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Abstract

The insufficiency and inadequate diversity of medical datasets have been significant prob-
lems in computer-aided diagnosis (CAD) systems and medical imaging research. Conse-
quently, medical image synthesis has emerged as one of the most dynamic machine learning
research areas presently. We present a novel approach for fast and precise semantic image
synthesis using diffusion models. In particular, our method generates high-quality Lung
computed tomography (CT) images with precise lung nodule areas by utilizing the seman-
tic labels and key features of the nodules in LIDC-IDRI dataset. We use a diffusion model
to learn the conditional distribution of the image pixels given the semantic label map,
which enables us to generate realistic and diverse images by sampling from the learned dis-
tribution. To further improve the quality of the synthesis results, we evaluate several key
pathology features of the lung nodules in LIDC-IDRI dataset and use classifier guidance
with these key features to optimize the generated nodule areas. We evaluate our method
with various kinds of synthetic image quality metrics and show that it outperforms state-
of-the-art methods in terms of visual quality, diversity, and fidelity to the input semantic
labels. Our method has the potential to enable new applications in medical imaging, such
as medical data augmentation, anomaly in-painting, and diagnosis training.

Keywords: machine learning, CT, medical imaging, deep generative models, semantic
image synthesis, diffusion models, classifier guidance



Chapter 1

Introduction

1.1 Motivation

Medical research has greatly benefited from the advancement of machine learning tech-
niques in recent years [37, 14, 46, 50, 25, 2, 42, 18]. With the ability of statistical and
inductive analysis, deep learning methods have revolutionary impact on diagnosis and
treatment of diseases and have shown remarkable performance in a variety of medical
imaging tasks, including segmentation, detection, and classification. The success of these
approaches is highly dependent on the availability and quality of training data. Undersized
and imbalanced datasets can lead to biased and inaccurate models, which may have serious
implications for patient care [51].

There are several challenges in acquiring medical image datasets. Firstly, the collection
of medical images is often limited by ethical and legal issues [51]. Secondly, manual anno-
tation and labeling of medical images is time-consuming and requires expertise. Finally,
collecting and processing medical images can be difficult and expensive, due to limited avail-
ability and costs concerned with using medical imaging equipment such as CT or Magnetic
resonance imaging (MRI) scanner. Consequently, the difficulty of acquiring medical image
data pose a major challenge for the development of CAD systems and medical imaging
research [35]. To address this issue, generating synthetic medical images with accurate
pathology features is supposed to be a promising solution [41], which potentially allows for
the generation of unlimited virtual medical data. In particular, semantic image synthesis
(SIS), which utilizes a segmentation label map as conditional information, has proven to
be an efficient approach to generate high-quality images [15, 32].

However, the state-of-the-art SIS methods have inevitable limitations when dealing
with tiny semantic areas in the map. For example, existing methods often struggle to
faithfully generate and preserve the fine-grained details of tiny semantic areas such as
human eyes in the facial dataset, traffic lights in the scene dataset, and furniture details
in LSUN bedroom dataset [61].

For medical image synthesis, such limitations can result in misleading information
and significantly weaken the value of the synthetic medical data. Specifically, inaccurate
information of small regions of interest (ROIs) can lead to serious misdiagnosis and severe
fault in treatment planning. Recent research has focused on the accuracy of generation
based on complex semantic maps [43, 60]. However, the improvements and systematic
analysis of the generated results with respect to certain small ROIs, such as nodules in
lung CT scans, have received less attention and lack evaluation.

To address this problem, we propose the latent semantic diffusion model (LSDM),
which better utilizes the semantic maps of LIDC-IDRI dataset as the input of adaptive
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normalization layers and control the diffusion process in the latent space. Existing meth-
ods have limitations in precisely generating small areas such as lung nodules in the image.
In contrast, our method uses several nodule pathology features provided by LIDC-IDRI
dataset to describe the requirements of the generation, and explicitly control the charac-
teristics of the generated lung nodule areas via multi-classifier guidance based on these
pathology features. We also use a balancing method (discussed in section 4.2) in dataset
pre-processing to improve the performances of the classifiers.

We evaluate our method with various kinds of synthetic image quality metrics. Our
experimental results demonstrate the superiority of our method over state-of-the-art tech-
niques in terms of visual quality and quantitative metrics such as diversity and fidelity. To
further evaluate the multi-classifier guidance, we also do ablation studies with respect to
the classifiers.

Our method has the potential to enable better utilization of the information in the
datasets and generate small segmentation areas precisely. We believe that this work can
contribute to the development of new medical image synthesis methods and benefit clinical
applications and patient care.

1.2 Contributions

To overcome the challenge of generating precise image characteristics in detailed seman-
tic areas such as lung nodules, we specifically make two contributions. Firstly, we utilize
spatial-adaptive normalization layers aligned with concatenated semantic channels in the
blocks of the diffusion model to leverage the information contained in the semantic labels.
Secondly, in order to quantitatively control the generation results on small ROIs in an
explicit approach, we propose in-painting style multi-classifier guidance for our reverse dif-
fusion process based on the key pathological characteristics of the nodules. Combined with
the above, we also implement the diffusion process in the latent space for fast inference and
use a re-sampling trick to solve the divergence problem with severe imbalanced distribution
of the key pathology features in the dataset.

According to the requirement of precise generation in small ROIs, the proposed training
pipeline consists of 3 stages: training the autoencoder for latent space, training the key
feature classifiers, and training the latent semantic diffusion model (LSDM). The stages are
disentangled and trained separately, enabling flexible implementation and efficient deploy-
ment of the model. During the inference procedure, our method first takes the semantic
labels of the images in pixel space as inputs and encodes them into latent space, which
filters out unrelated redundant information. subsequently, the method generates Gaus-
sian noises in the latent space and concatenates them with the encoded semantic labels.
Aligned with the spatial-adaptive normalization layers with respect to the semantic labels
in the diffusion model and the guidance of the key feature classifiers, our method then goes
through the reverse diffusion process to generate target images in latent space. Finally, the
method decode the target image into the real pixel space. A detailed illustration is shown
in Fig. 3.2 and Chapter 3.

1.3 Report Outline

The rest of the thesis is organized as follows: Chapter 2 presents a detailed overview of
related work. Chapter 3 describes the proposed method in detail, including the diffusion
model, in-painting style classifier guidance, and training procedure. Chapter 4 introduces
the pre-processing methods of the utilized data, followed by the experimental results and
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comparisons with state-of-the-art methods in Chapter 5. In addition, we discuss the inter-
esting connections between diffusion models, which is the basis of our method, and particle
filtering/reinforcement learning in Chapter 6. Furthermore, Chapter 7 presents several dis-
cussions and illustrates the limitations of our methods. Finally, Chapter 8 points out the
possible directions of future work.
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Chapter 2

Related Work

In this chapter, we first have a brief review of generative adversarial nets (GAN) and their
variants. Then we discuss the conditional image synthesis using GAN-based models. After
that, we discuss the recent research efforts focused on image generation using diffusion
models and their variants, illustrating the advantages of them with respect to the GAN-
based models. Furthermore, we concentrate on the discussion of conditioning in diffusion
models and introduce the guidance mechanism to control the reverse diffusion process.
Specifically, we discuss the challenge of small semantic area generation, as it requires the
generation of precise and detailed images in a limited area. Finally, we focus on the recent
research efforts of generative models for this purpose.

2.1 Generative Adversarial Nets

GAN has emerged as one of the most promising approaches for generating high-quality
synthetic images for years. GAN consists of a generator G and a discriminator D, which
are trained in an adversarial manner [8, 1, 20]. The generator G tries to generate images
that mislead the discriminator D, while the discriminator D tries to correctly identify the
generated images. If converged, the generator G learns to generate images that are similar
to the training data, and the discriminator D learns to estimate the probability of a sample
from the training dataset. Both structures are parameterized with neural networks.

The original GAN training pipeline works as follows: Given a training dataset with
distribution pdata and a noise vector z with distribution pz in the latent space, the generator
G takes z as input and generate image x′ = G(z), based on which the discriminator D
outputs the probability of a sample (x or x′) belongs to the training dataset. The objective
function of this pipeline is a two-player min-max game which can be described as follows:

min
G

max
D
{Ex∼pdata log(D(x)) + Ez∼pz log(1−D(G(z)))} (2.1)

Where pdata is the distribution of the training data and pz is the distribution of the
latent noisy vector. The two networks play a zero-sum game, in which the generator’s
objective is to synthesize samples that minimize the objective which indicates the accu-
racy of the discriminator, while the discriminator’s goal is to maximize its accuracy in
distinguishing real from fake samples.

GANs can be used to generate synthetic data that significantly resemble real data.
This makes it a powerful tool for generating data with complex information such as high-
resolution images [8, 1]. In addition, GANs can be used for unsupervised learning without
labelled data, leveraging the vast amount of real-world data. However, there are several
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disadvantages of GANs including the instability of adversarial training, mode collapse and
the distribution bias of the generated data with respect to the real data.

Several variants of the original GAN algorithm have been proposed to address its limita-
tions and improve its performance in various applications. Wasserstein GANs (WGANs)[1]
replace the original adversarial objective with the Wasserstein distance, resulting in a more
stable training process that partially avoids mode collapse and difficulty in hyper-parameter
tuning encountered by GAN. Specifically, WGANs adjust the discriminator network with
1-Lipschitz constraints to formulate objective as the estimation of Wasserstein distance,
solving the derivative vanishing problem of the original objective when the distributions
of the real data and the generated data have little overlap. Deep Convolutional GAN
(DCGAN) [33] uses a convolutional neural network (CNN) to capture spatial correlations
between pixels of the images and evolves several minor adjustments. Cycle-Consistent
GAN (CycleGAN) [63] use a cycle-consistency loss to enforce that the reconstruction of
a generated data should match the original data, and vice versa. This mechanism allows
for domain transfer without the need for paired training data. StyleGAN [17] introduces
a style vector to the generator, allowing for fine-grained control of the generated image’s
style. StyleGAN also employs progressive growth during training and hierarchical latent
spaces for the generator and the mapper.

2.2 Conditional Image Synthesis using GAN

Conditional image synthesis aims to generate realistic images based on the input con-
ditions including text, labels, sketches, semantic maps or other modalities. Conditional
image synthesis is supervised learning with the conditioning information which can also
improve the generation quality. Leveraging from the interaction-style input of the condi-
tioning information, GAN-based conditional image synthesis can also help to understand
the underlying structure and intrinsic distribution of natural images.

