
DMB DATABASE MANAGEMENT
AND
BIOMETRICS

.77507

CAST: CLUSTERING ATTENTION USING
SURROGATE TOKENS FOR EFFICIENT

TRANSFORMERS

Adjorn van Engelenhoven

MASTER THESIS ASSIGNMENT

Committee:
Dr. Nicola Strisciuglio (Chair)

Dr. Estefania Talavera (Supervisor)
Dr. Mariët Theune (External)

June, 2023

2023DMB0007
Data Management and Biometrics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract
The Transformer architecture has shown to be a powerful

tool for a wide range of tasks. It is based on the self-attention

mechanism, which is an inherently computationally expen-

sive operation with quadratic computational complexity:

memory usage and compute time increase quadratically with

the length of the input sequences, thus limiting the appli-

cation of Transformers. In this work, we propose a novel

Clustering self-Attention mechanism using Surrogate To-

kens (CAST), to optimize the attention computation and

achieve efficient transformers. CAST utilizes learnable sur-

rogate tokens to construct a cluster affinity matrix, used to

cluster the input sequence and generate novel cluster sum-

maries. The self-attention from within each cluster is then

combined with the cluster summaries of other clusters, en-

abling information flow across the entire input sequence.

CAST improves efficiency by reducing the complexity from

𝑂 (𝑁 2) to 𝑂 (𝛼𝑁) where 𝑁 is the sequence length, and 𝛼 is

constant according to the number of clusters and samples per

cluster. We show that CAST performs better than or compa-

rable to the baseline Transformers on long-range sequence

modeling tasks, while also achieving state-of-the-art results

on time and memory efficiency.

1 Introduction
The Transformer architecture [45] has revolutionized many

fields within machine learning such as translation [45], sum-

marization [34], text generation [5], sentiment classification

[39], and also tasks like image classification [13], object detec-

tion [27], and protein folding [17]. The self-attention mecha-

nism stands at the core of its strengths. It allows the Trans-

former to directly model long-range dependencies within

a sequence without the need for a hidden state like in re-

current neural networks [16]. However, the self-attention

mechanism has an inherent large memory cost, since its com-

plexity grows quadratically with the input sequence length.

With these memory requirements and the ever-increasing

use and size of large language models, such as the GPT series

[4, 35] and LLaMA [44], a need for more efficient attention

mechanisms has emerged [9].

Current implementations of more efficient self-attention

mechanisms can be roughly grouped into the following cat-

egories: (1) apply self-attention on subsets of the input se-

quences (sparsification) [1, 3, 11, 20, 30, 41, 49], (2) approxi-

mate the self-attention mechanism with a lower complexity

[8, 26, 47], and (3) remove self-attention in favor of a lower

complexity similar operation [14, 23, 38, 43].

One way of sparsifying self-attention is to cluster the input

sequence, which was done by both the Reformer [20], and

SMYRF [11]. However, these self-attention alternatives both

cluster in a non-learnable and algorithmic way, which can

cause them to get stuck in local minima resulting in a worse

performance.

In this work, we introduce a new efficient variant of self-

attention,Clustering Attention using Surrogate Tokens (CAST).

CAST employs clustering to self-attention but introduces

two novel ideas: (1) The introduction of learnable surrogate

tokens 𝑆 , which are used to cluster the input sequence, but

also directly influence the result. (2) The creation of cluster

summaries, which allows for information to flow between

clustered parts of the input sequence.

CAST learns to cluster tokens that would have a strong

connection in the original attention matrix by clustering

based on a similarity matrix between the surrogate tokens,

queries, and keys. Standard self-attention is applied within

clusters, where its result is combined with cluster summaries

based on a previously created similarity matrix. This allows

for each token to retrieve information from the rest of the

sequence, improving stability and performance.

In this work, we aim to significantly improve memory usage

and time efficiency of the Transformer architecture with the

use of CAST. More specifically, we investigate the following

research questions:

• RQ(1) How does the memory and computational com-

plexity of CAST compare to other efficient Transform-

ers?

• RQ(2) How does CAST generalize over both long- and

short-range machine learning tasks?

• RQ(3) How does the choice of the configuration of

surrogate tokens affect the generalizability of CAST?

Experimentally we show that CAST is significantly faster

than other efficient Transformer variants, and match or im-

prove the performance of a standard Transformer on long-

sequence modeling tasks.

In Section 2, background information about the Transformer

architecture is given. In Section 3, related work on efficient

Transformers is discussed. In Section 4, CAST is explained in

more detail. In Section 5, the experimental setup is described.

In Section 6 the results of the experiments are discussed. In

Section 7, the research questions are answered. In Section

8, a conclusion is drawn, and in Section 9, future work on

CAST is proposed.

2 Transformer Background
In this section, the Transformer architecture is elaborated

using Figure 1. Starting from the input the different blocks

will be explained one by one, until the output.

First, we have the input embedding. The Transformer is

first and foremost a sequence model. As input, it takes a se-

quence of tokens which each are represented using a vector

of numbers. In Natural Language Processing (NLP) these

tokens correspond to words, however, words cannot be in-

herently represented using vectors. To still be able to use

words as input, an input embedding is created to map words

to vectors. Within NLP, these representational vectors are of-

ten created by methods like Word2Vec [33] or SentencePiece

32000 [22], which learn representations of words based on

contextual information and word co-occurrence. However,

it is also possible to learn the input embedding is learned on

the fly while the Transformer is being trained [45]. The input

embedding block’s sole purpose is to represent otherwise

non-numerical data, as a sequence of vectors such that it can

be used as input for the Transformer.

After the tokens have been represented using vectors, a Po-

sitional Encoding is added. This is done because the Trans-

former does not inherently model positions in its input. The

addition of a positional encoding gives the Transformer the

Figure 1. The Transformer Encoder Architecture

ability to reason about the positions of tokens. In the orig-

inal paper, the authors decided on a sinusoidal positional

encoding:

𝑃𝐸 (𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑) (1)

𝑃𝐸 (𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (𝑝𝑜𝑠/100002𝑖/𝑑), (2)

where 𝑃𝐸𝑝𝑜𝑠,2𝑖 , 𝑝𝑜𝑠 indicates the position in the sequence

while 2𝑖 represents the index for the vector at that position.

The intuition is that lower values of 𝑖 have a larger phase,

allowing the Transformer to reason about more global posi-

tions, while higher values of 𝑖 have a smaller phase allowing

the Transformer to reason more about relative positions.

Although sinusoidal positional encoding is used often in

practice, it is not necessarily required. Instead, the positional

encoding could also be learned on the fly, while training the

Transformer. The purpose of the Positional Encoding block

is to allow the Transformer to reason about the position of

tokens inside the sequence because it otherwise would not

inherently do so.

After the tokens have received the positional encoding Multi-

Head self-attention is applied. Multi-Head self-attention is

the core of the Transformer and is also the block with the

highest complexity. The first step is to apply three linear pro-

jections to the tokens separately resulting in three matrices,

the queries (𝑄), keys (𝐾), and values (𝑉). A simplified way to

understand these projections is that:𝑄 represents the type of

information a certain token is requesting, 𝐾 represents the

type of information a certain token holds, and 𝑉 represents

the information that a certain token would want to forward.

Now the idea is to create a matrix of the similarity between

each token’s query and all tokens’ key. For any given query

the result will mean: "How similar is the type of information

every other token has to the type of information that the

given query is requesting".

After these projections have been applied the queries, keys,

and values are split into ℎ equally sized chunks along the

representational dimension. Each of these chunks represents

a head inside the Multi-Head attention mechanism. Scaled

dot product attention is then applied per head as follows:

𝐴(𝑄,𝐾,𝑉) = softmax

(
𝑄𝐾⊺
√
𝑑𝑘

)
, (3)

where 𝑑𝑘 indicates the size of the chunks along the represen-

tational dimension. The dot product between a query and

a key essentially represents their similarity, meaning that

the matrix multiplication between all queries and all keys

gives us a matrix of similarity scores for each combination.

This resulting matrix is often called scores or attention
matrix. A softmax operation is then also applied on the

matrix row-wise along the queries. The attention matrix is

then multiplied with the values, making the attention matrix

act as weights in a weighted sum over all values, retrieving

the new values for the tokens. After the scaled dot product

attention has been applied to each of the chunks separately,

the results are concatenated again to match the original in-

put dimensions. Lastly, one more linear projection is applied

to the result before it is passed on to the next block. In the

next block a residual connection is used to sum the input of

the multi-headed attention block with its output and Layer

Normalization [2] is applied.

Lastly, there is the feedforward block, for each respective

token it applies a parameterized linear function to the values.

This can be done on each of the tokens separately, making

this function highly parallelizable. The exact role of the feed-

forward layer in the Transformer architecture has long been

unclear, but recently it has been shown that in large language

models, factual information is stored in the weights of the

Feed Forward layer, acting like an information lookup [32].

Blocks containing Multi-Head Attention block and the Feed

Forward block are then sequentially repeated, after which

the resulting features go through a projection to retrieve the

desired output.

3 Related Work
There has been a significant amount of prior related work

regarding the improvement of the efficiency of Transformers.

In this section, we specifically focus on the closely related

works of chunking attention, clustering attention, and the

current state-of-the-art, structured-state-space-based mod-

els.

