations of the single convolutional block. The color codes
of red and blue represent the transposed nature of these blocks (red
means transposed convolution, blue means regular 3D convolution) and
will be used in further diagrams for ease of visualization. The words up
and down will be used to signify if the convolutions upscale or downscale
the input.

Fig. 4. Double residual convolutional block. The residual part has a
single convolutional layer to match the amount of channels with the non
residual part using a kernel size of 1. Again, the color code of green will
be used for future diagrams to represent this block.

3) Encoder: The encoder module of our network is heavily
based on a U-Net [3] encoder. It downsamples the given input
to 4 lower resolutions using a combination of the single and
the double blocks described above. There are residuals from
each block of the encoder that will be used by the rest of
the architecture. Figure 5 provides a visualization. We have
chosen for 4 levels of downsampling since with an image size
of 128 per side and patch size of 16 per side more than 4
downsamplings (each with a factor of 2) is not possible.

4) Embedder: The multi-scale representations of the input
from the encoder need to be reshaped and embedded to
the correct dimensions according to the patching the vision

Fig. 5. The encoder module. U-Net like contracting path, using
strided convolutions to downsample and double convolutional blocks for
better learning. The skip connections (multi-scale view of the input) are
represented by the arrows.
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Fig. 6. The embedder module. Uses convolutions to take patches
out of the input and create the appropriate amount of channels for the
embeddings. Inputs are rearranged for the vision transformer. Every
input level has its own set of modules. The double convolution blocks
use a kernel size of 1.

transformer expects. If the patches are of size (P × P × P ),
the flattened tokens would be of size P 3. However, vision
transformers usually project these tokens into a bigger em-
bedding dimension. To achieve this shape of data, we have
implemented the embedder module that, per input scale, uses
a single convolution with a kernel size and stride equal to
the patch size. This extracts non-overlapping patches from
the feature maps of the encoder. If input has the shape
(B,C1, H,W,D) where B is the batch size, C1 is the amount
of channels, and H,W,D are the spatial dimensions, the
output from this single strided convolution will be of the shape
(B,C2,

H
P , W

P , D
P ) where P is the patch size and C1 ≤ C2. We

aim to make the channel dimension out embedding dimension,
hence the increase in size from C1 to C2. Then a block of
double convolution with kernel size of one scales the input to
have the correct amount of channels, which is the embedding
dimension of the network. The result of this operation will
have the shape of (B,E, H

P , W
P , D

P ) where E is the embedding
dimension of the network and C2 ≤ E. Since the vision
transformer expects flat tokens, these five dimensional tensors
are reshaped to (B, (HP · W

P · D
P ), E). These are the final

tokens that will be the input of the vision transformer. The
embeddings from all the scales are concatenated for the vision
transformer to interpret as a singular series of tokens. We take
the intermediate step of C1 to C2 to E for two reasons. Firstly,
this just seems to learn and perform better. Secondly, doing this
jump in channel count with the patching convolution would
make the filter sizes within that operation extremely big and
hence slow. We have empirically found out that this way works
better than other methods. Figure 6 visualizes this module.

5) Vision Transformer: The vision transformer that we use
is quite similar to the default transformer [5] encoder. The
transformer is comprised of identical blocks stacked. We use
learned positional embedding that are applied to every image
level together. The idea behind this is to embed the levels
together with the patches so the network can figure out which

Fig. 7. One transformer block (layer). Tokens are normalized before
attention is computed. Residual connections are used before and after
the multi layer perceptron. Input and output shapes are the same.

patches (tokens) are from which resolution level.
Transformer blocks first normalize the given input with

a layer normalization. This step is different to the original
transformer architecture as is discussed in detail by Xiong et
al. [20]. This method has been widely accepted by all vision
transformer architectures. Another variation from the original
block is the use of flash attention [21]. This is a faster im-
plementation of the multi head-attention mechanism (MHSA)
that uses tiling and smart memory algorithms that reduces
the complexity and increases the IO efficiency compared to
regular MHSA. This enabled the use of smaller patch size in
our network since regular attention is O(N2) with respect to
input size and flash attention is almost linear. One layer of the
vision transformer is visualized in figure 7.

6) De-Embedder: The de-embdeder of out network follows
much of the same wisdom as the embedder. Use smaller filter
counts for bigger kernels and chain more convolutions. The
idea is exactly the opposite process of the embedder as well,
where the input is first reshaped from the token shape to
(B,E, H

P , W
P , D

P ). Then using a transposed convolution block
the spatial dimensions are restored to their original shapes of
(B,C,H,W,D). Finally the channel counts are restored using
a double convolutional block with the correct parameters.
Figure 8 visualizes this module.