There are various research efforts on this supervised-style generation technique based
on GAN-like models. Conditional GAN (cGAN) [27] is an extension of the original GAN
model. The objective function of cGAN is:

min
G

max
D
{Ex∼pdata log(D(x|y)) + Ez∼pz log(1−D(G(z|y)))} (2.2)

Where y is the conditional information encoded in both generator and discriminator,
changing D(x|y) into a conditional probability. The cGAN algorithm enlightened the con-
trollability study of GAN and its variants, providing significant improvements in generation
fidelity. Derived from cGAN, Auxiliary Classifier GAN (ACGAN) [31] uses an auxiliary
classifier in the discriminator to enforce the correspondence between the input conditions
and the generated images. It also uses a projection mechanism to match the conditional
distributions of real and fake images. To improve the utilization of image conditions and
translate an image from one domain to another, Image-to-Image Translation with Condi-
tional Adversarial Networks (pix2pix) [15] uses a U-Net based generator and a PatchGAN
discriminator, which only penalizes structure at the scale of patches, to perform image-to-
image translation tasks, such as edges to the photo, day to night, semantic map to the street
scene, etc. It also uses an L1 loss to preserve the low-frequency information of the input
images. For multi-modal conditional information, Product-of-Experts GAN (PoE-GAN)
[13] consists of a product-of-experts generator and a multi-modal multi-scale projection
discriminator. With the carefully designed network and training scheme, PoE-GAN learns
to synthesize high-quality and diverse images.
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Figure 2.1: (a). SPADE ResNet [9] block with time embedding used in our
method. (b). The SPADE normalization layer illustration. The semantic map is
first projected onto an embedding space and convolved to produce γ and β, which
are the normalization parameters acting pixel-wise on the hidden layers.

Recently, Spatially-Adaptive Denormalization (SPADE) [32] aims to address the lim-
ited ability of generative models to capture finer spatial details in image synthesis by
directly adapting to the input data’s spatial structure. The main idea behind SPADE is
to implement spatially-adaptive denormalization layers in the generator network to adjust
the normalization statistics in the hidden layers. SPADE shows that directly feeding se-
mantic map to the generator is sub-optimal as the normalization layers in the generator
tend to “wash away” semantic information. SPADE bypasses the need for instance nor-
malization and generates images with more fidelity. The normalization process in SPADE
is divided into two steps. First, the input semantic maps are projected onto an embed-
ding space and convoluted to produce normalization parameters γ and β, which have the
same spatial dimensions as the normalized activation. Second, the produced γ and β are
multiplied and added to aforementioned activation element-wise. The illustration of this
procedure is shown in Fig. 2.1. SPADE’s effectiveness in generating high-quality im-
ages has been demonstrated in various image-to-image translation tasks, including scene
generation [32, 54], style transfer [48], and facial image synthesis [55].

With the above research efforts concentrating on overcoming the disadvantages of the
original GAN structure, the performances has been impressively improved in many down-
stream generation tasks, yet the nature of mode collapse and training instability has not
been completely eliminated in GAN-based models [5].

2.3 Diffusion Models

Diffusion models have been wildly accepted as another dominant technique on image syn-
thesis recently. The idea behind the diffusion process, however, can be traced back to
2015, when [44] proposed an unsupervised learning method under the concept of non-
equilibrium thermodynamics, which is named as diffusion probabilistic models (DPM)
enlightened from the field of statistical physics. In general, the diffusion process can be
formulated as stochastic differential equations (SDEs) that describe the evolution of the
target data over time [47, 46]:

dx = f(x, t)dt+ g(t)dw (2.3)
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Figure 2.2: Forward and reverse diffusion processes. The forward diffusion process
(described in equation 2.5) is a Markov chain that gradually adds Gaussian noise to
the data. The reverse diffusion process (equation 2.6), on the other hand, de-noise
the data by a parameterized generative model pθ(xt−1|xt).

Where x is the target data we aim to describe, dw represents a Brownian motion
process, which can be intuitively understood as an infinitesimal Gaussian noise. In image
synthesis, this continuous process can be simplified and explained as follows [11]:

x(t) = α(t)x(0) + σ(t)z, z ∼ N (0, I) (2.4)

Where x(t) is the latent representation data over time t, α(t) and σ(t) are scalar func-
tions that describe the magnitudes and z is the Gaussian noise added to the original data
with t = 0. To parameterize the reverse diffusion process as the generation procedure. The
above continuous process is modeled as a Markov chain with the transition probabilities q
over discrete time steps t shown as follows[11]:

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) (2.5)

Where β1, ..., βt are fixed variance schedule of the Gaussian distribution. As is dictated
in equation ??, a noisy sample xt can be obtained directly from the clean sample x0

as xt =
√
ᾱtx0 +

√
1− ᾱtz with z ∼ N (0, I) and αt := 1 − βt, ᾱt :=

∏t
s=1 αs. The

parameterized generative model then learns to reverse this transition over time steps and
gradually produce realistic images from Gaussian noise. Specifically, denoising diffusion
probabilistic model (DDPM) [11] formulate the following reverse transitions:

pθ(xt−1|xt) := N (xt;µθ(xt, t),σt) (2.6)

In DDPM implementation, the estimated mean of the Gaussian distribution µθ(xt, t)
is achieved by predicting the added noise of the forward diffusion process ϵθ(xt, t) by a
U-Net [37] neural network with:

µθ(xt, t) =
1√
ᾱt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (2.7)

To summarize, DDPM learns the reverse diffusion process mean function µθ(xt, t) by
predicting the added noise ϵθ(xt, t) in the forward diffusion process. DDPM simplifies the
diffusion model’s variational bound to an objective as follows:

∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2 (2.8)

The objective is derived from minimizing the variational bound of the negative log-
likelihood of the data distribution, which is equivalent to minimize the KL divergence
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between the real and the estimated posterior probability distribution of the data, enabling
diffusion models to formulate a more accurate distribution assumption than the GAN-based
models whose goal is to cheat the discriminator.

Several variants of DDPM have been proposed with different modifications and im-
provements, including denoising diffusion implicit models (DDIM) [45], improved DDPM
[30], cold diffusion [3], etc. Unlike DDPM, DDIM uses a non-Markovian diffusion process
for more efficient and flexible sampling, which is optionally deterministic without adding
random noise during generation. Derived from the original DDPM forward diffusion pro-
cess, the modified non-Markovian reverse diffusion process of DDIM is:

q(xt−1|xt,x0) = N (xt−1;
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2t

xt −
√
ᾱtx0√

1− ᾱt
, α2

t I) (2.9)

Where σ2t =
1−ᾱt−1

1−ᾱt ·βt is the variance of the posterior conditioned on both current state
xt and the initial state x0. When σ2t = 0, the sampling process is deterministic and can
be skipped during the inference, and only a subset of the time steps has reverse diffusion
sampling, leading to faster generation using a much fewer number of steps. DDIM also has
consistency property according to the optional deterministic generation process, meaning
that the generated samples conditioned on the same initial noise latent have similar high-
level features. Improved DDPM [30] parameterizes the variances of the reverse diffusion
process pθ(xt−1|xt) to improve the scales of the added noises during the process. It also
uses a cosine schedule on the variance magnitudes instead of a linear one, enabling more
accurate sampling at the end of the reverse diffusion process. Cold diffusion [3] is a most
recent diffusion-based method which uses a series of deterministic processes that corrupt
the input data via variant operations including blurring, masking, down-sampling, etc. It
also proposes a sampling mechanism based on bi-direction degradation. The main claim of
cold diffusion is that for diffusion-based models, it is not mandatory to inject noise during
the diffusion process.

Instead of describing the diffusion model as a denoiser of the preturbed data with a
finite number of noise distributions, score-based models [47, 46] start from considering the
SDEs of the data distribution envolved over continuous time, which is illustrated in 2.3.
By reversing the SDE’s process in 2.3, a reverse-time SDE [46] is satisfied:

dx = [f(x, t)− g2(t)∇xlogpt(x)]dt+ g(t)dw̄ (2.10)

Where w̄ is a Brownian motion process when time flows backwards from T to 0 and
∇xlogpt(x) is the score function which is estimated by the models:

sθ(x, t) ≈ ∇xlogpt(x) (2.11)

The estimation can be optimized by score-matching methods [47] as is described in Score-
matching with Langevin Dynamics (SMLD) and Score-based generative modeling [46]. The
generation process of the original score-based model then plug the score function into the
following Langevin Markov chain Monte Carlo (MCMC) method:

xi+1 = xi + ϵsθ(xi, i) +
√
2ϵzi, i = 0, 1, ...,K (2.12)

Where zi ∼ N (0, I). Other score-based models follow the similar sampling procedure
with minor changes in the equation above. Mathematically, the score function update is
equivalent to the denoising update in 2.6 as is discussed in [46]:

sθ(x, t) ≈ ∇xlogpt(x) =
ϵθ(xt, t)√
1− ᾱt

(2.13)
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To summarize, diffusion models generate data with iterative sampling processes under a
more systematic formulation of matching the data distribution than GAN-based models.
Diffusion models have made significant breakthrough in image, audio and video generation
[30, 16, 36, 39]. On the other hand, several disadvantages of them (discussed in the first
paragraph of section 3.1) which limit the further applications have been discussed in recent
research and are currently being overcame by the fast-developing community.

2.4 Conditional Information in Diffusion Models

One key limitation of the generative models is the trade-off between sample fidelity and
diversity [26]. Leveraging conditional information, GAN-based models are able to trade
off diversity for fidelity to produce high-quality samples [63, 5], while vanilla diffusion-
based models can’t. To address this problem, [5] developed guided diffusion models with
independent classifiers of the intermediate generated data, namely classifier guidance. In
particular, the classifier is trained on noisy images xt and used for guiding the diffusion
sampling process in 2.6 with its gradient:

pθ(xt−1|xt, y) := N (xt;µθ + sΣθ∇xt logpϕ(y|xt),Σθ) (2.14)

Where µθ and Σθ are predicted mean and variance of the reverse diffusion process in
Improved DDPM [30], ∇xt logpϕ(y|xt) is the gradient of the classifier given the class label
y of the data. With the shifted mean of the reverse diffusion process, classifier guidance
improves image quality with additional conditioning information, while decreasing the
divergence of the generated data as cost.