Chunking attention. One obvious way to solve the qua-

dratic complexity of self-attention is to chunk the given

sequence into smaller pieces and apply self-attention within

those pieces. This is known as Local Attention [28]. However,

by chunking the sequence, no information can be passed be-

tween chunks, causing a decrease in task performance below

that of the standard Transformer. Several works have spar-

sified the attention matrix by windowing or chunking the

sequence [1, 3, 7, 28, 49]. Some opted for applying attention

in a sliding window manner, but the use of global attention

to special tokens, such as the "CLS", is also common among

the original efficient Transformers of the LRA benchmark

[1, 3, 49]. These models also use the "CLS" token for the final

classification, allowing all parts of the sequence to contribute

to the final result. BigBird [49] combined global attention,

window attention, and random blocks of attention to achieve

state-of-the-art performance on the LRA benchmark. Despite

the efficiency gains of the chunking of self-attention, it does

not necessarily model long-range dependencies well. Multi-

ple rounds of self-attention can be necessary to create a large

enough receptive field to model long-range dependencies.

Although chunking has shown its effectiveness, it does not

model long-range dependencies well, since no information

can flow from distant parts of the input sequence.

Clustering attention. One way to easily model long-range

dependencies is the clustering of the input sequence which

is only partially dependent on the order of the input. Specif-

ically, the Reformer [20] and its descendant SMYRF [11]

both use locality-sensitive hashing (LSH) to apply clustering

to the input sequence and then apply a form of attention.

The Reformer first uses the constraint of the queries and

keys being equal such that the attention matrix is symmet-

ric. Then to create the clusters they define a random matrix

𝑅 ∈ R𝑑ℎ×𝑁𝑐
2 , which is then matrix multiplied with query-key.

The query-keys are then clustered based on the result of

argmax([𝑋𝑞𝑘𝑅 ⊕−𝑋𝑞𝑘𝑅]). The symbol ⊕ stands for concate-

nation, while 𝑋𝑞𝑘 stands for the shared query-key represen-

tation. The resulting clusters are of different sizes, making it

impossible to be easily computed on conventional hardware.

This drawback reflects in the slower speed of the Reformer

in the Long Range Arena Benchmark [42].

SMYRF efficiently computes asymmetric clustering of queries

and keys, that is a query is not necessarily clustered with its

corresponding key. Unlike the Reformer, SMYRF also creates

balanced clusters of constant size and thus achieving bet-

ter computational efficiency. Although both these clustering

Transformers do model long-range dependencies, clustering

also creates problems. The random initialization of the net-

work causes queries and keys to be clustered randomly at

first. As a result, the weight update that the queries and keys

receive is based only on the information that is inside these

clusters. Furthermore, gradients could also be unstable when

a query or key switches from one cluster to another. Ideally,

an efficient Transformer retains the original strength of the

Transformer which is the information flow throughout the

entire input sequence through the self-attention mechanism.

In contrast, our approach keeps the information flow and

introduces more stability through the use of cluster sum-

maries, which act as an indicator of the type of information

that can be obtained in a given cluster.

Structured State Space Models. More recent work on effi-

cient sequence models includes Structured State Space Mod-

els (SSSM), such as S4 [14], S5 [38], and MEGA [30] which

are currently the state-of-the-art on long-range sequence

modeling benchmarks. Structured State Space Models do not

use the self-attention mechanism, and rely on a learnable

state space to capture relevant dependencies in a sequence,

which is defined as followed:

𝑥 ′(𝑡) = A𝑥 (𝑡) + B𝑢 (𝑡)
𝑦 (𝑡) = C𝑥 (𝑡) + D𝑢 (𝑡), (4)

whereA, B,C,D are parameterized matrices, which map the

input signal𝑢 (𝑡) to an output𝑦 (𝑡) through a latent space𝑥 (𝑡).
However, we do not investigate these types of architectures

further, as they are no longer related to the Transformer

architecture and thus the self-attention mechanism.

4 Method: Clustering Attention using
Surrogate Tokens

In this section, the proposed method is described in detail.

First, we describe the intuition behind our method in Sec-

tion 4.1. We then describe our method in a Single-Headed

Attention scenario in Section 4.2, after which the clustering

mechanism is expanded in more detail in Section 4.2. We

further explain CAST in a Multi-Headed scenario in Section

4.3. Lastly, the complexity of CAST is discussed in Section

4.4.

4.1 Intuition
A query (𝑄) and key (𝐾) which are in the same direction with

a large enough magnitude will end up with a large score in

the self-attention matrix. This relationship can be exploited

for clustering by defining some static clustering directions,

determining the similarity of all queries and all keys with

these clustering directions, and then clustering based on

this similarity. However, this approach has two problems:

(1) when clustering directions are randomly initialized, their

configurationmight not be optimal for the task that is trained

on, and (2) when training is started, queries and keys are

clustered randomly. Consequentially, the gradient of the

queries and keys is only based on the self-attention within

their cluster, making it impossible for queries and keys from

different clusters to align themselves according to the loss.

To alleviate this problem, we design CAST to ensure that

the clustering directions are learnable and that each token

receives information from all clusters. In CAST, surrogate

tokens represent the learnable clustering directions and are

used as a surrogate for finding similar queries and keys. The

weight of each cluster’s result is based on the similarity of

its query and the clustering direction. For the cluster that

the token is a part of, we simply apply self-attention. For

the rest of the clusters, cluster summaries are created, based

on the similarity of a token’s key with the direction of the

cluster it belongs to.

4.2 Single-Head Clustering Attention using
Surrogate Tokens

CAST is an extension of the self-attention mechanism in the

Transformer architecture [45]. We create query-key-value

combinations from the input sequence X ∈ R𝑁×𝑑 , where 𝑁
is the input sequence length, and 𝑑 the feature embedding

dimension:

Q = X𝑊𝑞, K = X𝑊𝑘 , V = X𝑊𝑣, ∈ R𝑁×𝑑 , (5)

where𝑊𝑞,𝑊𝑘 ,𝑊𝑣 ∈ R𝑑×𝑑 are learnable parameters for the

queries (Q), keys (K), and values (V) respectively. To create
clusters and lower the computational complexity, we define

learnable surrogate tokens S ∈ R𝑁𝑐×𝑑
, where 𝑁𝑐 indicates

the number of clusters. The surrogate tokens represent the

learnable clustering directions and are used as a surrogate

for finding similar queries and keys. Then we compute the

similarity matrices with the surrogate tokens for the queries

(A𝑞) and the keys (A𝑘). We combine these similarity matrices

using a ratio 𝜎 (𝜑) : 1−𝜎 (𝜑) based on a linear transformation

of 𝑋 , where 𝜎 indicates the sigmoid function.

A𝑞 = QS𝑇 ,A𝑘 = KS𝑇 ∈ R𝑁×𝑁𝑐

𝝋 = X𝑊𝜑 + 𝑏𝜑 ∈ R𝑁×1

A𝑔 = 𝜎 (𝝋) ⊙ 𝑓2 (A𝑞) + (1 − 𝜎 (𝝋)) ⊙ 𝑓2 (A𝑘) ∈ R𝑁×𝑁𝑐 ,

(6)

where 𝜎 (𝜑) is a sigmoid function applied to a linear trans-

formation of X, which is represented as X𝑊𝜑 + 𝑏𝜑 . Where

𝑊𝜑 ∈ R𝑑×1 and 𝑏𝜑 ∈ R1 are learnable parameters. The

function 𝑓 (·) indicates an attention function, which in this

work includes the classical softmax and the Laplace function

from MEGA [30]. In the case of softmax, 𝑓𝑖 (·) indicates that
the softmax is applied over the dimension 𝑖 of the matrix.

Here the softmax is applied to the dimensions holding corre-

sponding to the different clusters. The symbol ⊙ represents

element-wise multiplication. Subsequently, the calculated

similarities are used to cluster the input sequence using a

clustering mechanism 𝐺 , computed as 𝐺 : R𝑁×𝑁𝑐 , R𝑁×∗ →
R𝑁𝑐×𝜅×∗

, where ∗ indicates any given shape, and 𝜅 indicates

the size of a cluster. Furthermore, let𝐺−1 indicate the reverse
of the function 𝐺 , such that 𝐺−1 : R𝑁×𝑁𝑐 ,R𝑁𝑐×𝜅×∗ → R𝑁×∗,
where in the event of a token being contained in two clusters

the sum is calculated. Then, standard self-attention is applied

within each cluster as follows:

R𝑖𝑛𝑡𝑟𝑎 = 𝑓

(
Q𝑔K𝑇

𝑔

𝜏

)
V𝑔 ∈ R𝑁𝑐×𝜅×𝑑 , (7)

where Q𝑔 = 𝐺 (A𝑔,Q), K𝑔 = 𝐺 (A𝑔,K), V𝑔 = 𝐺 (A𝑔,V), and
𝜏 is a scalar depending on the used attention function. Here

R𝑖𝑛𝑡𝑟𝑎 indicates the result of attention within the clusters.

To create a gradient between tokens from different clusters

we apply attention between clusters as well. To do this, we

define value summaries 𝑉𝑠𝑢𝑚 , which is a weighted sum of

all values within each cluster where the weights A𝑣𝑎𝑙𝑢𝑒 are

based on A𝑘 and 𝜑 as follows:

A𝑣𝑎𝑙𝑢𝑒 = 𝐺

(
A𝑔,

A𝑘 ⊙ 𝜙 (−𝝋)
𝜏𝑘

)
I′𝑁𝑐

∈ R𝑁𝑐×𝜅×1

R𝑖𝑛𝑡𝑒𝑟 = 𝑓2 (A𝑣𝑎𝑙𝑢𝑒) V𝑇
𝑔 ∈ R𝑁𝑐×1×𝑑 , (8)

where 𝐼 ′
𝑁𝑐

indicates the expanded identity matrix 𝐼𝑁𝑐
such

that 𝐼 ′
𝑁𝑐
∈ B𝑁𝑐×𝑁𝑐×1

, the function 𝜙 (𝑥) = Softplus(𝑥) + 1
[50], and 𝜏𝑘 is a scaling factor. After this, we use 𝐴𝑄 and 𝑟

Figure 2. Sketch of the proposed method. With the queries (𝑄), keys (𝐾), and values (𝑉), we create the surrogate token

similarities 𝐴𝑞 , and 𝐴𝑘 . Here, 𝐴𝑞 represents the similarity between the queries and surrogate tokens, and 𝐴𝑘 the similarity

between the keys and surrogate tokens. They are combined to create a final similarity 𝐴𝑔 for each token to each cluster.