7) Decoder: The decoder part of this network is also heavily
influenced by the U-Net architecture. Transposed convolutions
are used to upsample the outputs of the layers below, while
residuals are concatenated with these upsampled outputs.
Again the basic building blocks of single and double con-
volutions are used. Figure 9 shows this architecture. The final
output channel size is corrected with a double block to achieve
the same shape as the labels. The final activation is a softmax
layer instead of the PReLu compared to all other blocks.

IV. DATASET

In this section we present an overview of the target dataset.
This dataset includes 90 CT scans of pre-operative patients
collected from Amsterdam University Medical Center (Ams-
terdamUMC).
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Fig. 8. The de-embedder module. Splits the tokens up into the
corresponding levels of downsampling. Uses a rearrange operation with
transposed convolutions to recover the shape of the skip connections.
These skip connection (multi-scale view) are represented by the outgo-
ing arrows.

Fig. 9. The decoder module. Resembles the expanding path of a U-Net
network. Skip connections (multi-scale views) are concatenate with the
upscaled versions of the lover levels. The result is a one-hot encoded
segmentation map.

Fig. 10. Sections of the aorta, this dataset only includes annotations
(labels) on the abdominal part of the aorta. [22]

TABLE I
LEARNING SETUP CONFIGURATION

Parameter Used in the setup
Library PyTorch, MONAI
Number of epochs 1500
Batch size 4
Optimizer Adam
Loss function Dice + Cross Entropy
Learning rate scheduling Lower on plateau
Initial/final learning rates 1e-3 / 1e-5

A. Abdominal Aortic Aneurysms

Abdominal aortic aneurysms (AAA) are segmental, full-
thickness dilations of the abdominal aorta exceeding the
normal vessel diameter by 50 percent [23]. For the most part,
they present no symptoms until the moment they rupture.
AAA ruptures are often lethal [23]. Since they are mostly
asymptomatic and lethal, they pose a significant challenge to
the medical community, as without regular screening, there is
no reliable way of identifying patients with aneurysms. In a CT
scan of the human body, it is possible to identify aneurysms
visually; however, it is more convenient to use segmentation
algorithms to determine thicknesses and shapes, as doing this
process manually is a tedious process especially if a single
patient has many follow-up scans. The CT scans in this dataset
are aimed to identify and process infrarenal aorta images.
This meas that the aortas are only segmented in the abdomen.
Figure 10 identifies where in the human body the infrarenal
part of the aorta is located. The scans all have segmentation
masks with three classes. The background, lumen (part of the
aorta that the blood flows), and thrombus (clotted blood).

B. Labelling and Pre-Processing

The CT scans used in this study are obtained without an-
notations. In a separate study conducted by Alblas et al. [24],
scans are initially manually annotated by human observers.
Then, using implicit neural representations, the annotation are
reconstructed. In other words, this process ’fills in’ the gaps
between manually annotated points using an implicit neural
representation.

All CT scans in the dataset are resampled to have the same
voxel size. We have calculated the target voxel size based
on the median value of all scans per axis. These values are
(1.2, 1.2, 0.9) with respect to the sagittal, coronal, and axial
axes. Furthermore, the scans are cropped with respect to the
foreground voxels, removing some of the background.

Figure 11 visualizes an example scan from the dataset that
is labelled and pre-processed with the mentioned steps.

V. EXPERIMENTS

A. Setup

All experiments we present in this study are done using
a single NVIDIA A40 GPU with 48GB VRAM. All models
are trained on the same system with the same data files. The
batch size is selected solely on the bases of available VRAM
and kept constant in all experiments for comparison. The full
configuartion of the learning setup is visible in table I.
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Fig. 11. An example visualization from the dataset. On the left are the
original CT scans while on the right are segmentation labels. From top to
bottom: coronal, axial, and sagittal views are given with the center voxel
fixed in position. The red indicates the lumen, the green segmentation
indicates the thrombus.

TABLE II
U-NET CONFIGURATION USED

Parameter Value
Channels per layer 16, 32, 64, 128, 256
Residual units per layer 3
Strides per layer 2, 2, 2, 2
Normalization method Instance Normalization
Dropout rate 0.1

B. Baseline models

We have selected two baseline models to compare with.
These models are U-Net and Swin UNETR.