Classifier guidance requires training a separate classifier in addition to the diffusion
model, leading to extra computational cost and higher complexity. To alleviate the com-
putational cost, Classifier-free guidance [12] jointly trains a conditional and an uncondi-
tional diffusion model with conditional information. Instead of training a separate classifier
model, classifier guidance use a single neural network ϵθ(xt, t, y) to parameterize both con-
ditional and unconditional diffusion models, where for the unconditional input a null token
y = ∅ is plugged. During training, the model is fed with a mixture of the conditional and
unconditional inputs y, the sampling procedure then uses the following linear combination
of the conditional and unconditional estimates:

ϵ̃θ(xt, t, y) = (1 + w)ϵθ(xt, t, y)− wϵθ(xt, t, ∅) (2.15)

Where w is the guidance strength. Classifier-free guidance provides another approach to
increase sample quality while decreasing diversity in diffusion models. However, in the case
of using other types of guidance such as regression model guidance and local in-painting
style guidance, classifier-free guidance is hard to implement and loses guarantees on per-
formance, which are the reasons why we use explicit classifiers for the model illustrated in
the next chapter.

Another key problem for the diffusion-based models is the iterative slow sampling
procedure, leading to limited applications on real-time scenarios. To enable diffusion mod-
els training on limited computational resources while retaining their advantages, latent
diffusion models (LDMs) [36] implement the forward and reverse diffusion processes in
a information-preserved latent space of powerful pre-trained autoencoders, considerably
speeding up the training and inference procedures while preserving the quality and flex-
ibility of diffusion models. Furthermore, LDMs achieve state-of-the-art score on various
tasks such as image in-painting and class-conditional image synthesis. Consequently, LDMs
have became the backbone structures of the dominant text-to-image generation model se-
ries Stable Diffusion [36].
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2.5 Small Semantic Area Generation

Zooming out to the overall picture of generative models including GAN-based structures, a
general concern highly related to our nodule generation task is how to precisely synthesize
small segmentation areas given a complex semantic map. In general, vanilla generative
methods can feed the semantic map as input to the neural network, enabling implicit
awareness of the semantic information. Spatially-adaptive normalization (SPADE) [32]
introduces a simple but effective layer in GAN-based models for synthesizing photorealistic
images given a semantic map. Instead of directly feeding the semantic layout as input to
the neural network like the previous methods, which is shown to be suboptimal as the
normalization layers tends to eliminate semantic information, SPADE proposes using the
semantic layout for modulating the activations in normalization layers through a spatially-
adaptive, learned transformation. SPADE is shown to better preserve semantic information
than common normalization layers, even for small semantic areas in the layout.

Inspired by the spatially-adaptive normalization, semantic diffusion models (SDMs)
[54] adapts the SPADE layer into the U-Net [37] neural network structure, enabling SDMs
to benefit from both precise semantic awareness and diffusion models’ flexibility.

To summarize, recent research has shown incredible generation ability of diffusion-
based models in various fields. Combining the semantic information utilization and the
flexibility of the diffusion process, generative models can synthesize realistic images with
high fidelity to the small semantic areas. With the benefit of all the related research, we
present latent semantic diffusion models (LSDMs) with local in-painting style classifiers to
explicitly control the characteristics of the small semantic areas. Our method is illustrated
in the next chapter.

10



Chapter 3

Method

In this chapter, we first give the rationale why we use diffusion models in the latent space
instead of the original pixel space. Then we introduce the method to train the autoencoders
to obtain such latent space. After that, we present the main model structure of LSDMs
with implementation details. In addition, we focus on the design of local in-painting style
classifiers and the mechanism of them interacting with the reverse diffusion process.

3.1 Latent Space

A widely-accepted hypothesis of the real-world data is that the data tend to concentrate
on low dimensional manifolds embedded in a high dimensional space (a.k.a., the ambient
space). This manifold hypothesis empirically holds for many real-world datasets, and has
become one of the fundamental ideas of manifold learning [50, 49, 25, 29, 64]. Under
this hypothesis, a natural connection is that the proportion of effective information with
respect to the pixel bits of an image is small in most of the real-world data. In other
words, most bits of a digital image correspond to the imperceptible details [36]. On the
other hand, diffusion models suffer from iterative slow sampling procedure and expensive
computational cost. Previous diffusion-based models evaluate the neural network backbone
(both in training and inference) on all pixels, leading to unnecessarily heavy optimization
and inference in an iterative manner [36].

Aiming at reducing the redundant computation mentioned above, we implement diffu-
sion models in the latent space, which effectively eliminates the unrelated pixel bits of the
original ambient space. In order to extract a reasonable latent space, an autoencoder is
trained on the original dataset. With carefully designed loss objective and image-specific
inductive bias, the autoencoder filters the pixel bits and the U-Net backbone of the diffu-
sion model can further focusing on the perceptually most relevant information in the latent
space:

∥ϵ− ϵθ(
√
ᾱtz0 +

√
1− ᾱtϵ, t)∥2 (3.1)

Where z0 ∈ Rh×w×c is the encoded image-like data in the latent space from the trained
encoder z0 = E(x0),x0 ∈ RH×W×3. Specifically, the encoder downsamples the image x0 by
a downsampling factor f = H/h =W/w, the diffusion model then implement training and
inference pipeline in the encoded latent space. We set f = 4, c = 3 in our final method.
We explain the choice of downsampling factor in Chapter 7.

Following the implementation of LDM [36], the loss objective of training the autoen-
coder in our method contains three functional parts: reconstruction term, adversarial term
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Figure 3.1: Visualization of the generated latent code (left) after the reverse
diffusion process and the final synthetic CT image (right). Due to the usage of
3-channels latent space z ∈ R128×128×3, we can visualize the latent code in RGB
channel setting. The detailed structure of the original CT scan is preserved in the
latent data even for some small speckled-like area. Furthermore, the latent data
tends to distill different patterns of the small speckled-like areas in different values
of the latent pixels, which reflects considerable expressive capability.

and regularization term:

Lautoencoder = min
D,E

max
ϕ

(
Lrec

(
x,D(E(x))

)
−Ladv

(
D(E(x))

)
+ logDϕ(x)+Lreg(x; E ,D)

)
(3.2)

Where Lrec
(
x,D(E(x))

)
is the reconstruction term to minimize the difference between

original image and the reconstructed image, logDϕ(x)−Ladv
(
D(E(x))

)
is the adversarial

term optimizing the discriminator Dϕ to differentiate original images from reconstructions
D(E(x)) while enabling the autoencoder to cheat the discriminator Dϕ. The last term
Lreg(x; E ,D) is the regularization term avoiding arbitrary scaled latent spaces with a very
small weight factor to obtain high-fidelity reconstructions. Note the different notations
between the decoder D and the additional discriminator Dϕ.

Fig. 3.1 shows the autoencoder results with the original image x ∈ R512×512×3 and
the latent z ∈ R128×128×3. The detailed structure of the original CT scan is preserved in
the latent data even for some small speckled-like area. Furthermore, the latent data tends
to distill different patterns of the small speckled-like areas in different values of the latent
pixels, which reflects considerable expressive capability.

In general, instead of directly implementing forward and reverse diffusion process in the
original pixel space, we use an autoencoder trained with a well-suited loss objective and
transfer the original pixel space into an expressive latent space, in which we manipulate
diffusion and denoise processes with an U-Net network. The latent code preserves most
of the perceptual information in the image while considerably decrease the computational
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Figure 3.2: The overall LSDM model illustration. With the semantic map and
several controllable pathology features (bottom purple panel), we explicitly control
the generated image with desired feature values of the lung nodules.

cost of the diffusion models. In particular, we choose the size of the latent space to be
z ∈ R128×128×3 when the original image size of LIDC-IDRI dataset is x ∈ R512×512×3.
We train the autoencoder using selected training set of LIDC-IDRI dataset, which will be
introduced in Chapter 4.

3.2 Diffusion Model

In this section, we introduce the detailed structure of our diffusion model and present the
reasons of our particular choices. We start with the overall picture of our model, following
with the model implementation and training pipeline, and finally end up with the inference
procedure.

As is discussed in the last section, we express the diffusion process in the latent space
with image-specific inductive bias. The high-level structure of our proposed model named
latent semantic diffusion model (LSDM) is shown in Fig. 3.2. LSDM consists of an
autoencoder model with encoder E , decoder D and reconstruction discriminator Dϕ, an U-
Net network as the core structure predicting the Gaussian noise in the latent ϵθ(zt, t), and
a series of pathology features classifiers ipψ(yi|xt), where yi is the i-th pathology feature
label of the CT scan evaluated from four radiologists in LIDC-IDRI dataset.

The autoencoder (E/D/Dϕ) is based on a residual neural network (ResNet) [9] with at-
tention mechanism plugged in the intermediate representations [52]. The U-Net backbone
ϵθ(zt, t) also formulated with multi-resolution ResNet blocks, which contain skip connec-
tions to better enhance spatial fidelity [37] and spatial-adaptive normalization layers to
better preserve the information of the input semantic label. The inputs of the U-Net back-
bone are the image latent code concatenated with the encoded semantic map E(m), which
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double the number of channels to 2c:

Concat(zt, E(m)) ∈ Rh×w×2c (3.3)

It should be noted that the autoencoder’s training data doesn’t include the segmen-
tation maps. Yet we found that the autoencoder possesses the capability of extracting
sufficient information from the segmentation maps.

The training procedure of the U-Net backbone is as follows: Firstly, we sample pure
Gaussian noise in the latent space zT ∼ N (0, I), zT ∈ Rh×w×c. Secondly, we encode the
original CT scan into the latent space z0 = E(x0) ∈ Rh×w×c and obtain the noisy input
of the U-Net backbone given a random timestep t: zt =

√
ᾱtz0 +

√
1− ᾱtzT following

equation 2.5. Then we concatenate the noisy input zt with the encoded segmentation map
E(m) and feed into the U-Net backbone parameterized with θ. The inputs also include
the time embedding information t. Finally, we compute the mean squared error (MSE)
loss of the output with respect to the true noise ∥zT − ϵθ(zt, t)∥2 and back-propagate the
loss to update the network parameters θ. The overall training procedure is summarized in
Algorithm 1.