We then use this clustering of tokens and create the clustered queries (𝑄𝑔), keys (𝐾𝑔), and values (𝑉𝑔). Within each cluster,

self-attention is applied resulting in 𝑅𝑖𝑛𝑡𝑟𝑎 . Furthermore,𝐴𝑘 is also clustered and matrix multiplied with𝑉𝑔 to create a summary

per cluster resulting in 𝑅𝑖𝑛𝑡𝑒𝑟 . The results 𝑅𝑖𝑛𝑡𝑟𝑎 and 𝑅𝑖𝑛𝑡𝑒𝑟 are then combined using 𝐴𝑞 as the weights for a weighted sum,

resulting in 𝑅. Another linear projection 𝑂 is then applied 𝑅 and passed on to the feedforward layer of the Transformer.

to create an attention matrix used as a weighted sum for the

value summaries and attention within clusters:

A𝑠𝑢𝑚 = 𝑓3

(
A𝑞 ⊙ 𝜙 (𝝋)

𝜏𝑞

)
∈ R𝑁×𝑁𝑐

A𝑖𝑛𝑡𝑒𝑟 = (A𝑠𝑢𝑚 ⊙ 𝑀̂) ∈ R𝑁×𝑁𝑐

A𝑖𝑛𝑡𝑟𝑎 = 𝐺 (A𝑔,A𝑠𝑢𝑚 ⊙ 𝑀) ∈ R𝑁×𝑁𝑐

R = 𝐺−1 (A𝑔,A𝑖𝑛𝑡𝑟𝑎R𝑖𝑛𝑡𝑟𝑎) + A𝑖𝑛𝑡𝑒𝑟R𝑖𝑛𝑡𝑒𝑟 ∈ R𝑁×𝑑 ,
(9)

where 𝑀 ∈ (0, 1)𝑁×𝑁𝑐
is a mask where 𝑀𝑖, 𝑗 = 1 if 𝑋𝑖 ∈

𝐺 (A𝑔, 𝑋) 𝑗 and𝑀𝑖, 𝑗 = 0 if 𝑋𝑖 ∉ 𝐺 (A𝑔, 𝑋) 𝑗 . As a result of this
operation, 𝑅 is a weighted sum according to 𝐴𝑠𝑢𝑚 of the

attention within clusters (R𝑖𝑛𝑡𝑟𝑎) and the summaries of the

clusters (R𝑖𝑛𝑡𝑒𝑟). The final outputO is then calculated asO =

R𝑊𝑜 ∈ R𝑁×𝑑 , where𝑊𝑜 ∈ R𝑑×𝑑 are learnable parameters. O
is then passed on to the rest of the standard Transformer

architecture.

Clustering Mechanisms. The clustering mechanism is an

integral part of CAST and serves to group inter-important

tokens of the input sequence. Here, this inter-importance

is measured as the similarity scores in the attention matrix

A𝑔 . We define two clustering mechanisms that maximize the

similarity score per cluster: the Top-K clustering mechanism

and the Single Assignment (SA) Top-K clustering mechanism.

The practical difference can between Top-K and SA Top-K

can be seen in Figure 3.

A) Top-K Clustering Mechanism

The Top-K clustering mechanism is a naive approach to clus-

tering the input sequence, the indices of the largest 𝐾 el-

ements in A𝑔 are taken per cluster and used to index the

original sequence. Because Top-K simply maximizes the sim-

ilarity scores per cluster separately, it is possible for any

token to be contained in anywhere between 0 and 𝑁𝑐 clus-

ters. This attribute of Top-K can be useful in case padding is

used, by setting the similarity scores of padding to 0, it can

be ensured that padding is never taken into consideration

when applying attention within clusters. However, in static

sequence domains, like images, it can also cause certain parts

of the input sequence to never be clustered. A pseudocode

of the Top-K clustering mechanism can be seen in Appendix

A.1.

B) Single Assignment Top-K Clustering Mechanism

The Single Assignment Top-K clustering mechanism is an

approach that has the constraint that every part of the se-

quence can only be assigned to a single cluster. With this

constraint, we can ensure that every token is part of the

result of CAST and thus has a gradient. To achieve this con-

straint, we cluster tokens in descending order according to

their maximum score in A𝑔. When a cluster has reached

its desired cluster size, we no longer assign tokens to this

cluster. A pseudocode of the Top-K clustering mechanism

can be seen in Appendix A.2.

4.3 Clustering Attention using Surrogate Tokens
Multi-head

To apply CAST in a multi-headed scenario, the surrogate

tokens S are also split into multiple heads such that 𝑆 ∈
R𝑁𝑐×ℎ×𝑑ℎ

, where ℎ is the number of heads, and 𝑑ℎ = 𝑑
ℎ
. The

Figure 3. The practical difference between the Top-K and SA Top-K clustering mechanisms. Here, 𝑆 indicates the clustering

direction of two surrogate tokens. The blue and green dashed circles indicate the clusters that the Top-K and SA Top-K

clustering mechanisms would create, respectively.

score A𝑔 is then computed as follows:

A𝑞 = QS𝑇 ∈ R𝑁×ℎ×𝑁𝑐

A𝑘 = KS𝑇 ∈ R𝑁×ℎ×𝑁𝑐

𝝋 = X𝑊𝜑 + 𝑏𝜑 ∈ R𝑁×1

𝐴𝑠
𝑞 = 𝜎 (𝝋) ⊙ 𝑓2 (

∑︁
ℎ

A𝑞:,ℎ,:) ∈ R𝑁×𝑁𝑐

𝐴𝑠
𝑘
= (1 − 𝜎 (𝝋)) ⊙ 𝑓2 (

∑︁
ℎ

A𝑘:,ℎ,:) ∈ R𝑁×𝑁𝑐

A𝑔 = 𝐴
𝑠
𝑞 +𝐴𝑠

𝑘
∈ R𝑁×𝑁𝑐

(10)

In short, we sum the similarity scores A𝑞 and A𝑘 over the

head dimension to get the similarity of each token to each

cluster. After this step CAST works as described in Section

4.2, but with an added constant dimension ℎ. Before the

result O is calculated, the result of the different heads 𝑅 is

concatenated such that R ∈ R𝑁×𝑑 .

4.4 Complexity
With the use of CAST, the original quadratic complexity of

the self-attention mechanism can be significantly reduced.

The complexity of CAST without added constants regarding

the number of layers, batch size, and hidden dimensions is

𝑂 (𝛼𝑁). Here 𝛼 = max(𝑁𝜅, 𝑁𝑁 2

𝑐), where 𝜅 is the number of

elements in a cluster, and𝑁𝑐 the number of clusters. Here, the

complexity𝑂 (𝑁𝜅) is derived from the computation ofR𝑖𝑛𝑡𝑟𝑎

being 𝑁𝑐𝜅
2
, which can be rewritten as 𝑁𝜅. The complexity

𝑂 (𝑁𝑁 2

𝑐) is derived from the computation of R𝑖𝑛𝑡𝑒𝑟 . Theo-

retically, the memory usage is lowest with a configuration

where 𝑁 2

𝑐 = 𝜅, which will be tested in the ablations.

5 Experimental Setup
To answer the research questions in Section 1, we perform a

multitude of experiments. To determine whether CAST can

generalize well over long-and short-range machine learning

tasks, we determine the performance of CAST on the Long

Range Arena Benchmark[42] (LRA). Furthermore, the LRA

benchmark is also used to determine the efficiency of CAST

compared to that of other efficient Transformer variants. We

further perform an ablation study on the surrogate tokens

to determine how the amount of surrogate tokens influences

the performance, peak memory usage, and the training steps

per second of CAST. Lastly, we visually analyze the learned

clusters to gain an insight into why CAST works.

5.1 Dataset
As shortly mentioned before we evaluate CAST on the Long

Range Arena (LRA) benchmark [42], which consists of six

tasks of different modalities and sequence lengths (1K-16K

tokens). Together, these tasks test a model’s capabilities in

dealing with a diverse range of data types and structures

such as natural language, images, and mathematics. The LRA

benchmark is currently being used as the main benchmark

for efficient Transformers and long-range sequence model-

ing. The evaluation metric for all the tasks in LRA is their

classification accuracy. We further describe the six tasks of

LRA in more detail in the following sections.

ListOps. The ListOps dataset was originally created

for testing the parsing ability of latent tree models, but a

larger version is now used in the LRA to test the capability of

Transformers to learn the hierarchical structures. The data

is a sequence of tokens representing a large mathematical

operation on lists of numbers. The numbers 0 to 9 are avail-

able as both the input of the operations and the final result.

There are four base mathematical operations :

• MAX: The largest value in a given list.

• MIN: The smallest value in a given list.

• MED: The median value in a given list.

• SUM MOD: The sum of the list module 10.

In the LRA the maximal length of the input sequence is

set to 2K tokens. This is a ten-way classification task where

accuracy is used as the evaluation metric.