1) U-Net: The U-Net implementation used in this study is
from MONAI. It uses the same crop size and pre-processing
pipeline as the proposed model. The configuration is given in
table II.

2) SWINUNETR: The Swin UNETR implementation used
in this study is from MONAI. It uses the same crop size and
pre-processing pipeline as the proposed model. The configu-
ration is given in table III. As mentioned in the background

TABLE III
SWIN UNETR CONFIGURATION USED

Parameter Value
Depths (per layer, MLP layers) 2, 2, 2, 2
Attention heads per layer 3, 6, 12, 24
Feature size 24
Normalization method Instance Normalization
Dropout rate 0.1

TABLE IV
THE CONFIGURATION OF OUR MODEL

Parameter Value
Channels per encoder/decoder layer 16, 16, 16, 16, 16
Strides per layer 2, 2, 2, 2
Normalization method Instance Normalization
Dropout rate 0.1
Transformer embedding dimension 512
Transformer hidden size 2048
Number of attention heads 16
Number of transformer layers 12
Embedding patch size 8× 8× 8

section, Swin UNETR also takes advantage of a multi-scale
representation using a swin transformer. However, this multi-
scale representation is not explicitly made outside of the
transformer, rather it is a product of it. We chose this model
as a comparison model for this reason.

C. Configuration of our model

We have made some design choices for the final configura-
tion of our model based on the criteria of performance with
memory as a limiting factor. We found that 16 feature maps
per layer in the encoder module was enough for the vision
transformer. The full configuration of our model can be found
in table IV.

D. Data processing and augmentation

To increase the training capabilities of any model, the
data processing (and augmentation) is crucial. Within this
work, all models have been trained with exactly the same
processing pipeline to ensure comparability. The following
transformations are applied to each CT image in the training
process. The list is in order of operations.

• Intensity scaling per CT window. All values that are lower
than -300 HU are considered 0, all values higher than 300
are considered 1. The remainder is normalized between
0 and 1 linearly.

• Random 3D cropping with crop size of (128×128×128).
We have found that over-sampling foreground sections
on a one to one basis with background results in better
models. So, a crop is either centered on a background or
foreground voxel with equal probabilities.

• Random flips in all three spatial axes. 10 percent chance
per axis.

• Random intensity shifts per voxel. 10 percent change for
a chance of 0.05.
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TABLE V
RESULTS

Lumen Thrombus
Model Dice HD (mm) Dice HD (mm) Parameters
Ours 0.893 38.7 0.689 73.4 95M
U-Net [3] 0.881 50.7 0.672 53.6 7M
Swin UNETR [15] 0.916 19.3 0.796 44.2 16M

E. Inference for testing

In order to test the full capabilities of the models, it is
important to segment entire images. We have used sliding
window inference with 70 percent overlap. We have also tested
a ”keep the largest component” method, however, most likely
due to the big overlap of the inference, this made almost no
difference. Hence it is not used. Inference was performed on
the testing set which include 10 scans that are excluded from
the training set.

F. Metrics

In this section we outline the metrics that will be used to
evaluate the proposed model, the baseline models, and further
on the ablation study.

1) Dice score: Dice score [25], formally Sørensen–Dice
coefficient, is one of the most used metrics for image segmen-
tation as well as being a loss function with some modifications.
It is very closely related to intersection over union, and in fact
can be rewritten as such. When comparing two volumes with
A as the predicted volume and B as the label, the Dice score
can be formalized as:

DSC(A,B) =
2|A ∩B|
|A|+ |B|

(2)

2) Hausdorff distance: Hausdorff distance is a measure of
distance between two sets of points. Given some distance
measurement function d, two sets A and B, and points a from
A and b from B. d(a, b) measures the distance between two
points. Then a smaller definition of Hausdorff can be written
as:

h(A,B) = max
a∈A

{min
b∈B

{d(a, b)}} (3)

However, this is a directed measurement since h(A,B) does
not have to equal h(B,A). A more general definition is derived
as the following:

H(A,B) = max{h(A,B), h(B,A)} (4)

where the maximum of both distances is taken.

G. Results

The models described in detail above are trained using the
same setup as our model with the dataset. Table V shows
the metrics calculated on the test set with the trained models.
Dice scores (Dice) and Hausdorff distances (HD) are presented
per model. The results are separated between the foreground
classes of lumen and thrombus.