Algorithm 1 LSDM Training Procedure
Require: dataset {x0}, trained autoencoder E and D, diffusion schedule ᾱt

repeat
randomly select a batch of data x0 ∼ {x0}
z0 ← E(x0)
t ∼ Uniform(1, ..., T )
zt ←

√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I)

Take the gradient descent step on ∇θ∥ϵ− ϵθ(zt, t)∥2
until convergence

With a well-trained LSDM backbone model ϵθ(zt, t), we can generate samples in the
latent space ẑ0 by evaluating the U-Net backbone network iteratively using full time sched-
ule of the reverse diffusion process as in 2.6 or, alternatively, selected time schedule as in
2.9. After generating the final sample ẑ0, we can obtain the generated CT scan by passing
the sample through the trained decoder x̂0 = D(ẑ0). The overall inference pipeline is
illustrated in Algorithm 2. In addition, the detailed inference procedure also includes con-
ditional information (segmentation maps) and classifier guidance, which will be discussed
in the next two sections.

Algorithm 2 LSDM Inference Pipeline
Require: trained autoencoder E and D, U-Net backbone ϵθ, trained four classifiers

pψi(yi|Crop(D(zt))), i = 1, 2, 3, 4, diffusion schedule ᾱt, i-th classifier’s label yi, gradient scale
s
zT ← sample from N (0, I)
for all t from T to 1 do

zt−1 ← 1√
ᾱt

(
zt − βt√

1−ᾱt
ϵθ(zt, t)

)
+sΣ4

i=1σtlogpψi(yi|Crop(D(zt))) + σtϵ
′, ϵ′ ∼ N (0, I)

end for
x0 ← D(z0)
return x0

3.3 Diffusion Model with Spatial-adaptive Normalization

In the last section, we utilize the segmentation maps by concatenating them with the
noisy input zt and feed into the U-Net backbone. To further preserve the spatial semantic
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information inspired by SPADE model [32], we insert the SPADE layers in the U-Net
backbone network with pre-processed segmentation maps as the guided information of the
SPADE layers. Fig. 3.2 shows the SPADE U-Net backbone with adjusted ResNet blocks
in each part of the network. The pre-processing of the segmentation maps follows the
procedure in the original SPADE model [32], which downsamples the segmentation maps
into multi-resolution masks corresponding to the input size of a series of SPADE ResNet
blocks.

In particular, given a semantic map with the same spatial size of the original image m ∈
RH×W×1, where the pixel value of m is the segmentation class label of the corresponding
pixel in the original image, we downsample the map using max-pooling and transfer each
semantic label into a separate channel with binary values. The pre-processed mask is a
binary mask m̃ ∈ Zhi×wi×k2 , where hi and wi corresponding to the input size of the i-th
ResNet blocks and k is the number of segmentation class. Fig. 2.1 shows the normalization
method of the SPADE layer, with the input binary mask m̃ in different downsampling sizes.
In Chapter 5, we compare the generation results of the models with and without SPADE
layers in the U-Net backbone, which illustrate the effectiveness of the modulation.

3.4 Classifier Guidance

In order to improve the fidelity of the generated images, which is critical in medical image
synthesis, we exploit a series of nodule classifiers to improve the accuracy and controllability
of the nodule area synthesis. Each classifier is trained on noisy latent codes zt with a
selected pathology feature of the nodules provided by 4 radiologists in LIDC-IDRI dataset.
The network structure of the classifiers is shown in Fig. 3.3, most of whose structures
follow the encoder part of U-Net backbone with an additional pooling layer grafted before
the classifier’s output.

In the normal classifier guidance of diffusion models, the gradients ∇xt logpψ(y|xt, t)
are used to guide the diffusion inference process towards a selected class label y. The
log derivative ∇xt logpψ(y|xt, t) is obtained by conditioning the probability of the reverse
diffusion process 2.6:

pθ,ψ(xt|xt+1, y) =
pθ(xt|xt+1)pψ(y|xt)

q(y|xt+1)
(3.4)

Where q(y|xt+1) is a constant since it doesn’t depend on variable xt. Using Taylor
expansion approximation, the conditional log probability of the reverse diffusion process
can be estimated as:

log
(
pθ(xt|xt+1)pψ(y|xt)

)
≈ logp(x′

t), x′
t ∼ N (µ+Σg,Σ) (3.5)

Where µ and Σ are the mean and variance of the unconditional reverse diffusion probability
xt ∼ pθ(xt|xt+1) = N (µ,Σ), g is the log derivative of the classifier ∇xt logpψ(y|xt, t). This
property enables us to directly add the log derivative g of the classifier to the estimated
mean of the reverse diffusion process µ while preserving the conditional probability distri-
bution pθ,ψ(xt|xt+1, y). The inference step of the classifier guided diffusion then becomes
the following equation according to 2.7:

xt−1 =
1√
ᾱt

(
xt −

βt√
1− ᾱt

ϵ(xt, t)
)
+sσtlogpψ(y|xt) + σtz, z ∼ N (0, I) (3.6)

Where s is the gradient scale as the guidance weight of the classifier, σt and βt are the
diffusion variance schedule in 2.5 and 2.6. In LSDM, we fix the variance schedule βt as a
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Figure 3.3: Classifier structure illustration. We utilize the encoder block (blue)
and the middle block (green) of the LSDM U-Net backbone without SPADE layers
to ensure the simplicity and consistency of the model. The output of the classifier
is either the binary label (used in malignancy) with two neurons in the last fully-
connected (FC) layer, or the regression label (used in other key features) with one
neuron as the last FC layer.

linear function with respect to the timestep t. The gradient scale s is a key hyper-parameter
in LSDM, on which we do an ablation study in Chapter 5.

3.4.1 Local In-painting Multi-classifier guidance

Instead of adding the whole gradient to the intermediate output xt−1 ∈ RH×W×C pixel-
wise, we present local in-painting multi-classifier guidance onto the intermediate output
zt−1 ∈ Rh×w×c in the latent space. To introduce the LSDM classifier guidance step-by-step,
we first illustrate the meaning of local guidance, then present the in-painting style classifier
guidance with a nodule mask, finally we show the pipeline of multi-classifier guidance.

Local classifier guidance

We train the classifier on noisy latent codes zt with a selected pathology feature of the
nodules provided by 4 radiologists in LIDC-IDRI dataset. In particular, we decode the
noisy latent codes into the original pixel space xt = D(zt) and crop them around the
nodule areas to obtain the inputs of the classifiers x̃t. As is shown in Fig. 3.4, we frozen
the trained decoder D and plug it into the classifier training pipeline before the classifier
network parameterized with ψ:

pψ(y|xt, t) = pψ
(
y|Crop(D(zt)), t

)
(3.7)

Where y is the pathology feature value of the nodules, which will be introduced in Chapter
4. We call this local classifier guidance for the cropped inputs of the classifiers.
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Figure 3.4: The training pipeline of the classifiers. In the pre-processing block
(red box), we first crop the original CT image centering at the nodule and encode
it into the latent space. Then we add Gaussian noise to the cropped latent code
following the schedule of the forward diffusion process in equation 2.5 with a random
time step t. We complete the pre-processing step by decoding the noisy latent code
Crop(zt) into the original pixel space, which is the training data of the classifiers.

In-painting style classifier guidance

Iteratively adding the log derivative locally may introduce undesirable artifacts around
the boundary of the cropped areas. To eliminate this, we use in-painting guidance only
concentrated on the nodule areas. In particular, we generate a binary mask M around the
nodule semantic area using max-pooling operation in the latent space, then implement the
guidance only on unmasked region of the cropped input:

g̃ = (1−M)∇z̃t logpψ
(
y|Crop(D(zt)), t

)
(3.8)

Where g̃ is the masked gradient in the latent space. In LSDM, we choose the size of the
cropped image to be x̃t = Crop(D(zt)) ∈ R64×64×C . Consequently, the size of the cropped
latent code is z̃t ∈ R16×16×3. Fig. 3.5 illustrates the in-painting guidance during the
inference process.

The in-painting guidance prevents the generated image from unnatural artifacts of the
cropping boundary. Furthermore, diffusion models in the latent space have shown sufficient
capability in in-painting tasks [36], allowing us to safely implement the masked gradients.

Multi-classifier guidance

To explicitly control the pathology characteristics of the nodules, we use multi-classifier
guidance concentrated on the following key features of the nodules: malignancy, lobula-
tion, spiculation and texture, which are evaluated by 4 radiologists in LIDC-IDRI dataset
and will be further described in Chapter 4. In general, we train a binary classifier on
malignancy and regression classifiers on other features, because malignancy is rated from a
comprehensive judgment, while others are evaluated as the degrees of certain morphology
characteristics.

In particular, the malignancy of a nodule has an integer value ymal ∈ [1, 5], and we
consider the nodule with ymal ≤ 2 to be benign and ymal ≥ 3 to be malignant, which
emphasizes the significance of true positive (TP) and avoids false negative (FN). The
lobulation, spiculation and texture of a nodule also have integer values ylob, yspi, ytex ∈ [1, 5],
and we directly utilize the values to be the labels of our regression classifiers.
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Figure 3.5: The guidance pipeline of the classifiers. From the intermediate latent
code zt, we crop it centering at the nodule Crop(zt). The guidance block (gray box)
contains a frozen decoder D followed by the selected classifier pψi , whose output
forms the loss L(yi − y′i). Then we calculate the derivative of the loss with respect
to the cropped latent code and add the mask to the derivative to obtain g̃i in
the figure. Finally, the iteration is taken by adding the estimated reverse diffusion
process mean µθ(zt) with the masked guidance g̃i, which can be optionally combined
to formulate multi-classifier guidance.

Finally, we discuss the details of the inference pipeline. We follow the classifier guidance
rules in [5] and develop our own local in-painting classifier guidance pipeline. In Fig. 3.5,
we illustrate the process of one iteration step zt−1 ← zt with the classifier guidance, where
we first crop the latent code zt centering at the nodule with size 16 × 16. The cropped
latent code Crop(zt) is subsequently the input of the frozen decoder D, whose output is
fed into the selected classifier(s). We then calculate the derivative of the classifier’s loss
(cross-entropy loss for binary malignancy classifier and mean squared error (MSE) loss for
other regression feature classifiers) L(y−y′) with respect to Crop(zt) to obtain the masked
log-derivative g̃ and add it to the full-size latent code to obtain zt−1.