Text. The Text task takes the IMDb reviews sentiment

classification task [31] and the characters as tokens in the

input sequence. The maximum length of the input sequences

is truncated or padded to 4K tokens. This task is a binary

classification task with accuracy as its metric.

Retrieval. For the Retrieval task the ACL Anthology

Network dataset [37] is used. This dataset holds papers that

can either be linked by citation or not, in other words, the

final task is a binary classification task. To make the task

more challenging, character-level tokens like in the text clas-

sification task are used in the setup. A sequence length of

4K tokens is used per document resulting in a total length of

8K tokens.

Image. The Image task takes the CIFAR-10 dataset

[21] as its base. The images are first greyscaled into a single

channel with each pixel having an 8-bit pixel intensity as

its representation. This results in a 32 × 32 image which is

unrolled into a 1-D sequence, this sequence is then used as

input for a ten-way classification task.

Pathfinder. The Pathfinder task [25] consists of im-

ages of 32 × 32 where two dots, represented by circles, are

connected by dashed lines. A model is required to make a

binary decision of whether the two dots are connected by

the dashed lines, however, there are also distraction lines

that are not connected to any of the dots. Just like in the im-

age classification task the image is unrolled into a sequence

length of 1024 and used as input for this task.

Path-X. The Path-X task is a more extreme case of

the original Pathfinder, instead of the image being 32 × 32
it is 128 × 128 making the sequence length 16 times larger

than the original. Apart from the size this task is exactly the

same as the original Pathfinder. It should be noted that this

task has not yet been achieved with a higher-than-random

accuracy with the constraints of the LRA.

5.2 Experiments
In this section, we explain the experimental setup per experi-

ment in more detail. All experiments were implemented and

run using PyTorch [36] version 1.13. The experiments were

performed on a variety of hardware, and are expanded upon

in more detail per experiment where significant. To keep

experiments reproducible, we keep the number of layers and

features comparable to those used in efficient Transformers

in the original LRA paper [42].

Long Range Arena Efficiency. We evaluate the effi-

ciency of CAST by running the CAST on the Text task of

LRA with a varying sequence length of 1K, 2K, 3K, and 4K.

For each of these sequence tasks, we determine the peak

memory usage and the number of training steps per second

relative to the original Transformer architecture. For compar-

ison with other efficient Transformers we take their relative

performance of the original LRA paper [42]. We ensure that

CAST and the Transformer use the exact same hyperparam-

eters, such as the number of layers, the number of heads,

and the size of the feature dimensions. CAST uses a constant

cluster size of 200 throughout all sequence lengths, and all

experiments were run on a single A40 GPU.

Long Range Arena Performance. We evaluate the

performance of CAST with both the Top-K and SA Top-K

clustering mechanisms on the LRA dataset by performing a

small hyperparameter sweep. In total, we ran ten full-length

training sessions per task, where the checkpoint with the

lowest validation loss was used to evaluate the performance

of CAST. Furthermore, we also combine CAST with the cur-

rent state-of-the-art, MEGA [30], to determine whether the

addition of CAST would improve the state-of-the-art. In

Appendix B.1, a more detailed description regarding the hy-

perparameters can be viewed.

Clustering Ablation. We further perform an ablation

study on how the number of surrogate tokens, i.e. the number

of clusters, affects the performance, the peak memory usage,

and the number of training steps per second. Furthermore,

we investigate whether there is a difference in using the Top-

K or Single Assignment Top-K clustering mechanisms in

the Image task. For this ablation, we use the Text and Image

tasks from the LRA dataset to determine whether there is

a difference between modalities. For each task, we take the

best-performing models from the hyperparameter sweep but

vary the cluster size 𝜅 such that 𝜅 ∈ {32, 64, 128, 256, 512}.

Visual Analysis on Clusters. Lastly, we perform a

visual analysis on the learned clusters in the Image task of

the LRA dataset. From the ablations, we take a single model

with two CAST layers and eight surrogate tokens. We then

visualize which tokens are clustered together and have a

more in-depth look at the obtained similarity scores A𝑔.

6 Results
In this Section, we show the results of our experiments. In

Section 6.1 we show the memory and time efficiency of CAST

compared to other architectures. Then, in Section 6.1 we

compare the performance of CAST with other architectures

on the Long Range Arena Benchmark. An ablation study is

performed on the clustering in Section 6.3, and then a visual

analysis is done on the learned clusters in the Image task of

LRA.

6.1 Long Range Arena Efficiency
In Table 1, we compare the speed and memory efficiency of

several notable architectures. We observe that CAST with

Top-K is significantly faster compared to both the origi-

nal Transformer and other efficient Transformers for all

sequence lengths, with it being 6.18 times faster than the

original Transformer on a sequence length of 4K. Further-

more, CAST needs slightly less memory than other efficient

Transformers, only needing 10% of the memory compared to

the original Transformer architecture at a sequence length

of 4K. The use of SA Top-K lowers the speed of CAST sig-

nificantly but does seem to affect the memory efficiency.

Furthermore, the use of CAST in combination with MEGA

[30] is not more efficient nor more performant than simply

chunking.

6.2 Long Range Arena Performance
Table 2 reports the performance results of CAST compared to

those of the baseline Transformer and its efficient variations,

and the current state-of-the-art models. CAST achieves per-

formance between that of the state space models and the

other efficient Transformers. Although structured state space

models are state-of-the-art, they cannot be directly compared

to other efficient Transformers since they apply global con-

volutions and are not solely relying on attention. CAST has

a relatively high score for the Image task and a relatively

low score for the Pathfinder task compared to that of the

other efficient Transformers. The low score of the Pathfinder

task could be explained by the fact that many of the pixels

in the Pathfinder image are black, which makes their query-

key pairs similar and put in the same cluster. Furthermore,

MEGA with CAST does perform significantly better than

CAST on its own, but slightly worse than MEGA-Chunk.

Specifically, MEGA-CAST performs significantly worse on

the image-based tasks of LRA. An extended version of Table

2 can be found in Appendix C.1.

6.3 Clustering Ablation
Here we discuss the multitude of ablation studies done on

the clustering that is used in CAST. In Figure 4, a summary

of the results of all ablations can be seen.

Clustering Mechanism. Figure 4 shows the differ-

ence in performance, memory footprint, and time efficiency

between the clustering mechanisms Top-K and SA Top-K

on the Text and Image tasks of LRA. In Figure 4d, it can be

seen that the choice in the clustering mechanism slightly

affects the resulting performance on the Image task at a clus-

ter size of 128 and 256. It can be observed from Figure 4b

and Figure 4e, that the cluster mechanism does not affect

the Peak Memory Usage. Furthermore, it can be seen from

Figure 4c and Figure 4f that the Top-K clustering mechanism

is overall significantly faster than the SA Top-K clustering

mechanism. The SA Top-K clustering mechanism in particu-

lar is much slower when using small cluster sizes on large

input sequences, like for the Text task.

Performance. In Figure 4a and Figure 4d, we show a

comparison of the effect of cluster sizes and cluster mecha-

nism on the performance of CAST on Text and Image task of

the LRA dataset. For the Text task, the cluster size does not

significantly impact the resulting accuracy, although a slight

increase in accuracy can be observed at a larger cluster size.

However, cluster size does impact the performance of the

Image task significantly for both Top-K and SA Top-K. It can

be observed that the performance on the Image task dips

Table 1. Speed and Memory efficiency of the LRA Benchmark with the average performance (Avg.). The Transformer and

CAST were created using the same hyperparameters. A batch size of 25 was used and CAST uses a constant cluster size of 200.

Speed and Memory increase/decrease are reported relative to the results of the original Transformer architecture. Models

annotated with the † symbol had their relative speed and memory taken from the LRA benchmark [42].

Model Steps Per Second ↑ Peak Memory Usage ↓ Avg.

1K 2K 3K 4K 1K 2K 3K 4K Performance

Transformer [45] 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 57.71

Reformer
†
[20] 0.5 0.4 0.7 0.8 0.56 0.37 0.28 0.24 50.56

Sinkhorn Trans.
†
[41] 1.1 1.6 2.9 3.8 0.55 0.31 0.21 0.16 51.23

Performer
†
[8] 1.2 1.9 3.8 5.7 0.44 0.22 0.15 0.11 51.18

Luna-16 [29] 1.2 1.8 3.7 5.5 0.44 0.23 0.17 0.10 59.55

S4 [14] - - - 4.8 - - - 0.14 86.09

MEGA [30] - - - 2.9 - - - 0.31 88.21

MEGA-Chunk [30] - - - 5.5 - - - 0.13 85.66

MEGA-CAST - - - 3.01 - - - 0.21 82.11

CAST (Top-K) 1.76 3.25 4.48 6.18 0.33 0.18 0.13 0.10 59.32

CAST (SA Top-K) 1.47 2.24 2.33 2.62 0.33 0.18 0.13 0.10 57.57

Table 2. The performance of different architectures on the Long Range Arena benchmark in classification accuracy. We

divide these works in (A) Transformer architectures that do not use Structured State Spaces or any derivation of this, and (B)

Architectures using Structured State Spaces. (A-Top) The original Transformer architecture. (A-Middle) Efficient Transformer

architectures that came out with the LRA benchmark. (A-Bottom) Notable models that came out after the release of the LRA

benchmark. (B) Architectures using Structured State Spaces. here the symbol † indicates that the results came from the original

paper from the LRA dataset [42]. Furthermore, the symbol × indicates that the Transformer variant either ran out of memory

and − indicates that results were not reported.