As we can see from the results, our model does not
perform as well as Swin UNETR however it manages to
produce slightly better segmentation results than the U-Net
with only the Hausdorff distance of thrombus being worse
than the U-Net. Considering the configurations of the U-Net,
many channels and resnet blocks, this is a nice result to
see. It as least means that this method ”works”. More of the
discussion for the results of this experiment is given in the
main discussion section.

VI. ABLATION STUDY

In this section the five models that make up the ablation
study will be introduced and compared. All of these models
have been created to test the strength and the contribution
of certain aspects of the proposed architecture. The naming
of these models can get confusing so they have been coded
by letters to make referencing easier. Figure VI visualizes all
these ablation models with the letter codes also present.

A. Models

1) Half-half (A): This model is a variation on the proposed
architecture in an attempt to improve its performance. Half of
the channels in the skip connections are fed into the vision
transformer while the other half are not altered by the vision
transformer but concatenated to the outputs of it instead.

2) U-net like (B): This model aims to evaluate the actual
contribution of the vision transformer by removing it. The
resulting model is a U-Net like encoder/decoder model.

3) Autoencoder (C): This model removes the skip connec-
tion between the encoder and the decoder of model B.

4) With embeddings (D): This model only removes the vi-
sion transformer while keeping the embedder and de-embedder
modules in place. The goal of this model is to measure the
impact of the embedding/de-embedding. We will compare the
proposed architecture, model B, and this model to evaluate the
leraned mebedding approach.

5) Single-scale ViT (E): This model does not utilize the
lower scales of the input. It aims to demonstrate the difference
the multi-scale view makes. For the embedding of the single
level, the same embedding / de-embedding module is used.

B. Results

Table VI shows the results of all the ablation models with
identical training setups. Our original model performs better
than all the ablation models with the half-half (A) and U-
Net like (B) performing similar. The rest of the models lack
the ability to segment the images to a degree that our model
does. Finally, for ablation models C, D, and E, using a ”keep
the largest component” function is used in 3D. These models
produce outputs that have big components far away from the
target area. For the remaining ablation models, this function
again made no difference in scores. A discussion of these
results is given in the discussion section of this report. Figure
13 shows the segmentation of one of the test cases with all
the ablation models over 3 different slices.
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Fig. 12. All the ablation models created for this study. A: ”half-half”, is variation that uses half of the encoder channels in the vision transformer path
and the other half is concatenated after the vision transformer path. B: ”U-Net like” basically connects the encoder and the decoder immediately. C:
”autoencoder”. D: ”with embeddings” adds the embedder/de-embedder couple to the U-Net like model. Aims to test the effect of the embeddings
on the network. E: ”single-scale ViT” presents almost the same architecture, however, only the non downsampled version of the input is patched
and used in the rest of the network.

TABLE VI
FINAL PERFORMANCES OF THE ABLATION MODELS

Lumen Thrombus
Model DSC HD DSC HD Parameters
Proposed 0.893 38.7 0.689 73.4 95M
Half half (A) 0.869 42.6 0.670 61.8 55M
U-Net like (B) 0.790 62.2 0.759 56.6 185K
Autoencoder (C) 0.769 70.6 0.714 58.9 89K
With embeddings (D) 0.420 230 0.399 255 42M
Single-scale ViT (E) 0.560 125 0.518 144 47M

VII. DISCUSSION

Throughout this study, we have explored the integration of
vision transformers with U-Net like architectures for medi-
cal image segmentation. Our work has been made with the
hypothesis that a multi-scale representation of the input can
enhance the performance of vision transformers in such a task.
We found that a multi-scale representation indeed improves
the segmentation performance of a vision transformer. In this
section we will discuss the various aspects of our study and
the results achieved.

A. Results compared to baselines

As indicated in Table V, our proposed model may not
have surpassed the state-of-the-art performance in the given
segmentation task, yet it has still delivered a higher quality
result than a contemporary U-Net. Swin Transformers have
proven to be quite efficient in imaging tasks, and the in-
ternal multi-scale representation that Swin UNETR creates
appears to offer a more suitable multi-scale approach for
vision transformers. It’s important to note that the primary
objective of this study was not to outperform Swin UNETR,
but to assess the effectiveness of multi-scale representation
with vision transformers. However, considering the parameter
count of Swin UNETR (approximately 15 percent of our
model), Swin Transformers seem to be the superior backbone
network available.