For the multi-classifier case, when we exclude the malignancy classifier, other classifiers
equally use the original latent code to calculate the gradients g̃spic, g̃lobu, g̃text and sum
them up as the guided result. When the malignancy classifier is included, we first execute
the previous step and then calculate the gradient of the malignancy classifier g̃mali using
the guided result. We compare the generation results of different classifier combinations
in Chapter 5.
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Chapter 4

Dataset

In this chapter, we introduce LIDC-IDRI dataset which we use to train and evaluate the
LSDM model. We first briefly describe the properties of the CT scan dataset and present
our pre-processing method. Then we explain the selection of the key features of the lung
nodules. After that, we discuss our method to obtain the semantic maps of the CT scans
and finally make a conclusion about the difference between the CT scans and the images
with other modalities.

4.1 Properties

The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative
(IDRI) established the lung CT scan dataset, which contains 1018 cases from 1010 patients
with clinical thoracic CT scans and the results of a two-phase image annotation process
performed by four experienced thoracic radiologists [24]. The first annotation phase is
blinded-read with each radiologist independently reviewed the CT scans and classified the
lesions into three categories: nodule ≥ 3 mm, nodule ≤ 3 mm and non-nodule ≤ 3 mm.
The second phase is unblinded-read with each radiologist reviewed their marks along with
other three radiologists’ opinions to render a final assessment. The nodules with diameter
≥ 3 mm are further annotated with contours and include subjective characteristic ratings,
from which we consider malignancy, lobulation, spiculation and texture and train classifiers
on them.

We select 20% of slices from each scan with or without nodules. For the non-nodule
slices, we select them uniformly to prevent data imbalance. We also exclude CT scans
whose slice thickness is greater than 2.5 mm for preserving the image quality, resulting in
49992 slices in total.

We split these slices into training and testing set patient-wise, 42952 and 5616 slices
respectively. All of the slices are stored as single-channel PNG images with 512×512 resolu-
tion. We clip the Hounsfield Units (HU) values of each pixel within [−1024, 800] following
the settings in [23], which indicates the meaningful pixel value for nodule classification.
The clipped pixel values are subsequently normalized into integers within [0, 255].

For the contours of the nodules, we use the annotations based on a 50% consensus
criterion, which implies that the given pixels have been included in the nodule contour by
at least 50% of the radiologists who annotated that nodule.

To conclude, we pre-process LIDC-IDRI dataset into 49992 normalized CT scan im-
ages with or without nodules. The annotated nodules possess of subjective characteristic
ratings, some of which are used for the classifier guidance. The selection of the nodule
features is illustrated in the next section.
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4.2 Key Features Determination

The annotated nodules have subjective characteristic ratings in eight aspects, namely sub-
tlety, internal structure, spiculation, lobulation, sphericity, solidity, margin, and malig-
nancy. These features are subjective and highly related to each other, leading to difficulties
in training the classifiers upon every feature separately. We choose appropriate features
with clear influence on the appearance of the nodules, which is determined by the con-
vergence of the classifiers’ training. Among all the eight features, four of them succeed
to have a converged classifier trained on them: malignancy, lobulation, spiculation, and
texture. Empirically, the convergence of the classifier training indicates the relativeness
between the corresponding feature and the appearance of the nodule expressed in pixel
values, which is crucial for the guidance in pixel values based on that feature. For the
training pipeline, we use noisy cropped inputs as discussed in chapter 3 and develop data
balancing and exponential moving average techniques to stabilize the training process. In
particular, we balance the label distribution of the key features (sample the nodules of dif-
ferent labels with equal probability when training classifiers), and also employ exponential
moving average (EMA) when updating the network parameters of the classifiers. That is,
given a decay rate 0 ≤ γ < 1, we perform the following update after each optimization
step:

θ ← γθ + (1− γ)θ′ (4.1)

Where θ′ is the updated parameters after back-propagation and we set the decay rate
γ = 0.9999. EMA can greatly stabilize the training process of the classifiers and improve
the final performance of the classifier guidance.

As an empirical analysis, we argue that for a noisy input of the classifier, the features
with a converged classifier succeed in preserving their relativeness to the appearances of
the nodules when mixing with the Gaussian noise, while other features failed because the
Gaussian noise eradicated this correlation and thus unable to converge during classifiers’
training. As an empirical example, the texture of a nodule indicates the pixel value distri-
bution to some extent, whose relationship with the appearance is hard to be eliminated by
mixing with the Gaussian noise, while the margin of a nodule is sensitive to the additional
noise and tends to be influenced.

Consequently, we finally train the classifiers on the four selected features, with malig-
nancy to be binary classified and others for regression.

4.3 Semantic Maps

For semantic image synthesis, the semantic map is crucial to generate appropriate images.
The semantic maps of the dataset are obtained following [59], which uses two different
methods: non-lung segmentation and lung segmentation.

For non-lung segmentation in the CT scan, we classify the areas into three categories
based on their HU values: body, soft tissues, and high-dense tissues. The body part is
segmented with the HU values in [−400, 0]. The soft tissues refer to the substances with
HU values in [0, 200], which are higher than skin and fat, while lower than bone and heart.
Most likely, they are organs, muscles, connective tissues, and others. The high-dense
tissues, whose HU values range from 200 to 800, include the bones and some muscular
tissues such as the cardiac muscle.

For lung segmentation, the naive classification by HU values fails. We instead use K-
Means classification and marching square algorithm to segment the lung. Compared to
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Figure 4.1: Pre-processing of a LIDC-IDRI CT scan slice. Left figure: the
processed slice image with pixel values normalized into [−1, 1] and the resolu-
tion 512 × 512. Middle figure: the processed semantic map of the slice with
eight labels representing the pixel value from 0 to 7, where 0, 1, 2, 3, 4 are the
non-nodule labels and 5, 6, 7 respectively represent the malignancies of the nodule
ymal < 3, ymal = 3, ymal > 3. The middle figure contains a nodule with semantic
pixel value 6, which indicates the malignancy of it is ymal = 3. As discussed in sec-
tion 3.4.1, we consider the binary label of this nodule to be malignant. Right figure:
the in-painting mask M illustrated in equation 3.8 (semi-transparent blue mask).
The mask is obtained by implementing max-pooling step to the nodule semantic
area. We only employ the classifier guidance in the unmasked areas (yellow). The
red box represents the crop box for the nodule classifiers.

non-lung regions, pixel values of lung area are usually lower. We used K-Means method
to classify the non-lung and lung pixel with several morphology operations, which include
erosion and dilation. The background was excluded by setting up a maximum area thresh-
old. Combined with K-Means method which robustly locate the lung region, we utilize
marching square algorithm to find the explicit contour and render a precise boundary be-
tween lung and non-lung regions. The selected contours will then be stored as the semantic
labels for lung.

Fig. 4.1 shows the processed semantic map of a LIDC-IRDI CT scan slice with a
nodule, which has eight semantic labels including background, body, soft tissues, high-
dense tissues, lung, and nodules with three stages of malignancy. The pixel values of the
semantic maps are illustrated in Fig. 4.1. During the training procedure of LSDM, we
normalize the pixel values into [−1, 1] to unify with the pixel range of the image inputs.

21



Chapter 5

Experiments

In this chapter, we systematically analyze the qualitative and quantitative results for our
method, including the image reconstruction capability of the autoencoder, the fidelity of
the generated CT scan, and the diversity of the generated nodule areas with respect to
the different settings of the controllable key features. We show that our method is capable
for generating high-quality lung CT images with the segmentation maps and the features.
Furthermore, we can generate diverse nodules using different classifier guidances.

5.1 Qualitative Results

The goal of our method is to synthesize high-quality CT images with controllable charac-
teristics of the nodules. To evaluate the quality, we first visualize the reconstruction results
to examine the effectiveness of utilizing latent space. We also compare the generation of
the full version of our method (with all four classifiers under the true nodule feature values)
to the baseline method (SPADE). We then concentrate on the controllability of the nodule
characteristics.

The reconstruction ability of the autoencoder in LSDM is shown in Fig. 3.1, where we
zoom in to the details of the lung tissue and distinguish the differences between the ground
truth and the reconstructed ones. The reconstruction is implemented by passing the CT
images only through the trained encoder and the decoder of LSDM, which are the gray
blocks shown in Fig. 3.1 and Fig. 3.2. In addition, the reconstruction procedure doesn’t
include the concatenation of the semantic maps as inputs. In Fig. 3.1, the high-level
structure

Then we compare the synthesis results between the baseline (SPADE) and our method
(with all four classifiers combined). We use the true values of the nodule features for
the corresponding classifiers to guide the reverse diffusion process of LSDM. In general,
our method better utilizes the semantic maps to generate results with higher fidelity and
preserves the details of the thoracic structures.

In Fig. 5.2, we select three representative cases. the top row introduces a case with
multiple malignant nodules, two of which have relatively blurred boundaries and are ac-
tually the parts of one nodule according to the dataset. In this case, SPADE generates
an unexpected low-pixel-value area while LSDM doesn’t in the red box (a), which is often
the situation where the regions of other organs such as the stomach or intestines appear as
the scan section moves downwards. In fact, LSDM rarely generates such unexpected areas
but SPADE occasionally does. The medium row indicates a case with an extremely small
nodule semantic area in the green box (b). SPADE generates a vague pattern dissimilar
to the ground truth, while LSDM adheres to the tiny semantic area and generates a more
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Figure 5.1: Comparison between the reconstruction results (top row) and the
original CT scans (bottom row). The information are nearly flawlessly preserved,
where we zoom in to the red boxes as the left and right side pictures. We can only
discern almost imperceptible differences in detail in the blue box of the zoomed
picture on the right. As is discussed in Chapter 3, we use the downsampling factor
f = 4, which leads the latent space to be z ∈ R128×128×3

.

accurate nodule. Finally, the bottom row presents a case with rich details of the lung areas
(i.e. the boundary lines of lung lobes, and cross-sections of bronchi) as shown in the blue
box (c). It is worth mentioning that these details are not reflected in the input semantic
map. SPADE fails to synthesize such unlabeled details while LSDM tends to express them
even around the correct location, indicating the fidelity of the LSDM CT image genera-
tions. Fig. 5.3 shows additional comparison results concentrated on the unlabeled lung
lobe boundaries, further substantiating the ability of LSDM to synthesize CT images with
high fidelity.

To illustrate the effectiveness of the classifier guidance, we first visualize the log deriva-
tives of the classifier with respect to the reconstructed images cropped around the nodule
areas. Specifically, the inputs of the classifier are the cropped areas of the reconstructed
latent code mixed with Gaussian noise Crop(D(zt)) ∈ R64×64×1 as shown in the second
column of Fig. 5.4. We emphasize that the training data of the classifiers should not be the
original cropped images Crop(xt), because during the inference process, these classifiers
only take reconstructed inputs before which are mixed with Gaussian noise.