Model Year ListOps Text Retrieval Image Pathfinder Path-X Avg.
Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67

(A) Transformer Based Architectures

Transformer
†
[45] 2017 36.37 64.27 57.46 42.44 71.40 × 53,66

Transformer (re-impl [29]) 2017 37.11 65.21 79.14 42.94 71.83 × 57.71

Local Att.
†
[42] 2017 15.82 52.98 53.39 41.46 66.63 × 46.71

Sparse Trans.
†
[7] 2019 17.07 63.58 59.59 44.24 71.71 × 51.03

Performer
†
[8] 2020 18.01 65.40 53.82 42.77 77.05 × 51.18

Reformer
†
[20] 2020 37.27 56.10 53.40 38.07 68.50 × 50.56

Sinkhorn Trans.
†
[41] 2020 33.67 61.20 53.83 41.23 67.45 × 51.23

BigBird
†
[49] 2021 36.05 64.02 59.29 40.83 74.87 × 54.18

FNet [23] 2021 35.33 65.11 59.61 38.67 77.80 × 54,42

Luna-16 [29] 2021 37.43 65.74 79.38 46.39 78.36 - 59.55
CAST Top-K (Ours) 2023 39.90 65.45 78.01 52.37 70.18 × 59.32

CAST SA Top-K (Ours) 2023 40.70 65.13 74.64 52.78 62.22 × 57.57

(B) Structured State Space Architectures

S4 [14] 2021 59.60 86.82 90.90 88.65 94.20 96.35 86.09

S5 [38] 2022 62.15 89.31 91.40 88.00 95.33 98.58 87.46

MEGA-Chunk [30] 2022 58.76 90.19 90.97 85.80 94.41 93.81 85.66

MEGA [30] 2022 63.14 90.43 91.25 90.44 96.01 97.98 88.21
MEGA-CAST (Ours) 2023 56.35 88.51 88.99 77.92 92.79 88.13 82.11

around a cluster size of 64 to 128, but peaks at a cluster size

of 32 and 256.

Peak Memory Usage. In Figure 4b and Figure 4e, we

show measurements of the influence of the cluster sizes on

the peak memory usage of the Image and Text task. At its

lowest, CAST only uses around 1.35 gigabytes of memory for

the Image and 6.3 gigabytes of memory for the Text task. The

memory curves represent a quadratic relationship, with an

increase in memory when the number of clusters becomes

too large, which was expected from Section 4.4. For both

tasks, it can be seen that the least amount of memory is used

when the number of clusters and the cluster size is close to

the relation 𝑁 2

𝑐 = 𝜅 . However, knowing that CAST achieves

similar performance across different cluster sizes, we can

use the cluster size that minimizes the memory footprint

without a large decrease in performance.

Time Efficiency. In Figure 4c and Figure 4f, we re-

port measurements of the influence of the cluster size and

clustering mechanism on the training steps per second of

the Text and Image task. It can be observed that the num-

ber of training steps per second for the SA Top-K clustering

mechanism (orange) is significantly lower than that of the

standard Top-K clustering mechanism, especially at smaller

cluster sizes. This is due to the constraint of SA Top-K must

ensure every token is contained only in one cluster. However,

knowing that the change of performance between clustering

mechanisms and cluster sizes is small, the Top-K clustering

mechanism can be chosen at a cluster size that maximizes

the number of steps per second.

6.4 Visual Analysis on Clusters
The clusters created by CAST do seem to hold visuospatial

information on image tasks. More specifically, CAST seems

to separate the background from the foreground in images.

In Figure 5a, we show an example of an input image from

the Image task which depicts a horse and its rider. In Fig-

ure 5b, the clustered pixels of the two layers of CAST are

depicted, where each color corresponds to one of the clus-

ters. In the first layer, we can observe that the clusters are

approximately slices of the original image. In the last layer,

(a) (b) (c)

(d) (e) (f)

Figure 4. Ablations on the cluster size using CAST with Top-K Clustering Mechanism (blue) and Single Assignment Top-K

Clustering Mechanism (orange) on the Text and Image tasks of the LRA benchmark against (a & d) the performance, (b & e)

the peak memory allocated, and (c & f) the time efficiency, respectively.

it can be observed that the background and foreground of

the image are roughly separated in different clusters. This

behavior is observed for most of the images in the Image

task – see Appendix C.2 for more examples. We further ana-

lyze the clusters by visualizing the scores of A𝑔 in Figure 5b,

where the separation of foreground and background is more

evident, together with the separation per slice of the image.

7 Discussion
Here, we explicitly answer the research questions posed in

Section 1, and discuss the results and limitations of CAST.

How does thememory and computational complex-
ity of CAST compare to other efficient Transformers?
CAST’s memory and computational efficiency are signifi-

cantly better than other efficient Transformers in the Long

(a) Example Image of the LRA Image task. (b) Visualizations of learned clusters of CAST per layer.

Figure 5. Visualizations of the learned clusters of a CAST model on the LRA Image task. The number of clusters 𝑁𝑐 is 8. (Left)

An example of from the LRA Image task. (Middle) Clustered pixels, where each color represents a different cluster. (Right)

Example scores for clusters in A𝑔. (Top) Visualization of the first layer. (Bottom) Visualization for the last layer.

Range Arena efficiency benchmark. CAST uses less mem-

ory for all tested sequence lengths and is only slower for

a sequence length of 1K. As seen in Table 1, CAST can be

up to 6.18 times faster and use 10% of the memory of the

original Transformer. We attribute this increase in speed and

memory efficiency to the ability of CAST to work well with

small cluster sizes.

When CAST is combined with the structured-state-

space model MEGA does perform slightly slower than simply

chunking MEGA, which is most likely due to the fact that

MEGA-Chunk’s chunk size is equal to CAST’s cluster size,

making CAST take longer and use more memory in the form

of creating cluster summaries.

How does CAST generalize over both long- and
short-range machine learning tasks? CAST performs on

par with and often better than the original Transformer ar-

chitecture on the Long Range Arena benchmark, which tests

many different modalities and sequence lengths. Some inter-

esting observations can be made regarding the performance

of CAST on the LRA benchmark. Like the other cluster-

ing Transformers, CAST performs below the original Trans-

former on the Pathfinder task, we hypothesize that this is

due to the fact that many of the pixels in the Pathfinder

task are the same value. Because of this, their resulting em-

bedding and their clustering affinities in A𝑔, are the same,

which could cause most of the input sequence to be clustered

semi-randomly. For this same reason, we hypothesize that

the performance of CAST on the Image task is relatively

high, as the Image task contains natural images, which have

a large variety in pixel values. The combination of MEGA

with CAST does not show a significant improvement of do-

ing chunking with MEGA, we hypothesize this is due to the

Structured State Space MEGA uses, which is already model-

ing the long-range dependencies, making the self-attention

that is applied more of a short-range dependency modeler.

How does the choice of the configuration of sur-
rogate tokens affect the generalizability of CAST?. The
configuration of surrogate tokens, specifically the number

of surrogate tokens, slightly affects CAST’s performance

on the Image task, but minimally on the Text task. The use

of SA Top-K makes CAST slower compared to Top-K as a

trade-off for being slightly better in the Image task. The dip

in performance at a cluster size of 128 could be because the

cluster size is not large enough to get enough context in

the intra-cluster self-attention. At the same time, there are

also not enough clusters to get valuable information from

the cluster summaries. Both increasing and decreasing the

cluster size could fix this since an increase in cluster size gets

more context into the intra-cluster self-attention, while a de-

crease allows for more specificity in cluster affinities. When

it comes to the actual generalizability of CAST, the number

of surrogate tokens only slightly affects the generalizability,

but only for some tasks. We also note that the number of

surrogate tokens can be tuned as a hyperparameter, meaning

that a trade-off between speed and performance can be made

depending on what is more important for any given task.

Visuospatial information of learned clusters. The
clusters created by CAST do seem to hold visuospatial in-

formation on image tasks, more specifically, CAST seems

to separate background from foreground in images. Earlier

layers seem to retrieve more local information by cluster-

ing slices of the image and applying self-attention within

these clusters. While later layers of CAST cluster the image

based more on whether the pixels are in the foreground or

background. Whether this visuospatial information is the

reason for CAST’s relatively high score in the Image task

is uncertain, however, the observation that the clusters do

hold some visuospatial information shows that CAST has

the ability to create meaningful clusters.

8 Conclusion
We present CAST, a novel method for efficient Transform-

ers, based on clustering self-attention through the use of

surrogate tokens. It lowers the complexity of computing the

self-attention in Transformers. By utilizing learnable sur-

rogate tokens to represent distinct clustering regions, we

obtain a similarity score for clustering regions and create

cluster summaries that allow all tokens to access information

from each cluster while maintaining a gradient for the surro-

gate tokens. Our experiments demonstrate that the memory

and computational efficiency of CAST is significantly better

than other efficient Transformers (e.g. Reformer [20], Per-

former [8]) in the Long Range Arena efficiency benchmark.

CAST uses less memory than existing methods for all tested

sequence lengths, being up to about 6× faster than and using

10% of the memory of the original Transformer.

9 Future Work
This work provides an interesting research direction for fu-

ture papers. CAST can be expanded on by using different

clustering mechanisms or applying asymmetric clustering,

possibly resulting in an even better performance. Further

speed gains could be made by parallelizing the attention

within clusters and the creation of cluster summaries over

multiple devices. Because CAST shows promise on the Im-

age task we could also see if CAST could work as a Vision

Transformer [13], this could for instance be done by training

CAST on the ImageNet dataset [12]. When it comes to text-

related tasks, future work could focus on creating a CAST

version of cross-attention to create a Transformer with a

full encoder-decoder setup. The full encoder-decoder ver-

sion of CAST could then be trained for the general language

understanding task (GLUE) [46], which could be used as an

indicator of whether CAST could be used in large language

models.