B. Comparison of the ablation models

As our ablation study demonstrates, none of the variations
to our model outperformed the original. This is an encour-
aging discovery as it supports the hypothesis of using multi-
scaled input for vision transformer. Beginning with the U-
Net like model (B), it can be inferred that the inclusion of
the embedder/de-embedder and the vision transformer together
seems to contribute to a more successful model. In other
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Fig. 13. An example segmentation from the test set with all the models mentioned in this section and the label. 3 different slices from the same
scan are shown. On top the original slice without any annotations. From top to bottom: label, proposed, half half (A), U-Net like (B), autoencoder
(C), with embeddings (D), single-scale ViT (E).
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words, the surrounding structure of the transformer can’t take
full credit for the final result. Examining the single scale
variant (E), we notice a significant decrease in performance
compared to our model, suggesting that the transformer alone
also can’t take full credit. It’s the combination of these
elements that has produced the best performing model we’ve
created. This also strongly supports the multi-scale approach
to tokenization.

The notably poor result with the addition of the
embedder/de-embedder without the vision transformer, as
shown by ablation model D, points to the potential weakness
of this model. Its performance is remarkably lower than all
the other ablation models. Furthermore, the embedder/de-
embedder duo accounts for 50 million parameters, over half
of the network. This can be interpreted as follows: With the
current state of the model, more than half of the learnable
parameters are used merely to reshape the input to suit the
vision transformer. This is certainly not ideal and should be
addressed in future research.

C. Dataset Limitations
All scans included in the dataset are from pre-operative

patients. The images feature the abdominal section of the
aorta (see Figure 10), meaning that the dataset does not
capture or segment the vessel’s entire length. The datasets
objective is to represent a specific type of AAA that occurs
only in the infrarenal region (situated or occurring below the
kidneys). However, a limitation of this dataset is the sharp
borders in the segmentation maps where the labeling ends,
even though the aorta visibly continues. A clear discontinuity
in the segmentation map is visible in Figure 11. Another
limitation of this dataset is number of samples. 90 scans is
enough to train deep learning models, however, more is always
appreciated. For example, in this dataset there are only a few
patients without a thrombus (see figure 11), while most healthy
humans do not present one. This makes many models biased
towards segmenting a thrombus, even if there isn’t one.

D. Future Work
In this paper we presented a novel architecture using a

vision transformer as a backbone. However, there are still quite
a lot of improvements that can be applied to this network to
potentially achieve better results.

1) Attention Filtering: This model has been tested on a
dataset where the foreground (mask labels that are not the
background) occupy relatively little space in the whole image.
This means that there are a lot of patches that the vision
transformer needs to correctly label as all background. This
issue could possible be fixed by a filtering system, where
the attention of each token, possibly cross-attention with a
bigger token (from a higher level of the tree), is leveraged.
A successful implementation of this strategy would have
two benefits. Firstly, all the parameters of the transformer
would be deployed to more accurately segment foreground
tokens. Secondly, since background tokens are filtered out,
these would be immediately segmented as fully background,
creating cleaner segmentations.

2) Separate Positional Encoding: In this work we have only
used learned positional encoding. The assumption is that the
model should learn which parts of the input and the multiple
levels of input is where by itself. However experimenting with
more explicit ways of positional encoding where the level
information is already given to the transformer is a possible
research path.

VIII. CONCLUSION

Throughout this study, we have explored the integration of
vision transformers with U-Net like architectures for medi-
cal image segmentation. Our work has been made with the
hypothesis that a multi-scale representation of the input can
enhance the performance of vision transformers in such a task.
We have shown a strong argument for this hypothesis with this
work and believe answered it in a positive way.

Our proposed model, while not surpassing the state-of-the-
art performance, still showed promising results, performing
better than a contemporary U-Net. The ablation study provided
valuable insights into the importance of different components
of our architecture. Neither the U-Net like components nor the
vision transformer could independently take full credit for the
model’s performance. Instead, it was their combination that
led to the most efficient model we created.

However, we also identified potential areas of improvement.
The embedder/de-embedder duo, responsible for reshaping the
input to suit the vision transformer, accounted for more than
half of the learnable parameters. Future research should focus
on addressing this issue to further optimize the model.

In conclusion, this study contributes to the ongoing research
in medical image segmentation, affirming the potential of
vision transformers when used in conjunction with multi-scale
representations. Our findings are a step forward in the pursuit
of more efficient and effective models for this critical task,
paving the way for future explorations in this direction.
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