In Fig. 5.4, we visualize the log derivative ∇Crop(D(zt)) logpψ(y|Crop(D(zt))) of the
binary malignancy classifier with respect to the reconstructed cropped image Crop(D(zt))
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Figure 5.2: The qualitative results compared to the real images and the baseline
(SPADE) results. We exhibit various situations such as large nodules, tiny nodules,
and detailed lung structures. Top raw: SPADE occasionally generates unexpected
structures (a), while LSDM does not. Medium row: for tiny nodules (b), SPADE
may generate vague pixels while LSDM preserves the clarity. Bottom row: LSDM
even possesses the ability to synthesize intricate details of the tissues (i.e. the
demarcation lines of lung lobes, and cross-sections of bronchi in (c)).

(we replace the expression Crop(D(zt)) with xt in Fig. 5.4 due to the spacial limitation).
When we set the class label y =′ benign′ in the third column, we can observe positive
derivatives at the center of the nodules and negative derivatives around the boundaries,
which is an indication of the shrinkage of the nodule areas and the sharpening of the
nodule boundaries. When we set the class label y =′ malignant′ in the last column, the
results indicate the opposite effect to the ones in the third column, illustrating reasonable
guidance of the binary classifier.

In addition, we fix the guidance scale s = 1. Unless specified, we set the same value in
all subsequent results.

During the inference process of LSDM, we actually use a slightly different derivative
form (1−M)∇Crop(zt) logpψ(y|Crop(D(zt))) instead of∇Crop(D(zt)) logpψ(y|Crop(D(zt))).
Notice the difference in the denominator of the partial differentiation. M indicates the
mask of the derivative generated using the max-pooling method to slightly increase the
considered area. In Fig. 5.5, we visualize the real derivative calculated during the inference
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Figure 5.3: Unlabeled lung structures generation. The red boxes in the left
column represent the lung lobe boundaries in the ground truth images and are
not included in the semantic maps. SPADE generations ignore such unlabeled
structures, while LSDM tends to reconstruct the hidden information as shown in
the right column. Observing the whole generated test dataset, we find that LSDM
is able to preserve such details in most cases, demonstrating the ability of LSDM
to synthesize CT images with high fidelity.

procedure, where the bottom row shows the different guidance with respect to "benign"
and "malignant" class labels. To conclude, Fig, 5.4 and Fig. 5.5 elaborate the rationale of
using binary malignancy classifier in local in-painting style, enabling further indication of
the multi-classifier guidance.
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Figure 5.4: Visualization of the classifier’s log derivatives. We use the nodule
malignancy classifier trained on the cropped CT images centralized with the nod-
ules. With the desired label to be "benign", the derivatives tend to be positive in
the central region of nodules and negative in the boundary region, resulting in the
shrinking of nodules under such guidance. Furthermore, in some cases of blurred
or spiky nodules, benign labels lead the classifier to eliminate the fuzzy regions as
much as possible. Additionally, even with a low signal-to-noise ratio, the classifier
can still generate meaningful derivatives for central nodules. In the most extreme
scenario of a significantly low signal-to-noise ratio, the classifier may produce mini-
mal derivatives except for a few areas with significant error, which can be addressed
through in-painting masks.

For the multi-classifier guidance, we observe that it is challenging to assess the indi-
vidual influence of the other classifiers by visualization because these classifiers operate
on more abstract and ambiguous concepts (spiculation, lobulation, and texture), which
are hard to visually classify even for experienced radiologists. Consequently, we simply
compare the results between the guiding with all available classifiers and the others, which
is shown in Fig 5.6. We use the ground truth labels of the nodule features to guide the
generation in order to evaluate the fidelity of the generated results. As illustrated in the
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Figure 5.5: Visualization of the malignancy classifier derivatives with respect
to the latent codes zt. As is discussed in Fig. 5.4, the label "benign" results in
negative derivatives around the boundary of the nodule, while "malignant" leads to
the extension. The derivatives are visualized using RGB color channels normalized
to [0, 1].

previous paragraphs, LSDM tends to generate high-fidelity results that strictly adhere to
the semantic maps (the second column of Fig. 5.6). With the benefit of the classifiers,
the generated results are able to contain additional details at the boundaries, leading to a
more realistic synthesis.

Furthermore, we alter each nodule feature’s value to evaluate the visual effects of all
the features in Fig. 5.7. We observe minor visual effects with the features except for malig-
nancy, indicating the ambiguity of visualizing the guidance of these features individually,
which has been discussed in the last paragraph. For the malignancy results, we observe
the diversity of the nodules under different classifier labels ("benign" or "malignant"), in-
dicating the ability of the classifier guidance to generate diverse results under controllable
features.

In the previous results, we use the classifier guidance scale s = 1. To further test the
classifier guidance, we alter the malignancy classifier guidance with s = 0.5, 1, 2, 4, 8, 16, 32
under both binary labels "benign" and "malignant" in Fig. 5.8. The corresponding results
elaborate that as s increases, the generated nodule enhances the characteristics of the
guided label (benign or malignant). For instance, as s increases with the label "benign",
the generated nodule becomes progressively lighter and divided into several parts with
clearer boundaries. In the final two stages with s = 16, 32, the nodule even tends to blend

27



Figure 5.6: Qualitative results of the nodule synthesis with different guidance
settings. For a large nodule semantic area (top row), LSDM generates high-fidelity
results with respect to the input semantic map, yet have differences compared to
the ground truth especially around the semantic boundary. With the guidance
of the classifiers (third and fourth column), the generated results tend to express
additional details at the boundaries, thereby approaching the realism of the ground
truth more closely.

with the surroundings as if it is normal tissue as shown in Fig. 5.9.
To conclude, local in-painting multi-classifier guidance in LSDM presents effectiveness

in visualization results. We show the reasons for using local in-painting style guidance and
multi-classifier guidance. When generating with the ground truth labels of the classifiers,
our method is able to synthesize high-fidelity results with robustness. When generating
with alternative labels and guidance scales, our method achieves high diversity of nodule
characteristics.

5.2 Quantitative Results

In this section, we present the quantitative results of our proposed method compared to
the baselines using commonly used evaluation metrics. We conduct experiments on the
split test dataset of LIDC-IDRI dataset illustrated in Chapter 4 with nodules, resulting
in 770 total CT images. TO evaluate the quality of the generated images, we employ the
following evaluation metrics:

1. Fréchet Inception Distance (FID): FID measures the similarity between the distri-
bution of real and generated images based on features extracted from a pre-trained
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Figure 5.7: Generated results under different controllable key features. We can
observe the diversity of the nodule synthesis under the binary classifier guidance of
malignancy (top row). The other key features have a minor effect on the visualiza-
tion results.

Inception-v3 network [10]. Lower FID scores indicate better similarity.

2. Structural Similarity Index (SSIM): SSIM measures the similarity in terms of lumi-
nance, contrast, and structural information between the generated and ground truth
images [56]. Higher SSIM scores indicate better structural similarity.
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Figure 5.8: Ablation study of the classifier guidance scale s. During the reverse
diffusion process, we alter the guidance scale s of the malignant classifier under both
binary labels "benign" and "malignant" (top row and bottom row). The results
indicate that as the guiding scale increases, the generated results tend to enhance
the corresponding characteristics of the guided class (benign or malignant), such as
the nodule area and boundary clarity. We can clearly observe that with the increase
of the guidance scale s, the generated results under the benign label gradually
transform into multiple small nodules, while the results under the malignant label
connect to form larger regions and tend to expand outward.

3. Multi-Scale Structural Similarity Index (MS-SSIM): MS-SSIM is an extension of
SSIM that considers structural similarities at multiple scales [57]. Higher MS-SSIM
scores indicate better structural preservation.

4. Learned Perceptual Image Patch Similarity (LPIPS): LPIPS measures the perceptual
similarity between the generated and real images using a deep neural network [62].
Lower LPIPS scores indicate better perceptual similarity.

We compare our method against the baselines including SPADE and LDM. We also eval-
uate an alternative without the classifier guidance as an ablation study. We present the
quantitative evaluation results in Table 5.1. Our proposed methods (LSDM with/without
classifier guidance) outperform the compared approaches across the evaluation metrics ex-
cept for SSIM, which is concentrated on the low-level structural similarities where our
method still performs the second best, demonstrating its effectiveness in generating high-
quality CT images.

We further present the generation quality focusing on the nodule areas to illustrate
the advantage of using our method when dealing with small semantic areas. We crop the
generated images with the size of 64× 64 centering at the nodules and calculate the FID
score for all the methods. Our methods outperform the baseline methods but the classifier
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Figure 5.9: Comparison of the generative results with "benign" and "malignant"
classifier guidance under the guidance scale s = 8. The generated result under the
"benign" label tends to blend with the surroundings as if it is normal tissue. On the
other hand, the result under the "malignant" label has a distinguishable affected
area which is actually much larger than the ground truth.

guidance has a negative effect on the FID score performance, which is explainable since the
guidance can be considered as a switch of the nodule data distribution to the ground truth,
leading to inevitably decreasing the performances concentrating on the data distribution
similarities.

In conclusion, our method exhibits superior performance compared to the baseline
methods in terms of fidelity, structural preservation, perceptual similarity, and semantic
consistency.
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Table 5.1: Quantitative results of generation fidelity and diversity com-
parison with four metrics: Fréchet inception distance (FID), Structural Similarity
Index (SSIM), multi-scale SSIM (MS-SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS). For FID, lower value is seen as an indicator of a low distance
between the real data distribution and the generated results. For SSIM and MS-
SSIM, higher value means better structural accuracy. For LPIPS, lower value is
considered to indicate better perceptual preservation quality.