Acknowledgments
I would like to specifically thank my supervisor Estefania

Talavera Martinez for sparring with me about my ideas, be-

ing patient, and helping me to push myself to finish this

thesis. Furthermore, I would like to thank the following fel-

low students: Puru (Mei) Vaish, Aleksandra Siderova, Mauk

Muller, Julia Kersten, Koen van den Brink, Inigo Artolozaga,

Anna Mae van de Peut, Anniek Megens, Tim Yeung, Meng

Commissaris, Ronan Oosterveen, and Marius Lupulescu for

accompanying me in the EduCafe while working on this the-

sis, seeing them work alongside me has helped me tremen-

dously in increasing my own productivity. Lastly, I want to

specifically thank Puru (Mei) Vaish, Mauk Muller, and Koen

van den Brink, for engaging in lively discussions with me

about my thesis subject.

References
[1] Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek,

Zachary Fisher, Philip Pham, Anirudh Ravula, Sumit Sanghai, Qi-

fan Wang, and Li Yang. 2020. ETC: Encoding Long and Structured

Inputs in Transformers. arXiv:2004.08483 [cs.LG]

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer

Normalization. https://doi.org/10.48550/ARXIV.1607.06450
[3] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer:

The Long-Document Transformer. arXiv:2004.05150 [cs.CL]

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot

Learners. arXiv:2005.14165 [cs.CL]

[5] Yen-Chun Chen, Zhe Gan, Yu Cheng, Jingzhou Liu, and Jingjing Liu.

2019. Distilling Knowledge Learned in BERT for Text Generation.

https://doi.org/10.48550/ARXIV.1911.03829
[6] Lei Cheng, Ruslan Khalitov, Tong Yu, and Zhirong Yang. 2022. Classi-

fication of Long Sequential Data using Circular Dilated Convolutional

Neural Networks. arXiv:2201.02143 [cs.LG]

[7] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019.

Generating Long Sequences with Sparse Transformers. https:
//doi.org/10.48550/ARXIV.1904.10509

[8] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou

Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz

Mohiuddin, Lukasz Kaiser, David Belanger, Lucy Colwell, and Adrian

Weller. 2020. Rethinking Attention with Performers. https://doi.org/
10.48550/ARXIV.2009.14794

[9] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher

Ré. 2022. FlashAttention: Fast and Memory-Efficient Exact Attention

with IO-Awareness. arXiv:2205.14135 [cs.LG]

[10] Tri Dao, Daniel Y. Fu, Khaled K. Saab, Armin W. Thomas, Atri Rudra,

and Christopher Ré. 2023. Hungry Hungry Hippos: Towards Language

Modeling with State Space Models. arXiv:2212.14052 [cs.LG]

[11] Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G. Di-

makis. 2020. SMYRF: Efficient Attention using Asymmetric Clustering.

arXiv:2010.05315 [cs.LG]

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE

conference on computer vision and pattern recognition. Ieee, 248–255.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-

senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,

and Neil Houlsby. 2020. An Image is Worth 16x16 Words: Transform-

ers for Image Recognition at Scale. https://doi.org/10.48550/ARXIV.
2010.11929

[14] Albert Gu, Karan Goel, and Christopher Ré. 2022. Effi-

ciently Modeling Long Sequences with Structured State Spaces.

arXiv:2111.00396 [cs.LG]

[15] Ramin Hasani, Mathias Lechner, Tsun-HsuanWang, Makram Chahine,

Alexander Amini, and Daniela Rus. 2022. Liquid Structural State-Space

Models. arXiv:2209.12951 [cs.LG]

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term

Memory. Neural Computation 9, 8 (1997), 1735–1780.

[17] JohnM. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael

Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,

Augustin Zídek, Anna Potapenko, Alex Bridgland, Clemens Meyer,

Simon A A Kohl, Andy Ballard, Andrew Cowie, Bernardino Romera-

Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back,

Stig Petersen, David A. Reiman, Ellen Clancy, Michal Zielinski, Mar-

tin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian

Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray

Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. 2021. Highly

accurate protein structure prediction with AlphaFold. Nature 596

(2021), 583 – 589.

[18] Ruslan Khalitov, Tong Yu, Lei Cheng, and Zhirong Yang. 2021. Sparse

Factorization of Large Square Matrices. arXiv:2109.08184 [cs.LG]

[19] Ruslan Khalitov, Tong Yu, Lei Cheng, and Zhirong Yang. 2023. Chord-

Mixer: A Scalable Neural AttentionModel for SequenceswithDifferent

Lengths. arXiv:2206.05852 [cs.LG]

[20] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. 2020. Reformer:

The Efficient Transformer. https://doi.org/10.48550/ARXIV.2001.04451
[21] Alex Krizhevsky. 2009. LearningMultiple Layers of Features from Tiny

Images. (2009), 32–33. https://www.cs.toronto.edu/~kriz/learning-
features-2009-TR.pdf

[22] Taku Kudo and John Richardson. 2018. SentencePiece: A simple and

language independent subword tokenizer and detokenizer for Neural

Text Processing. https://doi.org/10.48550/ARXIV.1808.06226
[23] James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon.

2021. FNet: Mixing Tokens with Fourier Transforms. arXiv preprint

arXiv:2105.03824 (2021).

[24] Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and Debadeepta Dey.

2022. What Makes Convolutional Models Great on Long Sequence

Modeling? arXiv:2210.09298 [cs.LG]

[25] Drew Linsley, Junkyung Kim, Vijay Veerabadran, and Thomas Serre.

2018. Learning long-range spatial dependencies with horizontal gated-

recurrent units. CoRR abs/1805.08315 (2018). arXiv:1805.08315 http:
//arxiv.org/abs/1805.08315

[26] Liu Liu, Zheng Qu, Zhaodong Chen, Yufei Ding, and Yuan Xie. 2021.

Transformer Acceleration with Dynamic Sparse Attention. CoRR

abs/2110.11299 (2021). arXiv:2110.11299 https://arxiv.org/abs/2110.
11299

[27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang,

Stephen Lin, and Baining Guo. 2021. Swin Transformer: Hierarchical

Vision Transformer using Shifted Windows. https://doi.org/10.48550/
ARXIV.2103.14030

[28] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. 2015.

Effective Approaches to Attention-based Neural Machine Translation.

https://doi.org/10.48550/ARXIV.1508.04025
[29] Xuezhe Ma, Xiang Kong, SinongWang, Chunting Zhou, JonathanMay,

Hao Ma, and Luke Zettlemoyer. 2021. Luna: Linear Unified Nested

Attention. https://doi.org/10.48550/ARXIV.2106.01540
[30] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui,

Graham Neubig, Jonathan May, and Luke Zettlemoyer. 2023. Mega:

https://arxiv.org/abs/2004.08483
https://doi.org/10.48550/ARXIV.1607.06450
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.1911.03829
https://arxiv.org/abs/2201.02143
https://doi.org/10.48550/ARXIV.1904.10509
https://doi.org/10.48550/ARXIV.1904.10509
https://doi.org/10.48550/ARXIV.2009.14794
https://doi.org/10.48550/ARXIV.2009.14794
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2212.14052
https://arxiv.org/abs/2010.05315
https://doi.org/10.48550/ARXIV.2010.11929
https://doi.org/10.48550/ARXIV.2010.11929
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2209.12951
https://arxiv.org/abs/2109.08184
https://arxiv.org/abs/2206.05852
https://doi.org/10.48550/ARXIV.2001.04451
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.48550/ARXIV.1808.06226
https://arxiv.org/abs/2210.09298
http://arxiv.org/abs/1805.08315
http://arxiv.org/abs/1805.08315
https://arxiv.org/abs/2110.11299
https://arxiv.org/abs/2110.11299
https://doi.org/10.48550/ARXIV.2103.14030
https://doi.org/10.48550/ARXIV.2103.14030
https://doi.org/10.48550/ARXIV.1508.04025
https://doi.org/10.48550/ARXIV.2106.01540

Moving Average Equipped Gated Attention. arXiv:2209.10655 [cs.LG]

[31] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang,

Andrew Y. Ng, and Christopher Potts. 2011. Learning Word Vec-

tors for Sentiment Analysis. In Proceedings of the 49th Annual Meet-

ing of the Association for Computational Linguistics: Human Lan-

guage Technologies - Volume 1 (Portland, Oregon) (HLT ’11). Asso-

ciation for Computational Linguistics, Stroudsburg, PA, USA, 142–150.

http://dl.acm.org/citation.cfm?id=2002472.2002491
[32] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov.

2023. Locating and Editing Factual Associations in GPT.

arXiv:2202.05262 [cs.CL]

[33] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.

Efficient Estimation of Word Representations in Vector Space.

arXiv:1301.3781 [cs.CL]

[34] Derek Miller. 2019. Leveraging BERT for Extractive Text Summariza-

tion on Lectures. https://doi.org/10.48550/ARXIV.1906.04165
[35] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward

Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-

amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-

tala. 2019. PyTorch: An Imperative Style, High-Performance Deep

Learning Library. In Advances in Neural Information Processing

Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024–

8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

[37] Dragomir R. Radev, Pradeep Muthukrishnan, Vahed Qazvinian, and

Amjad Abu-Jbara. 2013. The ACL Anthology Network Corpus. Lang.