Generation quality comparison

Metrics SPADE LDM LSDM LSDM with guidance

FID 29.86±1.73 26.05±1.89 25.71±1.66 24.49±1.70
SSIM 0.42±0.04 0.28±0.08 0.41±0.05 0.34±0.04

MS-SSIM 0.82±0.03 0.83±0.06 0.86±0.07 0.83±0.10
LPIPS 0.09±0.02 0.13±0.05 0.08±0.04 0.09±0.03

Table 5.2: Evaluation of the fidelity of the generated results concentrated on
nodule areas. We use Fréchet inception distance (FID) to indicate the distribution
distance between the generated nodules and the ground truth. For the names of the
methods (top row), "LSDM+mali/spic/lobu/text" respectively denotes the LSDM
model with malignancy/spiculation/lobulation/texture classifier guidance. We can
observe that adding classifier guidance actually violets the fidelity of the generated
nodules with respect to the ground truth, because we introduce extra guidances
which are apparently different from the ground truth’s distribution. Such effects
need further study to accurately evaluate the guidance. All the results are calculated
on the cropped images with the box size 64 ∗ 64 located at the nodules. We use the
fixed guidance scale s = 1.

Fidelity of the generated nodules

Metrics SPADE LDM LSDM LSDM+mali LSDM+spic LSDM+lobu LSDM+text

FID 49.83±3.41 47.62±2.95 42.30±4.02 61.77±8.36 65.59±6.58 67.09±9.94 68.07±7.59
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Chapter 6

Diffusion Model VS Particle Filtering
and Reinforcement Learning

In this chapter, providing a new perspective to understand the iterative generation methods
such as diffusion models, normalizing flows, and neural ordinary differential equations
(Neural ODEs) [11, 4], we present interesting connections between diffusion models and
other two methods, namely particle filtering [6] and reinforcement learning [28, 58, 40, 22].
We first explain why diffusion models gathered much more attention than other iterative
generation methods recently. Then we discuss the shared mathematical basis (Markov
chain Monte Carlo) among diffusion models, particle filtering, and reinforcement learning.
We further analyse the conceptual similarity among these methods, and finally provide
some insights for the future research.

6.1 Why Diffusion Models?

In general, diffusion models are not the first series of generative methods with iterative
sampling from the target data distributions, which have been developed with different
intuitive initializations in variant research fields [6, 34, 4, 19]. A simple but significant
question is: why diffusion models succeed?

In a word, the significant breakthrough of diffusion models in image, audio, and video
generation mainly comes from the suprisingly simple training objective of diffusion models
[11], which is crucial for efficient deep learning. The simple objective derives from the
evidence lower bound (ELBO) of the target data:

logpθ(x0) ≥ Ex0:T∼q(x0:T )

[
log

pθ(x0:T )

q(x1:T |x0)

]
= −LELBO (6.1)

Where pθ(x0:T ) is the joint distribution of the whole trajectory in diffusion process, q(x1:T |x0)
is the distribution of intermediate points x1:T given the initial state x0, which we consider
them as observed latent variables. In variational Bayesian methods, the evidence lower
bound of a variable x have the following equation:

logpθ(x) = Ez∼qϕ(z|x)
[
log

pθ(x, z)

qϕ(z|x)

]
+DKL

(
qϕ(z|x)∥p(z|x)

)
(6.2)

Consequently, given a fixed distribution pθ(x), maximizing ELBO is equivalent to mini-
mizing the difference between the real conditional distribution p(z|x) and the estimated
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conditional distribution qϕ(z|x). The objective of diffusion models is then derived from
LELBO in equation 6.1:

LELBO = Ex0:T∼q(x0:T )

[
log

pθ(x0:T )

q(x1:T |x0)

]
= Eq[DKL(q(xT |x0)∥pθ(xT ))︸ ︷︷ ︸

LT

+
T∑
t=2

DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− logpθ(x0|x1)︸ ︷︷ ︸
L0

]

The KL-divergence terms Lt−1 all compare two Gaussian distributions and therefore they
are simplified into closed form:

Lt−1 = DKL(q(xt−1|xt,x0)∥pθ(xt−1|xt)) =
1

2σ2(t)
∥µθ − µ∥2 (6.3)

Where µθ is the estimated mean of pθ(xt−1|xt) and µ is the mean of q(xt−1|xt,x0). In
DDPM [11], Lt−1 is further simplified into the diffusion models’ objective:

Lsimple = ∥ϵθ − ϵ∥2 (6.4)

Where minimizing the simple mean squared error (MSE) objective is equivalent to maxi-
mizing the ELBO of the target data x0 in equation 6.1, and subsequently minimizing the
difference between the target distribution and the sample distribution. Following such sim-
plification, diffusion models formulate a closed-form estimation of the target distribution
using an MSE loss term which is supremely capable for the neural networks to train on,
leading to emergence of the diffusion-based generative models.

6.2 Markov Chain Monte Carlo

A common property of the mentioned three methods is that they model a Markov process
p(xt+1|xt) to simulate the state xt of a dynamical system. With Markov property, the
probability of moving to the next state depends only on the current state without the
previous states:

p(xt+1|x0:t) = p(xt+1|xt) (6.5)

In diffusion models, the states are the intermediate generation xt, which are denoised
iteratively using neural network ϵθ(xt, t). In particle filtering, the states are the particles
x
(i)
t sampled from the target distribution p(xt|xt−1). In reinforcement learning, the states

are the environment states st of the agent, which are decided by the last actions and the
corresponding states p(st|st−1, at−1).

This common hypothesis enables the three methods to efficiently estimate the desired
distributions using Markov chain Monte Carlo (MCMC) method. For diffusion models,
the perturbed data distribution qσ(x0) with σ being the variance of the Gaussian noise is
estimated using Langevin dynamics as the Markov chain Monte Carlo process under the
score-based model settings:

xt = xt−1 +
α

2
sθ(xt−1, α) +

√
αϵt (6.6)

Where sθ(xt−1, α) ≈ ∇x0 log qα(x0) is the estimated score function of perturbed data
distribution qα(x0). Following Langevin dynamics, MCMC sample the intermediate noisy
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images from qα(x0) with step size α, enabling sampling from untraceable complicated data
distributions.

For particle filtering (PF), the particles used for estimating the state distribution are
obtained through sequential importance sampling:

x
(i)
t ∼ p(xt|xt−1), w

(i)
t = p(yt|xt)w(i)

t−1 (6.7)

Where {x(i)t , w
(i)
t }Ni=1 are the particles and their corresponding weights for estimating the

distribution, and yt is the observed variable of the dynamical system. This MCMC sam-
pling method allows PF to approximate the non-linear, non-Gaussian distributions of the
state dynamics.

For reinforcement learning (RL), the purpose of an agent is to execute an action under
a certain policy π in a certain state st and eventually maximize the total reward G in
an interactive environment. With the premise of a Markov process in the series of states
p(st|st−1, ..., s0) = p(st|st−1), RL formulate a Markov decision process with an additional
variable action at in the series:

p(st|st−1, at−1, ..., s0, a0) = p(st|st−1, at−1) (6.8)

Where the action at is manipulated by the agent in the environment, given the current
state st. After executing the action at, the environment return an immediate reward rt+1

and transfer the state into st+1, establishing a trajectory of the Markov decision process:

τ = s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT , sT (6.9)

The total return G(τ) =
∑T−1

t=0 γ
trt+1 consider every immediate reward rt in the trajectory

with a discount factor γ ∈ [0, 1]. In order to explicitly evaluate the significance of a state,
RL introduces state value function V π(st) to guide the policy π of the agent. The value
function can be defined as:

V π(st) = Eτt:T∼p(τt:T )[G(τt:T )] (6.10)

The value function provides the estimation of the total reward started from state st given
the subsequent trajectory distribution p(τt:T ), which is obtained by MCMC sampling
method:

V π(st) ≈
1

N

N∑
n=1

G(τ (n)s0=st) (6.11)

In particular, given the initial state s0 = st, the agent uses the current policy π = πθ to
sample a batch of trajectories in a Monte Carlo manner, on which the average of total
reward is calculated to estimate the value function of the initial state V π(st).

To conclude, MCMC sampling plays a significant role in all three methods, focusing on
the estimation of complex distributions, which are perturbed data distribution xt ∼ qα(x0)

in diffusion models, state distribution x(i)t ∼ p(xt|xt−1) in particle filtering, and trajectory
distribution τt:T ∼ p(τt:T ) in reinforcement learning. Fig. 6.1 illustrates the series structure
of the three methods and the MCMC sampling targets of them.

6.3 Predict and Correct

As is discussed in the last section, there exist pivotal connections among the three various
methods. In this section, we additionally provide a structural perspective to re-exam the
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Figure 6.1: The similar Markov chain Monte Carlo (MCMC) processes in all three
methods. Left panel: Langevin dynamics of the diffusion models under score-based
model settings. The blurred orange area represents the perturbed distribution of
the data qσ(x0). The series of black arrows indicate the Langevin Monte Carlo sam-
pling process, under which the samples will adhere to the distribution xt ∼ qσ(x0).
Middle panel: particle filtering (PF) iteration rules. With the benefit of importance
sampling and resampling trick, the sampled particles of PF follow the MCMC pro-
cedure while updating the weights, estimating the distribution x

(i)
t ∼ p(xt|xt−1).

Right panel: MCMC sampling of different trajectories (different colors of the ar-
rows) in reinforcement learning (RL). RL utilizes the estimation of the trajectory
distribution to maximize the total trajectory reward G(τ). This estimation is sam-
pled using MCMC.

interplay of the methods, presenting the strong connection in terms of the fundamental
principles of the methods.

Specifically, diffusion models, PF, and RL all adopt a similar approach within their
high-level framework, employing a two-part alternating optimization process. In this pro-
cess, one step plays a dominant role, primarily responsible for the direct evolution of the
states (xt/xt/st), while the other step focuses on correcting and refining the predicted out-
comes from the first step. To simplify the nomenclature, we use "predictor" to elucidate
the first step, and "corrector" for the other step in all three methods following the name
in [46].

Before the comparison among these methods, it is worthy to mention that either
the diffusion-based models are named under score-based models or diffusion models with
the corresponding algorithmic pipelines, they can all be considered as learning a non-
homogeneous differential equation with time embedding in 2.3 and evaluating the trained
neural network using a certain ODE solver with or without noises [46, 16]. Consequently,
all the diffusion-based methods share the same high-level framework, which is significant
to the subsequent comparison.

In general, the predictor serves as the backbone of the algorithm, transforming the state
xt/xt/st from the previous iteration into the state at the next time step xt+1/xt+1/st+1.
In diffusion models, the predictor updates the intermediate results using sθ(xt, t) following
PC sampling in score-based models [46]. In particle filtering, the predictor generates the
particles of the next time step. In reinforcement learning, the predictor utilizes the value
function V (π) to determine the action at in state st.

The corrector performs refinement of the predictor’s step, improving the accuracy of
the predictor’s outcome and aligning the results with the temporal evolution of the system
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Figure 6.2: Illustration of the similar high-level structures of the three methods.
In general, all three methods consist of a "predictor" step (blue panels) to evo-
lute the corresponding dynamical systems with the auxiliary of a "corrector" step
(orange panels) to update the estimation and improve the accuracy of the states.

dynamics. In diffusion models, the corrector can be described as the Langevin Monte Carlo
procedure in PC sampling. In particle filtering, the corrector updates the weights of the
particles to align with the distribution in the next time step. In reinforcement learning,
the corrector can be considered as optimizing the parameters ϕ value function V π

ϕ (st) to
better evaluate the importance of the state st. Fig. 6.2 emphasizes and compares the two
steps in each method with pseudo codes, illustrating the relationship between the three
iterative algorithms.

There are other minor similarities among the three, such as the same log-likelihood
formulations of the Markov processes as is shown in Fig. 6.3, and the coincident importance
sampling trick in both particle filtering and Proximal Policy Optimization (PPO) [40],
which is one of the breakthroughs in RL achieving stable convergences in various complex
tasks.

The findings of similar structures in all three methods highlight the common sense in
iterative updating methods for dynamical systems and are actually novel lines of thought
considering that people often invent similar algorithms from different perspectives. It is
crucial to emphasize the distinctions between these algorithms and why one algorithm may
be superior to others in some tasks. In addition, by comprehensively understanding these
methods in a contrastive approach, we can present research proposals such as: Can we
improve the diffusion models by inserting candidate mechanism as is in particle filtering?
Can we treat the guidance of the diffusion models as the value function V π(st) or Q-function
Qπ(st, at) in RL?
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Figure 6.3: The same log-likelihood formulations of the Markov processes in
diffusion models and reinforcement learning (RL). The green arrows indicate the
evaluation of the neural network representing the dynamical change given a certain
state observation xt or st. Notice the different lengths of the arrows in diffusion
models and RL.
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Chapter 7

Discussions and Conclusions

In this chapter, we provide comprehensive discussions and conclusions of our method. We
reflect on the choices of hyper-parameters, address the limitations of our method, and draw
meaningful conclusions based on the findings of our study. This work contributes to the
growing body of literature on medical image synthesis, where the use of diffusion models
has attracted increasing attention, showing promising potential for improving the accuracy
of the synthesis and solving inverse problems in medical imaging [45].

7.1 Hyper-parameter Choices

During the implementation of our method, several key hyper-parameters needed to be
discussed to ensure optimal performance, one of which has been mentioned in Chapter
5 (guidance scale s). In this section, we explain the choices of these hyper-parameters
empirically.

In Chapter 5, we choose the default guidance scale to be s = 1.0, because only under
such choice can we achieve a better FID score illustrated in Table 5.1. We have discussed the
negative effect of the classifier guidance in Section 5.2, which shows deceased performance
with classifier guidance except for the results in Table 5.1. Furthermore, [5] also suggests
using the guidance scale s = 1.0 for ideally trade-off diversity for fidelity.

The down-sampling factor, denoted by f , plays a crucial role in trading-off reconstruc-
tion quality for sample efficiency. A lower down-sampling factor f , which indicates a higher
dimensional latent space, allows for increased expressiveness and reconstruction ability, po-
tentially enabling the model to generate more accurate images. However, an excessively
low down-sampling factor leads to expensive computation during training and inference
[36]. At the early stage of our research, We empirically explored different down-sampling
factors f = 4, f = 8, and f = 16, which correspondingly lead the size of the latent space to
be 128×128×3, 64×64×3, and 32×32×3. We roughly evaluated the generation quality
at the early stage and decided to use f = 4, which has almost no perceptual information
loss during the reconstruction while still possesses of efficient sampling.

For other hyper-parameters such as the schedule of the diffusion process αt, we follow
the implementation of LDM [36].

7.2 Limitations

Despite the promising results of our method in Chapter 5, several limitations need to
be acknowledged, some of which arise from the fundamental nature of the task or the
underlying assumptions of the model, while others come from the limitation of time.
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First, the effectiveness of our method significantly relies on the availability of accurate
and reliable ground truth segmentations. Inaccurate segmentation maps may lead to biased
results and affect the performance of our model.

Second, guiding the generation process with several additional classifiers has unknown
effects on diagnostic accuracy. While we show the advantages of the classifier guidance, it
is challenging to assess the diagnostic accuracy of the synthesized image especially when
we explicitly control the generated nodules with extra features.

Third, we observe possibly contradictory results about the FID scores in Table 5.1
and Table 5.2, where LSDM with classifier guidance outperforms others under the full-size
generation while has an apparent disadvantage under the nodule generation. A possible
explanation is that during the FID score evaluation, the Inception V3 neural network
encodes the inputs with different levels of perceptual scales under full-size and local cropped
settings, resulting in different encoding concentrations on scales.

Lastly, while we have primarily focused on lung CT scan analysis, the applicability of
our method to other medical imaging modalities and pathology detection tasks remains an
open research question. Exploring and adapting our approach to different medical imaging
domains will pave the way for more widespread adoption and validation.

7.3 Conclusions

In conclusion, our research presents a novel approach combining newly-designed diffusion
models with local in-painting style multi-classifier guidance for precise and accurate image
generation, especially for small semantic areas. Through the integration of semantic image
synthesis and classifier guidance, we have demonstrated the potential to explicitly control
the characteristics of the lung nodules. Our method leverages the strengths of diffusion
models in explicitly and resolvably guiding the generation and SPADE layers preserving
spatial information to enhance the fidelity and diversity of the generated lung CT images.
The results obtained from our experiments on the LIDC-IDRI lung CT dataset show
promising performance in terms of visual quality and quantitative evaluation metrics.

By leveraging the explicit and resolvable guidance of lung nodule generation, we can
improve semantic image synthesis for small areas, leading to better synthetic medical
dataset and potentially training of the new radiologists. However, it is crucial to address
the limitations and challenges discussed in this chapter to ensure the practical applicability
of our method in real-world clinical settings.
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Chapter 8

Future Work

In this chapter, we discuss potential future directions and extensions of our research on
diffusion models in medical image synthesis. Building upon the insights gained from our
current study, we outline three areas that hold significant promise for further exploration:
software deployment considerations, classifier-free guidance [12], and integration with op-
timal transport theory [53]. Software deployment will be the first extension of our work,
with the goal to develop a user-friendly online web page for generating synthetic lung
CT images with tunable control parameters. By delving into the aspects of classifier-free
guidance and optimal transport, we aim to advance the performance and capability of our
current method.

8.1 Software Deployment

As our method progresses towards practical applications, it is crucial to address software
deployment considerations. The aim of developing such user-friendly software is to effi-
ciently generate controllable lung CT images and possibly train new radiologists based on
the labeled synthetic data. In addition, the implementation of our model should be made
accessible to the wider medical imaging community.

Developing efficient and scalable software solutions, along with intuitive user interfaces,
would facilitate the adoption and replication of our approach across different institutions
and research settings. Additionally, comprehensive documentation should be provided to
promote collaboration within the scientific community. A representative example would
be the widely popular Stable Diffusion [36] webpage that gained significant attention in
the field of image generation last year, sparking extensive discussions. Fig. 8.1 illustrates
the basic layout of the webpage, which contains a sketch board / preview box for drawing
the semantic map, a file uploading panel to utilize the existing semantic maps, a primary
generated image display window, and a control panel of tunable hyper-parameters such as
the nodule features, the number of the generated batch, and the resolution of the generated
CT image.

By providing an interface under such principles of the webpage design, trainees can
manipulate various parameters, such as nodule size, shape, and location, to simulate dif-
ferent clinical scenarios and pathologies. This allows the platform to generate considerable
synthetic CT images and can serve as a valuable tool for radiologists to enhance their
diagnostic skills, improve their understanding of pulmonary nodules, and gain exposure to
rare or challenging cases that are difficult to encounter in real-world clinical practice.
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Figure 8.1: User interface of the lung CT image synthesis webpage.

8.2 Classifier-free Guidance

While our current approach leverages classifier guidance to enhance the fidelity of generated
lung CT images, especially in nodule areas, an interesting avenue for future work lies
in exploring classifier-free guidance techniques with explicit controllable nodule features.
By eliminating the reliance on pre-trained classifiers, classifier-free guidance has shown
advantages in multiple tasks. By developing a suitable classifier-free guidance pipeline, we
can potentially overcome limitations associated with classifier biases and additional hyper-
parameters such as crop size. we can also investigate the use of unsupervised learning
methods, such as contrastive learning methods, to guide the diffusion model in capturing
salient features and spatial dependencies within lung CT scans. This approach may enable
more robust and flexible image synthesis, particularly in medical imaging scenarios where
annotated training data is scarce or unavailable.

8.3 Optimal Transport

Another promising direction for future work is the integration of optimal transport (OT)
theories into diffusion models in medical imaging synthesis. OT [53, 1, 38] provides a
powerful framework for measuring the dissimilarity between probability distributions. By
definition in OT, the optimal transport cost between two distributions µ and ν in the same
space is:

Cost(µ, ν) = inf
T#µ=ν

∫
X
c(x, T (x))dµ(x) (8.1)
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Where c : X × Y → R defines the cost of transportation between two points x ∈ X and
y ∈ Y, which for instance can be the quadratic cost c(x, y) = ∥x − y∥2. T : X → Y is
the transport map T (x) ∈ Y pushing µ to ν. As an intuitive yet non-rigorous example,
there exists an OT map T (x) = y between two Gaussian distributions x ∼ N (0, 1) and
y ∼ N (10, 10), which minimize the total transportation cost c(x, y). This OT map can be
considered as the optimal projection between the samples of the two distributions.

OT theory has been successfully applied in image synthesis and domain adaptation
tasks [1, 21, 7]. By incorporating OT principles into our method, we can further enhance
the fidelity of the generated lung CT images and improve the alignment between the
semantic maps and the synthetic images.

For example, we can calculate the OT map between the pure Gaussian noise and the real
CT scans and formulate OT trajectories during the diffusion process, which will possibly
speed up the iterative generation while preserving image quality. We can also possess an
OT map between the nodule semantic maps and the real nodule images, leveraging the
minimal transport cost to implement direct style transfer between the semantic maps and
the real images. This integration could potentially lead to more realistic and accurate lung
nodule representations, benefiting subsequent analysis and data augmentation.
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