Resour. Eval. 47, 4 (dec 2013), 919–944. https://doi.org/10.1007/s10579-
012-9211-2

[38] Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linder-

man. 2023. Simplified State Space Layers for Sequence Modeling.

arXiv:2208.04933 [cs.LG]

[39] Chi Sun, Luyao Huang, and Xipeng Qiu. 2019. Utilizing BERT for

Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence.

https://doi.org/10.48550/ARXIV.1903.09588
[40] Yi Tay, Dara Bahri, DonaldMetzler, Da-Cheng Juan, Zhe Zhao, and Che

Zheng. 2020. Synthesizer: Rethinking Self-Attention in Transformer

Models. https://doi.org/10.48550/ARXIV.2005.00743
[41] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan.

2020. Sparse Sinkhorn Attention. https://doi.org/10.48550/ARXIV.
2002.11296

[42] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri,

Philip Pham, Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Met-

zler. 2020. Long Range Arena: A Benchmark for Efficient Transformers.

arXiv:2011.04006 [cs.LG]

[43] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer,

Xiaohua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner,

Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and Alexey Doso-

vitskiy. 2021. MLP-Mixer: An all-MLP Architecture for Vision.

arXiv:2105.01601 [cs.CV]

[44] Hugo Touvron, Thibaut Lavril, Gautier Izacard, XavierMartinet, Marie-

Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric

Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard

Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient

Foundation Language Models. arXiv:2302.13971 [cs.CL]

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.

Attention Is All You Need. arXiv:1706.03762 [cs.CL]

[46] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer

Levy, and Samuel R. Bowman. 2019. GLUE: A Multi-Task Bench-

mark and Analysis Platform for Natural Language Understanding.

arXiv:1804.07461 [cs.CL]

[47] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao

Ma. 2020. Linformer: Self-Attention with Linear Complexity.

arXiv:2006.04768 [cs.LG]

[48] Tong Yu, Ruslan Khalitov, Lei Cheng, and Zhirong Yang. 2022.

Paramixer: Parameterizing Mixing Links in Sparse Factors Works

Better than Dot-Product Self-Attention. arXiv:2204.10670 [cs.LG]

[49] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie,

Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan

Wang, Li Yang, and Amr Ahmed. 2021. Big Bird: Transformers for

Longer Sequences. arXiv:2007.14062 [cs.LG]

[50] Hao Zheng, Zhanlei Yang, Wenju Liu, Jizhong Liang, and Yanpeng

Li. 2015. Improving deep neural networks using softplus units. In

2015 International Joint Conference on Neural Networks (IJCNN). 1–4.

https://doi.org/10.1109/IJCNN.2015.7280459

A Clustering Mechanism Pseudocode
In this section, we describe our proposed Top-K clustering

mechanism and the SA Top-K clustering mechanism.

A.1 Top-K Clustering Mechanism
The Top-K clustering mechanism groups the indices with

the largest similarity scores in A𝑔, it allows for a token to

be clustered into two clusters, but also for a token not to be

clustered at all. A formal definition of the Top-K clustering

mechanism is in Algorithm 1, where 𝐴 ∈ R𝑁×𝑁𝑐
is the simi-

larity scores for each token to each cluster, and 𝑋 ∈ R𝑁×∗ is
a matrix of feature vectors that we wish to cluster, where ∗
indicates any shape.

A.2 Single Assignment Top-K Clustering Mechanism
The single assignment Top-K clustering mechanism has the

constraint that each token is assigned to only a single cluster,

while also maximizing the total similarity for all clusters

combined. The SA Top-K clustering mechanism is formally

defined in Algorithm 2, where 𝐴 ∈ R𝑁×𝑁𝑐
represents the

similarity scores for each token to each cluster, and𝑋 ∈ R𝑁×∗
represents a matrix of feature vectors that we wish to cluster.

B Experiment Details
B.1 Long Range Arena Hyperparameters
For all tasks, we follow the standards given in the original

Long Range Arena paper [42] regarding the data processing

and task setup. For our choices in most hyperparameters, we

used the current state-of-the-art, MEGA [30], as our baseline

regarding the number of weight updates. Furthermore, we

use their data splits regarding all tasks. The final hyperparam-

eters used for our reported accuracy are in Table 3. For both

the reported performance of Top-K and SA Top-K the same

hyperparameters are used. General hyperparameters include

the averaging of the output features over the sequence for the

classification features, the use of linear feature embeddings

for pixel tasks, the use of sinusoidal positional embeddings

https://arxiv.org/abs/2209.10655
http://dl.acm.org/citation.cfm?id=2002472.2002491
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/1301.3781
https://doi.org/10.48550/ARXIV.1906.04165
https://arxiv.org/abs/2303.08774
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/s10579-012-9211-2
https://doi.org/10.1007/s10579-012-9211-2
https://arxiv.org/abs/2208.04933
https://doi.org/10.48550/ARXIV.1903.09588
https://doi.org/10.48550/ARXIV.2005.00743
https://doi.org/10.48550/ARXIV.2002.11296
https://doi.org/10.48550/ARXIV.2002.11296
https://arxiv.org/abs/2011.04006
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2204.10670
https://arxiv.org/abs/2007.14062
https://doi.org/10.1109/IJCNN.2015.7280459

Algorithm 1 Implementation of the proposed Top-K clustering mechanism.

1: Input X, A
2: Output C
3: function SA Top-K(𝐴,𝑋)

4: 𝐶 = {𝐶1...𝐶𝑁𝑐
} ⊲ Initialize result

5: 𝐼 , 𝐴𝑡𝑜𝑝 = Top-K(𝐴) ⊲ Get the indices of the largest values per cluster

6: for 𝑖 ← 1 to 𝑁𝑐 do
7: for 𝑗 ← 1 to

𝑁
𝑁𝑐

do
8: 𝑖𝑡𝑜𝑘𝑒𝑛 = 𝐼𝑖, 𝑗
9: 𝐶𝑖 .insert(𝑋𝑖𝑡𝑜𝑘𝑒𝑛)
10: end for
11: end for
12: end function

Algorithm 2 Implementation of the proposed Single Assignment Top-K clustering mechanism.

1: Input X, A
2: Output C
3: function SA Top-K(𝐴,𝑋)

4: 𝐴𝑐 , 𝐼𝑐 = 𝑠𝑜𝑟𝑡2 (𝐴) ⊲ Sort from highest to lowest cluster

5: 𝐴𝑟 , 𝐼𝑟 = 𝑠𝑜𝑟𝑡1 (𝐴𝑐) ⊲ Sort from highest to lowest token

6: 𝐶 = {𝐶1...𝐶𝑁𝑐
} ⊲ Initialize result

7: 𝑀 = 0𝑁 ⊲ Initialize Assignment Mask

8: for 𝑖 ← 1 to 𝑁𝑐 do
9: for 𝑗 ← 1 to 𝑁 do
10: 𝑗𝑡𝑜𝑘𝑒𝑛 = 𝐼𝑟𝑗
11: 𝑖𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐼

𝑐
𝑗𝑡𝑜𝑘𝑒𝑛

12: if 𝑀 𝑗 = 1 or length(𝐶𝑖𝑐𝑙𝑢𝑠𝑡𝑒𝑟) = 𝑁
𝑁𝑐

then
13: continue for loop

14: end if
15: 𝐶𝑖𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .insert(𝑋 𝑗𝑡𝑜𝑘𝑒𝑛)
16: 𝑀 𝑗𝑡𝑜𝑘𝑒𝑛 = 1

17: end for
18: end for
19: return C

20: end function

for all tasks, and an extra normalization layer on the output

features when pre-normalization is used.

C Detailed Results
In this section, we go into more depth regarding the results

of CAST. We first give an extensive overview of other long-

range sequence modeling architectures, and then show more

examples of the visual analysis that was done on the Image

task.

C.1 Long Range Arena Performance
In Table 4, we report a detailed list of results of different effi-

cient Transformer variants, and other long-range sequence

models on the Long Range Arena benchmark. We divide

these models into the following categories: Transformer

Based Architectures, Structured State Space Architectures,

and Other Architectures. We can see that among the Trans-

former Based Architectures (A) Luna [29] and CAST simi-

larly strong performance. When it comes to the Structured

State Space Architectures (B), it can be observed that all

models perform similarly, with MEGA [30] being slightly

better than the rest. As for the other types of architectures,

they neither use self-attention nor structured state spaces to

"mix" their input sequence. Among them, the recent Chord-

Mixer [19] stands out, ChordMixer was created for handling

data with extremely long sequence lengths (in the order of

100K tokens), but has shown impressive results on the LRA

benchmark too.

C.2 Further Visual Analysis
Additional visualizations of the clusters created for different

samples from the Image task of LRA, can be seen in Figure 6

Table 3. Final hyperparameters for the best performing CAST models in our hyperparameter sweep. Here, Depth indicates the

number of Transformer blocks, ℎ the number of heads, 𝑑 the number of features in the self-attention block, 𝑑𝑓 𝑓 , the number of

features in the feedforward block, 𝑑𝑒𝑚𝑏 the number of features in the embedding, 𝑁𝑐 the number of clusters, Norm the type of

normalization being used, BS the batch-size, LR the learning rate, WD the weight decay, and Epochs the number of epochs

that were trained for.

Task Depth ℎ 𝑑 𝑑𝑓 𝑓 𝑑𝑒𝑚𝑏 𝑁𝑐 Norm Pre-norm BS LR WD Epochs

ListOps 4 8 64 128 256 10 Layer False 64 1𝑒−3 1𝑒−2 60

Text 4 4 64 128 256 20 Scale False 25 1𝑒−3 1𝑒−2 25

Retrieval 2 8 256 256 256 20 Layer False 8 1𝑒−2 1𝑒−2 5

Image 2 2 128 128 256 16 Batch True 50 5𝑒−3 1𝑒−2 200

Pathfinder 2 2 32 32 64 16 Batch True 128 1𝑒−3 1𝑒−2 200

(a horse), Figure 7 (a deer), and Figure 8 (an automobile). For

each of these figures, subfigure (a) shows the original input

image, (b) shows the assignment of clusters for each pixel

in the first layer, and (c) shows the assignment of clusters

for each pixel in the last layer. Subfigure (d) shows for each

cluster the score in A𝑔 that each token had for the first layer.

Subfigure (e) shows for each cluster the score inA𝑔 that each

pixel had for the last layer.

For the mentioned sample images, it can be seen that

the in the first layer, i.e. in Figures 6d, 7d, and Figure 8d,

each cluster roughly clusters the same pixels. This behavior

could occur, because the positional embeddings are most

prominent in the first layer, causing the surrogate tokens to

cluster based on this positional embedding. Furthermore, it

also shows that CAST learns to cluster slices of the image

first, similar to convolution. In Figures 6e, 7e and, Figure 8e,

the scores in A𝑔 for the last layer can be seen. This layer

(e) shows more image-specific clustering. For instance, from

these scores, we can observe the outline and inverse outline

of a horse, a deer in a forest, and an automobile, respec-

tively. We interpret this as the separation of background and

foreground. In the case of the deer, Figure 7e, we observe a

more rough outline, which can be due to the fact that the

background and foreground of this image are much more

similar.

D Non-performant Methods
CAST has undergone many iterations, in this section we

share some ideas that did not necessarily work.

Static Surrogate TokenswithoutCluster Summaries.
In the first iteration of CAST, no cluster summaries were

created, as such the surrogate tokens did not have a gradient

and could thus not be learned. The surrogate tokens were

initialized as a list of equiangular vectors to ensure that each

cluster contained different types of data. However, because

the surrogate tokens could not be learned this version of

CAST had great instability and often suffered from mode

collapse. Furthermore, using more clusters with a smaller

cluster size significantly impacted performance.

Learning Surrogate Tokens through an auxiliary
loss. After this, we tried to increase the stability of CAST

by introducing an auxiliary loss function, which aimed to

ensure that the surrogate tokens were actually in the same

directions as clusters of queries and keys. The gradient of

this loss function was disconnected from the queries and

keys such that they were only updated based on the loss

of the task. A learnable rotation matrix was used to rotate

the equiangular surrogate tokens. Although this did seem to

improve stability, the performance of this version was too

low.

Cluster Summaries without parameterized mix-
ing. To directly connect the surrogate tokens to the loss of

the task, cluster summaries were created. The use of cluster

summaries seemed to increase the performance significantly,

however, mode collapse was still observed often. After this,

we introduced a new transformation 𝜑 which aimed to let

the architecture learn how to mix the affinity of queries and

keys.

Table 4. The performance of different architectures on the Long Range Arena benchmark in classification accuracy. We

divide these works into (A) Transformer architectures that do not use Structured State Spaces or any derivation of this,

(B) Architectures using Structured State Spaces, and (C) Other types of architectures. The (A)-related models are grouped

as; (A-Top) The original Transformer architecture, (A-Middle) efficient Transformer architectures that came out with the

LRA benchmark, and (A-Bottom) notable models that came out after the release of the LRA benchmark. Here the symbol †
indicates that the results came from the original paper from the LRA dataset [42]. Furthermore, the symbol × indicates that

the Transformer variant either ran out of memory and − indicates that results were not reported.

Model Year ListOps Text Retrieval Image Pathfinder Path-X Avg.
Random 10.00 50.00 50.00 10.00 50.00 50.00 36.67

(A) Transformer Based Architectures

Transformer
†
[45] 2017 36.37 64.27 57.46 42.44 71.40 × 53.66

Transformer (re-impl [29]) 2017 37.11 65.21 79.14 42.94 71.83 × 57.71

Sparse Trans.
†
[7] 2019 17.07 63.58 59.59 44.24 71.71 × 51.03

Local Att.
†
[42] 2020 15.82 52.98 53.39 41.46 66.63 × 46,71

Reformer
†
[20] 2020 37.27 56.10 53.40 38.07 68.50 × 50.56

Sinkhorn Trans.
†
[41] 2020 33.67 61.20 53.83 41.23 67.45 × 51.23

Performer
†
[8] 2020 18.01 65.40 53.82 42.77 77.05 × 51.18

Linformer
†
[47] 2020 35.70 53.94 52.27 38.56 76.34 × 51.36

Longformer
†
[3] 2020 35.63 62.85 56.89 42.22 69.71 × 53.46

Synthesizer
†
[40] 2021 36.99 61.68 54.67 41.61 69.45 × 52.40

BigBird
†
[49] 2021 36.05 64.02 59.29 40.83 74.87 × 54.18

Luna-16 [29] 2021 37.43 65.74 79.38 46.39 78.36 - 59.55
Luna-128 [29] 2021 38.01 65.74 79.55 47.47 78.89 - 59,94

Luna-256 [29] 2021 37.98 65.78 79.56 47.86 78.55 - 59,96

PSF [18] 2021 38.85 77.32 - 45.01 80.49 - 56.95

FNet [23] 2021 35.33 65.11 59.61 38.67 77.80 × 54.42

CAST Top-K (Ours) 2023 39.90 65.45 78.01 52.37 70.18 × 59.32

CAST SA Top-K (Ours) 2023 40.70 65.13 74.64 52.78 62.22 × 57.57

(B) Structured State Space Architectures

S4 [14] 2021 59.60 86.82 90.90 88.65 94.20 96.35 86.09

H3 [10] 2022 57.50 88.20 91.00 87.30 93.00 91.80 84.80

Liquid-S4 [15] 2022 62.75 89.02 91.20 89.50 94.8 96.66 87.32

SGConv [24] 2022 61.45 89.20 91.11 87.97 95.46 97.83 87.17

S5 [38] 2022 62.15 89.31 91.40 88.00 95.33 98.58 87.46

MEGA-Chunk [30] 2022 58.76 90.19 90.97 85.80 94.41 93.81 85.66

MEGA [30] 2022 63.14 90.43 91.25 90.44 96.01 97.98 88.21

(C) Other Architectures

Paramixer [48] 2022 39.57 83.32 - 46.58 80.49 - 58.33

CDIL [6] 2022 - 87.61 84.27 64.49 91.00 - 64.56

ChordMixer [19] 2023 60.12 88.82 89.98 90.17 96.69 98.63 87.40

(a) Example Image of the LRA Image task. (b) Clustered Image, 𝑁𝑐 = 8, First Layer. (c) Clustered Image, 𝑁𝑐 = 8, Last Layer.

(d) Scores of A𝑔 per cluster for the first layer of a CAST model trained on the Image task of LRA. Here, each image corresponds to a cluster,

i.e. a single column of A𝑔 .

(e) Scores of A𝑔 per cluster for the last layer of a CAST model trained on the Image task of LRA. Here, each image corresponds to a cluster,

i.e. a single column of A𝑔 .

Figure 6. A visualization learned clusters in different layers of CAST. Here, (a) is a sample from the Image of LRA, depicting a
horse with a rider, (b) is an image representing the clustered pixels in the first layer of CAST, (c) is an image representing the

clustered pixels in the last layer of CAST, (d) the scores in A𝑔 for every pixel in each of the eight clusters in the first layer of

CAST, (e) the scores in A𝑔 for every pixel in each of the eight clusters in the last layer of CAST.

(a) Example Image of the LRA Image task. (b) Clustered Image, 𝑁𝑐 = 8, First Layer. (c) Clustered Image, 𝑁𝑐 = 8, Last Layer.

(d) Scores of A𝑔 per cluster for the first layer of a CAST model trained on the Image task of LRA. Here, each image corresponds to a cluster,

i.e. a single column of A𝑔 .

(e) Scores of A𝑔 per cluster for the last layer of a CAST model trained on the Image task of LRA. Here, each image corresponds to a cluster,

i.e. a single column of A𝑔 .

Figure 7. A visualization of the learned clusters in different layers of CAST. Here, (a) is a sample from the Image of LRA,
depicting a deer in a forest, (b) is an image representing the clustered pixels in the first layer of CAST, (c) is an image

representing the clustered pixels in the last layer of CAST, (d) the scores in A𝑔 for every pixel in each of the eight clusters in

the first layer of CAST, (e) the scores in A𝑔 for every pixel in each of the eight clusters in the last layer of CAST.

(a) Example Image of the LRA Image task. (b) Clustered Image, 𝑁𝑐 = 8, First Layer. (c) Clustered Image, 𝑁𝑐 = 8, Last Layer.

(d) Scores of A𝑔 per cluster for the first layer of a CAST model trained on the Image task of LRA. Here, each image corresponds to a cluster,

i.e. a single column of A𝑔 .

(e) Scores of A𝑔 per cluster for the last layer of a CAST model trained on the Image task of LRA. Here, each image corresponds to a cluster,

i.e. a single column of A𝑔 .

Figure 8. A visualization learned clusters in different layers of CAST. Here, (a) is a sample from the Image of LRA, depicting
an automobile, (b) is an image representing the clustered pixels in the first layer of CAST, (c) is an image representing the

clustered pixels in the last layer of CAST, (d) the scores in A𝑔 for every pixel in each of the eight clusters in the first layer of

CAST, (e) the scores in A𝑔 for every pixel in each of the eight clusters in the last layer of CAST.

